WO2018209680A1 - 一种柔性透明电路的制备方法 - Google Patents

一种柔性透明电路的制备方法 Download PDF

Info

Publication number
WO2018209680A1
WO2018209680A1 PCT/CN2017/085070 CN2017085070W WO2018209680A1 WO 2018209680 A1 WO2018209680 A1 WO 2018209680A1 CN 2017085070 W CN2017085070 W CN 2017085070W WO 2018209680 A1 WO2018209680 A1 WO 2018209680A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transparent
flexible transparent
flexible
template
Prior art date
Application number
PCT/CN2017/085070
Other languages
English (en)
French (fr)
Inventor
孙晶
郎明非
Original Assignee
大连大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连大学 filed Critical 大连大学
Priority to PCT/CN2017/085070 priority Critical patent/WO2018209680A1/zh
Publication of WO2018209680A1 publication Critical patent/WO2018209680A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the invention belongs to the field of circuits and circuit boards, and in particular relates to a method for preparing flexible transparent circuits.
  • the best graphene film has a sheet resistance of about 100 ohms and a transparency of only 90%.
  • Chinese patent CN101505575A discloses a preparation method of a flexible circuit based on PDMS biocompatibility.
  • the patent substrate PDMS is transparent
  • the circuit part liquid metal tin indium gallium alloy is non-transparent, that is, the substrate is formed transparently.
  • a circuit in which the conductive material is opaque.
  • the conductive part of the flexible circuit is a liquid metal, and the place where the conductive device and the wire are in contact with the liquid metal is prone to liquid leakage, and cannot be plugged or unplugged, otherwise the circuit may be ineffective.
  • the conductive portion of the flexible circuit is a liquid metal
  • another substrate must be covered on the substrate with the holes, so that the sheet and the substrate together form a complete closed channel, so that the conductive metal liquid can remain in the channel without loss. Therefore, the sealing property of the tunnel is very high, the sealing is not good, and liquid metal leakage is likely to occur, resulting in a short circuit.
  • the present invention provides a method for preparing a flexible transparent circuit.
  • the flexible transparent circuit prepared by the method not only has a transparent substrate, but also a transparent portion of the circuit conductor, realizing true Transparent circuit in the positive sense.
  • the transparent circuit not only has good electrical conductivity, but also has excellent tensile, bending and twisting properties. This transparent circuit is of great significance for the development of flexible transparent electronic devices and the development of wearable medical devices.
  • a method for preparing a flexible transparent circuit includes the following steps:
  • the shape, size, and length, width, and height of the circuit template prepared in step S1 can be freely designed according to actual needs.
  • the circuit pattern is not limited to a linear type, and can be designed as needed, that is, the circuit can be various shapes such as a curved type, a broken line type, a square wave type, a waveform, a circle, an ellipse, a ring, or the like, or any of the above shapes. combination.
  • the length, width, and height of each line in the circuit can be changed as needed.
  • Circuit templates are also not limited to planar ones, they can be curved, or 3D.
  • a circuit having a protruding surface structure is prepared on the hard smooth material by any one of photolithography, processing, thermoplastic, electropolishing, 3D printing, etc., to obtain a circuit template;
  • the structure means that the height of the circuit pattern is higher than the plane of the overall material, that is, the circuit on the circuit template is convex.
  • the hard smooth material may be any one of a silicon wafer, a metal, and a polymer material
  • the polymer material may be a heat sensitive polymer material, such as a phenolic resin, or a hard polymer material such as polytetrafluoroethylene. Ethylene.
  • the step S2 of the present invention can be implemented in two ways.
  • the first method pouring a mixture of a monomer mixture or a reactant constituting the flexible transparent polymer material onto the surface of the circuit template, and after the transparent polymer material is subjected to a curing reaction, the cured transparent material is peeled off from the circuit template. Obtaining a cured transparent carrier having a groove circuit structure;
  • a flexible transparent polymer material monomer mixture such as liquid A and liquid B of polydimethylsiloxane, or a mixture of the preparations, such as preparing a silicone hydrogel mixture, preparing a mixture of hydrogels, pouring the above mixture or mixture onto a template with a circuit for curing reaction, and the flexible transparent polymer material is initially in a liquid state. It is finally solid by the reaction and can remain in a solid shape at all times.
  • the above flexible transparent polymer material is not limited to the several materials listed, and may include materials such as polyvinyl alcohol hydrogel, chitosan hydrogel, and the like.
