WO2018210153A1 - 离子风发生装置及空调室内机 - Google Patents
离子风发生装置及空调室内机 Download PDFInfo
- Publication number
- WO2018210153A1 WO2018210153A1 PCT/CN2018/085853 CN2018085853W WO2018210153A1 WO 2018210153 A1 WO2018210153 A1 WO 2018210153A1 CN 2018085853 W CN2018085853 W CN 2018085853W WO 2018210153 A1 WO2018210153 A1 WO 2018210153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- ion wind
- indoor unit
- generating device
- mesh electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T19/00—Devices providing for corona discharge
- H01T19/04—Devices providing for corona discharge having pointed electrodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/80—Self-contained air purifiers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/10—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
- F24F8/192—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/30—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T23/00—Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
Definitions
- the present invention relates to air conditioning technology, and more particularly to an ion wind generating device and an air conditioning indoor unit having the same.
- corona discharge ion air supply technology as a unique air supply system, has many advantages such as simple structure, no noise, and air purification, and has become a technology with great market potential and good application prospects.
- the generation of ion wind originates from the principle of corona discharge: due to the action of high voltage electricity, the electric field intensity near the needle electrode is extremely large, causing a large amount of air molecules in the region to be ionized, and the electric field outside this region is weak, and no ionization occurs. process.
- the charged particles move in a directional direction, and collide with the uncharged neutral particles during the movement, and transfer some of the kinetic energy to the neutral particles to make the directional movement together, that is, the ion wind is generated.
- some existing air-conditioning indoor units usually use an ion wind module instead of a blower fan to supply air, or an ion wind module and a blower fan simultaneously drive the air supply. In any case, the performance and air supply of the ion wind module are critical.
- the designer of the present invention recognizes that in the ion wind module, the relative positional relationship between the needle electrode and the needle electrode and the relative positional relationship between the needle electrode and the mesh electrode are critical to the performance of the entire ion wind module. The role. If the relative position between the wire electrodes changes due to structural design strength, prolonged use or other external forces, the performance of the entire ion wind module is greatly compromised.
- an object of the first aspect of the present invention is to overcome at least one of the deficiencies in the prior art, and to provide an ion wind generating device capable of ensuring a constant relative position between each of the needle electrodes and the mesh electrodes. .
- Another object of the first aspect of the invention is to ensure that the relative position of the needle electrodes is constant.
- Still another object of the first aspect of the present invention is to improve the air blowing speed, the air blowing amount, and the air blowing efficiency of the ion wind generating device.
- An object of the second aspect of the present invention is to provide an air conditioner indoor unit having good performance and low noise.
- an ion wind generating device comprising at least one discharge module for generating an ion wind, each of the discharge modules comprising a housing disposed in the housing a mesh electrode and a plurality of needle electrodes distributed on one side of the mesh electrode, wherein
- One side of the mesh electrode is provided with a fixing frame, and the fixing frame is fixed on the housing such that the mesh electrode is always maintained in a plane state perpendicular to a blowing direction of the ion wind generating device. .
- the air blowing direction of the ion wind generating device is a depth direction thereof;
- the mesh electrode is located on the front side of the needle electrode in the depth direction, and the sizing frame is located on the rear side of the mesh electrode in the depth direction.
- the mesh electrode is fixed to the styling frame by adhesive means.
- each of the discharge modules further includes a needle holder for fixing the plurality of needle electrodes, and
- the needle holder has a plurality of mutually parallel conductive rods and a plurality of mutually parallel reinforcing ribs, and the conductive rods and the reinforcing ribs are alternately arranged, and each of the conductive rods intersects with each of the reinforcing ribs One of the needle electrodes is provided.
- the number of the discharge modules is multiple;
- the plurality of discharge modules are sequentially arranged along a blowing direction of the ion wind generating device, and the plurality of discharge modules are connected in parallel or in series.
- the present invention further provides an air conditioner indoor unit, comprising:
- a casing having at least one air supply port for supplying airflow, wherein one or more of the at least one air supply opening is provided with an opening and closing mechanism for rectifying the air supply;
- the air blowing opening having the opening and closing mechanism is circular, and each of the opening and closing structures includes:
- a central baffle fixedly disposed at a center of the corresponding air supply opening, and an air outlet region is formed between an outer circumferential edge thereof and an inner circumferential edge of the corresponding air supply opening;
- a plurality of curved blades disposed in sequence along a circumference of the central baffle, configured to be gathered toward a center of the center baffle to at least partially open the outlet region, and configured to be movable away from the center
- the direction of the center of the baffle is unfolded to at least partially enclose the exit region.
- each of the curved leaves comprises:
- An outer contour edge portion including a first circular arc segment and a second circular arc segment
- An inner contour edge portion including a third arcuate segment and a fourth arcuate segment, the inner contour edge portion facing the center of the center baffle when the plurality of curved blades are gathered;
- the first circular arc segment and the fourth circular arc segment are gradually approached in a direction pointing to the root end of the curved blade such that the root end of the curved blade forms a tapered curved region;
- the second arcuate section and the third arcuate section are gradually approached in a direction directed to the end of the curved blade such that the end of the curved blade forms a tapered curved region.
- the number of air blowing ports provided with the opening and closing mechanism is plural, and the air conditioning indoor unit further includes a plurality of axial flow fans disposed in one-to-one correspondence with the air blowing ports provided with the opening and closing mechanism.
- the air blowing opening is located at a front side of the casing, and each of the air blowing openings is provided with a wind guiding structure, each of the air guiding
- the structure includes:
- rotating ring disposed inside the casing and disposed opposite a corresponding one of the air blowing ports, the rotating ring being configured to be controllably rotatable about a central axis thereof;
- each of the swinging blade assemblies includes a swinging leaf driving mechanism and a plurality of swinging blades, and the plurality of swinging blades are disposed on the inner side of the rotating ring, each piece
- the pendulum blades each have a rotation axis, and the pendulum drive mechanism is configured to drive each of the pendulum blades to rotate, and to synchronize the plurality of pendulum blades.
- the invention fixes the position and shape of the mesh electrode through the shaping frame, and can avoid bending or deformation of the mesh electrode, so that it can always maintain a planar structure to form a planar electrode mesh. Since the structural frame of the sizing frame is much stronger than the fine mesh-like mesh electrode, it is not displaced or deformed by the external force, thus ensuring that the distance between each acicular electrode and the mesh electrode is the same. That is to ensure that the spacing of the needle net is constant, effectively avoiding uneven discharge due to unequal discharge distance, resulting in friction and ignition, odor, and eliminating potential safety hazards.
- the present invention can ensure each needle by arranging a needle holder having a plurality of conductive rods and a plurality of reinforcing ribs arranged in a staggered manner, and arranging the needle electrodes of the discharge module at the intersection of the conductive rod and the rib
- the electrodes can be fixed by the dual action of the conductive rod and the rib. After the number of needle electrodes is determined, the spacing and relative position between the conductive rod and the rib are constant, and the structural strength of the conductive rod and the rib is relatively large, and the displacement or deformation is hardly caused by the external force. Therefore, it is possible to reliably ensure that the relative position of each of the needle electrodes is constant, and the ion wind generating device always has good performance.
- the present invention provides a plurality of discharges by arranging a plurality of discharge modules arranged in sequence, and a corona discharge phenomenon occurs between the needle electrodes in the discharge modules and the corresponding mesh electrodes, thereby allowing the wind to pass through multiple discharges.
- the module performs multiple accelerations to achieve superposition of wind speeds, thereby forming a negative pressure when a higher air outlet speed is obtained, further increasing the air intake amount, thereby further increasing the air supply speed of the ion wind generating device, Air supply volume and air supply efficiency.
- FIG. 1 is a schematic structural view of an ion wind generating device according to an embodiment of the present invention.
- FIG. 2 is a schematic structural exploded view of a discharge module of an ion wind generating device according to an embodiment of the present invention
- FIG. 3 is a schematic structural view showing a connection relationship between a plurality of discharge modules of an ion wind generating device according to an embodiment of the present invention
- FIG. 4 is a schematic structural view showing a connection relationship between a plurality of discharge modules of an ion wind generating device according to another embodiment of the present invention.
