WO2018207903A1 - Electrospray ionization device, mass analysis apparatus, electrospray ionization method, and mass analysis method - Google Patents

Electrospray ionization device, mass analysis apparatus, electrospray ionization method, and mass analysis method Download PDF

Info

Publication number
WO2018207903A1
WO2018207903A1 PCT/JP2018/018263 JP2018018263W WO2018207903A1 WO 2018207903 A1 WO2018207903 A1 WO 2018207903A1 JP 2018018263 W JP2018018263 W JP 2018018263W WO 2018207903 A1 WO2018207903 A1 WO 2018207903A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
probe
sample
electrospray ionization
probe member
Prior art date
Application number
PCT/JP2018/018263
Other languages
French (fr)
Japanese (ja)
Inventor
賢三 平岡
Original Assignee
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学 filed Critical 国立大学法人山梨大学
Priority to JP2019517709A priority Critical patent/JP7109731B2/en
Publication of WO2018207903A1 publication Critical patent/WO2018207903A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns

Definitions

  • the present invention relates to an electrospray ionization apparatus, a mass spectrometry instrument, an electrospray ionization method, and a mass spectrometry method.
  • mass spectrometry has been widely used in the fields of organic chemistry and biochemistry to ionize molecules in a sample to be analyzed and detect the mass of the ions.
  • molecules in a sample can detect ions with a single charge or ions with multiple charges, and also detect ions derived from the association or dissociation of molecules in a sample. A wealth of information can be obtained. Therefore, it is very useful as a means for identifying a known substance and determining the structure of an unknown substance, and research and development of more excellent mass spectrometry has been actively conducted.
  • Patent Document 1 a sample is captured at the tip of a metal probe, and a voltage is applied to the metal probe to generate an electrospray.
  • a probe electrospray ionization method (PESI) and a mass spectrometer using PESI (PESI) PESI-MS) has been reported.
  • PESI probe electrospray ionization method
  • PESI mass spectrometer using PESI
  • Patent Document 1 it is disclosed that PESI can use biological tissue or the like without pretreatment as a target sample, and a metal probe or sample can ionize the sample under atmospheric pressure. .
  • Patent Document 2 reports PESI-MS that enables the analysis of all components contained in a sample by sequentially ionizing components that are easily ionized to components that are not easily ionized by spraying a solvent in high temperature vapor onto the probe. Has been.
  • the PESI-MS in Patent Document 2 has the function of supplying a solvent by spraying the solvent as a high-temperature vapor on the sample, thereby enabling analysis of the entire components contained in the sample including components that are difficult to ionize.
  • this PESI-MS requires a process of heating the solvent to vapor and a process of spraying the vapor, and the sample is ionized by supplying the solvent by a simple method in a milder environment. There was a need for an apparatus and method.
  • the present invention has been made in view of the above circumstances, and provides a conventional PESI-MS by supplying a solvent continuously or intermittently (continuously) in a mild environment and in a simple manner.
  • the present invention provides an electrospray ionization apparatus, a mass spectrometry instrument, an electrospray ionization method, and a mass spectrometry method that can ionize components that are difficult to ionize and analyze.
  • an electrospray ionization apparatus comprising: a probe member that captures a sample by contact; and a voltage application member configured to apply a voltage to the probe member,
  • the probe member has a liquid solvent continuous supply mechanism or liquid solvent intermittent supply mechanism to the sample, or the electrospray ionization apparatus has a liquid solvent continuous supply mechanism or liquid solvent intermittent supply mechanism to the sample.
  • An electrospray ionization apparatus is further provided that further includes a solvent supply member.
  • FIG. 1 is a schematic view of an example of an electrospray ionization apparatus according to the present invention.
  • FIG. 2 is a schematic view of an example of an electrospray ionization apparatus according to the present invention.
  • FIG. 3 is a conceptual diagram showing how the repetitive movement of the probe member and the application of voltage are synchronized.
  • FIG. 4 is a schematic view of an example of the first embodiment in the electrospray ionization apparatus of the present invention.
  • FIG. 5 is a schematic view of an example having the manipulator of the first embodiment in the electrospray ionization apparatus of the present invention.
  • FIG. 6 is a schematic view of an example of the second embodiment of the electrospray ionization apparatus of the present invention.
  • FIG. 1 is a schematic view of an example of an electrospray ionization apparatus according to the present invention.
  • FIG. 2 is a schematic view of an example of an electrospray ionization apparatus according to the present invention.
  • FIG. 7 is a schematic view of an example of the third embodiment in the electrospray ionization apparatus of the present invention.
  • FIG. 8 is a schematic diagram of an example of the mass spectrometer of the present invention.
  • 9A to 9C are spectrum diagrams showing the results of mass spectrometry using the first embodiment of the electrospray ionization apparatus of the present invention.
  • FIGS. 10A to 10B are spectrum diagrams showing the results of performing mass spectrometry using the second embodiment of the electrospray ionization apparatus of the present invention.
  • FIGS. 11A to 11E are spectrum diagrams showing the results of performing mass spectrometry using the second embodiment of the electrospray ionization apparatus of the present invention.
  • 12A to 12B are spectrum diagrams showing the results of mass spectrometry using the third embodiment of the electrospray ionization apparatus of the present invention.
  • the present inventor has conducted intensive studies and found that the electrospray ionization apparatus used in conventional PESI-MS is continuously (continuously or intermittently) in a mild environment and in a simple manner with the solvent in a liquid state. In other words, the present invention has completed the present invention.
  • the probe member holds a sample containing a liquid solvent at the tip, and when a voltage is applied, an electrochemical reaction occurring at the tip causes the same sign as the applied voltage. Excess charge is supplied to the droplet and the droplet is charged. Then, the evaporation of the solvent and the increase in surface charge density proceed, the repulsive force between the charges exceeds the surface tension of the liquid, and finally a coulomb explosion occurs due to the repulsion of the electrostatic force, resulting in a fine charged liquid containing sample molecules Drops are released as a spray (electrospray). Through such a process, it is considered that the sample molecules are ionized by being supplied with electric charge in the charged droplets.
  • the probe member includes a probe
  • the solvent supply member includes a solvent storage unit and an operation unit
  • the operation unit brings the probe into contact with a liquid solvent stored in the solvent storage unit.
  • the solvent is supplied to the sample.
  • the time for which the probe contacts the liquid solvent is 10 milliseconds or more and 100 milliseconds or less.
  • the operating part includes a repetitive moving means for repetitively moving the probe member in the longitudinal direction of the probe member.
  • the operating part includes a manipulator.
  • the probe member includes a probe and a solvent loading tip, and the probe protrudes from a lower end of the solvent loading tip, and is configured to store a liquid solvent inside the solvent loading tip.
  • the probe protrudes from the lower end of the solvent loading tip in a range of 0 mm to 0.2 mm.
  • the probe member includes a probe and an insulator covering the probe, the insulator holds a liquid solvent on the surface, and the solvent is removed when a part of the sample is ionized. It is configured to supply.
  • the insulator includes borosilicate or epoxy resin.
  • it further includes repetitive moving means for repetitively moving the probe member in the longitudinal direction of the probe member.
  • it further includes a manipulator.
  • any one of the above electrospray ionization apparatuses, and an analysis apparatus that separates ions ionized by the electrospray ionization apparatus there is provided a mass spectrometer comprising: an ion detector that detects ions separated by the analyzer.
  • a capturing step in which a probe member captures a sample
  • an ionization step in which a voltage is applied to the probe member to ionize the sample, and the sample is continuously or intermittently applied.
  • a solvent supply step of supplying a liquid solvent.
  • the probe member includes a probe, and in the solvent supply step, the probe is brought into contact with a liquid solvent to supply a liquid solvent to the sample.
  • the time for which the probe contacts the liquid solvent is 10 milliseconds or more and 100 milliseconds or less.
  • the probe member in the solvent supply step, the probe member is repeatedly moved in the longitudinal direction of the probe member.
  • the probe member collects the sample from all directions.
  • the probe member includes a probe and a solvent loading tip, the probe protrudes from a lower end of the solvent loading tip, and has a solvent filling step of filling the solvent loading tip with a liquid solvent.
  • the probe member In the solvent supply step, the probe member is brought into contact with the sample, and the liquid solvent is supplied from the inside of the solvent loading chip.
  • the probe member includes a probe and an insulator covering the probe, and in the capturing step, the probe member contacts the sample at a depth of greater than 0 mm and 2 mm or less.
  • the ionization step a part of the sample is ionized, and in the solvent supply step, a liquid solvent held on the surface of the insulator is supplied to the sample.
  • the probe member collects the sample from all directions.
  • any one of the electrospray ionization methods described above, an analysis step of separating ions ionized by the ionization method, and ions that detect ions separated in the analysis step A mass spectrometric method having a detection step.
  • Electrospray ionization apparatus 1 A schematic view of an example of an electrospray ionization apparatus according to the present invention is shown in FIG.
  • the electrospray ionization apparatus 1 includes a probe member 10 that captures a sample by contact, and a voltage application member 20 configured to apply a voltage to the probe member 10, and the probe member 10. Is configured to continuously supply the solvent to the sample, or further includes a solvent supply member configured to continuously supply the solvent to the sample.
  • the electrospray ionization apparatus 1 includes a probe member 10 that captures a sample by contact, and a voltage application member 20 that is configured to apply a voltage to the probe member 10.
  • the needle member 10 has a liquid solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism to the sample, or the electrospray ionization apparatus has a solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism to the sample. It further has a member.
  • the electrospray ionization apparatus 1 only needs to have an amount of sample that is attached to the tip of the probe member 10, and can ionize even a very small amount of sample such as 1 pL (picoliter) or 3 pL. Even if the sample targeted by the electrospray ionization apparatus of the present invention is a solid sample such as a powder, the sample itself is in a liquid state, or a liquid sample such as a dispersion in which the sample is dispersed in a solvent or a solution in which the sample is dissolved It may be.
  • the time during which the electrospray ionization apparatus 1 can generate electrospray is preferably 1 second or longer, more preferably 2 seconds or longer, 3 seconds or longer, and 5 seconds or longer.
  • the probe member 10 is not particularly limited as long as it has a function of capturing a sample and can apply a voltage.
  • a conductive probe such as a metal probe or a conductive probe is typically used. Those covered with other materials.
  • the voltage application member 20 is not particularly limited as long as a voltage high enough to ionize the sample can be applied to the probe member 10, but the voltage that can be applied to the probe member 10 by the voltage application member 20 is 0.5 kV. (Kilovolt) or more is preferable, 1 kV or more is more preferable, 10 kV or less is preferable, and 8 kV or less is more preferable. 2 ⁇ 0.5 kV is more preferable.
  • the probe member 10 is configured to continuously or intermittently supply the solvent to the sample
  • the probe member described in the second embodiment or the third embodiment described later is used. May be used.
  • the solvent supply member configured to continuously or intermittently supply the solvent to the sample may be the solvent supply member 30 described in the first embodiment described later.
  • the solvent used is not particularly limited as long as it can dissolve or disperse the sample, but is preferably a polar solvent from the viewpoint of efficiently supplying electric charge to the sample, and efficiently removes the charged sample. From the viewpoint, a volatile solvent is preferable.
  • the solvent used may be a mixed solvent, typically a mixed solvent of water and a volatile polar solvent.
  • the volatile polar solvent include alcohols such as methanol and ethanol, and acetonitrile. Preferably used.
  • the solvent used is preferably 0 ° C. or higher and 80 ° C. or lower, more preferably 70 ° C. or lower, 60 ° C. or lower, and 50 ° C. or lower, and even more preferably room temperature, from the viewpoint of preventing sample denaturation. Moreover, it is preferable that the solvent used is not supplied as a vapor
  • the electrospray ionization method using the electrospray ionization apparatus 1 includes a capturing step in which the probe member 10 captures a sample, an ionization step in which a voltage is applied to the probe member 10 to ionize the sample, and the sample A solvent supply step of supplying the solvent continuously or intermittently.
  • the timing for applying a voltage to the probe member 10 is not particularly limited, and a voltage may be constantly applied, or a voltage may be applied only after capturing a sample or after supplying a solvent.
  • FIG. 2 shows an example of the electrospray ionization apparatus of the present invention.
  • the voltage supply member 20 in FIG. 2 includes a power source 21 (for example, HV power supply), a switch 22 (for example, HV switch), and a digital delay pulse generator 23 (for example, digital delay pulse). generator etc.).
  • the digital delay pulse generator 23 supplies a trigger signal to the repetitive moving means 33 to cause the repetitive movement of the probe member 10.
  • the power source 21 constantly applies a voltage
  • the digital delay pulse generator 23 supplies a trigger signal to the switch 22, and controls whether the voltage applied by the power source 21 is transmitted to the probe member 10. is doing.
  • the switch 22 is turned off during the period in which the tip of the probe member 10 is in the vicinity of the lower solstice.
  • FIG. 3 is a conceptual diagram showing how the repeated movement of the probe member 10 and the application of voltage are synchronized.
  • the repetitive moving means 33 receives the trigger signal, repetitive movement is performed in which the tip of the probe member 10 moves to the lower end point and returns to the upper end point.
  • the switch 22 is turned on with a delay of ⁇ t time from the trigger signal, and a voltage is applied to the probe member 10 for a certain period of time. In this way, the repeated movement of the probe member 10 and the application of voltage are synchronized.
  • sample collection and ionization can be repeated, or solvent supply can be repeated.
  • the probe member 10 includes the probe 11
  • the solvent supply member 30 includes the solvent storage unit 31 and the operation unit 32, and operates.
  • the part 32 moves the probe 11 so that the probe 11 is brought into contact with the solvent stored in the solvent storage unit 31.
  • the electrospray ionization apparatus 1 is configured such that the sample repeatedly obtains a solvent by operating the probe 11 to which the sample is attached to the solvent storage unit 31 by operating the probe 32. is there. That is, an operation of dipping (dipping) the probe 11 to which the sample is attached to the solvent in the solvent storage unit 31 is executed at least once.
  • the probe 11 to which a sample is attached is operated by the operating unit 32 and brought into contact with the solvent storage unit 31, so that the sample is repeatedly supplied to the sample, that is, the solvent is intermittently supplied. It is made to be done.
  • an intermittent supply mechanism of the liquid solvent may be configured by the solvent supply member 30 including the solvent storage unit 31 and the operation unit 32.
  • the probe 11 preferably has a tip radius of curvature of, for example, 10 ⁇ m (micrometer) or less, 5 ⁇ m or less, 1 ⁇ m or less, or 0.7 ⁇ m or less from the viewpoint of capturing a fine sample. Further, from the viewpoint of easy availability and manufacturing cost, the curvature radius of the tip is preferably 0.1 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more, for example.
  • the diameter of the body of the probe 11 is not particularly limited, and is, for example, 5.0 mm or less, 1.0 mm or less, 0.5 mm or less, and 0.1 mm or more, 0.3 mm or more. In this way, when the diameter of the body and the tip of the probe 11 is very small, the invasiveness to the sample is very low, so that it can be applied to the medical field such as biopsy and sampling with an endoscope. Is preferred.
