WO2018207937A1 - Impedance measuring system, impedance measuring method, and system for detecting substance being detected - Google Patents

Impedance measuring system, impedance measuring method, and system for detecting substance being detected Download PDF

Info

Publication number
WO2018207937A1
WO2018207937A1 PCT/JP2018/018427 JP2018018427W WO2018207937A1 WO 2018207937 A1 WO2018207937 A1 WO 2018207937A1 JP 2018018427 W JP2018018427 W JP 2018018427W WO 2018207937 A1 WO2018207937 A1 WO 2018207937A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
light
substance
detected
Prior art date
Application number
PCT/JP2018/018427
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 飯田
志保 床波
山本 靖之
勇姿 西村
田村 守
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to JP2019517732A priority Critical patent/JP7150339B2/en
Publication of WO2018207937A1 publication Critical patent/WO2018207937A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present disclosure relates to an impedance measurement system, an impedance measurement method, and a detection system for a substance to be detected. More specifically, the present disclosure relates to an impedance measurement system and an impedance measurement method for measuring the impedance of a minute object, and can be included in a liquid sample. The present invention relates to a detection system for a substance to be detected for detecting a substance to be detected.
  • a method for detecting a minute object having a size from the nanometer order to the micrometer order (hereinafter, also referred to as “minute object”) such as a cell, bacteria, virus, or DNA has been developed.
  • minute object such as a cell, bacteria, virus, or DNA
  • various methods such as a culture method, a PCR (Polymerase Chain Reaction) method, and an ELIZA method (Enzyme-Linked Immuno Immunosorbing Assay) method have already been put to practical use as detection methods for bacteria and the like.
  • ELIZA method Enzyme-Linked Immuno Immunosorbing Assay
  • Non-Patent Document 1 discloses a technique of inducing bacteria to the anode by induction using a cathode and measuring the impedance of the bacteria induced to the anode.
  • the electrode (cathode) functions as a concentrator that increases the density of bacteria around the electrode (anode) (see, for example, the summary of Non-Patent Document 1 and FIG. 1). .
  • Non-Patent Document 1 In order to appropriately measure the impedance of the minute object, it is necessary that a certain amount or more of the minute object exists in the vicinity of the electrode.
  • the surrounding of the electrode anode
  • Bacteria are induced in a relatively wide range. For this reason, the bacterial density in the vicinity of the electrode is unlikely to be sufficiently high.
  • the present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a technique capable of quickly measuring impedance in an impedance measurement system or impedance measurement method for measuring impedance of a minute object. It is.
  • another object of the present disclosure is to provide a technique capable of quickly detecting a detection target substance in a detection target substance detection system that detects a detection target substance that may be contained in a liquid sample. .
  • An impedance measurement system includes a holding member, a light source, and an impedance measurement device.
  • the holding member includes a light heating member that generates heat when irradiated with light, and first and second electrodes, and is configured to hold a dispersion liquid in which a plurality of minute objects are dispersed.
  • the light source emits light for irradiating the light heating member.
  • the impedance measuring device has a plurality of gaps between the first electrode and the second electrode due to convection in the dispersion generated by heating the dispersion due to the heat generated by the light heating member due to light irradiation from the light source. In the state where the minute objects are accumulated and the first electrode and the second electrode are bridged by the plurality of minute objects, the impedances of the plurality of minute objects between the first electrode and the second electrode are set. It is configured to measure.
  • the impedance measurement system further includes a control device configured to control the light source.
  • the control device controls the light source so that the size of the microbubbles generated in the dispersion becomes larger than the distance between the first electrode and the second electrode when the dispersion is heated by the light heating member. Control.
  • the first and second electrodes are spaced apart from each other so as to sandwich the light generating member.
  • the light heating member is included in one of the first and second electrodes.
  • the holding member includes a pair of comb-shaped electrodes arranged to face each other.
  • the first electrode is one of the pair of comb electrodes.
  • the second electrode is the other comb-shaped electrode of the pair of comb-shaped electrodes.
  • a detection system for a substance to be detected detects a substance to be detected that may be contained in a liquid sample.
  • the detection system includes a holding member, an impedance measurement device, a light source, and a detection device.
  • the holding member includes a light heating member that generates heat when irradiated with light, and first and second electrodes, and is configured to hold a liquid sample.
  • the impedance measuring device is configured to measure the impedance between the first electrode and the second electrode.
  • the light source irradiates light to the light heating member when the liquid sample contains a host molecule capable of specifically adhering the substance to be detected, and heats the liquid sample by the heat generated by the light heating member to convect the liquid sample.
  • the detection target substance is accumulated between the first electrode and the second electrode, and the first electrode and the second electrode can be cross-linked by the detection target substance. Yes.
  • a detection system for a substance to be detected detects a substance to be detected that may be contained in a liquid sample.
  • the detection system includes a holding member configured to hold a liquid sample.
  • the holding member is modified on the holding member between the light heating member that generates heat when irradiated with light, the first and second electrodes, and the first and second electrodes, and specifically detects the substance to be detected.
  • the detection system further includes an impedance measurement device, a light source, and a detection device.
  • the impedance measuring device is configured to measure the impedance between the first electrode and the second electrode.
  • the light source irradiates the light heat generating member with light, heats the liquid sample by the heat generated by the light heat generating member, and generates convection in the liquid sample, thereby detecting the substance to be detected between the first electrode and the second electrode.
  • the first electrode and the second electrode can be cross-linked by a substance to be detected.
  • the detection device is configured to detect a substance to be detected by monitoring impedance.
  • the light source heats the dispersion liquid so that the size of the microbubbles generated in the dispersion liquid is larger than the distance between the first electrode and the second electrode.
  • the detection device determines that the detected substance is detected when the amount of change in impedance exceeds a predetermined determination amount, while the amount of change in impedance until the predetermined period elapses is determined as the determination amount. If it falls below the value, it is determined that the substance to be detected was not detected.
  • the substance to be detected is a target nucleic acid that is at least one of target DNA and target RNA.
  • a host molecule is a probe nucleic acid that causes hybridization with a target nucleic acid.
  • the substance to be detected is an antigen.
  • a host molecule is an antibody that causes an antigen-antibody reaction with an antigen.
  • An impedance measurement method includes first to fourth steps.
  • the first step is a step of holding a dispersion liquid in which a plurality of minute objects are dispersed in a holding member including a light heating member that generates heat by light irradiation and the first and second electrodes.
  • the second step is a step of irradiating the light heating member with light after the holding step (first step).
  • a plurality of minute objects are integrated between the first electrode and the second electrode by using convection in the dispersion generated by heating the dispersion by the heat generated by the light generating member.
  • the first electrode and the second electrode are bridged by a plurality of minute objects.
  • the fourth step is a step of measuring impedances of a plurality of minute objects between the first electrode and the second electrode after the step of crosslinking (third step).
  • the size of the microbubbles generated in the dispersion liquid by heating the dispersion liquid is larger than the distance between the first electrode and the second electrode.
  • the present disclosure it is possible to quickly measure the impedance in the impedance measurement system or the impedance measurement method for measuring the impedance of the minute object.
  • a substance to be detected can be quickly detected in a detection system for a substance to be detected that detects a substance to be detected that may be contained in a liquid sample.
  • FIG. 1 is a diagram schematically showing a configuration of a system for measuring electrical characteristics of a minute object according to Embodiment 1.
  • FIG. It is a figure for demonstrating the structure of a measurement kit in detail.
  • 3 is a flowchart showing a method for measuring electrical characteristics of a minute object in the first embodiment. It is a figure for demonstrating the accumulation mechanism of a micro object. It is a figure for demonstrating the measurement mechanism of the electrical property between electrodes using the integration
  • FIG. 5 is a conceptual diagram for explaining the detection principle of target DNA in the second embodiment. It is a figure for demonstrating in detail the structure of a detection kit. It is a 1st figure for demonstrating the measurement mechanism of the electrical property between electrodes using hybridization. It is a 2nd figure for demonstrating the measurement mechanism of the electrical property between electrodes using hybridization. 5 is a flowchart showing a method for detecting a substance to be detected (target DNA) in Embodiment 2.
  • FIG. 5 is a flowchart showing a method for detecting a substance to be detected (complementary strand DNA) in the Example of Embodiment 2. It is a figure which shows the structure of the detection kit in Example 2 of Embodiment 2.
  • FIG. It is a figure which shows the observation result of a mode that a microbubble generate
  • micro object means an object having a size from nanometer order to micrometer order.
  • the shape of the minute object is not particularly limited, and may be, for example, a spherical shape, an elliptical spherical shape, a rod shape, or a coil shape.
  • the minute object is an elliptical sphere, it is sufficient that at least one of the length in the minor axis direction and the major axis direction of the ellipsoid sphere is in a range from nanometer order to micrometer order.
  • the minute object has a rod shape, it is sufficient that at least one of the width and the length of the rod is in the range from nanometer order to micrometer order.
  • the minute object has a coil shape, it is sufficient that at least one of the width and the length of the coil is in the range from nanometer order to micrometer order.
  • micro objects include metal nanoparticles, metal nanoparticle aggregates, metal nanoparticle integrated structures, semiconductor nanoparticles, organic nanoparticles, resin beads, PM (Particulate Matter), and nanocoils.
  • Metal nanoparticles are metal particles having a size on the order of nanometers.
  • the “metal nanoparticle aggregate” is an aggregate formed by aggregation of a plurality of metal nanoparticles.
  • Metal nanoparticle integrated structure is a structure in which, for example, a plurality of metal nanoparticles are fixed to the surface of a bead via an interaction site, and a gap is provided between each metal nanoparticle so as to have an interval equal to or smaller than the diameter of the metal nanoparticles. Is the body.
  • “Semiconductor nanoparticles” are semiconductor particles having a size on the order of nanometers.
  • Organic nanoparticles are particles made of an organic compound having a size on the order of nanometers.
  • Resin beads are particles made of a resin having a size ranging from the nanometer order to the micrometer order.
  • PM is a particulate material having a size on the order of micrometers. Examples of PM include PM2.5 and SPM (Suspended Particulate Matter).
  • a “nanocoil” is a coil having a size (width or length) on the order of nanometers.
  • the micro object may be a biological substance (biological substance). More specifically, the micro object may include cells, microorganisms (bacteria, fungi, etc.), biopolymers (proteins, nucleic acids, lipids, polysaccharides, etc.), antigens (allergens, etc.) and viruses. Note that the “substance to be detected” in the present disclosure may be the “micro object”.
  • the term “from nanometer order to micrometer order” refers to a range from 1 nm to 1000 ⁇ m, but typically ranges from several tens of nm to several hundreds of ⁇ m, preferably from 100 nm to 100 ⁇ m. And more preferably in the range of 1 ⁇ m to several tens of ⁇ m.
  • the impedance between the electrodes means a ratio between a voltage and a current when an electric field is applied between the electrodes. Therefore, the impedance includes a direct current resistance when a direct current (direct current voltage or direct current) is applied between the electrodes and an alternating current impedance when an alternating current (alternating voltage or alternating current) is applied between the electrodes.
  • a direct current direct current voltage or direct current
  • an alternating current impedance when an alternating current (alternating voltage or alternating current) is applied between the electrodes.
  • the “electrical characteristic” of the minute object means the responsiveness of the minute object to the electric field applied to the minute object. Examples of electrical characteristics include electrical resistivity (or electrical conductivity), capacitance, inductance, dielectric constant, carrier (electron, hole) concentration or mobility, and the like.
  • microbubble is a bubble having a size on the order of micrometers.
  • hybridization means a reassociation reaction between at least two types of single-stranded nucleic acids.
  • Hybridization is not limited to a reassociation reaction between two types of single-stranded nucleic acids as a whole, but a reassociation reaction between a part of one single-stranded nucleic acid and a part of another single-stranded nucleic acid. May be included.
  • a double strand is formed between single-stranded DNAs having complementary base sequences.
  • hybridization is not limited to this, and includes, for example, duplex formation between one single-stranded DNA and one RNA, or between two RNAs.
  • crosslinking means that the electrodes are electrically connected by linking a plurality of minute objects arranged on or between the electrodes or by forming a bond between the plurality of minute objects. It means to do.
  • connection between micro objects or the type of bond and it may be a chemical bond (covalent bond, ionic bond or metal bond), or bond by intermolecular force (hydrogen bond, attractive force acting between polar molecules) Or by van der Waals force).
  • the x direction and the y direction represent the horizontal direction.
  • the x direction and the y direction are orthogonal to each other.
  • the z direction represents the vertical direction.
  • the direction of gravity is downward in the z direction.
  • the upper direction in the z direction may be abbreviated as “upper”, and the lower direction in the z direction may be abbreviated as “lower”.
  • FIG. 1 is a diagram schematically showing the configuration of a minute object electrical characteristic measurement system (hereinafter also abbreviated as “measurement system”) 1 according to the first embodiment.
  • a measurement system 1 includes a measurement kit 2, an XYZ axis stage 10, an adjustment mechanism 20, a sample supply unit 30, a laser light source 40, an optical component 50, an objective lens 60, and illumination.
  • the light source 70, the imaging device 80, the multimeter 90, and the control apparatus 100 are provided.
  • the measurement kit 2 holds a dispersion D in which minute objects M (see FIG. 4) to be measured are dispersed.
  • the dispersion medium of the dispersion liquid D is a liquid having sufficiently high insulation (low conductivity), for example, water.
  • the detailed configuration of the measurement kit 2 will be described with reference to FIG.
  • the measurement kit 2 is placed on the XYZ axis stage 10.
  • the adjusting mechanism 20 adjusts the relative positional relationship between the XYZ axis stage 10 and the objective lens 60 in accordance with a command from the control device 100.
  • the position of the objective lens 60 is fixed. Therefore, the relative positional relationship between the XYZ axis stage 10 and the objective lens 60 is adjusted by adjusting the positions of the XYZ axis stage 10 in the x, y, and z directions.
  • a drive mechanism such as a servo motor and a focusing handle attached to the microscope can be used, but the specific configuration of the adjustment mechanism 20 is not particularly limited.
  • the adjustment mechanism 20 may be configured so that the position of the objective lens 60 can be adjusted.
  • the sample supply unit 30 supplies the dispersion D (sample) onto the measurement kit 2 in accordance with a command from the control device 100.
  • a dispenser can be used as the sample supply unit 30, for example.
  • Laser light source 40 emits, for example, near-infrared (for example, wavelength 800 nm) laser light L1 in response to a command from control device 100.
  • the wavelength of the laser beam L1 is not particularly limited as long as the wavelength is included in the absorption wavelength region of the material of the light heating member 110 (see FIG. 2) described later.
  • the wavelength of the laser light source 40 may be other wavelengths (for example, 1064 nm) included in the near infrared region, or may be wavelengths included in a wavelength region other than the near infrared region (for example, visible light region).
  • the laser light source 40 corresponds to a “light source” according to the present disclosure.
  • the optical component 50 includes, for example, a mirror, a dichroic mirror, or a prism.
  • the optical system of the measurement system 1 is adjusted so that the laser light L1 from the laser light source 40 is guided to the objective lens 60 by the optical component 50.
  • the objective lens 60 condenses the laser light L1 from the laser light source 40.
  • the light condensed by the objective lens 60 is applied to the dispersion D on the measurement kit 2.
  • “irradiate” includes the case where the laser light L1 passes through the dispersion D. That is, the present invention is not limited to the case where the beam waist of the light collected by the objective lens 60 is located in the dispersion D.
  • the optical component 50 and the objective lens 60 can be incorporated into, for example, an inverted microscope main body or an upright microscope main body (both not shown).
  • the illumination light source 70 emits white light L2 for illuminating the dispersion D on the measurement kit 2 in accordance with a command from the control device 100.
  • a halogen lamp can be employed as the illumination light source 70.
  • the objective lens 60 is also used for taking in the white light L2 irradiated to the dispersion D.
  • the white light L ⁇ b> 2 captured by the objective lens 60 is guided to the photographing device 80 by the optical component 50.
  • the photographing device 80 photographs the dispersion D irradiated with the white light L ⁇ b> 2 in accordance with a command from the control device 100 and outputs the photographed image (moving image or still image) to the control device 100.
  • a video camera including a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
  • the multimeter 90 is a measuring device (impedance measuring device) configured to measure an electrical resistance (impedance) between the electrode 111 and the electrode 112 provided in the measuring kit 2 (see FIG. 2). More specifically, the multimeter 90 measures, for example, the voltage between the electrodes 111 and 112 while passing a constant current between the electrodes 111 and 112 in accordance with a command from the control device 100, and controls the measurement result. Output to the device 100.
  • the multimeter 90 measures, for example, the voltage between the electrodes 111 and 112 while passing a constant current between the electrodes 111 and 112 in accordance with a command from the control device 100, and controls the measurement result. Output to the device 100.
  • control device 100 is a microcomputer including a CPU (Central Processing Unit), a memory, and an input / output port.
  • the control device 100 controls each device (the adjustment mechanism 20, the sample supply unit 30, the laser light source 40, the illumination light source 70, the photographing device 80, and the multimeter 90) included in the measurement system 1.
  • the control device 100 calculates an electrical characteristic (electric resistance R in the example described later) of the dispersion D by performing a predetermined calculation process on the measurement result from the multimeter 90.
  • the control device 100 is configured to perform predetermined image processing on an image photographed by the photographing device 80.
  • a configuration in which the voltage between the electrodes 111 and 112 is measured while performing constant current control by the multimeter 90 will be described as an example.
  • a galvanostat or a potentiostat may be used as the “impedance measurement device” according to the present disclosure.
  • a galvanostat the voltage between the electrodes 111 and 112 when a constant current flows between the electrodes 111 and 112 is measured.
  • a potentiostat the current flowing between the electrodes 111 and 112 when a constant voltage is applied between the electrodes 111 and 112 is measured.
  • the optical system of the measurement system 1 can irradiate the measurement kit 2 with the laser light L1 from the laser light source 40, and takes in the photographing device 80 with the white light L2 irradiated on the measurement kit 2.
  • the configuration is not limited to that shown in FIG.
  • the optical system of the measurement system 1 may be configured to include an optical fiber or the like.
  • the adjustment mechanism 20, the sample supply unit 30, the objective lens 60, the illumination light source 70, and the imaging device 80 are not essential components.
  • FIG. 2 is a diagram for explaining the configuration of the measurement kit 2 in detail.
  • measurement kit 2 includes a substrate 11, a light heating member 110, and electrodes 111 and 112.
  • the illustration of the minute object M in the dispersion D is omitted in order to prevent the drawing from becoming complicated.
  • the substrate 11 is placed on the XYZ axis stage 10 and holds the dispersion D.
  • the substrate 11 has electrical insulation and is optically transparent to the laser light L1 from the laser light source 40 and the white light L2 from the illumination light source 70.
  • a material of the substrate 11 for example, glass or quartz glass can be used.
  • the substrate 11 corresponds to an example of a “holding member” according to the present disclosure.
  • a configuration using a planar substrate as an example of the “holding member” according to the present disclosure is illustrated.
  • the “holding member” according to the present disclosure is not particularly limited as long as it can hold the dispersion D, and may be a container having a three-dimensional shape (for example, a rectangular parallelepiped or cylindrical container).
  • Each of the electrodes 111 and 112 is formed on the substrate 11.
  • the electrode 111 (first electrode) is an anode
  • the electrode 112 (second electrode) is a cathode.
  • Each of the electrodes 111 and 112 is a metal thin film having a film thickness on the order of nanometers, for example, a platinum thin film.
  • an adhesive layer 121 for enhancing the adhesiveness between the substrate 11 and the electrode 111 (for example, the adhesiveness between quartz glass and a platinum thin film) is formed.
  • an adhesive layer 122 is formed between the substrate 11 and the electrode 112.
  • Each adhesive layer 121, 122 is, for example, a titanium thin film. Note that the adhesive layers 121 and 122 are not essential as long as the adhesion of the electrodes 111 and 112 to the substrate 11 can be secured.
  • the light heating member 110 is formed on the substrate 11 between the electrode 111 and the electrode 112, for example.
  • the electrode 111 and the electrode 112 are spaced apart from each other so as to sandwich the light heating member 110.
  • the light heating member 110 is a metal thin film having a film thickness on the order of nanometers, for example, a platinum thin film.
  • an adhesive layer 120 (for example, a titanium thin film) is formed between the substrate 11 and the light heating member 110 to improve the adhesion between the substrate 11 and the light heating member 110. Not required.
  • the shape of the light heat generating member 110 is not particularly limited, and may be, for example, a perfect circle shape, a square shape, or a rectangular shape. May be.
  • the light heating member 110 absorbs the laser light L1 from the laser light source 40 and converts the light energy of the laser light L1 into heat energy. More specifically, free electrons of metal nanoparticles (for example, platinum nanoparticles) constituting the metal thin film form surface plasmons and are vibrated by the laser light L1. This causes polarization. This polarization energy is converted into lattice vibration energy by Coulomb interaction between the free electrons and the nucleus. As a result, the metal nanoparticles generate heat. Hereinafter, this effect is also referred to as a “light heating effect”.
  • metal nanoparticles for example, platinum nanoparticles
  • the material of the light heating member 110 is preferably a material having high photothermal conversion efficiency in the wavelength region of the laser light L1 (800 nm in the present embodiment).
  • the material of the light heating member 110 is not limited to platinum, but a metal element other than platinum (for example, gold or silver) or a metal nanoparticle integrated structure (for example, gold nanoparticle or silver nanoparticle) that can produce a light heat generation effect. It may be a structure using Alternatively, the material of the light heating member 110 may be a material other than a metal having high light absorption in the wavelength region of the laser light L1 and having conductivity. Examples of such a material include a material close to a black body (for example, a carbon nanotube black body).
  • the thickness of the light heating member 110 is determined by design or experiment in consideration of the output of the laser light L1 (laser output), the absorption wavelength range of the material of the light heating member 110, and the photothermal conversion efficiency.
  • FIG. 3 is a flowchart showing a method for measuring the electrical characteristics of the minute object M in the first embodiment.
  • the flowcharts shown in FIG. 3 and FIGS. 23 and 26 described later are executed when a predetermined condition is satisfied (for example, when the user operates a measurement start button (not shown)).
  • Each step (hereinafter abbreviated as “S”) included in these flowcharts is basically realized by software processing by the control device 100, but a part or all of the hardware ( Electric circuit).
  • a dispersion D in which minute objects M are dispersed is prepared.
  • the prepared dispersion D is stored in the sample supply unit 30.
  • control device 100 installs the measurement kit 2 on the XYZ axis stage 10. This process can be realized by, for example, a feed mechanism (not shown) of the substrate 11.
  • control device 100 controls the illumination light source 70 so as to emit white light L2 for irradiating the measurement kit 2, and also controls the photographing device 80 so as to start photographing of the measurement kit 2.
  • control device 100 adjusts the horizontal position of the XYZ axis stage 10 by controlling the adjustment mechanism 20 so that the laser light L1 from the laser light source 40 is irradiated onto the light heating member 110.
  • This horizontal position adjustment can be realized, for example, by extracting the outer shape pattern of the light heating member 110 from an image photographed by the photographing device 80 using an image processing technique for pattern recognition.
  • control device 100 adjusts the position of the XYZ axis stage 10 in the vertical direction by controlling the adjustment mechanism 20 so that the beam waist of the laser light L1 becomes an appropriate height.
  • the vertical position (height) of the beam waist is known from the wavelength of the laser light L1 and the specifications (magnification, etc.) of the objective lens 60. Therefore, the beam waist can be set to the target height by adjusting the position of the XYZ axis stage 10 in the vertical direction.
  • control device 100 causes the dispersion D to drop onto the measurement kit 2 by controlling the sample supply unit 30 so that an appropriate amount of the dispersion D is held.
  • the dripping amount of the dispersion liquid D may be a very small amount of, for example, about several ⁇ L to several hundred ⁇ L, or a larger amount.
  • the processing order of S103 to S105 is not limited to this.
  • the dispersion D may be dropped onto the measurement kit 2 (the process of S105) prior to the start of the irradiation of the white light L2 to the measurement kit 2 and the start of the photographing of the measurement kit 2 (the process of S103).
  • the vertical position of the XYZ axis stage 10 may be adjusted (the process of S104) after the dispersion D is dropped.
  • the control device 100 measures the electrical resistance R between the electrodes 111 and 112. More specifically, the control device 100 controls the multimeter 90 to measure the voltage between the electrodes 111 and 112 while causing a constant current to flow between the electrodes 111 and 112 of the measurement kit 2. By dividing the voltage between the electrodes 111 and 112 by the current (constant current) flowing between the electrodes 111 and 112, the electrical resistance R between the electrodes 111 and 112 can be calculated.
  • the control device 100 controls the laser light source 40 so as to start irradiation with the laser light L1 (hereinafter also referred to as “light irradiation”).
  • the laser light L1 from the laser light source 40 is condensed by the objective lens 60, and the condensed light is irradiated to the light heating member 110.
  • control device 100 ends the measurement of the electric resistance between the electrodes 111 and 112 so as to end the multimeter 90. To control.
  • control device 100 controls the laser light source 40 so as to stop the irradiation of the laser light L1 to the measurement kit 2. Moreover, the control apparatus 100 controls the illumination light source 70 so that irradiation of the white light L2 to the measurement kit 2 may be stopped.
  • control device 100 determines the electrical characteristics of the minute object M (for example, the electric conduction of the minute object M described in FIG. 17) based on the electric resistance R between the electrodes 111 and 112 measured in S106 to S108. Degree ⁇ ) is calculated. As a result, a series of processing ends.
  • the process of S103 is a process for observing the dispersion liquid D (taking an image), and is not an essential process for measuring the electrical characteristics of the minute object M. Therefore, even when the flowchart not including the process of S103 is executed, the electrical characteristics of the minute object M can be measured.
  • a DC voltage or DC current
  • An AC voltage may be applied between the electrodes 111 and 112, and an AC impedance measurement between the electrodes 111 and 112 may be performed.
  • DEPIM Dielectrophoretic Impedance Measurement
  • a minute object is applied according to the mechanism described below. It is possible to measure the impedance change between the electrodes 111 and 112 while accumulating in the vicinity of the electrodes 111 and 112.
  • the measurement mechanism of the electrical characteristics of the minute object M (measurement mechanism of the electrical resistance R) in the processing of S106 to S108 will be described in detail.
  • the minute objects M are integrated by the irradiation of the laser light L1 from the laser light source 40.
  • FIG. 4 is a diagram for explaining the accumulation mechanism of the minute objects M.
  • FIG. 4A when the irradiation of the laser beam L1 is started, the vicinity of the laser spot is locally heated at the irradiation position (laser spot) of the laser beam L1 due to the light heating effect of the light heating member 110. The Then, the dispersion D (dispersion medium) near the laser spot is locally boiled, and microbubbles MB are generated in the laser spot (see FIG. 4B). The microbubble MB grows with time.
  • the direction of the convection C is a direction in which the convection C once goes to the microbubble MB and then moves away from the microbubble MB.
  • the micro objects M are accumulated in the vicinity of the laser spot by being carried on the convection C toward the micro bubbles MB (see FIG. 4D). Thereafter, when the light irradiation is stopped, the convection C weakens and eventually stops.
  • the electric resistance R between the electrodes 111 and 112 is positively utilized by using the accumulation action of the minute objects M due to the light heating effect of the light heating member 110. Is measured.
  • FIG. 5 is a diagram for explaining the measurement mechanism of the electrical characteristics between the electrodes 111 and 112 using the accumulation action of the minute objects M.
  • FIG. 5A when light irradiation is started, microbubbles MB are generated on the light heating member 110 as described in FIG. 4B. At this time, the minute object M is hardly integrated between the electrode 111 and the light heating member 110 and between the electrode 112 and the light heating member 110. For this reason, the electrical resistance R of the dispersion medium (for example, water) existing between the electrode 111 and the electrode 112 is measured by the multimeter 90.
  • the dispersion medium for example, water
  • the minute objects M carried on the convection C are accumulated between the electrode 111 and the electrode 112. Then, when the accumulation amount of the minute object M between the electrode 111 and the electrode 112 increases, the electrode 111 and the electrode 112 are bridged by the minute object M at a certain time (see FIG. 5C). Then, the main component of the electric resistance R measured by the multimeter 90 changes from the electric resistance of the dispersion medium to the electric resistance of the minute object M integrated between the electrode 111 and the electrode 112.
  • FIG. 5C shows an example in which the electrode 111 and the electrode 112 are directly bridged by the minute object M.
  • the light heating member 110 is formed of a conductive material (for example, a metal such as platinum)
  • the electrode 111 and the light heating member 110 are bridged by the minute object M
  • the electrode 112 and the light The space between the heat generating member 110 and the heat generating member 110 may be bridged by the minute object M.
  • FIG. 6 is a diagram for explaining a temporal change in the electric resistance R between the electrodes 111 and 112 due to the accumulation (crosslinking) of the minute objects M.
  • the horizontal axis indicates the elapsed time.
  • the measurement start time of the electrical resistance R was set as the initial time (indicated by 0).
  • the dispersion liquid D is dropped before the measurement start time of the electric resistance R, but the measurement start time of the electric resistance R may be made coincident with the dropping time of the dispersion liquid D.
  • the vertical axis represents the electrical resistance R between the electrodes 111 and 112.
  • the electrical resistance R at the initial time is R0 (depending on the type of the dispersion medium, for example, a resistance value in the order of mega-ohms) (see FIG. 5A).
  • R0 depending on the type of the dispersion medium, for example, a resistance value in the order of mega-ohms
  • the electrode 111 and the light heating member 110 are bridged by the minute object M and the electrode 112 and the light heating member 110 are bridged by the minute object M at the time tc, that is, the electrode 111 and the electrode.
  • the electric resistance R changes from R0 to Rc.
  • the electric resistance R rapidly decreases as shown in FIG.
  • the lowered electric resistance Rc mainly represents the electric resistance R of the minute object M.
  • the light heat generating member 110 is irradiated with the laser light L1, and the convection C is generated by the light heat generating effect of the light heat generating member 110 thereby.
  • the minute objects M can be quickly accumulated near the laser spot.
  • the electrical characteristics of the minute objects M can be measured.
  • FIG. 7 is a diagram showing the configuration of the measurement kit 2A in the example of the first embodiment.
  • FIG. 7 shows the configuration of the measurement kit 2A viewed from the top to the bottom.
  • an electrode for conductivity measurement manufactured by BAS Co., Ltd. can be used for the measurement kit 2A.
  • the measurement kit 2A includes a substrate 11A made of quartz glass and eight electrodes 151 to 158 (see FIG. 8) formed on the substrate 11A.
  • eight connection pins 131 to 138 and eight wirings 141 to 148 are formed corresponding to the eight electrodes 151 to 158, respectively.
  • a clip (see FIG. 1) of the multimeter 90 is attached to any two of the connection pins 131 to 138.
  • the wirings 141 to 148 electrically connect the connection pins 131 to 138 and the electrodes 151 to 158.
  • FIG. 8 is a diagram showing the configuration of the electrodes 151 to 158 in the present embodiment in more detail.
  • each of eight electrodes 151 to 158 is a platinum electrode.
  • each electrode is bonded onto the substrate 11A via an adhesive layer that is a titanium thin film.
  • the distance between two adjacent electrodes among the eight electrodes 151 to 158 is set to various values.
  • the distance between the electrode 151 and the electrode 152 is 100 ⁇ m.
  • the distance between the electrode 152 and the electrode 155 is 10 ⁇ m.
  • the distance between the electrode 155 and the electrode 153 is 20 ⁇ m.
  • the distance between the electrode 153 and the electrode 156 is 30 ⁇ m.
  • the distance between the electrode 156 and the electrode 154 is 50 ⁇ m.
  • the distance between the electrode 154 and the electrode 157 is 100 ⁇ m.
  • the distance between the electrode 157 and the electrode 158 is 100 ⁇ m.
  • the distance between the electrodes can be set to a desired value.
  • the electrode 152 and the electrode 155 having an interelectrode distance of 10 ⁇ m were selected. 7 and 8, an example in which eight electrodes are formed will be described.
  • the number of electrodes is not particularly limited as long as it is two or more.
  • the light heating member 110 is not provided between the electrodes 151-158. This is because the electrodes 152 and 155 also serve as the “light heating member” according to the present disclosure. In other words, the light heating member is included in one of the electrodes 152 and 155 (in this embodiment, the electrode 152). Therefore, the laser light L1 from the laser light source 40 is applied to one of the electrodes 152 and 155 (electrode 152).
  • a dispersion D containing gold nanoparticles as a dispersoid and ultrapure water as a dispersion medium was used.
  • the diameter of the gold nanoparticle was 30 nm.
  • the concentration of the gold nanoparticles was 7.8 ⁇ 10 ⁇ 10 M.
  • the dripping amount of the dispersion D of gold nanoparticles was 5 ⁇ L.
  • the electrical resistance measurement in the comparative example differs from the electrical resistance measurement in the present embodiment in that the laser light L1 from the laser light source 40 is not irradiated.
  • the configuration of the measurement system according to the other comparative examples is the same as the corresponding configuration of the measurement system according to the present embodiment (see FIGS. 1, 7, and 8).
  • PBS phosphate buffered saline
  • the electrical resistance R of the PBS between the electrodes 152 and 155 was measured.
  • the electrical resistance R was in the range of 4.7 M ⁇ ⁇ 0.4 M ⁇ , it was determined that the measurement conditions were unified, and the dispersion D was further dropped onto the measurement kit 2.
  • FIG. 9 is a diagram illustrating a measurement example of a temporal change in the electrical resistance R between the electrodes 152 and 155 in the comparative example.
  • the electrical resistance R on the vertical axis is shown on a logarithmic scale.
  • FIGS. 9A to 9C show the first to third measurement results of the electric resistance R, respectively.
  • FIG. 10 is an image near the electrodes 152 and 155 in the third measurement of the three measurements shown in FIG.
  • FIG. 9 (A) to FIG. 9 (C) a rapid decrease in electrical resistance R was observed in all three measurements.
  • the state in the vicinity of the electrodes 152 and 155 at time t1 when the rapid decrease in the electric resistance R occurs for the first time in FIG. 9C is shown in the image of FIG. From this image, it was observed that some kind of substance (actually gold nanoparticles as described later with reference to FIGS. 15 and 16) was crosslinked between the electrode 152 and the electrode 155.
  • the dispersion liquid D on the electrodes 152 and 155 disappears by evaporation as time passes from the image of FIG. 10C corresponding to the time t 3, and a small amount of gold nanoparticles and PBS crystals are formed between the electrodes 152 and 155. It can be seen that
  • the average time from the time (0) when the dispersion D was dripped to the time when the electrical resistance R changed significantly was 42 minutes. 26 seconds.
  • this time (average time until the electric resistance R rapidly decreases) is also referred to as “average measurement time”.
  • it takes a long time to measure the electrical resistance R of the gold nanoparticles.
  • the time when the change in the electric resistance R occurs is different every three measurements, and the variation is relatively large.
  • FIG. 11 is a diagram illustrating a measurement example of a temporal change in the electrical resistance R between the electrodes 152 and 155 in the present embodiment.
  • the laser beam L1 is irradiated to the electrode 152 which is an anode.
  • Each electrode 152, 155 is previously cleaned using ethanol and ultrapure water.
  • the laser output was set to 15 mW.
  • the constant current by the multimeter 90 was set to 500 nA.
  • the electrical resistance R between the electrode 152 and the electrode 155 was measured 5 times.
  • the measurement results of the electrical resistance R for the first to fifth times are shown in FIGS. 11 (A) to 11 (E), respectively.
  • the average measurement time was 69 seconds as a result of five measurements. That is, when the comparative example and this example were compared, in this example, the average measurement time could be shortened to about 1/30. Thus, according to the present Example, it turns out that an average measurement time can be shortened significantly compared with a comparative example.
  • the electric resistance R there is a large variation in time until the electric resistance R rapidly decreases.
  • the gold nanoparticles are in a thin state between the electrode 152 and the electrode 155.
  • the electrical resistance R between the electrodes 152 and 155 rapidly decreases when the density of the gold nanoparticles becomes a predetermined amount or more.
  • the electrical resistance measurement in the comparative example since the laser light L1 from the laser light source 40 is not irradiated, convection does not occur. Therefore, the probability that gold nanoparticles collide with each other is low, and it is difficult to increase the density.
  • convection is positively generated by using the light heat generation effect.
  • convection is positively generated by using the light heat generation effect.
  • the collision probability of gold nanoparticles increases compared with the case where convection does not arise, it becomes easy to make gold nanoparticles high density. Therefore, in the present embodiment, the variation required for the decrease in the electric resistance R due to percolation is smaller than that in the comparative example, so that the variation in the average measurement time can be reduced.
  • FIG. 12 is an image in the vicinity of the electrodes 152 and 155 when the electrical resistance is measured in this example.
  • 12A to 12C show images near the electrodes 152 and 155 when the laser output is set to 10 mW, 15 mW, and 20 mW, respectively.
  • the position of the laser spot is the center of each image.
  • the numerical values in the figure indicate the elapsed time from the dropping time of the dispersion D.
  • control device 100 controls the output of the laser light L1 from the laser light source 40 so that the size (diameter) of the microbubble MB is larger than the distance between the electrodes 152 and 155. The reason for this is explained as follows.
  • the direction of convection C generated by light irradiation is a direction that once heads toward the microbubble MB and then moves away from the microbubble MB. That is, since the direction of the convection C is reversed, a “stagnation region” in which the flow velocity of the convection C is zero is generated between the microbubble MB and the substrate 11.
  • the microbubbles MB function as a “fluid stopper” of the micrometer order that dams the convection C, so that most of the minute objects M stay and accumulate near the stagnation region.
  • the minute objects M are easily integrated so as to bridge between the electrodes 152 and 155.
  • the laser output was set to 20 mW
  • generation of larger microbubbles MB was confirmed and generation of more intense convection C was confirmed as compared with the case where the laser output was set to 15 mW (see FIG. 12 (C)).
  • the average measurement time of the five measurement results was 85 seconds. That is, the average measurement time when the laser output was set to 20 mW was longer than the average measurement time when the laser output was set to 15 mW. This is considered to be due to the fact that excessively intense convection C was generated by increasing the laser output, so that the gold nanoparticles were less likely to stay between the electrodes 152 and 155 and the amount of gold nanoparticles accumulated decreased.
  • the laser output has a lower limit value necessary for generating microbubbles MB and convection C and an upper limit value necessary for stable accumulation of gold nanoparticles. Therefore, it is desirable to set the laser output within a range between the upper limit value and the lower limit value based on the previous experimental result or simulation result. In this example, the laser output was set to 15 mW based on the above experimental results.
  • FIG. 13 is a diagram illustrating a measurement result of concentration dependency of gold nanoparticles in the measurement of electrical resistance of gold nanoparticles.
  • four types of dispersions D1 to D4 having different concentrations of gold nanoparticles were prepared.
  • the concentration of the gold nanoparticles is low in the order of the dispersions D1 to D4.
  • the electrical resistance R between the electrodes 152 and 155 was measured 5 times for the dispersions D1, D2 and D4, and 7 times for the dispersion D3.
  • FIG. 13A shows the average time required until the change in the electric resistance R occurs from the dripping of FIG.
  • the horizontal axis of FIG. 13B indicates the concentration of gold nanoparticles
  • the vertical axis indicates the electric resistance R.
  • FIG. 14 is an image near the laser spot in the dispersions D3 and D4.
  • FIG. 14A shows an image near the laser spot in the dispersion D3
  • FIG. 14B shows an image near the laser spot in the dispersion D4.
  • the image indicated as “0 seconds” is an image before the start of light irradiation.
  • the image indicated as “100 seconds” is an image during light irradiation after 100 seconds from the dropping of the dispersion liquid.
  • the image indicated as “300 seconds” is an image immediately after the light irradiation is stopped after 300 seconds from the dropping of the dispersion liquid.
  • the electrodes 152 and 155 are cross-linked by gold nanoparticles.
  • the dispersion D4 as shown in FIG. 14B, it was confirmed that some gold nanoparticles were accumulated in the vicinity of the electrode 152, but the electric resistance R did not change (FIG. 13). (See (A) and FIG. 13 (B)). From this measurement result, it was found that the lower limit concentration (measurement limit concentration) of the gold nanoparticles that can be measured in this example was 1.6 ⁇ 10 ⁇ 10 M, which is the concentration of the dispersion D3.
  • FIG. 15 is a diagram for explaining the identification result of the accumulation on the electrodes 152 and 155 in the comparative example.
  • FIG. 16 is a diagram for explaining the identification result of the accumulation on the electrodes 152 and 155 in the present embodiment.
  • FIG. 15A shows an optical microscope image
  • FIG. 15B shows an SEM image
  • FIG. 15C shows an EDX image. The same applies to FIGS. 16A to 16C.
  • FIG. 17 is a diagram for explaining a method of calculating the electrical conductivity of the gold nanoparticle 200 in the present example.
  • the distance d between the electrode 152 and the electrode 155 is 10 ⁇ m (see FIG. 8).
  • the width w of the accumulation range of the gold nanoparticles 200 was read from the optical microscope image and set to 78.8 ⁇ m.
  • the height h of the aggregate of the gold nanoparticles 200 is 30 ⁇ m, which is the particle diameter of the gold nanoparticles 200. did.
  • R 1.89 k ⁇ was determined from the measurement result of the electric resistance R in the dispersion D1 shown in FIG.
  • the electrical conductivity ⁇ in this example was calculated to be 2.24 ⁇ 10 ⁇ 3 [ ⁇ ⁇ 1 cm ⁇ 1 ].
  • gold nanoparticles are accumulated in the vicinity of the electrode 152 by using the photothermal effect by the irradiation of the laser beam L1 onto the electrode 152.
  • the photo exothermic effect By using the photo exothermic effect, the time required for the accumulation of gold nanoparticles can be significantly reduced.
  • the electrode 152 and the electrode 155 are cross-linked by the gold nanoparticles.
  • the measurement target of the measurement system 1 changes from the electrical resistance of the dispersion medium between the electrode 152 and the electrode 155 to the electrical resistance of the gold nanoparticle that is bridged between the electrode 152 and the electrode 155.
  • the electrical conductivity ⁇ can be calculated with high accuracy from the measured electrical resistance R.
  • a detection system for detecting a detection target substance that is a minute object that may be contained in a liquid sample will be described.
  • the detection system according to the second embodiment is different from the measurement system 1 according to the first embodiment (see FIGS. 1 and 2) in that a detection kit 2B is provided instead of the measurement kit 2.
  • the configuration of the detection kit 2B will be described with reference to FIG.
  • the control device 100 corresponds to a “detection device” according to the present disclosure. Since the other configuration (overall configuration) of the detection system according to Embodiment 2 is basically the same as the configuration of measurement system 1, description thereof will not be repeated.
  • the substance to be detected is DNA.
  • This DNA is also referred to as “target DNA”.
  • metal nanoparticles are used for detection of the target DNA.
  • the metal nanoparticles are, for example, gold nanoparticles.
  • Each of the gold nanoparticles is modified with DNA capable of specifically attaching the target DNA.
  • DNA capable of specifically attaching the target DNA is also referred to as “probe DNA”.
  • the probe DNA corresponds to an example of a “host molecule” according to the present disclosure.
  • the metal nanoparticles are not limited to gold nanoparticles, and may be, for example, silver nanoparticles or copper nanoparticles.
  • target RNA may be used instead of target DNA, or probe RNA may be used instead of probe DNA.
  • Target DNA and target RNA are collectively referred to as “target nucleic acid”, and probe DNA and probe RNA are collectively referred to as “probe nucleic acid”.
  • FIG. 18 is a conceptual diagram for explaining the detection principle of the target DNA in the second embodiment.
  • An example of the base sequences of the target DNA and probe DNA is shown in FIG.
  • the target DNA 210 is a single-stranded DNA having a base sequence of 24 adenines (represented by A), for example.
  • A 24 adenines
  • two types of probe DNAs 211 and 212 for specifically attaching the target DNA 210 are prepared.
  • Probe DNA 211 is a single-stranded DNA having, for example, a thiol group (represented by SH) at the 3 'end.
  • the probe DNA 211 has a base sequence complementary to the base sequence on the 3 'end side of the target DNA between the thiol group and the 5' end. This complementary base sequence is 12 thymines (denoted by T).
  • the probe DNA 212 is a single-stranded DNA having, for example, a thiol group at the 5 'end.
  • the probe DNA 212 has a base sequence complementary to the base sequence on the 5 'end side of the target DNA between the 3' end and the thiol group. This complementary base sequence is 12 thymines.
  • the gold nanoparticle 201 is modified with the probe DNA 211.
  • the gold nanoparticle 202 is modified with the probe DNA 212.
  • known methods can be used as a method for modifying the gold nanoparticles 201 and 202 with the probe DNAs 211 and 212.
  • the gold nanoparticles 201 and 202 When the gold nanoparticles 201 and 202 are introduced into the liquid containing the target DNA 210, hybridization occurs between the target DNA 210 and the probe DNA 211 and between the target DNA 210 and the probe DNA 212. Thereby, when the gold nanoparticles 201 and 202 are dispersed in the liquid, the gold nanoparticles 201 and 202 aggregate.
  • FIG. 19 is a diagram for explaining the configuration of the detection kit 2B in detail.
  • detection kit 2B includes a substrate 11B and electrodes 111B and 112B.
  • the electrode 111B is an anode, and the electrode 112B is a cathode.
  • Each of the electrodes 111B and 112B is a metal thin film (for example, a platinum thin film or a gold thin film) having a film thickness on the order of nanometers.
  • One of the electrodes 111B and 112B also serves as the “light heating member” according to the present disclosure as described in the example of the first embodiment.
  • the liquid sample SP that may contain the target DNA 210 is dropped so as to cover the electrodes 111B and 112B. Since substrate 11B and adhesive layers 121B and 122B are basically the same as the corresponding configuration of measurement kit 2 in Embodiment 1 (see FIG. 2), description thereof will not be repeated.
  • electrical resistance measurement is realized by adopting at least one of the following two configurations (first and second configurations) described below.
  • FIG. 20 is a first diagram for explaining a measurement mechanism of electrical characteristics (for example, electrical resistance R) between the electrodes 111 and 112 using hybridization.
  • electrical characteristics for example, electrical resistance R
  • FIG. 20A in the first configuration, gold nanoparticles 201 and 202 are dispersed in liquid sample SP. Although the gold nanoparticles 201 and 202 are very small, they are schematically enlarged in FIG. 20 and FIG.
  • a dispersion medium for the liquid sample SP exists between the electrode 111B and the electrode 112B. Since the dispersion medium is an insulating liquid (for example, water), the electrode 111B and the electrode 112B are electrically insulated.
  • the target DNA 210 when the target DNA 210 is included in the liquid sample SP, as shown in FIG. 20B, hybridization occurs between the target DNA 210 and the probe DNA 211 and between the target DNA 210 and the probe DNA 212. Occurs, and the gold nanoparticles 201 and 202 aggregate. As a result, the electrode 111B and the electrode 112B are cross-linked by an aggregate of the gold nanoparticles 201 and 202. Hybridization occurs, and the complementary bases of the single-stranded DNA are bonded to increase conductivity. As a result, the electrical resistance between the electrode 111B and the electrode 112B decreases via the gold nanoparticles 201 and 202 and the double-stranded DNA (the probe DNAs 211 and 212 and the target DNA 210 after hybridization).
  • FIG. 21 is a second diagram for explaining a measurement mechanism of electrical characteristics (for example, electrical resistance R) between the electrodes 111 and 112 using hybridization.
  • electrical characteristics for example, electrical resistance R
  • gold nanoparticles 201 and 202 are fixed in advance on substrate 11B between electrodes 111B and 112B.
  • the distance between the gold nanoparticle 201 and the gold nanoparticle 202 is close enough to allow DNA hybridization between the gold nanoparticle 201 and the gold nanoparticle 202 (for example, the length of the target DNA 210 or less).
  • the gold nanoparticles 201 and 202 can be fixed on the substrate 11B by a known method such as a method using a thiol group.
  • the electrode 111B and the electrode 112B are electrically insulated.
  • the target DNA 210 when the target DNA 210 is contained in the liquid sample SP, hybridization occurs between the probe DNA 211 modified to the gold nanoparticle 201 and the target DNA 210 as shown in FIG. At the same time, hybridization occurs between the probe DNA 212 modified to the gold nanoparticle 202 and the target DNA 210. As a result, the electrode 111B and the electrode 112B are bridged and become electrically conductive.
  • the electric resistance R is determined based on the electric resistance value of the dispersion medium of the liquid sample SP.
  • the electrical resistance value of the aggregate of the particles 201 and 202 and the double-stranded DNA (see FIG. 20B) or the electrical resistance of the cross-linked structure between the electrode 111B and the electrode 112B (see FIG. 21B) Decreases to value.
  • the target DNA 210 can be detected by monitoring the electrical resistance R between the electrode 111B and the electrode 112B.
  • the two configurations shown in FIGS. 20 and 21 can be combined. Further, instead of fixing the gold nanoparticles 201 and 202 on the substrate 11B, only the thiol group for fixing the gold nanoparticles 201 and 202 is modified on the substrate 11B, and the gold nanoparticles 201 and 202 are liquidated. It may be dispersed in the sample SP.
  • FIG. 22 is a flowchart showing a method for detecting a substance to be detected (target DNA 210) in the second embodiment.
  • the processing of S201 to S205 is the same as the processing of S101 to S105 (see FIG. 3) in the first embodiment, and therefore detailed description will not be repeated.
  • control device 100 controls the multimeter 90 so as to measure the electric resistance R between the electrodes 111B and 112B (start or continue the measurement).
  • control device 100 controls the laser light source 40 so as to start (continue) light irradiation.
  • the control device 100 determines whether or not the electrical resistance R between the electrodes 111 and 112 has changed. More specifically, the decrease amount of the electrical resistance R from the initial value (R0 in FIG. 21) is larger than the reference amount, or the decrease rate of the electrical resistance R (decrease amount per unit time) is faster than the reference rate. In such a case, the control device 100 determines that the electrical resistance R has changed.
  • the control device 100 returns the process to S206 and continues the electrical resistance measurement until the electrical resistance R between the electrodes 111B and 112B changes (NO in S208 and NO in S210). If electric resistance R has changed before a predetermined period (eg, several tens of seconds to several minutes) has elapsed (YES in S208), control device 100 determines that target DNA 210 has been detected in liquid sample SP (S209). . On the other hand, when the predetermined period has passed without the electrical resistance R changing (NO in S208 and YES in S210), control device 100 determines that target DNA 210 has not been detected in liquid sample SP (S211). Instead of using the elapsed time (predetermined period) for determining whether or not the electric resistance R has changed, the determination of whether or not the electric resistance R has changed may be performed a predetermined number of times.
  • a predetermined period e.g, several tens of seconds to several minutes
  • control device 100 controls the multimeter 90 so as to end the electrical resistance measurement (S212). Further, the control device 100 controls the laser light source 40 and the illumination light source 70 so as to stop the irradiation of the laser light L1 and the white light L2 (S213). As a result, a series of processing ends.
  • the laser light L1 may be irradiated for a predetermined time in S207, and then the presence or absence of a change in the electrical resistance R may be determined after the irradiation of the laser light L1 is stopped (S208).
  • the irradiation of the laser beam L1, the stop of the irradiation of the laser beam L1, and the measurement of the electric resistance R are repeatedly executed until the predetermined period of S210 elapses. Become.
  • the target DNA 210 which is a substance to be detected that may be contained in the liquid sample SP, is detected by monitoring the change in the electrical resistance R between the electrodes 111B and 112B. can do. Further, by irradiating the laser light L1 from the laser light source 40, the period required for detecting the target DNA 210 (predetermined period in S210) can be shortened as compared with the case where the laser light L1 is not irradiated.
  • Example 1 of Embodiment 2 a measurement result of the electric resistance R in the first configuration illustrated in FIG. 20 will be described.
  • the base sequences of the probe DNAs 211 and 212 in this example are 12 thymines (T) as in the example described with reference to FIG.
  • A 24 adenines
  • T 24 thymines
  • mismatch DNA The concentrations of complementary strand DNA, mismatch DNA, and probe DNAs 212 and 212 in the dispersion were all 1 ⁇ M. The amount of each dispersion dropped was 5 ⁇ L.
  • FIG. 23 is a diagram for explaining the change over time of the electrical resistance R between the electrodes 111B and 112B in the dispersion liquid containing complementary strand DNA or mismatched DNA.
  • FIG. 23 (A) shows the measurement results with a dispersion containing complementary strand DNA
  • FIG. 23 (B) shows the measurement results with a dispersion containing mismatched DNA.
  • FIG. 23A and FIG. 23B shows four measurement results.
  • FIG. 23 (A) it can be seen that in the dispersion containing the complementary strand DNA, a rapid decrease in the electric resistance R is detected within a few minutes (about 2 to 6 minutes). As explained in FIG. 20, this is considered to be due to the cross-linking between the electrodes 111B and 112 due to the hybridization between the complementary strand DNA and the probe DNAs 211 and 212. Further, from the result shown in FIG. 23A, it can be seen that the variation in time until the electric resistance R decreases is somewhat large (about 2 to 3 minutes).
  • the electrical resistance R sharply decreases even in the dispersion containing the mismatched DNA.
  • the time until the electric resistance R decreases is long, and the time variation until the electric resistance R decreases is large.
  • the reason why the electric resistance R decreases even in the dispersion containing mismatched DNA is considered to be that the gold nanoparticles 201 and 202 having conductivity are deposited between the electrodes 111B and 112 over time.
  • the measurement results shown in FIG. 23 are for the case where the DNA concentration (complementary strand DNA concentration or mismatched DNA concentration) is 1 ⁇ M. Such a decrease in electrical resistance R occurs when the DNA concentration is 500 nM (ie, half). Also confirmed.
  • the electric resistance R is rapidly reduced.
  • the time variation until the electric resistance R decreases is relatively large. Therefore, in order to detect a difference in the base sequence of DNA, it is desirable to measure the time change of the electric resistance R a plurality of times and average the measurement results as described below.
  • FIG. 24 is a diagram obtained by averaging the measurement results of the temporal change in the electrical resistance R between the electrodes 111B and 112B.
  • FIG. 24 shows the average value of the measurement results when the electrical resistance measurement is performed nine times in the dispersion containing the complementary strand DNA. The same applies to a dispersion containing mismatched DNA.
  • the average value of electrical resistance R in a dispersion containing complementary strand DNA is the average value of electrical resistance R in a dispersion containing mismatched DNA (“ It can be seen that the time to reach the lower limit is shorter than that of “mismatched average resistance”. Therefore, the electrical resistance R may be measured in a time range in which the complementary strand average resistance reaches the lower limit while the mismatch average resistance does not reach the lower limit. More specifically, in the example shown in FIG. 24, the difference between the complementary strand average resistance and the mismatch average resistance is large in the time range from about 280 seconds to about 450 seconds.
  • the complementary strand average resistance is 0.15 M ⁇ and the mismatch average resistance is 0.75 M ⁇ . Therefore, the electric resistance R in the time range from about 280 seconds to about 450 seconds is measured a plurality of times, and the average value of the measurement results, the complementary chain average resistance (0.15 M ⁇ ), and the mismatch average resistance (0.75 M ⁇ ) are obtained. By comparing, the difference in the base sequence of DNA can be detected.
  • FIG. 25 is a flowchart showing a method for detecting a substance to be detected (complementary strand DNA) in the example of the second embodiment.
  • the processing with the measurement preparation in S301 is a comprehensive description of the processing in S201 to S205 (see FIG. 22) in the second embodiment because of space limitations.
  • control device 100 controls the laser light source 40 so as to start the irradiation with the laser light L1. Then, control device 100 continues the light irradiation until the predetermined period elapses (NO in S303), and when the predetermined period elapses (YES in S303), control device 100 causes laser light source 40 to stop irradiation with laser light L1. Control is performed (S304).
  • the predetermined period is a period (for example, 300 seconds) within the time range from about 280 seconds to about 450 seconds in the example shown in FIG.
  • control device 100 controls the multimeter 90 so as to measure the electric resistance R between the electrodes 111B and 112B.
  • control device 100 determines whether or not the number of measurements of the electrical resistance R has reached a specified number of measurements (a specified number).
  • a specified number of measurements a specified number
  • control device 100 returns the process to S301. Thereby, the measurement of the electrical resistance R is repeated until the specified number of times is reached. For example, the sequential measurement of the electric resistance R can be repeated by arranging the detection kits 2B shown in FIG. 19 in an array.
  • the control device 100 advances the process to S307 and calculates the average value of the electrical resistance R for the specified number of times. And the control apparatus 100 determines whether the average value of the electrical resistance R is below a predetermined reference value.
  • the reference value is a resistance value (for example, 0.30 M ⁇ ) between 0.15 M ⁇ and 0.75 M ⁇ .
  • control device 100 determines that the complementary strand DNA that is the detection target is detected (S309). On the other hand, when the average value of electrical resistance R is higher than the reference value (NO in S308), control device 100 did not detect the substance to be detected (or mismatch DNA was detected in the example of FIG. 24). ) (S310). As a result, a series of processing ends.
  • the electrical resistance R between the electrodes 111B and 112B is measured a plurality of times within a predetermined time range assuming that the difference between the complementary strand average resistance and the mismatch average resistance is large. . And it is determined whether the average value of the measurement result of the electrical resistance R is below the reference value. As a result, even when a single-stranded DNA (mismatch DNA) having a base sequence different from that of the substance to be detected (complementary strand DNA) is contained in the liquid sample, the difference in the base sequence is determined, and the substance to be detected is It can be detected accurately.
  • mismatch DNA complementary strand DNA
  • Example 2 of Embodiment 2 a configuration in which a detection kit including a comb electrode is employed will be described.
  • the detection target (substance to be detected) in this example is the target DNA 210 (see FIG. 8), as in Example 1 described above.
  • the measurement kit including the comb-shaped electrode can be applied to the electrical characteristic measurement system according to Embodiment 1 instead of the measurement kit 2A shown in FIG. 7, for example.
  • FIG. 26 is a diagram showing a configuration of the detection kit 3 in Example 2 of the second embodiment.
  • FIG. 26A shows a schematic diagram of the detection kit 3.
  • substrate 31 is provided at the tip (one end) of cable 32, and comb-shaped electrodes 301 and 302 are formed on the top surface of substrate 31.
  • Fig. 26 (B) shows an enlarged view of the comb-type electrode.
  • the comb electrodes 301 and 302 are a pair of electrodes arranged so as to face each other. More specifically, each of the comb-shaped electrodes 301 and 302 includes a plurality of electrodes arranged in a stripe shape. The comb-shaped electrode 301 and the comb-shaped electrode 302 are arranged so that the plurality of electrodes of the comb-shaped electrode 301 and the plurality of electrodes of the comb-shaped electrode 302 are engaged with each other.
  • any one electrode (may be two or more) of the plurality of electrodes included in the comb-shaped electrode 301 corresponds to the “first electrode” according to the present disclosure
  • Any one of the electrodes (may be two or more) corresponds to the “second electrode” according to the present disclosure.
  • at least one of the comb electrodes 301 and 302 also serves as the “light heating member” according to the present disclosure.
  • a light heating member may be provided separately.
  • the substrate 31 is made of an optically transparent material having electrical insulation, and is a glass substrate such as a slide glass.
  • the other end of the cable 32 (the end where the board 31 is not provided) is electrically connected to the control device 100 (see FIG. 1).
  • the other configuration is basically the same as the configuration of measurement system 1, and therefore the description will not be repeated.
  • the sodium chloride concentration in dispersion D was 0.2M, and the phosphoric acid concentration was 10 mM.
  • the dripping amount of the dispersion D was 15 ⁇ L.
  • the wavelength of the laser light from the laser light source 40 was 800 nm, and the laser output after passing through the substrate 31 was 17 mW.
  • the light irradiation time was 10 minutes.
  • FIG. 27 is a diagram showing an observation result of a state in which microbubbles MB are generated in the comb electrodes 301 and 302.
  • the optical microscope image near the comb-shaped electrodes 301 and 302 is shown on the left side of the drawing, and the fluorescence observation image near the comb-shaped electrodes 301 and 302 (the same part) is shown on the right side.
  • microbubbles MB were generated in the vicinity of the laser spot by irradiation with laser beam L1. Moreover, it was confirmed that the diameter of the microbubble MB is larger than the distance between the electrode 301 and the electrode 302.
  • a fluorescent dye is inserted between the base pairs of the target DNA 210, and when the detection kit 3 is irradiated with light having an excitation wavelength of the fluorescent dye, a location where the target DNA 210 exists (that is, the target DNA and the probe DNA). Fluorescence is emitted from the point where hybridization with the
  • FIG. 28 is a diagram illustrating an example of measurement of an accumulation between the comb-shaped electrodes 301 and 302.
  • FIG. 28 shows a state in the vicinity of the comb electrodes 301 and 302 in a state where the dispersion D is dried after the irradiation of the laser beam L1 is stopped.
  • the optical microscope image of the location irradiated with the laser beam L1 is shown on the upper side in the figure, and the fluorescence observation image of the same location as the optical microscope image is shown on the lower side.
  • the target DNA was fluorescently labeled (probe DNA was not fluorescently labeled).
  • the target DNA used was labeled with a fluorescent dye ALEXA488 that emits green light at the 5 'end.
  • the fluorescence emitted from the accumulation between the comb electrodes 301 and 302 was observed in the fluorescence observation image. From this, it can be said that it was confirmed that hybridization occurred between the target DNA of the fluorescently labeled complementary strand and the probe DNA to cause crosslinking.
  • FIG. 29 is an image in the vicinity of the comb-shaped electrodes 301 and 302 after the irradiation of the laser beam L1 is stopped.
  • an optical microscope image when complementary strand DNA is contained in the dispersion D is shown on the upper side
  • an optical microscope image when mismatched DNA is contained in the dispersion D instead of the complementary strand DNA is shown on the lower side. From FIG. 29, it can be seen that an accumulation was formed in the vicinity of the comb-shaped electrodes 301 and 302 regardless of whether the DNA in the dispersion D was complementary DNA or mismatched DNA.
  • FIG. 30 is a diagram showing a measurement example of the electric resistance R in the comb-shaped electrodes 301 and 302.
  • the vertical axis in FIG. 30A indicates the electric resistance R between the comb electrodes 301 and 302 on a linear scale.
  • the vertical axis in FIG. 30B indicates the electrical resistance R between the comb electrodes 301 and 302 on a logarithmic scale.
  • the magnitude of the electric resistance R after the decrease was several times different between the mismatch DNA and the complementary strand DNA. From this, it is possible to distinguish whether the DNA in the dispersion D is a complementary strand DNA or a mismatched DNA by comparing the magnitude of the electric resistance R after the decrease with a predetermined reference value. That is, when the magnitude of the electrical resistance R after a sufficient time has elapsed from the start of light irradiation is greater than or equal to the reference value, it is determined that mismatched DNA is included, and the magnitude of the electrical resistance R after the decrease is determined. Is less than the reference value, it can be determined that complementary strand DNA is contained.
  • the number of combinations of the positive electrode and the negative electrode is larger than that of the pair of microelectrodes, the number of locations where cross-linking by hybridization can occur is large. If any one of these locations is cross-linked, the electrical resistance R decreases, and therefore the electrical resistance R is likely to decrease.
  • a plurality of electrodes included in each are alternately arranged.
  • two electrodes of opposite electrodes (the other of the comb electrodes 301 and 302) are disposed opposite to each side of each electrode of one of the comb electrodes 301 and 302. Therefore, if one of the plurality of electrodes arranged alternately is irradiated with laser light, at least one of the electrode irradiated with the laser light and two electrodes of opposite poles disposed opposite to both sides of the electrode. Cross-linking can occur between As a result, the electrical resistance R between the comb-shaped electrodes 301 and 302 can be reduced.
  • the distance between the comb electrodes (more specifically, one electrode among a plurality of electrodes included in one comb electrode and a plurality of adjacent electrodes included in the other comb electrode).
  • the distance between one of the electrodes) is narrower than the distance between the pair of microelectrodes.
  • the distance between the comb electrodes 301 and 302 was 5 ⁇ m.
  • the size of the microbubbles MB grows larger than the distance between the electrodes.
  • the shorter the distance between the electrodes the shorter the time required for the microbubbles MB to grow to such a size.
  • the detection time of the target DNA 210 can be shortened by using the comb-shaped electrodes 301 and 302.
  • the detection method of the detection target substance is not limited to this.
  • the substance to be detected is an antigen
  • the substance to be detected can be detected by modifying an antibody that causes an antigen-antibody reaction with the antigen into nanoparticles.
  • 1 measurement system 2, 2A measurement kit, 2B, 3 detection kit, 10 XYZ axis stage, 11, 11A, 11B, 31 substrate, 111, 111B, 112, 112B, 151-158 electrode, 301, 302 comb electrode, 20 adjustment mechanism, 30 sample supply unit, 32 cable, 40 laser light source, 50 optical components, 60 objective lens, 70 illumination light source, 80 imaging device, 90 multimeter, 100 control device, 110 light heating member, 120, 121, 121B , 122, 122B adhesive layer, 131-138 connecting pins, 141-148 wiring, 200-202 gold nanoparticles, 210 target DNA, 211, 212 probe DNA, D, D1-D4 dispersion, SP liquid sample, M micro object .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A measuring system (1) is provided with a measuring kit (2), a laser light source (40), and a multimeter (90). The measuring kit (2) includes an optical heat generating member (110) which generates heat when irradiated with light, and electrodes (111, 112), and is configured to be capable of holding a dispersion liquid (D) in which a plurality of microobjects (M) are dispersed. The multimeter (90) is configured to measure an impedance between the electrode (111) and the electrode (112) in a state in which a plurality of the microobjects (M) have collected between the electrode (111) and the electrode (112) as a result of convection in the dispersion liquid (D) caused by the dispersion liquid (D) being heated by heat generated by the optical heat generating member (110) through irradiation of light from the laser light source (40), and in which a space between the electrode (111) and the electrode (112) has been bridged by the collection of the plurality of microobjects (M).