  • the circuit pattern protrudes from the circuit template, so that the cured flexible transparent polymer has a groove-type circuit pattern.
  • Some polymer materials such as polyvinyl alcohol hydrogels need to remove bubbles before curing, and finally the transparent polymer material exists as a transparent solid.
  • the second way using 3D printing technology, direct application of flexible transparent polymer materials such as PDMS, silicone hydrogel, chitosan hydrogel, etc. for 3D printing, to obtain a cured transparent carrier with a groove circuit structure.
  • flexible transparent polymer materials such as PDMS, silicone hydrogel, chitosan hydrogel, etc.
  • step S3 the conductive material is first dispersed in a volatile solvent, a solution containing the conductive material is applied in the groove of the cured transparent carrier, and the conductive material applied outside the groove is cleaned. After the solvent is volatilized, the conductive materials are present in the recess circuit structure in a solid form to form a flexible transparent circuit; the conductive material is not limited to silver nanowires, copper nanowires, gold nanowires, conductive hydrogels, carbon nanometers. One or more of a tube, graphene, nanogold chain or nanoparticle.
  • the conductive material is coated in the groove of the cured transparent carrier, and any coating form such as direct coating, spray coating, spin coating, or the like may be employed.
  • step S4 may be added to spread the flexible transparent polymer material on the surface of the flexible transparent circuit.
  • the circuit is sandwiched between two transparent materials to protect the circuit and prevent oxidation.
  • the conductive materials in the grooves are connected to each other, and the conductive materials are evenly distributed in the grooves, so that the circuit board has good electrical conductivity.
  • the above method may further include step S5: conducting the transparent flexible circuit to the outside.
  • the conduction is achieved by the conductive material being connected to an electronic device or an external power source or a conductive wire.
  • the conduction of the flexible circuit to the electronic device or power source is formed by connecting a conductive portion or wire of the electronic device to a conductive substance in the recess of the flexible transparent circuit.
  • the electronic device or wire can be embedded or inserted into the interior of the flexible, transparent conductive material.
  • Another object of the present invention is to claim a multilayer flexible transparent circuit, according to any one of the methods of the present invention, to prepare at least two flexible transparent circuits, which are stacked together and penetrated through a conductive material to obtain a multilayer flexible transparent circuit. .
  • the flexible circuit of the present invention has high transparency, and not only the flexible polymer material carrier of the circuit is transparent, but also the conductive material is transparent. With excellent electrical conductivity, the conductive material forming the circuit is dry, the bottom groove does not need to be closed, the conductive device and the wire can be inserted or removed at any time, and the conductive material is not lost and the circuit is ineffective.
  • the flexible transparent carrier of the invention is light in weight and biocompatible, and the transparent circuit formed on the flexible transparent carrier can be easily attached to the surface of the human or animal body or implanted in the body, and the circuit is not affected by animals or people. The action affected and stopped working.
  • the circuit By utilizing the flexibility of the flexible substrate, the circuit has good tensile, twisting and bending properties, and the conductive device and the wire are inserted for folding 180 degrees and the same, and the bending, stretching and twisting properties are excellent.
  • the circuit is designed and fabricated as needed with accuracy in the micron or nanometer range.
  • the preparation process of the invention is simple, the reproducibility is good, and the obtained circuit is lighter.
  • the method preparation circuit is expected to be applied to many fields such as smart contact lenses, crimpable transparent electronic devices, and electronic skin.
  • Figure 1 is a flow chart of the preparation of a flexible transparent circuit
  • a silicon wafer template with a photoresist pattern is used as a circuit template, and a silver nanowire is used as a conductive material to form a flow chart of a method for preparing a flexible transparent circuit having a microstructure.
  • FIG. 2 is a resistance change curve of a conductive material prepared by the method of the present invention after repeated bending of a conductive material
  • Figure 3 is an extension view of the flexible transparent circuit prepared by the present invention in the case of lighting
