WO2018210343A1 - 通信方法和通信设备 - Google Patents

通信方法和通信设备 Download PDF

Info

Publication number
WO2018210343A1
WO2018210343A1 PCT/CN2018/087542 CN2018087542W WO2018210343A1 WO 2018210343 A1 WO2018210343 A1 WO 2018210343A1 CN 2018087542 W CN2018087542 W CN 2018087542W WO 2018210343 A1 WO2018210343 A1 WO 2018210343A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
time domain
allocated
resource
control information
Prior art date
Application number
PCT/CN2018/087542
Other languages
English (en)
French (fr)
Inventor
管鹏
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18801707.3A priority Critical patent/EP3618540B1/en
Publication of WO2018210343A1 publication Critical patent/WO2018210343A1/zh
Priority to US16/684,197 priority patent/US11121847B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and a communication device for communication in a wireless communication system.
  • the downlink communication means that the base station transmits information to the terminal device
  • the uplink communication means that the terminal device transmits information to the base station.
  • the downlink communication includes, but is not limited to, the base station transmitting downlink data to the terminal device
  • the uplink communication includes, but is not limited to, the terminal device transmitting the uplink data to the base station.
  • DCI Downlink Control Information
  • the base station needs to send Downlink Control Information (DCI) to the terminal device to instruct the terminal device to perform data reception.
  • DCI Downlink Control Information
  • the base station performs a series of operations such as channel coding, and the DCI is carried on a physical downlink control channel (PDCCH) and transmitted to the terminal device.
  • PDCH physical downlink control channel
  • the code rate generally refers to the proportion of valid information bits in the transmission bits. For example, 20-bit information is encoded into 60 bits, and the code rate is 1/3. The lower the code rate, the stronger the protection and error correction capability that channel coding can provide.
  • Modulation refers to modulating bits into symbols. For example, for quadrature phase shift keying (QPSK) symbols, 2 bits are modulated into 1 QPSK symbol by modulation; for 256 quadrature amplitude modulation (QAM) symbols, by modulation, 8 bits are modulated into one 256QAM symbol. The lower the order of modulation, the smaller the probability of transmission errors.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • a symbol is often mapped to a basic unit of time-frequency resources.
  • the time-frequency resource required for the base station to transmit the DCI is proportional to the length of the DCI. That is, the longer the length of the DCI, the more time-frequency resources are occupied.
  • the time-frequency resources of the control channel are limited, and most of the time-frequency resources need to be reserved for data transmission.
  • the length of the resource information allocated to the terminal device that is included in the DCI is too long, and the occupied bits are too large, resulting in more time-frequency resources occupied by the indicated resource allocation information.
  • the embodiments of the present application provide a communication method and a communication device in a wireless communication system, so as to reduce occupation of time-frequency resources by resource allocation information.
  • an embodiment of the present application provides a communication method, including:
  • the control information is sent to the terminal device, where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is all frequency domain resources that the base station can allocate.
  • the allocated frequency domain resource is indicated by the resource identifier in the control information. Since the number of bits occupied by the identifier is small, the bit occupied by the allocated resource information can be reduced, and the frequency domain resource indicated by the indication in the control information can be reduced.
  • the use of time-frequency resources increases the utilization of time-frequency resources. At the same time, since the bits occupied by the control information are shortened, the time required to generate the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • control information includes a resource allocation header field, where the resource allocation header field is used to represent the resource identifier.
  • all the frequency domain resources that the base station can allocate are all frequency domain resources in one carrier that the terminal device can support, or all bandwidths in one carrier that the terminal device can support; or,
  • All frequency domain resources that the base station can allocate are all frequency domain resources in one carrier that the base station can allocate or all bandwidths in one carrier that the base station can allocate.
  • control information further includes a time domain resource start field and a time domain resource length field, where the time domain resource start field is used to indicate information about a start position of the allocated time domain resource.
  • the time domain resource length field is used to indicate information about the length of the allocated time domain resource.
  • control information may further include information of the allocated time-frequency resource start symbol and the end symbol, and may also be information of the allocated time-frequency resource symbol length and the end symbol.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated frequency domain resources may be pre-configured, that is, the frequency domain resources allocated in advance are all frequency domain resources that the base station can allocate.
  • the allocated frequency domain resource is pre-configured by the correspondence between the format of the binding control information and the allocated frequency domain resource.
  • an embodiment of the present application provides a communication method, including:
  • control information includes a resource identifier, where the resource identifier is used to indicate whether the allocated time-frequency resource changes.
  • the allocated time-frequency resource is indicated by the resource identifier in the control information. Since the number of bits occupied by the identifier is small, the bit occupied by the allocated resource information can be reduced, and the time-frequency resource indicated by the indication in the control information can be reduced.
  • the use of time-frequency resources increases the utilization of time-frequency resources. At the same time, since the bits occupied by the control information are shortened, the time required to generate the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • whether the allocated time-frequency resource changes refers to whether the allocated time-frequency resource changes relative to the valid time-frequency resource that has been acquired.
  • control information includes an offset for indicating a value of the allocated time-frequency resource offset
  • the offset is represented by a new field in the control information or a field existing in the control information.
  • the offset when the offset may be represented by an existing field in the control information, the offset may be through a hybrid automatic repeat request process number field, a new data indication field, a redundancy version field, or The beam number field and the like are indicated.
  • a predefined offset is sent to the terminal device by high layer signaling.
  • the offset may be a predefined offset.
  • the high layer signaling includes a Medium Access Control (Control Element – Control Element, MAC-CE) or a Radio Resource Control (RRC).
  • MAC-CE Medium Access Control
  • RRC Radio Resource Control
  • the predefined offset is an offset preset between the base station and the terminal device by a pre-agreed, pre-negotiated or standard defined manner.
  • the control information when the resource identifier indicates that the allocated time-frequency resource changes, the control information includes the offset. In a possible implementation manner, when the resource identifier indicates that the allocated time-frequency resource does not change, the base station does not need to carry the offset in the control information, so that the transmission resource can be saved.
  • control information includes a resource allocation header field, where the resource allocation header field is used to represent the resource identifier.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated time-frequency resource may be pre-configured, that is, the information of the allocated time-frequency resource change or the information of the valid time-frequency resource change that has been acquired by the terminal device is pre-configured.
  • the time-frequency resource allocated by the terminal device is pre-configured by the correspondence between the format of the binding control information and the allocated time-frequency resource.
  • an embodiment of the present application provides a communication method, including:
  • control information sent by the base station where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is all frequency domain resources that the base station can allocate;
  • the resource identifier in the received control information occupies less bits, which can reduce the bits occupied by the allocated resource information, and can reduce the occupation of the time-frequency resources indicated by the frequency domain resources indicated in the control information, and improve Utilization of time-frequency resources.
  • the bits occupied by the control information are shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • control information includes a resource allocation header field, where the resource allocation header field is used to indicate the resource identifier;
  • the method may further include: obtaining the resource identifier according to the resource allocation header field.
  • all the frequency domain resources that the base station can allocate are all frequency domain resources in one carrier that the terminal device can support or all bandwidths in one carrier that the terminal device can support; or ,
  • All frequency domain resources that the base station can allocate are all frequency domain resources in one carrier that the base station can allocate or all bandwidths in one carrier that the base station can allocate.
  • control information further includes a time domain resource start field and a time domain resource length field, where the time domain resource start field indicates information about a start position of the allocated time domain resource, where The time domain resource length field indicates information of the length of the allocated time domain resource;
  • the method further includes: acquiring information of the allocated time domain resource according to the time domain resource start field and the time domain resource length field.
  • control information may further include a field of the allocated time-frequency resource start symbol and the end symbol, or may be a field of the allocated time-frequency resource symbol length and the end symbol.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated frequency domain resources may be pre-configured, that is, the frequency domain resources allocated in advance are all frequency domain resources that the base station can allocate.
  • the allocated frequency domain resource is pre-configured by the correspondence between the format of the binding control information and the allocated frequency domain resource.
  • an embodiment of the present application provides a communication method, including:
  • control information sent by the base station where the control information includes a resource identifier, where the resource identifier is used to indicate whether the allocated time-frequency resource changes;
  • the resource identifier in the received control information occupies less bits, and the bit occupied by the allocated resource information can be reduced, and the time-frequency resource occupied by the time-frequency resource indicated by the control information can be reduced. Improve the utilization of time-frequency resources. At the same time, since the bits occupied by the control information are shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • Whether the allocated time-frequency resource changes in a possible implementation manner refers to whether the allocated time-frequency resource changes with respect to the valid time-frequency resource that has been acquired.
  • control information includes an offset for indicating a value of the allocated time-frequency resource offset. Obtaining, by the offset, a value of the allocated time-frequency resource offset;
  • the offset may be represented by a new field in the control information or an existing field in the control information.
  • the offset when the offset is represented by an existing field in the control information, the offset may be through a hybrid automatic repeat request process number field, a new data indication field, a redundancy version field, or Beam number field, etc.
  • the value of the offset is determined based on a predefined offset.
  • the high layer signaling may be MAC-CE or RRC.
  • the predefined offset is an offset preset between the base station and the terminal device by a pre-agreed, pre-negotiated or standard defined manner.
  • the control information when the resource identifier indicates that the allocated time-frequency resource changes, the control information includes the offset.
  • the control information when the resource identifier indicates that the allocated time-frequency resource has no change, the control information does not carry an offset, so that the transmission resource can be saved.
  • the method may further include:
  • control information includes a resource allocation header field
  • the resource identifier is obtained by using the resource allocation header field
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated time-frequency resource may be pre-configured, that is, whether the allocated time-frequency resource is pre-configured.
  • the allocated time-frequency resource is pre-configured by the correspondence between the format of the binding control information and the changed time-frequency resource.
  • an embodiment of the present application provides a communication device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein the processor executes the program
  • the communication device implements the corresponding steps in the method provided by the first aspect or any one of the possible implementations of the first aspect.
  • an embodiment of the present application provides a communication device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein the processor executes the program
  • the communication device implements the corresponding steps in the method provided by any of the possible implementations of the second aspect or the second aspect described above.
  • an embodiment of the present application provides a communication device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein the processor executes the program
  • the communication device implements the corresponding steps in the method provided by any of the possible implementations of the third aspect or the third aspect above.
  • an embodiment of the present application provides a communication device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein the processor executes the program
  • the communication device implements the corresponding steps in the method provided by any of the possible implementations of the fourth aspect or the fourth aspect described above.
  • the embodiment of the present application provides a communication device, including a control information generating unit and a sending unit, where:
  • the control information generating unit is configured to generate control information, where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is all frequency domain resources that the communication device can allocate;
  • the sending unit is configured to send the control information to a terminal device.
  • the control information generated by the communication device includes a resource identifier, where the resource identifier is used to indicate the allocated frequency domain resource. Since the number of bits occupied by the identifier is small, the bit occupied by the allocated resource information can be reduced, and the occupation of the time-frequency resource by the frequency domain resource indicated in the control information can be reduced, and the utilization of the time-frequency resource can be improved. At the same time, since the bits occupied by the control information are shortened, the time required to generate the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • control information includes a resource allocation header field, where the resource allocation header field is used to represent the resource identifier.
  • all the frequency domain resources that the communication device can allocate are all frequency domain resources in one carrier that the terminal device can support, or all bandwidths in one carrier that the terminal device can support. ;or,
  • All of the frequency domain resources that the communication device can allocate are all frequency domain resources within one carrier that the communication device can allocate or all bandwidth within one carrier that the communication device can allocate.
  • control information further includes a time domain resource start field and a time domain resource length field, where the time domain resource start field is used to indicate information about a start position of the allocated time domain resource.
  • the time domain resource length field is used to indicate information about the length of the allocated time domain resource.
  • control information may further include information of the allocated time-frequency resource start symbol and the end symbol, and may also be information of the allocated time-frequency resource symbol length and the end symbol.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated frequency domain resources may be pre-configured, that is, the frequency domain resources allocated in advance are all frequency domain resources that the base station can allocate.
  • the allocated frequency domain resource is pre-configured by the correspondence between the format of the binding control information and the allocated frequency domain resource.
  • the embodiment of the present application provides a communications device, including a control information generating unit and a sending unit, where:
  • the control information generating unit is configured to generate control information, where the control information includes a resource identifier, where the resource identifier is used to indicate whether the allocated time-frequency resource changes;
  • the sending unit is configured to send the control information.
  • the control information generated by the communication device includes a resource identifier, where the resource identifier is used to indicate the allocated time-frequency resource. Since the number of bits occupied by the identifier is small, the bit occupied by the allocated resource information can be reduced, and the occupation of the time-frequency resource by the time-frequency resource indicated by the control information can be reduced, and the utilization of the time-frequency resource can be improved. At the same time, since the bits occupied by the control information are shortened, the time required to generate the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • the resource identifier is used to indicate whether the allocated time-frequency resource is changed relative to the valid time-frequency resource that has been acquired.
  • control information includes an offset for indicating a value of the allocated time-frequency resource offset
  • the offset is represented by a new field in the control information or a field existing in the control information.
  • the offset when the offset is represented by an existing field in the control information, the offset may be a hybrid automatic repeat request process number field, a new data indication field, a redundancy version field, or Beam number field and so on.
  • the predefined offset is sent to the terminal device by high layer signaling;
  • the offset is a predefined offset.
  • the high layer signaling may be MAC-CE or RRC.
  • the control information when the resource identifier indicates that the allocated time-frequency resource changes, the control information includes the offset. In a possible implementation manner, when the resource identifier indicates that the allocated time-frequency resource does not change, the base station does not need to carry the offset in the control information, so that the transmission resource can be saved.
  • control information includes a resource allocation header field, where the resource allocation header field is used to indicate an identifier of a time-frequency resource allocated to the terminal device.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated time-frequency resource may be pre-configured, that is, the information of the allocated time-frequency resource change or the information of the valid time-frequency resource change that has been acquired by the terminal device is pre-configured.
  • the time-frequency resource allocated by the terminal device is pre-configured by the correspondence between the format of the binding control information and the allocated time-frequency resource.
  • an embodiment of the present application provides a communications device, including a receiving unit and an acquiring unit, where:
  • the receiving unit is configured to receive control information sent by the base station, where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is all frequency domain resources that the base station can allocate;
  • the acquiring unit is configured to acquire information about the allocated frequency domain resource according to the resource identifier.
  • the control information received by the communication device includes a resource identifier.
  • the number of bits occupied by the resource identifier is reduced, and the bit occupied by the allocated resource information can be reduced, and the time-frequency of the frequency domain resource allocated by the control information can be reduced.
  • the occupation of resources improves the utilization of time-frequency resources. At the same time, since the bits occupied by the control information are shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • control information includes a resource allocation header field, where the resource allocation header field is used to indicate the resource identifier;
  • the obtaining unit is further configured to acquire the resource identifier according to the resource allocation header field.
  • all the frequency domain resources that the base station can allocate refers to all frequency domain resources in one carrier that the communication device can support or all bandwidths in one carrier that the communication device can support. ;or,
  • All frequency domain resources that the base station can allocate are all frequency domain resources in one carrier that the base station can allocate or all bandwidths in one carrier that the base station can allocate.
  • control information further includes a time domain resource start field and a time domain resource length field, where the time domain resource start field indicates information about a start position of the allocated time domain resource, where The time domain resource length field indicates information of the length of the allocated time domain resource;
  • the obtaining unit is further configured to acquire information about the allocated time domain resource according to the time domain resource start field and the time domain resource length field.
  • control information may further include a field of a time-frequency resource start symbol and an end symbol, or may be a field of a time-frequency resource symbol length and an end symbol.
  • the acquiring unit is further configured to acquire information about the allocated time-frequency resource according to the time-frequency resource start symbol and the end symbol field, or acquire the allocated time according to the time-frequency resource symbol length and the end symbol field. Information about frequency resources.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated frequency domain resources may be pre-configured, that is, the frequency domain resources allocated in advance are all frequency domain resources that the base station can allocate.
  • the allocated frequency domain resource is pre-configured by the correspondence between the format of the binding control information and the allocated frequency domain resource.
  • the embodiment of the present application provides a communication device, including a receiving unit and an acquiring unit, where:
  • the receiving unit is configured to receive control information sent by the base station, where the control information includes a resource identifier, where the resource identifier is used to indicate whether the resource is changed.
  • the acquiring unit is configured to acquire, according to the resource identifier, information about whether the allocated time-frequency resource changes.
  • the control information received by the communication device includes a resource identifier.
  • the number of bits occupied by the resource identifier is small, and the bit occupied by the allocated resource information can be reduced, and the time-frequency resource allocated to the frequency domain resource indicated by the control information can be reduced. Occupancy, improve the utilization of time-frequency resources. At the same time, since the bits occupied by the control information are shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • the resource identifier is used to indicate whether the allocated time-frequency resource is changed with respect to the valid time-frequency resource that has been acquired.
  • the control information includes an offset
  • the obtaining unit is further configured to obtain a value of the offset by using the offset;
  • the offset is represented by a new field in the control information or a field existing in the control information.
  • the offset when the offset is represented by an existing field in the control information, the offset may be through a hybrid automatic repeat request process number field, a new data indication field, a redundancy version field, or The beam number field and the like are indicated.
  • the acquiring unit is further configured to obtain a predefined offset by using high layer signaling;
  • the value of the offset is determined based on a predefined offset.
  • the high layer signaling may be MAC-CE or RRC.
  • the control information when the resource identifier indicates that the allocated time-frequency resource changes, the control information includes the offset.
  • the base station when the resource identifier indicates that the allocated time-frequency resource does not change, the base station does not need to carry the offset in the control information, so that the transmission resource can be saved.
  • the obtaining unit is further configured to obtain, according to the resource identifier, information that the allocated time-frequency resource has no change.
  • control information includes a resource allocation header field
  • the acquiring unit is further configured to acquire the resource identifier by using the resource allocation header field.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated time-frequency resource may be pre-configured, that is, whether the allocated time-frequency resource is pre-configured.
  • the allocated time-frequency resource is pre-configured by the correspondence between the format of the binding control information and the changed time-frequency resource.
  • the embodiment of the present application provides a communication method, including:
  • the base station allocates communication resources to the terminal device
  • the base station sends control information to the terminal device, where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is part of a frequency domain resource that can be allocated by the base station.
  • the allocated frequency domain resource is indicated by the resource identifier in the control information. Since the number of bits occupied by the identifier is small, the bit occupied by the allocated resource information can be reduced, and the frequency domain resource indicated by the indication in the control information can be reduced.
  • the use of time-frequency resources increases the utilization of time-frequency resources. At the same time, since the bits occupied by the control information are shortened, the time required to generate the control information is correspondingly less, and the efficiency is improved.
  • control information includes a resource block allocation field, where the resource block allocation field is used to indicate an identifier of a part of the frequency domain resource allocated to the terminal device, where the part of the frequency domain resource is The identifier is an identifier of a part of the frequency domain resources in the frequency domain resources that are allocated by all the frequency domain resources that the base station can allocate according to a fixed division manner.
  • the embodiment of the present application provides a communication device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein when the processor executes the program,
  • the communication device is caused to implement the corresponding steps in the method provided by any one of the thirteenth aspects or any one of the possible implementations of the thirteenth aspect.
  • the embodiment of the present application provides a communication device, including a control information generating unit and a sending unit, where:
  • the control information generating unit is configured to generate control information, where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is part of frequency domain resources in all frequency domain resources that the base station can allocate. ;
  • the sending unit is configured to send the control information to the terminal device.
  • the control information resource identifier generated by the communication device occupies less bits, and can reduce the bit occupied by the allocated resource information, and can reduce the occupation of the time-frequency resource by the frequency domain resource indicated by the control information, and improve the time-frequency resource. Utilization. At the same time, since the bits occupied by the control information are shortened, the time required to generate the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • control information includes a resource block allocation field, where the resource block allocation field is used to indicate an identifier of the allocated part of the frequency domain resource, where the identifier of the partial frequency domain resource is The identifier of some of the frequency domain resources in the frequency domain resources that are allocated by the base station according to a fixed division manner.