Description

インピーダンス測定システムおよびインピーダンス測定方法ならびに被検出物質の検出システムImpedance measurement system, impedance measurement method, and detection system for target substance
 本開示は、インピーダンス測定システムおよびインピーダンス測定方法ならびに被検出物質の検出システムに関し、より特定的には、微小物体のインピーダンスを測定するためのインピーダンス測定システムおよびインピーダンス測定方法と、液体試料に含まれる可能性がある被検出物質を検出するための被検出物質の検出システムとに関する。 The present disclosure relates to an impedance measurement system, an impedance measurement method, and a detection system for a substance to be detected. More specifically, the present disclosure relates to an impedance measurement system and an impedance measurement method for measuring the impedance of a minute object, and can be included in a liquid sample. The present invention relates to a detection system for a substance to be detected for detecting a substance to be detected.
 細胞、細菌、ウイルスまたはDNAなど、ナノメートルオーダーからマイクロメートルオーダーまでのサイズを有する微小な物体(以下、「微小物体」とも称する)を検出するための手法が開発されている。たとえば細菌等の検出手法としては、培養法、PCR(Polymerase Chain  Reaction)法およびELIZA法(Enzyme-Linked  Immuno  Sorbent Assay)法などの様々な手法が既に実用化されている。これらの手法を用いることで、細菌等を高精度に検出することが可能である。しかしながら、これらの手法による検出には、一般に長時間(たとえば10数時間~数日程度)が必要となる。そのため、より迅速な検出手法が求められている。 A method for detecting a minute object having a size from the nanometer order to the micrometer order (hereinafter, also referred to as “minute object”) such as a cell, bacteria, virus, or DNA has been developed. For example, various methods such as a culture method, a PCR (Polymerase Chain Reaction) method, and an ELIZA method (Enzyme-Linked Immuno Immunosorbing Assay) method have already been put to practical use as detection methods for bacteria and the like. By using these methods, it is possible to detect bacteria and the like with high accuracy. However, detection by these methods generally requires a long time (for example, about 10 hours to several days). Therefore, a quicker detection method is required.
 一方、電極間のインピーダンスを測定することで細菌等を検出する手法が提案されている。たとえば非特許文献1には、陰極を用いた誘導泳動により細菌を陽極に誘導し、陽極に誘導された細菌のインピーダンスを測定する手法が開示されている。このように、非特許文献1に開示された手法では、電極(陽極)の周囲の細菌の密度を高める濃縮器として電極(陰極)が機能する(たとえば非特許文献1の要旨および図1参照)。 On the other hand, a method for detecting bacteria or the like by measuring the impedance between the electrodes has been proposed. For example, Non-Patent Document 1 discloses a technique of inducing bacteria to the anode by induction using a cathode and measuring the impedance of the bacteria induced to the anode. Thus, in the method disclosed in Non-Patent Document 1, the electrode (cathode) functions as a concentrator that increases the density of bacteria around the electrode (anode) (see, for example, the summary of Non-Patent Document 1 and FIG. 1). .
国際公開第2014/192937号International Publication No. 2014/192937 国際公開第2015/170758号International Publication No. 2015/170758
 微小物体のインピーダンスを適切に測定するためには、電極近傍に一定量以上の微小物体が存在することが必要とされるが、非特許文献1に開示の手法では、電極(陽極)の周囲の比較的広範囲に細菌が誘導される。このため、電極近傍の細菌密度が十分に高くなりにくい。その結果、細菌のインピーダンスを測定可能になるまでの時間が長時間になり得る点において、非特許文献1に開示の手法には改善の余地がある。 In order to appropriately measure the impedance of the minute object, it is necessary that a certain amount or more of the minute object exists in the vicinity of the electrode. However, in the technique disclosed in Non-Patent Document 1, the surrounding of the electrode (anode) is required. Bacteria are induced in a relatively wide range. For this reason, the bacterial density in the vicinity of the electrode is unlikely to be sufficiently high. As a result, there is room for improvement in the method disclosed in Non-Patent Document 1 in that it can take a long time before the impedance of bacteria can be measured.
 本開示は上記課題を解決するためになされたものであり、その目的は、微小物体のインピーダンスを測定するためのインピーダンス測定システムまたはインピーダンス測定方法において、インピーダンスを迅速に測定可能な技術を提供することである。 The present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a technique capable of quickly measuring impedance in an impedance measurement system or impedance measurement method for measuring impedance of a minute object. It is.
 また、本開示の他の目的は、液体試料に含まれる可能性がある被検出物質を検出する、被検出物質の検出システムにおいて、被検出物質を迅速に検出可能な技術を提供することである。 In addition, another object of the present disclosure is to provide a technique capable of quickly detecting a detection target substance in a detection target substance detection system that detects a detection target substance that may be contained in a liquid sample. .
 (1)本開示のある局面に従うインピーダンス測定システムは、保持部材と、光源と、インピーダンス測定装置とを備える。保持部材は、光を照射されると発熱する光発熱部材と、第1および第2の電極とを含み、複数の微小物体が分散した分散液を保持可能に構成される。光源は、光発熱部材に照射するための光を発する。インピーダンス測定装置は、光源からの光照射に起因する光発熱部材の発熱により分散液が加熱されることで生じた分散液中の対流によって第1の電極と第2の電極との間に複数の微小物体が集積し、第1の電極と第2の電極との間が複数の微小物体により架橋された状態において、第1の電極と第2の電極との間の複数の微小物体のインピーダンスを測定するように構成されている。 (1) An impedance measurement system according to an aspect of the present disclosure includes a holding member, a light source, and an impedance measurement device. The holding member includes a light heating member that generates heat when irradiated with light, and first and second electrodes, and is configured to hold a dispersion liquid in which a plurality of minute objects are dispersed. The light source emits light for irradiating the light heating member. The impedance measuring device has a plurality of gaps between the first electrode and the second electrode due to convection in the dispersion generated by heating the dispersion due to the heat generated by the light heating member due to light irradiation from the light source. In the state where the minute objects are accumulated and the first electrode and the second electrode are bridged by the plurality of minute objects, the impedances of the plurality of minute objects between the first electrode and the second electrode are set. It is configured to measure.
 (2)好ましくは、インピーダンス測定システムは、光源を制御するように構成された制御装置をさらに備える。制御装置は、光発熱部材により分散液が加熱されることで分散液中に発生するマイクロバブルのサイズが第1の電極と第2の電極との間の距離よりも大きくなるように、光源を制御する。 (2) Preferably, the impedance measurement system further includes a control device configured to control the light source. The control device controls the light source so that the size of the microbubbles generated in the dispersion becomes larger than the distance between the first electrode and the second electrode when the dispersion is heated by the light heating member. Control.
 (3)好ましくは、第1および第2の電極は、光発熱部材を挟むように互いに離間して配置される。 (3) Preferably, the first and second electrodes are spaced apart from each other so as to sandwich the light generating member.
 (4)好ましくは、光発熱部材は、第1および第2の電極のいずれか一方に含まれる。
 (5)好ましくは、保持部材は、互いに対向するように配置された一対のくし型電極を含む。第1の電極は、上記一対のくし型電極のうちの一方のくし型電極である。第2の電極は、上記一対のくし型電極のうちの他方のくし型電極である。
(4) Preferably, the light heating member is included in one of the first and second electrodes.
(5) Preferably, the holding member includes a pair of comb-shaped electrodes arranged to face each other. The first electrode is one of the pair of comb electrodes. The second electrode is the other comb-shaped electrode of the pair of comb-shaped electrodes.
 (6)本開示の他の局面に従う被検出物質の検出システムは、液体試料に含まれる可能性がある被検出物質を検出する。検出システムは、保持部材と、インピーダンス測定装置と、光源と、検出装置とを備える。保持部材は、光を照射されると発熱する光発熱部材と、第1および第2の電極とを含み、液体試料を保持可能に構成される。インピーダンス測定装置は、第1の電極と第2の電極との間のインピーダンスを測定するように構成される。光源は、液体試料が被検出物質を特異的に付着可能なホスト分子を含む場合に、光発熱部材に光を照射し、光発熱部材の発熱により液体試料を加熱して液体試料中に対流を生じさせることで第1の電極と第2の電極との間に被検出物質を集積させて第1の電極と第2の電極との間を被検出物質によって架橋させることが可能に構成されている。 (6) A detection system for a substance to be detected according to another aspect of the present disclosure detects a substance to be detected that may be contained in a liquid sample. The detection system includes a holding member, an impedance measurement device, a light source, and a detection device. The holding member includes a light heating member that generates heat when irradiated with light, and first and second electrodes, and is configured to hold a liquid sample. The impedance measuring device is configured to measure the impedance between the first electrode and the second electrode. The light source irradiates light to the light heating member when the liquid sample contains a host molecule capable of specifically adhering the substance to be detected, and heats the liquid sample by the heat generated by the light heating member to convect the liquid sample. By being generated, the detection target substance is accumulated between the first electrode and the second electrode, and the first electrode and the second electrode can be cross-linked by the detection target substance. Yes.
 (7)本開示のさらに他の局面に従う被検出物質の検出システムは、液体試料に含まれる可能性がある被検出物質を検出する。検出システムは、液体試料を保持可能に構成された保持部材を備える。保持部材は、光を照射されると発熱する光発熱部材と、第1および第2の電極と、第1および第2の電極の間において保持部材上に修飾され、被検出物質を特異的に付着可能なホスト分子を含む。検出システムは、インピーダンス測定装置と、光源と、検出装置とをさらに備える。インピーダンス測定装置は、第1の電極と第2の電極との間のインピーダンスを測定するように構成される。光源は、光発熱部材に光を照射し、光発熱部材の発熱により液体試料を加熱して液体試料中に対流を生じさせることで第1の電極と第2の電極との間に被検出物質を集積させて第1の電極と第2の電極との間を被検出物質によって架橋させることが可能に構成される。検出装置は、インピーダンスを監視することによって被検出物質を検出するように構成されている。 (7) A detection system for a substance to be detected according to still another aspect of the present disclosure detects a substance to be detected that may be contained in a liquid sample. The detection system includes a holding member configured to hold a liquid sample. The holding member is modified on the holding member between the light heating member that generates heat when irradiated with light, the first and second electrodes, and the first and second electrodes, and specifically detects the substance to be detected. Contains an attachable host molecule. The detection system further includes an impedance measurement device, a light source, and a detection device. The impedance measuring device is configured to measure the impedance between the first electrode and the second electrode. The light source irradiates the light heat generating member with light, heats the liquid sample by the heat generated by the light heat generating member, and generates convection in the liquid sample, thereby detecting the substance to be detected between the first electrode and the second electrode. And the first electrode and the second electrode can be cross-linked by a substance to be detected. The detection device is configured to detect a substance to be detected by monitoring impedance.
 (8)好ましくは、光源は、分散液中に発生するマイクロバブルのサイズが第1の電極と第2の電極との間の距離よりも大きくなるように分散液を加熱する。 (8) Preferably, the light source heats the dispersion liquid so that the size of the microbubbles generated in the dispersion liquid is larger than the distance between the first electrode and the second electrode.
 (9)好ましくは、検出装置は、インピーダンスの変化量が所定の判定量を上回った場合に被検出物質が検出されたと判定する一方で、所定期間が経過するまでのインピーダンスの変化量が判定量を下回った場合には被検出物質が検出されなかったと判定する。 (9) Preferably, the detection device determines that the detected substance is detected when the amount of change in impedance exceeds a predetermined determination amount, while the amount of change in impedance until the predetermined period elapses is determined as the determination amount. If it falls below the value, it is determined that the substance to be detected was not detected.
 (10)好ましくは、被検出物質は、ターゲットDNAおよびターゲットRNAのうちの少なくとも一方であるターゲット核酸である。ホスト分子は、ターゲット核酸との間でハイブリダイゼーションを起こすプローブ核酸である。 (10) Preferably, the substance to be detected is a target nucleic acid that is at least one of target DNA and target RNA. A host molecule is a probe nucleic acid that causes hybridization with a target nucleic acid.
 (11)好ましくは、被検出物質は、抗原である。ホスト分子は、抗原との間で抗原抗体反応を起こす抗体である。 (11) Preferably, the substance to be detected is an antigen. A host molecule is an antibody that causes an antigen-antibody reaction with an antigen.
 (12)本開示のさらに他の局面に従うインピーダンス測定方法は、第1~第4のステップを含む。第1のステップは、光照射により発熱する光発熱部材と、第1および第2の電極とを含む保持部材に、複数の微小物体が分散した分散液を保持させるステップである。第2のステップは、保持させるステップ(第1のステップ)の後に光発熱部材に光を照射するステップである。第3のステップは、光発熱部材の発熱により分散液が加熱されることで生じた分散液中の対流を用いて、第1の電極と第2の電極との間に複数の微小物体を集積させることにより第1の電極と第2の電極との間を複数の微小物体によって架橋させるステップである。第4のステップは、架橋させるステップ(第3のステップ)の後に第1の電極と第2の電極との間の複数の微小物体のインピーダンスを測定するステップである。 (12) An impedance measurement method according to still another aspect of the present disclosure includes first to fourth steps. The first step is a step of holding a dispersion liquid in which a plurality of minute objects are dispersed in a holding member including a light heating member that generates heat by light irradiation and the first and second electrodes. The second step is a step of irradiating the light heating member with light after the holding step (first step). In the third step, a plurality of minute objects are integrated between the first electrode and the second electrode by using convection in the dispersion generated by heating the dispersion by the heat generated by the light generating member. In this step, the first electrode and the second electrode are bridged by a plurality of minute objects. The fourth step is a step of measuring impedances of a plurality of minute objects between the first electrode and the second electrode after the step of crosslinking (third step).
 (13)架橋させるステップ(第4のステップ)は、分散液が加熱されることで分散液中に発生するマイクロバブルのサイズを第1の電極と第2の電極との間の距離よりも大きくするステップを含む。 (13) In the crosslinking step (fourth step), the size of the microbubbles generated in the dispersion liquid by heating the dispersion liquid is larger than the distance between the first electrode and the second electrode. Including the steps of:
 本開示によれば、微小物体のインピーダンスを測定するためのインピーダンス測定システムまたはインピーダンス測定方法において、インピーダンスを迅速に測定することができる。 According to the present disclosure, it is possible to quickly measure the impedance in the impedance measurement system or the impedance measurement method for measuring the impedance of the minute object.
 また、本開示によれば、液体試料に含まれる可能性がある被検出物質を検出する、被検出物質の検出システムにおいて、被検出物質を迅速に検出することができる。 In addition, according to the present disclosure, a substance to be detected can be quickly detected in a detection system for a substance to be detected that detects a substance to be detected that may be contained in a liquid sample.
実施の形態1に係る微小物体の電気的特性測定システムの構成を概略的に示す図である。1 is a diagram schematically showing a configuration of a system for measuring electrical characteristics of a minute object according to Embodiment 1. FIG. 測定キットの構成を詳細に説明するための図である。It is a figure for demonstrating the structure of a measurement kit in detail. 実施の形態1における微小物体の電気的特性の測定方法を示すフローチャートである。3 is a flowchart showing a method for measuring electrical characteristics of a minute object in the first embodiment. 微小物体の集積メカニズムを説明するための図である。It is a figure for demonstrating the accumulation mechanism of a micro object. 微小物体の集積作用を利用した電極間の電気的特性の測定メカニズムを説明するための図である。It is a figure for demonstrating the measurement mechanism of the electrical property between electrodes using the integration | stacking effect | action of a micro object. 微小物体の集積(架橋)に伴う電極間の電気抵抗の時間変化を説明するための図である。It is a figure for demonstrating the time change of the electrical resistance between electrodes accompanying accumulation | aggregation (bridge | crosslinking) of a micro object. 実施の形態1の実施例における測定キットの構成を示す図である。It is a figure which shows the structure of the measurement kit in the Example of Embodiment 1. FIG. 本実施例における電極の構成をより詳細に説明するための図である。It is a figure for demonstrating in detail the structure of the electrode in a present Example. 比較例における電極間の電気抵抗の時間変化の測定例を示す図である。It is a figure which shows the example of a measurement of the time change of the electrical resistance between electrodes in a comparative example. 図9に示した3回の測定のうちの3回目の測定における電極近傍の画像である。10 is an image of the vicinity of an electrode in the third measurement of the three measurements shown in FIG. 9. 本実施例における電極間の電気抵抗の時間変化の測定例を示す図である。It is a figure which shows the example of a measurement of the time change of the electrical resistance between electrodes in a present Example. 本実施例における電気抵抗測定時における電極近傍の画像である。It is an image of the electrode vicinity at the time of the electrical resistance measurement in a present Example. 電気抵抗の濃度依存性を説明するための図である。It is a figure for demonstrating the density | concentration dependence of an electrical resistance. 分散液D3,D4におけるレーザスポット近傍の画像である。It is an image of the laser spot vicinity in dispersion liquid D3, D4. 比較例における電極上の集積物の同定結果を説明するための図である。It is a figure for demonstrating the identification result of the accumulation | aggregation on the electrode in a comparative example. 本実施例における電極上の集積物の同定結果を説明するための図である。It is a figure for demonstrating the identification result of the accumulation | aggregation on the electrode in a present Example. 本実施例における金ナノ粒子の電気伝導率の算出手法を説明するための図である。It is a figure for demonstrating the calculation method of the electrical conductivity of the gold nanoparticle in a present Example. 実施の形態2におけるターゲットDNAの検出原理を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining the detection principle of target DNA in the second embodiment. 検出キットの構成を詳細に説明するための図である。It is a figure for demonstrating in detail the structure of a detection kit. ハイブリダイゼーションを利用した電極間の電気的特性の測定メカニズムを説明するための第1の図である。It is a 1st figure for demonstrating the measurement mechanism of the electrical property between electrodes using hybridization. ハイブリダイゼーションを利用した電極間の電気的特性の測定メカニズムを説明するための第2の図である。It is a 2nd figure for demonstrating the measurement mechanism of the electrical property between electrodes using hybridization. 実施の形態2における被検出物質(ターゲットDNA)の検出方法を示すフローチャートである。5 is a flowchart showing a method for detecting a substance to be detected (target DNA) in Embodiment 2. 相補鎖DNAまたはミスマッチDNAを含む分散液における電極間の電気抵抗の時間変化を説明するための図である。It is a figure for demonstrating the time change of the electrical resistance between electrodes in the dispersion liquid containing complementary strand DNA or mismatched DNA. 電極間の電気抵抗の時間変化の測定結果を平均化した図である。It is the figure which averaged the measurement result of the time change of the electrical resistance between electrodes. 実施の形態2の実施例における被検出物質(相補鎖DNA)の検出方法を示すフローチャートである。5 is a flowchart showing a method for detecting a substance to be detected (complementary strand DNA) in the Example of Embodiment 2. 実施の形態2の実施例2における検出キットの構成を示す図である。It is a figure which shows the structure of the detection kit in Example 2 of Embodiment 2. FIG. くし型電極においてマイクロバブルが発生する様子の観察結果を示す図である。It is a figure which shows the observation result of a mode that a microbubble generate | occur | produces in a comb-type electrode. くし型電極間の集積物の測定例を示す図である。It is a figure which shows the example of a measurement of the accumulation | aggregation between comb-shaped electrodes. レーザ光の照射停止後における、くし型電極近傍の画像である。It is the image of the comb-shaped electrode vicinity after the irradiation of a laser beam is stopped. くし型電極における電気抵抗の測定例を示す図である。It is a figure which shows the example of a measurement of the electrical resistance in a comb-type electrode.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 本開示において、「微小物体」との用語は、ナノメートルオーダーからマイクロメートルオーダーまでのサイズを有する物体を意味する。微小物体の形状は特に限定されず、たとえば球形、楕円球形、ロッド形状、コイル形状等である。微小物体が楕円球形の場合、楕円球の短軸方向および長軸方向の長さの少なくとも一方がナノメートルオーダーからマイクロメートルオーダーまでの範囲内であればよい。微小物体がロッド形状の場合、ロッドの幅および長さの少なくとも一方がナノメートルオーダーからマイクロメートルオーダーまでの範囲内であればよい。微小物体がコイル形状の場合、コイルの幅および長さの少なくとも一方がナノメートルオーダーからマイクロメートルオーダーまでの範囲内であればよい。 In the present disclosure, the term “micro object” means an object having a size from nanometer order to micrometer order. The shape of the minute object is not particularly limited, and may be, for example, a spherical shape, an elliptical spherical shape, a rod shape, or a coil shape. When the minute object is an elliptical sphere, it is sufficient that at least one of the length in the minor axis direction and the major axis direction of the ellipsoid sphere is in a range from nanometer order to micrometer order. When the minute object has a rod shape, it is sufficient that at least one of the width and the length of the rod is in the range from nanometer order to micrometer order. When the minute object has a coil shape, it is sufficient that at least one of the width and the length of the coil is in the range from nanometer order to micrometer order.
 微小物体の例としては、金属ナノ粒子、金属ナノ粒子集合体、金属ナノ粒子集積構造体、半導体ナノ粒子、有機ナノ粒子、樹脂ビーズ、PM(Particulate  Matter)、ナノコイルなどが挙げられる。「金属ナノ粒子」とは、ナノメートルオーダーのサイズを有する金属粒子である。「金属ナノ粒子集合体」とは、複数の金属ナノ粒子が凝集することによって形成された集合体である。「金属ナノ粒子集積構造体」とは、たとえば複数の金属ナノ粒子が相互作用部位を介してビーズの表面に固定され、互いに隙間を設けて、金属ナノ粒子の直径以下の間隔で配置された構造体である。「半導体ナノ粒子」とは、ナノメートルオーダーのサイズを有する半導体粒子である。「有機ナノ粒子」とは、ナノメートルオーダーのサイズを有する有機化合物からなる粒子である。「樹脂ビーズ」とは、ナノメートルオーダーからマイクロメートルオーダーまでの範囲のサイズを有する樹脂からなる粒子である。「PM」とは、マイクロメートルオーダーのサイズを有する粒子状物質である。PMの例としては、PM2.5、SPM(Suspended  Particulate Matter)が挙げられる。「ナノコイル」とは、ナノメートルオーダーのサイズ(幅または長さ)を有するコイルである。 Examples of micro objects include metal nanoparticles, metal nanoparticle aggregates, metal nanoparticle integrated structures, semiconductor nanoparticles, organic nanoparticles, resin beads, PM (Particulate Matter), and nanocoils. “Metal nanoparticles” are metal particles having a size on the order of nanometers. The “metal nanoparticle aggregate” is an aggregate formed by aggregation of a plurality of metal nanoparticles. “Metal nanoparticle integrated structure” is a structure in which, for example, a plurality of metal nanoparticles are fixed to the surface of a bead via an interaction site, and a gap is provided between each metal nanoparticle so as to have an interval equal to or smaller than the diameter of the metal nanoparticles. Is the body. “Semiconductor nanoparticles” are semiconductor particles having a size on the order of nanometers. “Organic nanoparticles” are particles made of an organic compound having a size on the order of nanometers. “Resin beads” are particles made of a resin having a size ranging from the nanometer order to the micrometer order. “PM” is a particulate material having a size on the order of micrometers. Examples of PM include PM2.5 and SPM (Suspended Particulate Matter). A “nanocoil” is a coil having a size (width or length) on the order of nanometers.
 微小物体は、生体由来の物質(生体物質)であってもよい。より具体的には、微小物体は、細胞、微生物(細菌、真菌等)、生体高分子(タンパク質、核酸、脂質、多糖類等)、抗原(アレルゲン等)およびウイルスを含み得る。なお、本開示における「被検出物質」は、上記「微小物体」であってもよい。 The micro object may be a biological substance (biological substance). More specifically, the micro object may include cells, microorganisms (bacteria, fungi, etc.), biopolymers (proteins, nucleic acids, lipids, polysaccharides, etc.), antigens (allergens, etc.) and viruses. Note that the “substance to be detected” in the present disclosure may be the “micro object”.
 本開示において、「ナノメートルオーダー」には、1nmから1000nm(=1μm)までの範囲が含まれる。「マイクロメートルオーダー」には、1μmから1000μm(=1mm)までの範囲が含まれる。したがって、「ナノメートルオーダーからマイクロメートルオーダーまで」との用語は、1nmから1000μmまでの範囲を示すが、典型的には数十nm~数百μmの範囲を示し、好ましくは100nm~100μmの範囲を示し、より好ましくは1μm~数十μmの範囲を示し得る。 In the present disclosure, “nanometer order” includes a range from 1 nm to 1000 nm (= 1 μm). The “micrometer order” includes a range from 1 μm to 1000 μm (= 1 mm). Thus, the term “from nanometer order to micrometer order” refers to a range from 1 nm to 1000 μm, but typically ranges from several tens of nm to several hundreds of μm, preferably from 100 nm to 100 μm. And more preferably in the range of 1 μm to several tens of μm.
 本開示において、電極間のインピーダンスとは、電極間に電場が印可された場合の電圧と電流との比を意味する。そのため、インピーダンスは、電極間に直流(直流電圧または直流電流)が印加された場合の直流抵抗と、電極間に交流(交流電圧または交流電流)が印加された場合の交流インピーダンスとを含む。また、詳細は後述するが、電極間のインピーダンスの測定結果から、微小物体の電気的特性を算出したり、電極間における微小物体(被検出物質)の有無を判定したりすることが可能である。ここで微小物体の「電気的特性」とは、微小物体に印加された電場に対する微小物体の応答性を意味する。電気的特性の例としては、電気抵抗率(あるいは電気伝導率)、キャパシタンス、インダクタンス、誘電率、キャリア(電子、ホール)の濃度または移動度などが挙げられる。 In the present disclosure, the impedance between the electrodes means a ratio between a voltage and a current when an electric field is applied between the electrodes. Therefore, the impedance includes a direct current resistance when a direct current (direct current voltage or direct current) is applied between the electrodes and an alternating current impedance when an alternating current (alternating voltage or alternating current) is applied between the electrodes. Although details will be described later, it is possible to calculate the electrical characteristics of the minute object from the measurement result of the impedance between the electrodes, and to determine the presence or absence of the minute object (substance to be detected) between the electrodes. . Here, the “electrical characteristic” of the minute object means the responsiveness of the minute object to the electric field applied to the minute object. Examples of electrical characteristics include electrical resistivity (or electrical conductivity), capacitance, inductance, dielectric constant, carrier (electron, hole) concentration or mobility, and the like.
 本開示において、「マイクロバブル」とは、マイクロメートルオーダーのサイズを有する気泡である。 In the present disclosure, “microbubble” is a bubble having a size on the order of micrometers.
 本開示において、「ハイブリダイゼーション」とは、少なくとも2種の一本鎖核酸の間での再会合反応を意味する。ハイブリダイゼーションには、2種の一本鎖核酸の全体間での再会合反応に限らず、ある一本鎖核酸の一部分と、他の一本鎖核酸の一部分との間での再会合反応を含み得る。以下に説明する実施の形態2では、塩基配列が相補的な関係にある一本鎖DNAの間で二重鎖が形成される。しかし、ハイブリダイゼーションはこれに限定されず、たとえば、1個の一本鎖DNAと1個のRNAとの間、または2個のRNAの間での二重鎖形成を含む。 In the present disclosure, “hybridization” means a reassociation reaction between at least two types of single-stranded nucleic acids. Hybridization is not limited to a reassociation reaction between two types of single-stranded nucleic acids as a whole, but a reassociation reaction between a part of one single-stranded nucleic acid and a part of another single-stranded nucleic acid. May be included. In Embodiment 2 described below, a double strand is formed between single-stranded DNAs having complementary base sequences. However, hybridization is not limited to this, and includes, for example, duplex formation between one single-stranded DNA and one RNA, or between two RNAs.
 本開示において、「架橋」とは、電極上または電極間に配置された複数の微小物体同士を結び付けたり複数の微小物体間に結合を形成させたりすることによって、当該電極間を電気的に接続することを意味する。微小物体間の結び付き、あるいは結合の種類は特に限定されず、化学結合(共有結合、イオン結合または金属結合)であってもよいし、分子間力による結合(水素結合、極性分子間に働く引力による結合またはファンデルワールス力による結合)であってもよい。 In the present disclosure, “crosslinking” means that the electrodes are electrically connected by linking a plurality of minute objects arranged on or between the electrodes or by forming a bond between the plurality of minute objects. It means to do. There is no particular limitation on the connection between micro objects or the type of bond, and it may be a chemical bond (covalent bond, ionic bond or metal bond), or bond by intermolecular force (hydrogen bond, attractive force acting between polar molecules) Or by van der Waals force).
 [実施の形態1]
 実施の形態1では、電極間のインピーダンスを測定し、その測定結果に基づいて微小物体の電気的特性を算出する構成について説明する。以下では、x方向およびy方向は、水平方向を表す。x方向とy方向とは互いに直交する。z方向は、鉛直方向を表す。重力の向きは、z方向下方である。z方向上方を「上方」と略し、z方向下方を「下方」と略す場合がある。
[Embodiment 1]
In the first embodiment, a configuration will be described in which the impedance between electrodes is measured and the electrical characteristics of a minute object are calculated based on the measurement result. Hereinafter, the x direction and the y direction represent the horizontal direction. The x direction and the y direction are orthogonal to each other. The z direction represents the vertical direction. The direction of gravity is downward in the z direction. The upper direction in the z direction may be abbreviated as “upper”, and the lower direction in the z direction may be abbreviated as “lower”.
 <電気的特性測定システムの構成>
 図1は、実施の形態1に係る微小物体の電気的特性測定システム(以下、「測定システム」とも略す)1の構成を概略的に示す図である。図1を参照して、測定システム1は、測定キット2と、XYZ軸ステージ10と、調整機構20と、サンプル供給部30と、レーザ光源40と、光学部品50と、対物レンズ60と、照明光源70と、撮影機器80と、マルチメータ90と、制御装置100とを備える。
<Configuration of electrical characteristic measurement system>
FIG. 1 is a diagram schematically showing the configuration of a minute object electrical characteristic measurement system (hereinafter also abbreviated as “measurement system”) 1 according to the first embodiment. Referring to FIG. 1, a measurement system 1 includes a measurement kit 2, an XYZ axis stage 10, an adjustment mechanism 20, a sample supply unit 30, a laser light source 40, an optical component 50, an objective lens 60, and illumination. The light source 70, the imaging device 80, the multimeter 90, and the control apparatus 100 are provided.