  • the probe 11 is preferably made of metal from the viewpoint of conductivity and high hardness.
  • the metal probe include the metals such as stainless steel, titanium, aluminum, iron, silver, gold, and steel. It is preferable that the alloy is included.
  • the probe surface is rich in irregularities, so that separation of each component occurs remarkably.
  • the solvent storage unit 31 is not particularly limited, but is typically a dish-shaped or cup-shaped container, and is preferably made of a material that does not elute into a solvent such as glass.
  • the time for the operating unit 32 to contact the probe 11 with the solvent stored in the solvent storage unit 31 is, for example, 10 milliseconds or more and 100 milliseconds or less, but is 80 milliseconds or less from the viewpoint of preventing sample elution. It is preferable that it is 50 milliseconds or less.
  • the time for contacting the probe with the solvent stored in the solvent storage unit is 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, It suffices to be within the range of any two values among 85, 90, 95, and 100 milliseconds.
  • the depth at which the operating unit 32 brings the probe 11 into contact with the solvent stored in the solvent storage unit 31 is preferably set so that all the sample captured by the probe 11 is in contact with the solvent.
  • the operating unit 32 may include a repetitive moving means 33 that repetitively moves the probe 11 in the longitudinal direction of the probe 11.
  • the operating unit 32 may perform a capturing operation for attaching or capturing the sample to the probe 11.
  • the sample may be captured by the probe 11 by the vertical movement of the probe 11 (that is, the operation of moving the probe 11 up and down in the longitudinal direction of the probe 11).
  • the operating unit 32 may include a manipulator 34.
  • FIG. 5 shows an example of the first embodiment in which the operating unit 32 includes a manipulator 34.
  • the operating unit 32 includes the manipulator 33, since the sample can be captured from all directions, the sample having a large volume can be captured and ionized. It is suitable for 3D (three-dimensional) imaging mass spectrometry equipment capable of performing mass spectrometry.
  • the sample is captured and measured at a plurality of measurement points of the three-dimensional sample.
  • the operating unit 32 including a manipulator can be controlled by using a computer or the like, and can be automated.
  • a manipulator refers to a device that has a movement function similar to that of a human arm or hand and is intended to replace human manual work.
  • one or more movable parts that can be bent and rotated are included.
  • the electrospray ionization method using the electrospray ionization apparatus 1 according to the first embodiment includes the above-described capturing step, solvent supply step, and ionization step, the probe member 10 includes a probe 11, and the solvent supply step.
  • the probe 11 is brought into contact with a liquid solvent to supply a liquid solvent to the sample.
  • the capturing step is a step of attaching or capturing the sample to the probe 11 using the operating unit 32
  • the solvent supplying step is that the operating unit 32 contacts the solvent stored in the solvent storage unit 31 by the operating unit 32.
  • the ionization step is a step of applying a voltage (high voltage) to the probe 11 that has captured the sample to ionize the sample. Note that the ionization step is desirably performed in the vicinity of an ion inlet (not shown) of the analyzer 3 described later.
  • the ionization step and the solvent supply step are preferably performed a plurality of times in order to achieve the object of the present invention to ionize components that are difficult to ionize, for example, 3 times or more, 5 times or more, 10 times or more.
  • the order in which the ionization step and the solvent supply step are performed may be reversed.
  • the probe 11 can repetitively move in the longitudinal direction of the probe 11, and when the operation part 32 includes the manipulator 34, the probe 11 can move relative to the sample. Can be captured from all directions. By the operation of the operating unit 32, the sample can be captured and the solvent can be supplied.
  • a liquid sample having a high concentration which cannot be handled by ordinary electrospray
  • a dry sample or a solid sample
  • the sample can be dried and transported once, and a solvent can be supplied and ionized at a remote location.
  • FIG. 6 shows an example of the second embodiment of the electrospray ionization apparatus 1 of the present disclosure.
  • the probe member 10 in addition to the configuration of the electrospray ionization apparatus 1 shown in FIG. 1, the probe member 10 includes a probe 11 and a solvent loading chip 13 (for example, a gel loading chip).
  • the solvent loading chip 13 protrudes from the lower end in a range of 0 mm to 0.2 mm, and is configured to store the solvent inside the solvent loading chip 13.
  • the probe 11 contacts the sample and captures the sample, and at the same time, the solvent stored in the solvent loading chip 13 is supplied to the sample by capillary action. Further, when a voltage is applied to the sample captured by the probe 11 and the sample or solvent is sprayed and reduced, the solvent in the solvent loading chip 13 is further supplied.
  • the solvent can be continuously or intermittently supplied to the sample by a simple operation of simply touching the sample. it can. Therefore, it is possible to easily analyze a dried solid sample or a sample having a high concentration.
  • the probe member 10 including the probe 11 and the solvent loading chip 13 may constitute a liquid solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism.
  • the probe 11 similar to that in the first embodiment can be used.
  • the solvent loading chip 13 is preferably made of a hydrophobic material from the viewpoint of preventing the sample from adhering to the solvent loading chip 13 when the sample is hydrophilic. Examples of the solvent loading chip 13 include epT. I. P. S etc. are mentioned. Thereby, what is called cross contamination when many samples are continuously measured can be suppressed.
  • the electrospray ionization apparatus 1 may further include repetitive moving means for repetitively moving the probe member 10 in the longitudinal direction of the probe member 10.
  • the sample can be attached to or captured by the probe 11 by the movement.
  • the electrospray ionization apparatus 1 may be provided with a manipulator, so that the sample can be captured from all directions as in the first embodiment.
  • the electrospray ionization method using the electrospray ionization apparatus 1 according to the second embodiment includes the above-described capturing step, ionization step, and solvent supply step, and the probe member 10 includes the probe 11 and the solvent loading chip 13.
  • the probe 11 protrudes from the lower end of the solvent loading tip 13 in the range of 0 mm to 0.2 mm, and has a solvent filling step of filling the solvent loading tip 13 with the solvent.
  • the needle member 10 is brought into contact with the sample, and the solvent is supplied from the inside of the solvent loading chip 13.
  • the spray generation point fluctuates.
  • the protrusion of the probe 11 is made larger than 0.2 mm from the lower end of the solvent loading tip 13, the tip of the sample is not wetted by the solvent from the solvent loading tip 13.
  • the probe 11 protrudes from the lower end of the solvent loading tip 13 to a desired length (for example, 4 to 5 mm), and the tip of the probe member 11 is used as the sample. Puncture at a penetration depth of about 1 mm to capture the sample and perform electrospray (for example, the ionization step) so that the probe 11 is within the range of 0 mm to 0.2 mm from the lower end of the solvent loading chip 13. It may be.
  • Such a mechanism may be incorporated in the probe member 10 or the operating unit 32. If comprised in this way, a hydrophobic sample etc. can also be capture
  • the amount of the solvent filled inside the solvent loading chip 13 is not particularly limited, but is, for example, 5 ⁇ L or more, 10 ⁇ L or more, 15 ⁇ L or more, and is 45 ⁇ L or less, 30 ⁇ L or less, 20 ⁇ L or less.
  • the electrospray ionization apparatus 1 of this embodiment stores a solvent in the solvent loading chip 13 in advance before measurement. As described above, this structure is a very simple structure, and a sufficient amount of solvent for electrospray can be supplied to the sample on the probe member 10.
  • FIG. 7 shows an example of the third embodiment of the electrospray ionization apparatus 1 of the present disclosure.
  • the probe member 10 in addition to the configuration of the electrospray ionization apparatus 1 shown in FIG. 1, the probe member 10 includes a probe 11 and an insulator 15 covering the probe 11, and the insulator 15 is on the surface. It is further characterized in that it is configured to supply a solvent when a solvent is retained and a part of the sample is ionized.
  • the electrospray ionization apparatus 1 of the third embodiment holds the liquid sample on the surface of the insulator 15 by bringing the probe member 10 into contact with the liquid sample. Thereafter, when a voltage is applied to the probe member 10 to generate electrospray at its tip, a solvent is supplied from the liquid sample held on the surface of the insulator 15 toward the tip of the insulator 15.
  • a liquid solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism can be configured by the insulator 15 covering the probe 11.
  • electrospray can be generated over a long period of time, for example, 5 seconds or more. Further, since the spraying time lasts for a long time, it is suitable for a tandem mass spectrometer equipped with two mass spectrometers or a mass spectrometer equipped with three or more mass spectrometers.
  • the thickness of the probe member 10 covered with the insulator 15 is not particularly limited, but is, for example, 1 ⁇ m or more and 1000 ⁇ m or less, 5 ⁇ m or more and 500 ⁇ m or less.
  • the probe member 10 may be a glass capillary using an insulator 15 filled with an electrically conductive liquid, for example, an ionic liquid, or an inner surface plated.
  • an electrically conductive liquid for example, an ionic liquid, or an inner surface plated.
  • the insulator 15 is not particularly limited, but from the viewpoint of easy attachment of a solvent, availability, and ease of processing, borosilicate and epoxy resin are preferable, and there is little contamination by a sample, and from the viewpoint that it can be used repeatedly. More preferred are borosilicates.
  • the electrospray ionization apparatus 1 may further include repetitive moving means for repetitively moving the probe member 10 in the longitudinal direction of the probe member 10.
  • the sample can be attached to or captured by the probe 11 by the movement.
  • the electrospray ionization apparatus 1 may be provided with a manipulator, so that the sample can be captured from all directions as in the first embodiment.
  • the electrospray ionization method includes the above-described capturing step, solvent supply step, and ionization step, and the probe member 10 includes a probe 11 and an insulator 15 that covers the probe,
  • the probe member 10 contacts the sample at a depth greater than 0 and 2 mm or less to capture the sample.
  • the ionization step a part of the sample is ionized and the solvent supply step The solvent held on the surface of the insulator 15 is supplied to the sample.
  • the depth at which the probe member 10 is brought into contact with the sample may be greater than 0 and 2 mm or less when minimal invasiveness is to be considered for the sample to be measured, such as a biological examination. Preferably it is 1 mm or less, More preferably, it is 0.5 mm or less. Even if the depth at which the probe member 10 is brought into contact with the sample is within these ranges, this method can perform sufficient measurement.
  • the third embodiment shows that electrospraying is possible even when the probe 11 is covered with an insulator 15 such as borosilicate as shown in Example 4 described later. Furthermore, the performance is comparable to the performance of other embodiments and conventional PESI.
  • Mass Spectrometer 2 of the present disclosure includes an electrospray ionizer 1, an analyzer 3, and an ion detector 5.
  • electrospray ionization apparatus 1 provided in the mass spectrometer 2 of the present disclosure, the same ones as described above can be used.
  • the analyzer 3 provided in the mass spectrometer 2 of the present disclosure is not particularly limited, and includes a magnetic field deflection type, a quadrupole type, an ion trap type, an orbitrap type, a time-of-flight type, a Fourier transform ion cyclotron resonance type, a tandem type, and the like. General equipment can be used. Since the mass spectrometer 2 of the present disclosure uses the electrospray ionization apparatus 1 having a function of continuously supplying a solvent to the target sample, the electrospray can be continuously caused.
  • the mass spectrometer 2 of the present disclosure has a slow sweep rate like a quadrupole mass spectrometer, which is difficult to apply in the conventional PESI-MS in which the electrospray time of the present disclosure is less than 1 second.
  • a mass spectrometer can be combined, and a tandem type mass spectrometer having two analyzers can be used.
  • the ion detection device 5 included in the mass spectrometer of the present disclosure is detected by, for example, a format in which ions selected by the analysis device 3 are sensitized with an electron multiplier or a microchannel plate, an orbitrap format, or a Faraday cup. And the form of counting.
  • the mass spectrometry method of the present disclosure includes the above-described electrospray ionization method, an analysis step of separating ions ionized by the ionization method, and an ion detection step of detecting ions separated in the analysis step. It is what you have.
  • FIG. 8 An example of the mass spectrometer of the present invention is shown in FIG.
  • the voltage supply member 20 in FIG. 8 has the same configuration as in FIG. 2, and the switch 22 is turned off during the period in which the tip of the probe 11 is in contact with the solvent near the bottom point, and the tip of the probe 11 is After the ascent, the repetitive movement of the probe member 10 and the on / off of the switch 22 can be synchronized, such as ionizing the sample by turning on the switch 22 during a period in which the tip of the probe 11 is in the vicinity of the highest point it can.
  • the solvent can be repeatedly supplied to the sample, a component that is relatively less ionized in the sample can be ionized.
  • the electrospray ionization apparatus is more comfortable.
  • the electrospray ionization apparatus 1 when voltage is applied to generate electrospray, sample components are first sprayed for several seconds, and then electrospray of the solvent itself is generated. Electrospraying continues until the solvent is completely removed, but if the voltage is turned off when the sample jumps, solvent consumption can be saved. When the solvent is electrosprayed to a certain extent so that the sample captured at the tip is completely blown out, the sample can be washed and carry over can be prevented.
  • the solvent itself is likely to volatilize when the ambient temperature is high, so that the electrospray is likely to become unstable and the solvent consumption rate increases. Therefore, it is better that the ambient temperature is room temperature.
  • the head portion (in the vertical direction) of the solvent loading chip 13 is too large (50 mm or more), when the sample is brought into contact with the sample, the solvent flows out in one direction and the sample capturing efficiency decreases.
  • a thickness of about 30 to 35 mm is appropriate. In this case, it is possible to wet the solid sample even if the probe is vertical, oblique, or up-side down.
  • the tip of the solvent loading tip 13 remains thin, and the amount of solvent can be increased regardless of the head by making the upper part thicker).
  • the head is about 20 mm (or less), the liquid is sucked into the chip, and a signal derived from the solvent may not be generated even when electrospraying is performed. That is, the cleaning effect of the sample trapped at the tip by the subsequent continuous solvent electrospray is diminished. Therefore, the head is preferably 20 mm or more and 50 mm or less, and more preferably 30 to 35 mm.
  • the inner diameter of the tip of the solvent loading tip 13 may be selected to be about 0.2 mm.
  • a probe 11 having an outer diameter of 0.12 mm (for example, a needle can be used) may be inserted into this.
  • the performance of electrospray increases as the tip diameter decreases.
  • the inner diameter of the chip may be 0.1 mm, 0.05 mm, or 0.01 mm or less in addition to the above. In this case, the probe 11 to be inserted may be thinner than the tip inner diameter.
  • the insulator 15 may be fused quartz, fused quartz coated with polyimide, or the like.
  • the depth at which the probe member 10 is brought into contact with the sample may be up to several mm (for example, about 10 mm).
  • the depth at which the probe member 10 is brought into contact with the sample may be up to several mm (for example, about 10 mm).