  • control information includes a resource allocation header field, where the resource allocation header field is used to indicate a resource identifier.
  • all the frequency domain resources that the communication device can allocate are all frequency domain resources in one carrier that the terminal device can support, or all bandwidths in one carrier that the terminal device can support. ;or,
  • All of the frequency domain resources that the communication device can allocate are all frequency domain resources within one carrier that the communication device can allocate or all bandwidth within one carrier that the communication device can allocate.
  • control information further includes a time domain resource start field and a time domain resource length field, where the time domain resource start field is used to indicate information about a start position of the allocated time domain resource.
  • the time domain resource length field is used to indicate information about the length of the allocated time domain resource.
  • control information may further include information of the allocated time-frequency resource start symbol and the end symbol, and may also be information of the allocated time-frequency resource symbol length and the end symbol.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated frequency domain resource may be pre-configured, that is, the frequency domain resource allocated in advance is a part of the frequency domain resource that the base station can allocate.
  • the allocated frequency domain resource is pre-configured by the correspondence between the format of the binding control information and the allocated frequency domain resource.
  • the embodiment of the present application provides a communication method, including:
  • control information sent by the base station where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is part of a frequency domain resource of all frequency domain resources that the base station can allocate;
  • the resource identifier in the received control information occupies less bits, which can reduce the bits occupied by the allocated resource information, and can reduce the occupation of the time-frequency resources indicated by the frequency domain resources indicated in the control information, and improve Utilization of time-frequency resources.
  • the bits occupied by the control information are shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • control information includes a resource block allocation field, where the resource block allocation field is used to indicate an identifier of a part of the frequency domain resource allocated to the terminal device, where the part of the frequency domain resource is The identifier is an identifier of a part of the frequency domain resources in the frequency domain resources that are allocated by all the frequency domain resources that the base station can allocate according to a fixed division manner.
  • the embodiment of the present application provides a communication device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein when the processor executes the program, The communication device is caused to implement the corresponding steps in the method provided by any one of the possible implementations of the sixteenth aspect or the sixteenth aspect.
  • the embodiment of the present application provides a communication device, including a receiving unit and an acquiring unit, where:
  • the receiving unit is configured to receive control information sent by the base station, where the control information includes a resource identifier, where the resource identifier is used to indicate that the allocated frequency domain resource is part of a frequency domain of all frequency domain resources that the base station can allocate.
  • the acquiring unit is configured to acquire information about the allocated frequency domain resource according to the identifier.
  • the resource identifiers in the control information received by the communication device occupy less bits, and the bits occupied by the allocated resource information can be reduced, and the frequency domain resources allocated to the frequency domain resources indicated by the control information can be reduced. Utilization of frequency resources. At the same time, since the bits occupied by the control information are shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • control information may be a DCI.
  • the DCI may further include: modulation and coding, a hybrid automatic repeat request process number, a new data indication, a redundancy version, and multi-antenna transmission related control information.
  • control information includes a resource allocation header field, where the resource allocation header field is used to indicate the resource identifier;
  • the obtaining unit is further configured to obtain the allocated resource identifier according to the resource allocation header field.
  • control information includes a resource block allocation field, where the resource block allocation field is used to indicate an identifier of the allocated part of the frequency domain resource, where the identifier of the partial frequency domain resource is The identifier of some of the frequency domain resources in the frequency domain resources that are allocated by the base station according to a fixed division manner.
  • all the frequency domain resources that the base station can allocate refers to all frequency domain resources in one carrier that the communication device can support or all bandwidths in one carrier that the communication device can support. ;or,
  • All frequency domain resources that the base station can allocate are all frequency domain resources in one carrier that the base station can allocate or all bandwidths in one carrier that the base station can allocate.
  • control information further includes a time domain resource start field and a time domain resource length field, where the time domain resource start field indicates information about a start position of the allocated time domain resource, where The time domain resource length field indicates information of the length of the allocated time domain resource;
  • the obtaining unit is further configured to obtain information about the allocated time domain resource according to the time domain resource start field and the time domain resource length field.
  • control information may further include a field of the allocated time-frequency resource start symbol and the end symbol, or may be a field of the allocated time-frequency resource symbol length and the end symbol.
  • the acquiring unit is further configured to acquire information about the allocated time-frequency resource according to the time-frequency resource start symbol and the end symbol field, or acquire the allocated time according to the time-frequency resource symbol length and the end symbol field. Information about frequency resources.
  • the resource allocation header field may not be included in the control information.
  • the information of the allocated frequency domain resource may be pre-configured, that is, the frequency domain resource allocated in advance is a part of the frequency domain resource that the base station can allocate.
  • the allocated frequency domain resource is pre-configured by the correspondence between the format of the binding control information and the allocated frequency domain resource.
  • the embodiment of the present application further provides a computer readable medium for storing a computer program, when the computer program is executed, causing the method described in the above aspect to be performed. .
  • the embodiment of the present application further provides a computer program product comprising instructions, when executed on a computer, causing the computer to perform the method in any of the above possible implementation manners.
  • FIG. 1(a) is a schematic diagram showing an implementation manner of using a bitmap method to indicate time-frequency resource allocation when the resource allocation mode is the allocation mode 0;
  • FIG. 1(b) is a schematic diagram showing an implementation manner of resource allocation in a frequency domain when resource allocation mode 1 is used;
  • FIG. 1(c) is a schematic diagram showing an implementation manner of resource allocation in a frequency domain when resource allocation mode 2 is used;
  • FIG. 2 is a schematic diagram of a distribution structure of time-frequency resources allocated in an embodiment of the present application
  • FIG. 3(a) is a correspondence table of each field and corresponding bit length in the DCI sent by the base station to the terminal device;
  • FIG. 3(b) is a correspondence table of each field and corresponding bit length in the DCI sent by the base station to the terminal device when the base station allocates all time-frequency resources to one terminal device;
  • FIG. 4 is a schematic diagram of another distribution structure of time-frequency resources allocated in an embodiment of the present application.
  • 5 is another correspondence table of each field and corresponding bit length in the DCI sent by the base station to the terminal device;
  • Figure 6 (a) shows an implementation manner in which the multiplexed RV field indicates an offset
  • 6(b) shows an implementation manner in which a multiplexed HARQ process number field indicates an offset
  • 6(c) shows an implementation manner in which the multiplexed new data indication field indicates an offset
  • FIG. 7 is a schematic diagram of a distribution structure of time-frequency resources allocated when the time-frequency resources allocated twice are the same in the embodiment of the present application;
  • FIG. 9 is a schematic diagram of a basic structure of a communication device 100 according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device 100 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device 200 according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device 200 according to an embodiment of the present application.
  • first and second in this application are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the terminal device in the present application is a device having a wireless communication function, and may be a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • Terminal devices in different networks may be called different names, such as: user equipment, access terminals, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices, user terminals, terminals, wireless communications.
  • Device, user agent or user device cellular phone, cordless phone, Session Initiation Protocol (SIP) phone, Wireless Local Loop (WLL) station, Personal Digital Assistant (PDA), Terminal equipment in a 5G network or a future evolution network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the base station in this application may also be referred to as a base station device, and is a device deployed in a wireless access network to provide wireless communication functions, and may be Global System of Mobile communication (GSM) or code division multiple access.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB for short in Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • It may be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point, a transmission node in a new radio (NR) system, or a transmission node.
  • LTE Long Term Evolution
  • NR new radio
  • Transmission reception point TRP or TP or next generation Node B (gNB), Wireless-Fidelity (Wi-Fi) site, wireless backhaul node, small station, micro station, or future
  • 5G 5th Generation Mobile Communication
  • a communication resource may also be simply referred to as a resource.
  • Communication resources can be used to transmit signals.
  • the types of communication resources may be spatial resources, time domain resources, and frequency domain resources.
  • the types of communication resources may be beams, ports, and the like.
  • a collection of different kinds of communication resources is also a communication resource.
  • time-frequency resources including time domain resources and frequency domain resources
  • a combination of beams and ports is also a communication resource.
  • the transmission of the channel is in units of radio frames, and one radio frame includes 10 subframes, each subframe has a length of 1 millisecond (ms), and each subframe includes two subframes.
  • Slot each slot is 0.5ms.
  • the number of symbols included in each slot is related to the cyclic prefix (CP) length in the subframe. If the CP is a normal (normal) CP, each slot includes 7 symbols, and each subframe consists of 14 symbols. For example, the number of each sub-frame is #0, #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 Symbol composition.
  • each slot includes 6 symbols, and each subframe is composed of 12 symbols.
  • each subframe has a sequence number of #0, #1, #2, #3, #4,# 5, #6, #7, #8, #9, #10, #11 symbol composition.
  • OFDM orthogonal frequency division multiplexing
  • a resource element (RE) is a sub-carrier that contains one OFDM symbol and is the smallest physical resource of LTE.
  • a resource block (RB) is a resource block after RE combining.
  • each resource block includes 12 consecutive subcarriers in the frequency domain and one time slot in the time domain of 0.5 ms.
  • the DCI is a binary bit stream that is modulated to be a QPSK symbol.
  • the QPSK symbols of multiple subcarriers are converted into orthogonal frequency division multiplexing (OFDM) waveforms by Inverse Fast Fourier Transform (IFFT).
  • OFDM orthogonal frequency division multiplexing
  • IFFT Inverse Fast Fourier Transform
  • the OFDM waveform in one unit time is called an OFDM symbol. .
  • the fields or information included in the DCI include, but are not limited to, a resource allocation header, a resource block assignment, a modulation and coding scheme, and a hybrid automatic repeat request ( Hybrid automatic repeat request, HARQ process number (HARQ process number), new data indication (New data indication), redundancy version (Redundancy version) and multi-antenna transmission related control information.
  • a hybrid automatic repeat request Hybrid automatic repeat request, HARQ process number (HARQ process number), new data indication (New data indication), redundancy version (Redundancy version) and multi-antenna transmission related control information.
  • HARQ process number HARQ process number
  • New data indication new data indication
  • Redundancy version redundancy version
  • multi-antenna transmission related control information multi-antenna transmission related control information.
  • the content carried by the DCI is also different, so the DCI will have different formats.
  • Each DCI consists of a number of fields, and the DCI composition fields of each format may be different,
  • the resource allocation header and resource block allocation fields in the DCI are used to indicate information related to resource allocation.
  • the resource allocation related information is used to indicate which time-frequency resources of the terminal device are scheduled for use by the terminal device for data transmission.
  • the resource allocation header field is used to indicate a resource allocation type (RA type), and the resource block allocation field is used to indicate a frequency domain resource specifically scheduled by the terminal device.
  • the base station can notify the terminal device of the RA type used by the DCI in an explicit or implicit manner.
  • the explicit notification is information indicating the RA type by the resource allocation header field in the DCI.
  • the implicit notification is that some DCIs are pre-set to use only certain RA types, for example, only RA type 2, and it is not necessary to use the resource allocation header field to indicate the RA type information.
  • the resource block allocation field is related to the resource allocation mode.
  • the resource allocation mode varies depending on the specific resource allocation mode. details as follows:
  • a bitmap mode is used to indicate an independent continuous resource block group (RBG) in the frequency domain.
  • RBG resource block group
  • the use of resource block groups enables a reduction in the number of bitmap bits relative to the direct use of resource blocks (RBs).
  • the length of the Bitmap can be Calculation, where Is the whole symbol, Is the system bandwidth (in RB).
  • the size of the packet P depends on the system bandwidth.
  • the resource block components are P subsets.
  • the resource allocation mode 1 uses three fields to indicate the allocated time-frequency resources.
  • the first field is long Used to represent the selected subset, that is, select 0 ⁇ p ⁇ P resource block group subset.
  • the second field is 1 bit long and is used to indicate whether there is an offset ⁇ shift (p). Where the offset
  • the third field is a bitmap, where each bit refers to whether each resource block in the selected subset of resource block groups is allocated.
  • the third field is long
  • FIG. 1(b) is a schematic diagram showing an implementation manner of resource allocation in the frequency domain when the resource allocation mode is 1.
  • the resource allocation is expressed in binary form as ⁇ 0010011101000 ⁇ .
  • a resource indication value which is a function of the starting position and the length L CRBs RB start, namely:
  • the resource block allocation field occupies a large number of bits, resulting in a large resource overhead.
  • the bandwidth of the above 25 RBs as an example, when RA type 0 is adopted, the resource block allocation field needs 13 bits; when RA type 1 is used, the resource block allocation field needs 13 bits; when RA type 2 is used, the resource block allocation field is used. It takes 9 bits.
  • 13 bits are required to indicate the distribution of resource blocks.
  • the 13 bits are 39 bits encoded by a 1/3 code rate channel.
  • each QPSK occupies one RE, and the resource block allocation requires a total of 20 RE overheads, resulting in waste of time-frequency resources.
  • the actual transmission code rate becomes high, that is, the proportion of effective information bits becomes high, and the error rate of transmission becomes high.
  • the embodiment of the present application provides a communication method, which can reduce time-frequency resources occupied by resource allocation information in control information.
  • the DCI sent by the base station includes an identifier for indicating a frequency domain resource allocated to the terminal device, where the identifier is used to indicate the frequency domain resource allocated to the terminal device.
  • the identifier may be used to indicate that the allocated frequency domain resource is all frequency domain resources that the base station can allocate, and may also be used to indicate that the allocated frequency domain resource is part of the frequency domain resource that all the frequency domain resources that the base station can allocate.
  • the base station may divide the available frequency domain resources into 4 equal parts in advance, and include, in each case, the DCI sent to the terminal device, one of the frequency domain resources that the base station can allocate is divided into four equal parts.
  • the available frequency domain resources may be irregularly divided into different shares, where the identifier is used to indicate that the frequency domain resource allocated to the terminal device is part of the available frequency domain resources. For example, 1/5 or 3/5 copies and so on.
  • the base station When the base station indicates the information of the frequency domain resource allocated to the terminal device by using control information (for example, DCI), the base station may use one or two identifiers to indicate the frequency domain resource allocated to the terminal device, because the frequency domain resource is pre-divided. .
  • the pre-dividing of the frequency domain resources may be performed by using a base station pre-divided, a standard protocol, or a base station to negotiate with a terminal device to determine a frequency domain resource division manner. Since the identifier occupies a small number of bits, the occupation of the time-frequency resources by the resource allocation information can be effectively reduced.
  • the identifier of 1 bit may be used to indicate that the frequency domain resource allocated to the terminal device is all available frequency domain resources; and the identifier of 1 bit (for example, resources in the DCI) may also be used.
  • the allocation header field indicates that the frequency domain resource allocated to the terminal device is part of all available frequency domain resources (for example, 1/4 of the available frequency domain resources), and another identifier (for example, the resource block allocation field in the DCI) Indicates which of the four copies of the frequency domain resource allocated to the terminal device.
  • the resource block allocation field is used to indicate that the frequency domain resource allocated to the terminal device is one of the frequency domain resources divided into 4 parts, and may occupy 1 bit or 2 bits.
  • the bits occupied by the control information can be reduced, and the time required to generate the control information is correspondingly less, thereby improving efficiency.
  • the foregoing manner of dividing the frequency domain resource may be that the manner of dividing a frequency domain resource is fixed in advance, for example, whether all the frequency domain resources (or available frequency domain resources) can be allocated by the base station.
  • the manner of dividing the frequency domain resources may be relatively fixed in a certain time period and changed in different time periods.
  • the division mode may be all frequency domain resources that the base station can allocate.
  • the time division T2 may be divided into four equal divisions of all frequency domain resources that the base station can allocate, and the division manner selected at the time point T3. All the frequency domain resources that the base station can allocate are divided into 1/5, 3/5, and 1/5. In this way, it is convenient to use information identifying the allocated frequency domain resources.
  • This implementation is applicable to the case where there is less terminal equipment covered by one beam transmitted by the base station.
  • the base station can allocate the allocated frequency domain resources to one terminal device or fewer terminal devices when scheduling resources.
  • the manner of dividing the frequency domain resources may be a changed partition manner or a constant partition manner.
  • all frequency domain resources that the base station can allocate may be all frequency domain resources and terminals in one carrier that the terminal device can support.
  • one carrier has a certain bandwidth (for example, 20 MB), and all the frequency domain resources corresponding to the carrier are all frequency domain resources that the base station can allocate; or the bandwidth of one carrier is represented by the number of RBs, for example, 20 MB corresponds to 100 RB, the frequency domain resources corresponding to the 100 RBs are all frequency domain resources that the base station can allocate.
  • the capabilities of different terminal devices may be different, and the frequency domain resources or bandwidth within the carriers supported by different terminal devices may also be different. For example, one terminal device can support a maximum bandwidth of 20 MB in one carrier, and another terminal device can support a maximum bandwidth of 80 MB in one carrier. Therefore, for different terminal devices, all frequency domain resources that the base station can allocate may be different.
  • the base station allocates all the frequency domain resources that can be allocated to the terminal device as an example for description. For example, one beam covers two terminal devices, and the allocated frequency domain resource of the terminal device 1 is all frequency domain resources corresponding to two symbols, and the frequency domain resource allocated by the terminal device 2 is all frequency domain resources corresponding to three symbols. .
  • the resource allocation header field in the DCI sent by the base station may use 1 bit to indicate the identifier of the allocated frequency domain resource, where the identifier is used to indicate that the frequency domain resource allocated to the terminal device is all frequencies that the base station can allocate. Domain resource.
  • FIG. 2 is a schematic diagram of a distribution structure of time-frequency resources allocated in an embodiment of the present application.
  • the horizontal axis direction of FIG. 2 represents time domain resources
  • the vertical axis direction represents frequency domain resources.
  • one square in the horizontal axis direction represents a time domain resource corresponding to one symbol
  • all squares in the vertical axis direction corresponding to one symbol represent all frequency domain resources corresponding to one symbol.
  • the frequency domain resource allocated by the base station to the terminal device 1 is all frequency domain resources corresponding to two symbols
  • the frequency domain resource allocated to the terminal device 2 is all frequency domain resources corresponding to three symbols.
  • the information can be represented by 1 bit, that is, 1 bit can be used to indicate the allocation to An identifier of a frequency domain resource of the terminal device, where the identifier is used to indicate that the frequency domain resource allocated to the terminal device is all frequency domain resources that the base station can allocate.
  • the resource allocation header field used to indicate the allocated frequency domain resource may also be 2 bits.
  • the embodiment of the present application does not limit the number of bits used to represent the identifier of the frequency domain resource allocated to the terminal device. As long as the total number of bits of the field for indicating the resource allocation information in the DCI is reduced, the occupation of the time-frequency resource for the information indicating the time-frequency resource can be reduced, which is within the scope covered by the embodiment of the present application. Moreover, since the bits occupied by the control information are shortened, the time required to generate the control information is correspondingly less, and the efficiency is improved.
  • the time domain allocated to each terminal device needs to be indicated in the DCI.
  • Resource information includes both the frequency domain resource information allocated to the terminal device and the time domain resource information allocated to the terminal device, and the terminal device can accurately acquire the allocated time-frequency resource according to the resource information indicated in the DCI.
  • the information of the time domain resource allocated to the terminal device may be information of a start symbol and a symbol length allocated to the terminal device, information of a start symbol and an end symbol assigned to the terminal device, and may also be a symbol length and an end. Symbolic information.
  • the embodiment of the present application does not limit the specific manner of indicating time domain resource information, as long as the terminal device can obtain specific time domain resource information.
  • FIG. 3(a) is a correspondence table of each field and corresponding bit length in the DCI transmitted by the base station to the terminal device.
  • the resource allocation header field occupies 1 bit to indicate the identifier of the frequency domain resource allocated to the terminal device, and the identifier is used to indicate the type of the resource allocation, that is, the frequency domain allocated to the terminal device.
  • a resource is all frequency domain resources that a base station can allocate.
  • the symbol field at the beginning of the data channel occupies 2 bits, that is, the symbol field starting from the time domain resource occupied by the data channel occupies 2 bits, indicating the symbol of the start of the time domain resource allocated to the terminal device; the symbol length occupied by the data channel
  • the field occupies 2 bits, that is, the symbol length field occupied by the time domain resource occupied by the data channel occupies 2 bits, and is used to indicate the length of the time domain resource symbol allocated to the terminal device. In this way, the terminal device can acquire the information of the specific time-frequency resource allocated by the base station according to the information indicated by the fields in the DCI.
  • the field of the information of the frequency domain resource used for the resource allocation in the DCI occupies 5 (1+2+2) bits, which is smaller than the above 13 or 9 bits, and can save information on resource allocation. Occupied time-frequency resources; the time required to generate control information is correspondingly less, which improves efficiency.
  • the terminal device acquires the control information, because the bit occupied by the control information is shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • the number of bits required for the symbol field starting from the data channel in FIG. 3(a) and the symbol length field occupied by the data channel can be passed. Obtain. among them, Indicates the number of symbols in a downlink scheduling unit (slot in this embodiment); G indicates granularity, that is, how many symbols can be allocated at a minimum; Log 2 indicates a logarithm with base 2.
  • a symbol allocation field may be used to represent the allocated time domain resource.
  • This field represents one possible implementation of the assigned time domain resource as follows:
  • TAV time resource indication value
  • the number of symbols in one subframe/slot It can be a fixed value, which can be predefined for the system. ,E.g, It can be 6, 7, 12 or 14 and so on. Take For example 14, the above function can be expressed as:
  • the form of the mathematical expression is not limited in the embodiment of the present invention, as long as the result of the TIFF value satisfies the calculation result of the above mathematical formula.
  • the base station may allocate all time-frequency resources to the terminal device.
  • Information related to resource allocation in the DCI can be represented by a field (ie, a resource allocation header field), as shown in FIG. 3(b).
  • the terminal device can obtain the information of the time-frequency resource allocated by the base station according to the resource allocation header field in the DCI.
  • the resource allocation header field occupies 1 bit for indicating the type of the resource allocation manner, and the purpose is to distinguish other DCIs of the same length.