- FIGS. 5 and 6 are schematic structural views of an indoor unit of an air conditioner according to an embodiment of the present invention.
- Figure 7 is a schematic structural exploded view of an indoor unit of an air conditioner according to an embodiment of the present invention.
- FIGS. 8 and 9 are schematic structural views of different orientations of a curved blade of an opening and closing structure according to an embodiment of the present invention.
- Figure 10 is a front elevational view of an air guiding structure of an air conditioning indoor unit in accordance with one embodiment of the present invention.
- FIG. 1 is a schematic structural view of an ion wind generating device according to an embodiment of the present invention
- FIG. 2 is a discharge of the ion wind generating device according to an embodiment of the present invention.
- the ion wind generating device 10 of the present invention includes at least one discharge module 100 for generating an ion wind.
- Each of the discharge modules 100 includes a housing 140 and a mesh disposed in the housing 140.
- the electrode 110 and the plurality of needle electrodes 120 distributed on one side of the mesh electrode 110. It should be emphasized that the plurality referred to in the embodiments of the present invention means two, three or more than three.
- the mesh electrode 110 may be a metal mesh having a square hole, a rhombic hole, a circular hole, or other shape through hole.
- the needle electrode 120 may be a metal discharge needle having a discharge tip that may point toward the center of a certain through hole of the mesh electrode 110.
- one side of the mesh electrode 110 is provided with a fixing frame 150, and the fixing frame 150 is fixed on the casing 140 of the discharge module 100, so that the mesh electrode 110 is always kept in the air supply perpendicular to the ion wind generating device 10.
- the planar state of the direction That is to say, the present invention fixes the position and shape of the mesh electrode 110 by the sizing frame 150, thereby preventing the mesh electrode 110 from being bent or deformed, so that it can always maintain a planar structure to form a planar electrode mesh.
- the structural frame 150 is much stronger than the fine mesh-like mesh electrode 110, it is not displaced or deformed by an external force, thereby ensuring that each of the needle electrodes 120 is separated from the mesh electrode 110.
- the distances are the same, that is, the spacing of the needle net is kept constant, and the uneven discharge due to the unequal discharge distance is effectively avoided, thereby causing frictional ignition and odor, thereby eliminating safety hazards.
- the styling frame 150 can be made of a plastic, rubber or other insulating material having a relatively high hardness.
- the air blowing direction of the ion wind generating device 10 is the depth direction. Specifically, the ion wind generating device 10 can be blown from the rear to the front, that is, the flow direction of the ion wind generated therefrom is from the back to the front.
- the mesh electrode 110 is located on the front side of the needle electrode 120 in the depth direction to ensure that the air blowing direction of the ion wind generating device 10 is rearward and forward.
- the sizing frame 150 is located on the front side of the mesh electrode 110 in the depth direction, thereby being capable of fixing the mesh electrode 110 to the housing 140 through the sizing frame 150, and ensuring the appearance of the entire discharge module 100.
- the housing 140 has only four upper, lower, left and right side walls, both of which are open on the front side and the rear side.
- the mesh electrode 110 is secured to the styling frame 150 by adhesive means. In some alternative embodiments, the mesh electrode 110 can also be secured to the styling frame 150 by other suitable means.
- each discharge module 100 further includes a needle holder 130 for securing a plurality of needle electrodes 120.
- the needle holder 130 has a plurality of conductive rods 131 parallel to each other and a plurality of mutually parallel reinforcing ribs 132.
- the conductive rods 131 and the reinforcing ribs 132 are alternately arranged.
- One intersection of each of the conductive rods 131 and each of the reinforcing ribs 132 is provided. Needle electrode 120.
- the number of the conductive rods 131 and the ribs 132 may vary depending on the number of needle electrodes 120 to ensure that each of the needle electrodes 120 can be fixed by the dual action of the conductive rod 131 and the rib 132. .
- the spacing and relative position between the conductive rod 131 and the reinforcing rib 132 are constant, and the structural strength of the conductive rod 131 and the reinforcing rib 132 is relatively large, and almost no external force is caused. The action is displaced or deformed, so that the relative position of each of the needle electrodes 120 can be reliably ensured, and the ion wind generating device always has good performance.
- the reinforcing rib 132 and the conductive rod 131 may be integrally formed, or may be fixed together by adhesive, screw or other suitable means.
- the materials of the two are the same; when the reinforcing rib 132 and the conductive rod 131 are fixed together by glue, screw or other suitable means, the materials of the two may be the same, or different.
- the rib 132 can be made of an insulating material such as plastic or rubber having a relatively high hardness.
- the conductive rod 131 is preferably a rod-shaped or elongated strip-shaped PCB board.
- Each of the conductive bars 131 has an insulating protective layer forming an outer portion thereof and a conductive layer forming an inner portion thereof, the conductive layer being electrically connected to the needle electrode 120 distributed on the conductive rod. Thereby, the conductive layer can be prevented from being exposed to the outside, thereby avoiding the phenomenon of disordered discharge or ignition.
- a plurality of pinholes for mounting the needle electrode 120 are disposed on a side of each of the conductive bars 131 facing the mesh electrode 110, and the pinholes are surrounded by the soldering process around the needle electrodes 120. Fill layer.
- the needle electrode 120 maintains a good electrical connection with the conductive layer in the conductive rod 131, and at the same time, the conductive layer is strictly prevented from being exposed to the outside, thereby avoiding the phenomenon of disordered discharge or sparking.
- the size of the pinhole may be slightly smaller than the size of the needle electrode so that the two are fixed together by an interference fit.
- the conductive rod 131 and the reinforcing rib 132 are perpendicular to each other, so that the needle holder 130 is not easily deformed, has strong structural stability and high structural strength, and further secures each needle shape.
- the relative position of the electrode 120 is constant.
- the angle between the conductive rod 131 and the reinforcing rib 132 may also be an obtuse angle or an acute angle, that is, a lattice in which a plurality of diamonds may be enclosed between the conductive rod 131 and the reinforcing rib 132.
- the needle holder 130 further includes conductive strips 133 extending in the lateral direction, each of the conductive rods 131 being electrically connected to the conductive strips 133 and extending vertically upward by the conductive strips 133, each of the reinforcing ribs 132 extending in the lateral direction.
- the conductive strip 132 is engaged with the housing 140 to fix the conductive strip 132 and the conductive rod 131 to which the plurality of needle electrodes 120 are fixed to the housing 140.
- the distance between each adjacent two conductive rods 131 is the same, and the distance between each adjacent two reinforcing ribs 132 is the same.
- the distribution of the needle electrode 120 can be made more uniform, and the uniformity of the air blow by the ion wind generating device 10 can be improved, thereby improving the user's comfort experience.
- the distance between the adjacent two conductive bars 131 and the distance between the adjacent two reinforcing ribs 132 may be the same or different. That is to say, a plurality of rectangular or square lattices may be enclosed between the plurality of conductive rods 131 and the plurality of reinforcing ribs 132.
- the number and spacing of the conductive bars 131 and the ribs 132 may vary depending on the number of needle electrodes 120 required.
- the number of the discharge modules 100 is plural, and the plurality of discharge modules 100 are sequentially arranged along the air blowing direction of the ion wind generating device 10, and the plurality of discharge modules 100 are connected in parallel or in series. .
- the number of the discharge modules 100 may be two, and the two discharge modules 100 are sequentially arranged along the air blowing direction of the ion wind generating device 10 .
- the number of discharge modules 100 may also be three or more than three.
- FIG. 3 is a schematic structural view showing a connection relationship between a plurality of discharge modules of an ion wind generating device according to an embodiment of the present invention.
- the needle electrode 120 of each discharge module 100 is electrically connected to a positive or negative high voltage terminal
- the mesh electrode 110 of each discharge module 100 is electrically connected to the ground terminal to enable multiple The discharge modules 100 are connected in parallel. That is, the ion wind generating device 10 of the embodiment shown in Fig. 3 is a parallel multi-stage ion wind blowing device.