  • Example 1 Electrospray ionization apparatus and analysis apparatus (manufactured by JEOL) including a probe (Seirin, 0.12 ⁇ 40, 15Y05E1), a voltage application member, and a solvent supply member having a solvent storage unit and repetitive movement means
  • a time-type mass spectrometer AccuTOF) and a mass spectrometer equipped with an ion detector were prepared.
  • the tip of the probe is punctured by about 0.5 mm into the salmon roe.
  • a 1: 1 liquid mixture solvent of water: methanol in the solvent reservoir After puncturing, prepare a 1: 1 liquid mixture solvent of water: methanol in the solvent reservoir, and place it on the mass spectrometer so that the tip of the probe where the salmon is captured and the solvent reservoir are at a distance of 10 mm. Arranged.
  • the probe is infiltrated into the solvent for 50 milliseconds to wet the sample at the tip of the probe with the solvent. After moistening, the probe was moved upward, and a 2.1 kV voltage was applied to the probe for 4 seconds at the topmost point, and the mass spectrum of salmon rosa just after the voltage application was started was measured. The puncture depth of the probe holding the sample into the solvent is about 1 mm.
  • 9A to 9C show the results of sequential measurement of salmon PESI-MS spectra by repeating the above-mentioned liquid solvent supply and ionization steps once every 10 seconds.
  • 9A is a spectrum measured at the first time
  • FIG. 9B is a spectrum measured at the fifth time
  • FIG. 9C is a spectrum measured at the ninth time.
  • a peak derived from phosphatidylcholine (PC), which is a lipid, is observed at a mass / charge ratio in the vicinity of m / z 800-900 when the first electrospray is generated in Example 1.
  • PC phosphatidylcholine
  • FIG. 9B when the electrospray is generated for the fifth time, a peak derived from PC is hardly observed, and instead, a peak derived from triacylglyceride (TAG) is observed around 900 to 1000 m / z. Yes.
  • TAG triacylglyceride
  • FIG. 9C a peak considered to be a neutral lipid group different from PC is observed in the vicinity of m / z 800-900.
  • Example 1 not only ionized PC, but also neutral lipid groups different from TAG and PC, which were difficult to ionize by conventional PESI-MS, were successfully ionized and detected. is doing. Note that lipid groups such as TAG are components that are not easily ionized as compared to lipids such as PC because they originally have no charge.
  • Example 2 Metal probe so that it penetrates about 0.1 mm from the tip of the solvent loading tip (polypropylene, epTIPS, GEorder, Eppendorf, inner diameter about 0.2 mm, outer diameter about 0.3 mm, total length 65 mm, 20 ⁇ L).
  • the needle was placed, and the other end of the solvent loading tip and the metal probe were sealed with epoxy resin. Further, a hole was made in the side surface of the solvent loading chip, and about 15 ⁇ L of a mixed solvent of water: methanol 1: 1 was injected.
  • Instant coffee grains were brought into slight contact with the tip of the probe member to dissolve and capture the coffee component at the tip.
  • FIG. 10A is a spectrum measured 0.5 seconds after voltage application
  • FIG. 10B is a spectrum measured 2 seconds after voltage application.
  • Example 3 Using the mass spectrometer used in Example 2, the result of measuring ink handwriting written on plain paper with a four-color ballpoint pen from Zebra using a mixed solvent of water: methanol: acetonitrile 1: 1: 1
  • FIG. 11A to FIG. 11D show the results of measuring ink handwriting written on plain paper with a pilot company's black ballpoint pen, as shown in FIG. 11E.
  • the ink of the ballpoint pen was used after writing letters on paper and leaving it at room temperature for about 10 minutes.
  • the tip of a probe member similar to that of Example 2 is lightly touched with a handwriting written with a ballpoint pen, and a part of the handwriting (about 0.3 mm in diameter) is dissolved in a solvent and extracted and captured at the tip. It was used for.
  • FIGS. 11A to 11D completely different spectra are obtained from the respective colors of the four-color ballpoint pens of Zebra. Furthermore, comparing FIG. 11A and FIG. 11E, different spectra are obtained for the same black ink, even for Zebra and Pilot. From this, the mass spectrometer of the present invention is expected to be applied to fields that require precise analysis such as handwriting appraisal.
  • Example 4 The tip of a glass capillary (manufactured by Prime Tech, PT Micropipettes for PMM, “Ultra-thin”, PINUS06-20FT) was heated and sealed, and a metal probe was inserted therein. After the insertion, an epoxy resin was bonded to the base of the glass capillary, and the probe and the glass capillary were fixed. Otherwise, the results of mass spectrometry of yogurt (Meiji Co., Ltd .: Probio Yogurt R-1) using the same equipment as in Example 1 are shown in FIGS. 12A to 12B.
  • FIG. 12A shows the spectrum after 1 second of voltage application
  • FIG. 12B shows the spectrum after 5 seconds of voltage application.
  • Electrospray ionizer 1: Electrospray ionizer, 2: Mass spectrometer, 3: Analyzer, 5: Ion detector, 10: Probe member, 11: Probe, 13: Solvent loading chip, 15: Insulator, 20: Voltage application Member: 21: power source, 22: switch, 23: digital delay pulse generator, 30: solvent supply member, 31: soot solvent storage unit, 32: operating unit, 33: repetitive moving means, 34: manipulator

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

The present invention provides an electrospray ionization device comprising a probe member for contacting and thereby capturing a sample, and a voltage application member configured to apply a voltage to the probe member. The probe member is provided with a continuous supply mechanism or an intermittent supply mechanism for supplying a liquid solvent to the sample. Alternatively, the electrospray ionization device further comprises a solvent supply member provided with a continuous supply mechanism or an intermittent supply mechanism for supplying a liquid solvent to the sample.

Description

エレクトロスプレーイオン化装置、質量分析機器、エレクトロスプレーイオン化の方法、及び質量分析方法Electrospray ionization apparatus, mass spectrometer, electrospray ionization method, and mass spectrometry method
 本発明は、エレクトロスプレーイオン化装置、質量分析機器、エレクトロスプレーイオン化の方法、及び質量分析方法に関する。 The present invention relates to an electrospray ionization apparatus, a mass spectrometry instrument, an electrospray ionization method, and a mass spectrometry method.
 近年、有機化学や生化学の分野では、分析しようとする試料中の分子をイオン化させて、そのイオンの質量を検出する質量分析法(MS)が広く用いられている。質量分析法では、試料中の分子が電荷を1つ持ったイオンや複数持ったイオンを検出することができ、さらに、試料中の分子が会合、または解離したものに由来するイオンを検出することができる等、豊富な情報を得ることができる。そのため、既知物質の同定や未知物質の構造を決定するための手段として非常に有用であり、より優れた質量分析法の研究・開発が盛んに行われている。 In recent years, mass spectrometry (MS) has been widely used in the fields of organic chemistry and biochemistry to ionize molecules in a sample to be analyzed and detect the mass of the ions. In mass spectrometry, molecules in a sample can detect ions with a single charge or ions with multiple charges, and also detect ions derived from the association or dissociation of molecules in a sample. A wealth of information can be obtained. Therefore, it is very useful as a means for identifying a known substance and determining the structure of an unknown substance, and research and development of more excellent mass spectrometry has been actively conducted.
 例えば、特許文献1では、金属プローブの先端で試料を捕捉し、金属プローブに電圧を印加することで、エレクトロスプレーを発生させる探針エレクトロスプレーイオン化法(PESI)およびPESIを用いた質量分析装置(PESI-MS)が報告されている。特許文献1によれば、PESIは、前処理なしの生体組織等を対象試料とすることができ、金属製プローブや試料が大気圧の下で、試料をイオン化させることができることが開示されている。 For example, in Patent Document 1, a sample is captured at the tip of a metal probe, and a voltage is applied to the metal probe to generate an electrospray. A probe electrospray ionization method (PESI) and a mass spectrometer using PESI (PESI) PESI-MS) has been reported. According to Patent Document 1, it is disclosed that PESI can use biological tissue or the like without pretreatment as a target sample, and a metal probe or sample can ionize the sample under atmospheric pressure. .
 特許文献2では、高温蒸気にした溶媒を探針に吹き付けることで、イオン化されやすい成分からイオン化されにくい成分までを順次イオン化し、試料に含まれる成分全体の分析を可能にしたPESI-MSが報告されている。 Patent Document 2 reports PESI-MS that enables the analysis of all components contained in a sample by sequentially ionizing components that are easily ionized to components that are not easily ionized by spraying a solvent in high temperature vapor onto the probe. Has been.
特許4862167号Patent 4862167 特許5034092号Patent 5034092
 特許文献1のPESI-MSは、試料に含まれる溶媒の量が極少量であったため、エレクトロスプレーを短時間しか発生させることができなかった。そのため、試料中の成分の中でも、イオン化しやすい成分のみが検出され、相対的にイオン化されにくい成分を検出することができないという問題があった。 In the PESI-MS of Patent Document 1, since the amount of the solvent contained in the sample was extremely small, electrospray could be generated only for a short time. For this reason, among components in the sample, only components that are easily ionized are detected, and components that are relatively difficult to ionize cannot be detected.
 特許文献2のPESI-MSは、試料に溶媒を高温蒸気として吹き付けることで溶媒を供給する機能を備えることで、イオン化されにくい成分を含めた試料に含まれる成分全体の分析を可能にした。しかしながら、このPESI-MSは、溶媒を加熱して蒸気にする工程及び蒸気を吹き付ける工程を必要とするものであり、より温和な環境で、且つ簡便な方法で溶媒を供給して試料をイオン化する装置及び方法が求められていた。 The PESI-MS in Patent Document 2 has the function of supplying a solvent by spraying the solvent as a high-temperature vapor on the sample, thereby enabling analysis of the entire components contained in the sample including components that are difficult to ionize. However, this PESI-MS requires a process of heating the solvent to vapor and a process of spraying the vapor, and the sample is ionized by supplying the solvent by a simple method in a milder environment. There was a need for an apparatus and method.
 本発明は、このような事情に鑑みてなされたものであり、温和な環境で、且つ簡便な方法で溶媒を液状のまま連続的又は断続的(継続的)に供給し、旧来のPESI-MSではイオン化して分析することが困難であったイオン化しにくい成分をイオン化することができるエレクトロスプレーイオン化装置、質量分析機器、エレクトロスプレーイオン化の方法、及び質量分析方法を提供するものである。 The present invention has been made in view of the above circumstances, and provides a conventional PESI-MS by supplying a solvent continuously or intermittently (continuously) in a mild environment and in a simple manner. The present invention provides an electrospray ionization apparatus, a mass spectrometry instrument, an electrospray ionization method, and a mass spectrometry method that can ionize components that are difficult to ionize and analyze.
 本発明によれば、エレクトロスプレーイオン化装置であって、接触することにより試料を捕捉する探針部材と、前記探針部材に電圧を印加するように構成された電圧印加部材とを有し、前記探針部材が前記試料への液状溶媒の連続供給機構又は液状溶媒の断続供給機構を備えるか、又は前記エレクトロスプレーイオン化装置が前記試料への液状溶媒の連続供給機構又は液状溶媒の断続供給機構を備える溶媒供給部材をさらに有する、エレクトロスプレーイオン化装置が提供される。 According to the present invention, an electrospray ionization apparatus, comprising: a probe member that captures a sample by contact; and a voltage application member configured to apply a voltage to the probe member, The probe member has a liquid solvent continuous supply mechanism or liquid solvent intermittent supply mechanism to the sample, or the electrospray ionization apparatus has a liquid solvent continuous supply mechanism or liquid solvent intermittent supply mechanism to the sample. An electrospray ionization apparatus is further provided that further includes a solvent supply member.
図1は、本発明におけるエレクトロスプレーイオン化装置の一例の概略図である。FIG. 1 is a schematic view of an example of an electrospray ionization apparatus according to the present invention. 図2は、本発明におけるエレクトロスプレーイオン化装置の一例の概略図である。FIG. 2 is a schematic view of an example of an electrospray ionization apparatus according to the present invention. 図3は、探針部材の反復移動と電圧の印加が同期する様子を示す概念図である。FIG. 3 is a conceptual diagram showing how the repetitive movement of the probe member and the application of voltage are synchronized. 図4は、本発明のエレクトロスプレーイオン化装置における第1の実施形態の一例の概略図である。FIG. 4 is a schematic view of an example of the first embodiment in the electrospray ionization apparatus of the present invention. 図5は、本発明のエレクトロスプレーイオン化装置における第1の実施形態のマニピュレータを有する一例の概略図である。FIG. 5 is a schematic view of an example having the manipulator of the first embodiment in the electrospray ionization apparatus of the present invention. 図6は、本発明のエレクトロスプレーイオン化装置における第2の実施形態の一例の概略図である。FIG. 6 is a schematic view of an example of the second embodiment of the electrospray ionization apparatus of the present invention. 図7は、本発明のエレクトロスプレーイオン化装置における第3の実施形態の一例の概略図である。FIG. 7 is a schematic view of an example of the third embodiment in the electrospray ionization apparatus of the present invention. 図8は、本発明の質量分析機器の一例の概略図である。FIG. 8 is a schematic diagram of an example of the mass spectrometer of the present invention. 図9A~9Cは、本発明のエレクトロスプレーイオン化装置における第1の実施形態を用いて質量分析を行った結果のスペクトル図である。9A to 9C are spectrum diagrams showing the results of mass spectrometry using the first embodiment of the electrospray ionization apparatus of the present invention. 図10A~10Bは、本発明のエレクトロスプレーイオン化装置における第2の実施形態を用いて質量分析を行った結果のスペクトル図である。FIGS. 10A to 10B are spectrum diagrams showing the results of performing mass spectrometry using the second embodiment of the electrospray ionization apparatus of the present invention. 図11A~11Eは、本発明のエレクトロスプレーイオン化装置における第2の実施形態を用いて質量分析を行った結果のスペクトル図である。FIGS. 11A to 11E are spectrum diagrams showing the results of performing mass spectrometry using the second embodiment of the electrospray ionization apparatus of the present invention. 図12A~12Bは、本発明のエレクトロスプレーイオン化装置における第3の実施形態を用いて質量分析を行った結果のスペクトル図である。12A to 12B are spectrum diagrams showing the results of mass spectrometry using the third embodiment of the electrospray ionization apparatus of the present invention.
 以下、本発明の実施形態を例示して本発明について詳細な説明をする。本発明は、これらの記載によりなんら限定されるものではない。以下に示す本発明の実施形態の各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, the present invention will be described in detail by exemplifying embodiments of the present invention. The present invention is not limited by these descriptions. Various features of the embodiments of the present invention described below can be combined with each other. In addition, the invention is independently established for each feature.
 本発明者は、鋭意検討を行ったところ、従来のPESI-MSに用いられていたエレクトロスプレーイオン化装置に、温和な環境で、且つ簡便な方法で溶媒を液状のまま継続的(連続的又は断続的)に供給する機能を追加することで、試料中の相対的にイオン化されにくい成分をもイオン化することができる方法を見出し、本発明の完成に至った。 The present inventor has conducted intensive studies and found that the electrospray ionization apparatus used in conventional PESI-MS is continuously (continuously or intermittently) in a mild environment and in a simple manner with the solvent in a liquid state. In other words, the present invention has completed the present invention.