 測定キット2は、測定対象となる微小物体M(図4参照)が分散した分散液Dを保持する。分散液Dの分散媒は、十分に高い絶縁性(低い導電性)を有する液体であり、たとえば水である。測定キット2の詳細な構成については図2にて説明する。測定キット2は、XYZ軸ステージ10上に載置される。 The measurement kit 2 holds a dispersion D in which minute objects M (see FIG. 4) to be measured are dispersed. The dispersion medium of the dispersion liquid D is a liquid having sufficiently high insulation (low conductivity), for example, water. The detailed configuration of the measurement kit 2 will be described with reference to FIG. The measurement kit 2 is placed on the XYZ axis stage 10.
 調整機構20は、制御装置100からの指令に応じて、XYZ軸ステージ10と対物レンズ60との相対的な位置関係を調整する。本実施の形態では、対物レンズ60の位置が固定されている。そのため、XYZ軸ステージ10のx方向、y方向およびz方向の位置調整により、XYZ軸ステージ10と対物レンズ60との相対的な位置関係が調整される。なお、調整機構20としては、たとえば、顕微鏡に付属のサーボモータおよび焦準ハンドルなどの駆動機構(図示せず)を用いることができるが、調整機構20の具体的な構成は特に限定されない。調整機構20は、対物レンズ60の位置を調整できるように構成されていてもよい。 The adjusting mechanism 20 adjusts the relative positional relationship between the XYZ axis stage 10 and the objective lens 60 in accordance with a command from the control device 100. In the present embodiment, the position of the objective lens 60 is fixed. Therefore, the relative positional relationship between the XYZ axis stage 10 and the objective lens 60 is adjusted by adjusting the positions of the XYZ axis stage 10 in the x, y, and z directions. As the adjustment mechanism 20, for example, a drive mechanism (not shown) such as a servo motor and a focusing handle attached to the microscope can be used, but the specific configuration of the adjustment mechanism 20 is not particularly limited. The adjustment mechanism 20 may be configured so that the position of the objective lens 60 can be adjusted.
 サンプル供給部30は、制御装置100からの指令に応じて、測定キット2上に分散液D(サンプル)を供給する。サンプル供給部30としては、たとえばディスペンサを用いることができる。 The sample supply unit 30 supplies the dispersion D (sample) onto the measurement kit 2 in accordance with a command from the control device 100. As the sample supply unit 30, for example, a dispenser can be used.
 レーザ光源40は、制御装置100からの指令に応じて、たとえば近赤外(たとえば波長800nm)のレーザ光L1を発する。ただし、レーザ光L1の波長は、後述する光発熱部材110(図2参照)の材料の吸収波長域に含まれる波長であれば、特に限定されない。レーザ光源40の波長は、近赤外域に含まれる他の波長(たとえば1064nm)であってもよいし、近赤外域以外の波長域(たとえば可視光域)に含まれる波長であってもよい。なお、レーザ光源40は、本開示に係る「光源」に相当する。 Laser light source 40 emits, for example, near-infrared (for example, wavelength 800 nm) laser light L1 in response to a command from control device 100. However, the wavelength of the laser beam L1 is not particularly limited as long as the wavelength is included in the absorption wavelength region of the material of the light heating member 110 (see FIG. 2) described later. The wavelength of the laser light source 40 may be other wavelengths (for example, 1064 nm) included in the near infrared region, or may be wavelengths included in a wavelength region other than the near infrared region (for example, visible light region). The laser light source 40 corresponds to a “light source” according to the present disclosure.
 光学部品50は、たとえば、ミラー、ダイクロイックミラーまたはプリズムを含んで構成される。測定システム1の光学系は、レーザ光源40からのレーザ光L1が光学部品50により対物レンズ60へと導かれるように調整される。 The optical component 50 includes, for example, a mirror, a dichroic mirror, or a prism. The optical system of the measurement system 1 is adjusted so that the laser light L1 from the laser light source 40 is guided to the objective lens 60 by the optical component 50.
 対物レンズ60は、レーザ光源40からのレーザ光L1を集光する。対物レンズ60により集光された光は測定キット2上の分散液Dに照射される。ここで「照射する」とは、レーザ光L1が分散液Dを通過する場合を含む。すなわち、対物レンズ60により集光された光のビームウエストが分散液D内に位置する場合に限定されない。なお、光学部品50および対物レンズ60は、たとえば倒立型顕微鏡本体または正立型顕微鏡本体(いずれも図示せず)に組み込むことができる。 The objective lens 60 condenses the laser light L1 from the laser light source 40. The light condensed by the objective lens 60 is applied to the dispersion D on the measurement kit 2. Here, “irradiate” includes the case where the laser light L1 passes through the dispersion D. That is, the present invention is not limited to the case where the beam waist of the light collected by the objective lens 60 is located in the dispersion D. The optical component 50 and the objective lens 60 can be incorporated into, for example, an inverted microscope main body or an upright microscope main body (both not shown).
 照明光源70は、制御装置100からの指令に応じて、測定キット2上の分散液Dを照らすための白色光L2を発する。一例として、ハロゲンランプを照明光源70として採用することができる。対物レンズ60は、分散液Dに照射された白色光L2を取り込むためにも用いられる。対物レンズ60により取り込まれた白色光L2は、光学部品50により撮影機器80へと導かれる。 The illumination light source 70 emits white light L2 for illuminating the dispersion D on the measurement kit 2 in accordance with a command from the control device 100. As an example, a halogen lamp can be employed as the illumination light source 70. The objective lens 60 is also used for taking in the white light L2 irradiated to the dispersion D. The white light L <b> 2 captured by the objective lens 60 is guided to the photographing device 80 by the optical component 50.
 撮影機器80は、制御装置100からの指令に応じて、白色光L2が照射された分散液Dを撮影し、撮影された画像(動画または静止画)を制御装置100に出力する。撮影機器80には、CCD(Charge Coupled  Device)イメージセンサまたはCMOS(Complementary  Metal Oxide  Semiconductor)イメージセンサを含むビデオカメラが用いられる。 The photographing device 80 photographs the dispersion D irradiated with the white light L <b> 2 in accordance with a command from the control device 100 and outputs the photographed image (moving image or still image) to the control device 100. As the photographing device 80, a video camera including a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
 マルチメータ90は、測定キット2に設けられた電極111と電極112との間(図2参照)の電気抵抗(インピーダンス)を測定するように構成された測定装置(インピーダンス測定装置)ある。より具体的には、マルチメータ90は、制御装置100からの指令に応じて、たとえば、電極111,112間に定電流を流しつつ電極111,112間の電圧を測定し、その測定結果を制御装置100に出力する。 The multimeter 90 is a measuring device (impedance measuring device) configured to measure an electrical resistance (impedance) between the electrode 111 and the electrode 112 provided in the measuring kit 2 (see FIG. 2). More specifically, the multimeter 90 measures, for example, the voltage between the electrodes 111 and 112 while passing a constant current between the electrodes 111 and 112 in accordance with a command from the control device 100, and controls the measurement result. Output to the device 100.
 制御装置100は、いずれも図示しないが、CPU(Central  Processing  Unit)と、メモリと、入出力ポートとを含んで構成されるマイクロコンピュータである。制御装置100は、測定システム1に含まれる各機器(調整機構20、サンプル供給部30、レーザ光源40、照明光源70、撮影機器80およびマルチメータ90)を制御する。また、制御装置100は、マルチメータ90からの測定結果に所定の演算処理を施すことによって、分散液Dの電気的特性(後述の例では電気抵抗R)を算出する。さらに、制御装置100は、撮影機器80により撮影された画像に所定の画像処理を施すことが可能に構成されている。 Although not shown, the control device 100 is a microcomputer including a CPU (Central Processing Unit), a memory, and an input / output port. The control device 100 controls each device (the adjustment mechanism 20, the sample supply unit 30, the laser light source 40, the illumination light source 70, the photographing device 80, and the multimeter 90) included in the measurement system 1. In addition, the control device 100 calculates an electrical characteristic (electric resistance R in the example described later) of the dispersion D by performing a predetermined calculation process on the measurement result from the multimeter 90. Further, the control device 100 is configured to perform predetermined image processing on an image photographed by the photographing device 80.
 なお、実施の形態1においては、マルチメータ90により定電流制御を行ないつつ電極111,112間の電圧を測定する構成を例に説明する。しかし、マルチメータ90に代えてガルバノスタットまたはポテンショスタット(いずれも図示せず)を本開示に係る「インピーダンス測定装置」として用いてもよい。ガルバノスタットを用いた場合には、電極111,112間を定電流が流れる場合の電極111,112間の電圧が測定される。ポテンショスタットを用いた場合には、電極111,112間に定電圧を印加した場合に電極111,112間を流れる電流が測定される。 In the first embodiment, a configuration in which the voltage between the electrodes 111 and 112 is measured while performing constant current control by the multimeter 90 will be described as an example. However, instead of the multimeter 90, a galvanostat or a potentiostat (both not shown) may be used as the “impedance measurement device” according to the present disclosure. When a galvanostat is used, the voltage between the electrodes 111 and 112 when a constant current flows between the electrodes 111 and 112 is measured. When a potentiostat is used, the current flowing between the electrodes 111 and 112 when a constant voltage is applied between the electrodes 111 and 112 is measured.
 また、測定システム1の光学系は、レーザ光源40からのレーザ光L1を測定キット2に照射することが可能であるととともに、測定キット2に照射された白色光L2を撮影機器80に取り込むことが可能であれば、図1に示した構成に限定されない。たとえば、測定システム1の光学系は、光ファイバ等を含んで構成されてもよい。また、測定システム1において、調整機構20、サンプル供給部30、対物レンズ60、照明光源70および撮影機器80は必須の構成要素ではない。 Further, the optical system of the measurement system 1 can irradiate the measurement kit 2 with the laser light L1 from the laser light source 40, and takes in the photographing device 80 with the white light L2 irradiated on the measurement kit 2. If possible, the configuration is not limited to that shown in FIG. For example, the optical system of the measurement system 1 may be configured to include an optical fiber or the like. In the measurement system 1, the adjustment mechanism 20, the sample supply unit 30, the objective lens 60, the illumination light source 70, and the imaging device 80 are not essential components.
 図2は、測定キット2の構成を詳細に説明するための図である。図2を参照して、測定キット2は、基板11と、光発熱部材110と、電極111,112とを含む。なお、図2では、図面が煩雑になるのを防ぐため、分散液D中の微小物体Mの図示を省略している。 FIG. 2 is a diagram for explaining the configuration of the measurement kit 2 in detail. Referring to FIG. 2, measurement kit 2 includes a substrate 11, a light heating member 110, and electrodes 111 and 112. In FIG. 2, the illustration of the minute object M in the dispersion D is omitted in order to prevent the drawing from becoming complicated.
 基板11は、XYZ軸ステージ10上に載置され、分散液Dを保持する。基板11は、電気的絶縁性を有するとともに、レーザ光源40からのレーザ光L1および照明光源70からの白色光L2に対して光学的に透明である。基板11の材料としては、たとえばガラスまたは石英ガラスを用いることができる。 The substrate 11 is placed on the XYZ axis stage 10 and holds the dispersion D. The substrate 11 has electrical insulation and is optically transparent to the laser light L1 from the laser light source 40 and the white light L2 from the illumination light source 70. As a material of the substrate 11, for example, glass or quartz glass can be used.
 なお、基板11は、本開示に係る「保持部材」の一例に相当する。図2では、本開示に係る「保持部材」として平面上の基板を用いた構成を例に示す。しかし、本開示に係る「保持部材」は、分散液Dを保持可能な形状であれば特に限定されず、立体形状を有する容器(たとえば直方体形状または円筒形状の容器)であってもよい。 The substrate 11 corresponds to an example of a “holding member” according to the present disclosure. In FIG. 2, a configuration using a planar substrate as an example of the “holding member” according to the present disclosure is illustrated. However, the “holding member” according to the present disclosure is not particularly limited as long as it can hold the dispersion D, and may be a container having a three-dimensional shape (for example, a rectangular parallelepiped or cylindrical container).
 電極111,112の各々は、基板11上に形成されている。電極111(第1の電極)は陽極であり、電極112(第2の電極)は陰極である。各電極111,112は、膜厚がナノメートルオーダーの金属薄膜であり、たとえば白金薄膜である。基板11と電極111との間には、基板11と電極111との接着性(たとえば石英ガラスと白金薄膜との接着性)を高めるための接着層121が形成されている。同様に、基板11と電極112との間には接着層122が形成されている。各接着層121,122は、たとえばチタン薄膜である。なお、電極111,112の基板11上への接着性を確保することができれば、接着層121,122は必須ではない。 Each of the electrodes 111 and 112 is formed on the substrate 11. The electrode 111 (first electrode) is an anode, and the electrode 112 (second electrode) is a cathode. Each of the electrodes 111 and 112 is a metal thin film having a film thickness on the order of nanometers, for example, a platinum thin film. Between the substrate 11 and the electrode 111, an adhesive layer 121 for enhancing the adhesiveness between the substrate 11 and the electrode 111 (for example, the adhesiveness between quartz glass and a platinum thin film) is formed. Similarly, an adhesive layer 122 is formed between the substrate 11 and the electrode 112. Each adhesive layer 121, 122 is, for example, a titanium thin film. Note that the adhesive layers 121 and 122 are not essential as long as the adhesion of the electrodes 111 and 112 to the substrate 11 can be secured.
 光発熱部材110は、たとえば、電極111と電極112との間において基板11上に形成されている。言い換えると、電極111および電極112は、光発熱部材110を挟むように互いに離間して配置されている。光発熱部材110は、膜厚がナノメートルオーダーの金属薄膜であり、たとえば白金薄膜である。図2では、基板11と光発熱部材110との間にも基板11と光発熱部材110との接着性を高めるための接着層120(たとえばチタン薄膜)が形成されているが、接着層120は必須ではない。また、図2には、光発熱部材110が楕円状に形成された例が示されているが、光発熱部材110の形状は特に限定されず、たとえば真円状、正方形状、長方形状であってもよい。 The light heating member 110 is formed on the substrate 11 between the electrode 111 and the electrode 112, for example. In other words, the electrode 111 and the electrode 112 are spaced apart from each other so as to sandwich the light heating member 110. The light heating member 110 is a metal thin film having a film thickness on the order of nanometers, for example, a platinum thin film. In FIG. 2, an adhesive layer 120 (for example, a titanium thin film) is formed between the substrate 11 and the light heating member 110 to improve the adhesion between the substrate 11 and the light heating member 110. Not required. FIG. 2 shows an example in which the light heat generating member 110 is formed in an elliptical shape, but the shape of the light heat generating member 110 is not particularly limited, and may be, for example, a perfect circle shape, a square shape, or a rectangular shape. May be.
 光発熱部材110は、レーザ光源40からのレーザ光L1を吸収し、レーザ光L1の光エネルギーを熱エネルギーに変換する。より詳細に説明すると、金属薄膜を構成する金属ナノ粒子(たとえば白金ナノ粒子)の自由電子は表面プラズモンを形成し、レーザ光L1によって振動する。これにより分極が生じる。この分極のエネルギーは、自由電子と原子核との間のクーロン相互作用により格子振動のエネルギーに変換される。その結果、金属ナノ粒子は熱を発生させる。以下では、この効果を「光発熱効果」とも称する。 The light heating member 110 absorbs the laser light L1 from the laser light source 40 and converts the light energy of the laser light L1 into heat energy. More specifically, free electrons of metal nanoparticles (for example, platinum nanoparticles) constituting the metal thin film form surface plasmons and are vibrated by the laser light L1. This causes polarization. This polarization energy is converted into lattice vibration energy by Coulomb interaction between the free electrons and the nucleus. As a result, the metal nanoparticles generate heat. Hereinafter, this effect is also referred to as a “light heating effect”.
 光発熱部材110の材料は、レーザ光L1の波長域(本実施の形態では800nm)における光熱変換効率が高い材料であることが好ましい。光発熱部材110の材料は、白金に限定されるものではなく、光発熱効果を生じ得る白金以外の金属元素(たとえば金もしくは銀)または金属ナノ粒子集積構造体(たとえば金ナノ粒子もしくは銀ナノ粒子を用いた構造体)であってもよい。あるいは、光発熱部材110の材料は、レーザ光L1の波長域の光吸収率が高く、かつ導電性を有する金属以外の材料であってもよい。そのような材料としては、黒体に近い材料(たとえばカーボンナノチューブ黒体)が挙げられる。光発熱部材110の厚みは、レーザ光L1の出力(レーザ出力)ならびに光発熱部材110の材料の吸収波長域および光熱変換効率を考慮して、設計的または実験的に決定される。 The material of the light heating member 110 is preferably a material having high photothermal conversion efficiency in the wavelength region of the laser light L1 (800 nm in the present embodiment). The material of the light heating member 110 is not limited to platinum, but a metal element other than platinum (for example, gold or silver) or a metal nanoparticle integrated structure (for example, gold nanoparticle or silver nanoparticle) that can produce a light heat generation effect. It may be a structure using Alternatively, the material of the light heating member 110 may be a material other than a metal having high light absorption in the wavelength region of the laser light L1 and having conductivity. Examples of such a material include a material close to a black body (for example, a carbon nanotube black body). The thickness of the light heating member 110 is determined by design or experiment in consideration of the output of the laser light L1 (laser output), the absorption wavelength range of the material of the light heating member 110, and the photothermal conversion efficiency.
 <測定フロー>
 図3は、実施の形態1における微小物体Mの電気的特性の測定方法を示すフローチャートである。図3ならびに後述する図23および図26に示すフローチャートは、所定条件成立時(たとえばユーザが図示しない測定開始ボタンを操作したとき)に実行される。これらのフローチャートに含まれる各ステップ(以下、Sと略す)は、基本的には制御装置100によるソフトウェア処理によって実現されるが、その一部または全部が制御装置100内に作製されたハードウェア(電気回路)によって実現されてもよい。
<Measurement flow>
FIG. 3 is a flowchart showing a method for measuring the electrical characteristics of the minute object M in the first embodiment. The flowcharts shown in FIG. 3 and FIGS. 23 and 26 described later are executed when a predetermined condition is satisfied (for example, when the user operates a measurement start button (not shown)). Each step (hereinafter abbreviated as “S”) included in these flowcharts is basically realized by software processing by the control device 100, but a part or all of the hardware ( Electric circuit).
 図1~図3を参照して、S101において、微小物体Mが分散した分散液Dが準備される。準備された分散液Dは、サンプル供給部30内に蓄えられる。 Referring to FIGS. 1 to 3, in S101, a dispersion D in which minute objects M are dispersed is prepared. The prepared dispersion D is stored in the sample supply unit 30.
 S102において、制御装置100は、測定キット2をXYZ軸ステージ10上に設置する。この処理は、たとえば基板11の送り機構(図示せず)により実現することができる。 In S102, the control device 100 installs the measurement kit 2 on the XYZ axis stage 10. This process can be realized by, for example, a feed mechanism (not shown) of the substrate 11.
 S103において、制御装置100は、測定キット2を照射するための白色光L2を発するように照明光源70を制御するとともに、測定キット2の撮影を開始するように撮影機器80を制御する。 In S103, the control device 100 controls the illumination light source 70 so as to emit white light L2 for irradiating the measurement kit 2, and also controls the photographing device 80 so as to start photographing of the measurement kit 2.
 S104において、制御装置100は、レーザ光源40からのレーザ光L1が光発熱部材110に照射されるように、調整機構20を制御することによってXYZ軸ステージ10の水平方向の位置を調整する。この水平方向の位置調整は、たとえば、撮影機器80により撮影された画像から、パターン認識の画像処理技術を用いて光発熱部材110の外形パターンを抽出することによって実現することができる。 In S104, the control device 100 adjusts the horizontal position of the XYZ axis stage 10 by controlling the adjustment mechanism 20 so that the laser light L1 from the laser light source 40 is irradiated onto the light heating member 110. This horizontal position adjustment can be realized, for example, by extracting the outer shape pattern of the light heating member 110 from an image photographed by the photographing device 80 using an image processing technique for pattern recognition.
 また、制御装置100は、レーザ光L1のビームウエストが適切な高さとなるように、調整機構20を制御することによってXYZ軸ステージ10の鉛直方向の位置を調整する。ビームウエストの鉛直方向の位置(高さ)は、レーザ光L1の波長および対物レンズ60の仕様(倍率等)から既知である。よって、XYZ軸ステージ10の鉛直方向の位置を調整することで、狙った高さにビームウエストを設定することができる。 Further, the control device 100 adjusts the position of the XYZ axis stage 10 in the vertical direction by controlling the adjustment mechanism 20 so that the beam waist of the laser light L1 becomes an appropriate height. The vertical position (height) of the beam waist is known from the wavelength of the laser light L1 and the specifications (magnification, etc.) of the objective lens 60. Therefore, the beam waist can be set to the target height by adjusting the position of the XYZ axis stage 10 in the vertical direction.
 S105において、制御装置100は、適量の分散液Dが保持されるように、サンプル供給部30を制御することによって分散液Dを測定キット2上に滴下させる。分散液Dの滴下量は、たとえば数μL~数百μL程度の微量であってもよいし、より多量であってもよい。 In S105, the control device 100 causes the dispersion D to drop onto the measurement kit 2 by controlling the sample supply unit 30 so that an appropriate amount of the dispersion D is held. The dripping amount of the dispersion liquid D may be a very small amount of, for example, about several μL to several hundred μL, or a larger amount.
 なお、S103~S105の処理の順序は、これに限定されない。たとえば、測定キット2への白色光L2の照射開始および測定キット2の撮影開始(S103の処理)に先立って、分散液Dを測定キット2上に滴下(S105の処理)してもよい。また、分散液Dの滴下後にXYZ軸ステージ10の鉛直方向の位置を調整(S104の処理)してもよい。 Note that the processing order of S103 to S105 is not limited to this. For example, the dispersion D may be dropped onto the measurement kit 2 (the process of S105) prior to the start of the irradiation of the white light L2 to the measurement kit 2 and the start of the photographing of the measurement kit 2 (the process of S103). Further, the vertical position of the XYZ axis stage 10 may be adjusted (the process of S104) after the dispersion D is dropped.
 S106において、制御装置100は、電極111,112間の電気抵抗Rを測定する。より詳細には、制御装置100は、マルチメータ90を制御することによって、測定キット2の電極111,112間に定電流を流しつつ電極111,112間の電圧を測定する。電極111,112間の電圧を、電極111,112間を流れる電流(定電流)により除算することで、電極111,112間の電気抵抗Rを算出することができる。 In S106, the control device 100 measures the electrical resistance R between the electrodes 111 and 112. More specifically, the control device 100 controls the multimeter 90 to measure the voltage between the electrodes 111 and 112 while causing a constant current to flow between the electrodes 111 and 112 of the measurement kit 2. By dividing the voltage between the electrodes 111 and 112 by the current (constant current) flowing between the electrodes 111 and 112, the electrical resistance R between the electrodes 111 and 112 can be calculated.
 S107において、制御装置100は、レーザ光L1の照射(以下、「光照射」とも記載する)を開始するようにレーザ光源40を制御する。レーザ光源40からのレーザ光L1は対物レンズ60により集光され、集光された光が光発熱部材110に照射される。 In S107, the control device 100 controls the laser light source 40 so as to start irradiation with the laser light L1 (hereinafter also referred to as “light irradiation”). The laser light L1 from the laser light source 40 is condensed by the objective lens 60, and the condensed light is irradiated to the light heating member 110.
 S108において、制御装置100は、たとえば光照射開始時刻から所定期間が経過した場合(たとえば数十秒~数分経過後)に、電極111,112間の電気抵抗測定を終了するようにマルチメータ90を制御する。 In S108, for example, when a predetermined period has elapsed from the light irradiation start time (for example, after several tens of seconds to several minutes have elapsed), the control device 100 ends the measurement of the electric resistance between the electrodes 111 and 112 so as to end the multimeter 90. To control.
 なお、光照射開始前(S107の処理の開始前)に電極111,112間の電気抵抗測定を開始(S106の処理)することは必須ではなく、光照射開始後(たとえばS107の処理開始時刻から所定期間経過後)に電極111,112間の電気抵抗測定を開始してもよい。S106~S108の処理の詳細については後述する。 Note that it is not essential to start measuring the electrical resistance between the electrodes 111 and 112 (process of S106) before the start of light irradiation (before the process of S107), but after the start of light irradiation (for example, from the process start time of S107). Measurement of electrical resistance between the electrodes 111 and 112 may be started after a predetermined period has elapsed. Details of the processing of S106 to S108 will be described later.
 S109において、制御装置100は、測定キット2へのレーザ光L1の照射を停止するようにレーザ光源40を制御する。また、制御装置100は、測定キット2への白色光L2の照射を停止するように照明光源70を制御する。 In S109, the control device 100 controls the laser light source 40 so as to stop the irradiation of the laser light L1 to the measurement kit 2. Moreover, the control apparatus 100 controls the illumination light source 70 so that irradiation of the white light L2 to the measurement kit 2 may be stopped.
 S110において、制御装置100は、S106~S108にて測定された電極111,112間の電気抵抗Rに基づいて、微小物体Mの電気的特性(たとえば図17にて説明する微小物体Mの電気伝導度κ)を算出する。これにより、一連の処理が終了する。 In S110, the control device 100 determines the electrical characteristics of the minute object M (for example, the electric conduction of the minute object M described in FIG. 17) based on the electric resistance R between the electrodes 111 and 112 measured in S106 to S108. Degree κ) is calculated. As a result, a series of processing ends.
 なお、S103の処理は、分散液Dを観察(画像を撮影)するための処理であって、微小物体Mの電気的特性の測定に必須の処理ではない。したがって、S103の処理を含まないフローチャートを実行した場合でも微小物体Mの電気的特性を測定することができる。 Note that the process of S103 is a process for observing the dispersion liquid D (taking an image), and is not an essential process for measuring the electrical characteristics of the minute object M. Therefore, even when the flowchart not including the process of S103 is executed, the electrical characteristics of the minute object M can be measured.
 また、電極111,112間に直流電圧(または直流電流)を印加することは必須ではない。電極111,112間に交流電圧(または交流電流)を印加し、電極111,112間の交流インピーダンス測定を行なってもよい。たとえば誘電泳動により分散液D中の細菌を電極付近に集積する誘導泳動インピーダンス測定法(DEPIM:Dielectrophoretic  Impedance Measurement)に代えて(詳細は非特許文献1参照)、以下に説明するメカニズムに従って微小物体を電極111,112近傍に集積し、それとともに電極111,112間のインピーダンス変化を測定することができる。 It is not essential to apply a DC voltage (or DC current) between the electrodes 111 and 112. An AC voltage (or an AC current) may be applied between the electrodes 111 and 112, and an AC impedance measurement between the electrodes 111 and 112 may be performed. For example, instead of a dielectrophoretic impedance measurement method (DEPIM: Dielectrophoretic Impedance Measurement) in which bacteria in the dispersion D are accumulated in the vicinity of the electrode by dielectrophoresis (for details, refer to Non-Patent Document 1), a minute object is applied according to the mechanism described below. It is possible to measure the impedance change between the electrodes 111 and 112 while accumulating in the vicinity of the electrodes 111 and 112.
 <測定メカニズム>
 続いて、S106~S108の処理における微小物体Mの電気的特性の測定メカニズム(電気抵抗Rの測定メカニズム)について詳細に説明する。実施の形態1では、レーザ光源40からのレーザ光L1の照射により微小物体Mが集積される。
<Measuring mechanism>
Subsequently, the measurement mechanism of the electrical characteristics of the minute object M (measurement mechanism of the electrical resistance R) in the processing of S106 to S108 will be described in detail. In the first embodiment, the minute objects M are integrated by the irradiation of the laser light L1 from the laser light source 40.
 図4は、微小物体Mの集積メカニズムを説明するための図である。図4(A)に示すように、レーザ光L1の照射を開始すると、レーザ光L1の照射位置(レーザスポット)において、光発熱部材110の光発熱効果により、レーザスポット近傍が局所的に加熱される。そうすると、レーザスポット近傍の分散液D(分散媒)が局所的に沸騰してレーザスポットにマイクロバブルMBが発生する(図4(B)参照)。マイクロバブルMBは、時間の経過とともに成長する。 FIG. 4 is a diagram for explaining the accumulation mechanism of the minute objects M. FIG. As shown in FIG. 4A, when the irradiation of the laser beam L1 is started, the vicinity of the laser spot is locally heated at the irradiation position (laser spot) of the laser beam L1 due to the light heating effect of the light heating member 110. The Then, the dispersion D (dispersion medium) near the laser spot is locally boiled, and microbubbles MB are generated in the laser spot (see FIG. 4B). The microbubble MB grows with time.
 レーザスポットに近いほど分散液Dの温度は高い。つまり、光照射により分散液D中に温度勾配が生じる。この温度勾配に起因して、分散液D中に規則的な対流(熱対流または浮力対流)Cが定常的に発生する(図4(C)参照)。対流Cの方向は、一旦マイクロバブルMBに向かい、その後、マイクロバブルMBから遠ざかる方向である。 The closer to the laser spot, the higher the temperature of the dispersion D. That is, a temperature gradient is generated in the dispersion D by light irradiation. Due to this temperature gradient, regular convection (thermal convection or buoyancy convection) C is constantly generated in the dispersion D (see FIG. 4C). The direction of the convection C is a direction in which the convection C once goes to the microbubble MB and then moves away from the microbubble MB.
 このように対流が生じる理由は以下のように説明することができる。すなわち、マイクロバブルMBが生じた領域の上方に存在する分散液Dが、加熱により相対的に希薄となり浮力によって上昇する。それとともに、マイクロバブルMBの水平方向に存在する相対的に低温の液体がマイクロバブルMBに向けて流入する。 The reason why such convection occurs can be explained as follows. That is, the dispersion D existing above the region where the microbubbles MB are generated becomes relatively diluted by heating and rises by buoyancy. At the same time, a relatively low-temperature liquid that exists in the horizontal direction of the microbubble MB flows toward the microbubble MB.
 微小物体Mが対流Cに乗ってマイクロバブルMBに向けて運ばれることによって、微小物体Mがレーザスポット近傍に集積される(図4(D)参照)。その後、光照射を停止すると対流Cは弱まり、やがて止まる。 The micro objects M are accumulated in the vicinity of the laser spot by being carried on the convection C toward the micro bubbles MB (see FIG. 4D). Thereafter, when the light irradiation is stopped, the convection C weakens and eventually stops.
 このように、光照射に伴う光発熱部材110の光発熱効果により対流Cを生じさせることによって、レーザスポット近傍に微小物体Mを集積することが可能になる。また、微小物体Mの集積に要する時間を大幅に短縮することができる。そこで、実施の形態1においては、光発熱部材110の光発熱効果による微小物体Mの集積作用を積極的に利用して、電極111,112間の電気抵抗R(微小物体Mの電気的特性)が測定される。 As described above, by generating the convection C due to the light heating effect of the light heating member 110 accompanying the light irradiation, it becomes possible to accumulate the minute objects M in the vicinity of the laser spot. In addition, the time required for accumulating the minute objects M can be greatly shortened. Therefore, in the first embodiment, the electric resistance R between the electrodes 111 and 112 (electrical characteristics of the minute object M) is positively utilized by using the accumulation action of the minute objects M due to the light heating effect of the light heating member 110. Is measured.