- FIG. 4 is a schematic structural view showing a connection relationship between a plurality of discharge modules of an ion wind generating device according to another embodiment of the present invention.
- the needle electrode 120 of the discharge module 100 at one end of the ion wind generating device 10 is electrically connected to a positive or negative high voltage terminal, and the mesh of the discharge module 100 at the other end is connected.
- the electrode 110 is electrically connected to the ground terminal, and the mesh electrode 110 of each of the discharge modules 100 except the discharge module 100 at the other end is arranged from one end of the ion wind generating device 10 to the other end thereof.
- the needle electrodes 120 of the discharge module 100 adjacent to each other are electrically connected to connect the plurality of discharge modules 100 in series. That is, the ion wind generating device 10 of the embodiment shown in Fig. 4 is a series multi-stage ion wind blowing device.
- a corona discharge phenomenon occurs between the needle electrode 120 in each discharge module 100 and the corresponding mesh electrode 110, so that the wind can pass through the plurality of discharge modules.
- 100 is accelerated a plurality of times to realize superposition of wind speeds, and further, a negative pressure can be formed when a high air blowing speed is obtained, and the air intake amount is further increased, thereby further increasing the air blowing speed of the ion wind generating device 10, Air supply volume and air supply efficiency.
- the embodiment of the invention further provides an air conditioner indoor unit.
- 5 and 6 are schematic structural views of an indoor unit of an air conditioner according to an embodiment of the present invention
- Fig. 7 is a schematic structural exploded view of an indoor unit of an air conditioner according to an embodiment of the present invention.
- the air conditioning indoor unit 1 of the present invention includes a casing 30 and at least one ion wind generating device 10 described in any of the above embodiments.
- the casing 30 has at least one air blowing port 31 for supplying airflow, and one or more air blowing ports 31 of the at least one air blowing port 31 are provided with an opening and closing mechanism 20 for rectifying the air. That is, the number of the air supply ports 31 may be one, and the air supply port 31 is provided with an opening and closing mechanism 20. Alternatively, the number of the air supply ports 31 is plural, and only the partial air supply port 31 has the opening and closing mechanism 20 or the entire air supply port 31 is provided with the opening and closing mechanism 20.
- the at least one ion wind generating device 10 is disposed in the casing 30 for providing ion wind to the one or more air blowing ports 31 of the at least one air blowing port 31.
- the ion wind generating device 10 relies on an electric field force to cause kinetic energy to be obtained by particles in the air, thereby forming an ion wind.
- a rotating air supply component for example, a fan
- the ion wind generating device 10 has the advantages of small pressure loss, low energy consumption, low noise, and the like, thereby greatly reducing the operation of the air conditioner indoor unit. noise.
- the air conditioning indoor unit 1 further includes a heat exchange device disposed in the casing 30, and the heat exchange device is configured to exchange heat with air flowing therethrough to change the temperature of the air.
- the heat exchange device can be a flat plate evaporator, a multi-fold evaporator, a multi-stage evaporator or other type of evaporator.
- the air conditioner indoor unit 1 can drive the air supply by the ion wind generating device 10 alone, or can cooperate with the fan type unit to drive the air supply.
- the ion wind generated by the ion wind generating device 10 can be sent out after heat exchange by the heat exchange device, or can be directly sent out without heat exchange of the heat exchange device, and can be separately sent out or mixed with the airflow driven by the fan type component and sent out.
- the air supply opening 31 having the opening and closing mechanism 20 is circular.
- the air supply opening 1 which does not have the opening and closing mechanism 20 may have a circular shape, a square shape or other suitable shape.
- Each of the opening and closing structures 30 includes a center baffle 21 and a plurality of curved blades 22.
- the center baffle 21 is fixedly disposed at the center of the corresponding one of the air blowing ports 31, and an air outlet region is formed between the outer peripheral edge and the inner peripheral edge of the corresponding one of the air blowing ports 31.
- the central baffle 21 may be circular, and the corresponding air outlet region is annular.
- the central baffle 21 may be square, elliptical, or the like.
- a plurality of curved blades 22 are sequentially disposed along the circumferential direction of the center flap 21, and the plurality of curved blades 22 are disposed to be gathered toward the center of the center flap 21 to at least partially open the wind exit region, and can be fully gathered and contracted to the center.
- the front side or the rear side of the flapper 21 Thereby, when the air conditioner indoor unit 1 is stopped, the plurality of curved blades 22 can be deployed toward the edge of the air supply opening 31, and the air outlet area can be completely closed, thereby effectively preventing external dust and impurities from entering the air passage, thereby ensuring the inside.
- the plurality of curved blades 22 are gathered and contracted toward the center of the center flap 21 to completely open the air outlet area to facilitate the air conditioning indoor unit 1 to supply air.
- the number of curved blades 22 may be six and uniformly disposed along the circumference of the center flap 21. In other embodiments, the number of blades may be six or less or six or more, and may be specifically set according to the blade size, the size of the center baffle 21, and the size of the air supply port 31.
- the plurality of curved blades 22 can be completely gathered and contracted to the rear side of the center flap 21, that is, when the plurality of curved blades 22 are in the fully closed state, the center flap 21 can shield a plurality of With the curved blade 22, the user cannot observe the curved blade 22 from the outside of the air outlet, so that the shape at the air outlet is more beautiful.
- the plurality of curved blades 22 can be completely gathered to the rear side of the center flap 21 without occupying additional air passage space, thereby improving the space utilization inside the air conditioner indoor unit 1.
- a plurality of curved blades 22 can also be deployed in a direction away from the center of the center flap 21 to at least partially enclose the wind exit region.
- a plurality of curved vanes 22 can be deployed to completely cover the annular outlet region to achieve a complete closure of the blower.
- the curved blade 22 is approximately crescent-shaped, having an outer contour edge portion and an inner contour edge portion, the outer contour edge portion being convex, and the inner contour edge portion being concave.
- the inner contour edge portion is disposed toward the center of the center flap 21 when the plurality of curved vanes 22 are gathered, and accordingly, the outer contour edge portion may face the inner circumference of the air supply port 31 when the plurality of curved vanes 22 are gathered.
- the outer contour edge portion and the inner contour edge portion collectively define a root end and an end of the curved blade 22.
- the outer contour edge portion of each curved blade 22 includes a first arcuate segment 221 and a second arcuate segment 222.
- the inner contour edge portion includes a third circular arc shaped section 223 and a fourth circular arc shaped section 224.
- the first arcuate section 221 and the fourth arcuate section 224 are gradually approached toward the root end of the curved blade 22 such that the root end of the curved blade 22 forms a tapered curved region.
- the second circular arc-shaped section 222 and the third circular-arc shaped section 223 are gradually approached toward the end of the curved blade 22 such that the end of the curved blade 22 also forms a tapered curved region.
- first circular arc-shaped section 221 and the fourth circular-arc shaped section 224 are gradually approached in a direction directed to the root end of the curved blade 22 such that the root end of the curved blade 22 forms a tapered curved region.
- the second arcuate section 222 and the third arcuate section 223 are gradually approached in a direction directed to the end of the curved blade 22 such that the end of the curved blade 22 forms a tapered curved region.
- the curvature of the first arcuate section 221 is equal to the curvature of the outer periphery of the center flap 21. That is, when the plurality of curved blades 22 are completely gathered to the rear side of the center flap 21, the first circular arc-shaped section 221 of the plurality of curved vanes 22 coincides with the outer circumference of the center flap 21. After the plurality of curved blades 22 are gathered, a partial region of each of the curved blades 22 is located between the two curved blades 22 adjacent to the curved blade 22.
- the curvature of the second arcuate section 222 is equal to the curvature of the inner circumference of the air supply port 31.
- the second circular arc segments 222 of the plurality of curved blades 22 coincide with the inner peripheral edge of the air blowing port 31. So designed, the plurality of curved blades 22 can be completely gathered to the rear side of the center baffle 21 or fully deployed to shield the wind out area, so that the shape at the air supply port 31 is more complete and beautiful.
- the curvature and length of the third circular arc-shaped section 223 are equal to the curvature and length of the first circular arc-shaped section 221 .