 本開示のエレクトロスプレーイオン化装置においては探針部材が、その先端で液状の溶媒を含む試料を保持し、電圧が印加されると、その先端において起こる電気化学反応によって、印加した電圧と同符号の過剰電荷が液滴に供給されて液滴が帯電する。その後、溶媒の蒸発や表面電荷密度の増加が進み,電荷同士の反発力が液体の表面張力を超え、最終的には静電気力の反発によりクーロン爆発が起こり、試料分子が含まれる微細な帯電液滴がスプレーとして放出される(エレクトロスプレー)。このような過程によって、帯電液滴の中で、試料分子は電荷を供給されてイオン化すると考えられる。 In the electrospray ionization apparatus of the present disclosure, the probe member holds a sample containing a liquid solvent at the tip, and when a voltage is applied, an electrochemical reaction occurring at the tip causes the same sign as the applied voltage. Excess charge is supplied to the droplet and the droplet is charged. Then, the evaporation of the solvent and the increase in surface charge density proceed, the repulsive force between the charges exceeds the surface tension of the liquid, and finally a coulomb explosion occurs due to the repulsion of the electrostatic force, resulting in a fine charged liquid containing sample molecules Drops are released as a spray (electrospray). Through such a process, it is considered that the sample molecules are ionized by being supplied with electric charge in the charged droplets.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記探針部材が探針を含み、前記溶媒供給部材が溶媒貯蔵部及び作動部を含み、前記作動部は、前記探針を前記溶媒貯蔵部が貯蔵する液状の溶媒に接触させて前記試料に前記溶媒を供給するように構成されている。
 好ましくは、前記探針が、前記液状の溶媒に接触する時間が10ミリ秒以上100ミリ秒以下である。
 好ましくは、前記作動部が、前記探針部材を前記探針部材の長手方向に反復移動させる反復移動手段を含む。
 好ましくは、前記作動部が、マニピュレータを含む。
 好ましくは、前記探針部材が、探針及び溶媒ローディングチップを含み、前記探針が、前記溶媒ローディングチップの下端から突き出しており、前記溶媒ローディングチップの内側に液状の溶媒を貯蔵するように構成されている。
 好ましくは、前記探針が、前記溶媒ローディングチップの下端から0mm以上0.2mm以下の範囲で突き出している。
 好ましくは、前記探針部材が、探針及び前記探針を覆う絶縁体を含み、前記絶縁体が、表面で液状の溶媒を保持し、前記試料の一部がイオン化した際に、前記溶媒を供給するように構成されている。
 好ましくは、前記絶縁体がボロシリケート又はエポキシ樹脂を含む。
 好ましくは、前記探針部材を前記探針部材の長手方向に反復移動させる反復移動手段をさらに含む。
 好ましくは、マニピュレータをさらに含む。
Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.
Preferably, the probe member includes a probe, the solvent supply member includes a solvent storage unit and an operation unit, and the operation unit brings the probe into contact with a liquid solvent stored in the solvent storage unit. The solvent is supplied to the sample.
Preferably, the time for which the probe contacts the liquid solvent is 10 milliseconds or more and 100 milliseconds or less.
Preferably, the operating part includes a repetitive moving means for repetitively moving the probe member in the longitudinal direction of the probe member.
Preferably, the operating part includes a manipulator.
Preferably, the probe member includes a probe and a solvent loading tip, and the probe protrudes from a lower end of the solvent loading tip, and is configured to store a liquid solvent inside the solvent loading tip. Has been.
Preferably, the probe protrudes from the lower end of the solvent loading tip in a range of 0 mm to 0.2 mm.
Preferably, the probe member includes a probe and an insulator covering the probe, the insulator holds a liquid solvent on the surface, and the solvent is removed when a part of the sample is ionized. It is configured to supply.
Preferably, the insulator includes borosilicate or epoxy resin.
Preferably, it further includes repetitive moving means for repetitively moving the probe member in the longitudinal direction of the probe member.
Preferably, it further includes a manipulator.
 本発明の別の観点によれば、上記のいずれかのエレクトロスプレーイオン化装置と、前記エレクトロスプレーイオン化装置によってイオン化されたイオンを分離する分析装置と、
 前記分析装置で分離されたイオンを検出するイオン検出装置と、を備える質量分析機器が提供される。
According to another aspect of the present invention, any one of the above electrospray ionization apparatuses, and an analysis apparatus that separates ions ionized by the electrospray ionization apparatus,
There is provided a mass spectrometer comprising: an ion detector that detects ions separated by the analyzer.
 本発明の別の観点によれば、探針部材が試料を捕捉する捕捉工程と、前記探針部材に電圧を印加して前記試料をイオン化するイオン化工程と、前記試料に連続的又は断続的に液状の溶媒を供給する溶媒供給工程と、を有するエレクトロスプレーイオン化の方法が提供される。 According to another aspect of the present invention, a capturing step in which a probe member captures a sample, an ionization step in which a voltage is applied to the probe member to ionize the sample, and the sample is continuously or intermittently applied. And a solvent supply step of supplying a liquid solvent.
 以下、本観点による、種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記探針部材が探針を含み、前記溶媒供給工程で、前記探針を液状の溶媒に接触させて前記試料に液状の溶媒を供給する。
 好ましくは、前記探針が、前記液状の溶媒に接触する時間が10ミリ秒以上100ミリ秒以下である。
 好ましくは、前記溶媒供給工程で、前記探針部材を前記探針部材の長手方向に反復移動させる。
 好ましくは、前記捕捉工程で、前記探針部材が、前記試料を全方位から採取する。
 好ましくは、前記探針部材が、探針及び溶媒ローディングチップを含み、前記探針が、前記溶媒ローディングチップの下端から突き出しており、前記溶媒ローディングチップに液状の溶媒を充填する溶媒充填工程を有し、前記溶媒供給工程で、前記探針部材を前記試料に接触させ、前記溶媒ローディングチップの内側から前記液状の溶媒を供給する。
 好ましくは、前記探針部材が、探針及び前記探針を覆う絶縁体を含み、前記捕捉工程において、前記探針部材が、前記試料に0mmより大きく2mm以下の深さで接触して前記試料を捕捉し、前記イオン化工程において前記試料の一部がイオン化すると共に、前記溶媒供給工程において、前記絶縁体の表面で保持されている液状の溶媒を前記試料に供給する。
 好ましくは、前記捕捉工程で、前記探針部材が、前記試料を全方位から採取する。
Hereinafter, various embodiments according to this aspect will be exemplified. The following embodiments can be combined with each other.
Preferably, the probe member includes a probe, and in the solvent supply step, the probe is brought into contact with a liquid solvent to supply a liquid solvent to the sample.
Preferably, the time for which the probe contacts the liquid solvent is 10 milliseconds or more and 100 milliseconds or less.
Preferably, in the solvent supply step, the probe member is repeatedly moved in the longitudinal direction of the probe member.
Preferably, in the capturing step, the probe member collects the sample from all directions.
Preferably, the probe member includes a probe and a solvent loading tip, the probe protrudes from a lower end of the solvent loading tip, and has a solvent filling step of filling the solvent loading tip with a liquid solvent. In the solvent supply step, the probe member is brought into contact with the sample, and the liquid solvent is supplied from the inside of the solvent loading chip.
Preferably, the probe member includes a probe and an insulator covering the probe, and in the capturing step, the probe member contacts the sample at a depth of greater than 0 mm and 2 mm or less. In the ionization step, a part of the sample is ionized, and in the solvent supply step, a liquid solvent held on the surface of the insulator is supplied to the sample.
Preferably, in the capturing step, the probe member collects the sample from all directions.
 本発明の別の観点によれば、上記のいずれかのエレクトロスプレーイオン化の方法と、前記イオン化の方法によってイオン化されたイオンを分離する分析工程と、前記分析工程で分離されたイオンを検出するイオン検出工程とを有する、質量分析方法が提供される。 According to another aspect of the present invention, any one of the electrospray ionization methods described above, an analysis step of separating ions ionized by the ionization method, and ions that detect ions separated in the analysis step A mass spectrometric method having a detection step.
1.エレクトロスプレーイオン化装置
 本発明におけるエレクトロスプレーイオン化装置の一例の概略図を図1に示す。エレクトロスプレーイオン化装置1は、接触することにより試料を捕捉する探針部材10と、前記探針部材10に電圧を印加するように構成された電圧印加部材20とを有し、前記探針部材10が前記試料に溶媒を継続的に供給するように構成されているか、又は前記試料に溶媒を継続的に供給するように構成された溶媒供給部材をさらに有するものである。
1. Electrospray ionization apparatus A schematic view of an example of an electrospray ionization apparatus according to the present invention is shown in FIG. The electrospray ionization apparatus 1 includes a probe member 10 that captures a sample by contact, and a voltage application member 20 configured to apply a voltage to the probe member 10, and the probe member 10. Is configured to continuously supply the solvent to the sample, or further includes a solvent supply member configured to continuously supply the solvent to the sample.
 換言すると、エレクトロスプレーイオン化装置1は、接触することにより試料を捕捉する探針部材10と、前記探針部材10に電圧を印加するように構成された電圧印加部材20とを有し、前記探針部材10が前記試料への液状溶媒連続供給機構又は液状溶媒の断続供給機構を備えるか、又はエレクトロスプレーイオン化装置が前記試料への溶媒の連続供給機構又は液状溶媒の断続供給機構を備える溶媒供給部材をさらに有するものである。 In other words, the electrospray ionization apparatus 1 includes a probe member 10 that captures a sample by contact, and a voltage application member 20 that is configured to apply a voltage to the probe member 10. The needle member 10 has a liquid solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism to the sample, or the electrospray ionization apparatus has a solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism to the sample. It further has a member.
 エレクトロスプレーイオン化装置1は、探針部材10の先端に付着する程度の量の試料があればよく、例えば、1pL(ピコリットル)、3pL等の極微量の試料でもイオン化させることができる。本発明のエレクトロスプレーイオン化装置が対象とする試料は、粉末等の固体試料であっても、試料自体が液体状であるか試料を溶媒に分散させた分散液若しくは溶解させた溶液等の液体試料であってもよい。 The electrospray ionization apparatus 1 only needs to have an amount of sample that is attached to the tip of the probe member 10, and can ionize even a very small amount of sample such as 1 pL (picoliter) or 3 pL. Even if the sample targeted by the electrospray ionization apparatus of the present invention is a solid sample such as a powder, the sample itself is in a liquid state, or a liquid sample such as a dispersion in which the sample is dispersed in a solvent or a solution in which the sample is dissolved It may be.
 エレクトロスプレーイオン化装置1が、エレクトロスプレーを発生させることができる時間としては、1秒以上であることが好ましく、2秒以上、3秒以上、5秒以上であることがさらに好ましい。 The time during which the electrospray ionization apparatus 1 can generate electrospray is preferably 1 second or longer, more preferably 2 seconds or longer, 3 seconds or longer, and 5 seconds or longer.
 探針部材10は、試料を捕捉する機能を有することおよび電圧を印加できることを満たせば、特に制限されないが、典型的には、例えば金属探針等の導電性探針、又は導電性探針を他の素材で覆ったものが挙げられる。 The probe member 10 is not particularly limited as long as it has a function of capturing a sample and can apply a voltage. Typically, a conductive probe such as a metal probe or a conductive probe is typically used. Those covered with other materials.
 電圧印加部材20は、試料をイオン化できる程度に高い電圧を探針部材10に印加できるものであれば特に制限されないが、電圧印加部材20が探針部材10に印加できる電圧としては、0.5kV(キロボルト)以上であることが好ましく、1kV以上であることがより好ましく、10kV以下であることが好ましく、8kV以下であることがより好ましい。2±0.5kVがより好ましい。 The voltage application member 20 is not particularly limited as long as a voltage high enough to ionize the sample can be applied to the probe member 10, but the voltage that can be applied to the probe member 10 by the voltage application member 20 is 0.5 kV. (Kilovolt) or more is preferable, 1 kV or more is more preferable, 10 kV or less is preferable, and 8 kV or less is more preferable. 2 ± 0.5 kV is more preferable.
 探針部材10が前記試料に溶媒を連続的又は断続的に供給するように構成されている場合としては、例えば、後述する第2の実施形態または第3の実施形態に記載される探針部材を用いてもよい。前記試料に溶媒を連続的又は断続的に供給するように構成された溶媒供給部材とは、後述する第1の実施形態に記載される溶媒供給部材30のようにしてもよい。 As a case where the probe member 10 is configured to continuously or intermittently supply the solvent to the sample, for example, the probe member described in the second embodiment or the third embodiment described later is used. May be used. The solvent supply member configured to continuously or intermittently supply the solvent to the sample may be the solvent supply member 30 described in the first embodiment described later.
 用いられる溶媒は、試料を溶解又は分散させることができるものであれば特に制限されないが、試料に効率よく電荷を供給する観点から極性溶媒であることが好ましく、帯電した試料を効率よく脱溶媒する観点から揮発性溶媒であることが好ましい。用いられる溶媒は、混合溶媒であってもよく、典型的には、水と揮発性の極性溶媒との混合溶媒であり、揮発性の極性溶媒としては、メタノール、エタノール等のアルコール類やアセトニトリルが好ましく用いられる。 The solvent used is not particularly limited as long as it can dissolve or disperse the sample, but is preferably a polar solvent from the viewpoint of efficiently supplying electric charge to the sample, and efficiently removes the charged sample. From the viewpoint, a volatile solvent is preferable. The solvent used may be a mixed solvent, typically a mixed solvent of water and a volatile polar solvent. Examples of the volatile polar solvent include alcohols such as methanol and ethanol, and acetonitrile. Preferably used.
 用いられる溶媒は、試料の変性を防ぐ観点から、0℃以上80℃以下が好ましく、70℃以下、60℃以下、50℃以下であることがより好ましく、常温であることがさらに好ましい。また、用いられる溶媒は、装置を簡便にする観点から、蒸気や霧として供給されるのではないことが好ましい。 The solvent used is preferably 0 ° C. or higher and 80 ° C. or lower, more preferably 70 ° C. or lower, 60 ° C. or lower, and 50 ° C. or lower, and even more preferably room temperature, from the viewpoint of preventing sample denaturation. Moreover, it is preferable that the solvent used is not supplied as a vapor | steam or a mist from a viewpoint which simplifies an apparatus.
 エレクトロスプレーイオン化装置1を用いたエレクトロスプレーイオン化の方法は、探針部材10が試料を捕捉する捕捉工程と、探針部材10に電圧を印加して前記試料をイオン化するイオン化工程と、前記試料に連続的又は断続的に溶媒を供給する溶媒供給工程と、を有するものである。 The electrospray ionization method using the electrospray ionization apparatus 1 includes a capturing step in which the probe member 10 captures a sample, an ionization step in which a voltage is applied to the probe member 10 to ionize the sample, and the sample A solvent supply step of supplying the solvent continuously or intermittently.