 図5は、微小物体Mの集積作用を利用した電極111,112間の電気的特性の測定メカニズムを説明するための図である。図5(A)を参照して、光照射を開始すると、図4(B)にて説明したように、マイクロバブルMBが光発熱部材110上に発生する。この時点では、電極111と光発熱部材110との間、および、電極112と光発熱部材110との間には、微小物体Mは、ほとんど集積されていない。このため、電極111と電極112との間に存在する分散媒(たとえば水)の電気抵抗Rがマルチメータ90により測定される。 FIG. 5 is a diagram for explaining the measurement mechanism of the electrical characteristics between the electrodes 111 and 112 using the accumulation action of the minute objects M. FIG. Referring to FIG. 5A, when light irradiation is started, microbubbles MB are generated on the light heating member 110 as described in FIG. 4B. At this time, the minute object M is hardly integrated between the electrode 111 and the light heating member 110 and between the electrode 112 and the light heating member 110. For this reason, the electrical resistance R of the dispersion medium (for example, water) existing between the electrode 111 and the electrode 112 is measured by the multimeter 90.
 その後、図5(B)に示すように、対流Cに乗って運ばれてきた微小物体Mが、電極111と電極112との間に集積される。そして、電極111と電極112との間の微小物体Mの集積量が増加すると、ある時点で電極111と電極112との間が微小物体Mにより架橋される(図5(C)参照)。そうすると、マルチメータ90により測定される電気抵抗Rの主成分が、分散媒の電気抵抗から、電極111と電極112との間に集積された微小物体Mの電気抵抗へと変化する。 Thereafter, as shown in FIG. 5B, the minute objects M carried on the convection C are accumulated between the electrode 111 and the electrode 112. Then, when the accumulation amount of the minute object M between the electrode 111 and the electrode 112 increases, the electrode 111 and the electrode 112 are bridged by the minute object M at a certain time (see FIG. 5C). Then, the main component of the electric resistance R measured by the multimeter 90 changes from the electric resistance of the dispersion medium to the electric resistance of the minute object M integrated between the electrode 111 and the electrode 112.
 なお、図5(C)には、電極111と電極112との間が微小物体Mにより直接的に架橋された例を示す。しかし、光発熱部材110が導電性材料(たとえば白金などの金属)により形成されている場合には、電極111と光発熱部材110との間が微小物体Mにより架橋されるとともに、電極112と光発熱部材110との間が微小物体Mにより架橋されてもよい。 FIG. 5C shows an example in which the electrode 111 and the electrode 112 are directly bridged by the minute object M. However, when the light heating member 110 is formed of a conductive material (for example, a metal such as platinum), the electrode 111 and the light heating member 110 are bridged by the minute object M, and the electrode 112 and the light The space between the heat generating member 110 and the heat generating member 110 may be bridged by the minute object M.
 図6は、微小物体Mの集積(架橋)に伴う電極111,112間の電気抵抗Rの時間変化を説明するための図である。図6ならびに後述する図9、図11、図23、図24および図30において、横軸は経過時間を示す。以下に示す測定結果では、電気抵抗Rの測定開始時刻を初期時刻(0で示す)とした。以下の例では電気抵抗Rの測定開始時刻よりも前に分散液Dが滴下されているが、電気抵抗Rの測定開始時刻を分散液Dの滴下時刻と一致させてもよい。縦軸は、電極111,112間の電気抵抗Rを示す。 FIG. 6 is a diagram for explaining a temporal change in the electric resistance R between the electrodes 111 and 112 due to the accumulation (crosslinking) of the minute objects M. In FIG. 6 and FIGS. 9, 11, 23, 24 and 30, which will be described later, the horizontal axis indicates the elapsed time. In the measurement results shown below, the measurement start time of the electrical resistance R was set as the initial time (indicated by 0). In the following example, the dispersion liquid D is dropped before the measurement start time of the electric resistance R, but the measurement start time of the electric resistance R may be made coincident with the dropping time of the dispersion liquid D. The vertical axis represents the electrical resistance R between the electrodes 111 and 112.
 初期時刻における電気抵抗Rは、R0(分散媒の種類に依存するが、たとえばメガオームオーダーの抵抗値)である(図5(A)参照)。しかし、時刻tcにおいて電極111と光発熱部材110との間が微小物体Mにより架橋されるとともに電極112と光発熱部材110との間が微小物体Mにより架橋されると、すなわち、電極111と電極112との間が微小物体Mにより架橋されると(図5(C)参照)、電気抵抗Rは、R0からRcへと変化する。たとえば非導電性の分散媒中に導電性の微小物体Mが分散している場合には、電気抵抗Rは、図6に示すように急激に低下する。この低下後の電気抵抗Rcは、主に微小物体Mの電気抵抗Rを表している。 The electrical resistance R at the initial time is R0 (depending on the type of the dispersion medium, for example, a resistance value in the order of mega-ohms) (see FIG. 5A). However, when the electrode 111 and the light heating member 110 are bridged by the minute object M and the electrode 112 and the light heating member 110 are bridged by the minute object M at the time tc, that is, the electrode 111 and the electrode. When the space 112 is bridged by the minute object M (see FIG. 5C), the electric resistance R changes from R0 to Rc. For example, when the conductive minute objects M are dispersed in the non-conductive dispersion medium, the electric resistance R rapidly decreases as shown in FIG. The lowered electric resistance Rc mainly represents the electric resistance R of the minute object M.
 電極111,112間の距離は既知である。そのため、詳細は図17にて説明するが、たとえば微小物体Mのサイズ(長さおよび高さ)が既知であれば、微小物体Mの電気的特性を算出することができる。具体的には、電気抵抗R(単位:Ω)から微小物体Mの電気抵抗率ρ(単位:Ω・m)を算出することが可能である。さらに、電気抵抗Rまたは電気抵抗率ρから、コンダクタンスG(単位:Ω-1=S)および電気伝導率κ(単位:Ω-1・m-1=S・m-1)を算出することもできる。 The distance between the electrodes 111 and 112 is known. Therefore, although details will be described with reference to FIG. 17, for example, if the size (length and height) of the minute object M is known, the electrical characteristics of the minute object M can be calculated. Specifically, the electrical resistivity ρ (unit: Ω · m) of the minute object M can be calculated from the electrical resistance R (unit: Ω). Further, the conductance G (unit: Ω −1 = S) and the electrical conductivity κ (unit: Ω −1 · m −1 = S · m −1 ) may be calculated from the electrical resistance R or electrical resistivity ρ. it can.
 以上のように、実施の形態1によれば、レーザ光L1を光発熱部材110に照射し、それによる光発熱部材110の光発熱効果により対流Cを生じさせる。対流Cを用いることで、レーザスポット近傍に微小物体Mを迅速に集積することが可能になる。そして、微小物体Mが集積されて電極111,112間が微小物体Mにより架橋されると、微小物体Mの電気的特性を測定することができる。 As described above, according to the first embodiment, the light heat generating member 110 is irradiated with the laser light L1, and the convection C is generated by the light heat generating effect of the light heat generating member 110 thereby. By using the convection C, the minute objects M can be quickly accumulated near the laser spot. When the minute objects M are integrated and the electrodes 111 and 112 are bridged by the minute objects M, the electrical characteristics of the minute objects M can be measured.
 [実施の形態1の実施例]
 以下、実施の形態1の1つの実施例として、金ナノ粒子を電極間に集積することで、金ナノ粒子の電気伝導率κを測定する構成について説明する。
[Example of Embodiment 1]
Hereinafter, as an example of Embodiment 1, a configuration in which the electrical conductivity κ of gold nanoparticles is measured by accumulating gold nanoparticles between electrodes will be described.
 <測定キットの構成>
 図7は、実施の形態1の実施例における測定キット2Aの構成を示す図である。図7には、上方から下方に向けて見た測定キット2Aの構成が示されている。測定キット2Aには、たとえばビー・エー・エス株式会社製の導電率測定用電極を用いることができる。
<Configuration of measurement kit>
FIG. 7 is a diagram showing the configuration of the measurement kit 2A in the example of the first embodiment. FIG. 7 shows the configuration of the measurement kit 2A viewed from the top to the bottom. For the measurement kit 2A, for example, an electrode for conductivity measurement manufactured by BAS Co., Ltd. can be used.
 図7を参照して、測定キット2Aは、石英ガラスからなる基板11Aと、基板11A上に形成された8本の電極151~158(図8参照)とを含む。測定キット2Aには、8本の電極151~158に対応して、8本の接続ピン131~138と、8本の配線141~148とが形成されている。電気伝導率κの測定時には、接続ピン131~138のうちのいずれか2本にマルチメータ90のクリップ(図1参照)が取り付けられる。配線141~148は、接続ピン131~138と電極151~158とを電気的に接続する。 Referring to FIG. 7, the measurement kit 2A includes a substrate 11A made of quartz glass and eight electrodes 151 to 158 (see FIG. 8) formed on the substrate 11A. In the measurement kit 2A, eight connection pins 131 to 138 and eight wirings 141 to 148 are formed corresponding to the eight electrodes 151 to 158, respectively. When measuring the electrical conductivity κ, a clip (see FIG. 1) of the multimeter 90 is attached to any two of the connection pins 131 to 138. The wirings 141 to 148 electrically connect the connection pins 131 to 138 and the electrodes 151 to 158.
 図8は、本実施例における電極151~158の構成をより詳細に示す図である。図7および図8を参照して、8本の電極151~158の各々は、白金電極である。図示しないが、各電極は、チタン薄膜である接着層を介して基板11A上に接着されている。 FIG. 8 is a diagram showing the configuration of the electrodes 151 to 158 in the present embodiment in more detail. Referring to FIGS. 7 and 8, each of eight electrodes 151 to 158 is a platinum electrode. Although not shown, each electrode is bonded onto the substrate 11A via an adhesive layer that is a titanium thin film.
 8本の電極151~158のうちの隣接する2本の電極間の距離は、様々な値に設定されている。たとえば図8下部の拡大図に示すように、電極151と電極152との間の距離は、100μmである。電極152と電極155との間の距離は、10μmである。電極155と電極153との間の距離は、20μmである。電極153と電極156との間の距離は、30μmである。電極156と電極154との間の距離は、50μmである。電極154と電極157との間の距離は、100μmである。電極157と電極158との間の距離は、100μmである。 The distance between two adjacent electrodes among the eight electrodes 151 to 158 is set to various values. For example, as shown in the enlarged view at the bottom of FIG. 8, the distance between the electrode 151 and the electrode 152 is 100 μm. The distance between the electrode 152 and the electrode 155 is 10 μm. The distance between the electrode 155 and the electrode 153 is 20 μm. The distance between the electrode 153 and the electrode 156 is 30 μm. The distance between the electrode 156 and the electrode 154 is 50 μm. The distance between the electrode 154 and the electrode 157 is 100 μm. The distance between the electrode 157 and the electrode 158 is 100 μm.
 このように8本の電極151~158のうちのいずれか2本(必ずしも隣接する2本でなくてもよい)の電極を選択することによって、電極間距離を所望の値とすることができる。本実施例では、電極間距離が10μmとなる電極152と電極155とを選択した。なお、図7および図8では8本の電極が形成された構成を例に説明するが、電極の本数は、2以上であれば特に限定されない。 As described above, by selecting any two of the eight electrodes 151 to 158 (not necessarily two adjacent to each other), the distance between the electrodes can be set to a desired value. In this example, the electrode 152 and the electrode 155 having an interelectrode distance of 10 μm were selected. 7 and 8, an example in which eight electrodes are formed will be described. However, the number of electrodes is not particularly limited as long as it is two or more.
 測定キット2Aでは、実施の形態1における測定キット2(図2参照)と異なり、電極151~158間に光発熱部材110が設けられていない。これは、電極152,155が本開示に係る「光発熱部材」を兼ねているためである。言い換えると、光発熱部材は、電極152,155のいずれか一方(本実施例では電極152)に含まれている。そのため、レーザ光源40からのレーザ光L1は、電極152,155のいずれか一方(電極152)に照射される。 In the measurement kit 2A, unlike the measurement kit 2 (see FIG. 2) in the first embodiment, the light heating member 110 is not provided between the electrodes 151-158. This is because the electrodes 152 and 155 also serve as the “light heating member” according to the present disclosure. In other words, the light heating member is included in one of the electrodes 152 and 155 (in this embodiment, the electrode 152). Therefore, the laser light L1 from the laser light source 40 is applied to one of the electrodes 152 and 155 (electrode 152).
 本実施例では、金ナノ粒子を分散質として含み、超純水を分散媒として含む分散液Dを用いた。金ナノ粒子の直径は、30nmであった。金ナノ粒子の濃度は、7.8×10-10Mであった。金ナノ粒子の分散液Dの滴下量は、5μLであった。 In this example, a dispersion D containing gold nanoparticles as a dispersoid and ultrapure water as a dispersion medium was used. The diameter of the gold nanoparticle was 30 nm. The concentration of the gold nanoparticles was 7.8 × 10 −10 M. The dripping amount of the dispersion D of gold nanoparticles was 5 μL.
 本実施例における電気抵抗測定の特徴を明確にするため、まず、比較例における電気抵抗測定について説明する。比較例における電気抵抗測定では、レーザ光源40からのレーザ光L1の照射が行なわれない点において、本実施例における電気抵抗測定と異なる。それ以外の比較例に係る測定システムの構成は、本実施例に係る測定システム(図1、図7および図8参照)の対応する構成と同等である。 In order to clarify the characteristics of the electrical resistance measurement in this example, first, the electrical resistance measurement in the comparative example will be described. The electrical resistance measurement in the comparative example differs from the electrical resistance measurement in the present embodiment in that the laser light L1 from the laser light source 40 is not irradiated. The configuration of the measurement system according to the other comparative examples is the same as the corresponding configuration of the measurement system according to the present embodiment (see FIGS. 1, 7, and 8).
 なお、比較例および本実施例における電気抵抗測定では、測定条件を統一するために以下のような手順で測定を行なった。すなわち、測定対象となる分散液Dの滴下に先立ち、2μLのリン酸緩衝生理食塩水(以下、「PBS」(Phosphate  Buffered  Saline)とも記載する)を測定キット2上に滴下した。PBSとは、塩化ナトリウム(NaCl、濃度:1.4×10-5M)と塩化カリウム(KCl、濃度:2.7×10-3M)とリン酸水素二ナトリウム(Na2HPO4、濃度:1.0×10-4M)との混合溶液である。そして、PBSの滴下時刻から10分間が経過した後に、電極152,155間のPBSの電気抵抗Rを測定した。電気抵抗Rが4.7MΩ±0.4MΩの範囲内にあることが確認された場合に、測定条件が統一されたと判定し、分散液Dを測定キット2上にさらに滴下した。 In the electrical resistance measurement in the comparative example and the present example, the measurement was performed in the following procedure in order to unify the measurement conditions. Specifically, 2 μL of phosphate buffered saline (hereinafter also referred to as “PBS” (Phosphate Buffered Saline)) was dropped onto the measurement kit 2 before the dispersion D to be measured was dropped. PBS means sodium chloride (NaCl, concentration: 1.4 × 10 −5 M), potassium chloride (KCl, concentration: 2.7 × 10 −3 M), and disodium hydrogen phosphate (Na 2 HPO 4 , concentration). : 1.0 × 10 −4 M). Then, after 10 minutes had passed since the dropping time of the PBS, the electrical resistance R of the PBS between the electrodes 152 and 155 was measured. When it was confirmed that the electrical resistance R was in the range of 4.7 MΩ ± 0.4 MΩ, it was determined that the measurement conditions were unified, and the dispersion D was further dropped onto the measurement kit 2.
 <比較例>
 図9は、比較例における電極152,155間の電気抵抗Rの時間変化の測定例を示す図である。なお、図9および後述する図11では、縦軸の電気抵抗Rが対数目盛りで示されている。
<Comparative example>
FIG. 9 is a diagram illustrating a measurement example of a temporal change in the electrical resistance R between the electrodes 152 and 155 in the comparative example. In FIG. 9 and FIG. 11 described later, the electrical resistance R on the vertical axis is shown on a logarithmic scale.
 比較例では、電極152,155間の電気抵抗Rを3回測定した。図9(A)~図9(C)に1回目~3回目の電気抵抗Rの測定結果をそれぞれ示す。図10は、図9に示した3回の測定のうちの3回目の測定における電極152,155近傍の画像である。 In the comparative example, the electrical resistance R between the electrodes 152 and 155 was measured three times. FIGS. 9A to 9C show the first to third measurement results of the electric resistance R, respectively. FIG. 10 is an image near the electrodes 152 and 155 in the third measurement of the three measurements shown in FIG.
 図9(A)~図9(C)に示すように、3回の測定のいずれにおいても電気抵抗Rの急激な低下が観測された。図9(C)において電気抵抗Rの急激な低下が初めて生じた時刻t1における電極152,155近傍の様子を図10(A)の画像に示す。この画像から、電極152と電極155との間に何らかの物質(実際には図15および図16にて後述するように金ナノ粒子)による架橋が生じたことが観察された。 As shown in FIG. 9 (A) to FIG. 9 (C), a rapid decrease in electrical resistance R was observed in all three measurements. The state in the vicinity of the electrodes 152 and 155 at time t1 when the rapid decrease in the electric resistance R occurs for the first time in FIG. 9C is shown in the image of FIG. From this image, it was observed that some kind of substance (actually gold nanoparticles as described later with reference to FIGS. 15 and 16) was crosslinked between the electrode 152 and the electrode 155.
 また、光照射中には、図10(B)の画像に示すように、電極152と電極155との間に直方体形状の結晶が生成する様子が観察された。この結晶は、後述するエネルギー分散型X線分析(図15および図16参照)により、PBS由来の塩化ナトリウムであることが同定された。その一方で、図10(B)に対応する時刻t2においては、電気抵抗Rの大きな変化は確認されなかった。このことから、電気抵抗Rの急激な低下は、結晶生成によるものではなく、金ナノ粒子の架橋によるものと考えられる。 Further, during the light irradiation, it was observed that a rectangular parallelepiped crystal was generated between the electrode 152 and the electrode 155 as shown in the image of FIG. This crystal was identified as PBS-derived sodium chloride by energy dispersive X-ray analysis (see FIGS. 15 and 16) described later. On the other hand, at time t2 corresponding to FIG. 10B, a large change in the electric resistance R was not confirmed. From this, it is considered that the rapid decrease in the electric resistance R is not due to crystal formation but due to cross-linking of gold nanoparticles.
 また、時刻t3対応するに図10(C)の画像より、時間が経過すると電極152,155上の分散液Dが蒸発により消失し、少量の金ナノ粒子およびPBSの結晶が電極152,155間に存在していることが分かる。 Further, the dispersion liquid D on the electrodes 152 and 155 disappears by evaporation as time passes from the image of FIG. 10C corresponding to the time t 3, and a small amount of gold nanoparticles and PBS crystals are formed between the electrodes 152 and 155. It can be seen that
 比較例における3回の測定の結果、分散液Dを滴下した時刻(0)から電気抵抗Rに大きな変化が生じた時刻(たとえば図9(C)における時刻t1)までの平均時間は、42分26秒であった。以下、この時間(電気抵抗Rの急激な低下が生じるまでの平均時間)を「平均測定時間」とも称する。このように、比較例では、金ナノ粒子の電気抵抗Rの測定に長時間を要する。また、電気抵抗Rの変化が生じた時刻が3回の測定毎に異なり、ばらつきが相対的に大きい。 As a result of the measurement three times in the comparative example, the average time from the time (0) when the dispersion D was dripped to the time when the electrical resistance R changed significantly (for example, the time t1 in FIG. 9C) was 42 minutes. 26 seconds. Hereinafter, this time (average time until the electric resistance R rapidly decreases) is also referred to as “average measurement time”. Thus, in the comparative example, it takes a long time to measure the electrical resistance R of the gold nanoparticles. Moreover, the time when the change in the electric resistance R occurs is different every three measurements, and the variation is relatively large.
 <本実施例>
 図11は、本実施例における電極152,155間の電気抵抗Rの時間変化の測定例を示す図である。図11に示した例では、陽極である電極152にレーザ光L1を照射した。なお、各電極152,155は、エタノールと超純水とを用いて予め洗浄されている。事前の予備実験(図12参照)の結果に基づき、レーザ出力は、15mWに設定した。また、マルチメータ90による定電流を500nAに設定した。そして、電極152と電極155との間の電気抵抗Rを5回測定した。1回目~5回目の電気抵抗Rの測定結果を図11(A)~図11(E)にそれぞれ示す。
<Example>
FIG. 11 is a diagram illustrating a measurement example of a temporal change in the electrical resistance R between the electrodes 152 and 155 in the present embodiment. In the example shown in FIG. 11, the laser beam L1 is irradiated to the electrode 152 which is an anode. Each electrode 152, 155 is previously cleaned using ethanol and ultrapure water. Based on the result of a preliminary experiment (see FIG. 12), the laser output was set to 15 mW. The constant current by the multimeter 90 was set to 500 nA. And the electrical resistance R between the electrode 152 and the electrode 155 was measured 5 times. The measurement results of the electrical resistance R for the first to fifth times are shown in FIGS. 11 (A) to 11 (E), respectively.
 図11(A)~図11(E)を参照して、5回の測定の結果、平均測定時間は69秒であった。つまり、比較例と本実施例とを比較すると、本実施例では、平均測定時間を約30分の1に短縮することができた。このように、本実施例によれば、比較例と比べて、平均測定時間を大幅に短縮できることが分かる。 Referring to FIG. 11 (A) to FIG. 11 (E), the average measurement time was 69 seconds as a result of five measurements. That is, when the comparative example and this example were compared, in this example, the average measurement time could be shortened to about 1/30. Thus, according to the present Example, it turns out that an average measurement time can be shortened significantly compared with a comparative example.
 また、前述のように、比較例では、電気抵抗Rの急激な低下が生じるまでの時間のばらつきが大きい。これは、以下のように説明することができる。すなわち、測定開始時には、電極152と電極155との間は、金ナノ粒子が希薄な状態である。パーコレーション理論によれば、金ナノ粒子の密度が所定量以上になることで電極152,155間の電気抵抗Rが急激に低下する。しかし、比較例における電気抵抗測定では、レーザ光源40からのレーザ光L1の照射が行なわれないため、対流が生じない。そのため、金ナノ粒子同士が衝突する確率が低く、高密度化しにくい。よって、パーコレーションによる電気抵抗Rの低下に要するばらつきが大きくなる(パーコレーション理論の詳細については、M. T. Connor,  S.  Roy,  T.  A.  Ezquerra, and  F.  J.  Balta Calleja, Phys.  Rev.  B,  57, 2286 (1998).およびK.Ogura, R. C. Patil, H. Shiigi,  T.  Tonosaki, and  M.  Nakayama, J. Polym. Sci.,  Part  A:  Polym.  Chem.,  38, 4343 (2000).を参照)。 Further, as described above, in the comparative example, there is a large variation in time until the electric resistance R rapidly decreases. This can be explained as follows. That is, at the start of measurement, the gold nanoparticles are in a thin state between the electrode 152 and the electrode 155. According to the percolation theory, the electrical resistance R between the electrodes 152 and 155 rapidly decreases when the density of the gold nanoparticles becomes a predetermined amount or more. However, in the electrical resistance measurement in the comparative example, since the laser light L1 from the laser light source 40 is not irradiated, convection does not occur. Therefore, the probability that gold nanoparticles collide with each other is low, and it is difficult to increase the density. Therefore, the variation required for the decrease in electrical resistance R due to percolation increases (for details of percolation theory, see M. T. Connor, S. Roy, T. A. Ezquerra, and F. J. Balta Calleja, Phys. Rev. B, 57, 2286 (1998). And K.Ogura, R.C.Patil, H.Shiigi, T. Tonosaki, and M. Nakayama, J.Polym.Sci., Part A: Polym. Chem., 38 , 4343 (2000).).
 これに対し、本実施例によれば、光発熱効果を用いて積極的に対流(いわば強制対流)を生じさせる。これにより、対流が生じていない場合と比べて、金ナノ粒子同士の衝突確率が高まるので、金ナノ粒子が高密度化しやすくなる。したがって、本実施例では、比較例と比べて、パーコレーションによる電気抵抗Rの低下に要するばらつきが小さくなるため、平均測定時間のばらつきを低減することができる。 On the other hand, according to this embodiment, convection (so-called forced convection) is positively generated by using the light heat generation effect. Thereby, since the collision probability of gold nanoparticles increases compared with the case where convection does not arise, it becomes easy to make gold nanoparticles high density. Therefore, in the present embodiment, the variation required for the decrease in the electric resistance R due to percolation is smaller than that in the comparative example, so that the variation in the average measurement time can be reduced.
 <レーザ出力依存性>
 図12は、本実施例における電気抵抗測定時における電極152,155近傍の画像である。図12(A)~図12(C)は、レーザ出力を10mW、15mWおよび20mWに設定した場合の電極152,155近傍の画像をそれぞれ示す。レーザスポットの位置は各画像の中央である。なお、図12および後述する図14において、図中の数値は、分散液Dの滴下時刻から経過時間を示している。
<Laser output dependency>
FIG. 12 is an image in the vicinity of the electrodes 152 and 155 when the electrical resistance is measured in this example. 12A to 12C show images near the electrodes 152 and 155 when the laser output is set to 10 mW, 15 mW, and 20 mW, respectively. The position of the laser spot is the center of each image. In FIG. 12 and FIG. 14 to be described later, the numerical values in the figure indicate the elapsed time from the dropping time of the dispersion D.
 レーザ出力を15mWに設定した場合、図12(B)に示すように、電極152近傍におけるマイクロバブルMBの発生および対流Cの発生が確認された。このように、制御装置100は、マイクロバブルMBのサイズ(直径)が電極152,155間の距離よりも大きくなるように、レーザ光源40からのレーザ光L1の出力を制御することが好ましい。この理由は以下のように説明される。 When the laser output was set to 15 mW, generation of microbubbles MB and generation of convection C in the vicinity of the electrode 152 were confirmed as shown in FIG. Thus, it is preferable that the control device 100 controls the output of the laser light L1 from the laser light source 40 so that the size (diameter) of the microbubble MB is larger than the distance between the electrodes 152 and 155. The reason for this is explained as follows.
 図4にて説明したように、光照射により発生する対流Cの方向は、一旦マイクロバブルMBに向かい、その後、マイクロバブルMBから遠ざかる方向である。つまり、対流Cの方向が反転するため、マイクロバブルMBと基板11との間に対流Cの流速がゼロとなる「淀み領域」が生じる。この場合、マイクロバブルMBは、対流Cを堰き止めるマイクロメートルオーダーの「流体ストッパ」として機能し、それにより微小物体Mの多くは、淀み領域近傍に滞留して集積される。このような集積メカニズムによれば、マイクロバブルMBのサイズが電極152,155間の距離よりも大きくなると、それに伴って淀み領域が電極152から電極155まで延びることとなる。したがって、電極152,155間を架橋するように微小物体Mが集積され易くなる。 As described in FIG. 4, the direction of convection C generated by light irradiation is a direction that once heads toward the microbubble MB and then moves away from the microbubble MB. That is, since the direction of the convection C is reversed, a “stagnation region” in which the flow velocity of the convection C is zero is generated between the microbubble MB and the substrate 11. In this case, the microbubbles MB function as a “fluid stopper” of the micrometer order that dams the convection C, so that most of the minute objects M stay and accumulate near the stagnation region. According to such an integration mechanism, when the size of the microbubble MB becomes larger than the distance between the electrodes 152 and 155, the stagnation region extends from the electrode 152 to the electrode 155 accordingly. Therefore, the minute objects M are easily integrated so as to bridge between the electrodes 152 and 155.
 レーザ出力を10mWに設定した場合には、図12(A)に示すように、マイクロバブルMBも対流Cも発生しなかった。このため、図示しないが、レーザ出力を15mWに設定した場合と同程度の時間スケール(図12に示した例では300秒)では、電気抵抗Rの変化は生じなかった。 When the laser output was set to 10 mW, neither microbubble MB nor convection C occurred as shown in FIG. For this reason, although not shown, the electrical resistance R did not change on the same time scale as when the laser output was set to 15 mW (300 seconds in the example shown in FIG. 12).
 一方、レーザ出力を20mWに設定した場合には、レーザ出力を15mWに設定した場合と比べて、より大きなマイクロバブルMBの発生が確認されるとともに、より激しい対流Cの発生が確認された(図12(C)参照)。しかしながら、5回の測定結果の平均測定時間は、85秒であった。つまり、レーザ出力を20mWに設定した場合の平均測定時間は、レーザ出力を15mWに設定した場合の平均測定時間よりも長くなった。これは、レーザ出力を高めることで過度に激しい対流Cが発生したため、金ナノ粒子が電極152,155間に滞留しにくくなり、金ナノ粒子の集積量が減ったことによると考えられる。 On the other hand, when the laser output was set to 20 mW, generation of larger microbubbles MB was confirmed and generation of more intense convection C was confirmed as compared with the case where the laser output was set to 15 mW (see FIG. 12 (C)). However, the average measurement time of the five measurement results was 85 seconds. That is, the average measurement time when the laser output was set to 20 mW was longer than the average measurement time when the laser output was set to 15 mW. This is considered to be due to the fact that excessively intense convection C was generated by increasing the laser output, so that the gold nanoparticles were less likely to stay between the electrodes 152 and 155 and the amount of gold nanoparticles accumulated decreased.
 さらに、レーザ出力を20mWに設定した場合、図示しないが、測定によってはマイクロバブルMBが電極152上を移動する様子が確認された。また、マイクロバブルMBに移動に伴い、電気抵抗Rの変動が測定された。これは、激しい対流CによってマイクロバブルMBが移動し、それにより、マイクロバブルMB近傍に一旦集積されていた金ナノ粒子のうちの一部が離散してしまったためと考えられる。 Furthermore, when the laser output was set to 20 mW, although not shown, it was confirmed that the microbubble MB moved on the electrode 152 depending on the measurement. Moreover, the fluctuation | variation of the electrical resistance R was measured with the movement to microbubble MB. This is presumably because the microbubbles MB moved by vigorous convection C, and as a result, some of the gold nanoparticles once collected in the vicinity of the microbubbles MB became discrete.
 このように、レーザ出力には、マイクロバブルMBおよび対流Cを発生させるのに必要な下限値と、金ナノ粒子の安定的な集積に必要な上限値とが存在する。そのため、レーザ出力は、事前の実験結果またはシミュレーション結果に基づいて、上限値と下限値との間の範囲内に設定することが望ましい。本実施例では、前述の実験結果に基づき、レーザ出力を15mWに設定した。 Thus, the laser output has a lower limit value necessary for generating microbubbles MB and convection C and an upper limit value necessary for stable accumulation of gold nanoparticles. Therefore, it is desirable to set the laser output within a range between the upper limit value and the lower limit value based on the previous experimental result or simulation result. In this example, the laser output was set to 15 mW based on the above experimental results.
 <金ナノ粒子の濃度依存性>
 図13は、金ナノ粒子の電気抵抗測定における金ナノ粒子の濃度依存性の測定結果を示す図である。本実施例では、金ナノ粒子の濃度が異なる4種類の分散液D1~D4を準備した。金ナノ粒子の濃度は、分散液D1~D4の順に低い。電極152,155間の電気抵抗Rを分散液D1,D2,D4については5回測定し、分散液D3については7回測定した。
<Concentration dependence of gold nanoparticles>
FIG. 13 is a diagram illustrating a measurement result of concentration dependency of gold nanoparticles in the measurement of electrical resistance of gold nanoparticles. In this example, four types of dispersions D1 to D4 having different concentrations of gold nanoparticles were prepared. The concentration of the gold nanoparticles is low in the order of the dispersions D1 to D4. The electrical resistance R between the electrodes 152 and 155 was measured 5 times for the dispersions D1, D2 and D4, and 7 times for the dispersion D3.
 各分散液D1~D4について、電気抵抗Rの変化が生じた比率(=電気抵抗Rの変化が生じた回数/全測定回数)と、電気抵抗R(平均値)と、平均測定時間(分散液の滴下から電気抵抗Rの変化が生じるまでに要した平均時間)とを図13(A)に示す。また、図13(B)の横軸は金ナノ粒子の濃度を示し、縦軸は電気抵抗Rを示す。 For each of the dispersions D1 to D4, the ratio of the change in electrical resistance R (= the number of changes in electrical resistance R / the total number of measurements), the electrical resistance R (average value), and the average measurement time (dispersion liquid) FIG. 13A shows the average time required until the change in the electric resistance R occurs from the dripping of FIG. In addition, the horizontal axis of FIG. 13B indicates the concentration of gold nanoparticles, and the vertical axis indicates the electric resistance R.