  • Figure 4 is a photograph of a light of a flexible transparent circuit prepared in accordance with the present invention.
  • the silver nanowire (AgNWs) ethanol solution used in the present invention has a specification of 30 nm in diameter, 100 to 200 um in length, 20 mg/ml in concentration, and the solvent is anhydrous ethanol.
  • a circuit having a protruding surface structure was formed on a 4-inch silicon wafer using SU-2050 photoresist to obtain a circuit template.
  • step B Repeat step B twice, apply AgNWs ethanol solution to the groove of the circuit board, and after the ethanol solution is completely evaporated, use the 3M tape to remove the excess AgNWs outside the groove to obtain a flexible transparent circuit board.
  • the surface resistance was measured by a four-probe resistance meter, and its transmittance at a wavelength of 550 nm was measured by an ultraviolet spectrophotometer.
  • the copper nanowire (CuNWs) ethanol solution used in the present invention has a specification of 20 nm in diameter, 80 um in length, 20 mg/ml in concentration, and the solvent is anhydrous ethanol.
  • a template of the desired circuit was patterned on a 4-inch silicon wafer using SU-2050 photoresist.
  • the gold nanowire (AuNWs) ethanol solution used in the present invention has a specification of a diameter of 3 nm, a length of 50 ⁇ m, a concentration of 20 mg/ml, and a solvent of absolute ethanol.
  • a template of the desired circuit was patterned on a 4-inch silicon wafer using SU-2050 photoresist.
  • the liquid A and the liquid B of polydimethylsiloxane (PDMS) were uniformly mixed in a ratio of 10:1, poured into a mold made of a silicon wafer with a circuit pattern and placed in a vacuum dryer.
  • the bubbles in the PDMS were cleaned up for about 1 hour, and then heat-cured in an oven at 80 ° C for 1 hour to obtain a PDMS transparent carrier with circuit grooves.
  • the gold nanowire (AuNWs) ethanol solution used in the invention has the following specifications: a diameter of 3 nm, a length of 50 ⁇ m, a concentration of 20 mg/ml, and a solvent of anhydrous ethanol;
  • a circuit template having a protruding surface structure of a desired circuit is polished on the aluminum alloy.
  • the initiator azobisisobutyronitrile (in an amount of 0.2% by weight of the total dose) and the crosslinking agent N,N-methylenebisacrylamide (in an amount of 1.0% by weight of the total dose) were completely dissolved at 8:1: 1 mass ratio of hydroxyethyl methacrylate, mixed solution of N-vinylpyrrolidone and ⁇ -(methacryloyloxy)propyltrimethoxysilane, magnetically stirred for 30 minutes, uniformly mixed the materials and filtered, then poured
  • the aluminum alloy template was placed in a vacuum oven at 90 ° C for 2 hours, and then solidified and demolded to obtain a silicone hydrogel flexible transparent carrier with circuit grooves.
  • the carbon nanotubes (CNTs) used in the present invention are hydroxylated single-walled long nanotubes having a size of 1.1 nm in diameter and 50 ⁇ m in length, and the solvent is an ethanol solution.
  • the gold nanochain used in the present invention has a specification of a diameter of 5 nm, a length of 90 ⁇ m, a concentration of 0.5 mg/ml, and a solvent of an ethanol solution.
  • a circuit having a protruding surface structure is formed on the phenolic resin by a thermoplastic technique.
  • the performance test was performed on the flexible transparent circuit prepared by the present invention.
  • bending experimental data of a material having a linear circuit formed by using PDMS as a transparent polymer material and silver nanowires as a conductive material As shown in Fig. 2, bending experimental data of a material having a linear circuit formed by using PDMS as a transparent polymer material and silver nanowires as a conductive material.
  • the circuit is bent 180 degrees forward and reverse. As the degree of bending increases, the resistance of the circuit after the positive and negative bending is substantially unchanged.
  • the circuit can perform 2500 positive and negative bending, and the resistance increases slightly after bending, but the amount of increase is small.
  • a tensile test with a linear circuit was formed using PDMS as a transparent polymer material and silver nanowires as a conductive material.
  • the LED light indicates the patency of the circuit.
  • the brightness of the lamp is basically unchanged, indicating that the tensile performance of the circuit is good.
  • a complex circuit board with PDMS as a transparent flexible material is shown in Fig. 4, and an LED lamp is inserted in the center circular line, and the width of the line is 200 ⁇ m. It is indicated that the method of the present invention can produce a micro-level flexible transparent circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明涉及一种柔性透明电路的制备方法。该方法是这样实现的:通过制备电路模板,在电路模板上用柔性透明高分子材料制成带有凹槽电路结构的固化透明载体,在固化透明载体的凹槽中涂布导电材料溶液,待溶剂挥发后,获得了具有高透明度和导电性的电路。本发明导电材料为固态且整个电路都是透明的,电路板导电性和透明性更好。电路可以根据需要进行设计和制备,精度可以达到微米或纳米级别。同时,本发明方法简单,重现性好,制备的电路更加轻便。电路可以多次拉伸、弯折或扭曲。同时电路质轻、具有很好的生物相容性。该方法制备的电路有望应用于智能隐形眼镜,可卷曲的透明电子设备,电子皮肤等众多领域。