- the first arc-shaped segments 221 and the third arc-shaped segments of the adjacent two curved blades 22 are just joined together. Together, the plurality of curved blades 22 can completely cover the wind-out region, while the adjacent curved blades 22 do not overlap as much as possible to fully utilize the size of the curved blades, so that the shape at the air supply opening is more complete. Beautiful.
- each curved blade 22 is preferably rotatably disposed about the root end thereof on the front side or the rear side of the center flap 21. Moreover, after the plurality of curved blades 22 are gathered, a partial region of each of the curved blades 22 is located between the two curved blades 22 adjacent to the curved blade.
- the first circular arc-shaped section 221 further has a guiding flange 225 which is gradually increased from the root end of the curved curved blade 22 toward the distal end, so that when the plurality of curved blades 22 are contracted or expanded, The plurality of curved blades 22 are guided in the front-rear direction of the indoor unit so that the plurality of curved blades 22 can at least partially overlap.
- the guiding flange 225 has a lower position near the root end and a higher position away from the root end.
- the guiding flange 225 can guide the adjacent blades to move slightly toward the rear side, so that Adjacent curved blades 22 are staggered in the front-rear direction of the opening and closing structure 20 to prevent mechanical interference.
- the positive direction of the X-axis points to the front side of the indoor unit of the air conditioner
- the positive direction of the Y-axis points to the right side of the indoor unit
- the positive direction of the Z-axis points to the upper side of the indoor unit.
- the air supply port 31 is located on the front side of the casing 30, and at least a part of the air supply port 31 is provided with an air guiding structure 50 on the rear side.
- the air blowing mechanism 50 is provided at the circular air blowing port 31 having the opening and closing mechanism 20.
- FIG 10 is a front elevational view of an air guiding structure of an air conditioning indoor unit in accordance with one embodiment of the present invention.
- each air guiding structure 50 includes a rotating ring 53 and two swinging blade assemblies.
- the rotating ring 53 is disposed inside the casing 30 and disposed opposite a corresponding one of the air blowing ports 31, and the rotating ring 53 is configured to be controllably rotated about its central axis.
- the inner peripheral edge of the rotating ring 53 can be overlapped with the inner peripheral edge of the air blowing port 31 in the vertical and horizontal directions of the air conditioning indoor unit 1, that is, the inner peripheral edge of the rotating ring 53 is provided on the rear side of the inner peripheral edge of the air blowing port 31.
- each swinging blade assembly includes a swinging leaf drive mechanism and a plurality of swinging vanes 54 located on the inner side of the rotating ring, and the root of each of the pendulum blades 54 Each has a rotation axis 541 through which the end of the rotation shaft 541 can pass.
- the pendulum drive mechanism is configured to drive the plurality of pendulum blades 54 to rotate synchronously about the respective rotation axes 541.
- the pendulum blades 54 of the two pendulum assemblies are also symmetrically disposed about the diameter of the one of the rotating rings 53, and the axes of rotation 541 of the two pendulum blades 54 that are symmetric with each other are on the same straight line.
- the size of the pendulum leaf 54 can be set according to the size of the wind exit area.
- each wobble drive mechanism is rotatable following the rotating ring 53, and includes: a curved link, a plurality of rockers, a crank, and a link motor.
- the range of rotation of the rotating ring 53 is preferably 0 to 90°.
- the working principle of the air guiding structure 50 is that the rotating ring 53 is first rotated to a preset position to move the rotating shaft 541 of the plurality of swinging blades 54 to a position at a specific angle with respect to the horizontal plane, and then adjust the swinging blade 54 according to the user's needs.