 探針部材10に電圧を印加するタイミングとしては特に制限されず、常時電圧を印加していてもよく、試料捕捉後や溶媒供給後にのみ電圧を印加するものであってもよい。 The timing for applying a voltage to the probe member 10 is not particularly limited, and a voltage may be constantly applied, or a voltage may be applied only after capturing a sample or after supplying a solvent.
 図2に、本発明のエレクトロスプレーイオン化装置の一例を示す。図2における電圧供給部材20は、電源21(例えば、H.V.power supply等)と、スイッチ22(例えば、H.V.switch等)と、デジタル遅延パルス発生器23(例えば、Digital delay pulse generator等)とを有するものである。本実施形態では、デジタル遅延パルス発生器23が反復移動手段33にトリガー信号を供給し、探針部材10の反復移動を実行させる。さらに、電源21が常時電圧を印加し、デジタル遅延パルス発生器23がスイッチ22にトリガー信号を供給し、電源21が印加している電圧を探針部材10に伝えるかどうかのオンとオフを制御している。例えば、探針部材10の先端が下至点付近にある期間においてはスイッチ22をオフとし、探針部材10の先端が上昇した後、探針部材10の先端が上至点付近にある期間においてはスイッチ22をオンとして探針部材10に電圧を印加して試料をイオン化する等、探針部材10の反復移動と電圧の印加を同期させることができる。 FIG. 2 shows an example of the electrospray ionization apparatus of the present invention. The voltage supply member 20 in FIG. 2 includes a power source 21 (for example, HV power supply), a switch 22 (for example, HV switch), and a digital delay pulse generator 23 (for example, digital delay pulse). generator etc.). In the present embodiment, the digital delay pulse generator 23 supplies a trigger signal to the repetitive moving means 33 to cause the repetitive movement of the probe member 10. Further, the power source 21 constantly applies a voltage, the digital delay pulse generator 23 supplies a trigger signal to the switch 22, and controls whether the voltage applied by the power source 21 is transmitted to the probe member 10. is doing. For example, in a period in which the tip of the probe member 10 is in the vicinity of the lower solstice point, the switch 22 is turned off during the period in which the tip of the probe member 10 is in the vicinity of the lower solstice. Can synchronize the repetitive movement of the probe member 10 and the application of voltage, such as by turning on the switch 22 and applying a voltage to the probe member 10 to ionize the sample.
 探針部材10の反復移動と電圧の印加が同期する様子を示した概念図を図3に示す。反復移動手段33がトリガー信号を受け取ると、探針部材10の先端が下至点に移動して上至点に戻る反復移動が行われる。さらに、トリガー信号にΔt時間遅れてスイッチ22がオンになり、探針部材10に電圧が一定時間印加される。このようにして探針部材10の反復移動と電圧の印加が同期される。以上の工程を繰り返すことにより、試料の採取とイオン化を繰り返し行なったり、溶媒の供給を繰り返し行うことができる。 FIG. 3 is a conceptual diagram showing how the repeated movement of the probe member 10 and the application of voltage are synchronized. When the repetitive moving means 33 receives the trigger signal, repetitive movement is performed in which the tip of the probe member 10 moves to the lower end point and returns to the upper end point. Further, the switch 22 is turned on with a delay of Δt time from the trigger signal, and a voltage is applied to the probe member 10 for a certain period of time. In this way, the repeated movement of the probe member 10 and the application of voltage are synchronized. By repeating the above steps, sample collection and ionization can be repeated, or solvent supply can be repeated.
 以下、本発明のより具体的な第1~第3の実施形態を説明するが、これらの実施形態が有する特徴は、互いに組み合わせることができる。 Hereinafter, more specific first to third embodiments of the present invention will be described. The features of these embodiments can be combined with each other.
(1)第1の実施形態
 本開示のエレクトロスプレーイオン化装置1の第1の実施形態の一例を図4に示す。第1の実施形態は、図1に示すエレクトロスプレーイオン化装置1の構成に加えて、探針部材10が探針11を含み、溶媒供給部材30として溶媒貯蔵部31及び作動部32を含み、作動部32が探針11を移動させることによって、探針11を溶媒貯蔵部31が貯蔵する溶媒に接触させるように構成される。
(1) 1st Embodiment An example of 1st Embodiment of the electrospray ionization apparatus 1 of this indication is shown in FIG. In the first embodiment, in addition to the configuration of the electrospray ionization apparatus 1 shown in FIG. 1, the probe member 10 includes the probe 11, the solvent supply member 30 includes the solvent storage unit 31 and the operation unit 32, and operates. The part 32 moves the probe 11 so that the probe 11 is brought into contact with the solvent stored in the solvent storage unit 31.
 第1の実施形態のエレクトロスプレーイオン化装置1は、試料を付着させた探針11を作動部32が操作して溶媒貯蔵部31に接触させることで、試料が繰り返し溶媒を得るようにしたものである。すなわち少なくとも1回以上、試料を付着させた探針11を溶媒貯蔵部31の溶媒にディッピング(浸漬、Dipping)する動作を実行する。 The electrospray ionization apparatus 1 according to the first embodiment is configured such that the sample repeatedly obtains a solvent by operating the probe 11 to which the sample is attached to the solvent storage unit 31 by operating the probe 32. is there. That is, an operation of dipping (dipping) the probe 11 to which the sample is attached to the solvent in the solvent storage unit 31 is executed at least once.
 第1の実施形態のエレクトロスプレーイオン化装置1は、試料を付着させた探針11を作動部32が操作して溶媒貯蔵部31に接触させることで、試料へ繰り返し、すなわち断続的に溶媒が供給されるようにしたものである。本実施形態においては、溶媒貯蔵部31及び作動部32を備える溶媒供給部材30によって液状溶媒の断続供給機構が構成されうる。 In the electrospray ionization apparatus 1 according to the first embodiment, the probe 11 to which a sample is attached is operated by the operating unit 32 and brought into contact with the solvent storage unit 31, so that the sample is repeatedly supplied to the sample, that is, the solvent is intermittently supplied. It is made to be done. In the present embodiment, an intermittent supply mechanism of the liquid solvent may be configured by the solvent supply member 30 including the solvent storage unit 31 and the operation unit 32.
 探針11は、微細な試料を捕捉する観点から、先端の曲率半径が、例えば10μm(マイクロメートル)以下、5μm以下、1μm以下、0.7μm以下であることが好ましい。また、入手の容易性や製造コストの観点から、先端の曲率半径が、例えば0.1μm以上、0.3μm以上、0.5μm以上であることが好ましい。探針11の胴体の径は、特に制限されないが、例えば、5.0mm以下、1.0mm以下、0.5mm以下等であり、0.1mm以上、0.3mm以上等である。このように探針11の胴体及び先端の径が非常に小さいものである場合には、試料に対する侵襲性が非常に低いことから、バイオプシーや内視鏡でのサンプリング等、医療分野への応用に好適である。 The probe 11 preferably has a tip radius of curvature of, for example, 10 μm (micrometer) or less, 5 μm or less, 1 μm or less, or 0.7 μm or less from the viewpoint of capturing a fine sample. Further, from the viewpoint of easy availability and manufacturing cost, the curvature radius of the tip is preferably 0.1 μm or more, 0.3 μm or more, or 0.5 μm or more, for example. The diameter of the body of the probe 11 is not particularly limited, and is, for example, 5.0 mm or less, 1.0 mm or less, 0.5 mm or less, and 0.1 mm or more, 0.3 mm or more. In this way, when the diameter of the body and the tip of the probe 11 is very small, the invasiveness to the sample is very low, so that it can be applied to the medical field such as biopsy and sampling with an endoscope. Is preferred.
 探針11は、導電性があり硬度が高い観点から、金属製であることが好ましく、金属製の探針としては、ステンレススチール、チタン、アルミ、鉄、銀、金、またはスチール等の前記金属の合金を含むことが好ましい。また、探針がチタンを含む場合には、探針表面が凹凸に富むため、各成分の分離が顕著に起こる。 The probe 11 is preferably made of metal from the viewpoint of conductivity and high hardness. Examples of the metal probe include the metals such as stainless steel, titanium, aluminum, iron, silver, gold, and steel. It is preferable that the alloy is included. In addition, when the probe contains titanium, the probe surface is rich in irregularities, so that separation of each component occurs remarkably.
 溶媒貯蔵部31は、特に制限されないが、典型的には、皿状やカップ状の容器であり、ガラス等の溶媒に溶出しない素材でできていることが好ましい。 The solvent storage unit 31 is not particularly limited, but is typically a dish-shaped or cup-shaped container, and is preferably made of a material that does not elute into a solvent such as glass.
 作動部32が、探針11を溶媒貯蔵部31が貯蔵する溶媒に接触させる時間は、例えば、10ミリ秒以上100ミリ秒以下であるが、試料の溶出を防ぐ観点から、80ミリ秒以下であることが好ましく、50ミリ秒以下であることがさらに好ましい。なお、上記の探針を溶媒貯蔵部が貯蔵する溶媒に接触させる時間は、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100ミリ秒のうち任意の2つの数値の範囲内にあればよい。作動部32が、探針11を溶媒貯蔵部31が貯蔵する溶媒に接触させる深さとしては、好ましくは探針11に捕獲した試料がすべて溶媒につかる程度とするとよい。 The time for the operating unit 32 to contact the probe 11 with the solvent stored in the solvent storage unit 31 is, for example, 10 milliseconds or more and 100 milliseconds or less, but is 80 milliseconds or less from the viewpoint of preventing sample elution. It is preferable that it is 50 milliseconds or less. The time for contacting the probe with the solvent stored in the solvent storage unit is 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, It suffices to be within the range of any two values among 85, 90, 95, and 100 milliseconds. The depth at which the operating unit 32 brings the probe 11 into contact with the solvent stored in the solvent storage unit 31 is preferably set so that all the sample captured by the probe 11 is in contact with the solvent.
 作動部32は、探針11を探針11の長手方向に反復移動させる反復移動手段33を含むものであってもよい。 The operating unit 32 may include a repetitive moving means 33 that repetitively moves the probe 11 in the longitudinal direction of the probe 11.
 また、作動部32は、上記したディッピング動作の他に、試料を探針11に付着あるいは捕捉させる捕捉動作を担わせてもよい。上記したディッピング動作の例のように探針11の上下動作(すなわち探針11の長手方向に探針11を上下させる動作)により、試料を探針11に捕捉させるようにしてもよい。 In addition to the dipping operation described above, the operating unit 32 may perform a capturing operation for attaching or capturing the sample to the probe 11. As in the example of the dipping operation described above, the sample may be captured by the probe 11 by the vertical movement of the probe 11 (that is, the operation of moving the probe 11 up and down in the longitudinal direction of the probe 11).
 作動部32は、マニピュレータ34を含むものであってもよい。図5に、作動部32にマニピュレータ34を含む第1の実施形態の一例を示す。作動部32がマニピュレータ33を含む場合には、試料に対して全方位から捕捉することができるため、体積の大きな試料に対しても捕捉してイオン化することができ、体積の大きな試料を3次元で質量分析することができる3D(3次元)イメージング質量分析機器に好適である。 The operating unit 32 may include a manipulator 34. FIG. 5 shows an example of the first embodiment in which the operating unit 32 includes a manipulator 34. When the operating unit 32 includes the manipulator 33, since the sample can be captured from all directions, the sample having a large volume can be captured and ionized. It is suitable for 3D (three-dimensional) imaging mass spectrometry equipment capable of performing mass spectrometry.
 例えば、生体サンプルの立体的な成分分布の計測を行う場合は、立体的なサンプルの複数の測定ポイントで試料捕捉し計測を実施する。この時、マニピュレータを備えた作動部32とすることで容易にこの複数点の成分分析を行うことが可能となる。マニピュレータの動作制御、測定やデータの収集はコンピュータ等を用いてその動作を制御でき、自動化をはかることが可能となる。 For example, when measuring the three-dimensional component distribution of a biological sample, the sample is captured and measured at a plurality of measurement points of the three-dimensional sample. At this time, it is possible to easily perform the component analysis of the plurality of points by using the operating unit 32 including a manipulator. The operation control, measurement, and data collection of the manipulator can be controlled by using a computer or the like, and can be automated.
 本開示においてマニピュレータとは、人間の腕や手先と同様の運動機能を有し、人間の手作業の代替を目的とした装置のことを指し、例えば、屈曲および回転可能な1以上の可動部を有するマジックハンド等があげられる。 In the present disclosure, a manipulator refers to a device that has a movement function similar to that of a human arm or hand and is intended to replace human manual work. For example, one or more movable parts that can be bent and rotated are included. The magic hand etc. which have are mention | raise | lifted.
 第1の実施形態のエレクトロスプレーイオン化装置1を用いたエレクトロスプレーイオン化の方法は、上述した捕捉工程、溶媒供給工程、イオン化工程を備え、探針部材10が探針11を含み、前記溶媒供給工程で、前記探針11を液状の溶媒に接触させて前記試料に液状の溶媒を供給するように構成されたものである。 The electrospray ionization method using the electrospray ionization apparatus 1 according to the first embodiment includes the above-described capturing step, solvent supply step, and ionization step, the probe member 10 includes a probe 11, and the solvent supply step. Thus, the probe 11 is brought into contact with a liquid solvent to supply a liquid solvent to the sample.
 ここで捕捉工程は、作動部32を用いて試料を探針11に付着あるいは捕捉させる工程であり、溶媒供給工程は、作動部32が、探針11を溶媒貯蔵部31が貯蔵する溶媒に接触させる工程であり、イオン化工程は、試料を捕捉した探針11に電圧(高電圧)を印加し、試料のイオン化をはかる工程である。
 なお、イオン化工程は後述する分析装置3のイオン導入口(不図示)付近で行うようにすることが望ましい。
Here, the capturing step is a step of attaching or capturing the sample to the probe 11 using the operating unit 32, and the solvent supplying step is that the operating unit 32 contacts the solvent stored in the solvent storage unit 31 by the operating unit 32. The ionization step is a step of applying a voltage (high voltage) to the probe 11 that has captured the sample to ionize the sample.
Note that the ionization step is desirably performed in the vicinity of an ion inlet (not shown) of the analyzer 3 described later.
 イオン化工程及び溶媒供給工程は、イオン化しにくい成分をイオン化するという本発明の目的を達成するため、複数回行われることが好ましく、例えば、3回以上、5回以上、10回以上等である。イオン化工程及び溶媒供給工程は、行われる順番が前後してもよい。 The ionization step and the solvent supply step are preferably performed a plurality of times in order to achieve the object of the present invention to ionize components that are difficult to ionize, for example, 3 times or more, 5 times or more, 10 times or more. The order in which the ionization step and the solvent supply step are performed may be reversed.