Description

一种柔性透明电路的制备方法 技术领域
本发明属于电路及电路板领域,具体涉及柔性透明电路的制备方法。
背景技术
随着可穿戴医疗设备和透明电子设备产业迅猛发展,柔性透明电路开始被越来越多的研究人员关注,柔性透明电路材料和方法的突破对以上两个领域都具有重要的意义。目前,只有很少数关于柔性透明电路的报道,其中最为常用的材料是石墨烯。但是关于石墨烯形成的透明电路,具有以下的弱点:
1.石墨烯薄膜容易形成褶皱,尤其是大面积的石墨烯薄膜
2.石墨烯薄膜很难进行精确的质量控制,薄膜上容易产生破损
3.石墨烯薄膜很难进行大规模生产
4.最好的石墨烯薄膜方块电阻在100欧姆左右,透明度仅达到90%
最近,有研究者应用表面图案化的方法,用纳米粒子构筑柔性透明电路。但是这种方法工艺复杂,电路控制不精确,电路不能同时获得良好的导电性、透明度和柔韧性,限制其应用。
中国专利CN101505575A公开了一种基于PDMS生物可兼容性的柔性电路的制备方法,虽然该专利基材PDMS是透明的,但是电路部分液态金属锡铟鎵合金是非透明的,即形成的是基材透明而导电物质不透明的电路。同时,该柔性电路中导电部分是液态金属,导电器件和导线与液态金属接触的地方容易发生液体泄漏,不能随便插拔,否则会导致电路失效。由于柔性电路的导电部分是液态金属,必须在带有孔道的基材上覆盖另外一片片材,使片材和基材共同形成一个完整的封闭孔道,这样导电金属液体才能保持在孔道中不流失,因此对于孔道的密封性要求很高,封闭不好,容易发生液态金属的泄漏,造成短路。
发明内容
为弥补现有技术空白,本发明提供一种柔性透明电路的制备方法,该方法制备的柔性透明电路不仅基材是透明的,电路导体部分也是透明的,实现了真 正意义上的透明电路。该透明电路不仅导电性好,还具有优异的拉伸、弯折、扭曲性能。该透明电路对柔性透明电子设备的开发和可穿戴医疗设备的开发具有重要意义。
为实现上述目的,本发明采用如下技术方案。一种柔性透明电路的制备方法,包括如下步骤:
S1、制备电路模板;
S2、在电路模板上用柔性透明高分子材料制成带有凹槽电路结构的固化透明载体;
S3、在固化透明载体的凹槽中涂布含有导电材料的溶液,待溶剂挥发后,导电材料存在于凹槽电路结构中,形成柔性透明电路清除凹槽外面的导电材料,形成透明柔性电路。
步骤S1中所制备的电路模板的形状、大小、电路的长、宽、高可以根据实际需要自由进行设计。电路图案不局限于直线型一种,可以根据需要进行设计,即电路可以是曲线型、折线型、方波型、波形、圆形、椭圆形、环形等各种形状,或者是以上形状的任意组合。电路中每条线路的长、宽、高都是可以根据需要进行变化。电路模板也不局限于平面一种,还可以是曲面的,或者是3D的。
作为优选,所述步骤S1在硬质光滑材料上通过光刻,加工,热塑,电抛光,3D打印等任一种方法制备出具有突出表面结构的电路,得到电路模板;本发明中突出表面结构指电路图案的高度是高于整体材料平面的,也就是电路模板上电路是凸出来的。本发明中硬质光滑材料可以是硅片、金属、高分子材料中任一种,所述高分子材料可以是热敏性高分子材料,如酚醛树脂,也可以是硬性高分子材料,如聚四氟乙烯。
本发明所述步骤S2可以通过两种方式来实现。
第一种方式:将组成柔性透明高分子材料的单体混合物或反应物的混合液浇注到电路模板的表面,待透明高分子材料进行固化反应后,将固化的透明材料从电路模板上剥离,得到具有凹槽电路结构的固化透明载体;
将柔性透明高分子材料单体混合物如聚二甲基硅氧烷的A液和B液,或反 应物的混合液如制备硅水凝胶混合液,制备水凝胶的混合液,将上述混合物或混合液浇注到带有电路的模板上,进行固化反应,柔性透明高分子材料最初是液态,通过反应最终为固态,并能一直保持固态形状。上述柔性透明高分子材料不局限于已列举的几种材料还可以包括如聚乙烯醇水凝胶,壳聚糖水凝胶等材料。电路模板凸出的电路图案,致使固化的柔性透明高分子上具有凹槽型电路图案。有些高分子材料如聚乙烯醇水凝胶在固化前需要去除气泡,最后透明高分子材料以透明固体形式存在。
第二种方式:应用3D打印技术,直接应用柔性透明高分子材料如PDMS,硅水凝胶,壳聚糖水凝胶等进行3D打印,得到具有凹槽电路结构的固化透明载体。
步骤S3中,首先将导电材料分散于可挥发溶剂中,在固化透明载体的凹槽中涂布含有导电材料的溶液,并将涂于凹槽外的导电材料清理干净。待溶剂挥发后,导电材料均以固体形态存在于凹槽电路结构中,形成柔性透明电路;所述导电材料不局限于银纳米线,铜纳米线,金纳米线,导电水凝胶,碳纳米管,石墨烯,纳米金链或纳米粒子中一种或一种以上。在固化透明载体的凹槽中涂布导电材料,可以采用直接涂布,喷涂,旋涂等任一种涂布形式。
电路形成后,为了保护凹槽内的导电材料,增加导电材料在透明基质上的稳定性和抗氧化性,可增加步骤S4:在柔性透明电路的表面上铺展柔性透明高分子材料。将电路夹心于两种透明材料中央,可以起到保护电路并防止氧化的作用。凹槽内的导电材料之间互相形成连接,导电材料在凹槽内分布均匀,使电路板具有良好的导电性。