  • the field when the base station determines that there is no DCI of the same length, the field may also be omitted, that is, the resource allocation header field is not needed. That is, the information of the allocated frequency domain resource may be pre-configured, and the frequency domain resource allocated in advance to the terminal device is all frequency domain resources that the base station can allocate. For example, the frequency domain resource allocated to the terminal device may be pre-configured by the correspondence between the format of the binding control information and the allocated frequency domain resource. In this way, the resources occupied when the resource allocation information is indicated in the DCI can be further reduced.
  • the DCI sent by the base station includes an identifier of a time-frequency resource allocated to the terminal device, where the identifier is used to indicate that the allocated time-frequency resource has been acquired with respect to the terminal device.
  • Information about effective time-frequency resource changes.
  • This implementation is suitable for situations where the base station schedules the same or related resources multiple times. For example, for an Ultra reliable and low latency communication (URLLC) user, a scenario in which the same data is continuously transmitted multiple times to improve reliability is required.
  • URLLC Ultra reliable and low latency communication
  • the time-frequency resource allocated by the terminal device in the time slot n is related to the time-frequency resource allocated at the time slot n+t1, that is, relative to the time slot n. Moved 2 RBs.
  • n and t1 are positive integers, respectively, representing specific time slot information.
  • the resource allocation header field in the DCI transmitted by the base station at the time slot n+t1 may indicate the identifier of the time-frequency resource allocated by the terminal device at the current time by using one bit, and the identifier is used to indicate the allocated time-frequency resource and The effective time-frequency resource that the terminal device has acquired is related; and a field is used to indicate the offset of the time-frequency resource allocated by the terminal device from the last allocated time-frequency resource. In this way, information of time-frequency resources allocated to the terminal device can be indicated with less time-frequency resources.
  • the information about the effective time-frequency resources that the terminal device has acquired may be the information of the valid time-frequency resources that the terminal device obtains last time.
  • the effective time-frequency resource information that the terminal device has acquired is time-frequency resource information indicated in the DCI sent by the base station that is received by the terminal device.
  • the horizontal axis direction represents time domain resources
  • the vertical axis direction represents frequency domain resources.
  • one square in the horizontal axis direction represents a time domain resource corresponding to one symbol
  • all squares in the vertical axis direction corresponding to one symbol represent all frequency domain resources corresponding to one symbol.
  • a square in the direction of the vertical axis represents an RB resource.
  • the field related to resource allocation included in the DCI transmitted by the base station to the terminal may be as shown in FIG. 5.
  • the resource allocation header field occupies 1 bit, which is used to indicate the identifier of the time-frequency resource allocated to the terminal device, and the identifier is used to indicate that the allocated time-frequency resource is related to the valid time-frequency resource that has been acquired, that is, Offset with the valid time-frequency resource that has been acquired;
  • the offset field occupies 2 bits to indicate the assigned offset, which is used to indicate that the allocated time-frequency resource is valid relative to the already acquired The value of the time-frequency resource offset.
  • the offset field occupies 2 bits. For example, in the specific implementation, the offset field can occupy 1 bit, or can occupy 3 bits, etc., as long as the information indicating the specific offset is The scope of protection of the application examples.
  • the direction of the offset may be predefined by the system, and the base station and the terminal device can determine the direction of the allocated time-frequency resource with respect to the effective time-frequency resource offset that has been acquired according to the predefined direction.
  • the direction in which the offset can be defined in advance may be a direction in which the RB number is decreased, or a direction in which the RB number is increased.
  • the field for indicating resource allocation related information in the DCI occupies 3 (1+2) bits, which is smaller than the above 13 or 9 bits, and can save resources occupied by resource allocation information. Moreover, the time required to generate control information is correspondingly less, which improves efficiency. Correspondingly, when the terminal device acquires the control information, because the bit occupied by the control information is shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • the offset may also be a predefined offset, or notify the terminal device by means of high-level signaling notification.
  • the offset field may not be included in the DCI.
  • one bit can be used in the DCI to indicate the identity of the allocated time-frequency resource.
  • the high layer signaling includes but is not limited to MAC-CE or RRC.
  • the offset may not be included in the DCI, but the offset is represented by multiplexing existing fields in the DCI. . That is, the offset may be represented by a field already existing in the DCI, such as a HARQ process number field, a new data indication field, or a redundancy version RV field.
  • the offset may be represented by RV or may be represented by f(RV).
  • RV the offset is the value of RV.
  • f(RV) the offset is a function f() of RV.
  • f(x) 2x.
  • M 2 * RV.
  • FIG. 6(a) shows an implementation manner in which the multiplexed RV field indicates the offset
  • FIG. 6(b) shows an implementation manner in which the multiplexed HARQ process number field indicates the offset
  • FIG. 6(c) shows the multiplexed new data.
  • the indication field indicates how the offset is implemented.
  • the above-mentioned multiplexed field also has its own functions, and has a function of indicating the offset of the terminal device in addition to the functions provided by itself.
  • the RV field can indicate the specific offset of the terminal device in addition to the information carried by itself.
  • the offset may be carried by the beam number field, for example, the beam offset of number 1 is 1 RB, the number is 2, the offset is 2 RB, and the like. It should be noted that the beam here is not a physical beam but a logical beam.
  • the resource allocation header field occupies 1 bit for indicating the identifier of the allocated time-frequency resource, and the identifier is used by the identifier.
  • the time-frequency resource indicating that the terminal device allocates this time is related to the valid time-frequency resource that has been acquired, in order to distinguish other DCIs of the same length.
  • the field may also be omitted, that is, the resource allocation header field is not needed. In this way, the resources occupied when the resource allocation information is indicated in the DCI can be further reduced.
  • the terminal device can obtain the allocated time-frequency resource according to the resource allocation header field in the received DCI and correlate with the valid time-frequency resource that has been acquired, and obtain the time allocated by the base station according to the obtained offset. Information about frequency resources.
  • the DCI sent by the base station includes an identifier of the allocated time-frequency resource, where the identifier is used to indicate that the time-frequency resource allocated to the terminal device is obtained by the terminal device.
  • the effective time-frequency resources are the same. This implementation is suitable for situations where the base station schedules the same resources multiple times. For example, for a URLLC user, a scenario in which the same data is transmitted multiple times in succession to improve reliability is required.
  • the time-frequency resource allocated by the terminal device at the time slot n is the same as the time-frequency resource allocated at the time slot n+t1.
  • n and t1 are positive integers, respectively, representing specific time slot information.
  • the identifier of the time-frequency resource allocated to the terminal device may be represented by one bit, and the identifier is used to indicate that the time-frequency resource allocated this time is allocated with the previous one.
  • the effective time-frequency resources are the same. This can greatly reduce the time-frequency resources occupied by the resource allocation information in the DCI.
  • the terminal device acquires the control information, because the bit occupied by the control information is shortened, the time required to parse the control information is correspondingly less, and the efficiency is improved.
  • the horizontal axis direction represents time domain resources
  • the vertical axis direction represents frequency domain resources.
  • one square in the horizontal axis direction represents a time domain resource corresponding to one symbol
  • all squares in the vertical axis direction corresponding to one symbol represent all frequency domain resources corresponding to one symbol.
  • the field related to resource allocation included in the DCI transmitted by the base station to the terminal may be as shown in FIG. 8.
  • the terminal device can obtain the information of the allocated time-frequency resource according to the resource allocation header field in the received DCI, that is, the allocated time-frequency resource is the same as the acquired time-frequency resource.
  • the resource allocation header field in FIG. 8 occupies 1 bit for indicating the identifier of the time-frequency resource allocated to the terminal device, so as to distinguish other DCIs of the same length.
  • the field when the base station determines that there is no DCI of the same length, the field may also be omitted, that is, the resource allocation header field is not needed. In this way, the resources occupied when the resource allocation information is indicated in the DCI can be further reduced.
  • the information of the allocated time-frequency resource may be pre-configured, that is, information that is configured in advance for the time-frequency resource allocated by the terminal device with respect to the effective time-frequency resource change that the terminal device has acquired.
  • the time-frequency resource allocated by the terminal device may be pre-configured by the correspondence between the format of the binding control information and the information of the allocated time-frequency resource with respect to the information of the effective time-frequency resource that has been acquired by the terminal device.
  • the resource allocation manner adopted by the base station is pre-configured or set.
  • the foregoing first, second, and third resource allocation modes are pre-configured between the base station and the terminal device.
  • the base station After the base station allocates resources to the terminal device by using the scheduling algorithm, the base station sends the allocated resource information to the terminal device through the DCI.
  • the first, second, and third resource allocation methods described above can be used. That is, when the base station needs to send the DCI to the terminal device, the base station may select one of the foregoing three resource allocation modes according to the specific implementation, and generate a DCI to send to the terminal device.
  • the terminal device After receiving the DCI sent by the base station, the terminal device can also acquire the resource information allocated by the base station according to the content of the resource allocation field in the acquired DCI according to the foregoing three resource allocation manners.
  • FIG. 9 is a schematic diagram of a basic structure of a communication device 100 according to an embodiment of the present application.
  • the communication device 100 includes a control information generating unit 102.
  • the control information generating unit 102 may be a DCI generating unit 102, configured to generate control information, such as DCI, according to the result of the resource scheduling by the communication device 100, where the control information includes information of resources allocated to the terminal device.
  • the communication device 100 can be a chip, such as a baseband chip or a communication chip.
  • the control information generating unit 102 can be implemented by a circuit or a processor.
  • the communication device 100 can be a network side device, such as a base station.
  • the communication device 100 may further include a transmitting unit 112.
  • the sending unit 112 is configured to send the control information generated by the control information generating unit 102 to the terminal device.
  • the transmitting unit may be a transmitter, or a transmitting circuit or the like.
  • the information about the resources allocated to the terminal device included in the control information generated by the control information generating unit 102 may be specifically described with reference to FIG. 2 to FIG. 7 and the foregoing descriptions related to FIG.
  • the communication device 100 uses the identification to represent the resource allocation information in the control information (for example, DCI), the number of occupied bits is small, and the time-frequency resource occupied by the information of the resource allocation in the control information can be reduced.
  • the control information for example, DCI
  • FIG. 10 is a schematic structural diagram of a communication device 100 according to an embodiment of the present application.
  • the communication device 100 may optionally include the following components: a scheduling unit 101, a DCI generating unit 102, an encapsulating unit 120, a CRC check unit 103, a channel encoding unit 104, a rate matching unit 105, an aggregation multiplexing unit 106,
  • the descrambling unit 116, the decoding unit 117, the data receiving unit 118, and the antenna 119 may be a separate design, or may be integrated one or more.
  • the communication device 100 may include one or more memories and processors for implementing the functions of the base stations in FIGS. 2 to 7. Each of the units in FIG. 10 can be individually provided with a memory and/or a processor. It can also be two or more unit common memories and/or processors.
  • the communication device 100 may be a chip or a base station device, which is not limited by the present invention.
  • the scheduling unit 101 is configured to perform resource scheduling according to channel conditions of the terminal device, data size to be transmitted, and the like. The result of the scheduling includes which time-frequency resources are allocated for the terminal device, what modulation mode and code rate are used to transmit data, what transmission mode is used to transmit data, and which antenna ports are used to transmit data.
  • the DCI generating unit 102 is configured to generate DCI according to the result of scheduling by the scheduling unit 101, where the generated DCI includes information such as a time-frequency resource, a modulation mode, and a code rate allocated for the terminal device.
  • the frequency domain resource and/or the time domain resource field for indicating the allocation may be implemented by referring to the information manner indicating the allocated resource in the implementation manner described in the foregoing FIG. 2, FIG. 4 and FIG. .
  • the communication device 100 can reduce the occupation of time-frequency resources by the information indicating the allocated resources in the DCI, and improve the utilization of the time-frequency resources.
  • the encapsulating unit 120 is configured to encapsulate the data scheduled by the scheduling unit into a predefined format.
  • the scheduled data is data that needs to be sent to the terminal device.
  • the CRC check unit 103 is configured to add a CRC check bit to the DCI generated by the DCI generating unit 102, or add a CRC check bit to the data encapsulated by the encapsulating unit 120.
  • the CRC check unit 103 adds a CRC check bit according to the ID of the terminal device, where the ID of the terminal device is usually a temporary network identity (Radio Network Temporary Identifier) of the user of the terminal device. RNTI).
  • RNTI Radio Network Temporary Identifier
  • the channel coding unit 104 is configured to perform channel coding on the DCI after adding the CRC check to the CRC check unit 103, or perform channel coding on the CRC check unit 103 by adding the CRC check data.
  • the channel coding provides error detection and error correction capability for the transmitted bits, and is one of the most important components of the communication system.
  • the channel coding used for control information in LTE is a tail-biting convolutional coding (TBCC) code
  • the 5G NR uses a Polar code for control information.
  • the channel coding of the data uses a turbo code
  • the channel coding of the 5G NR uses a Low Density Parity Check Code (LDPC) code.
  • LDPC Low Density Parity Check Code
  • Other coding methods may be used in the subsequent evolution system. The specific coding method is not limited in this embodiment of the present application.
  • the rate matching unit 105 is configured to match the channel-coded DCI of the channel coding unit 104 into a preset PDCCH format, for example, matching 72 bits, 144 bits, 288 bits, and 576 bits, etc., or channel the channel coding unit 104.
  • the number of bits that the encoded data needs to transmit matches the number of bits that the allocated resource can carry.
  • the aggregation multiplexing unit 106 is configured to aggregate the number of bits matched by the rate matching unit 105 into one or more Control Channel Elements (CCEs), and combine the bit sequences corresponding to all PDCCHs in the current subframe/slot.
  • CCEs Control Channel Elements
  • Into a sequence of bits For example, when the rate matching unit 105 matches the 72-bit PDCCH format, the 72-bit PDCCH is aggregated into one CCE; when the rate matching unit 105 matches the 144-bit PDCCH format, the 144-bit PDCCH is used. Aggregate into 2 CCEs; and combine multiple PDDCHs together to generate a bit sequence.
  • the scrambling unit 107 is configured to perform a modulo-add operation on the bit sequence generated by the aggregation multiplexing unit 106 by using one scrambling code sequence, or perform modulo-addition on the bits of the data matched by the rate matching unit 105 by using one scrambling code sequence. Operation.
  • the modulating unit 108 is configured to modulate the bit sequence scrambled by the scrambling unit 107 into symbols. For example, in LTE, a modulation scheme of QPSK is applied to the control channel, and the modulating unit 108 modulates 2 bits into one QPSK symbol.
  • the port mapping unit 109 is configured to select an antenna port that transmits the symbol modulated by the modulation unit 108 according to a protocol requirement.
  • the protocol may have different options according to a specific implementation scenario, for example, an LTE protocol may select an antenna port.
  • a precoding unit (not shown) may be further included, and the symbol modulated by the transmitting modulation unit 108 is selected.
  • Precoding matrix For example, a precoding matrix or the like can be selected according to a standard protocol.
  • the time-frequency mapping unit 110 is configured to map the symbols modulated by the modulation unit 108 to time-frequency resources. For example, in LTE, QPSK symbols are mapped onto physical OFDM time-frequency resources.
  • the IFFT unit 111 is configured to modulate symbols on the subcarriers into OFDM waveforms by using IFFT. For example, the QPSK/QAM symbols on the subcarriers are modulated into an OFDM waveform or the like.
  • the transmitting unit 112 is configured to frequency-modulate the OFDM waveform modulated by the IFFT unit 111 and transmit the signal through a radio frequency (RF) link. For example, it is transmitted through the antenna 119.
  • RF radio frequency
  • the above is a description of the manner in which the communication device 100 implements the transmission of control information and data information.
  • the communication device 100 can also receive information transmitted by the terminal device through the antenna 119.
  • the receiving unit 113 is configured to receive the information sent by the terminal device.
  • the information sent by the terminal device may be control information or data.
  • the FFT unit 114 is configured to modulate the OFDM waveform received by the receiving unit 113 into QPSK/QAM symbols by using an FFT.
  • a demodulation unit 115 configured to demodulate the symbol modulated by the FFT unit 114 into a bit sequence
  • the descrambling unit 116 is configured to descramble the demodulated bit sequence of the demodulation unit 115.
  • the bit sequence is descrambled by a scrambling code sequence.
  • the decoding unit 117 is configured to decode the bit sequence demodulated by the descrambling unit 116. For example, channel decoding and the like are performed.
  • the data receiving unit 118 is configured to acquire data decoded by the decoding unit 117.
  • the communication device 100 uses a small number of bits for indicating the information of the allocated resource, and can effectively save the time-frequency resource occupied by the information of the resource allocated in the DCI.
  • FIG. 11 is a schematic diagram of a basic structure of a communication device 200 according to an embodiment of the present application.
  • the communication device 200 includes a receiving unit 201 and an obtaining unit 209.
  • the receiving unit 201 is configured to receive a wireless signal
  • the acquiring unit 209 is configured to acquire information about the allocated resource in the wireless signal according to the wireless signal received by the receiving unit.
  • the wireless signal received by the receiving unit 201 includes control information, where the control information includes information of the allocated time-frequency resource.
  • the receiving unit 201 can be a receiver or a receiving circuit, etc.
  • the obtaining unit 209 can be implemented by a processor.
  • the implementation of the communication device 200 can be implemented by referring to the manner in which the terminal device receives and acquires the information of the allocated resource in the implementation manner described in the foregoing FIG.
  • control information for example, in the DCI
  • the communication device 200 is used to indicate that the field of the information of the allocated time-frequency resource occupies less bits, and the resource allocation related field in the control information (for example, DCI) can be effectively saved. Time-frequency resources occupied.
  • FIG. 12 is a schematic structural diagram of a communication device 200 according to an embodiment of the present application.
  • the communication device 200 may optionally include the following parts: a receiving unit 201, an FFT unit 202, a demodulating unit 203, a descrambling unit 204, a blind detecting unit 205, a rate matching unit 206, a channel decoding unit 207, and a CRC school.
  • the receiving unit 201 is configured to listen to the control channel in a certain subframe or time slot to receive the wireless signal sent by the base station.
  • the signal received by the receiving unit 201 may be a wireless signal carried by an OFDM waveform, that is, an OFDM time domain signal.
  • the FFT unit 202 is configured to perform FFT processing on the first ⁇ 1, 2, 3 ⁇ symbols of the monitored wireless signal. For example, FFT unit 202 can transform the OFDM symbols into QPSK symbols to obtain a sequence of symbols for the control channel.
  • the demodulation unit 203 is configured to demodulate the symbol sequence after the FFT processing by the FFT unit 202 into a bit sequence.
  • the QPSK symbol sequence demodulated by the FFT unit 203 can be demodulated into a bit sequence.
  • the descrambling unit 204 is configured to perform descrambling processing on the bit sequence obtained by demodulating the demodulation unit 203.
  • the blind detection unit 205 is configured to perform blind detection on the bit sequence obtained by descrambling the descrambling unit 204.
  • the specific implementation manner of the blind detection is not limited in the embodiment of the present application.
  • the rate matching unit 206 is configured to perform rate dematching on the candidate PDCCH obtained by blind detection by the blind detecting unit 205.
  • the channel decoding unit 207 is configured to perform channel decoding on the bit sequence obtained by de-rate matching the rate matching unit 206.
  • the CRC check unit 208 is configured to perform CRC check on the bit sequence obtained by channel decoding by the channel decoding unit 207.
  • the CRC check unit 208 may first descramble the CRC check bit by using the RNTI, and then determine whether the DCI can be solved by using the CRC check bit.
  • the blind check unit 205 attempts the next blind check. If all blind checks fail, the received subframe or time slot is discarded.
  • the obtaining unit 209 acquires the information of the allocated resources in the DCI according to the solved DCI. Specifically, the acquiring unit 209 acquires the information of the allocated resource, and may be implemented by referring to the information about the allocated resource received by the terminal device in the implementation manner described in FIG. 2, FIG. 4, and FIG.
  • the obtaining unit 209 allocates a header field according to the resource in the DCI.
  • the terminal device obtains, by the terminal device, the identifier of the frequency domain resource that is allocated by the terminal device; acquiring, according to the symbol field of the data channel, the information of the symbol starting from the allocated time-frequency resource of the terminal device; acquiring the terminal device according to the symbol length field occupied by the data channel The length information of the allocated time-frequency resource symbol.
  • the obtaining unit 209 allocates resources according to the DCI.
  • the header field obtains an identifier of the time-frequency resource that the terminal device allocates at this time; and obtains, according to the offset field, an offset of the time-frequency resource that the terminal device allocates this time with respect to the valid time-frequency resource that has been acquired.
  • the obtaining unit 209 obtains the identifier of the time-frequency resource that the terminal device is allocated this time according to the resource allocation header field in the DCI.
  • the obtained frequency domain resource is the same as the previous time-frequency resource.
  • the field used to indicate the information of the allocated time-frequency resource occupies less bits, and the time-frequency resource occupied by the resource allocation related field in the DCI is reduced.
  • the terminal device may acquire the data sent by the base station from the time-frequency resource occupied by the data channel according to the resource allocation information indicated in the DCI.
  • the implementation manner of the terminal device acquiring the data sent by the base station from the acquired DCI can be implemented as follows:
  • the demodulation unit 203 is further configured to demodulate a symbol (for example, QPSK or QAM symbol) mapped on the time-frequency resource indicated by the information of the allocated resource according to the information of the allocated resource acquired by the acquiring unit 209 to obtain a solution.
  • the adjusted bit sequence may be the modulation mode indicated in the DCI.
  • the descrambling unit 204 is further configured to descramble the bit sequence obtained by demodulating the demodulation unit 203.
  • the rate-matching unit 206 is further configured to perform rate de-matching on the bit sequence descrambled by the descrambling unit 204 according to the information in the DCI that has been acquired. That is, the DCI acquired by the communication device 200 further includes information for performing rate matching on the bit sequence, and the de-rate matching unit 206 performs de-rate matching on the bit sequence descrambled by the descrambling unit 204 according to the rate matching information.
  • the channel decoding unit 207 is further configured to perform channel decoding on the bit sequence matched by the de-rate matching unit 206 according to the information in the acquired DCI to acquire data.
  • the data acquired by the channel decoding unit 207 is data with CRC check information. That is, the DCI acquired by the communication device 200 further includes information of the coding mode, and the channel decoding unit 207 performs channel decoding on the bit sequence matched by the de-rate matching unit 206 in a reverse manner according to the coding mode.
  • the CRC check unit 208 is further configured to determine, by using a CRC check, whether the data acquired by the channel decoding unit 207 after decoding is correct.
  • the above is a description of the manner in which the communication device 200 implements control information and data information transmitted by the base station.
  • the communication device 200 can also transmit information to the base station via the antenna 215.
  • the information may include control information or data information.
  • the encoding unit 210 encodes the information to be transmitted.
  • the information to be transmitted by the communication device 200 is channel coded.
  • the scrambling unit 211 is configured to scramble the information encoded by the encoding unit 210.
  • the modulating unit 212 is configured to modulate the information scrambled by the scrambling unit 210 into symbols.
  • the IFFT unit 213 is configured to modulate the symbol modulated by the modulation unit 212 into an OFDM waveform.
  • the transmitting unit 214 is configured to send the OFDM waveform modulated by the IFFT unit 213.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in a base station or a terminal device. Alternatively, the processor and the storage medium may also be disposed in different components in the base station or terminal device.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法和通信设备,用以减少资源分配信息对时频资源的占用。本申请提供的通信方法,在向所述终端设备发送控制信息中包括资源标识,所述资源标识用于指示分配的频域资源是基站能够分配的全部频域资源;或所述资源标识用于指示分配的时频资源是否变化。由于在控制信息中用资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。