- Rotation angle Specifically, when the user needs the air-conditioning indoor unit 1 to ventilate in the up and down direction, the rotating ring 53 is first rotated to 0°. At this time, the rotation axis 541 is in the horizontal direction, as shown in the right air supply port 31 of the air conditioning indoor unit 1 in FIG.
- the two curved links are driven to move up and down, and the plurality of swinging blades 54 are driven up and down.
- the rotating ring 53 is first rotated to 90°.
- the rotation shaft 541 is in the vertical direction, as shown in FIG. 6, the left air supply port of the air conditioner indoor unit 1, and at this time, the two curved link movements are driven to drive the plurality of swinging blades 54 to be turned left and right.
- the swinging vane 54 of the wind deflecting structure 50 of the present invention can rotate about its own rotating shaft 541 and can also revolve around the center of the rotating ring 53.
- the user can first adjust the rotation of the rotating ring 53 to determine the sweeping direction of the air blowing port 31, for example, up and down sweeping, left and right sweeping, oblique 45° sweeping, and then adjusting the swinging blade 54 to rotate. Sweep the wind.
- the wind is simultaneously swept to possibly blow out the natural wind.
- the swinging blade 54 of the present invention has a more diverse swinging angle, and the user can more freely adjust the air blowing angle of the air blowing port.
- the number of air blowing ports 31 provided with the opening and closing mechanism 50 is plural, and the air conditioning indoor unit 1 further includes a one-to-one correspondence with the air blowing ports 31 provided with the opening and closing mechanism 50.
- Multiple axial fans 60 are Specifically, the number of the ion wind generating devices 10 is one, and the number of the axial flow fans 60 is two, and the two axial flow fans 60 are respectively disposed on the lateral sides of the ion wind generating device 10.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Air-Flow Control Members (AREA)
Abstract
本发明涉及一种离子风发生装置及空调室内机。离子风发生装置包括用于产生离子风的至少一个放电模组,每个放电模组均包括壳体、设置于壳体内的网状电极和分布在网状电极一侧的多个针状电极。网状电极的一侧设有定型架,定型架固定在壳体上,以使网状电极始终保持在垂直于离子风发生装置的送风方向的平面状态,从而保证了每个针状电极与网状电极之间的相对位置恒定不变,避免产生摩擦打火、异味的现象,消除了安全隐患。空调室内机包括:机壳,具有用于供气流流出的至少一个送风口,其中的一个或多个送风口处设有用于整流送风的开闭机构;以及至少一个离子风发生装置,设置于机壳内,以用于提供送往其中的一个或多个送风口的离子风。
Description
本发明涉及空气调节技术,特别是涉及一种离子风发生装置及具有该离子风发生装置的空调室内机。
目前,电晕放电离子送风技术作为一种独特的送风系统,以其具有的结构简单、无噪声、有空气净化作用等诸多优点,成为具有极大市场潜力和良好应用前景的技术,成为国内外研究者的一个热点研究方向。离子风的产生源于电晕放电原理:由于高压电的作用,针电极附近电场强度极大,使区域内的大量空气分子产生电离,而在此区域之外的电场较弱,不发生电离过程。在电场的作用下,带电粒子作定向移动,且在运动过程中与不带电的中性粒子碰撞,把部分动能传递给中性粒子,使其一起做定向移动,即产生离子风。
为了减少噪音,现有的一些空调室内机通常采用离子风模块代替送风风机实现送风,或者采用离子风模块和送风风机同时驱动送风。无论如何,离子风模块的性能和送风效果都至关重要。
发明内容
本发明的设计人意识到,在离子风模块中,其针电极与针电极之间的相对位置关系以及针电极与网电极之间的相对位置关系对整个离子风模块的性能起着至关重要的作用。如果由于结构设计强度、长时间使用或其他外力原因导致针网电极之间的相对位置发生变化,那么整个离子风模块的性能就会大打折扣。
为此,本发明第一方面的一个目的旨在克服现有技术中的至少一个缺陷,提供一种能够保证每个针状电极与网状电极之间的相对位置恒定不变的离子风发生装置。
本发明第一方面的另一个目的是保证针状电极的相对位置恒定不变。
本发明第一方面的又一个目的是提高离子风发生装置的送风速度、送风量以及送风效率。
本发明第二方面的目的是提供一种性能良好、噪音较低的空调室内机。
根据本发明的第一方面,本发明提供一种离子风发生装置,包括用于产生离子风的至少一个放电模组,每个所述放电模组均包括壳体、设置于所述壳体内的网状电极和分布在所述网状电极一侧的多个针状电极,其中
所述网状电极的一侧设有定型架,所述定型架固定在所述壳体上,以使所述网状电极始终保持在垂直于所述离子风发生装置的送风方向的平面状态。
可选地,所述离子风发生装置的送风方向为其进深方向;且
所述网状电极在所述进深方向上位于所述针状电极的前侧,所述定型架在所述进深方向上位于所述网状电极的后侧。
可选地,所述网状电极通过胶黏的方式固定在所述定型架上。
可选地,每个所述放电模组还包括用于固定所述多个针状电极的针架,且
所述针架具有多个相互平行的导电杆和多个相互平行的加强筋,所述导电杆和所述加强筋交错设置,每个所述导电杆与每个所述加强筋的相交处均设有一个所述针状电极。
可选地,所述放电模组的数量为多个;且
所述多个放电模组沿所述离子风发生装置的送风方向依次排列,且所述多个放电模组并联连接或串联连接。
根据本发明的第二方面,本发明还提供一种空调室内机,包括:
机壳,具有用于供气流流出的至少一个送风口,所述至少一个送风口中的一个或多个送风口处设有用于整流送风的开闭机构;以及
至少一个上述任一所述的离子风发生装置,设置于所述机壳内,以用于提供送往所述至少一个送风口中的一个或多个送风口的离子风。
可选地,具有所述开闭机构的所述送风口呈圆形,且每个所述开闭结构均包括:
中央挡板,其固定不动地设置于相应的所述送风口的中央,且其外周缘与相应的所述送风口的内周缘之间形成出风区域;以及
多个曲形叶片,沿所述中央挡板的周向依次设置,配置成可向所述中央挡板的中心聚拢以至少部分地打开所述出风区域,以及配置成可向背离所述中央挡板中心的方向展开以至少部分地封闭所述出风区域。
可选地,每个所述曲形叶片包括:
外轮廓边缘部,包括第一圆弧形区段和第二圆弧形区段;以及
内轮廓边缘部,包括第三圆弧形区段和第四圆弧形区段,所述内轮廓边缘部在所述多个曲形叶片聚拢时朝向所述中央挡板的中心;其中
所述第一圆弧形区段和第四圆弧形区段沿指向所述曲形叶片的根端的方向逐渐靠近,以使所述曲形叶片的根端形成渐缩的曲形区域;所述第二圆弧形区段和第三圆弧形区段沿指向所述曲形叶片的末端的方向逐渐靠近,以使所述曲形叶片的末端形成渐缩的曲形区域。
可选地,设有所述开闭机构的送风口的数量为多个,所述空调室内机还包括与设有所述开闭机构的送风口一一对应设置的多个轴流风机。
可选地,在所述空调室内机的进深方向上,所述送风口位于所述机壳的前侧,每个所述送风口的后侧均设有一导风结构,每个所述导风结构均包括:
转动环,设置于所述机壳内部且正对相应的一个所述送风口设置,所述转动环配置成可控地绕其中心轴线转动;以及
两个摆叶组件,间隔设置于所述转动环上;每个所述摆叶组件包括摆叶驱动机构和多片摆叶,所述多片摆叶设置于所述转动环的内侧,每片所述摆叶均具有一自转轴,所述摆叶驱动机构配置成驱动每片所述摆叶自转,且使所述多片摆叶同步运动。