上述方法中还可以包括步骤S5:将透明柔性电路与外界导通。所述导通是导电材料通过与电子器件或外界电源或能够导电的导线的连接来实现。柔性电路与电子器件或电源的导通,是通过将电子器件的导电部分或导线与柔性透明电路凹槽内的导电物质连接形成回路。电子器件或导线可以预埋或插入到柔性透明导电材料内部。
本发明另一个目的是请求保护一种多层柔性透明电路,按照本发明所述任一种方法制备至少两个柔性透明电路,将其叠加在一起,通过导电材料贯穿,得到多层柔性透明电路。
与现有技术相比,本发明的有益效果是:
本发明形成柔性电路具有高透明度,不仅电路的柔性高分子材料载体是透明的,而且导电材料也是透明的。具有优异的导电性,形成电路的导电物质为干态,底部凹槽无需封闭,导电器件和导线可以随时插入或拔出电路,导电物质不会流失而导致电路失效。本发明的柔性透明载体重量轻、均具有生物可兼容性的特点,在柔性透明载体上形成的透明电路可以方便贴附于人或动物的身体表面或植入体内,电路不会受动物或人的行动影响而停止工作。利用柔性基底的柔性,实现电路良好的拉伸、扭曲和弯折性能,插入导电器件和导线进行正反180度多次折叠,仍保持优秀的耐弯折,拉伸和扭曲性能。电路根据需要进行设计和制备,精度可以达到微米或纳米级别。
本发明制备过程简单,重现性好,获得的电路更加轻便。该方法制备电路有望应用于智能隐形眼镜,可卷曲的透明电子设备,电子皮肤等众多领域。
附图说明
本发明附图共四幅:
图1是柔性透明电路制备流程图;
以带有光刻胶图案的硅片模板作为电路模板,以银纳米线为导电材料,形成具有微结构的柔性透明电路制备方法流程图。
图2是本发明方法制备的导电材料经多次正反弯折后电阻变化曲线;
图3是本发明制备的柔性透明电路在亮灯情况下的拉伸图;
图4是本发明制备的柔性透明电路的亮灯照片。
具体实施方式
下面结合具体实施例对本发明的技术方案进一步的说明,但本发明不以任何形式受限于实施例内容。实施例中所述实验方法如无特殊说明,均为常规方法,如无特殊说明,所述化学试剂和材料,均可从商业途径获得。下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。本发明所用的乙醇,为优级纯。
实施例1
本发明所用的银纳米线(AgNWs)乙醇溶液,规格为:直径30nm,长度100~200um,浓度20mg/ml,溶剂为无水乙醇。
(一)制备电路模板
利用光刻技术,用SU-2050光刻胶在4英寸的硅片上刻出具有突出表面结构的电路,得到电路模板。
(二)制备PDMS透明载体
将聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)的A液和B液按照10:1的比例混合均匀,倒入用光刻有电路图形的硅片制成的模板上,放入真空干燥器中将PDMS中的气泡抽干净,用时1小时左右,再放入80℃的烘箱中加热固化1小时,得到带有电路凹槽的固化透明PDMS载体。
(三)制备柔性透明电路
A.配置AgNWs乙醇溶液0.3mg/ml。
B.吸取AgNWs溶液40uL滴于固化透明PDMS载体表面,并于旋涂加速度300rpm,旋涂转速3000rpm的条件下旋涂40s。
C.再重复步骤B两次,将AgNWs乙醇溶液涂布于电路板凹槽中,等乙醇溶液完全挥发后,利用3M胶带粘掉凹槽外多余的AgNWs,得到柔性透明电路板,利用手持式四探针电阻仪测其表面电阻,利用紫外分光光度计测其在550nm波长下的透过率。经测试得到电阻为3.21Ω,透过率为92.48%的透明柔性电路。
实施例2
本发明所用的铜纳米线(CuNWs)乙醇溶液,规格为:直径20nm,长度80um,浓度20mg/ml,溶剂为无水乙醇。
(一)制备电路模板
利用光刻技术,用SU-2050光刻胶在4英寸的硅片上刻出所需电路的模板。
(二)制备PDMS透明载体
将聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)的A液和B液按照10:1的比例混合均匀,倒入用光刻有电路图形的硅片制成的模板上,放入真空干燥器中将PDMS中的气泡抽干净,用时1小时,再放入80℃的烘箱中加热固化1小时,得到带有电路凹槽的PDMS透明载体。
(三)制备柔性透明电路
A.配置CuNWs乙醇溶液0.4mg/ml。
B.吸取CuNWs溶液60uL滴于PDMS透明载体表面,并于旋涂加速度300rpm,旋涂转速3000rpm的条件下旋涂40s。
C.再重复B中步骤两次,等乙醇溶液完全挥发后,利用3M胶带粘掉凹槽内CuNWs,得到透明柔性电路板,利用手持式四探针电阻仪测其表面电阻,利用紫外分光光度计测其在550nm波长下的透过率。经测试得到电阻为5.62Ω,透过率为93.17%的透明柔性电路。
实施例3
本发明所用的金纳米线(AuNWs)乙醇溶液,规格为:直径3nm,长度50um,浓度20mg/ml,溶剂为无水乙醇。
(一)制备电路模板
利用光刻技术,用SU-2050光刻胶在4英寸的硅片上刻出所需电路的模板。
(二)制备PDMS透明载体
将聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)的A液和B液按照10:1的比例混合均匀,倒入用光刻有电路图形的硅片制成的模具上,放入真空干燥器中将PDMS中的气泡抽干净,大概用时1小时,再放入80℃的烘箱中加热固化1小时,得到带有电路凹槽的PDMS透明载体。
(三)制备柔性透明电路
A.配置AuNWs乙醇溶液0.5mg/ml。
B.吸取AuNWs溶液30uL滴于透明硅水凝胶芯片的凹槽里,等乙醇溶液挥发后,再继续涂两次。
C.等乙醇溶液完全挥发后,利用3M胶带粘掉凹槽外的AuNWs,得到透明柔性电路板,利用手持式四探针电阻仪测其表面电阻,利用紫外分光光度计测其在550nm波长下的透过率。经测试得到电阻为2.38Ω,透过率为95.02%的透明柔性电路。
实施例4
本发明所用的金纳米线(AuNWs)乙醇溶液,规格为:直径3nm,长度50um,浓度20mg/ml,溶剂为无水乙醇;
(一)制备电路模板
利用铝合金金属加工技术,在铝合金上打磨出所需电路的具有突出表面结构的电路模板。
(二)制备硅水凝胶柔性透明载体
将引发剂偶氮二异丁腈(用量为总剂量的0.2wt%)和交联剂N,N-亚甲基双丙烯酸酰胺(用量为总剂量的1.0wt%)完全溶解于8:1:1质量比的甲基丙烯酸羟乙酯,N-乙烯基吡咯烷酮和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷混合溶液中,磁力搅拌30分钟,均匀混合各物质并过滤后,倒入铝合金模板上,放入90℃真空烘箱中反应2小时,固化后脱模,得到带有电路凹槽的硅水凝胶柔性透明载体。
(三)制备柔性透明电路
A.配置金纳米线乙醇溶液0.5mg/ml。
B.吸取金纳米线溶液30uL滴于透明硅水凝胶芯片的凹槽里,等乙醇溶液挥发后,再继续涂两次。
C.等乙醇溶液完全挥发后,利用3M胶带粘掉孔道外的金纳米线,得到透明柔性电路板,利用手持式四探针电阻仪测其表面电阻,利用紫外分光光度计测其在550nm波长下的透过率。经测试得到电阻为4.52Ω,透过率为94.36%的透明柔性电路。
实施例5
本发明所用的碳纳米管(CNTs)为羟基化的单壁长纳米管,规格为:直径1.1nm,长度50um,溶剂为乙醇溶液。
(一)制备电路模板
利用打磨技术,在聚四氟乙烯上打磨出所需电路。
(二)制备聚乙烯醇(PVA)水凝胶透明载体
称取5克聚合度为1750±50的PVA样品,以蒸馏水为溶剂配置1g/mL的PVA水溶液。将配置好的PVA水溶液置于磨口烧瓶中,用恒温水浴加热至90℃,搅拌至完全溶解。在60℃静置30分钟,除去溶液中的气泡。然后倒入到聚四氟乙烯的电路模板上,在-20℃冰箱中进行极速冷却。15个小时后取出在室温中解冻6小时。解冻后继续放入-20℃冰箱中进行极速冷却。15个小时后取出在室温中解冻6小时。重复冷冻-解冻循环10次。得到硬度较高并具有凹槽电路结 构的聚乙烯醇(PVA)水凝胶透明载体。
(三)制备柔性透明电路
A.配置CNTs的乙醇溶液0.5mg/ml。
B.吸取CNTs的乙醇溶液30uL滴于聚乙烯醇水凝胶透明载体的凹槽里,等乙醇溶液挥发后,再继续涂两次。
C.等乙醇溶液完全挥发后,利用3M胶带粘掉凹槽外的多余的CNTs,得到透明柔性电路板,利用手持式四探针电阻仪测其表面电阻,利用紫外分光光度计测其在550nm波长下的透过率。经测试得到电阻为24.52Ω,透过率为80.36%的透明柔性电路。
实施例6
本发明所用的金纳米链,规格为:直径5nm,长度90um,浓度0.5mg/ml,溶剂为乙醇溶液。
(一)制备电路模板
利用热塑技术,在酚醛树脂上制得具有突出表面结构的电路。
(二)制备壳聚糖水凝胶透明载体
称取1.2克壳聚糖于洁净的烧杯中,加入40mL 2%的醋酸溶液,搅拌溶解;加入16mL 3%戊二醛,搅拌,55℃恒温1h得黄色透明壳聚糖水凝胶溶液;将溶液倒入带有电路的酚醛塑料的模板上,室温下放置48小时。得到黄色透明的壳聚糖水凝胶载体。
(三)制备柔性透明电路
A.配置金纳米链乙醇溶液1mg/ml。
B.吸取金纳米链溶液30uL滴于透明硅水凝胶芯片的凹槽里,等乙醇溶液挥发后,再继续涂两次。
C.等乙醇溶液完全挥发后,利用3M胶带粘掉凹槽外多余的金纳米链,得到透明柔性电路板,利用手持式四探针电阻仪测其表面电阻,利用紫外分光光度计测其在550nm波长下的透过率。经测试得到电阻为7.52Ω,透过率为93.21%的透明柔性电路。
对本发明制备的柔性透明电路进行性能测试。
如图2所示以PDMS为透明高分子材料,以银纳米线为导电材料,形成的具有直线型电路的材料的弯折实验数据。该电路进行了正反180度的弯折,随着弯折度数的增加,正反弯折后电路的电阻基本不变。经电路可以进行2500次的正反弯折,弯折后电阻略有增加,但是增加的量很小。
如图3所示以PDMS为透明高分子材料,以银纳米线为导电材料,形成的具有直线型电路的拉伸实验。LED灯亮说明电路的通畅性,LED灯在没有拉伸和拉伸伸长了近35%时,灯的亮度基本没有改变,说明该电路的可拉伸性能良好。
如图4所示以PDMS为透明柔性材料的复杂电路板,在中心圆形线路中插入LED灯,线路的宽度是200微米。说明本发明方法可以制备微米级别的柔性透明电路。