Description

通信方法和通信设备
本申请要求于2017年05月18日提交中国专利局、申请号为201710354921.1、发明名称为“通信方法和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线通信系统中通信的方法和通信设备。
背景技术
在通信系统中,下行通信是指基站向终端设备发送信息,上行通信是指终端设备向基站发送信息。下行通信包括但不限于基站向终端设备发送下行数据,上行通信包括但不限于终端设备向基站发送上行数据。在下行数据传输前,基站需要向终端设备发送下行控制信息(Downlink Control Information,DCI)以指示终端设备进行数据的接收。基站经过信道编码等一系列操作,将DCI承载于物理下行控制信道(Physical downlink control channel,PDCCH),并向终端设备发送。并且,如果终端设备需要向基站传输上行数据,基站需要授权终端设备如何进行上行传输,这种授权也是通过DCI通知给终端设备的。
因为控制信息的重要性很高,往往会采用较低的码率和低阶调制方式来传输,以保证其稳健性。其中,码率通常是指传输比特中有效信息比特的占比。例如将20比特信息编码成60比特,码率为1/3,码率越低信道编码能提供的保护和纠错能力越强。调制,是指将比特调制成符号。例如对于正交相移键控(quadrature phase shift keying,QPSK)符号,通过调制,将2比特调制成1个QPSK符号;对于256正交幅度调制(quadrature amplitude modulation,QAM)符号,通过调制,将8个比特调制成一个256QAM符号。调制的阶数越低,传输的错误概率就越小。
在通信中,往往将一个符号映射到一个时频资源基本单元上。基站发送DCI所需的时频资源与DCI的长度成正比,即DCI的长度越长,占用的时频资源会越多。而控制信道的时频资源是有限的,大部分的时频资源需要留给数据的传送。现有技术中,DCI所包含的用于指示分配给终端设备的资源信息的长度过长,占用的比特位过多,导致因指示资源分配信息占用的时频资源较多。
发明内容
本申请实施例提供一种无线通信系统中通信的方法和通信设备,以减少资源分配信息对时频资源的占用。
第一方面,本申请实施例提供了一种通信方法,包括:
为终端设备分配通信资源;
向所述终端设备发送控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的频域资源是基站能够分配的全部频域资源。
上述方法中,在控制信息中通过资源标识指示分配的频域资源,由于标识占用的比 特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示所述资源标识。
在一种可能的实现方式中,所述基站能够分配的全部频域资源是所述终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽;或者,
所述基站能够分配的全部频域资源是所述基站能够分配的一个载波内的全部频域资源或所述基站能够分配的一个载波内的全部带宽。
在一种可能的实现方式中,所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段用于表示分配的时域资源的起始位置的信息,所述时域资源长度字段用于表示分配的时域资源的长度的信息。
可选的,所述控制信息还可以包括分配的时频资源开始符号和结束符号的信息,还可以是分配的时频资源符号长度和结束符号的信息。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的频域资源的信息,即预先配置分配的频域资源是所述基站能够分配的全部频域资源。可选的,通过绑定控制信息的格式与分配的频域资源的对应关系预先配置分配的频域资源。
第二方面,本申请实施例提供了一种通信方法,包括:
为终端设备分配时频资源;
向所述终端设备发送控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的时频资源是否变化。
上述方法中,在控制信息中通过资源标识指示分配的时频资源,由于标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的时频资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种实现方式中,所述分配的时频资源是否变化是指,分配的时频资源相对于已经获取的有效时频资源是否变化。
在一种可能的实现方式中,所述控制信息中包括偏移量,用于表示分配的时频资源偏移的值;
其中,所述偏移量是所述控制信息中新增的字段或所述控制信息中已有的字段来表示。
可选的,当所述偏移量可以由所述控制信息中已有的字段表示时,所述偏移量可以通过混合自动重传请求进程号字段、新数据指示字段、冗余版本字段或者波束编号字段等来表示。
在一种可能的实现方式中,通过高层信令将预先定义的偏移量发送给所述终端设备。在另一种实现方式中,所述偏移量可以是预先定义的偏移量。可选的,所述高层信令包括MAC控制元素(Medium Access Control–Control Element,MAC-CE)或资源控制(Radio resource control,RRC)。
可选的,所述预先定义的偏移量是通过预先约定、预先协商或标准定义的方式在基站和终端设备之间预先设置的偏移量。
在一种可能的实现方式中,当所述资源标识指示分配的时频资源变化时,所述控制信息包含所述偏移量。在一种可能的实现方式中,当所述资源标识指示分配的时频资源无变化,则基站无需再控制信息中携带偏移量,从而可以节省传输资源。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示所述资源标识。
可选的,当基站的一个波束只覆盖一个终端设备时,所述控制信息中只包括所述资源标识。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的时频资源的信息,即预先配置分配的时频资源变化的信息或相对于所述终端设备已经获取的有效时频资源变化的信息。可选的,通过绑定控制信息的格式与分配的时频资源的对应关系预先配置为所述终端设备分配的时频资源。
第三方面,本申请实施例提供一种通信方法,包括:
接收基站发送的控制信息,所述控制信息中包括资源标识,所述资源标识用于指示分配的频域资源是所述基站能够分配的全部频域资源;
根据所述资源标识,获取分配的频域资源的信息。
上述方法中,接收到的控制信息中资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示所述资源标识;
所述方法还可以包括:根据所述资源分配头字段获取所述资源标识。
在一种可能的实现方式中,所述基站能够分配的全部频域资源是指终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽;或者,
所述基站能够分配的全部频域资源是所述基站能够分配的一个载波内的全部频域资源或所述基站能够分配的一个载波内的全部带宽。
在一种可能的实现方式中,所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段表示分配的时域资源的起始位置的信息,所述时域资源长度字段表示分配的时域资源的长度的信息;
所述方法还包括:根据所述时域资源起始字段和时域资源长度字段获取分配的时域资源的信息。
可选的,所述控制信息还可以包括分配的时频资源开始符号和结束符号的字段,或可以是分配的时频资源符号长度和结束符号的字段。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的频域资源的信息,即预先配置分配的频域资源是所述基站能够分配的全部频域资源。可选的,通过绑定控制信息的格式与分配的频域资源的对应关系预先配置分配的频域资源。
第四方面,本申请实施例提供了一种通信方法,包括:
接收基站发送的控制信息,所述控制信息中包括资源标识;其中,所述资源标识用于指示分配的时频资源是否变化;
根据所述资源标识,获取分配的时频资源是否变化的信息。
上述方法中,接收到的控制信息中的资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的时频资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种可能的实现方式中所述分配的时频资源是否变化是指:分配的时频资源相对于已经获取的有效时频资源是否变化。
在一种可能的实现方式中,所述控制信息中包括偏移量,用于表示分配的时频资源偏移的值。通过所述偏移量获取分配的时频资源偏移的值;
其中,所述偏移量可以由所述控制信息中新增的字段或所述控制信息中已有的字段来表示。
可选的,当所述偏移量是由所述控制信息中已有的字段表示时,所述偏移量可以通过混合自动重传请求进程号字段、新数据指示字段、冗余版本字段或波束编号字段等。
在一种可能的实现方式中,
通过高层信令获取预先定义的偏移量;或,
根据预先定义的偏移量确定偏移的值。
可选的,所述高层信令可以是MAC-CE或RRC。
可选的,所述预先定义的偏移量是通过预先约定、预先协商或标准定义的方式在基站和终端设备之间预先设置的偏移量。
在一种可能的实现方式中,当所述资源标识指示分配的时频资源变化时,所述控制信息包括所述偏移量。
在一种可能的实现方式中,当所述资源标识指示分配的时频资源无变化,则所述控 制信息中没有携带偏移量,从而可以节省传输资源。
可选的,所述方法还可以包括:
根据所述资源标识获取所述分配的时频资源无变化的信息。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,通过所述资源分配头字段获取所述资源标识。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的时频资源的信息,即预先配置分配的时频资源是否变化。可选的,通过绑定控制信息的格式与分配的时频资源是否变化的对应关系预先配置分配的时频资源。
第五方面,本申请实施例提供了一种通信设备,包括存储器,处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时使得所述通信设备实现上述第一方面或第一方面的任意一种可能的实现方式所提供的方法中的相应的步骤。
第六方面,本申请实施例提供了一种通信设备,包括存储器,处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时使得所述通信设备实现上述第二方面或第二方面的任意一种可能的实现方式所提供的方法中的相应的步骤。
第七方面,本申请实施例提供了一种通信设备,包括存储器,处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时使得所述通信设备实现上述第三方面或第三方面的任意一种可能的实现方式所提供的方法中的相应的步骤。
第八方面,本申请实施例提供了一种通信设备,包括存储器,处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时使得所述通信设备实现上述第四方面或第四方面的任意一种可能的实现方式所提供的方法中的相应的步骤。
第九方面,本申请实施例提供了一种通信设备,包括控制信息生成单元和发送单元,其中:
所述控制信息生成单元,用于生成控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的频域资源是所述通信设备能够分配的全部频域资源;
所述发送单元,用于向终端设备发送所述控制信息。
上述通信设备生成的控制信息中包括资源标识,所述资源标识用于指示分配的频域资源。由于标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头 字段用于表示所述资源标识。
在一种可能的实现方式中,所述通信设备能够分配的全部频域资源是所述终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽;或者,
所述通信设备能够分配的全部频域资源是所述通信设备能够分配的一个载波内的全部频域资源或所述通信设备能够分配的一个载波内的全部带宽。
在一种可能的实现方式中,所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段用于表示分配的时域资源的起始位置的信息,所述时域资源长度字段用于表示分配的时域资源的长度的信息。
可选的,所述控制信息还可以包括分配的时频资源开始符号和结束符号的信息,还可以是分配的时频资源符号长度和结束符号的信息。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的频域资源的信息,即预先配置分配的频域资源是所述基站能够分配的全部频域资源。可选的,通过绑定控制信息的格式与分配的频域资源的对应关系预先配置分配的频域资源。
第十方面,本申请实施例提供了一种通信设备,包括控制信息生成单元和发送单元,其中:
所述控制信息生成单元,用于生成控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的时频资源是否变化;
所述发送单元,用于发送所述控制信息。
上述通信设备生成的控制信息中包括资源标识,所述资源标识用于指示分配的时频资源。由于标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的时频资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
可选的,所述资源标识用于指示分配的时频资源相对于已经获取的有效时频资源是否变化。
在一种可能的实现方式中,所述控制信息中包括偏移量,用于表示分配的时频资源偏移的值;
其中,所述偏移量是由所述控制信息中新增的字段或所述控制信息中已有的字段表示。
可选的,当所述偏移量是由所述控制信息中已有的字段表示时,所述偏移量可以是混合自动重传请求进程号字段、新数据指示字段、冗余版本字段或波束编号字段等等。
在一种可能的实现方式中,通过高层信令将预先定义的偏移量发送给所述终端设备;或,
所述偏移量是预先定义的偏移量。
可选的,所述高层信令可以是MAC-CE或RRC。
在一种可能的实现方式中,当所述资源标识指示分配的时频资源变化时,所述控制信息包含所述偏移量。在一种可能的实现方式中,当所述资源标识指示分配的时频资源无变化,则基站无需再控制信息中携带偏移量,从而可以节省传输资源。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示为所述终端设备分配的时频资源的标识。
可选的,当终端设备的一个波束只覆盖一个终端设备时,所述控制信息中只包括所述资源标识。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的时频资源的信息,即预先配置分配的时频资源变化的信息或相对于所述终端设备已经获取的有效时频资源变化的信息。可选的,通过绑定控制信息的格式与分配的时频资源的对应关系预先配置为所述终端设备分配的时频资源。
第十一方面,本申请实施例提供了一种通信设备,包括接收单元和获取单元,其中:
所述接收单元用于接收基站发送的控制信息,所述控制信息中包括资源标识;其中,所述资源标识用于指示分配的频域资源是所述基站能够分配的全部频域资源;
所述获取单元,用于根据所述资源标识获取分配的频域资源的信息。
上述通信设备接收到的控制信息中包括资源标识,,由于资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示所述资源标识;
所述获取单元还用于根据所述资源分配头字段获取所述资源标识。
在一种可能的实现方式中,所述基站能够分配的全部频域资源是指所述通信设备能够支持的一个载波内的全部频域资源或所述通信设备能够支持的一个载波内的全部带宽;或者,
所述基站能够分配的全部频域资源是所述基站能够分配的一个载波内的全部频域资源或所述基站能够分配的一个载波内的全部带宽。
在一种可能的实现方式中,所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段表示分配的时域资源的起始位置的信息,所述时域资源长度字段表示分配的时域资源的长度的信息;
所述获取单元还用于根据所述时域资源起始字段和时域资源长度字段获取所述分配的时域资源的信息。
可选的,所述控制信息还可以包括分的时频资源开始符号和结束符号的字段,或可以是分的时频资源符号长度和结束符号的字段。相应的,所述获取单元还用于根据所述时频资源开始符号和结束符号的字段获取分配的时频资源的信息,或根据所述时频资源 符号长度和结束符号的字段获取分配的时频资源的信息。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的频域资源的信息,即预先配置分配的频域资源是所述基站能够分配的全部频域资源。可选的,通过绑定控制信息的格式与分配的频域资源的对应关系预先配置分配的频域资源。
第十二方面,本申请实施例提供了一种通信设备,包括接收单元和获取单元,其中:
所述接收单元,用于接收基站发送的控制信息,所述控制信息中包括资源标识;其中,所述资源标识用于指示是否变化;
所述获取单元,用于根据所述资源标识获取分配的时频资源是否变化的信息。
上述通信设备接收到的控制信息中包括资源标识,由于资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
所述资源标识用于指示分配的时频资源相对于已经获取的有效时频资源是否变化。在一种可能的实现方式中,所述控制信息中包括偏移量;
所述获取单元还用于通过所述偏移量获取偏移的值;
其中,所述偏移量是由所述控制信息中新增的字段或所述控制信息中已有的字段来表示。
可选的,当所述偏移量是由所述控制信息中已有的字段表示时,所述偏移量可以通过混合自动重传请求进程号字段、新数据指示字段、冗余版本字段或波束编号字段等来表示。
在一种可能的实现方式中,所述获取单元还用于通过高层信令获取预先定义的偏移量;或,
根据预先定义的偏移量确定偏移的值。
可选的,所述高层信令可以是MAC-CE或RRC。
在一种可能的实现方式中,当所述资源标识指示分配的时频资源变化时,所述控制信息包含所述偏移量。
在一种可能的实现方式中,当所述资源标识指示分配的时频资源无变化,则基站无需再控制信息中携带偏移量,从而可以节省传输资源。可选的,所述获取单元还用于根据所述资源标识获取分配的时频资源无变化的信息。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述获取单元还用于通过所述资源分配头字段获取所述资源标识。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的时频资源的信息,即预先配置分配的时频资源是否变化。可选的,通过绑定控制信息的格式与分配的时频资源是否变化的对应关系预先配置分配的时频资源。
第十三方面,本申请实施例提供了一种通信方法,包括:
基站为终端设备分配通信资源;
所述基站向所述终端设备发送控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的频域资源是所述基站能够分配的全部频域资源中的部分频域资源。
上述方法中,在控制信息中通过资源标识指示分配的频域资源,由于标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
在一种可能的实现方式中,所述控制信息中包括资源块分配字段,所述资源块分配字段用于表示分配给所述终端设备的部分频域资源的标识,所述部分频域资源的标识是将所述基站能够分配的全部频域资源按照固定的划分方式划分后的频域资源中的其中一部分频域资源的标识。
本申请实施例第十三方面的实现方式,还可以参考上述第一方面的任意一种可能的实现方式来实现,不再赘述。
第十四方面,本申请实施例提供了一种通信设备,包括存储器,处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时使得所述通信设备实现上述第十三方面或第十三方面的任意一种可能的实现方式所提供的方法中的相应的步骤。
第十五方面,本申请实施例提供了一种通信设备,包括控制信息生成单元和发送单元,其中:
所述控制信息生成单元,用于生成控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的频域资源是所述基站能够分配的全部频域资源中的部分频域资源;
所述发送单元,用于向所述终端设备发送所述控制信息。
上述通信设备生成的控制信息资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。
可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种可能的实现方式中,所述控制信息中包括资源块分配字段,所述资源块分配字段用于表示分配的部分频域资源的标识,所述部分频域资源的标识是将所述基站能够分配的全部频域资源按照固定的划分方式划分后的频域资源中的其中一部分频域资源的标识。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示资源标识。
在一种可能的实现方式中,所述通信设备能够分配的全部频域资源是所述终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部 带宽;或者,
所述通信设备能够分配的全部频域资源是所述通信设备能够分配的一个载波内的全部频域资源或所述通信设备能够分配的一个载波内的全部带宽。
在一种可能的实现方式中,所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段用于表示分配的时域资源的起始位置的信息,所述时域资源长度字段用于表示分配的时域资源的长度的信息。
可选的,所述控制信息还可以包括分配的时频资源开始符号和结束符号的信息,还可以是分配的时频资源符号长度和结束符号的信息。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的频域资源的信息,即预先配置分配的频域资源是所述基站能够分配的部分频域资源。可选的,通过绑定控制信息的格式与分配的频域资源的对应关系预先配置分配的频域资源。
第十六方面,本申请实施例提供一种通信方法,包括:
接收基站发送的控制信息,所述控制信息中包括资源标识,所述资源标识用于指示分配的频域资源是所述基站能够分配的全部频域资源中的部分频域资源;
根据所述标识,获取分配的频域资源的信息。
上述方法中,接收到的控制信息中资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
在一种可能的实现方式中,所述控制信息中包括资源块分配字段,所述资源块分配字段用于表示分配给所述终端设备的部分频域资源的标识,所述部分频域资源的标识是将所述基站能够分配的全部频域资源按照固定的划分方式划分后的频域资源中的其中一部分频域资源的标识。