 図13(A)および図13(B)を参照して、分散液D1においては、すべての測定において電気抵抗Rの変化が確認された。分散液D1~D3を比較すると、金ナノ粒子の濃度が低くなるに従って、電気抵抗Rの変化が生じる比率が低下するとともに平均測定時間が長くなった。その一方で、分散液D1~D3の間では、金ナノ粒子の濃度にかかわらず、電気抵抗Rは、ほぼ等しかった。また、各分散液D1~D3における電気抵抗Rのばらつきは、電気抵抗Rの標準偏差をエラーバーで示すように、十分に小さかった。 Referring to FIG. 13 (A) and FIG. 13 (B), in dispersion D1, a change in electrical resistance R was confirmed in all measurements. When the dispersions D1 to D3 were compared, as the concentration of the gold nanoparticles was decreased, the ratio of the change in the electric resistance R was decreased and the average measurement time was increased. On the other hand, between the dispersions D1 to D3, the electric resistance R was almost equal regardless of the concentration of the gold nanoparticles. Further, the dispersion of the electric resistance R in each of the dispersions D1 to D3 was sufficiently small so that the standard deviation of the electric resistance R is indicated by an error bar.
 図14は、分散液D3,D4におけるレーザスポット近傍の画像である。図14(A)は、分散液D3におけるレーザスポット近傍の画像を示し、図14(B)は、分散液D4におけるレーザスポット近傍の画像を示す。「0秒」と示す画像は、光照射開始前の画像である。「100秒」と示す画像は、分散液の滴下から100秒経過後における光照射中の画像である。「300秒」と示す画像は、分散液の滴下から300秒経過後に光照射を停止した直後の画像である。 FIG. 14 is an image near the laser spot in the dispersions D3 and D4. FIG. 14A shows an image near the laser spot in the dispersion D3, and FIG. 14B shows an image near the laser spot in the dispersion D4. The image indicated as “0 seconds” is an image before the start of light irradiation. The image indicated as “100 seconds” is an image during light irradiation after 100 seconds from the dropping of the dispersion liquid. The image indicated as “300 seconds” is an image immediately after the light irradiation is stopped after 300 seconds from the dropping of the dispersion liquid.
 図14(A)に示すように、分散液D3においては、電極152,155間が金ナノ粒子により架橋される。一方、分散液D4では、図14(B)に示すように、ある程度の金ナノ粒子が電極152の近傍に集積される様子は確認されるものの、電気抵抗Rの変化は生じなかった(図13(A)および図13(B)を参照)。この測定結果から、本実施例において測定可能な金ナノ粒子の下限濃度(測定限界濃度)は、分散液D3の濃度である1.6×10-10Mであることが分かった。 As shown in FIG. 14A, in the dispersion D3, the electrodes 152 and 155 are cross-linked by gold nanoparticles. On the other hand, in the dispersion D4, as shown in FIG. 14B, it was confirmed that some gold nanoparticles were accumulated in the vicinity of the electrode 152, but the electric resistance R did not change (FIG. 13). (See (A) and FIG. 13 (B)). From this measurement result, it was found that the lower limit concentration (measurement limit concentration) of the gold nanoparticles that can be measured in this example was 1.6 × 10 −10 M, which is the concentration of the dispersion D3.
 <集積物の同定>
 続いて、走査型電子顕微鏡(SEM:Scanning Electron Microscope)およびエネルギー分散型X線分析(EDX:Energy Dispersive X-ray  spectrometry)装置を用いて電極152,155上の集積物を同定(元素分析)した結果について説明する。
<Identification of accumulation>
Subsequently, the accumulation on the electrodes 152 and 155 was identified (elemental analysis) using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometry (EDX) apparatus. The results will be described.
 図15は、比較例における電極152,155上の集積物の同定結果を説明するための図である。図16は、本実施例における電極152,155上の集積物の同定結果を説明するための図である。図15(A)は光学顕微鏡像を示し、図15(B)はSEM像を示し、図15(C)はEDX像を示す。図16(A)~図16(C)についても同様である。 FIG. 15 is a diagram for explaining the identification result of the accumulation on the electrodes 152 and 155 in the comparative example. FIG. 16 is a diagram for explaining the identification result of the accumulation on the electrodes 152 and 155 in the present embodiment. FIG. 15A shows an optical microscope image, FIG. 15B shows an SEM image, and FIG. 15C shows an EDX image. The same applies to FIGS. 16A to 16C.
 まず、図15(A)および図16(A)に示した光学顕微鏡像を比較すると、電極152,155の周囲の集積物の集積量および集積範囲に大きな差異が存在することが分かった。また、図15(B)および図16(B)のSEM像から、電極152,155上の集積物が粒子状物質の集積によるものであることが確認された。また、各粒子状物質の粒子径(直径)がほぼ均一であり、数十μm程度であることが分かった。さらに、図15(C)および図16(C)を参照して、EDXによる元素分析結果から、電極152,155の周囲に集積物が金であることが同定された。 First, comparing the optical microscope images shown in FIGS. 15A and 16A, it was found that there was a large difference in the accumulation amount and accumulation range of the accumulation around the electrodes 152 and 155. Further, from the SEM images of FIGS. 15B and 16B, it was confirmed that the accumulation on the electrodes 152 and 155 was due to accumulation of particulate matter. Moreover, it turned out that the particle diameter (diameter) of each particulate matter is substantially uniform, and is about several tens of micrometers. Further, referring to FIG. 15C and FIG. 16C, it was identified from the results of elemental analysis by EDX that the accumulation around the electrodes 152 and 155 was gold.
 <電気伝導率の算出>
 最後に、電極間の電気抵抗Rの測定結果に基づいて、金ナノ粒子の電気伝導率κを算出した結果について説明する。本実施例では、以下のような条件の下に電気伝導率κを算出した。
<Calculation of electrical conductivity>
Finally, the result of calculating the electrical conductivity κ of the gold nanoparticles based on the measurement result of the electrical resistance R between the electrodes will be described. In this example, the electrical conductivity κ was calculated under the following conditions.
 図17は、本実施例における金ナノ粒子200の電気伝導率の算出手法を説明するための図である。図17を参照して、電極152と電極155との間の距離dは、10μmである(図8参照)。また、金ナノ粒子200の集積範囲の幅wを光学顕微鏡像から読み取り、78.8μmとした。さらに、電極152,155間に集積された金ナノ粒子200が単層状に配列されていると仮定し、金ナノ粒子200の集積物の高さhを金ナノ粒子200の粒子径である30μmとした。また、図13に示した分散液D1における電気抵抗Rの測定結果から、R=1.89kΩとした。 FIG. 17 is a diagram for explaining a method of calculating the electrical conductivity of the gold nanoparticle 200 in the present example. Referring to FIG. 17, the distance d between the electrode 152 and the electrode 155 is 10 μm (see FIG. 8). Moreover, the width w of the accumulation range of the gold nanoparticles 200 was read from the optical microscope image and set to 78.8 μm. Furthermore, assuming that the gold nanoparticles 200 accumulated between the electrodes 152 and 155 are arranged in a single layer, the height h of the aggregate of the gold nanoparticles 200 is 30 μm, which is the particle diameter of the gold nanoparticles 200. did. Further, R = 1.89 kΩ was determined from the measurement result of the electric resistance R in the dispersion D1 shown in FIG.
 電気導電率κを算出するための下記関係式(1)に上記の各数値を代入し、金ナノ粒子200の電気伝導率κを求めた。その結果、本実施例における電気伝導率κは、2.24×10-3[Ω-1cm-1]と算出された。 The above numerical values were substituted into the following relational expression (1) for calculating the electrical conductivity κ, and the electrical conductivity κ of the gold nanoparticle 200 was determined. As a result, the electrical conductivity κ in this example was calculated to be 2.24 × 10 −3−1 cm −1 ].
 κ=d/(W×h×R) ・・・(1)
 粒子径2nmの金ナノ粒子の電気伝導率の文献値は、2.67×10-3[Ω-1cm-1]である。よって、粒子径が異なるため単純には比較できないものの、本実施例による測定値の文献値に対する相対誤差は、16%である。このように、本実施例によれば、電気伝導率κを高精度に測定可能であることが確認できた。
κ = d / (W × h × R) (1)
The literature value for the electrical conductivity of gold nanoparticles with a particle size of 2 nm is 2.67 × 10 −3−1 cm −1 ]. Therefore, although the particle diameters are different and cannot be simply compared, the relative error of the measured value according to this example with respect to the literature value is 16%. Thus, according to this example, it was confirmed that the electrical conductivity κ can be measured with high accuracy.
 以上のように、本実施例によれば、電極152へのレーザ光L1の照射による光発熱効果を用いて電極152近傍に金ナノ粒子を集積する。光発熱効果を用いることで、金ナノ粒子の集積に要する時間を大幅に短縮することができる。金ナノ粒子が電極152近傍に集積されることで、電極152と電極155との間が金ナノ粒子により架橋される。そうすると、測定システム1の測定対象が、電極152と電極155との間の分散媒の電気抵抗から、電極152と電極155との間を架橋した金ナノ粒子の電気抵抗へと遷移するこのようにして測定された電気抵抗Rから電気伝導率κを高精度に算出することができる。 As described above, according to the present embodiment, gold nanoparticles are accumulated in the vicinity of the electrode 152 by using the photothermal effect by the irradiation of the laser beam L1 onto the electrode 152. By using the photo exothermic effect, the time required for the accumulation of gold nanoparticles can be significantly reduced. By collecting the gold nanoparticles in the vicinity of the electrode 152, the electrode 152 and the electrode 155 are cross-linked by the gold nanoparticles. Then, the measurement target of the measurement system 1 changes from the electrical resistance of the dispersion medium between the electrode 152 and the electrode 155 to the electrical resistance of the gold nanoparticle that is bridged between the electrode 152 and the electrode 155. The electrical conductivity κ can be calculated with high accuracy from the measured electrical resistance R.
 [実施の形態2]
 実施の形態2においては、液体試料に含まれる可能性がある微小物体である被検出物質を検出するための検出システムについて説明する。実施の形態2に係る検出システムは、測定キット2に代えて検出キット2Bを備える点において、実施の形態1に係る測定システム1(図1および図2参照)と異なる。検出キット2Bの構成については図19にて説明する。また、実施の形態2では、制御装置100が本開示に係る「検出装置」に相当する。実施の形態2に係る検出システムの他の構成(全体構成)は、測定システム1の構成と基本的に同等であるため、説明は繰り返さない。
[Embodiment 2]
In the second embodiment, a detection system for detecting a detection target substance that is a minute object that may be contained in a liquid sample will be described. The detection system according to the second embodiment is different from the measurement system 1 according to the first embodiment (see FIGS. 1 and 2) in that a detection kit 2B is provided instead of the measurement kit 2. The configuration of the detection kit 2B will be described with reference to FIG. In the second embodiment, the control device 100 corresponds to a “detection device” according to the present disclosure. Since the other configuration (overall configuration) of the detection system according to Embodiment 2 is basically the same as the configuration of measurement system 1, description thereof will not be repeated.
 <被検出物質の検出原理>
 実施の形態2において、被検出物質はDNAである。このDNAを「ターゲットDNA」とも称する。実施の形態2に係る検出システムでは、ターゲットDNAの検出に金属ナノ粒子が用いられる。金属ナノ粒子は、たとえば金ナノ粒子である。金ナノ粒子の各々は、ターゲットDNAを特異的に付着可能なDNAにより修飾されている。ターゲットDNAを特異的に付着可能なDNAを以下、「プローブDNA」とも称する。プローブDNAは、本開示に係る「ホスト分子」の一例に相当する。
<Detection principle of detected substance>
In Embodiment 2, the substance to be detected is DNA. This DNA is also referred to as “target DNA”. In the detection system according to Embodiment 2, metal nanoparticles are used for detection of the target DNA. The metal nanoparticles are, for example, gold nanoparticles. Each of the gold nanoparticles is modified with DNA capable of specifically attaching the target DNA. Hereinafter, DNA capable of specifically attaching the target DNA is also referred to as “probe DNA”. The probe DNA corresponds to an example of a “host molecule” according to the present disclosure.
 なお、金属ナノ粒子は、金ナノ粒子に限定されず、たとえば銀ナノ粒子または銅ナノ粒子等であってもよい。また、ターゲットDNAに代えてターゲットRNAを用いてもよいし、プローブDNAに代えてプローブRNAを用いてもよい。ターゲットDNAおよびターゲットRNAを包括的に「ターゲット核酸」と呼び、プローブDNAおよびプローブRNAを包括的に「プローブ核酸」と呼ぶ。 Note that the metal nanoparticles are not limited to gold nanoparticles, and may be, for example, silver nanoparticles or copper nanoparticles. In addition, target RNA may be used instead of target DNA, or probe RNA may be used instead of probe DNA. Target DNA and target RNA are collectively referred to as “target nucleic acid”, and probe DNA and probe RNA are collectively referred to as “probe nucleic acid”.
 図18は、実施の形態2におけるターゲットDNAの検出原理を説明するための概念図である。ターゲットDNAおよびプローブDNAの塩基配列の例を図18(A)に示す。図18(A)に示すように、実施の形態2において、ターゲットDNA210は、たとえば24個のアデニン(Aで表す)の塩基配列を有する一本鎖DNAである。このターゲットDNA210を検出するために、ターゲットDNA210を特異的に付着させる2種類のプローブDNA211,212が準備される。 FIG. 18 is a conceptual diagram for explaining the detection principle of the target DNA in the second embodiment. An example of the base sequences of the target DNA and probe DNA is shown in FIG. As shown in FIG. 18A, in the second embodiment, the target DNA 210 is a single-stranded DNA having a base sequence of 24 adenines (represented by A), for example. In order to detect the target DNA 210, two types of probe DNAs 211 and 212 for specifically attaching the target DNA 210 are prepared.
 プローブDNA211は、3’末端にたとえばチオール基(SHで表す)を有する一本鎖DNAである。プローブDNA211は、チオール基と5’末端との間に、ターゲットDNAの3’末端側の塩基配列と相補的な塩基配列を有する。この相補的な塩基配列は、12個のチミン(Tで表す)である。 Probe DNA 211 is a single-stranded DNA having, for example, a thiol group (represented by SH) at the 3 'end. The probe DNA 211 has a base sequence complementary to the base sequence on the 3 'end side of the target DNA between the thiol group and the 5' end. This complementary base sequence is 12 thymines (denoted by T).
 一方、プローブDNA212は、5’末端にたとえばチオール基を有する一本鎖DNAである。プローブDNA212は、3’末端とチオール基との間に、ターゲットDNAの5’末端側の塩基配列と相補的な塩基配列を有する。この相補的な塩基配列は、12個のチミンである。 On the other hand, the probe DNA 212 is a single-stranded DNA having, for example, a thiol group at the 5 'end. The probe DNA 212 has a base sequence complementary to the base sequence on the 5 'end side of the target DNA between the 3' end and the thiol group. This complementary base sequence is 12 thymines.
 図18(B)に示すように、実施の形態2では、2種類の金ナノ粒子201,202が準備される。金ナノ粒子201は、プローブDNA211により修飾されている。金ナノ粒子202は、プローブDNA212により修飾されている。なお、金ナノ粒子201,202をプローブDNA211,212でそれぞれ修飾するための方法としては、公知の手法を用いることができる。 As shown in FIG. 18B, in the second embodiment, two types of gold nanoparticles 201 and 202 are prepared. The gold nanoparticle 201 is modified with the probe DNA 211. The gold nanoparticle 202 is modified with the probe DNA 212. As a method for modifying the gold nanoparticles 201 and 202 with the probe DNAs 211 and 212, known methods can be used.
 ターゲットDNA210を含む液体に金ナノ粒子201,202が導入されると、ターゲットDNA210とプローブDNA211との間、および、ターゲットDNA210とプローブDNA212との間でハイブリダイゼーションが起こる。これにより、金ナノ粒子201,202が液体中に分散している場合には、金ナノ粒子201,202が凝集する。 When the gold nanoparticles 201 and 202 are introduced into the liquid containing the target DNA 210, hybridization occurs between the target DNA 210 and the probe DNA 211 and between the target DNA 210 and the probe DNA 212. Thereby, when the gold nanoparticles 201 and 202 are dispersed in the liquid, the gold nanoparticles 201 and 202 aggregate.
 図19は、検出キット2Bの構成を詳細に説明するための図である。図19を参照して、検出キット2Bは、基板11Bと、電極111B,112Bとを含む。 FIG. 19 is a diagram for explaining the configuration of the detection kit 2B in detail. Referring to FIG. 19, detection kit 2B includes a substrate 11B and electrodes 111B and 112B.
 電極111Bは陽極であり、電極112Bは陰極である。各電極111B,112Bは、膜厚がナノメートルオーダーの金属薄膜(たとえば白金薄膜または金薄膜)である。電極111B,112Bのうちの一方は、実施の形態1の実施例で説明したように、本開示に係る「光発熱部材」を兼ねている。 The electrode 111B is an anode, and the electrode 112B is a cathode. Each of the electrodes 111B and 112B is a metal thin film (for example, a platinum thin film or a gold thin film) having a film thickness on the order of nanometers. One of the electrodes 111B and 112B also serves as the “light heating member” according to the present disclosure as described in the example of the first embodiment.
 ターゲットDNA210を含む可能性がある液体試料SPは、電極111B,112Bを覆うように滴下される。なお、基板11Bおよび接着層121B,122Bは、基本的に実施の形態1における測定キット2の対応する構成(図2参照)と同等であるため、説明は繰り返さない。本実施の形態では、以下に説明する2通りの構成(第1および第2の構成)のうちの少なくとも一方を採用することにより電気抵抗測定が実現される。 The liquid sample SP that may contain the target DNA 210 is dropped so as to cover the electrodes 111B and 112B. Since substrate 11B and adhesive layers 121B and 122B are basically the same as the corresponding configuration of measurement kit 2 in Embodiment 1 (see FIG. 2), description thereof will not be repeated. In the present embodiment, electrical resistance measurement is realized by adopting at least one of the following two configurations (first and second configurations) described below.
 図20は、ハイブリダイゼーションを利用した電極111,112間の電気的特性(たとえば電気抵抗R)の測定メカニズムを説明するための第1の図である。図20(A)を参照して、第1の構成では、金ナノ粒子201,202が液体試料SP中に分散している。金ナノ粒子201,202は微小であるが、図20および後述する図21では模式的に拡大して図示されている。 FIG. 20 is a first diagram for explaining a measurement mechanism of electrical characteristics (for example, electrical resistance R) between the electrodes 111 and 112 using hybridization. Referring to FIG. 20A, in the first configuration, gold nanoparticles 201 and 202 are dispersed in liquid sample SP. Although the gold nanoparticles 201 and 202 are very small, they are schematically enlarged in FIG. 20 and FIG.
 液体試料SPに被検出物質であるターゲットDNA210が含まれていない場合には、電極111Bと電極112Bとの間に液体試料SPの分散媒が存在する。分散媒は絶縁性の液体(たとえば水)であるため、電極111Bと電極112Bとは電気的に絶縁されている。 When the target DNA 210, which is a substance to be detected, is not included in the liquid sample SP, a dispersion medium for the liquid sample SP exists between the electrode 111B and the electrode 112B. Since the dispersion medium is an insulating liquid (for example, water), the electrode 111B and the electrode 112B are electrically insulated.
 一方、液体試料SPにターゲットDNA210が含まれている場合には、図20(B)に示すように、ターゲットDNA210とプローブDNA211との間、および、ターゲットDNA210とプローブDNA212との間でハイブリダイゼーションが起こり、金ナノ粒子201,202が凝集する。その結果、電極111Bと電極112Bとの間が金ナノ粒子201,202の凝集体により架橋される。ハイブリダイゼーションが起こり、一本鎖DNAの相補的な塩基同士が結合することで導電性が高まる。その結果、金ナノ粒子201,202および二重鎖DNA(ハイブリダイゼーション後のプローブDNA211,212およびターゲットDNA210)を介して電極111Bと電極112Bとの間の電気抵抗が低下する。 On the other hand, when the target DNA 210 is included in the liquid sample SP, as shown in FIG. 20B, hybridization occurs between the target DNA 210 and the probe DNA 211 and between the target DNA 210 and the probe DNA 212. Occurs, and the gold nanoparticles 201 and 202 aggregate. As a result, the electrode 111B and the electrode 112B are cross-linked by an aggregate of the gold nanoparticles 201 and 202. Hybridization occurs, and the complementary bases of the single-stranded DNA are bonded to increase conductivity. As a result, the electrical resistance between the electrode 111B and the electrode 112B decreases via the gold nanoparticles 201 and 202 and the double-stranded DNA (the probe DNAs 211 and 212 and the target DNA 210 after hybridization).
 図21は、ハイブリダイゼーションを利用した電極111,112間の電気的特性(たとえば電気抵抗R)の測定メカニズムを説明するための第2の図である。図21(A)を参照して、第2の構成では、金ナノ粒子201,202が電極111Bと電極112Bとの間の基板11B上に予め固定されている。金ナノ粒子201と金ナノ粒子202との間隔は、金ナノ粒子201と金ナノ粒子202との間でDNAのハイブリダイゼーションが起こり得る程度(たとえばターゲットDNA210の長さ以下)に密である。なお、金ナノ粒子201,202は、チオール基を用いた手法などの公知の手法によって基板11B上に固定することができる。 FIG. 21 is a second diagram for explaining a measurement mechanism of electrical characteristics (for example, electrical resistance R) between the electrodes 111 and 112 using hybridization. Referring to FIG. 21A, in the second configuration, gold nanoparticles 201 and 202 are fixed in advance on substrate 11B between electrodes 111B and 112B. The distance between the gold nanoparticle 201 and the gold nanoparticle 202 is close enough to allow DNA hybridization between the gold nanoparticle 201 and the gold nanoparticle 202 (for example, the length of the target DNA 210 or less). The gold nanoparticles 201 and 202 can be fixed on the substrate 11B by a known method such as a method using a thiol group.
 液体試料SPにターゲットDNA210が含まれていない場合、ある金ナノ粒子201と、その金ナノ粒子201に隣接する金ナノ粒子202との間は、分散媒により電気的に絶縁されている。したがって、電極111Bと電極112Bとは電気的に絶縁されている。 When the target DNA 210 is not included in the liquid sample SP, a certain gold nanoparticle 201 and a gold nanoparticle 202 adjacent to the gold nanoparticle 201 are electrically insulated by a dispersion medium. Therefore, the electrode 111B and the electrode 112B are electrically insulated.
 これに対し、液体試料SPにターゲットDNA210が含まれている場合には、図21(B)に示すように、金ナノ粒子201に修飾されたプローブDNA211とターゲットDNA210との間でハイブリダイゼーションが起こるとともに、金ナノ粒子202に修飾されたプローブDNA212とターゲットDNA210との間でハイブリダイゼーションが起こる。その結果、電極111Bと電極112Bとの間が架橋されて電気的に導通する。 On the other hand, when the target DNA 210 is contained in the liquid sample SP, hybridization occurs between the probe DNA 211 modified to the gold nanoparticle 201 and the target DNA 210 as shown in FIG. At the same time, hybridization occurs between the probe DNA 212 modified to the gold nanoparticle 202 and the target DNA 210. As a result, the electrode 111B and the electrode 112B are bridged and become electrically conductive.
 液体試料SP中にターゲットDNA210が含まれている場合には、電極111Bと電極112Bとの間がハイブリダイゼーションにより導通すると、電気抵抗Rは、液体試料SPの分散媒の電気抵抗値から、金ナノ粒子201,202と二重鎖DNAとの凝集体(図20(B)参照)の電気抵抗値、または、電極111Bと電極112Bとの間の架橋構造(図21(B)参照)の電気抵抗値へと低下する。このように、電極111Bと電極112Bとの間の電気抵抗Rを監視することで、ターゲットDNA210を検出することができる。 When the target DNA 210 is contained in the liquid sample SP, when the electrode 111B and the electrode 112B are brought into conduction by hybridization, the electric resistance R is determined based on the electric resistance value of the dispersion medium of the liquid sample SP. The electrical resistance value of the aggregate of the particles 201 and 202 and the double-stranded DNA (see FIG. 20B) or the electrical resistance of the cross-linked structure between the electrode 111B and the electrode 112B (see FIG. 21B) Decreases to value. Thus, the target DNA 210 can be detected by monitoring the electrical resistance R between the electrode 111B and the electrode 112B.
 なお、図示しないが、図20および図21に示した2通りの構成を組み合わせることも可能である。また、金ナノ粒子201,202を基板11B上に固定するのに代えて、金ナノ粒子201,202を固定するためのチオール基のみを基板11B上に修飾し、金ナノ粒子201,202を液体試料SP中に分散させておいてもよい。 Although not shown, the two configurations shown in FIGS. 20 and 21 can be combined. Further, instead of fixing the gold nanoparticles 201 and 202 on the substrate 11B, only the thiol group for fixing the gold nanoparticles 201 and 202 is modified on the substrate 11B, and the gold nanoparticles 201 and 202 are liquidated. It may be dispersed in the sample SP.
 <検出フロー>
 図22は、実施の形態2における被検出物質(ターゲットDNA210)の検出方法を示すフローチャートである。図22を参照して、S201~S205の処理は、実施の形態1におけるS101~S105の処理(図3参照)とそれぞれ同等であるため、詳細な説明は繰り返さない。
<Detection flow>
FIG. 22 is a flowchart showing a method for detecting a substance to be detected (target DNA 210) in the second embodiment. Referring to FIG. 22, the processing of S201 to S205 is the same as the processing of S101 to S105 (see FIG. 3) in the first embodiment, and therefore detailed description will not be repeated.
 S206において、制御装置100は、電極111B,112B間の電気抵抗Rを測定する(測定を開始または継続する)ようにマルチメータ90を制御する。また、S207において、制御装置100は、光照射を開始(継続)するようにレーザ光源40を制御する。 In S206, the control device 100 controls the multimeter 90 so as to measure the electric resistance R between the electrodes 111B and 112B (start or continue the measurement). In S207, the control device 100 controls the laser light source 40 so as to start (continue) light irradiation.
 S208において、制御装置100は、電極111,112間の電気抵抗Rが変化したか否かを判定する。より詳細には、電気抵抗Rの初期値(図21ではR0)からの低下量が基準量よりも大きかったり、電気抵抗Rの低下速度(単位時間当たりの低下量)が基準速度よりも速くなったりした場合に、制御装置100は、電気抵抗Rが変化したと判定する。 In S208, the control device 100 determines whether or not the electrical resistance R between the electrodes 111 and 112 has changed. More specifically, the decrease amount of the electrical resistance R from the initial value (R0 in FIG. 21) is larger than the reference amount, or the decrease rate of the electrical resistance R (decrease amount per unit time) is faster than the reference rate. In such a case, the control device 100 determines that the electrical resistance R has changed.
 制御装置100は、電極111B,112B間の電気抵抗Rが変化するまでは、処理をS206に戻して電気抵抗測定を継続する(S208においてNOかつS210においてNO)。所定期間(たとえば数十秒~数分)が経過するまでに電気抵抗Rが変化した場合(S208においてYES)、制御装置100は、液体試料SP中にターゲットDNA210が検出されたと判定する(S209)。一方、電気抵抗Rが変化することなく所定期間が経過した場合(S208においてNOかつS210においてYES)、制御装置100は、液体試料SP中にはターゲットDNA210は検出されなかったと判定する(S211)。なお、電気抵抗Rの変化の有無の判定に経過時間(所定期間)を用いるのに代えて、電気抵抗Rの変化の有無の判定を所定回数行なってもよい。 The control device 100 returns the process to S206 and continues the electrical resistance measurement until the electrical resistance R between the electrodes 111B and 112B changes (NO in S208 and NO in S210). If electric resistance R has changed before a predetermined period (eg, several tens of seconds to several minutes) has elapsed (YES in S208), control device 100 determines that target DNA 210 has been detected in liquid sample SP (S209). . On the other hand, when the predetermined period has passed without the electrical resistance R changing (NO in S208 and YES in S210), control device 100 determines that target DNA 210 has not been detected in liquid sample SP (S211). Instead of using the elapsed time (predetermined period) for determining whether or not the electric resistance R has changed, the determination of whether or not the electric resistance R has changed may be performed a predetermined number of times.
 その後、制御装置100は、電気抵抗測定を終了するようにマルチメータ90を制御する(S212)。また、制御装置100は、レーザ光L1および白色光L2の照射を停止するようにレーザ光源40および照明光源70をそれぞれ制御する(S213)。これにより、一連の処理が終了する。 Then, the control device 100 controls the multimeter 90 so as to end the electrical resistance measurement (S212). Further, the control device 100 controls the laser light source 40 and the illumination light source 70 so as to stop the irradiation of the laser light L1 and the white light L2 (S213). As a result, a series of processing ends.
 なお、電気抵抗Rを測定している間、レーザ光L1を継続的に照射することは必須ではない。たとえば、S207にてレーザ光L1を予め定められた時間だけ照射し、その後、レーザ光L1の照射を停止してから電気抵抗Rの変化の有無を判定してもよい(S208)。この場合、レーザ光L1の照射と、レーザ光L1の照射停止と、電気抵抗Rの測定(電気抵抗Rの変化の有無の判定)とがS210の所定期間が経過するまで繰り返し実行されることになる。 Note that it is not essential to continuously irradiate the laser beam L1 while measuring the electrical resistance R. For example, the laser light L1 may be irradiated for a predetermined time in S207, and then the presence or absence of a change in the electrical resistance R may be determined after the irradiation of the laser light L1 is stopped (S208). In this case, the irradiation of the laser beam L1, the stop of the irradiation of the laser beam L1, and the measurement of the electric resistance R (determination of whether there is a change in the electric resistance R) are repeatedly executed until the predetermined period of S210 elapses. Become.
 以上のように、実施の形態2によれば、液体試料SP中に含まれる可能性がある被検出物質であるターゲットDNA210を、電極111B,112B間の電気抵抗Rの変化を監視することで検出することができる。また、レーザ光源40からのレーザ光L1を照射することにより、レーザ光L1の照射を行なわない場合と比べて、ターゲットDNA210の検出に要する期間(S210における所定期間)を短縮することができる。 As described above, according to the second embodiment, the target DNA 210, which is a substance to be detected that may be contained in the liquid sample SP, is detected by monitoring the change in the electrical resistance R between the electrodes 111B and 112B. can do. Further, by irradiating the laser light L1 from the laser light source 40, the period required for detecting the target DNA 210 (predetermined period in S210) can be shortened as compared with the case where the laser light L1 is not irradiated.
 [実施の形態2の実施例1]
 以下、実施の形態2の1つの実施例として、図20に示した第1の構成における電気抵抗Rの測定結果について説明する。この実施例における各プローブDNA211,212の塩基配列は、図18にて説明した例と同様に、12個のチミン(T)である。
[Example 1 of Embodiment 2]
Hereinafter, as one example of the second embodiment, a measurement result of the electric resistance R in the first configuration illustrated in FIG. 20 will be described. The base sequences of the probe DNAs 211 and 212 in this example are 12 thymines (T) as in the example described with reference to FIG.
 検出対象(被検出物質)としては、図示しないが、異なる塩基配列を有する2種類の一本鎖DNAを準備した。一方の一本鎖DNAは、図18にて説明したターゲットDNA210と同様に、24個のアデニン(A)からなる。アデニンとチミンとは相補的な関係にあるため、この一本鎖DNAを「相補鎖DNA」と称する。他方の一本鎖DNAは、24個のチミン(T)からなる。チミン同士はハイブリダイゼーションを起こさないミスマッチの関係にあるため、この一本鎖DNAを「ミスマッチDNA」と称する。分散液中の相補鎖DNA、ミスマッチDNAおよびプローブDNA212,212の濃度は、いずれも1μMであった。各分散液の滴下量は、5μLであった。 As detection targets (substances to be detected), two types of single-stranded DNAs having different base sequences were prepared, although not shown. One single-stranded DNA is composed of 24 adenines (A), similar to the target DNA 210 described in FIG. Since adenine and thymine are in a complementary relationship, this single-stranded DNA is referred to as “complementary-stranded DNA”. The other single-stranded DNA consists of 24 thymines (T). Since thymines are in a mismatch relationship that does not cause hybridization, this single-stranded DNA is referred to as “mismatch DNA”. The concentrations of complementary strand DNA, mismatch DNA, and probe DNAs 212 and 212 in the dispersion were all 1 μM. The amount of each dispersion dropped was 5 μL.