Claims (10)

  1. 一种柔性透明电路的制备方法,其特征在于,包括如下步骤:
    S1.在硬质光滑材料上制备出具有突出表面结构的电路,得到电路模板;
    S2.在电路模板上用柔性透明高分子材料制成带有凹槽电路结构的固化透明载体;
    S3.在固化透明载体的凹槽中涂布含有导电材料的溶液,待溶剂挥发后,导电材料存在于凹槽电路结构中,形成柔性透明电路清除凹槽外面的导电材料,形成透明柔性电路。
  2. 根据权利要求1所述的柔性透明电路的制备方法,其特征在于,步骤S2具体为:将组成柔性透明高分子材料的单体混合物或反应物的混合液浇注到电路模板的表面,待透明高分子材料进行固化反应后,将固化的透明材料从电路模板上剥离,得到具有凹槽电路结构的固化透明载体。
  3. 根据权利要求1所述的柔性透明电路的制备方法,其特征在于,步骤S2还可以为:将柔性透明高分子材料通过3D打印得到具有凹槽电路结构的固化透明载体。
  4. 根据权利要求1所述的柔性透明电路的制备方法,其特征在于,还包括步骤
    S4.在柔性透明电路的表面上铺展柔性透明高分子材料。
  5. 根据权利要求1所述的柔性透明电路的制备方法,其特征在于,还包括步骤
    S5.将步骤S4形成的柔性透明电路与外界导通。
  6. 根据权利要求1所述的柔性透明电路的制备方法,其特征在于,所述步骤S1中硬质光滑材料包括硅片、金属、高分子材料中任一种。
  7. 根据权利要求1所述的柔性透明电路的制备方法,其特征在于,所述步骤S2中,柔性透明高分子材料包括PDMS,硅水凝胶或水凝胶中任一种。
  8. 根据权利要求1所述的柔性透明电路的制备方法,其特征在于,所述导电材料包括银纳米线,铜纳米线,金纳米线,导电水凝胶,碳纳米管,石墨烯,纳米金链或纳米粒子中一种或一种以上。
  9. 一种多层柔性透明电路,其特征在于,按照权利要求1所述方法制备至少两个柔性透明电路,将其叠加在一起,通过导电材料贯穿,得到多层柔性透明电路。
  10. 权利要求1所述方法制备的柔性透明电路在透明电子设备、智能隐形眼镜、电子皮肤等领域的应用。
PCT/CN2017/085070 2017-05-19 2017-05-19 一种柔性透明电路的制备方法 WO2018209680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085070 WO2018209680A1 (zh) 2017-05-19 2017-05-19 一种柔性透明电路的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085070 WO2018209680A1 (zh) 2017-05-19 2017-05-19 一种柔性透明电路的制备方法