本申请实施例第十六方面的实现方式,还可以参考上述第三方面的任意一种可能的实现方式来实现,不再赘述。
第十七方面,本申请实施例提供了一种通信设备,包括存储器,处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时使得所述通信设备实现上述第十六方面或第十六方面的任意一种可能的实现方式所提供的方法中的相应的步骤。
第十八方面,本申请实施例提供了一种通信设备,包括接收单元和获取单元,其中:
所述接收单元用于接收基站发送的控制信息,所述控制信息中包括资源标识,所述资源标识用于指示分配的频域资源是所述基站能够分配的全部频域资源中的部分频域资源;
所述获取单元,用于根据所述标识获取分配的频域资源的信息。
上述通信设备接收到的控制信息中资源标识占用的比特位少,能够减少分配的资源信息占用的比特位,能够降低因在控制信息中指示分配的频域资源对时频资源的占用,提高时频资源的利用率。同时,由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
可选的,所述控制信息可以为DCI。可选的,所述DCI中还可以包括:调制和编码、混合自动重传请求进程号、新数据指示、冗余版本和多天线传输相关控制信息等。
在一种可能的实现方式中,所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示所述资源标识;
所述获取单元还用于根据所述资源分配头字段获取分配的所述资源标识。
在一种可能的实现方式中,所述控制信息中包括资源块分配字段,所述资源块分配字段用于表示分配的部分频域资源的标识,所述部分频域资源的标识是将所述基站能够分配的全部频域资源按照固定的划分方式划分后的频域资源中的其中一部分频域资源的标识。
在一种可能的实现方式中,所述基站能够分配的全部频域资源是指所述通信设备能够支持的一个载波内的全部频域资源或所述通信设备能够支持的一个载波内的全部带宽;或者,
所述基站能够分配的全部频域资源是所述基站能够分配的一个载波内的全部频域资源或所述基站能够分配的一个载波内的全部带宽。
在一种可能的实现方式中,所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段表示分配的时域资源的起始位置的信息,所述时域资源长度字段表示分配的时域资源的长度的信息;
所述获取单元还用于根据所述时域资源起始字段和时域资源长度字段获取分配的时域资源的信息。
可选的,所述控制信息还可以包括分配的时频资源开始符号和结束符号的字段,或可以是分配的时频资源符号长度和结束符号的字段。相应的,所述获取单元还用于根据所述时频资源开始符号和结束符号的字段获取分配的时频资源的信息,或根据所述时频资源符号长度和结束符号的字段获取分配的时频资源的信息。
可选的,当没有长度相同的控制信息时,所述控制信息中可以不包括所述资源分配头字段。可以预先配置分配的频域资源的信息,即预先配置分配的频域资源是所述基站能够分配的部分频域资源。可选的,通过绑定控制信息的格式与分配的频域资源的对应关系预先配置分配的频域资源。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序,当所述计算机程序被运行时,使得上述方面所述的方法被执行。。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行的上述任意可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1(a)为资源分配方式为分配方式0时使用bitmap方式指示时频资源分配的一种实现方式示意图;
图1(b)为资源分配方式1时指示频域内资源分配的一种实现方式示意图;
图1(c)为资源分配方式2时指示频域内资源分配的一种实现方式示意图;
图2为本申请实施例中分配的时频资源的一种分布结构示意图;
图3(a)为基站发送给终端设备的DCI中关于资源分配的各字段和相应比特长度的一种对应表;
图3(b)为基站将所有的时频资源都分配给一个终端设备时基站发送给终端设备的DCI中关于资源分配的各字段和相应比特长度的一种对应表;
图4为本申请实施例中分配的时频资源的另一种分布结构示意图;
图5为基站发送给终端设备的DCI中关于资源分配的各字段和相应比特长度的另一种对应表;
图6(a)为复用RV字段表示偏移量的实现方式;
图6(b)为复用HARQ进程号字段表示偏移量的实现方式;
图6(c)为复用新数据指示字段表示偏移量的实现方式;
图7为本申请实施例中两次分配的时频资源相同时分配的时频资源的分布结构示意图;
图8为本申请实施例中两次分配的时频资源相同时资源分配的字段和相应比特长度的对应表;
图9为本申请实施例提供的通信设备100的基本结构示意图;
图10为本申请实施例提供的通信设备100的结构示意图;
图11为本申请实施例提供的通信设备200的基本结构示意图;
图12为本申请实施例提供的通信设备200的结构示意图;
具体实施方式
下面结合附图,对本发明的实施例进行描述。
另外,本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请中的终端设备是一种具有无线通信功能的设备,可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端设备可以叫做不同的名称,例如:用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、5G网络或未来演进网络中的终端设备等。
本申请中的基站也可以称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站 或接入点,新无线(new radio,NR)系统中的传输节点或收发点(transmission reception point,TRP或者TP)或者下一代节点B(generation nodeB,gNB),无线保真(Wireless-Fidelity,Wi-Fi)的站点、无线回传节点、小站、微站,或者未来第五代移动通信(the 5th Generation Mobile Communication,5G)网络中的基站等,本申请在此并不限定。
在本申请中,通信资源也可以简称为资源。通信资源可用于传输信号。通信资源具有多种类型。例如:从物理特性的角度,通信资源的类型可以是空间资源,时域资源,和频域资源。例如:从不同的表现形式的角度,通信资源的类型可以是波束,端口等。不同种类的通信资源的集合也是一种通信资源。例如:时频资源(包括时域资源和频域资源)是一种通信资源,波束和端口的组合也是一种通信资源。
在LTE系统中,信道的发送以无线帧为单位,一个无线帧(radio frame)包括10个子帧(subframe),每一个子帧的长度为1毫秒(ms),每个子帧均包括两个时隙(slot),每个slot为0.5ms。每个slot包括的符号的个数与子帧中循环前缀(cyclic prefix,CP)长度相关。如果CP为normal(普通)CP,则每个slot包括7个符号,每个子帧由14个符号组成。例如,每个子帧由序号分别为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13的符号组成。如果CP为extended(长)CP,每个slot包括6个符号,每个子帧由12个符号组成,例如每个子帧由序号分别为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11的符号组成。
上述符号也称为正交频分多址(orthogonal frequency division multiplexing,OFDM)符号。
资源元素(Resource element,RE)是指包含一个OFDM符号内的一个子载波,是LTE的最小物理资源。
资源块(Resource block,RB)是RE组合后的资源块。以LTE为例,每个资源块包括频域的12个连续子载波和时域0.5ms的一个时隙。
DCI是二进制的比特流,被调制之后为QPSK符号。多个子载波的QPSK符号经过快速傅里叶逆变换(Inverse fast Fourier Transform,IFFT)成为正交频分多址(orthogonal frequency division multiplexing,OFDM)波形,一个单位时间内的OFDM波形称为一个OFDM符号。
通常情况下,DCI中包括的字段或信息包括但不限于:资源分配头(Resource allocation header),资源块分配(Resource block assignment),调制和编码(modulation and coding scheme),混合自动重传请求(Hybrid automatic repeat request,HARQ)进程号(HARQ process number),新数据指示(New data indication),冗余版本(Redundancy version)和多天线传输相关控制信息等。并且,基于传输模式的不同,DCI携带的内容也不同,因此DCI会有不同的格式。每一个DCI由很多个字段构成,每种格式的DCI的组成字段可能不同,DCI的长度也可能不同。
DCI中资源分配头和资源块分配字段用于表示资源分配相关的信息。资源分配相关的信息用于指示终端设备哪些时频资源是调度给终端设备用来进行数据传输的。资源分配头字段用于表示终端设备资源分配的方式(Resource allocation type,RA type),资源块分配字段用于表示终端设备具体调度的频域资源。
在LTE中,RA type有三种,分别是RA type 0、RA type 1和RA type 2,不同的DCI格式会使用不同的RA type。基站可以通过显式或隐式的方式,通知终端设备该DCI使用的RA type。显式通知是用DCI中的资源分配头字段表示RA type的信息。隐式通知是预先设定某些DCI只使用某种RA type,例如只使用RA type 2,这时就不需要使用资源分配头字段表示RA type的信息。
资源块分配字段与资源分配方式有关,基站在DCI中的资源块分配字段表示分配给终端设备的时频资源时,因具体的资源分配方式的不同而不同。具体如下:
当使用RA type 0时,使用bitmap方式指示频域内独立连续的资源块组(RBG)。相对于直接使用资源块(RB),使用资源块组可以实现bitmap比特数目的减少。Bitmap的长度可以由
Figure PCTCN2018087542-appb-000001
计算,其中
Figure PCTCN2018087542-appb-000002
是上取整符号,
Figure PCTCN2018087542-appb-000003
是系统带宽(以RB为单位)。分组的大小P取决于系统带宽。
图1(a)为资源分配方式为RA type 0时使用bitmap方式指示时频资源分配的一种实现方式示意图。假设系统带宽为25个RB,P=2,则RBG为13个。图1(a)中阴影部分表示被分配的资源块组。相应的,资源块分配字段为{1001110001010}。
当使用资源分配方式1时,是将资源块组分为P个子集。具体来说资源分配方式1使用三个字段来指示分配的时频资源。第一个字段长度为
Figure PCTCN2018087542-appb-000004
用于表示选择的子集,即选择第0≤p<P个资源块组子集。第二个字段长度为1个比特,用于表示是否有偏移量Δ shift(p)。其中,偏移量
Figure PCTCN2018087542-appb-000005
第三个字段是一个bitmap,其中的每一个比特是指所选资源块组子集中的每一个资源块是否被分配。第三个字段长度为
Figure PCTCN2018087542-appb-000006
图1(b)为资源分配方式1时指示频域内资源分配的一种实现方式示意图。仍以系统带宽为25个RB,P=2为例进行说明。图1(b)中,RA type 1(b1)所示的第二字段为0,即无偏移量,Δ shift(p)=0的例子,资源分配用二进制表示为{0010011101000}。RA type 1(b2)所示的第二字段为1,即偏移量Δ shift(p)=2,资源分配用二进制表示为{0110011101000}。
当使用资源分配方式2时,是使用资源块分配的起始位置和长度来表示分配的时频资源的信息。具体来说,是使用一个resource indication value(RIV),其是起始位置RB start和长度L CRBs的函数,即:
Figure PCTCN2018087542-appb-000007
图1(c)为资源分配方式2时指示频域内资源分配的一种实现方式示意图。以系统带宽为25个RB为例,如图1(c)所示,资源分配从(第6个RB开始,长度为9个RB)可以用RIV=206来表示。RA type 2时资源分配指示可以用长度为
Figure PCTCN2018087542-appb-000008
的二进制序列表示。图1(c)所示资源分配用二进制表示为{011001110}。
上述三种资源分配方式中,资源块分配字段占用了大量的比特位,导致资源开销较大。以上述25个RB的带宽为例,采用RA type 0时,资源块分配字段需要13个比特;采 用RA type 1时,资源块分配字段需要13个比特;采用RA type 2时,资源块分配字段需要9个比特。对于5G NR,特别是高频通信中,其带宽比LTE大数倍,资源块分配字段将会占用更多的时频资源。例如在第一种资源分配方式中,需要13个比特才能表示出资源块的分布。该13个比特通过1/3码率信道编码则是39个比特。在不考虑速率匹配的情况下,通过QPSK也需要使用20个QPSK符号。每一个QPSK占一个RE,那么资源块分配总共需要20个RE的开销,造成了时频资源的浪费。在考虑速率匹配的情况下,实际传输码率变高,即有效信息比特的占比变高,传输的错误率变高。
本申请实施例提供一种通信方法,可以减少控制信息中资源分配信息占用时频资源。
在本申请实施例提供的第一种可能的实现方式中,基站发送的DCI中包括用于指示分配给终端设备的频域资源的标识,该标识用于指示分配给终端设备的频域资源的信息。例如,该标识可以用于指示分配的频域资源是基站能够分配的全部频域资源,也可以用于指示分配的频域资源是基站能够分配的全部频域资源中的部分频域资源。例如,在一种可能的实现方式中,可用的频域资源被划分为K等份,其中K为大于1的整数,如K=2或者3,或者4等,在基站发送给终端设备的控制信息中,可以分次携带其中的一份或者多份。例如,基站可以预先将可用的频域资源划分为4等份,在每次向终端设备发送的DCI中包括将基站能够分配的全部频域资源划分为4等份后的其中一份。在另一种可能的实现方式中,可用的频域资源可以被不规则划分成不同份,所述标识用于指示分配给终端设备的频域资源是所述可用的频域资源中的部分,例如1/5份或者3/5份等等。
基站在通过控制信息(例如DCI)指示为终端设备分配的频域资源的信息时,由于对频域资源进行预先划分,,基站可以用一个或两个标识来指示分配给终端设备的频域资源。所述对频域资源进行预先划分,可以是通过基站预先划分,标准协议规定,或者基站与终端设备协商等方式来确定频域资源的划分方式。由于标识占用较少的比特数,能够有效减少资源分配信息对时频资源的占用。例如,可以用1个比特的标识(例如DCI中的资源分配头字段)表示分配给终端设备的频域资源为全部的可用频域资源;也可以用1个比特的标识(例如DCI中的资源分配头字段)表示分配给终端设备的频域资源是全部的可用频域资源的一部分(例如可用频域资源的1/4),而用另一个标识(例如DCI中的资源块分配字段)来表示分配给终端设备的频域资源是4份中的哪一份。这里,所述资源块分配字段用于表示分配给终端设备的频域资源是被划分为4份的频域资源中的其中一份,可以占用1个比特位或2个比特位。本实施方式中,通过一个或多个标识来指示为终端设备分配的资源,能够减少控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
在一种实现方式中,上述频域资源的划分方式,可以是预先确定一种频域资源的划分方式固定不变,例如,基站能否分配的全部频域资源(或可用频域资源)。在另一种实现方式中,上述频域资源的划分方式,也可以是在某一个时间段内相对固定,在不同的时间段内变化的。例如在时间点T1,划分方式可以是基站能够分配的全部频域资源,在时间点T2划分方式可以是将基站能够分配的全部频域资源划分为4等份,在时间点T3选择的划分方式是将基站能够分配的全部频域资源划分为1/5、3/5和1/5等。这样,能够方便使用标识表示分配的频域资源的信息。
这种实现方式适用于基站发送的一个波束所覆盖的终端设备较少的情况。当一个波束覆盖的终端设备较少时,基站在调度资源时可以将能够分配的频域资源都分配给一个终端设备或较少的几个终端设备。可选的,基站将能够分配的频域资源分配给较少的几个终端设备时,频域资源的划分方式可以是变化的划分方式,也可以是不变的划分方式。
本申请中,基站能够分配的全部频域资源,有时也可以称为可用的频域资源,或可分配的频域资源,例如可以是终端设备能够支持的一个载波内的全部频域资源、终端设备能够支持的一个载波内的全部带宽、基站能够分配的一个载波内的全部频域资源、或者基站能够分配的一个载波内的全部带宽。例如,一个载波具有一定的带宽(例如20MB赫兹),该载波所对应的全部频域资源为基站能够分配的全部频域资源;或者,一个载波的带宽体现为RB数,例如20MB赫兹对应100个RB,该100个RB对应的频域资源为基站能够分配的全部频域资源。不同的终端设备的能力可能不同,不同的终端设备所支持的载波内的频域资源或带宽也会不同。例如一个终端设备在一个载波内能支持最大20MB的带宽,另一个终端设备在一个载波内能支持最大80MB的带宽。因此对于不同的终端设备,基站能够分配的全部频域资源可能是不同的。
下面以基站将能够分配的全部频域资源都分配给终端设备为例进行说明。例如,一个波束覆盖了两个终端设备,终端设备1被分配的频域资源是两个符号对应的全部频域资源,终端设备2被分配的频域资源是三个符号对应的全部频域资源。这时,基站发送的DCI中资源分配头字段可以用1个比特来表示所分配的频域资源的标识,该标识用于指示分配给终端设备的频域资源是所述基站能够分配的全部频域资源。
如图2所示,图2为本申请实施例中分配的时频资源的一种分布结构示意图。图2的横轴方向代表时域资源,纵轴方向代表频域资源。其中,横轴方向的一个方格代表一个符号所对应的时域资源,一个符号所对应的纵轴方向的所有方格代表一个符号对应的全部频域资源。图2中,基站分配给终端设备1的频域资源是两个符号对应的全部频域资源,分配给终端设备2的频域资源是三个符号对应的全部频域资源。因为分配给每个终端设备的频域资源都是基站能够分配的全部频域资源,在DCI的资源分配头字段,可以用1个比特来表示该信息,即可以用1个比特来表示分配给终端设备的频域资源的标识,该标识用于指示分配给终端设备的频域资源是基站能够分配的全部频域资源。
可选的,用于表示分配的频域资源的资源分配头字段也可以是2个比特,本申请实施例不限定用于表示分配给终端设备的频域资源的标识所占用的比特数。只要DCI中用于表示资源分配信息的字段的总的比特数有所缩小,能够减少用于指示时频资源的信息对时频资源的占用,都属于本申请实施例覆盖的范围。并且,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。
同时,在图2所示的实现方式中,当用1个比特在资源分配头字段表示分配给终端设备的频域资源的标识时,还需要在DCI中指示分配给每个终端设备的时域资源的信息。这样,在DCI中既包含了分配给终端设备的频域资源信息,也包含了分配给终端设备的时域资源信息,终端设备能够根据DCI中指示的资源信息准确地获取被分配的时频资源。分配给终端设备的时域资源的信息,既可以是分配给终端设备的开始符号和符号长度的信息,也可以是分配给终端设备的开始符号和结束符号的信息,还可以是符号长度和结束符号的信息。本申请实施例不限定具体的指示时域资源信息的方式,只要终端设备能 够获取具体的时域资源信息即可。
下面以基站在DCI中指示分配给终端设备的频域资源是基站能够分配的全部频域资源且分配给终端设备的时域资源是开始符号和符号长度为例,对基站发送的DCI中关于资源分配的方式进行说明。如图3(a)所示,图3(a)为基站向终端设备发送的DCI中关于资源分配的各字段和相应比特长度的一种对应表。
图3(a)中,资源分配头字段占用1个比特,用以表示分配给终端设备的频域资源的标识,该标识用于指示此次资源分配的类型,即分配给终端设备的频域资源是基站能够分配的全部频域资源。数据信道开始的符号字段占用2个比特,即数据信道占用的时域资源开始的符号字段占用2个比特,用以指示分配给终端设备的时域资源开始的符号;数据信道所占据的符号长度字段占用2个比特,即数据信道占用的时域资源所占据的符号长度字段占用2个比特,用以指示分配给终端设备的时域资源符号的长度。这样,终端设备能够根据DCI中这些字段所指示的信息,获取基站分配的具体的时频资源的信息。
图3(a)中,DCI中用于表示资源分配的频域资源的信息的字段共占用5(1+2+2)个比特,小于上述13或9个比特,能够节省资源分配的信息所占用的时频资源;生成控制信息所需的时间也会相应越少,提高了效率。相应的,终端设备在获取到控制信息时,因为由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
需要说明的是,图3(a)中数据信道开始的符号字段和数据信道所占据的符号长度字段所需要的比特的位数可以通过
Figure PCTCN2018087542-appb-000009
获取。其中,
Figure PCTCN2018087542-appb-000010
表示一个下行调度单位(本实施例中为时隙)中的符号数;G表示颗粒度,即最小可以分配多少个符号;Log 2表示取以2为底的对数。
另一种时域资源分配的表示方式,例如,可以用一个字段,例如可以用符号分配字段来表示分配的时域资源。该字段表示分配的时域资源的一种可能的实现方式如下:
使用一个time resource indication value(TRIV),其是起始符号S start和符号长度L S的函数,该函数可以是:
Figure PCTCN2018087542-appb-000011
where L S≥1 and shall not exceed
Figure PCTCN2018087542-appb-000012
其中,
Figure PCTCN2018087542-appb-000013
是一个子帧/时隙内的符号数。
可以理解,一个子帧/时隙内的符号数
Figure PCTCN2018087542-appb-000014
可以是固定值,该固定值可以为系统预定义的。,例如,
Figure PCTCN2018087542-appb-000015
可以为6、7、12或14等。以
Figure PCTCN2018087542-appb-000016
为14为例,上述函数可以表示为:
if(L S-1)≤7 then
TRIV=14·(L S-1)+S start
else
TRIV=14·(14-L S+1)+(14-1-S start);