 図23は、相補鎖DNAまたはミスマッチDNAを含む分散液における電極111B,112B間の電気抵抗Rの時間変化を説明するための図である。図23(A)は、相補鎖DNAを含む分散液での測定結果を示し、図23(B)は、ミスマッチDNAを含む分散液での測定結果を示す。図23(A)および図23(B)の各々には、4回の測定結果が示されている。 FIG. 23 is a diagram for explaining the change over time of the electrical resistance R between the electrodes 111B and 112B in the dispersion liquid containing complementary strand DNA or mismatched DNA. FIG. 23 (A) shows the measurement results with a dispersion containing complementary strand DNA, and FIG. 23 (B) shows the measurement results with a dispersion containing mismatched DNA. Each of FIG. 23A and FIG. 23B shows four measurement results.
 図23(A)を参照して、相補鎖DNAを含む分散液において、数分(2分~6分程度)で電気抵抗Rの急激な低下が検出されることが分かる。これは、図20にて説明したように、相補鎖DNAとプローブDNA211,212とのハイブリダイゼーションにより電極111B,112間が架橋されたことによるものと考えられる。また、図23(A)に示した結果より、電気抵抗Rの低下が生じるまでの時間のばらつきが、ある程度大きい(2~3分程度である)ことが分かる。 Referring to FIG. 23 (A), it can be seen that in the dispersion containing the complementary strand DNA, a rapid decrease in the electric resistance R is detected within a few minutes (about 2 to 6 minutes). As explained in FIG. 20, this is considered to be due to the cross-linking between the electrodes 111B and 112 due to the hybridization between the complementary strand DNA and the probe DNAs 211 and 212. Further, from the result shown in FIG. 23A, it can be seen that the variation in time until the electric resistance R decreases is somewhat large (about 2 to 3 minutes).
 続いて図23(B)を参照して、ミスマッチDNAを含む分散液においても電気抵抗Rの急激な低下が生じることが分かる。ただし、相補鎖DNAを含む分散液での測定結果と比べて、電気抵抗Rが低下するまでの時間が長く、電気抵抗Rが低下するまでの時間のばらつきも大きい。ミスマッチDNAを含む分散液においても電気抵抗Rが低下する理由としては、導電性を有する金ナノ粒子201,202が時間の経過とともに電極111B,112間に堆積したためと考えられる。なお、図23に示す測定結果はDNA濃度(相補鎖DNA濃度またはミスマッチDNA濃度)が1μMの場合のものであるが、このような電気抵抗Rの低下はDNA濃度が500nM(すなわち半分)の場合にも確認された。 Subsequently, referring to FIG. 23 (B), it can be seen that the electrical resistance R sharply decreases even in the dispersion containing the mismatched DNA. However, as compared with the measurement result with the dispersion containing the complementary strand DNA, the time until the electric resistance R decreases is long, and the time variation until the electric resistance R decreases is large. The reason why the electric resistance R decreases even in the dispersion containing mismatched DNA is considered to be that the gold nanoparticles 201 and 202 having conductivity are deposited between the electrodes 111B and 112 over time. Note that the measurement results shown in FIG. 23 are for the case where the DNA concentration (complementary strand DNA concentration or mismatched DNA concentration) is 1 μM. Such a decrease in electrical resistance R occurs when the DNA concentration is 500 nM (ie, half). Also confirmed.
 このように、ミスマッチDNAを含む分散液であっても電気抵抗Rの急激な低下が生じる。また、相補鎖DNAを含む分散液およびミスマッチDNAを含む分散液のいずれにおいても、電気抵抗Rが低下するまでの時間のばらつきが比較的大きい。したがって、DNAの塩基配列の違いを検出するためには、以下に説明するように、電気抵抗Rの時間変化を複数回測定し、その測定結果を平均化することが望ましい。 Thus, even in the case of a dispersion containing mismatched DNA, the electric resistance R is rapidly reduced. Moreover, in any of the dispersion liquid containing complementary strand DNA and the dispersion liquid containing mismatched DNA, the time variation until the electric resistance R decreases is relatively large. Therefore, in order to detect a difference in the base sequence of DNA, it is desirable to measure the time change of the electric resistance R a plurality of times and average the measurement results as described below.
 図24は、電極111B,112B間の電気抵抗Rの時間変化の測定結果を平均化した図である。図24には、相補鎖DNAを含む分散液での電気抵抗測定を9回行なった場合の測定結果の平均値が示されている。ミスマッチDNAを含む分散液についても同様である。 FIG. 24 is a diagram obtained by averaging the measurement results of the temporal change in the electrical resistance R between the electrodes 111B and 112B. FIG. 24 shows the average value of the measurement results when the electrical resistance measurement is performed nine times in the dispersion containing the complementary strand DNA. The same applies to a dispersion containing mismatched DNA.
 図24を参照して、相補鎖DNAを含む分散液における電気抵抗Rの平均値(「相補鎖平均抵抗」と称する)の方が、ミスマッチDNAを含む分散液における電気抵抗Rの平均値(「ミスマッチ平均抵抗」と称する)と比べて、下限に達するまでの時間が短いことが分かる。よって、相補鎖平均抵抗が下限に達する一方で、ミスマッチ平均抵抗は下限に達しない時間範囲において、電気抵抗Rを測定すればよい。より具体的には、図24に示す例では、約280秒から約450秒までの時間範囲において相補鎖平均抵抗とミスマッチ平均抵抗との差が大きい。この時間範囲において、相補鎖平均抵抗は0.15MΩでありミスマッチ平均抵抗は0.75MΩである。したがって、約280秒から約450秒までの時間範囲における電気抵抗Rを複数回測定し、その測定結果の平均値と相補鎖平均抵抗(0.15MΩ)およびミスマッチ平均抵抗(0.75MΩ)とを比較することにより、DNAの塩基配列の違いを検出することができる。 Referring to FIG. 24, the average value of electrical resistance R in a dispersion containing complementary strand DNA (referred to as “complementary strand average resistance”) is the average value of electrical resistance R in a dispersion containing mismatched DNA (“ It can be seen that the time to reach the lower limit is shorter than that of “mismatched average resistance”. Therefore, the electrical resistance R may be measured in a time range in which the complementary strand average resistance reaches the lower limit while the mismatch average resistance does not reach the lower limit. More specifically, in the example shown in FIG. 24, the difference between the complementary strand average resistance and the mismatch average resistance is large in the time range from about 280 seconds to about 450 seconds. In this time range, the complementary strand average resistance is 0.15 MΩ and the mismatch average resistance is 0.75 MΩ. Therefore, the electric resistance R in the time range from about 280 seconds to about 450 seconds is measured a plurality of times, and the average value of the measurement results, the complementary chain average resistance (0.15 MΩ), and the mismatch average resistance (0.75 MΩ) are obtained. By comparing, the difference in the base sequence of DNA can be detected.
 図25は、実施の形態2の実施例における被検出物質(相補鎖DNA)の検出方法を示すフローチャートである。図25を参照して、S301の測定準備との処理は、紙面の都合上、実施の形態2におけるS201~S205の処理(図22参照)は包括的に記載したものである。 FIG. 25 is a flowchart showing a method for detecting a substance to be detected (complementary strand DNA) in the example of the second embodiment. Referring to FIG. 25, the processing with the measurement preparation in S301 is a comprehensive description of the processing in S201 to S205 (see FIG. 22) in the second embodiment because of space limitations.
 S302において、制御装置100は、レーザ光L1の照射を開始するようにレーザ光源40を制御する。そして、制御装置100は、所定期間が経過するまでは光照射を継続させ(S303においてNO)、所定期間が経過すると(S303においてYES)、レーザ光L1の照射を停止するようにレーザ光源40を制御する(S304)。ここで、所定期間とは、図24に示した例における約280秒から約450秒までの時間範囲内の期間(たとえば300秒)である。 In S302, the control device 100 controls the laser light source 40 so as to start the irradiation with the laser light L1. Then, control device 100 continues the light irradiation until the predetermined period elapses (NO in S303), and when the predetermined period elapses (YES in S303), control device 100 causes laser light source 40 to stop irradiation with laser light L1. Control is performed (S304). Here, the predetermined period is a period (for example, 300 seconds) within the time range from about 280 seconds to about 450 seconds in the example shown in FIG.
 S305において、制御装置100は、電極111B,112B間の電気抵抗Rを測定するようにマルチメータ90を制御する。 In S305, the control device 100 controls the multimeter 90 so as to measure the electric resistance R between the electrodes 111B and 112B.
 S306において、電気抵抗Rの測定回数が規定の測定回数(規定回数)に達したか否かを判定する。電気抵抗Rの測定回数が規定回数に達していない場合(S305においてNO)、制御装置100は、処理をS301に戻す。これにより、規定回数に達するまで電気抵抗Rの測定が繰り返される。たとえば、図19に示した検出キット2Bをアレイ状に配列させておくことで、電気抵抗Rの順次測定を繰り返すことができる。 In S306, it is determined whether or not the number of measurements of the electrical resistance R has reached a specified number of measurements (a specified number). When the number of measurements of electrical resistance R has not reached the specified number (NO in S305), control device 100 returns the process to S301. Thereby, the measurement of the electrical resistance R is repeated until the specified number of times is reached. For example, the sequential measurement of the electric resistance R can be repeated by arranging the detection kits 2B shown in FIG. 19 in an array.
 電気抵抗Rの測定回数が規定回数に達すると(S306においてYES)、制御装置100は、処理をS307に進め、規定回数分の電気抵抗Rの平均値を算出する。そして、制御装置100は、電気抵抗Rの平均値が所定の基準値以下であるか否かを判定する。基準値は、図24に示した例では、0.15MΩと0.75MΩとの間の抵抗値(たとえば0.30MΩ)である。 When the number of measurements of the electrical resistance R reaches the specified number (YES in S306), the control device 100 advances the process to S307 and calculates the average value of the electrical resistance R for the specified number of times. And the control apparatus 100 determines whether the average value of the electrical resistance R is below a predetermined reference value. In the example shown in FIG. 24, the reference value is a resistance value (for example, 0.30 MΩ) between 0.15 MΩ and 0.75 MΩ.
 電気抵抗Rの平均値が基準値以下である場合(S308においてYES)、制御装置100は、被検出物質である相補鎖DNAが検出されたと判定する(S309)。一方、電気抵抗Rの平均値が基準値よりも高い場合(S308においてNO)には、制御装置100は、被検出物質は検出されなかった(あるいは、図24の例ではミスマッチDNAが検出された)と判定する(S310)。これにより、一連の処理が終了する。 When the average value of the electrical resistance R is equal to or less than the reference value (YES in S308), the control device 100 determines that the complementary strand DNA that is the detection target is detected (S309). On the other hand, when the average value of electrical resistance R is higher than the reference value (NO in S308), control device 100 did not detect the substance to be detected (or mismatch DNA was detected in the example of FIG. 24). ) (S310). As a result, a series of processing ends.
 以上のように、本実施例によれば、相補鎖平均抵抗とミスマッチ平均抵抗との差が大きいとして予め定められた時間範囲内において、電極111B,112B間の電気抵抗Rが複数回測定される。そして、電気抵抗Rの測定結果の平均値が基準値以下であるか否かが判定される。これにより、被検出物質(相補鎖DNA)と塩基配列が異なる一本鎖DNA(ミスマッチDNA)が液体試料に含まれていた場合であっても、塩基配列の違いを判別し、被検出物質を正確に検出することができる。 As described above, according to this embodiment, the electrical resistance R between the electrodes 111B and 112B is measured a plurality of times within a predetermined time range assuming that the difference between the complementary strand average resistance and the mismatch average resistance is large. . And it is determined whether the average value of the measurement result of the electrical resistance R is below the reference value. As a result, even when a single-stranded DNA (mismatch DNA) having a base sequence different from that of the substance to be detected (complementary strand DNA) is contained in the liquid sample, the difference in the base sequence is determined, and the substance to be detected is It can be detected accurately.
 [実施の形態2の実施例2]
 続いて、実施の形態2の他の実施例として、くし型電極を含む検出キットが採用された構成について説明する。この実施例における検出対象(被検出物質)は、前述の実施例1と同様に、ターゲットDNA210(図8参照)である。なお、くし型電極を含む測定キットは、実施の形態1に係る電気的特性測定システムにおいても、たとえば図7に示す測定キット2Aに代えて適用可能である。
[Example 2 of Embodiment 2]
Subsequently, as another example of the second embodiment, a configuration in which a detection kit including a comb electrode is employed will be described. The detection target (substance to be detected) in this example is the target DNA 210 (see FIG. 8), as in Example 1 described above. Note that the measurement kit including the comb-shaped electrode can be applied to the electrical characteristic measurement system according to Embodiment 1 instead of the measurement kit 2A shown in FIG. 7, for example.
 <検出キットの構成>
 図26は、実施の形態2の実施例2における検出キット3の構成を示す図である。図26(A)は、検出キット3の模式図を示す。図26(A)を参照して、検出キット3においては、ケーブル32の先端(一方端)に基板31が設けられており、その基板31上面にくし型電極301,302が形成されている。
<Configuration of detection kit>
FIG. 26 is a diagram showing a configuration of the detection kit 3 in Example 2 of the second embodiment. FIG. 26A shows a schematic diagram of the detection kit 3. Referring to FIG. 26A, in detection kit 3, substrate 31 is provided at the tip (one end) of cable 32, and comb-shaped electrodes 301 and 302 are formed on the top surface of substrate 31.
 図26(B)にくし型電極の拡大図を示す。図26(B)に示すように、くし型電極301,302は、互いに対向するように配置された一対の電極である。より詳細には、くし型電極301,302の各々は、ストライプ状に配列された複数の電極を含む。くし型電極301とくし型電極302とは、くし型電極301の複数の電極とくし型電極302の複数の電極とが互いに噛みあわせられるように配置されている。くし型電極301に含まれる複数の電極のうちのいずれか1つの電極(2以上であってもよい)が本開示に係る「第1の電極」に相当し、くし型電極302に含まれる複数の電極のうちのいずれか1つの電極(2以上であってもよい)が本開示に係る「第2の電極」に相当する。また、図26に示す例では、くし型電極301,302のうちの少なくとも一方が本開示に係る「光発熱部材」を兼ねている。ただし、光発熱部材を別途設けてもよい。 Fig. 26 (B) shows an enlarged view of the comb-type electrode. As shown in FIG. 26B, the comb electrodes 301 and 302 are a pair of electrodes arranged so as to face each other. More specifically, each of the comb-shaped electrodes 301 and 302 includes a plurality of electrodes arranged in a stripe shape. The comb-shaped electrode 301 and the comb-shaped electrode 302 are arranged so that the plurality of electrodes of the comb-shaped electrode 301 and the plurality of electrodes of the comb-shaped electrode 302 are engaged with each other. Any one electrode (may be two or more) of the plurality of electrodes included in the comb-shaped electrode 301 corresponds to the “first electrode” according to the present disclosure, and the plurality of electrodes included in the comb-shaped electrode 302. Any one of the electrodes (may be two or more) corresponds to the “second electrode” according to the present disclosure. In the example illustrated in FIG. 26, at least one of the comb electrodes 301 and 302 also serves as the “light heating member” according to the present disclosure. However, a light heating member may be provided separately.
 基板31は、電気的絶縁性を有するとともに光学的に透明な材料により形成され、たとえばスライドガラスなどのガラス基板である。 The substrate 31 is made of an optically transparent material having electrical insulation, and is a glass substrate such as a slide glass.
 図示しないが、ケーブル32の他方端(基板31が設けられていない方の先端)は、制御装置100(図1参照)に電気的に接続されている。他の構成は、測定システム1の構成と基本的に同等であるため、説明は繰り返さない。 Although not shown, the other end of the cable 32 (the end where the board 31 is not provided) is electrically connected to the control device 100 (see FIG. 1). The other configuration is basically the same as the configuration of measurement system 1, and therefore the description will not be repeated.
 <くし型電極におけるDNA集積結果>
 この測定例では、以下に説明するように、まず、ターゲットDNA210(相補鎖DNA)を含む分散液Dを検出キット3(くし型電極301,302)上に滴下し、ターゲットDNAとプローブDNAとの間でハイブリダイゼーションが起こることを確認した。
<Results of DNA integration on comb electrode>
In this measurement example, as described below, first, the dispersion D containing the target DNA 210 (complementary strand DNA) is dropped onto the detection kit 3 (comb-shaped electrodes 301 and 302), and the target DNA and the probe DNA are mixed. It was confirmed that hybridization occurred between the two.
 分散液Dにおける塩化ナトリウム濃度は0.2Mであり、リン酸濃度は10mMであった。分散液Dの滴下量は、15μLであった。レーザ光源40からのレーザ光の波長は800nmであり、基板31透過後のレーザ出力は17mWであった。光照射時間は10分間とした。 The sodium chloride concentration in dispersion D was 0.2M, and the phosphoric acid concentration was 10 mM. The dripping amount of the dispersion D was 15 μL. The wavelength of the laser light from the laser light source 40 was 800 nm, and the laser output after passing through the substrate 31 was 17 mW. The light irradiation time was 10 minutes.
 図27は、くし型電極301,302においてマイクロバブルMBが発生する様子の観察結果を示す図である。図27では、図中左側にくし型電極301,302近傍の光学顕微鏡像を示し、右側にくし型電極301,302近傍(同じ箇所)の蛍光観察像を示す。 FIG. 27 is a diagram showing an observation result of a state in which microbubbles MB are generated in the comb electrodes 301 and 302. In FIG. 27, the optical microscope image near the comb-shaped electrodes 301 and 302 is shown on the left side of the drawing, and the fluorescence observation image near the comb-shaped electrodes 301 and 302 (the same part) is shown on the right side.
 図27を参照して、レーザ光L1の照射により、レーザスポット近傍にマイクロバブルMBが発生したことが確認された。また、そのマイクロバブルMBの直径が電極301と電極302との間の距離よりも大きいことが確認された。 Referring to FIG. 27, it was confirmed that microbubbles MB were generated in the vicinity of the laser spot by irradiation with laser beam L1. Moreover, it was confirmed that the diameter of the microbubble MB is larger than the distance between the electrode 301 and the electrode 302.
 本実施例では、ターゲットDNA210の塩基対間に蛍光色素が挿入されており、その蛍光色素の励起波長の光を検出キット3に照射すると、ターゲットDNA210が存在する箇所(すなわち、ターゲットDNAとプローブDNAとのハイブリダイゼーションが起こった箇所)から蛍光が発せられる。 In this embodiment, a fluorescent dye is inserted between the base pairs of the target DNA 210, and when the detection kit 3 is irradiated with light having an excitation wavelength of the fluorescent dye, a location where the target DNA 210 exists (that is, the target DNA and the probe DNA). Fluorescence is emitted from the point where hybridization with the
 図28は、くし型電極301,302間の集積物の測定例を示す図である。図28には、レーザ光L1の照射停止後に分散液Dを乾燥させた状態でのくし型電極301,302近傍の様子が示されている。図中上側にレーザ光L1を照射した箇所の光学顕微鏡像を示し、下側に光学顕微鏡像と同じ箇所の蛍光観察像を示す。なお、ここではハイブリダイゼーションにより架橋が生じていることを確認するため、ターゲットDNAは蛍光標識したものを用いた(プローブDNAは蛍光標識なし)。ターゲットDNAは5’末端に緑色の発光を示す蛍光色素ALEXA488を標識したものを用いた。 FIG. 28 is a diagram illustrating an example of measurement of an accumulation between the comb-shaped electrodes 301 and 302. FIG. 28 shows a state in the vicinity of the comb electrodes 301 and 302 in a state where the dispersion D is dried after the irradiation of the laser beam L1 is stopped. The optical microscope image of the location irradiated with the laser beam L1 is shown on the upper side in the figure, and the fluorescence observation image of the same location as the optical microscope image is shown on the lower side. Here, in order to confirm that cross-linking has occurred by hybridization, the target DNA was fluorescently labeled (probe DNA was not fluorescently labeled). The target DNA used was labeled with a fluorescent dye ALEXA488 that emits green light at the 5 'end.
 図28に示すように、くし型電極301,302間の集積物から発せられた蛍光が蛍光観察像において観察された。このことから、蛍光標識された相補鎖のターゲットDNAとプローブDNAとの間でハイブリダイゼーションが起こって架橋されたことが確認されたと言える。 As shown in FIG. 28, the fluorescence emitted from the accumulation between the comb electrodes 301 and 302 was observed in the fluorescence observation image. From this, it can be said that it was confirmed that hybridization occurred between the target DNA of the fluorescently labeled complementary strand and the probe DNA to cause crosslinking.
 <くし型電極における電気抵抗測定>
 最後に、ターゲットDNA210が相補鎖DNAである場合の電気抵抗Rの低下の仕方について、ミスマッチDNAでの電気抵抗Rの低下の仕方と対比しながら説明する。
<Measurement of electrical resistance in comb electrodes>
Finally, how the electric resistance R decreases when the target DNA 210 is complementary strand DNA will be described in comparison with how the electric resistance R decreases with mismatched DNA.
 図29は、レーザ光L1の照射停止後における、くし型電極301,302近傍の画像である。図中上側に相補鎖DNAが分散液Dに含まれる場合の光学顕微鏡像を示し、下側に相補鎖DNAに代えてミスマッチDNAが分散液D中に含まれる場合の光学顕微鏡像を示す。図29より、分散液D中のDNAが相補鎖DNAであってもミスマッチDNAであっても、くし型電極301,302近傍に集積物が形成されたことが分かる。 FIG. 29 is an image in the vicinity of the comb-shaped electrodes 301 and 302 after the irradiation of the laser beam L1 is stopped. In the drawing, an optical microscope image when complementary strand DNA is contained in the dispersion D is shown on the upper side, and an optical microscope image when mismatched DNA is contained in the dispersion D instead of the complementary strand DNA is shown on the lower side. From FIG. 29, it can be seen that an accumulation was formed in the vicinity of the comb-shaped electrodes 301 and 302 regardless of whether the DNA in the dispersion D was complementary DNA or mismatched DNA.
 図30は、くし型電極301,302における電気抵抗Rの測定例を示す図である。図30(A)の縦軸は、くし型電極301,302間の電気抵抗Rを線形目盛りで示す。図30(B)の縦軸は、くし型電極301,302間の電気抵抗Rを対数目盛りで示す。 FIG. 30 is a diagram showing a measurement example of the electric resistance R in the comb-shaped electrodes 301 and 302. The vertical axis in FIG. 30A indicates the electric resistance R between the comb electrodes 301 and 302 on a linear scale. The vertical axis in FIG. 30B indicates the electrical resistance R between the comb electrodes 301 and 302 on a logarithmic scale.
 図30(A)を参照して、分散液D中にミスマッチDNAが含まれる場合、電気抵抗Rの低下に光照射開始時から約280秒を要したのに対し、分散液D中に相補鎖DNAが含まれる場合には、光照射開始時から約100秒後には電気抵抗Rが低下した。この傾向は、図24に示した電気抵抗(相補鎖平均抵抗およびミスマッチ平均抵抗)の抵抗の傾向と一致している。このように、くし型電極301,302を採用する実施例2においても、電気抵抗Rの低下に要する時間から、分散液D中のDNAが相補鎖DNAであるかミスマッチDNAであるかを区別することが可能である(図25のフローチャート参照)。 Referring to FIG. 30 (A), when mismatch DNA is contained in dispersion D, it took about 280 seconds from the start of light irradiation to lower electrical resistance R, whereas complementary strand in dispersion D When DNA was contained, the electric resistance R decreased about 100 seconds after the start of light irradiation. This tendency is consistent with the resistance tendency of the electrical resistance (complementary strand average resistance and mismatch average resistance) shown in FIG. As described above, also in Example 2 employing the comb-shaped electrodes 301 and 302, whether the DNA in the dispersion D is complementary-stranded DNA or mismatched DNA is distinguished from the time required for lowering the electric resistance R. (See the flowchart of FIG. 25).
 また、図30(B)に示すように、ミスマッチDNAと相補鎖DNAとでは、低下後の電気抵抗Rの大きさが数倍異なっていた。このことから、低下後の電気抵抗Rの大きさを所定の基準値と比較することにより、分散液D中のDNAが相補鎖DNAであるかミスマッチDNAであるかを区別することもできる。つまり、光照射開始時から十分に時間が経過した後の電気抵抗Rの大きさが基準値以上である場合にはミスマッチDNAが含まれていると判定し、低下後の電気抵抗Rの大きさが基準値未満である場合には相補鎖DNAが含まれていると判定することができる。 Further, as shown in FIG. 30 (B), the magnitude of the electric resistance R after the decrease was several times different between the mismatch DNA and the complementary strand DNA. From this, it is possible to distinguish whether the DNA in the dispersion D is a complementary strand DNA or a mismatched DNA by comparing the magnitude of the electric resistance R after the decrease with a predetermined reference value. That is, when the magnitude of the electrical resistance R after a sufficient time has elapsed from the start of light irradiation is greater than or equal to the reference value, it is determined that mismatched DNA is included, and the magnitude of the electrical resistance R after the decrease is determined. Is less than the reference value, it can be determined that complementary strand DNA is contained.
 一対のマイクロ電極(互いに平行に配置された一対の間隔がマイクロメートルオーダーの電極)として図7のような導電率測定用電極の一部を用いた例(図24参照)では、相補鎖DNAをターゲットDNAとして用いた場合でも光照射開始時から電気抵抗Rが低下するまでに約300秒を要したのに対し、本実施例では、電気抵抗Rの低下が約100秒で起こった。このように、くし型電極301,302を用いると、通常の電極を用いる場合と比べて、電気抵抗Rが低下するまでの時間が短くなるので、ターゲットDNA210の検出時間を短縮することが可能になる。その理由は以下の通りである。 In the example (see FIG. 24) in which a part of the conductivity measuring electrode as shown in FIG. 7 is used as a pair of microelectrodes (a pair of electrodes arranged in parallel with each other and having an interval of micrometer order), Even when it was used as the target DNA, it took about 300 seconds from the start of light irradiation until the electric resistance R decreased, whereas in this example, the electric resistance R decreased in about 100 seconds. As described above, when the comb-shaped electrodes 301 and 302 are used, the time until the electric resistance R decreases is shorter than when the normal electrodes are used. Therefore, the detection time of the target DNA 210 can be shortened. Become. The reason is as follows.
 まず、くし型電極では、上記一対のマイクロ電極と比べて、正極と負極との組合せの数が多いので、ハイブリダイゼーションによる架橋が起こり得る箇所の数も多い。これらの箇所のうちのいずれか1つでも架橋されれば電気抵抗Rが低下するため、電気抵抗Rの低下が起こり易い。 First, in the comb-type electrode, since the number of combinations of the positive electrode and the negative electrode is larger than that of the pair of microelectrodes, the number of locations where cross-linking by hybridization can occur is large. If any one of these locations is cross-linked, the electrical resistance R decreases, and therefore the electrical resistance R is likely to decrease.
 より具体的には、くし型電極301,302の対では、各々が有する複数の電極が交互に配列されている。そのため、くし型電極301,302のうちの一方が有する各電極の両側には、反対極(くし型電極301,302のうちの他方)が有する2本の電極が対向配置されている。したがって、交互配列された複数の電極のいずれかにレーザ光を照射すれば、レーザ光が照射された電極と、その電極の両側に対向配置された反対極の2本の電極のうちの少なくとも一方との間で架橋が生じ得る。その結果、くし型電極301,302との間の電気抵抗Rの低下が生じ得る。 More specifically, in the pair of comb-shaped electrodes 301 and 302, a plurality of electrodes included in each are alternately arranged. For this reason, two electrodes of opposite electrodes (the other of the comb electrodes 301 and 302) are disposed opposite to each side of each electrode of one of the comb electrodes 301 and 302. Therefore, if one of the plurality of electrodes arranged alternately is irradiated with laser light, at least one of the electrode irradiated with the laser light and two electrodes of opposite poles disposed opposite to both sides of the electrode. Cross-linking can occur between As a result, the electrical resistance R between the comb-shaped electrodes 301 and 302 can be reduced.
 さらに、一般に、くし型電極間の距離(より詳細には、一方のくし型電極に含まれる複数の電極のうちの一本の電極と、それに隣接する、他方のくし型電極に含まれる複数の電極のうちの一本の電極との間の距離)は、上記一対のマイクロ電極間の距離よりも狭い。たとえば、図8に示した測定キット2Aの8本の電極151~158の場合、隣接する2本の電極間の距離が最小の10μmの部分を利用したのに対し、図29および図30に示した例では、くし型電極301,302間の距離は5μmであった。電極間の距離が狭いと、電極間の架橋に必要なプローブDNAを修飾した金ナノ粒子とターゲットDNAの数が少なくてよく、ハイブリダイゼーションの発生数が少なくてよくなり、その結果として短時間で架橋が起こり易くなる。 Further, generally, the distance between the comb electrodes (more specifically, one electrode among a plurality of electrodes included in one comb electrode and a plurality of adjacent electrodes included in the other comb electrode). The distance between one of the electrodes) is narrower than the distance between the pair of microelectrodes. For example, in the case of the eight electrodes 151 to 158 of the measurement kit 2A shown in FIG. 8, a portion having a minimum distance of 10 μm between the two adjacent electrodes is used, whereas it is shown in FIGS. In this example, the distance between the comb electrodes 301 and 302 was 5 μm. When the distance between the electrodes is narrow, the number of gold nanoparticles modified with the probe DNA necessary for cross-linking between the electrodes and the target DNA may be small, and the number of hybridizations may be small. Crosslinking tends to occur.
 それに加えて、図4にて微小物体Mの集積メカニズムを説明したように、微小物体Mの効率的な集積にはマイクロバブルMBのサイズが電極間の距離よりも大きくなるように成長することが望ましいが、電極間の距離が狭いほど、そのようなサイズにまでマイクロバブルMBが成長するのに要する時間が短くなる。以上の理由により、本実施例によれば、くし型電極301,302を用いることでターゲットDNA210の検出時間を短縮することができる。 In addition, as described with reference to the accumulation mechanism of the minute objects M in FIG. 4, for the efficient accumulation of the minute objects M, the size of the microbubbles MB grows larger than the distance between the electrodes. Desirably, the shorter the distance between the electrodes, the shorter the time required for the microbubbles MB to grow to such a size. For the above reason, according to the present embodiment, the detection time of the target DNA 210 can be shortened by using the comb-shaped electrodes 301 and 302.
 なお、実施の形態1,2では、プローブDNA211,212とターゲットDNA210との間のハイブリダイゼーションを用いた例を説明したが、被検出物質の検出方法はこれに限定されない。たとえば、図示しないが、被検出物質が抗原である場合には、抗原との間で抗原抗体反応を起こす抗体をナノ粒子に修飾することで、被検出物質を検出することができる。 In the first and second embodiments, the example in which the hybridization between the probe DNAs 211 and 212 and the target DNA 210 is described, but the detection method of the detection target substance is not limited to this. For example, although not shown, when the substance to be detected is an antigen, the substance to be detected can be detected by modifying an antibody that causes an antigen-antibody reaction with the antigen into nanoparticles.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present disclosure is shown not by the above description of the embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 1 測定システム、2,2A 測定キット、2B,3 検出キット、10 XYZ軸ステージ、11,11A,11B,31 基板、111,111B,112,112B,151~158 電極、301,302 くし型電極、20 調整機構、30 サンプル供給部、32 ケーブル、40 レーザ光源、50 光学部品、60 対物レンズ、70 照明光源、80 撮影機器、90 マルチメータ、100 制御装置、110 光発熱部材、120,121,121B,122,122B 接着層、131~138 接続ピン、141~148 配線、200~202 金ナノ粒子、210 ターゲットDNA、211,212 プローブDNA、D,D1~D4 分散液、SP 液体試料、M 微小物体。 1 measurement system, 2, 2A measurement kit, 2B, 3 detection kit, 10 XYZ axis stage, 11, 11A, 11B, 31 substrate, 111, 111B, 112, 112B, 151-158 electrode, 301, 302 comb electrode, 20 adjustment mechanism, 30 sample supply unit, 32 cable, 40 laser light source, 50 optical components, 60 objective lens, 70 illumination light source, 80 imaging device, 90 multimeter, 100 control device, 110 light heating member, 120, 121, 121B , 122, 122B adhesive layer, 131-138 connecting pins, 141-148 wiring, 200-202 gold nanoparticles, 210 target DNA, 211, 212 probe DNA, D, D1-D4 dispersion, SP liquid sample, M micro object .