Publications (1)

Publication Number Publication Date
WO2018209680A1 true WO2018209680A1 (zh) 2018-11-22

Family

ID=64273144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085070 WO2018209680A1 (zh) 2017-05-19 2017-05-19 一种柔性透明电路的制备方法

Country Status (1)

Country Link
WO (1) WO2018209680A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205874A (ja) * 1999-01-20 2000-07-28 Fujitsu General Ltd 車輌位置表示システム
CN105637452A (zh) * 2013-10-18 2016-06-01 应用材料公司 用于触摸面板制造方法的透明体以及用于制造触摸屏面板的透明体的系统
CN105898987A (zh) * 2016-06-17 2016-08-24 上海交通大学 一种纳米级柔性透明电路及其制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205874A (ja) * 1999-01-20 2000-07-28 Fujitsu General Ltd 車輌位置表示システム
CN105637452A (zh) * 2013-10-18 2016-06-01 应用材料公司 用于触摸面板制造方法的透明体以及用于制造触摸屏面板的透明体的系统
CN105898987A (zh) * 2016-06-17 2016-08-24 上海交通大学 一种纳米级柔性透明电路及其制备工艺

Similar Documents

Publication Publication Date Title
CN108112177B (zh) 一种柔性透明电路的制备方法
US10588217B2 (en) Preparation method of flexible transparent circuit
Zhang et al. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins
Park et al. Rewritable, printable conducting liquid metal hydrogel
Ma et al. A versatile approach for direct patterning of liquid metal using magnetic field
Liu et al. Recent progress in PNIPAM-based multi-responsive actuators: A mini-review
Kim et al. Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive Pickering emulsions
Martinez et al. Stretchable silver nanowire–elastomer composite microelectrodes with tailored electrical properties
CN111393708B (zh) 一种可拉伸的粘附性导电结构色水凝胶薄膜及其制备方法
WO2015179320A1 (en) Flexible sensor apparatus
CN108917582A (zh) 应变传感器及其制造方法
CN105758909A (zh) 一种基于金纳米管的柔性可拉伸电极及其制备方法与应用
US11926524B1 (en) Methods, apparatus, and systems for fabricating solution-based conductive 2D and 3D electronic circuits
Lee et al. Alcohol-based highly conductive polymer for conformal nanocoatings on hydrophobic surfaces toward a highly sensitive and stable pressure sensor
CN109445248B (zh) 利用毛细作用压印金属纳米线的方法及应用
Jo et al. Fabrication of chemically tunable, hierarchically branched polymeric nanostructures by multi-branched anodic aluminum oxide templates
Li et al. A review on fabrication and application of tunable hybrid micro–nano array surfaces
CN112480445A (zh) 一种石墨烯结构色薄膜及其制备方法和应用
Shin et al. SnO2 nanowire logic devices on deformable nonplanar substrates
Meng et al. A flexible dry micro-dome electrode for ECG monitoring
CN110183703A (zh) 一种光子晶体复合型压力传感器及其制备方法和光学检测方法
Verma et al. Recent trends of silicon elastomer-based nanocomposites and their sensing applications
Liu et al. High-performance piezoresistive flexible pressure sensor based on wrinkled microstructures prepared from discarded vinyl records and ultra-thin, transparent polyaniline films for human health monitoring
Chai et al. A versatile wax assisted double replica molding and its application in flexible electronic skin
Shao et al. Bioinspired conductive structural color hydrogels as a robotic knuckle rehabilitation electrical skin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909768

Country of ref document: EP

Kind code of ref document: A1