Where 0<L S<14-S start。需要说明的是,TRIV=14·(L S-1)+S start或者TRIV=14·(14-L S+1)+(14-1-S start)仅为一种数学表达式举例。可以理解,基于该数学表达式可以有多种等效数学变形。例如,TRIV=14·(L S-1)+S start还可以表示为TRIV=14·L S-14+S start,或者TRIV=14·L S+S start-14。又例如,TRIV=14·(14-L S+1)+(14-1-S start),还可以表示为TRIV=14·(15-L S)+(13-S start),或者TRIV=197-14L S-S start)。本发明实施例中对于数学表达式的形式并不作限定,只要TRIV值的结果满足上述数学式的计算结果即可。
可选的,当基站的一个波束只覆盖一个终端设备时,基站可以将所有时频资源分配给终端设备。。DCI中的资源分配相关的信息可以用一个字段(即资源分配头字段)来表示,如图3(b)所示。相应的,终端设备根据DCI中的资源分配头字段,即可获取基站分配的时频资源的信息。
可选的,上述图3(a)或图3(b)的实现方式中,资源分配头字段,占用1个比特用于指示资源分配方式的类型,目的是为了区分其它长度相同的DCI。在具体实现时,基站在确定没有长度相同的DCI时,该字段也可以省去,即不需要资源分配头字段。即可以预先配置分配的频域资源的信息,预先配置为所述终端设备分配的频域资源是所述基站能够分配的全部频域资源。例如可以通过绑定控制信息的格式与分配的频域资源的对应关系预先配置为所述终端设备分配的频域资源。这样,能够进一步减少DCI中指示资源分配信息时所占用的资源。
本申请实施例提供的第二种可能的实现方式中,基站发送的DCI中包括分配给终端设备的时频资源的标识,该标识用于指示分配的时频资源相对于所述终端设备已经获取的有效时频资源变化的信息。这种实现方式适用于基站多次调度相同或相关资源的情况。例如对于高可靠低时延通信(Ultra reliable and low latency communication,URLLC)用户,需要连续多次发送相同数据来提高可靠性的场景。
例如,图4所示的时频资源分配图中,终端设备在时隙n时被分配的时频资源与在时隙n+t1时被分配的时频资源相关,即相对于时隙n偏移了2个RB。其中,n和t1分别是正整数,代表具体的时隙信息。这时,基站在时隙n+t1时发送的DCI中资源分配头字段,可以用1个比特来指示终端设备本次分配的时频资源的标识,该标识用于指示分配的时频资源与终端设备已经获取的有效的时频资源相关;再用一个字段指示终端设备本次分配的时频资源相对于上一次分配的时频资源的偏移量。这样就能够用较少的时频资源指示分配给终端设备的时频资源的信息。
其中,所述终端设备已经获取的有效的时频资源信息,可以是终端设备最近一次获取的有效的时频资源的信息。例如,所述终端设备已经获取的有效的时频资源信息是该终端设备上一次接收到的基站发送的DCI中指示的时频资源信息。
图4中,横轴方向代表时域资源,纵轴方向代表频域资源。其中,横轴方向的一个方格代表一个符号所对应的时域资源,一个符号所对应的纵轴方向的所有方格代表一个符号对应的所有频域资源。在纵轴方向的一个方格代表一个RB资源。
基于图4所示的资源分配方式,基站在发送给终端的DCI中所包括的资源分配相关的字段可以如图5所示。
图5中,资源分配头字段占用1个比特,用以表示分配给终端设备的时频资源的标识,该标识用于指示此次分配的时频资源与已经获取的有效时频资源相关,即与已经获取的有效时频资源有偏移;偏移量字段占用2个比特,用以表示分配的偏移量,该偏移量用于指示本次分配的时频资源相对于已经获取的有效时频资源偏移的值。其中,偏移量字段占用2个比特只是举例,在具体实现时,偏移量字段可以占用1个比特,也可以占用3个比特等,只要能够表示具体的偏移量的信息,都属于本申请实施例保护的范围。
需要说明的是,偏移的方向可以是系统预先定义的,基站和终端设备能够根据预先定义的方向确定所分配的时频资源相对于已经获取的有效的时频资源偏移的方向。例如可以预先定义偏移的方向可以是向RB编号降低的方向,也可以向RB编号增大的方向等。
图5中,DCI中用于表示资源分配相关信息的字段共占用3(1+2)个比特,小于上述13或9个比特,能够节省资源分配的信息所占用的资源。并且,生成控制信息所需的时间也会相应越少,提高了效率。相应的,终端设备在获取到控制信息时,因为由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
作为一种可选的实现方式,所述偏移量也可以是预先定义的偏移量,或通过高层信令通知的方式通知终端设备。在这种情况下,DCI中就可以不包括偏移量的字段。这样,在DCI中可以用1个比特来表示分配的时频资源的标识。
本申请实施例中,所述高层信令包括但不限于MAC-CE或RRC等。
可选的,对于URLLC用户的连续多次发送相同数据的不同版本以提高可靠性的场景,在DCI中也可以不包括偏移量,而是通过复用DCI中已有的字段表示偏移量。即可以利用DCI中已有的字段,例如HARQ进程号字段、新数据指示字段或冗余版本RV字段来表示偏移量。
例如,可以通过RV表示偏移量,也可以通过f(RV)表示偏移量。当通过RV表示偏移量时,偏移量是RV的值。例如RV=1,则偏移一个RB,RV=2,则偏移2个RB。。当通过f(RV)表示偏移量时,偏移量是一个RV的函数f()。例如f(x)=2x。那么M=2*RV。RV=1时,则偏移2个RB。
例如,图6(a)为复用RV字段表示偏移量的实现方式,图6(b)为复用HARQ进程号字段表示偏移量的实现方式,图6(c)为复用新数据指示字段表示偏移量的实现方式。需要说明的是,上述被复用的字段,还具有其本身所具备的功能,在其本身所具备的功能之外,还附带具有指示终端设备偏移量的功能。如图6(a)中RV字段除其本身携带的信息之外,还能够指示终端设备具体的偏移量。
可选的,还可以通过波束编号字段携带偏移量,例如编号为1的波束偏移量为1个RB,编号为2的波束,偏移量为2个RB等等。需要说明的是,这里的波束不是物理上的波束,而是逻辑上的波束。
可选的,上述图5、图6(a)、图6(b)或图6(c)中,资源分配头字段,占用1个比特用于表示分配的时频资源的标识,该标识用于指示终端设备此次分配的时频资源与已经获取的有效时频资源相关,目的是为了区分其它长度相同的DCI。在具体实现时,基站在确定没有长度相同的DCI时,该字段也可以省去,即不需要资源分配头字段。这样,能够进一步减少DCI中指示资源分配信息时所占用的资源。
相应的,终端设备可以根据接收到的DCI中的资源分配头字段获取分配的时频资源 与已经获取的有效的时频资源相关,并根据获取到的偏移量,即可获取基站分配的时频资源的信息。
本申请实施例提供的第三种可能的实现方式中,基站发送的DCI中包括分配的时频资源的标识,该标识用于指示分配给终端设备的时频资源与所述终端设备已经获取的有效时频资源相同。这种实现方式适用于基站多次调度相同资源的情况。例如对于URLLC用户,需要连续多次发送相同数据来提高可靠性的场景。
例如,图7所示的时频资源分配图中,终端设备在时隙n时被分配的时频资源与在时隙n+t1时被分配的时频资源相同。其中,n和t1分别是正整数,代表具体的时隙信息。这时,基站在时隙n+t1时发送的DCI中,可以用1个比特表示分配给终端设备的时频资源的标识,该标识用于指示本次分配的时频资源与上一个被分配的有效的时频资源相同。这样能够大大减少DCI中资源分配信息所占用的时频资源。并且,由于缩短了控制信息占用的比特位,生成控制信息所需的时间也会相应越少,提高了效率。相应的,终端设备在获取到控制信息时,因为由于缩短了控制信息占用的比特位,解析控制信息所需的时间也会相应越少,提高了效率。
图7中,横轴方向代表时域资源,纵轴方向代表频域资源。其中,横轴方向的一个方格代表一个符号所对应的时域资源,一个符号所对应的纵轴方向的所有方格代表一个符号对应的所有频域资源。以图7所示的资源分配方式为例,基站在发送给终端的DCI中所包括的资源分配相关的字段可以如图8所示。这样,终端设备可以根据接收到的DCI中的资源分配头字段即可获取分配的时频资源的信息,即分配的时频资源与已经获取的时频资源相同。
可选的,图8中资源分配头字段,占用1个比特用于表示分配给终端设备的时频资源的标识,目的是为了区分其它长度相同的DCI。在具体实现时,基站在确定没有长度相同的DCI时,该字段也可以省去,即不需要资源分配头字段。这样,能够进一步减少DCI中指示资源分配信息时所占用的资源。例如,可以预先配置分配的时频资源的信息,即预先配置为所述终端设备分配的时频资源相对于所述终端设备已经获取的有效时频资源变化的信息。可选的,可以通过绑定控制信息的格式与分配的时频资源相对于所述终端设备已经获取的有效时频资源变化的信息的对应关系预先配置为所述终端设备分配的时频资源。
上述第一种、第二种和第三种实现方式中,基站采用的资源分配方式是预先配置或设定好的。例如,在基站和终端设备之间预先配置上述第一种、第二种和第三种的资源分配方式,基站通过调度算法为终端设备分配资源后,通过DCI将分配的资源信息发送给终端设备,这时可以使用上述第一种、第二种和第三种的资源分配方式。即基站在需要向终端设备发送DCI时,可以根据具体的实现情况,选择上述三种资源分配方式中的一种,并生成DCI发送给终端设备。终端设备接收到基站发送的DCI后,也能够根据预先配置的上述三种资源分配方式,结合获取到的DCI中关于资源分配字段所记载的内容,获取基站所分配的资源信息。
图9为本申请实施例提供的通信设备100的基本结构示意图。如图9所示,通信设备100包括控制信息生成单元102。所述控制信息生成单元102,可以是DCI生成单元102,用于根据通信设备100对资源调度的结果,生成控制信息,例如DCI,所述控制信息中 包括分配给终端设备的资源的信息。在一种实现方式中,通信设备100可以是芯片,例如,基带芯片或通信芯片。所述控制信息生成单元102可以由电路或处理器来实现。在另一种实现方式中,所述通信设备100可以是网络侧设备,例如是基站。所述通信设备100还可以包括发送单元112。所述发送单元112,用于将所述控制信息生成单元102生成的控制信息向终端设备发送。所述发送单元可以是发射机,或发射电路等等。其中,所述控制信息生成单元102所生成的控制信息中包括的分配给终端设备的资源的信息,具体可以参考图2至图7以及上述与2至图7相关的描述,不再赘述。
由于通信设备100在控制信息(例如DCI中),使用标识来表示资源分配信息,其占用的比特数少,能够减少控制信息中资源分配的信息所占用的时频资源。
图10为本申请实施例提供的通信设备100的一种结构示意图。图10中,通信设备100可以可选的包括以下部分:调度单元101、DCI生成单元102、封装单元120、CRC校验单元103、信道编码单元104、速率匹配单元105、聚合复用单元106、加扰单元107、调制单元108、端口映射109、时频映射单元110、IFFT单元111、发送单元112、接收单元113、快速傅里叶变换(fast Fourier Transform,FFT)单元114、解调单元115、解扰单元116、解码单元117、数据接收单元118和天线119。可以理解,图10中的各个逻辑单元可以是分别单独的设计,也可以是一个或多个集成在一起。
需要说明的是,通信设备100可以包括一个或多个存储器和处理器用于实现如图2至图7中基站的功能。图10中的每个单元可以单独设置存储器和/或处理器。也可以是两个或两个以上的单元公用存储器和/或处理器。通信设备100可以是芯片,也可以是基站设备,本发明并不对此进行限定。其中,调度单元101,用于根据终端设备的信道条件、需要传输的数据大小等进行资源调度。调度的结果包括为终端设备分配哪些时频资源,采用什么调制方式和码率来发送数据,采用什么传输模式发送数据,使用哪些天线端口发送数据等。
DCI生成单元102,用于根据调度单元101调度的结果,生成DCI,生成的DCI中包括为终端设备分配的时频资源、调制方式和码率等信息。DCI生成单元102生成的DCI中,用于表示分配的频域资源和/或时域资源字段,可以参考上述图2、图4和图7描述的实现方式中表示分配的资源的信息方式来实现。这样,通信设备100能够减少在DCI中因表示分配的资源的信息对时频资源占用,提高时频资源的利用率。
封装单元120,用于将调度单元调度的数据封装为预定义的格式。其中,调度的数据是需要发送给终端设备的数据。
CRC校验单元103,用于对DCI生成单元102生成的DCI添加CRC校验比特,或将封装单元120封装后的数据添加CRC校验比特。可选的,在LTE中,CRC校验单元103会根据终端设备的ID添加CRC校验比特,所述终端设备的ID通常为该终端设备的用户在网络中临时身份认证(Radio Network Temporary Identifier,RNTI)。
信道编码单元104,用于对CRC校验单元103添加CRC校验后的DCI进行信道编码,或对CRC校验单元103添加CRC校验后的数据进行信道编码。其中,信道编码为传输的比特提供检错和纠错能力,是通信系统最重要的组成部分之一。例如,LTE中对控制信息采用的信道编码为咬尾卷积码(tail-biting convolutional coding,TBCC)码,5G NR对控制信息采用Polar码。LTE中对数据的信道编码采用turbo码,5G NR对数据的信道 编码采用低密度奇偶校验码(Low Density Parity Check Code,LDPC)码。在后续演进系统中可以采用其他的编码方式,本申请实施例不限定具体的编码方法。
速率匹配单元105,用于将信道编码单元104进行信道编码后的DCI匹配成预设的PDCCH格式,例如匹配为72比特,144比特,288比特和576比特等;或将信道编码单元104进行信道编码后的数据需要传输的比特数目匹配成所分配的资源能够承载的比特数目。
聚合复用单元106,用于将速率匹配单元105匹配后的比特数聚合为一个以上的控制信道元素(Control channel element,CCE),以及将本子帧/时隙内所有的PDCCH对应的比特序列联合成一个比特序列。例如当速率匹配单元105匹配到72个比特的PDCCH格式时,将该72个比特的PDCCH聚合为1个CCE;速率匹配单元105匹配到144个比特的PDCCH格式时,将该144个比特的PDCCH聚合为2个CCE;并将多个PDDCH联合在一起生成比特序列。
加扰单元107,用于用一个扰码序列对聚合复用单元106生成的比特序列进行模二加的操作,或用一个扰码序列对速率匹配单元105匹配后的数据的比特进行模二加的操作。
调制单元108,用于将加扰单元107加扰后的比特序列调制成符号。例如,LTE中对控制信道采用QPSK的调制方式,调制单元108将2个比特调制成一个QPSK符号。
端口映射单元109,用于按协议要求,选择发送调制单元108调制后的符号的天线端口。所述协议根据具体的实现场景可以有不同的选择,例如可以是LTE协议选择天线端口等。
可选的,还可以包括预编码单元(图中未示出),选择发送调制单元108调制后的符号。的预编码矩阵。例如可以根据标准协议选择预编码矩阵等。
时频映射单元110,用于将调制单元108调制后的符号映射到时频资源上。例如在LTE中,将QPSK符号映射到物理OFDM时频资源上。
IFFT单元111,用于通过IFFT将子载波上的符号调制成OFDM波形。例如将子载波上的QPSK/QAM符号调制成OFDM波形等。
发送单元112,用于将IFFT单元111调制后的OFDM波形调频,通过射频(Radio frequency,RF)链路发送。例如,通过天线119发送。
上述是通信设备100在实现发送控制信息和数据信息时实现方式的描述。通信设备100还可以通过天线119接收终端设备发送的信息。
当通信设备100通过天线119接收终端设备发送的信息时,接收单元113,用于接收终端设备发送的信息。终端设备发送的信息,可以是控制信息或数据。
FFT单元114,用于通过FFT将接收单元113接收到的OFDM波形调制成QPSK/QAM符号。
解调单元115,用于将FFT单元114调制后的符号解调成比特序列;
解扰单元116,用于对解调单元115解调后的比特序列解扰。例如用一个扰码序列对比特序列进行解扰等。
解码单元117,用于对解扰单元116解调后的比特序列解码。例如进行信道解码等。
数据接收单元118,用于获取解码单元117解码后的数据。
上述通信设备100在发送给终端设备的DCI中,用于表示分配的资源的信息的字段占用的比特位少,能够有效节省DCI中分配的资源的信息所占用的时频资源。
图11为本申请实施例提供的通信设备200的基本结构示意图。如图11所示,通信设备200包括接收单元201和获取单元209。其中,接收单元201用于接收无线信号;获取单元209用于根据接收单元接收到的无线信号,获取所述无线信号中的分配的资源的信息。具体的,所述接收单元201接收到的无线信号中包括控制信息,所述控制信息中包括分配的时频资源的信息。在一个例子中,所述接收单元201可以是接收机或接收电路等,所述获取单元209可以由处理器实现。通信设备200的实现方式可以参考上述图至图7描述的实现方式中终端设备接收并获取分配的资源的信息的方式来实现,不再赘述。
这样,通信设备200接收到的控制信息(例如DCI中),用于指示分配的时频资源的信息的字段所占用的比特位少,能够有效节省控制信息(例如DCI)中资源分配相关字段所占用的时频资源。
图12为本申请实施例提供的通信设备200的结构示意图。图12中,通信设备200可以可选的包括以下部分:接收单元201、FFT单元202、解调单元203、解扰单元204、盲检单元205、速率匹配单元206、信道解码单元207、CRC校验单元208、获取单元209、编码单元210、加扰单元211、调制单元212、IFFT单元213、发送单元214和天线215。其中,接收单元201用于在某一个子帧或时隙监听控制信道以接收基站发送的无线信号。其中,接收单元201接收到的信号可以是以OFDM波形承载的无线信号,即OFDM时域信号。
FFT单元202,用于将监听到的无线信号的前{1,2,3}个符号,进行FFT处理。例如FFT单元202可以将OFDM符号变换成QPSK符号,得到控制信道的符号序列。
解调单元203,用于将FFT单元202进行FFT处理后的符号序列解调为比特序列。例如可以将FFT单元203解调后的QPSK符号序列解调为比特序列。
解扰单元204,用于对解调单元203解调后得到的比特序列进行解扰处理。
盲检单元205,用于对解扰单元204解扰得到的比特序列进行盲检。本申请实施例对盲检的具体实现方式不做限定。
解速率匹配单元206,用于对盲检单元205盲检得到的备选PDCCH进行解速率匹配。
信道解码单元207,用于对速率匹配单元206解速率匹配得到的比特序列,进行信道解码。
CRC校验单元208,用于对信道解码单元207信道解码得到的比特序列进行CRC校验。可选的,CRC校验单元208可以先通过RNTI对CRC校验位解扰,再通过CRC校验位判断能否解出DCI。
当CRC校验单元208不能解出DCI时,则由盲检单元205尝试下一次盲检。如果所有的盲检都无法成功,则丢弃该接收到的子帧或时隙。
当CRC校验单元208成功解出DCI时,获取单元209根据解出的DCI,获取DCI中的分配的资源的信息。具体的,获取单元209获取分配的资源的信息,可以参考上述图2、图4和图7描述的实现方式中终端设备接收到的分配的资源的信息的方式来实现。
例如,当获取单元209获取到的DCI采用的是上述图2、图3(a)和图3(b)描述的 实现方式中表示资源分配方式时,获取单元209根据DCI中的资源分配头字段获终端设备本次被分配的频域资源的标识;根据数据信道开始的符号字段获取终端设备本次被分配的时频资源开始的符号的信息;根据数据信道所占据的符号长度字段获取终端设备本次被分配的时频资源符号的长度信息。
当获取单元209获取到的DCI采用的是上述图4、图5、图6(a)、图6(b)和图6(c)中资源分配方式时,获取单元209根据DCI中的资源分配头字段获取终端设备本次被分配的时频资源的标识;根据偏移量字段获取终端设备本次被分配的时频资源相对于已经获取的有效时频资源的偏移量。
当获取单元209获取到的DCI采用的是上述图7和图8中资源分配方式时,获取单元209根据DCI中的资源分配头字段获取终端设备本次被分配的时频资源的标识,即可获取本次被分配的频域资源与上一个时频资源相同。
上述通信设备200接收到的DCI中,用于表示分配的时频资源的信息的字段所占用的比特位少,减少了DCI中资源分配相关字段所占用的时频资源。
进一步的,终端设备可以根据DCI中指示的资源分配的信息从数据信道占用的时频资源处获取基站发送的数据。终端设备从获取到的DCI中获取基站发送的数据的实现方式可以如下述方式实现:
解调单元203还用于根据获取单元209获取到的分配的资源的信息,将所述分配的资源的信息所指示的时频资源上映射的符号(例如QPSK或QAM符号)解调以得到解调后的比特序列。可选的,解调单元203解调的方式可以是DCI中指示的调制方式。
解扰单元204,还用于对解调单元203解调后得到的比特序列进行解扰。
解速率匹配单元206,还用于按照已经获取的DCI中的信息,对解扰单元204解扰后的比特序列进行解速率匹配。即通信设备200获取到的DCI中还包括对比特序列进行速率匹配的信息,解速率匹配单元206根据该速率匹配信息对解扰单元204解扰后的比特序列进行解速率匹配。
信道解码单元207,还用于按照已经获取的DCI中的信息,对解速率匹配单元206匹配后的比特序列进行信道解码,以获取数据。可选的,信道解码单元207获取到的数据是带有CRC校验信息的数据。即通信设备200获取到的DCI中还包括编码方式的信息,信道解码单元207根据该编码方式逆向的方式对解速率匹配单元206匹配后的比特序列进行信道解码。
CRC校验单元208,还用于通过CRC校验确定所述信道解码单元207解码后获取的数据是否正确。
上述是通信设备200在接收基站发送的控制信息和数据信息时实现方式的描述。通信设备200还可以通过天线215向基站发送信息。所述信息可以包括控制信息或数据信息。
通信设备200还可以通过天线215向基站发送信息时,编码单元210,用于对待发送的信息进行编码。例如对通信设备200待发送的信息进行信道编码。
加扰单元211,用于对编码单元210编码后的信息进行加扰。
调制单元212,用于将加扰单元210加扰后的信息调制成符号。
IFFT单元213,用于将调制单元212调制后的符号调制成OFDM波形。
发送单元214,用于发送IFFT单元213调制后的OFDM波形。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现
本领域技术任何还可以了解到本发明实施例列出的各种说明性逻辑块、单元和步骤可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于基站或终端设备中。可选地,处理器和存储媒介也可以设置于基站或终端设备中的不同的部件中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM 或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (65)