 作動部32が、前記反復移動手段33を含むものである場合には、探針11は探針11の長手方向に反復移動することができ、作動部32がマニピュレータ34を含む場合には、試料に対して全方位から捕捉することができる。これらの作動部32の動作により、試料の捕捉や溶媒の供給を行うことができる。 When the operation part 32 includes the repetitive movement means 33, the probe 11 can repetitively move in the longitudinal direction of the probe 11, and when the operation part 32 includes the manipulator 34, the probe 11 can move relative to the sample. Can be captured from all directions. By the operation of the operating unit 32, the sample can be captured and the solvent can be supplied.
 第1の実施形態は、探針11の先端と溶媒の接触により溶媒を供給するため、(通常のエレクトロスプレーでは対応できないような)濃度が高い液体試料や、乾燥試料、固形試料であってもイオン化することができる。さらに、液体試料を捕捉した後に、試料を一度乾燥させて運搬し、遠隔地で溶媒を供給してイオン化することができる。 In the first embodiment, since the solvent is supplied by contact between the tip of the probe 11 and the solvent, a liquid sample having a high concentration (which cannot be handled by ordinary electrospray), a dry sample, or a solid sample may be used. It can be ionized. Furthermore, after capturing a liquid sample, the sample can be dried and transported once, and a solvent can be supplied and ionized at a remote location.
(2)第2の実施形態
 本開示のエレクトロスプレーイオン化装置1の第2の実施形態の一例を図6に示す。第2の実施形態は、図1に示すエレクトロスプレーイオン化装置1の構成に加えて、探針部材10が、探針11及び溶媒ローディングチップ13(例えばゲルローディングチップ等)を含み、探針11が、前記溶媒ローディングチップ13の下端から0mm以上0.2mm以下の範囲で突き出しており、溶媒ローディングチップ13の内側に溶媒を貯蔵するように構成されているという特徴を有するものである。
(2) Second Embodiment FIG. 6 shows an example of the second embodiment of the electrospray ionization apparatus 1 of the present disclosure. In the second embodiment, in addition to the configuration of the electrospray ionization apparatus 1 shown in FIG. 1, the probe member 10 includes a probe 11 and a solvent loading chip 13 (for example, a gel loading chip). The solvent loading chip 13 protrudes from the lower end in a range of 0 mm to 0.2 mm, and is configured to store the solvent inside the solvent loading chip 13.
 第2の実施形態のエレクトロスプレーイオン化装置1は、探針11が試料に接触して試料を捕捉すると同時に、毛細管現象により溶媒ローディングチップ13内に貯蔵された溶媒が試料に供給される。また、探針11が捕捉した試料に電圧が印加されて試料や溶媒がスプレーされて減少すると、溶媒ローディングチップ13内の溶媒がさらに供給される。 In the electrospray ionization apparatus 1 of the second embodiment, the probe 11 contacts the sample and captures the sample, and at the same time, the solvent stored in the solvent loading chip 13 is supplied to the sample by capillary action. Further, when a voltage is applied to the sample captured by the probe 11 and the sample or solvent is sprayed and reduced, the solvent in the solvent loading chip 13 is further supplied.
 本実施形態では、探針部材10である探針11及び溶媒ローディングチップ13が上述した機能を有するため、試料に触れるだけという簡単な操作だけで試料に連続又は断続的に溶媒を供給することができる。そのため、乾燥した固体試料や、濃度の高い試料でも簡便に分析することができる。 In this embodiment, since the probe 11 and the solvent loading chip 13 which are the probe members 10 have the above-described functions, the solvent can be continuously or intermittently supplied to the sample by a simple operation of simply touching the sample. it can. Therefore, it is possible to easily analyze a dried solid sample or a sample having a high concentration.
 すなわち、連続的又は断続的な溶媒供給により、これまで分析が難しかった試料に対しても連続的なエレクトロスプレーの発生が可能となる。本実施形態においては、探針11及び溶媒ローディングチップ13を備える探針部材10によって液状溶媒の連続供給機構又は液状溶媒の断続供給機構が構成されうる。 That is, continuous or intermittent solvent supply enables continuous electrospray generation even for samples that have been difficult to analyze. In the present embodiment, the probe member 10 including the probe 11 and the solvent loading chip 13 may constitute a liquid solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism.
 本実施形態では、探針11は、第1の実施形態と同様のものを用いることができる。溶媒ローディングチップ13は、試料が親水性である場合に、溶媒ローディングチップ13に付着して汚染することを防ぐ観点から、疎水性材料で作られていることが好ましい。溶媒ローディングチップ13としては、例えば、eppendorf社製のepT.I.P.S等が挙げられる。これによって、多くの試料を連続的に測定する際の、いわゆるクロスコンタミナネーションを抑制することができる。 In the present embodiment, the probe 11 similar to that in the first embodiment can be used. The solvent loading chip 13 is preferably made of a hydrophobic material from the viewpoint of preventing the sample from adhering to the solvent loading chip 13 when the sample is hydrophilic. Examples of the solvent loading chip 13 include epT. I. P. S etc. are mentioned. Thereby, what is called cross contamination when many samples are continuously measured can be suppressed.
 また、エレクトロスプレーイオン化装置1は、探針部材10を探針部材10の長手方向に反復移動させる反復移動手段をさらに備えていてもよい。当該移動により試料を探針11に付着あるいは捕捉させることが可能である。また、エレクトロスプレーイオン化装置1は、マニピュレータを備えていてもよく、これにより第1の実施形態と同様に試料に対して全方位から捕捉することができる。 The electrospray ionization apparatus 1 may further include repetitive moving means for repetitively moving the probe member 10 in the longitudinal direction of the probe member 10. The sample can be attached to or captured by the probe 11 by the movement. Moreover, the electrospray ionization apparatus 1 may be provided with a manipulator, so that the sample can be captured from all directions as in the first embodiment.
 第2の実施形態のエレクトロスプレーイオン化装置1を用いたエレクトロスプレーイオン化の方法は、上述した捕捉工程、イオン化工程、溶媒供給工程を備え、探針部材10が、探針11及び溶媒ローディングチップ13を含み、探針11が、溶媒ローディングチップ13の下端から0mm以上0.2mm以下の範囲で突き出しており、溶媒ローディングチップ13に溶媒を充填する溶媒充填工程を有し、前記溶媒供給工程で、探針部材10を前記試料に接触させ、溶媒ローディングチップ13の内側から溶媒を供給するものである。 The electrospray ionization method using the electrospray ionization apparatus 1 according to the second embodiment includes the above-described capturing step, ionization step, and solvent supply step, and the probe member 10 includes the probe 11 and the solvent loading chip 13. The probe 11 protrudes from the lower end of the solvent loading tip 13 in the range of 0 mm to 0.2 mm, and has a solvent filling step of filling the solvent loading tip 13 with the solvent. The needle member 10 is brought into contact with the sample, and the solvent is supplied from the inside of the solvent loading chip 13.
 ここで探針11の突出しを、溶媒ローディングチップ13の下端から0mmより小さく(溶媒ローディングチップ13の中に納めるように)するとスプレーの発生ポイントが変動してしまう。また探針11の突出しを、溶媒ローディングチップ13の下端から0.2mmより大きくすると試料の先端まで溶媒ローディングチップ13からの溶媒で濡れない。探針11が、溶媒ローディングチップ13の下端から0mm以上0.2mm以下の範囲で突き出すようにすることによって、安定したスプレーの発生を可能とする。 Here, if the protrusion of the probe 11 is smaller than 0 mm from the lower end of the solvent loading tip 13 (so as to be accommodated in the solvent loading tip 13), the spray generation point fluctuates. When the protrusion of the probe 11 is made larger than 0.2 mm from the lower end of the solvent loading tip 13, the tip of the sample is not wetted by the solvent from the solvent loading tip 13. By causing the probe 11 to protrude from the lower end of the solvent loading tip 13 within a range of 0 mm or more and 0.2 mm or less, stable spraying can be generated.
 なお、試料の捕捉をする段階(例えば上記捕捉工程)では、探針11が溶媒ローディングチップ13の下端から所望の長さ(例えば4~5mm)突き出すようにして,探針部材11先端を試料に侵入深さ1mm程度で穿刺して試料を捕捉し、エレクトロスプレーを実施する段階(例えば上記イオン化工程)で、探針11を溶媒ローディングチップ13の下端から0mm以上0.2mm以下の範囲に収めるようにしてもよい。このような機構を探針部材10あるいは作動部32に組み込むようにしてもよい。このように構成すれば、例えば疎水性試料などの捕捉も容易に行うことができる。 In the stage of capturing the sample (for example, the capturing step described above), the probe 11 protrudes from the lower end of the solvent loading tip 13 to a desired length (for example, 4 to 5 mm), and the tip of the probe member 11 is used as the sample. Puncture at a penetration depth of about 1 mm to capture the sample and perform electrospray (for example, the ionization step) so that the probe 11 is within the range of 0 mm to 0.2 mm from the lower end of the solvent loading chip 13. It may be. Such a mechanism may be incorporated in the probe member 10 or the operating unit 32. If comprised in this way, a hydrophobic sample etc. can also be capture | acquired easily, for example.
 溶媒ローディングチップ13の内側に充填する溶媒の量としては、特に制限されないが、例えば、5μL以上、10μL以上、15μL以上等であり、45μL以下、30μL以下、20μL以下等である。 The amount of the solvent filled inside the solvent loading chip 13 is not particularly limited, but is, for example, 5 μL or more, 10 μL or more, 15 μL or more, and is 45 μL or less, 30 μL or less, 20 μL or less.
 本実施形態のエレクトロスプレーイオン化装置1は、測定前にあらかじめ溶媒ローディングチップ13内に溶媒を貯蔵しておく。上記したようにこの構造は極めて簡易な構成でありかつエレクトロスプレーには十分な量の溶媒を試料に探針部材10上で供給できる。 The electrospray ionization apparatus 1 of this embodiment stores a solvent in the solvent loading chip 13 in advance before measurement. As described above, this structure is a very simple structure, and a sufficient amount of solvent for electrospray can be supplied to the sample on the probe member 10.
(3)第3の実施形態
 本開示のエレクトロスプレーイオン化装置1の第3の実施形態の一例を図7に示す。第3の実施形態は、図1に示すエレクトロスプレーイオン化装置1の構成に加えて、探針部材10が、探針11及び探針11を覆う絶縁体15を含み、絶縁体15が、表面で溶媒を保持し、前記試料の一部がイオン化した際に、溶媒を供給するように構成されるという特徴をさらに有するものである。
(3) Third Embodiment FIG. 7 shows an example of the third embodiment of the electrospray ionization apparatus 1 of the present disclosure. In the third embodiment, in addition to the configuration of the electrospray ionization apparatus 1 shown in FIG. 1, the probe member 10 includes a probe 11 and an insulator 15 covering the probe 11, and the insulator 15 is on the surface. It is further characterized in that it is configured to supply a solvent when a solvent is retained and a part of the sample is ionized.
 第3の実施形態のエレクトロスプレーイオン化装置1は、液体試料に対して、探針部材10を接触させることで、絶縁体15の表面で液体試料を保持する。その後、探針部材10に電圧を印加してその先端でエレクトロスプレーを発生させると、絶縁体15の表面に保持されている液体試料から絶縁体15の先端方向に溶媒が供給される。 The electrospray ionization apparatus 1 of the third embodiment holds the liquid sample on the surface of the insulator 15 by bringing the probe member 10 into contact with the liquid sample. Thereafter, when a voltage is applied to the probe member 10 to generate electrospray at its tip, a solvent is supplied from the liquid sample held on the surface of the insulator 15 toward the tip of the insulator 15.
 本実施形態においては、探針11を覆う絶縁体15によって液状溶媒の連続供給機構又は液状溶媒の断続供給機構が構成されうる。 In the present embodiment, a liquid solvent continuous supply mechanism or a liquid solvent intermittent supply mechanism can be configured by the insulator 15 covering the probe 11.
 本実施形態では、探針11を絶縁体15で覆うことにより、例えば5秒以上の長時間に渡って、エレクトロスプレーを発生させることができる。また、スプレー時間が長時間続くので、質量分析装置が2つ設けられているタンデム型の質量分析機器、または質量分析装置が3つ以上設けられている質量分析機器に好適である。 In this embodiment, by covering the probe 11 with the insulator 15, electrospray can be generated over a long period of time, for example, 5 seconds or more. Further, since the spraying time lasts for a long time, it is suitable for a tandem mass spectrometer equipped with two mass spectrometers or a mass spectrometer equipped with three or more mass spectrometers.
 絶縁体15で覆われた探針部材10の太さは、特に制限されないが、例えば、1μm以上1000μm以下、5μm以上500μm以下である。 The thickness of the probe member 10 covered with the insulator 15 is not particularly limited, but is, for example, 1 μm or more and 1000 μm or less, 5 μm or more and 500 μm or less.
 また、探針部材10は、絶縁体15を用いたガラスキャピラリー中に、電気伝導性の液体、例えばイオン液体を充填したり、内面メッキをしたものを用いることもできる。このような探針部材を用いる場合には、金属探針を挿入する場合と比較して電場が強まるので、試料をイオン化する能力が高まる点で好ましい。 Also, the probe member 10 may be a glass capillary using an insulator 15 filled with an electrically conductive liquid, for example, an ionic liquid, or an inner surface plated. When such a probe member is used, the electric field is stronger than when a metal probe is inserted, which is preferable in that the ability to ionize the sample is enhanced.
 絶縁体15は、特に制限されないが、溶媒の付着しやすさ、入手の容易性、加工の容易性の観点から、ボロシリケートやエポキシ樹脂が好ましく試料による汚染が少なく、繰り返し使用可能である観点から、ボロシリケートがさらに好ましい。 The insulator 15 is not particularly limited, but from the viewpoint of easy attachment of a solvent, availability, and ease of processing, borosilicate and epoxy resin are preferable, and there is little contamination by a sample, and from the viewpoint that it can be used repeatedly. More preferred are borosilicates.
 また、エレクトロスプレーイオン化装置1は、探針部材10を探針部材10の長手方向に反復移動させる反復移動手段をさらに備えていてもよい。当該移動により試料を探針11に付着あるいは捕捉させることが可能である。また、エレクトロスプレーイオン化装置1は、マニピュレータを備えていてもよく、これにより第1の実施形態と同様に試料に対して全方位から捕捉することができる。 The electrospray ionization apparatus 1 may further include repetitive moving means for repetitively moving the probe member 10 in the longitudinal direction of the probe member 10. The sample can be attached to or captured by the probe 11 by the movement. Moreover, the electrospray ionization apparatus 1 may be provided with a manipulator, so that the sample can be captured from all directions as in the first embodiment.