Claims (13)

  1.  光を照射されると発熱する光発熱部材と、第1および第2の電極とを含み、複数の微小物体が分散した分散液を保持可能に構成された保持部材と、
     前記光発熱部材に照射するための光を発する光源と、
     前記光源からの光照射に起因する前記光発熱部材の発熱により前記分散液が加熱されることで生じた前記分散液中の対流によって前記第1の電極と前記第2の電極との間に前記複数の微小物体が集積し、前記第1の電極と前記第2の電極との間が前記複数の微小物体により架橋された状態において、前記第1の電極と前記第2の電極との間の前記複数の微小物体のインピーダンスを測定するように構成されたインピーダンス測定装置とを備える、インピーダンス測定システム。
    A holding member configured to hold a dispersion liquid in which a plurality of minute objects are dispersed, including a light heating member that generates heat when irradiated with light, and first and second electrodes;
    A light source that emits light for irradiating the light heating member;
    Between the first electrode and the second electrode by convection in the dispersion generated by heating the dispersion due to heat generation of the light heating member caused by light irradiation from the light source. In a state where a plurality of minute objects are accumulated and the first electrode and the second electrode are bridged by the plurality of minute objects, the space between the first electrode and the second electrode An impedance measurement system comprising: an impedance measurement device configured to measure impedance of the plurality of minute objects.
  2.  前記光源を制御するように構成された制御装置をさらに備え、
     前記制御装置は、前記光発熱部材により前記分散液が加熱されることで前記分散液中に発生するマイクロバブルのサイズが前記第1の電極と前記第2の電極との間の距離よりも大きくなるように、前記光源を制御する、請求項1に記載のインピーダンス測定システム。
    Further comprising a control device configured to control the light source;
    In the control device, the size of the microbubbles generated in the dispersion liquid is larger than the distance between the first electrode and the second electrode when the dispersion liquid is heated by the light generating member. The impedance measurement system according to claim 1, wherein the light source is controlled to be.
  3.  前記第1および第2の電極は、前記光発熱部材を挟むように互いに離間して配置される、請求項1または2に記載のインピーダンス測定システム。 The impedance measurement system according to claim 1 or 2, wherein the first and second electrodes are spaced apart from each other so as to sandwich the light heating member.
  4.  前記光発熱部材は、前記第1および第2の電極のいずれか一方に含まれる、請求項1または2に記載のインピーダンス測定システム。 The impedance measurement system according to claim 1 or 2, wherein the light heating member is included in one of the first and second electrodes.
  5.  前記保持部材は、互いに対向するように配置された一対のくし型電極を含み、
     前記第1の電極は、前記一対のくし型電極のうちの一方のくし型電極であり、
     前記第2の電極は、前記一対のくし型電極のうちの他方のくし型電極である、請求項1~4のいずれか1項に記載のインピーダンス測定システム。
    The holding member includes a pair of comb electrodes arranged to face each other,
    The first electrode is one of the pair of comb electrodes,
    The impedance measurement system according to any one of claims 1 to 4, wherein the second electrode is the other comb-shaped electrode of the pair of comb-shaped electrodes.
  6.  液体試料に含まれる可能性がある被検出物質を検出する、被検出物質の検出システムであって、
     光を照射されると発熱する光発熱部材と、第1および第2の電極とを含み、前記液体試料を保持可能に構成された保持部材と、
     前記第1の電極と前記第2の電極との間のインピーダンスを測定するように構成されたインピーダンス測定装置と、
     前記液体試料が前記被検出物質を特異的に付着可能なホスト分子を含む場合に、前記光発熱部材に光を照射し、前記光発熱部材の発熱により前記液体試料を加熱して前記液体試料中に対流を生じさせることで前記第1の電極と前記第2の電極との間に前記被検出物質を集積させて前記第1の電極と前記第2の電極との間を前記被検出物質によって架橋させることが可能に構成された光源と、
     前記インピーダンスを監視することによって前記被検出物質を検出するように構成された検出装置とをさらに備える、被検出物質の検出システム。
    A detection system for a target substance that detects a target substance that may be contained in a liquid sample,
    A holding member configured to hold the liquid sample, including a light heating member that generates heat when irradiated with light, and first and second electrodes;
    An impedance measuring device configured to measure an impedance between the first electrode and the second electrode;
    When the liquid sample contains a host molecule capable of specifically adhering the substance to be detected, the light heating member is irradiated with light, and the liquid sample is heated by the heat generated by the light heating member. By causing convection to occur, the substance to be detected is accumulated between the first electrode and the second electrode, and the gap between the first electrode and the second electrode is caused by the substance to be detected. A light source configured to be crosslinkable;
    A detection system for a substance to be detected further comprising a detection device configured to detect the substance to be detected by monitoring the impedance.
  7.  液体試料に含まれる可能性がある被検出物質を検出する、被検出物質の検出システムであって、
     前記液体試料を保持可能に構成された保持部材を備え、
     前記保持部材は、
      光を照射されると発熱する光発熱部材と、
      第1および第2の電極と、
      前記第1および第2の電極の間において前記保持部材上に修飾され、前記被検出物質を特異的に付着可能なホスト分子を含み、
     前記検出システムは、
     前記第1の電極と前記第2の電極との間のインピーダンスを測定するように構成されたインピーダンス測定装置と、
     前記光発熱部材に光を照射し、前記光発熱部材の発熱により前記液体試料を加熱して前記液体試料中に対流を生じさせることで前記第1の電極と前記第2の電極との間に前記被検出物質を集積させて前記第1の電極と前記第2の電極との間を前記被検出物質によって架橋させることが可能に構成された光源と、
     前記インピーダンスを監視することによって前記被検出物質を検出するように構成された検出装置とをさらに備える、被検出物質の検出システム。
    A detection system for a target substance that detects a target substance that may be contained in a liquid sample,
    A holding member configured to hold the liquid sample;
    The holding member is
    A light heating member that generates heat when irradiated with light;
    First and second electrodes;
    A host molecule modified on the holding member between the first and second electrodes and capable of specifically attaching the substance to be detected;
    The detection system includes:
    An impedance measuring device configured to measure an impedance between the first electrode and the second electrode;
    The light heating member is irradiated with light, and the liquid sample is heated by the heat generated by the light heating member to generate convection in the liquid sample, thereby causing a gap between the first electrode and the second electrode. A light source configured to accumulate the substance to be detected and to bridge between the first electrode and the second electrode by the substance to be detected;
    A detection system for a substance to be detected further comprising a detection device configured to detect the substance to be detected by monitoring the impedance.
  8.  前記光源は、前記分散液中に発生するマイクロバブルのサイズが前記第1の電極と前記第2の電極との間の距離よりも大きくなるように前記分散液を加熱する、請求項6または7に記載の被検出物質の検出システム。 The said light source heats the said dispersion liquid so that the size of the microbubble generated in the said dispersion liquid becomes larger than the distance between the said 1st electrode and the said 2nd electrode. A detection system for a substance to be detected as described in 1.
  9.  前記検出装置は、前記インピーダンスの変化量が所定の判定量を上回った場合に前記被検出物質が検出されたと判定する一方で、所定期間が経過するまでの前記インピーダンスの変化量が前記判定量を下回った場合には前記被検出物質が検出されなかったと判定する、請求項6~8のいずれか1項に記載の被検出物質の検出システム。 The detection device determines that the detected substance is detected when the amount of change in impedance exceeds a predetermined determination amount, while the amount of change in impedance until the predetermined period elapses determines the determination amount. The system for detecting a substance to be detected according to any one of claims 6 to 8, wherein if it falls below, it is determined that the substance to be detected has not been detected.
  10.  前記被検出物質は、ターゲットDNAおよびターゲットRNAのうちの少なくとも一方であるターゲット核酸であり、
     前記ホスト分子は、前記ターゲット核酸との間でハイブリダイゼーションを起こすプローブ核酸である、請求項6~9のいずれか1項に記載の被検出物質の検出システム。
    The substance to be detected is a target nucleic acid that is at least one of target DNA and target RNA;
    The detection system for a substance to be detected according to any one of claims 6 to 9, wherein the host molecule is a probe nucleic acid that causes hybridization with the target nucleic acid.
  11.  前記被検出物質は、抗原であり、
     前記ホスト分子は、前記抗原との間で抗原抗体反応を起こす抗体である、請求項6~9のいずれか1項に記載の被検出物質の検出システム。
    The substance to be detected is an antigen,
    The detection system for a substance to be detected according to any one of claims 6 to 9, wherein the host molecule is an antibody that causes an antigen-antibody reaction with the antigen.
  12.  光照射により発熱する光発熱部材と、第1および第2の電極とを含む保持部材に、複数の微小物体が分散した分散液を保持させるステップと、
     前記保持させるステップの後に前記光発熱部材に光を照射するステップと、
     前記光発熱部材の発熱により前記分散液が加熱されることで生じた前記分散液中の対流を用いて、前記第1の電極と前記第2の電極との間に前記複数の微小物体を集積させることにより前記第1の電極と前記第2の電極との間を前記複数の微小物体によって架橋させるステップと、
     前記架橋させるステップの後に前記第1の電極と前記第2の電極との間の前記複数の微小物体のインピーダンスを測定するステップとを含む、インピーダンス測定方法。
    Holding a dispersion liquid in which a plurality of minute objects are dispersed in a holding member including a light heating member that generates heat by light irradiation and the first and second electrodes;
    Irradiating the light heating member with light after the holding step;
    The plurality of minute objects are integrated between the first electrode and the second electrode by using convection in the dispersion generated by heating the dispersion by heat generated by the light generating member. Bridging between the first electrode and the second electrode by the plurality of minute objects by:
    Measuring the impedance of the plurality of minute objects between the first electrode and the second electrode after the bridging step.
  13.  前記架橋させるステップは、前記分散液が加熱されることで前記分散液中に発生するマイクロバブルのサイズを前記第1の電極と前記第2の電極との間の距離よりも大きくするステップを含む、請求項12に記載のインピーダンス測定方法。 The cross-linking step includes the step of making the size of microbubbles generated in the dispersion liquid larger than the distance between the first electrode and the second electrode by heating the dispersion liquid. The impedance measuring method according to claim 12.
PCT/JP2018/018427 2017-05-12 2018-05-11 Impedance measuring system, impedance measuring method, and system for detecting substance being detected WO2018207937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517732A JP7150339B2 (en) 2017-05-12 2018-05-11 Impedance measurement system, impedance measurement method, and detection system for detected substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017095715 2017-05-12
JP2017-095715 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207937A1 true WO2018207937A1 (en) 2018-11-15