  1. 一种通信方法,其特征在于:
    为终端设备分配通信资源;
    向所述终端设备发送控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的频域资源是基站能够分配的全部频域资源。
  2. 根据权利要求1所述的方法,其特征在于:
    所述资源标识由所述控制信息中的资源分配头字段表示。
  3. 根据权利要求1或2所述的方法,其特征在于:
    所述基站能够分配的全部频域资源是所述终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽;或者,
    所述基站能够分配的全部频域资源是所述基站能够分配的一个载波内的全部频域资源或所述基站能够分配的一个载波内的全部带宽。
  4. 根据权利要求1-3所述的任一方法,其特征在于:
    所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段用于表示分配的时域资源的起始位置的信息,所述时域资源长度字段用于表示分配的时域资源的长度的信息。
  5. 一种通信方法,其特征在于:
    为终端设备分配时频资源;
    向所述终端设备发送控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的时频资源是否变化。
  6. 根据权利要求5所述的方法,其特征在于:
    所述资源标识用于指示分配的时频资源相对于已经获取的有效时频资源是否变化。
  7. 根据权利要求5或6所述的方法,其特征在于:
    所述控制信息中包括偏移量,所述偏移量用于表示分配的时频资源偏移的值;
    其中,所述偏移量由所述控制信息中新增的字段或者所述控制信息中已有的字段来表示。
  8. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    通过高层信令将预先定义的偏移量发送给所述终端设备;或,
    所述偏移量是预先定义的偏移量。
  9. 根据权利要求5至8任一项所述的方法,其特征在于:
    当所述资源标识指示分配的时频资源变化时,所述控制信息包含所述偏移量。
  10. 根据权利要求5-9所述的任一方法,其特征在于:
    所述控制信息中包括资源分配头字段,所述资源分配头字段用于表示所述资源标识。
  11. 一种通信方法,其特征在于:
    接收基站发送的控制信息,所述控制信息中包括资源标识,所述资源标识用于指示分配的频域资源是所述基站能够分配的全部频域资源;
    根据所述资源标识,获取分配的频域资源的信息。
  12. 根据权利要求11所述的方法,其特征在于:
    所述资源标识由所述控制信息中的资源分配头字段表示;
    所述方法还包括:根据所述资源分配头字段获取所述资源标识。
  13. 根据权利要求11或12所述的方法,其特征在于:
    所述基站能够分配的全部频域资源是指终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽;或者,
    所述基站能够分配的全部频域资源是所述基站能够分配的一个载波内的全部频域资源或所述基站能够分配的一个载波内的全部带宽。
  14. 根据权利要求11-13所述的任一方法,其特征在于:
    所述控制信息还包括时域资源起始字段和时域资源长度字段,所述时域资源起始字段表示分配的时域资源的起始位置的信息,所述时域资源长度字段表示分配的时域资源的长度的信息;
    所述方法还包括:根据所述时域资源起始字段和时域资源长度字段获取分配的时域资源的信息。
  15. 一种通信方法,其特征在于:
    接收基站发送的控制信息,所述控制信息中包括资源标识,所述资源标识用于指示分配的时频资源是否变化;
    根据所述资源标识,获取分配的时频资源是否变化的信息。
  16. 根据权利要求15所述的方法,其特征在于:
    所述资源标识用于指示分配的时频资源相对于已经获取的有效时频资源是否变化。
  17. 根据权利要求15或16所述的方法,其特征在于:
    所述控制信息中包括偏移量;
    所述方法还包括:
    通过所述偏移量获取分配的时频资源偏移的值;
    其中,所述偏移量是由所述控制信息中新增的字段或所述控制信息中已有的字段来表示。
  18. 根据权利要求15或16所述的方法,其特征在于:
    通过高层信令获取预先定义的偏移量;或,
    根据预先定义的偏移量确定偏移的值。
  19. 根据权利要求15至18任一项所述的方法,其特征在于:
    当所述资源标识指示分配的时频资源变化时,所述控制信息包括所述偏移量。
  20. 根据权利要求15-19所述的任一方法,其特征在于:
    所述控制信息中包括资源分配头字段,通过所述资源分配头字段获取所述资源标识。
  21. 一种用于通信的方法,其特征在于,
    确定时域资源指示值,其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100001
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100002
    所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100003
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100004
    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100005
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100006
    Figure PCTCN2018087542-appb-100007
    向终端设备发送表示所述时域资源指示值的信息。
  22. 根据权利要求21所述的方法,其特征在于,所述向终端设备发送表示所述时域资源指示值的信息包括:
    通过控制信息向终端设备发送所述表示所述时域资源指示值的信息。
  23. 根据权利要求21或22所述的方法,其特征在于,
    所述
    Figure PCTCN2018087542-appb-100008
    的值为14。
  24. [根据细则91更正 18.07.2018]
    一种用于通信的方法,其特征在于,
    确定时域资源指示值,其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start);
    向终端设备发送表示所述时域资源指示值的信息。
  25. [根据细则91更正 18.07.2018]
    根据权利要求24所述的方法,其特征在于,所述向终端设备发送表示所述时域资源指示值的信息包括:
    通过控制信息向终端设备发送所述表示所述时域资源指示值的信息。
  26. [根据细则91更正 18.07.2018] 
    一种用于通信的方法,其特征在于,
    接收表示所述时域资源指示值的信息;
    根据所述表示所述时域资源指示值的信息,确定时域资源指示值,其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100009
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100010
    所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100011
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100012