本发明通过定型架对网状电极进行位置和形状固定,能够避免网状电极产生弯曲或变形,使其能够始终保持一平面结构,形成平面电极网。由于定型架相比于细丝网状的网状电极的结构强度大得多,其不会因外力作用而发生位移或变形,因此保证了每个针状电极距网状电极的距离均相同,即保证了针网的间距恒定不变,有效避免了因放电距离不等导致放电不均,从而产生摩擦打火、出现异味的现象,消除了安全隐患。
进一步地,本发明通过设置具有交错设置的多个导电杆和多个加强筋的针架,并将放电模组的针状电极布置在导电杆和加强筋的相交点上,能够保证每个针状电极均能够通过导电杆和加强筋的双重作用得到固定。在针状电极的数量确定后,导电杆和加强筋之间的间距和相对位置是恒定不变的,且导电杆和加强筋的结构强度相对较大,几乎不会因外力作用发生位移或变形,因此能够可靠地保证每个针状电极的相对位置恒定不变,保证了离子风发生装置始终具有较好的性能。
进一步地,本发明通过设置多个依次排列的放电模组,且每个放电模组 中的针状电极与对应的网状电极之间将产生电晕放电现象,从而可以使得风经过多个放电模组进行多次加速,实现风速的叠加,进而在获得较高的出风速度的情况下能够形成负压,进一步地增大进风量,从而进一步地提高了离子风发生装置的送风速度、送风量以及送风效率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的离子风发生装置的示意性结构图;
图2是根据本发明一个实施例的离子风发生装置的一个放电模组的示意性结构分解图;
图3是根据本发明一个实施例的离子风发生装置的多个放电模组之间连接关系的示意性结构图;
图4是根据本发明另一个实施例的离子风发生装置的多个放电模组之间连接关系的示意性结构图;
图5和图6是根据本发明一个实施例的空调室内机的示意性结构图;
图7是根据本发明一个实施例的空调室内机的示意性结构分解图;
图8和图9分别是根据本发明一个实施例的开闭结构的曲形叶片的不同方位示意性结构图;
图10是根据本发明一个实施例的空调室内机的导风结构的正面示意图。
本发明实施例首先提供一种离子风发生装置,图1是根据本发明一个实施例的离子风发生装置的示意性结构图,图2是根据本发明一个实施例的离子风发生装置的一个放电模组的示意性结构分解图。参见图1至图2,本发明的离子风发生装置10包括用于产生离子风的至少一个放电模组100,每个放电模组100均包括壳体140、设置于壳体140内的网状电极110和分布在网状电极110一侧的多个针状电极120。需要强调的是,本发明实施例中所称的多个意指两个、三个或多于三个的更多个。具体地,网状电极110可以 为具有方形孔、菱形孔、圆形孔或其他形状通孔的金属网。针状电极120可以为金属材质的放电针,其具有放电尖端,该放电尖端可指向网状电极110的某一通孔的中心。
进一步地,网状电极110的一侧设有定型架150,定型架150固定在放电模组100的壳体140上,以使网状电极110始终保持在垂直于离子风发生装置10的送风方向的平面状态。也就是说,本发明通过定型架150对网状电极110进行位置和形状固定,能够避免网状电极110产生弯曲或变形,使其能够始终保持一平面结构,形成平面电极网。由于定型架150相比于细丝网状的网状电极110的结构强度大得多,其不会因外力作用而发生位移或变形,因此保证了每个针状电极120距网状电极110的距离均相同,即保证了针网的间距恒定不变,有效避免了因放电距离不等导致放电不均,从而产生摩擦打火、出现异味的现象,消除了安全隐患。
具体地,定型架150可采用硬度较大的塑料、橡胶或其他绝缘材料制成。
进一步地,离子风发生装置10的送风方向为其进深方向。具体地,离子风发生装置10可由后向前送风,即其产生的离子风的流动方向为由后向前。网状电极110在进深方向上位于针状电极120的前侧,以保证离子风发生装置10的出风方向为由后向前。定型架150在进深方向上位于网状电极110的前侧,由此既能够通过定型架150将网状电极110固定在壳体140上,又能够保证整个放电模组100的外形美观。壳体140仅具有上、下、左、右四个侧壁,其前侧和后侧均敞开。
在本发明的一些实施例中,网状电极110通过胶黏的方式固定在定型架150上。在一些替代性实施例中,网状电极110还可通过其他合适的方式固定在定型架150上。
在本发明的一些实施例中,每个放电模组100还包括用于固定多个针状电极120的针架130。针架130具有多个相互平行的导电杆131和多个相互平行的加强筋132,导电杆131和加强筋132交错设置,每个导电杆131与每个加强筋132的相交处均设有一个针状电极120。也即是,导电杆131和加强筋132的数量可以根据针状电极120的数量需求不同而产生变化,以保证每个针状电极120均能够通过导电杆131和加强筋132的双重作用得到固定。在针状电极120的数量确定后,导电杆131和加强筋132之间的间距和相对位置是恒定不变的,且导电杆131和加强筋132的结构强度相对较大, 几乎不会因外力作用发生位移或变形,因此能够可靠地保证每个针状电极120的相对位置恒定不变,保证了离子风发生装置始终具有较好的性能。
具体地,加强筋132和导电杆131可以一体成型,也可以通过胶黏、螺钉或其他合适的方式固定在一起。当加强筋132和导电杆131一体成型时,二者的材质相同;当加强筋132和导电杆131通过胶黏、螺钉或其他合适的方式固定在一起时,二者的材质可以相同,也可以不同。加强筋132可以采用硬度较高的塑料、橡胶等绝缘材料制成。
导电杆131优选为杆状或细长条状的PCB板。每个导电杆131均具有形成其外部的绝缘保护层和形成其内部的导电层,该导电层与分布在该导电杆上的针状电极120电连接。由此,可避免导电层裸露于外部,从而避免产生乱放电或打火的现象。进一步地,每个导电杆131的朝向网状电极110的侧面上均开设有多个用于安装针状电极120的针孔,该针孔的围绕针状电极120的周围设有通过焊接工艺填补的填充层。由此,可保证针状电极120与导电杆131内的导电层保持良好的电连接,同时又可严格地避免导电层裸露于外部,从而避免产生乱放电或打火的现象。具体地,针孔的尺寸可稍小于针状电极的尺寸,以使二者通过过盈配合的方式固定在一起。
在本发明的一些实施例中,导电杆131与加强筋132相互垂直,以使针架130不易变形,具有较强的结构稳定性和较高的结构强度,进一步可靠地保证了每个针状电极120的相对位置恒定不变。在一些替代性实施例中,导电杆131与加强筋132之间的夹角也可以为钝角或锐角,即导电杆131与加强筋132之间可围成多个菱形的格子。
进一步地,针架130还包括沿横向延伸的导电条133,每个导电杆131均与导电条133电连接,并由导电条133竖直向上延伸,每个加强筋132均沿横向延伸。具体地,导电条132与壳体140卡接,以使固定有多个针状电极120的导电条132和导电杆131固定在壳体140上。
在本发明的一些实施例中,每相邻两个导电杆131之间的距离均相同,每相邻两个加强筋132之间的距离均相同。由此,能够使得针状电极120的分布更加均匀,提高了离子风发生装置10送风的均匀性,从而提高了用户的舒适度体验。具体地,相邻两个导电杆131之间的距离与相邻两个加强筋132之间的距离可以相同,也可以不同。也就是说,多个导电杆131与多个加强筋132之间可围成多个长方形或正方形的格子。导电杆131和加强筋132 的数量和间距设置可根据针状电极120的数量需求不同而有所改变。
在本发明的一些实施例中,放电模组100的数量为多个,多个放电模组100沿离子风发生装置10的送风方向依次排列,且多个放电模组100并联连接或串联连接。具体地,在图1所示实施例中,放电模组100的数量可以为两个,两个放电模组100沿离子风发生装置10的送风方向依次排列。在另一些实施例中,放电模组100的数量还可以为三个或多于三个的更多个。
图3是根据本发明一个实施例的离子风发生装置的多个放电模组之间连接关系的示意性结构图。参见图3,每个放电模组100的针状电极120均与一正极性或负极性高压端子电连接,每个放电模组100的网状电极110均与接地端子电连接,以使多个放电模组100并联连接。也就是说,图3所示实施例的离子风发生装置10为并联式多级离子风送风装置。
图4是根据本发明另一个实施例的离子风发生装置的多个放电模组之间连接关系的示意性结构图。参见图4,位于离子风发生装置10的其中一端端部的放电模组100的针状电极120与一正极性或负极性高压端子电连接,位于另一端端部的放电模组100的网状电极110与接地端子电连接,从离子风发生装置10的其中一端向其另一端排列的除位于另一端端部的放电模组100之外的其余每个放电模组100的网状电极110均与相邻地位于其下游的放电模组100的针状电极120电连接,以使多个放电模组100串联连接。也就是说,图4所示实施例的离子风发生装置10为串联式多级离子风送风装置。
在图3和图4所示实施例中,每个放电模组100中的针状电极120与对应的网状电极110之间将产生电晕放电现象,从而可以使得风经过多个放电模组100进行多次加速,实现风速的叠加,进而在获得较高的出风速度的情况下能够形成负压,进一步地增大进风量,从而进一步地提高了离子风发生装置10的送风速度、送风量以及送风效率。
本发明实施例还提供一种空调室内机。图5和图6是根据本发明一个实施例的空调室内机的示意性结构图,图7是根据本发明一个实施例的空调室内机的示意性结构分解图。本发明的空调室内机1包括机壳30和至少一个上述任一实施例中所描述的离子风发生装置10。机壳30具有用于供气流流出的至少一个送风口31,该至少一个送风口31中的一个或多个送风口31处设有用于整流送风的开闭机构20。也即是,送风口31的数量可以为一个, 该送风口31处设有开闭机构20。或者,送风口31的数量为多个,仅有部分送风口31处有开闭机构20或全部送风口31处设有开闭机构20。
上述至少一个离子风发生装置10设置于机壳30内,以用于提供送往上述至少一个送风口31中的一个或多个送风口31的离子风。离子风发生装置10依靠电场力使空气中的粒子获得动能,从而形成离子风。相比于旋转类的送风组件(例如风机)来说,离子风发生装置10具有压损小、耗能低、噪音小等优势,从而在很大程度上减小了空调室内机运行时的噪音。