 本開示の第3の実施形態のエレクトロスプレーイオン化の方法は、上述した捕捉工程、溶媒供給工程、イオン化工程を備え、探針部材10が、探針11及び探針を覆う絶縁体15を含み、前記捕捉工程において、探針部材10が、前記試料に0より大きく2mm以下の深さで接触して前記試料を捕捉し、前記イオン化工程において前記試料の一部がイオン化すると共に、前記溶媒供給工程において、絶縁体15の表面で保持されている溶媒を前記試料に供給するものである。 The electrospray ionization method according to the third embodiment of the present disclosure includes the above-described capturing step, solvent supply step, and ionization step, and the probe member 10 includes a probe 11 and an insulator 15 that covers the probe, In the capturing step, the probe member 10 contacts the sample at a depth greater than 0 and 2 mm or less to capture the sample. In the ionization step, a part of the sample is ionized and the solvent supply step The solvent held on the surface of the insulator 15 is supplied to the sample.
 探針部材10を試料に接触させる深さとしては、例えば生体検査など被測定試料に対し低侵襲を考慮すべき場合は0より大きく2mm以下とすればよい。好ましくは1mm以下であり、さらに好ましくは0.5mm以下である。探針部材10を試料に接触させる深さをこれらの範囲としても本方法は十分な測定が可能である。 The depth at which the probe member 10 is brought into contact with the sample may be greater than 0 and 2 mm or less when minimal invasiveness is to be considered for the sample to be measured, such as a biological examination. Preferably it is 1 mm or less, More preferably, it is 0.5 mm or less. Even if the depth at which the probe member 10 is brought into contact with the sample is within these ranges, this method can perform sufficient measurement.
 なお、第3の実施形態は、後述する実施例4に示すように、探針11をボロシリケートのような絶縁体15で覆ったものでもエレクトロスプレーが可能であることを示している。さらにその性能が他の実施例や従来のPESIの性能と比べてもなんら遜色のないレベルである。 The third embodiment shows that electrospraying is possible even when the probe 11 is covered with an insulator 15 such as borosilicate as shown in Example 4 described later. Furthermore, the performance is comparable to the performance of other embodiments and conventional PESI.
2.質量分析機器
 本開示の質量分析機器2は、エレクトロスプレーイオン化装置1と、分析装置3と、イオン検出装置5とを備えるものである。本開示の質量分析機器2が備えるエレクトロスプレーイオン化装置1は、上述した記載と同様のものを使用することができる。
2. Mass Spectrometer The mass spectrometer 2 of the present disclosure includes an electrospray ionizer 1, an analyzer 3, and an ion detector 5. As the electrospray ionization apparatus 1 provided in the mass spectrometer 2 of the present disclosure, the same ones as described above can be used.
 本開示の質量分析機器2が備える分析装置3は、特に制限されず、磁場偏向型、四重極型、イオントラップ型、オービトラップ型、飛行時間型、フーリエ変換イオンサイクロトロン共鳴型、タンデム型などの一般的な装置を使用することができる。本開示の質量分析機器2は、対象試料に対して継続的に溶媒を供給する機能を有するエレクトロスプレーイオン化装置1を使用していることから、エレクトロスプレーを継続して引き起こすことができる。そのため、本開示の質量分析機器2は、本開示のエレクトロスプレー時間が1秒未満であった従来のPESI-MSでは適用が困難であった、四重極質量分析装置のような掃引速度が遅い質量分析装置を組み合わせることができ、また、分析装置を2つ有するタンデム型の質量分析装置を用いることができる。 The analyzer 3 provided in the mass spectrometer 2 of the present disclosure is not particularly limited, and includes a magnetic field deflection type, a quadrupole type, an ion trap type, an orbitrap type, a time-of-flight type, a Fourier transform ion cyclotron resonance type, a tandem type, and the like. General equipment can be used. Since the mass spectrometer 2 of the present disclosure uses the electrospray ionization apparatus 1 having a function of continuously supplying a solvent to the target sample, the electrospray can be continuously caused. Therefore, the mass spectrometer 2 of the present disclosure has a slow sweep rate like a quadrupole mass spectrometer, which is difficult to apply in the conventional PESI-MS in which the electrospray time of the present disclosure is less than 1 second. A mass spectrometer can be combined, and a tandem type mass spectrometer having two analyzers can be used.
 本開示の質量分析機器が備えるイオン検出装置5は、例えば、分析装置3で選別されたイオンを電子増倍管やマイクロチャンネルプレートで増感して検出する形式、オービトラップ形式あるいはファラデーカップで検出してカウントする形式などが挙げられる。 The ion detection device 5 included in the mass spectrometer of the present disclosure is detected by, for example, a format in which ions selected by the analysis device 3 are sensitized with an electron multiplier or a microchannel plate, an orbitrap format, or a Faraday cup. And the form of counting.
 本開示の質量分析方法は、上述したエレクトロスプレーイオン化の方法と、前記イオン化の方法によってイオン化されたイオンを分離する分析工程と、前記分析工程で分離されたイオンを検出するイオン検出工程と、を有するものである。 The mass spectrometry method of the present disclosure includes the above-described electrospray ionization method, an analysis step of separating ions ionized by the ionization method, and an ion detection step of detecting ions separated in the analysis step. It is what you have.
 本発明の質量分析機器の一例を図8に示す。図8における電圧供給部材20は、図2と同様の構成であり、探針11の先端が下至点付近で溶媒に接触している期間においてはスイッチ22をオフとし、探針11の先端が上昇した後、探針11の先端が上至点付近にある期間においてはスイッチ22をオンとして試料をイオン化する等、探針部材10の反復移動とスイッチ22のオンとオフとを同期させることができる。これにより、反復して溶媒を試料に供給することができるため、試料中の相対的にイオン化されにくい成分をもイオン化することができる。 An example of the mass spectrometer of the present invention is shown in FIG. The voltage supply member 20 in FIG. 8 has the same configuration as in FIG. 2, and the switch 22 is turned off during the period in which the tip of the probe 11 is in contact with the solvent near the bottom point, and the tip of the probe 11 is After the ascent, the repetitive movement of the probe member 10 and the on / off of the switch 22 can be synchronized, such as ionizing the sample by turning on the switch 22 during a period in which the tip of the probe 11 is in the vicinity of the highest point it can. Thereby, since the solvent can be repeatedly supplied to the sample, a component that is relatively less ionized in the sample can be ionized.
 上記したほかに以下点も考慮すれば、さらに快適なエレクトロスプレーイオン化装置となる。
 例えば、エレクトロスプレーイオン化装置1では、電圧を印加しエレクトロスプレーを発生させると、まず試料成分が数秒間スプレーされ、その後溶媒自体のエレクトロスプレーが発生する。溶媒が完全になくなるまでエレクトロスプレーは継続するが、試料が飛び切った時点で電圧を切れば、溶媒消費の節約ができる。ある程度、溶媒をエレクトロスプレーさせて、先端に捕捉した試料を完全に飛ばし切るようにすると、試料の洗浄、Carry Over防止することができる。
In addition to the above, if the following points are taken into consideration, the electrospray ionization apparatus is more comfortable.
For example, in the electrospray ionization apparatus 1, when voltage is applied to generate electrospray, sample components are first sprayed for several seconds, and then electrospray of the solvent itself is generated. Electrospraying continues until the solvent is completely removed, but if the voltage is turned off when the sample jumps, solvent consumption can be saved. When the solvent is electrosprayed to a certain extent so that the sample captured at the tip is completely blown out, the sample can be washed and carry over can be prevented.
 また、エレクトロスプレーイオン化装置1でエレクトロスプレーを発生させる場合、周囲温度が高いと溶媒自体が揮発しやすくなるので、エレクトロスプレーが不安定化しやすくなり,また溶媒消費速度が増大する。したがって周囲温度は、常温とするほうがよい。 Also, when electrospray is generated by the electrospray ionization apparatus 1, the solvent itself is likely to volatilize when the ambient temperature is high, so that the electrospray is likely to become unstable and the solvent consumption rate increases. Therefore, it is better that the ambient temperature is room temperature.
 試料の採取とイオン化を繰り返し行なったり、溶媒の供給を繰り返し行う場合、上述した実施形態においてロボット等との組み合わせを実施することができる。このようにするとさらに3Dイメージング質量分析機器の操作性が向上できる。 In the case where sample collection and ionization are repeatedly performed or solvent supply is repeatedly performed, a combination with a robot or the like can be performed in the above-described embodiment. In this way, the operability of the 3D imaging mass spectrometer can be further improved.
 第2の実施形態において、溶媒ローディングチップ13のヘッドの部分(垂直方向時)が大きすぎると(50mm以上)試料と接触させた場合,溶媒が一方方向に流出して試料の捕捉効率が下がる。30~35mm程度が適当で,この場合,探針が垂直,斜め,up-side down でも固体試料を濡らすことが可能である。溶媒ローディングチップ13の先端は細いままで,上部を太目にすればヘッドに関わらず溶媒量を増やすことが可能)。ヘッドが20mm程度(以下)になると、液体がチップ内部に吸い込まれ,エレクトロスプレーしても溶媒由来のシグナルが出なくなることがある。つまり,後に続く継続的溶媒エレクトロスプレーによる先端に捕捉された試料の洗浄効果が薄れる。したがってヘッドは20mm以上50mm以下が好ましく、30~35mmがさらに好ましい。 In the second embodiment, if the head portion (in the vertical direction) of the solvent loading chip 13 is too large (50 mm or more), when the sample is brought into contact with the sample, the solvent flows out in one direction and the sample capturing efficiency decreases. A thickness of about 30 to 35 mm is appropriate. In this case, it is possible to wet the solid sample even if the probe is vertical, oblique, or up-side down. The tip of the solvent loading tip 13 remains thin, and the amount of solvent can be increased regardless of the head by making the upper part thicker). When the head is about 20 mm (or less), the liquid is sucked into the chip, and a signal derived from the solvent may not be generated even when electrospraying is performed. That is, the cleaning effect of the sample trapped at the tip by the subsequent continuous solvent electrospray is diminished. Therefore, the head is preferably 20 mm or more and 50 mm or less, and more preferably 30 to 35 mm.
 また、第2の実施形態において、溶媒ローディングチップ13の先端の内径は0.2mm程度を選択するとよい。これに外径0.12mmの探針11(例えば鍼灸針などが利用可能)を挿入するとよい。この場合、溶媒ローディングチップ13の先端での隙間は(0.2-0.12)/2=0.04mmとなる。原理的に、エレクトロスプレーは、先端径が小さいほど性能が上がる。入手の容易性や製造コストの観点を無視すれば、チップの内径は、上記の他に0.1mm,0.05mm,さらには0.01mm以下でもよい。この場合、挿入する探針11は,チップ内径よりも細いものを使えばよい。 In the second embodiment, the inner diameter of the tip of the solvent loading tip 13 may be selected to be about 0.2 mm. A probe 11 having an outer diameter of 0.12 mm (for example, a needle can be used) may be inserted into this. In this case, the gap at the tip of the solvent loading chip 13 is (0.2−0.12) /2=0.04 mm. In principle, the performance of electrospray increases as the tip diameter decreases. If the viewpoints of availability and manufacturing cost are ignored, the inner diameter of the chip may be 0.1 mm, 0.05 mm, or 0.01 mm or less in addition to the above. In this case, the probe 11 to be inserted may be thinner than the tip inner diameter.
 第3の実施形態において、絶縁体15は、溶融石英、ポリイミドがコーティングされた溶融石英なども利用可能である。 In the third embodiment, the insulator 15 may be fused quartz, fused quartz coated with polyimide, or the like.
 第3の実施形態において、深さ方向分析を行う場合は、探針部材10を試料に接触させる深さを数mm(例えば10mm程度)までとしてもよい。例えば、牛肉など、表面のみのサンプリングと深く侵入させた場合のマススペクトルが大きく違う試料の解析を行うことも可能である。 In the third embodiment, when depth direction analysis is performed, the depth at which the probe member 10 is brought into contact with the sample may be up to several mm (for example, about 10 mm). For example, it is possible to analyze a sample such as beef that has a greatly different mass spectrum when sampled only from the surface and deeply penetrated.
(実施例1)
 探針(セイリン、0.12×40、15Y05E1)と、電圧印加部材と、溶媒貯蔵部及び反復移動手段を有する溶媒供給部材とを含むエレクトロスプレーイオン化装置、分析装置(日本電子(JEOL)製 飛行時間型質量分析計AccuTOF)、及びイオン検出装置を備える質量分析装置を準備した。まず探針先端部を0.5mm程度イクラに穿刺する。穿刺後、溶媒貯蔵部に、水:メタノールが1:1の液状の混合溶媒を準備し、イクラが捕捉されている探針の先端と溶媒貯蔵部が10mmの距離になるように質量分析計に配置した。この探針を溶媒に50ミリ秒間浸潤させて探針先端の試料を溶媒で湿潤化させる。湿潤化させた後、探針を上方に移動させて上至点において、探針に2.1kVの電圧を4秒間印加し、電圧印加開始直後のイクラのマススペクトルを測定した。試料を保持した探針の溶媒への穿刺深さは、約1mmである。
 その後、10秒に1回の間隔で前記の液状の溶媒の供給とイオン化の工程を繰り返すことで、イクラのPESI-MSスペクトルをシークエンシャルに測定した結果を図9A~図9Cに示す。図9Aが一回目、図9Bが5回目、図9Cが9回目に測定したスペクトルである。
Example 1
Electrospray ionization apparatus and analysis apparatus (manufactured by JEOL) including a probe (Seirin, 0.12 × 40, 15Y05E1), a voltage application member, and a solvent supply member having a solvent storage unit and repetitive movement means A time-type mass spectrometer AccuTOF) and a mass spectrometer equipped with an ion detector were prepared. First, the tip of the probe is punctured by about 0.5 mm into the salmon roe. After puncturing, prepare a 1: 1 liquid mixture solvent of water: methanol in the solvent reservoir, and place it on the mass spectrometer so that the tip of the probe where the salmon is captured and the solvent reservoir are at a distance of 10 mm. Arranged. The probe is infiltrated into the solvent for 50 milliseconds to wet the sample at the tip of the probe with the solvent. After moistening, the probe was moved upward, and a 2.1 kV voltage was applied to the probe for 4 seconds at the topmost point, and the mass spectrum of salmon rosa just after the voltage application was started was measured. The puncture depth of the probe holding the sample into the solvent is about 1 mm.
9A to 9C show the results of sequential measurement of salmon PESI-MS spectra by repeating the above-mentioned liquid solvent supply and ionization steps once every 10 seconds. 9A is a spectrum measured at the first time, FIG. 9B is a spectrum measured at the fifth time, and FIG. 9C is a spectrum measured at the ninth time.