    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100013
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100014
    Figure PCTCN2018087542-appb-100015
  27. [根据细则91更正 18.07.2018] 
    根据权利要求26所述的方法,其特征在于,所述接收表示所述时域资源指示值的信息包括:
    通过控制信息接收表示所述时域资源指示值的信息。
  28. [根据细则91更正 18.07.2018] 
    根据权利要求26或27所述的方法,其特征在于,
    所述
    Figure PCTCN2018087542-appb-100016
    的值为14。
  29. [根据细则91更正 18.07.2018] 
    一种用于通信的方法,其特征在于,
    接收表示所述时域资源指示值的信息;
    根据所述表示所述时域资源指示值的信息,确定时域资源指示值,其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start)。
  30. [根据细则91更正 18.07.2018] 
    根据权利要求29所述的方法,其特征在于,所述接收表示所述时域资源指示值的信息包括:
    通过控制信息接收表示所述时域资源指示值的信息。
  31. [根据细则91更正 18.07.2018] 
    一种用于通信的方法,其特征在于,所述方法包括:
    为终端设备分配通信资源;
    向所述终端设备发送控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的频域资源,是所述终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽中的部分频域资源。
  32. [根据细则91更正 18.07.2018] 
    根据权利要求31所述的方法,其特征在于,所述控制信息中包括资源块分配字段,所述资源块分配字段用于表示分配给所述终端设备的部分频域资源的标识。
  33. [根据细则91更正 18.07.2018] 
    根据权利要求31或32所述的方法,其特征在于,所述方法还包括:
    确定时域资源指示值,其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100017
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100018
    其中,所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100019
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100020
    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100021
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100022
    Figure PCTCN2018087542-appb-100023
    向所述终端设备发送表示所述时域资源指示值的信息。
  34. [根据细则91更正 18.07.2018] 
    根据权利要求31或32所述的方法,其特征在于,所述方法还包括:
    确定时域资源指示值,其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start);
    向所述终端设备发送表示所述时域资源指示值的信息。
  35. [根据细则91更正 18.07.2018] 
    根据权利要求33或34所述的方法,其特征在于,所述向终端设备发送表示所述时域资源指示值的信息包括:
    通过控制信息向终端设备发送所述表示所述时域资源指示值的信息。
  36. [根据细则91更正 18.07.2018] 
    一种用于通信的方法,其特征在于:
    接收基站发送的控制信息,所述控制信息中包括资源标识,所述资源标识用于指示分配的频域资源是终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽中的部分频域资源;
    根据所述资源标识,获取分配的频域资源的信息。
  37. [根据细则91更正 18.07.2018] 
    根据权利要求36所述的方法,其特征在于:
    所述资源标识由所述控制信息中的资源分配头字段表示;
    所述方法还包括:根据所述资源分配头字段获取所述资源标识。
  38. [根据细则91更正 18.07.2018] 
    根据权利要求36或37所述的方法,其特征在于:所述方法还包括:
    接收时域资源指示值,其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100024
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100025
    所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100026
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100027
    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100028
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100029
    Figure PCTCN2018087542-appb-100030
  39. [根据细则91更正 18.07.2018] 
    根据权利要求36或37所述的方法,其特征在于:所述方法还包括:
    接收时域资源指示值,其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start)。
  40. [根据细则91更正 18.07.2018] 
    根据权利要求38或39所述的方法,其特征在于,通过所述控制信息获取表示所述时域资源指示值的信息。
  41. [根据细则91更正 18.07.2018] 
    一种通信设备,包括存储器,处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时使得所述通信设备实现如权利要求1-41任一项所述的步骤。
  42. [根据细则91更正 18.07.2018] 
    一种通信设备,包括控制信息生成单元和发送单元,其中:
    所述控制信息生成单元,用于生成控制信息,所述控制信息包括资源标识,所述资源标识用于指示分配的频域资源是终端设备能够支持的一个载波内的全部频域资源或所述终端设备能够支持的一个载波内的全部带宽中的部分频域资源;
    所述发送单元,用于向所述终端设备发送所述控制信息。
  43. [根据细则91更正 18.07.2018] 
    根据权利要求42所述的通信设备,其特征在于,所述控制信息中包括资源块分配字段,所述资源块分配字段用于表示分配的部分频域资源的标识。
  44. [根据细则91更正 18.07.2018] 
    根据权利要求42或43所述的通信设备,其特征在于,所述发送单元发送还用于发送表示所述时域资源指示值的信息;其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100031
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100032
    所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100033
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100034
    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100035
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100036
    Figure PCTCN2018087542-appb-100037
  45. [根据细则91更正 18.07.2018] 
    根据权利要求42或43所述的通信设备,其特征在于,所述发送单元发送还用于发送表示所述时域资源指示值的信息;其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start)。
  46. [根据细则91更正 18.07.2018] 
    根据权利要求44或45所述的通信设备,其特征在于,所述发送单元还用于通过控制信息向所述终端设备发送表示所述时域资源指示值的信息。
  47. [根据细则91更正 18.07.2018] 
    一种通信设备,包括接收单元和获取单元,其中:
    所述接收单元用于接收基站发送的控制信息,所述控制信息中包括资源标识,所述资源标识用于指示分配的频域资源,是所述指通信设备能够支持的一个载波内的全部频域资源或所述通信设备能够支持的一个载波内的全部带宽中的部分频域资源;
    所述获取单元,用于根据所述标识获取分配的频域资源的信息。
  48. [根据细则91更正 18.07.2018] 
    根据权利要求47所述的通信设备,其特征在于:
    所述控制信息包括资源分配头字段,所述资源分配头字段用于表示所述资源标识;
    所述获取单元还用于根据所述资源分配头字段获取分配的所述资源标识。
  49. [根据细则91更正 18.07.2018] 
    根据权利要求47或48所述的通信设备,其特征在于:所述获取单元还用于获取时域资源指示值,其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100038
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100039
    所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100040
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100041
    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100042
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100043
    Figure PCTCN2018087542-appb-100044
  50. [根据细则91更正 18.07.2018] 
    根据权利要求47或48所述的通信设备,其特征在于:所述获取单元还用于获取时域资源指示值,其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start)。
  51. [根据细则91更正 18.07.2018] 
    根据权利要求47或48所述的通信设备,其特征在于,所述获取单元还用于通过所述控制信息获取表示所述时域资源指示值的信息。
  52. [根据细则91更正 18.07.2018] 
    一种计算机可读介质,其特征在于,所述计算机可读介质用于存储计算机程序,当所述计算机程序被运行时,使得权利要求1-40中任一项所述的方法被执行。
  53. [根据细则91更正 18.07.2018] 
    一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1-40中任一项所述的方法。
  54. [根据细则91更正 18.07.2018] 
    一种通信设备,确定单元和发送单元,其特征在于,
    所述确定单元,用于确定时域资源指示值,其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100045
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100046
    所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100047
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100048
    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100049
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100050
    Figure PCTCN2018087542-appb-100051
    所述发送单元,用于向终端设备发送表示所述时域资源指示值的信息。
  55. [根据细则91更正 18.07.2018] 
    根据权利要求54所述的通信设备,其特征在于,所述发送单元还用于通过控制信息向终端设备发送所述表示所述时域资源指示值的信息。
  56. [根据细则91更正 18.07.2018] 
    根据权利要求54或55所述的通信设备,其特征在于,
    所述
    Figure PCTCN2018087542-appb-100052
    的值为14。
  57. [根据细则91更正 18.07.2018] 
    一种通信设备,确定单元和发送单元,其特征在于,
    所述确定单元,用于确定时域资源指示值,其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start);
    所述发送单元,用于向终端设备发送表示所述时域资源指示值的信息。
  58. [根据细则91更正 18.07.2018] 
    根据权利要求57所述的通信设备,其特征在于,所述发送单元还用于通过控制信息向终端设备发送所述表示所述时域资源指示值的信息。
  59. [根据细则91更正 18.07.2018] 
    一种用于通信的通信设备,接收单元和获取单元,其特征在于,
    所述接收单元,用于接收表示所述时域资源指示值的信息;
    所述获取单元,用于根据所述表示所述时域资源指示值的信息,确定时域资源指示值,其中:
    当(L S-1)小于等于
    Figure PCTCN2018087542-appb-100053
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100054
    所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述
    Figure PCTCN2018087542-appb-100055
    是一个时隙内的符号数;所述L S大于等于1且所述L S小于等于
    Figure PCTCN2018087542-appb-100056
    当(L S-1)大于所述
    Figure PCTCN2018087542-appb-100057
    时,所述时域资源指示值满足
    Figure PCTCN2018087542-appb-100058
    Figure PCTCN2018087542-appb-100059
  60. [根据细则91更正 18.07.2018] 
    根据权利要求59所述的通信设备,其特征在于,所述接收单元还用于通过控制信息接收表示所述时域资源指示值的信息。
  61. [根据细则91更正 18.07.2018] 
    根据权利要求59或60所述的通信设备,其特征在于,
    所述
    Figure PCTCN2018087542-appb-100060
    的值为14。
  62. [根据细则91更正 18.07.2018] 
    一种通信设备,接收单元和获取单元,其特征在于,
    所述接收单元,用于接收表示所述时域资源指示值的信息;
    所述获取单元,用于根据所述表示所述时域资源指示值的信息,确定时域资源指示值,其中:
    当(L S-1)小于等于7时,所述时域资源指示值满足14×(L S-1)+S start;所述L S是分配的时域资源的长度,所述S start是分配的时域资源的起始符号,所述L S大于等于1且所述L S小于等于14-S start
    当(L S-1)大于7时,所述时域资源指示值满足14×(14-L S+1)+(14-1-S start)。
  63. [根据细则91更正 18.07.2018] 
    根据权利要求62所述的通信设备,其特征在于,所述接收表示所述时域资源指示值的信息包括:
    通过控制信息接收表示所述时域资源指示值的信息。
  64. [根据细则91更正 18.07.2018] 
    一种通信系统,其特征在于,包括如权利要求42-46任意一项所述的通信设备,以及如权利要求47-51任意一项所述的通信系统。
  65. [根据细则91更正 18.07.2018] 
    一种通信系统,其特征在于,包括如权利要求54-58任意一项所述的通信设备,以及如权利要求59-63任意一项所述的通信系统。
PCT/CN2018/087542 2017-05-18 2018-05-18 通信方法和通信设备 WO2018210343A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18801707.3A EP3618540B1 (en) 2017-05-18 2018-05-18 Communication method and communication device
US16/684,197 US11121847B2 (en) 2017-05-18 2019-11-14 Communication method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710354921.1 2017-05-18
CN201710354921.1A CN108966349B (zh) 2017-05-18 2017-05-18 通信方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/684,197 Continuation US11121847B2 (en) 2017-05-18 2019-11-14 Communication method and communications device

Publications (1)

Publication Number Publication Date
WO2018210343A1 true WO2018210343A1 (zh) 2018-11-22

Family

ID=64274016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087542 WO2018210343A1 (zh) 2017-05-18 2018-05-18 通信方法和通信设备

Country Status (4)

Country Link
US (1) US11121847B2 (zh)
EP (1) EP3618540B1 (zh)
CN (1) CN108966349B (zh)
WO (1) WO2018210343A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611546B (zh) * 2018-06-14 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN114208324A (zh) * 2019-08-09 2022-03-18 上海诺基亚贝尔股份有限公司 资源信息中的比特减少

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
CN105472528A (zh) * 2014-08-05 2016-04-06 夏普株式会社 基站、用户设备及相关方法
CN106162906A (zh) * 2015-03-31 2016-11-23 中兴通讯股份有限公司 调度信息发送、接收方法及装置
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN106612557A (zh) * 2015-10-26 2017-05-03 中国移动通信集团公司 下行ack/nack信息的传输方法、基站及用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0910851B1 (pt) * 2008-04-21 2021-05-25 Apple Inc Método para um processo de harq
AU2013397787B2 (en) * 2013-08-08 2018-01-04 Godo Kaisha Ip Bridge 1 Resource allocation method and device
CN110635885B (zh) * 2014-01-29 2024-01-26 北京璟石知识产权管理有限公司 数据传输方法和装置
KR101741102B1 (ko) * 2014-02-12 2017-05-29 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
US10321477B2 (en) * 2015-09-07 2019-06-11 Electronics And Telecommunications Research Institute Method and apparatus for requesting uplink persistent scheduling in mobile communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
CN105472528A (zh) * 2014-08-05 2016-04-06 夏普株式会社 基站、用户设备及相关方法
CN106162906A (zh) * 2015-03-31 2016-11-23 中兴通讯股份有限公司 调度信息发送、接收方法及装置
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置
CN106612557A (zh) * 2015-10-26 2017-05-03 中国移动通信集团公司 下行ack/nack信息的传输方法、基站及用户设备
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618540A4

Also Published As

Publication number Publication date
EP3618540A4 (en) 2020-05-06
US20200084009A1 (en) 2020-03-12
CN108966349B (zh) 2021-11-30
EP3618540B1 (en) 2021-07-28
US11121847B2 (en) 2021-09-14
CN108966349A (zh) 2018-12-07
EP3618540A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US10820338B2 (en) User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation
CN111010889B (zh) 终端装置、基站和方法
AU2018216827B9 (en) Short physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
AU2018328285B2 (en) User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation
US20170289971A1 (en) Method and apparatus for control signaling
CN110291745B (zh) 用于第五代(5g)新无线电(nr)的短物理上行链路控制信道(pucch)设计
WO2020222295A1 (en) User equipment, base stations and signaling for multiple active configured grants
CN113287355B (zh) 用户设备、基站、由用户设备进行的方法以及由基站进行的方法
WO2019099738A1 (en) User equipments, base stations and methods
WO2019099393A1 (en) User equipments, base stations and methods
CN109787711B (zh) 一种mcs索引表格配置方法、用户终端和网络侧设备
US20130286992A1 (en) Transmission method for control data in a communication system and a base station therefor, and a processing method for control data and a terminal therefor
US20210400687A1 (en) Method and device for transmitting control information for distinguishing user in wireless communication system
US11765741B2 (en) Radio communication method, chip, and system
CN113303009A (zh) 低强度物理上行链路控制信道(pucch)增强和资源配置
WO2021090604A1 (en) User equipments, base stations and methods for configurable downlink control information for demodulation reference signal for a physical uplink shared channel
US11121847B2 (en) Communication method and communications device
US20200314852A1 (en) Methods and apparatus for dl/ul format determination within a subframe
WO2019099388A1 (en) User equipments, base stations and methods
WO2018129081A1 (en) LONG PHYSICAL UPLINK CONTROL CHANNEL (PUCCH) DESIGN FOR 5th GENERATION (5G) NEW RADIO (NR)
CN111972017A (zh) 第五代(5g)新无线电(nr)的多时隙长物理上行链路控制信道(pucch)设计
CN111435892B (zh) 接收数据的方法和装置
WO2019217529A1 (en) User equipments, base stations and methods for uplink control information multiplexing in uplink
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2023147955A1 (en) Wireless telecommunications apparatuses and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018801707

Country of ref document: EP

Effective date: 20191128