具体地,空调室内机1还包括设置于机壳30内的换热装置,换热装置配置成与流经其的空气进行热交换,以改变空气的温度。换热装置可以为平板式蒸发器、多折式蒸发器、多段式蒸发器或其他类型的蒸发器。空调室内机1可单独通过离子风发生装置10驱动送风,也可以与风机类组件相配合共同驱动送风。离子风发生装置10产生的离子风可以经过换热装置换热后送出,也可不经换热装置换热直接送出,以单独送风或与风机类组件驱动的气流相混合后送出。
在本发明的一些实施例中,具有开闭机构20的送风口31呈圆形。不具有开闭机构20的送风口1可以呈圆形、方形或其他合适的形状。每个开闭结构30均包括中央挡板21和多个曲形叶片22。
中央挡板21固定不动地设置于相应的一个送风口31的中央,其外周缘与相应的一个送风口31的内周缘之间形成出风区域。例如,上述中央挡板21可以为圆形,则相应的出风区域为环形。在本发明的一些替代性实施例中,上述中央挡板21可以为方形、椭圆形等其它形状。
多个曲形叶片22沿中央挡板21的周向依次设置,多个曲形叶片22配置成可以向中央挡板21的中心聚拢以至少部分地打开出风区域,并且可以完全聚拢收缩至中央挡板21的前侧或后侧。由此,可在空调室内机1停机时,使得多个曲形叶片22向送风口31边缘展开,并可以完全封闭出风区域,能够有效防止外部的灰尘和杂质进入风道内部,从而保证了空调室内机1的工作效果。在空调室内机1工作时,多个曲形叶片22向中央挡板21的中心聚拢收缩,以完全打开出风区域,以便于空调室内机1送风。
具体地,在一些实施例中,曲形叶片22的数量可以为6个,而且沿中央挡板21的周缘均匀地设置。在另外一些实施例中,叶片的数量还可以为6个以下或6个以上,具体可以根据叶片大小、中央挡板21的大小和送风口 31大小进行设定。优选地,参见图6,多个曲形叶片22可以完全聚拢收缩至中央挡板21的后侧,也就是说,多个曲形叶片22处于完全收拢状态时,中央挡板21可以遮蔽多个曲形叶片22,用户无法从送风口外部观察到曲形叶片22,使得送风口处的外形更加美观。更为重要的是,多个曲形叶片22可以完全收拢至中央挡板21的后侧,不占用额外的风道空间,提高了空调室内机1内部的空间利用率。参见图5,多个曲形叶片22还可以向背离中央挡板21中心的方向展开以至少部分地封闭出风区域。在图5所示实施例中,多个曲形叶片22可以展开至完全覆盖上述环形出风区域,以实现送风口的全面封闭。
图8和图9分别是根据本发明一个实施例的开闭结构的曲形叶片的不同方位示意性结构图。在本实施例中,曲形叶片22近似成月牙形,其具有一外轮廓边缘部和一内轮廓边缘部,外轮廓边缘部呈凸形,内轮廓边缘部呈凹形。内轮廓边缘部在多个曲形叶片22聚拢时朝向中央挡板21的中心设置,则相应地,外轮廓边缘部在多个曲形叶片22聚拢时可朝向送风口31的内周缘。外轮廓边缘部和内轮廓边缘部共同限定出曲形叶片22的根端和末端。
如图8-9所示,在本发明的一些实施例中,每个曲形叶片22的外轮廓边缘部包括:第一圆弧形区段221和第二圆弧形区段222。内轮廓边缘部包括:第三圆弧形区段223和第四圆弧形区段224。第一圆弧形区段221和第四圆弧形区段224朝向曲形叶片22的根端逐渐靠近,从而使得曲形叶片22的根端形成渐缩的曲形区域。第二圆弧形区段222和第三圆弧形区段223朝向曲形叶片22的末端逐渐靠近,从而使得曲形叶片22的末端同样形成渐缩的曲形区域。也就是说,第一圆弧形区段221和第四圆弧形区段224沿指向曲形叶片22的根端的方向逐渐靠近,以使曲形叶片22的根端形成渐缩的曲形区域;第二圆弧形区段222和第三圆弧形区段223沿指向曲形叶片22的末端的方向逐渐靠近,以使曲形叶片22的末端形成渐缩的曲形区域。
在本发明的一些优选地实施例中,第一圆弧形区段221的曲率与中央挡板21的外周缘的曲率相等。也就是说,当多个曲形叶片22完全聚拢至中央挡板21后侧时,多个曲形叶片22的第一圆弧形区段221与中央挡板21的外周缘重合。在多个曲形叶片22聚拢后,每个曲形叶片22的部分区域位于与该曲形叶片22的相邻的两个曲形叶片22之间。第二圆弧形区段222的曲率与送风口31的内周缘曲率相等。也就是说,当多个曲形叶片22完全展开 至覆盖出风区域时,多个曲形叶片22的第二圆弧形区段222与送风口31的内侧周缘重合。如此设计,多个曲形叶片22可以完全收拢至中央挡板21后侧或完全展开遮蔽出风区域,使得送风口31处的外形更加完整、美观。
另外,第三圆弧形区段223的曲率和长度与第一圆弧形区段221的曲率和长度均相等。在本实施例中,在多个曲形叶片22完全展开至覆盖出风区域时,相邻两个曲形叶片22的第一圆弧形区段221和第三圆弧形区段刚好拼合在一起,使得多个曲形叶片22能够完整地覆盖出风区域,同时相邻曲形叶片22之间尽可能不发生交叠,以充分利用曲形叶片的大小,使得送风口处的外形更加完整、美观。
在本发明的一些实施例中,为了便于多个曲形叶片22的聚拢和展开,每个曲形叶片22优选地绕其根端可转动地设置于中央挡板21的前侧或后侧。而且,在多个曲形叶片22聚拢后,每个曲形叶片22的部分区域位于与该曲形叶片的相邻的两个曲形叶片22之间。
进一步地,第一圆弧形区段221上还具有从邻近曲形叶片22根端向远离根端方向渐高的导向凸缘225,以在多个曲形叶片22收缩或扩展运动时,在室内机前后方向上对多个曲形叶片22进行导向,以便于多个曲形叶片22可至少部分重叠。这样设置是因为多个曲形叶片22在收拢的过程当中,相邻的曲形叶片22可能会发生机械干涉。上述导向凸缘225靠近根端的位置较低,远离根端的位置较高,在相邻的曲形叶片22收拢至相互叠加时,导向凸缘225可以引导相邻叶片朝向后侧略微移动,以使得相邻的曲形叶片22在开闭结构20的前后方向上错开,以防止机械干涉。
在图7中,X轴正方向指向空调室内机的前侧,Y轴正方向指向室内机的右侧,Z轴正方向指向室内机的上方。在空调室内机1的进深方向上,送风口31位于机壳30的前侧,至少部分送风口31的后侧均设有一导风结构50。优选地,具有开闭机构20的圆形送风口31处设有导风机构50。
图10是根据本发明一个实施例的空调室内机的导风结构的正面示意图。参见图10,每个导风结构50包括:转动环53和两个摆叶组件。
转动环53设置于机壳30内部且正对相应的一个送风口31设置,转动环53配置成可控地绕其中心轴线转动。转动环53的内周缘可与送风口31的内周缘在空调室内机1的上下及左右方向上重合,即转动环53的内周缘设置于送风口31的内周缘的后侧。
两个摆叶组件可间隔设置于转动环53上,每个摆叶组件包括摆叶驱动机构和多片摆叶54,多片摆叶54位于转动环的内侧,且每片摆叶54的根部均具有一自转轴541,自转轴541的末端可穿过一圆孔。摆叶驱动机构配置成驱动多片摆叶54绕各自的自转轴541同步自转。且两个摆叶组件的摆叶54也关于转动环53的上述一条直径对称设置,并且相互对称的两片摆叶54的自转轴541在同一条直线上。摆叶54大小可以根据出风区域的大小进行设定。
在本发明的一些实施例中,每个摆叶驱动机构可跟随转动环53旋转,且包括:曲形连杆、多个摇杆、曲柄以及连杆电机。
在本实施例中,转动环53的转动范围优选为0至90°。导风结构50的工作原理为:转动环53先转动至预设位置,以带动多片摆叶54的自转轴541运动到相对于水平面处于特定角度的位置,再根据用户需要调节摆叶54的自转角度。具体地,当用户需要空调室内机1上下方向出风时,转动环53先转动至0°。此时,自转轴541处于水平方向的位置,如图6中空调室内机1的右侧送风口31所示,此时,再驱动两个曲形连杆上下运动,带动多片摆叶54上下翻转。当多片摆叶54上翻时,送风口31则向上出风;当多片摆叶54下翻时,送风口31则向下出风。当用户需要室内机左右方向出风时,转动环53先转动至90°。此时,自转轴541处于竖直方向,如图6所示空调室内机1的左侧送风口,此时,再驱动两个曲形连杆运动,带动多片摆叶54左右翻转。当多片摆叶54左翻时,送风口31则向左出风;当多片摆叶54右翻时,送风口31则向右出风。
由此可见,本发明导风结构50的摆叶54可以绕其自转轴541自转,还可以跟随转动环绕转动环53的中心公转。在空调室内机1的使用过程中,用户可以先调节转动环53旋转,确定送风口31的扫风方向,例如上下扫风、左右扫风、斜45°扫风,再调节摆叶54自转进行扫风。或者,在转动环53转动的过程中,同时进行扫风,以可能地吹出自然风。本发明的摆叶54具有更加多样的摆动角度,用户可以更加自由地调节送风口的送风角度。
在本发明的一些实施例中,参见图10,设有开闭机构50的送风口31的数量为多个,空调室内机1还包括与设有开闭机构50的送风口31一一对应设置的多个轴流风机60。具体地,离子风发生装置10的数量为一个,轴流风机60的数量为两个,两个轴流风机60分别设置在离子风发生装置10 的横向两侧。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种离子风发生装置,包括用于产生离子风的至少一个放电模组,每个所述放电模组均包括壳体、设置于所述壳体内的网状电极和分布在所述网状电极一侧的多个针状电极,其中所述网状电极的一侧设有定型架,所述定型架固定在所述壳体上,以使所述网状电极始终保持在垂直于所述离子风发生装置的送风方向的平面状态。
- 根据权利要求1所述的离子风发生装置,其中所述离子风发生装置的送风方向为其进深方向;且所述网状电极在所述进深方向上位于所述针状电极的前侧,所述定型架在所述进深方向上位于所述网状电极的后侧。
- 根据权利要求1所述的离子风发生装置,其中所述网状电极通过胶黏的方式固定在所述定型架上。
- 根据权利要求3所述的离子风发生装置,其中,每个所述放电模组还包括用于固定所述多个针状电极的针架,且所述针架具有多个相互平行的导电杆和多个相互平行的加强筋,所述导电杆和所述加强筋交错设置,每个所述导电杆与每个所述加强筋的相交处均设有一个所述针状电极。
- 根据权利要求1所述的离子风发生装置,其中所述放电模组的数量为多个;且所述多个放电模组沿所述离子风发生装置的送风方向依次排列,且所述多个放电模组并联连接或串联连接。