Family

ID=64105195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018427 WO2018207937A1 (en) 2017-05-12 2018-05-11 Impedance measuring system, impedance measuring method, and system for detecting substance being detected

Country Status (2)

Country Link
JP (1) JP7150339B2 (en)
WO (1) WO2018207937A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234849A1 (en) * 2021-05-07 2022-11-10 公立大学法人大阪 Method for detecting substance to be detected, detection kit and detection system, and method for manufacturing detection kit
CN115485544A (en) * 2020-05-08 2022-12-16 公立大学法人大阪 Detection device, detection system and detection method for tiny objects
WO2023163096A1 (en) * 2022-02-24 2023-08-31 公立大学法人大阪 Micro-object concentration method, micro-object concentration kit, and micro-object concentration system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125846A (en) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd Device for measuring number of microorganism and method therefor
JP2002516742A (en) * 1998-05-29 2002-06-11 インダストリアル リサーチ リミテッド Method and apparatus for concentration and / or movement of particles or cells into position
JP2006501486A (en) * 2002-05-14 2006-01-12 ナノスフェアー インコーポレイテッド Electrical detection of DNA hybridization and specific binding events
JP2006515231A (en) * 2003-02-07 2006-05-25 ウイスコンシン アラムニ リサーチ ファンデーション Nanocylinder-modified surface
JP2009529909A (en) * 2006-03-21 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microelectronic device having a heating electrode
JP2009214044A (en) * 2008-03-11 2009-09-24 Canon Inc Method and apparatus for separating particle in suspension
JP2015508506A (en) * 2012-01-27 2015-03-19 ユニバーシティ オブ テネシー リサーチ ファウンデーション Method and apparatus for biomarker detection by AC electrokinetics
WO2015170758A1 (en) * 2014-05-08 2015-11-12 公立大学法人大阪府立大学 Accumulation device and accumulation method, manufacturing device for microscopic object accumulation structural body, microscopic organism accumulation and elimination device, detection-substance detection device, separation-substance separation device, and introduction-substance introduction device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993460B1 (en) * 2013-05-30 2019-07-03 Osaka Prefecture University Public Corporation Target-substance detection apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516742A (en) * 1998-05-29 2002-06-11 インダストリアル リサーチ リミテッド Method and apparatus for concentration and / or movement of particles or cells into position
JP2000125846A (en) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd Device for measuring number of microorganism and method therefor
JP2006501486A (en) * 2002-05-14 2006-01-12 ナノスフェアー インコーポレイテッド Electrical detection of DNA hybridization and specific binding events
JP2006515231A (en) * 2003-02-07 2006-05-25 ウイスコンシン アラムニ リサーチ ファンデーション Nanocylinder-modified surface
JP2009529909A (en) * 2006-03-21 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microelectronic device having a heating electrode
JP2009214044A (en) * 2008-03-11 2009-09-24 Canon Inc Method and apparatus for separating particle in suspension
JP2015508506A (en) * 2012-01-27 2015-03-19 ユニバーシティ オブ テネシー リサーチ ファウンデーション Method and apparatus for biomarker detection by AC electrokinetics
WO2015170758A1 (en) * 2014-05-08 2015-11-12 公立大学法人大阪府立大学 Accumulation device and accumulation method, manufacturing device for microscopic object accumulation structural body, microscopic organism accumulation and elimination device, detection-substance detection device, separation-substance separation device, and introduction-substance introduction device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO ET AL.: "Development of a rapid bacterial counting method based on photothermal assembling", OPTICAL MATERIALS EXPRESS, vol. 6, no. 4, 22 March 2016 (2016-03-22), pages 1280 - 1285, XP055561188 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115485544A (en) * 2020-05-08 2022-12-16 公立大学法人大阪 Detection device, detection system and detection method for tiny objects
WO2022234849A1 (en) * 2021-05-07 2022-11-10 公立大学法人大阪 Method for detecting substance to be detected, detection kit and detection system, and method for manufacturing detection kit
JP7515940B2 (en) 2021-05-07 2024-07-16 公立大学法人大阪 Method for detecting target substance, detection kit and detection system, and method for manufacturing detection kit
WO2023163096A1 (en) * 2022-02-24 2023-08-31 公立大学法人大阪 Micro-object concentration method, micro-object concentration kit, and micro-object concentration system

Also Published As

Publication number Publication date
JP7150339B2 (en) 2022-10-11
JPWO2018207937A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
Verschueren et al. Label-free optical detection of DNA translocations through plasmonic nanopores
Nakano et al. Protein dielectrophoresis: advances, challenges, and applications
Vogel et al. Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor
Gierhart et al. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis
Liu et al. Opto-thermophoretic manipulation
WO2018207937A1 (en) Impedance measuring system, impedance measuring method, and system for detecting substance being detected
Pevarnik et al. Polystyrene particles reveal pore substructure as they translocate
Crick et al. Low-noise plasmonic nanopore biosensors for single molecule detection at elevated temperatures
Lesser-Rojas et al. Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements
Zhang et al. Thermophoresis-controlled size-dependent DNA translocation through an array of nanopores
Gao et al. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination
US20060219939A1 (en) Method and apparatus for low quantity detection of bioparticles in small sample volumes
ES2670939T3 (en) Procedure for the production of a nanoporous layer on a substrate
Freedman et al. On-demand surface-and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing
Kim et al. Nanodiamonds that swim
Otto et al. Dielectrophoretic immobilisation of antibodies on microelectrode arrays
CN102099666A (en) Method and system for concentrating particles from a solution
Cong et al. Trapping, sorting and transferring of micro-particles and live cells using electric current-induced thermal tweezers
WO2018159706A1 (en) Microobject collecting device, collecting container used for same, and microobject collecting method
Song et al. Optical and electrical detection of single-molecule translocation through carbon nanotubes
Jose et al. Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis
Zhang et al. Multipass resistive-pulse observations of the rotational tumbling of individual nanorods
Koklu et al. Characterization of temperature rise in alternating current electrothermal flow using thermoreflectance method
Yeo et al. Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action
Sin et al. Active manipulation of quantum dots using AC electrokinetics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798742

Country of ref document: EP

Kind code of ref document: A1