- 一种空调室内机,包括:机壳,具有用于供气流流出的至少一个送风口,所述至少一个送风口中的一个或多个送风口处设有用于整流送风的开闭机构;以及至少一个权利要求1-5任一所述的离子风发生装置,设置于所述机壳内, 以用于提供送往所述至少一个送风口中的一个或多个送风口的离子风。
- 根据权利要求6所述的空调室内机,其中具有所述开闭机构的所述送风口呈圆形,且每个所述开闭结构均包括:中央挡板,其固定不动地设置于相应的所述送风口的中央,且其外周缘与相应的所述送风口的内周缘之间形成出风区域;以及多个曲形叶片,沿所述中央挡板的周向依次设置,配置成可向所述中央挡板的中心聚拢以至少部分地打开所述出风区域,以及配置成可向背离所述中央挡板中心的方向展开以至少部分地封闭所述出风区域。
- 根据权利要求7所述的空调室内机,其中,每个所述曲形叶片包括:外轮廓边缘部,包括第一圆弧形区段和第二圆弧形区段;以及内轮廓边缘部,包括第三圆弧形区段和第四圆弧形区段,所述内轮廓边缘部在所述多个曲形叶片聚拢时朝向所述中央挡板的中心;其中所述第一圆弧形区段和第四圆弧形区段沿指向所述曲形叶片的根端的方向逐渐靠近,以使所述曲形叶片的根端形成渐缩的曲形区域;所述第二圆弧形区段和第三圆弧形区段沿指向所述曲形叶片的末端的方向逐渐靠近,以使所述曲形叶片的末端形成渐缩的曲形区域。
- 根据权利要求6所述的空调室内机,其中设有所述开闭机构的送风口的数量为多个,所述空调室内机还包括与设有所述开闭机构的送风口一一对应设置的多个轴流风机。
- 根据权利要求6所述的空调室内机,其中在所述空调室内机的进深方向上,所述送风口位于所述机壳的前侧,每个所述送风口的后侧均设有一导风结构,每个所述导风结构均包括:转动环,设置于所述机壳内部且正对相应的一个所述送风口设置,所述转动环配置成可控地绕其中心轴线转动;以及两个摆叶组件,间隔设置于所述转动环上;每个所述摆叶组件包括摆叶驱动机构和多片摆叶,所述多片摆叶设置于所述转动环的内侧,每片所述摆叶均具有一自转轴,所述摆叶驱动机构配置成驱动每片所述摆叶自转,且使所述多片摆叶同步运动。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710343587.X | 2017-05-16 | ||
CN201710343587.XA CN108879335B (zh) | 2017-05-16 | 2017-05-16 | 离子风发生装置及空调室内机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018210153A1 true WO2018210153A1 (zh) | 2018-11-22 |
Family
ID=64273301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/085853 WO2018210153A1 (zh) | 2017-05-16 | 2018-05-07 | 离子风发生装置及空调室内机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108879335B (zh) |
WO (1) | WO2018210153A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112524624A (zh) * | 2020-12-17 | 2021-03-19 | 江苏双良低碳产业技术研究院有限公司 | 烟囱消白系统的电极混风装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110848950B (zh) * | 2019-11-12 | 2021-05-28 | 珠海格力电器股份有限公司 | 一种带有冷等离子发生装置的空调及其控制方法 |
CN112325388A (zh) * | 2020-09-30 | 2021-02-05 | 贵州全世通精密机械科技有限公司 | 一种室内智能化消毒空气的空调设计方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2104964U (zh) * | 1991-11-16 | 1992-05-20 | 罗国明 | 带转动叶片的换气扇 |
CN101421563A (zh) * | 2006-04-17 | 2009-04-29 | 大金工业株式会社 | 空调装置 |
CN201840703U (zh) * | 2010-11-05 | 2011-05-25 | 辽宁苏必利尔空气净化设备有限公司 | 传感电控式等离子空气净化器和中央空调 |
CN105387596A (zh) * | 2015-12-18 | 2016-03-09 | 广东美的制冷设备有限公司 | 用于空调器的导风板组件及空调器 |
CN106524303A (zh) * | 2016-11-01 | 2017-03-22 | 青岛海尔空调器有限总公司 | 空调室内机 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104110807B (zh) * | 2013-09-26 | 2017-01-18 | 广东美的制冷设备有限公司 | 导风机构和空调器 |
KR102203935B1 (ko) * | 2014-01-08 | 2021-01-18 | 삼성전자주식회사 | 토출구 개폐장치 및 이를 포함하는 공기조화기 |
CN204809644U (zh) * | 2015-07-14 | 2015-11-25 | 中国计量学院 | 一种串列式电场力空气加速器 |
-
2017
- 2017-05-16 CN CN201710343587.XA patent/CN108879335B/zh active Active
-
2018
- 2018-05-07 WO PCT/CN2018/085853 patent/WO2018210153A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2104964U (zh) * | 1991-11-16 | 1992-05-20 | 罗国明 | 带转动叶片的换气扇 |
CN101421563A (zh) * | 2006-04-17 | 2009-04-29 | 大金工业株式会社 | 空调装置 |
CN201840703U (zh) * | 2010-11-05 | 2011-05-25 | 辽宁苏必利尔空气净化设备有限公司 | 传感电控式等离子空气净化器和中央空调 |
CN105387596A (zh) * | 2015-12-18 | 2016-03-09 | 广东美的制冷设备有限公司 | 用于空调器的导风板组件及空调器 |
CN106524303A (zh) * | 2016-11-01 | 2017-03-22 | 青岛海尔空调器有限总公司 | 空调室内机 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112524624A (zh) * | 2020-12-17 | 2021-03-19 | 江苏双良低碳产业技术研究院有限公司 | 烟囱消白系统的电极混风装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108879335B (zh) | 2020-05-29 |
CN108879335A (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107166511A (zh) | 空调室内机 | |
WO2018210153A1 (zh) | 离子风发生装置及空调室内机 | |
CN106765558B (zh) | 空调室内机 | |
CN108626867B (zh) | 壁挂式空调室内机 | |
CN104676744A (zh) | 壁挂式空调室内机 | |
CN107036162B (zh) | 一种两侧出风的壁挂式空调 | |
CN107023978A (zh) | 导风装置和立式空调室内机 | |
CN106918131A (zh) | 落地式空调室内机 | |
CN107036268A (zh) | 导风装置和立式空调室内机 | |
CN210601925U (zh) | 空调室内机及空调器 | |
CN108626790B (zh) | 壁挂式空调室内机 | |
CN106918078A (zh) | 立式空调室内机 | |
CN108870532B (zh) | 离子风发生装置及空调室内机 | |
CN107166512B (zh) | 空调室内机 | |
CN203823887U (zh) | 壁挂式空调室内机 | |
WO2018210152A1 (zh) | 离子风发生装置及空调室内机 | |
CN108870531B (zh) | 壁挂式空调室内机 | |
WO2018188563A1 (zh) | 壁挂式空调室内机 | |
CN107809061B (zh) | 离子风发生装置及空调室内机 | |
CN104896592B (zh) | 立式空调器室内机 | |
CN210197470U (zh) | 空调室内机 | |
CN107994461B (zh) | 离子风发生装置及空调室内机 | |
CN108019819A (zh) | 空调室内机 | |
CN107869777B (zh) | 空调室内机 | |
CN206545974U (zh) | 空调室内机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18802022 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18802022 Country of ref document: EP Kind code of ref document: A1 |