 図9Aによれば、実施例1の1回目のエレクトロスプレー発生時には質量/電荷比が、m/z 800~900の付近に、脂質であるホスファチジルコリン(PC)に由来するピークが観測されている。さらに、図9Bによれば、5回目のエレクトロスプレー発生時には、PC由来のピークがほとんど観測されず、代わってm/z 900~1000付近に、トリアシルグリセリド(TAG)由来のピークが観測されている。図9Cによれば、m/z 800~900付近にPCとは異なる中性の脂質群と思われるピークが観測されている。このように、実施例1では、イオン化されやすいPCのみならず、従来のPESI-MSではイオン化が困難であったTAGやPCとは異なる中性の脂質群までもイオン化して検出することに成功している。なお、TAG等の脂質群は、元々電荷を持たないため、PC等の脂質と比較するとイオン化されにくい成分である。 According to FIG. 9A, a peak derived from phosphatidylcholine (PC), which is a lipid, is observed at a mass / charge ratio in the vicinity of m / z 800-900 when the first electrospray is generated in Example 1. Further, according to FIG. 9B, when the electrospray is generated for the fifth time, a peak derived from PC is hardly observed, and instead, a peak derived from triacylglyceride (TAG) is observed around 900 to 1000 m / z. Yes. According to FIG. 9C, a peak considered to be a neutral lipid group different from PC is observed in the vicinity of m / z 800-900. Thus, in Example 1, not only ionized PC, but also neutral lipid groups different from TAG and PC, which were difficult to ionize by conventional PESI-MS, were successfully ionized and detected. is doing. Note that lipid groups such as TAG are components that are not easily ionized as compared to lipids such as PC because they originally have no charge.
(実施例2)
 溶媒ローディングチップ(ポリプロピレン、epT.I.P.S., GELorder, Eppendorf、内径約0.2mm、外径約0.3mm、全長65mm、20μL)の先端からおおよそ0.1mm程度突き抜けるように金属探針を配置し、溶媒ローディングチップの他方の端と金属探針を、エポキシ樹脂で封止した。さらに、溶媒ローディングチップの側面に穴を開け、水:メタノールが1:1の混合溶媒を15μL程度注入した。上記探針部材の先端に、インスタントコーヒーの粒をわずかに接触させて先端にコーヒー成分を溶解させて捕捉した。これを実施例1と同様の質量分析機器にセットし、探針に2.2kVの電圧を2秒間印加して先端からエレクトロスプレーを発生させ、その間のPESI-MSスペクトルを測定した結果を図10A~10Bに示す。図10Aが電圧印加後0.5秒で測定したスペクトルであり、図10Bが電圧印加後2秒で測定したスペクトルである。
(Example 2)
Metal probe so that it penetrates about 0.1 mm from the tip of the solvent loading tip (polypropylene, epTIPS, GEorder, Eppendorf, inner diameter about 0.2 mm, outer diameter about 0.3 mm, total length 65 mm, 20 μL). The needle was placed, and the other end of the solvent loading tip and the metal probe were sealed with epoxy resin. Further, a hole was made in the side surface of the solvent loading chip, and about 15 μL of a mixed solvent of water: methanol 1: 1 was injected. Instant coffee grains were brought into slight contact with the tip of the probe member to dissolve and capture the coffee component at the tip. This was set in the same mass spectrometer as in Example 1, a 2.2 kV voltage was applied to the probe for 2 seconds to generate electrospray from the tip, and the PESI-MS spectrum during that time was measured. Shown in ~ 10B. FIG. 10A is a spectrum measured 0.5 seconds after voltage application, and FIG. 10B is a spectrum measured 2 seconds after voltage application.
 図10Aによれば、電圧印加後0.5秒で測定したスペクトルでは、カフェインとオリゴ糖にKが付加したピークが観測されているが、電圧印加後2秒で測定したスペクトルでは、さらに脂質由来のピークが、m/z 870付近に観測されている。なお、m/z 195のピークはカフェイン(分子量194)のプロトン化体であり、m/z 381、543、705はオリゴ糖のK付加体であると考えられる。このように、実施例2でも、イオン化されやすいカフェインとオリゴ糖のみならず、従来のPESI-MSではイオン化が困難であった脂質由来のピークまでもイオン化して検出することに成功している。 According to FIG. 10A, in the spectrum measured 0.5 seconds after the voltage application, a peak in which K + is added to caffeine and oligosaccharide is observed, but in the spectrum measured 2 seconds after the voltage application, A lipid-derived peak is observed around m / z 870. In addition, the peak of m / z 195 is a protonated form of caffeine (molecular weight 194), and m / z 381, 543, and 705 are considered to be K + adducts of oligosaccharides. Thus, in Example 2, not only caffeine and oligosaccharides that are easily ionized, but also lipid-derived peaks that were difficult to ionize by conventional PESI-MS have been successfully ionized and detected. .
(実施例3)
 実施例2で用いた質量分析機器を使用して、水:メタノール:アセトニトリルが1:1:1の混合溶媒を用いて、ゼブラ社の4色ボールペンで普通紙に書いたインク筆跡を測定した結果を図11A~図11Dに、パイロット社の黒ボールペンで普通紙に書いたインク筆跡を測定した結果を図11Eに示す。ボールペンのインクは、一度紙に文字を書いて、10分程度室温で放置した状態のものを用いた。実施例2と同様の探針部材の先端をボールペンで書いた筆跡に軽く触れさせて、筆跡の一部(直径約0.3mm程度)のインクを溶媒で溶解して先端に抽出捕捉させて測定に供した。
(Example 3)
Using the mass spectrometer used in Example 2, the result of measuring ink handwriting written on plain paper with a four-color ballpoint pen from Zebra using a mixed solvent of water: methanol: acetonitrile 1: 1: 1 FIG. 11A to FIG. 11D show the results of measuring ink handwriting written on plain paper with a pilot company's black ballpoint pen, as shown in FIG. 11E. The ink of the ballpoint pen was used after writing letters on paper and leaving it at room temperature for about 10 minutes. The tip of a probe member similar to that of Example 2 is lightly touched with a handwriting written with a ballpoint pen, and a part of the handwriting (about 0.3 mm in diameter) is dissolved in a solvent and extracted and captured at the tip. It was used for.
 図11A~図11Dからわかるように、ゼブラ社の4色ボールペンの各色からは、全く異なるスペクトルが得られている。さらに、図11Aと図11Eを比較すると、同じ黒色インクであっても、ゼブラ社のものとパイロット社のものでも異なるスペクトルが得られている。このことから、本発明の質量分析機器は、筆跡鑑定等の精密な分析を要する分野への応用が期待される。 As can be seen from FIGS. 11A to 11D, completely different spectra are obtained from the respective colors of the four-color ballpoint pens of Zebra. Furthermore, comparing FIG. 11A and FIG. 11E, different spectra are obtained for the same black ink, even for Zebra and Pilot. From this, the mass spectrometer of the present invention is expected to be applied to fields that require precise analysis such as handwriting appraisal.
(実施例4)
 ガラスキャピラリー(プライムテック社製、PT Micropipettes for PMM, "Ultra-thin", PINUS06-20FT)の先端を加熱して封止し、その内部に金属探針を挿入した。挿入後、ガラスキャピラリーの根元にエポキシ樹脂を接着し、探針とガラスキャピラリーを固定した。
 それ以外は、実施例1と同様の機器を用いて、ヨーグルト(明治社:プロビオヨーグルトR-1)に対して質量分析を行った結果を図12A~図12Bに示す。図12Aが電圧印加1秒後、図12Bが電圧印加5秒後のスペクトルである。
Example 4
The tip of a glass capillary (manufactured by Prime Tech, PT Micropipettes for PMM, “Ultra-thin”, PINUS06-20FT) was heated and sealed, and a metal probe was inserted therein. After the insertion, an epoxy resin was bonded to the base of the glass capillary, and the probe and the glass capillary were fixed.
Otherwise, the results of mass spectrometry of yogurt (Meiji Co., Ltd .: Probio Yogurt R-1) using the same equipment as in Example 1 are shown in FIGS. 12A to 12B. FIG. 12A shows the spectrum after 1 second of voltage application, and FIG. 12B shows the spectrum after 5 seconds of voltage application.
 図12A~12Bからわかるように、電圧印加直後から、乳糖のNaやCa2+付加体のピークが観測されている。さらに、5秒後にはm/z 700付近に多くの成分が新たに観測されている。この成分は、乳酸菌を胃酸から守り、保護した状態で腸に輸送させるために添加された成分と予想される。このように、実施例4では、食品の安全性や品質管理の分野への適用が期待できる。 As can be seen from FIGS. 12A to 12B, the peaks of lactose Na + and Ca 2+ adducts are observed immediately after voltage application. Furthermore, many components are newly observed around m / z 700 after 5 seconds. This component is expected to be added to protect lactic acid bacteria from stomach acid and transport them to the intestine in a protected state. Thus, in Example 4, application to the field of food safety and quality control can be expected.
1:エレクトロスプレーイオン化装置、2:質量分析機器、3:分析装置、5:イオン検出装置、10:探針部材、11:探針、13:溶媒ローディングチップ、15:絶縁体、20:電圧印加部材、21:電源、22:スイッチ、23:デジタル遅延パルス発生器、30:溶媒供給部材、31: 溶媒貯蔵部、32:作動部、33:反復移動手段、34:マニピュレータ 1: Electrospray ionizer, 2: Mass spectrometer, 3: Analyzer, 5: Ion detector, 10: Probe member, 11: Probe, 13: Solvent loading chip, 15: Insulator, 20: Voltage application Member: 21: power source, 22: switch, 23: digital delay pulse generator, 30: solvent supply member, 31: soot solvent storage unit, 32: operating unit, 33: repetitive moving means, 34: manipulator

Claims (15)

  1.  エレクトロスプレーイオン化装置であって、
     接触することにより試料を捕捉する探針部材と、
     前記探針部材に電圧を印加するように構成された電圧印加部材とを有し、
     前記探針部材が前記試料への液状溶媒の連続供給機構又は液状溶媒の断続供給機構を備えるか、又は前記エレクトロスプレーイオン化装置が前記試料への液状溶媒の連続供給機構又は液状溶媒の断続供給機構を備える溶媒供給部材をさらに有する、
     エレクトロスプレーイオン化装置。
    An electrospray ionization device,
    A probe member that captures the sample by contact;
    A voltage application member configured to apply a voltage to the probe member;
    The probe member includes a continuous supply mechanism of liquid solvent or an intermittent supply mechanism of liquid solvent to the sample, or the electrospray ionization apparatus includes a continuous supply mechanism of liquid solvent or an intermittent supply mechanism of liquid solvent to the sample. A solvent supply member comprising:
    Electrospray ionizer.
  2.  前記探針部材が、探針及び溶媒ローディングチップを含み、
     前記探針が、前記溶媒ローディングチップの下端から突き出しており、
     前記溶媒ローディングチップの内側に液状の溶媒を貯蔵するように構成された、
     請求項1に記載のエレクトロスプレーイオン化装置。
    The probe member includes a probe and a solvent loading tip;
    The probe protrudes from the lower end of the solvent loading tip;
    Configured to store a liquid solvent inside the solvent loading chip,
    The electrospray ionization apparatus according to claim 1.
  3.  前記探針が、前記溶媒ローディングチップの下端から0mm以上0.2mm以下の範囲で突き出している、請求項2に記載のエレクトロスプレーイオン化装置。 The electrospray ionization apparatus according to claim 2, wherein the probe protrudes from a lower end of the solvent loading tip in a range of 0 mm to 0.2 mm.
  4.  前記探針部材が探針を含み、
     前記溶媒供給部材が溶媒貯蔵部及び作動部を含み、
     前記作動部は、前記探針を前記溶媒貯蔵部が貯蔵する液状の溶媒に接触させて前記試料に前記溶媒を供給するように構成された、
     請求項1に記載のエレクトロスプレーイオン化装置。
    The probe member includes a probe;
    The solvent supply member includes a solvent storage unit and an operation unit,
    The operating unit is configured to supply the solvent to the sample by bringing the probe into contact with a liquid solvent stored in the solvent storage unit.
    The electrospray ionization apparatus according to claim 1.
  5.  前記探針部材が、探針及び前記探針を覆う絶縁体を含み、
     前記絶縁体が、表面で液状の溶媒を保持し、前記試料の一部がイオン化した際に、前記溶媒を供給するように構成された、
     請求項1に記載のエレクトロスプレーイオン化装置。
    The probe member includes a probe and an insulator covering the probe;
    The insulator holds a liquid solvent on the surface, and is configured to supply the solvent when a part of the sample is ionized.
    The electrospray ionization apparatus according to claim 1.
  6.  前記探針部材を前記探針部材の長手方向に反復移動させる反復移動手段をさらに含む、請求項1~請求項5のいずれか1つに記載のエレクトロスプレーイオン化装置。 6. The electrospray ionization apparatus according to claim 1, further comprising repetitive movement means for repetitively moving the probe member in a longitudinal direction of the probe member.
  7.  マニピュレータをさらに含む、請求項1~請求項6のいずれか1つに記載のエレクトロスプレーイオン化装置。 The electrospray ionization apparatus according to any one of claims 1 to 6, further comprising a manipulator.
  8.  請求項1~請求項7のいずれか1つに記載のエレクトロスプレーイオン化装置と、
     前記エレクトロスプレーイオン化装置によってイオン化されたイオンを分離する分析装置と、
     前記分析装置で分離されたイオンを検出するイオン検出装置と、
     を備える、質量分析機器。
    The electrospray ionization apparatus according to any one of claims 1 to 7,
    An analyzer for separating ions ionized by the electrospray ionizer;
    An ion detector for detecting ions separated by the analyzer;
    A mass spectrometer.
  9.  探針部材が試料を捕捉する捕捉工程と、
     前記探針部材に電圧を印加して前記試料をイオン化するイオン化工程と、
     前記試料に連続的又は断続的に液状の溶媒を供給する溶媒供給工程と、
     を有するエレクトロスプレーイオン化の方法。
    A capturing step in which the probe member captures the sample;
    An ionization step of ionizing the sample by applying a voltage to the probe member;
    A solvent supply step of supplying a liquid solvent continuously or intermittently to the sample;
    An electrospray ionization method comprising:
  10.  前記探針部材が、探針及び溶媒ローディングチップを含み、
     前記探針が、前記溶媒ローディングチップの下端から突き出しており、
     前記溶媒ローディングチップに液状の溶媒を充填する溶媒充填工程を有し、
     前記溶媒供給工程で、前記探針部材を前記試料に接触させ、前記溶媒ローディングチップの内側から前記液状の溶媒を供給する
     請求項9に記載のエレクトロスプレーイオン化の方法。
    The probe member includes a probe and a solvent loading tip;
    The probe protrudes from the lower end of the solvent loading tip;
    Having a solvent filling step of filling the solvent loading chip with a liquid solvent;
    The electrospray ionization method according to claim 9, wherein, in the solvent supply step, the probe member is brought into contact with the sample, and the liquid solvent is supplied from the inside of the solvent loading chip.
  11.  前記探針部材が探針を含み、
     前記溶媒供給工程で、前記探針を液状の溶媒に接触させて前記試料に液状の溶媒を供給する、
     請求項9に記載のエレクトロスプレーイオン化の方法。
    The probe member includes a probe;
    Supplying the liquid solvent to the sample by bringing the probe into contact with the liquid solvent in the solvent supplying step;
    The method of electrospray ionization according to claim 9.
  12.  前記探針部材が、探針及び前記探針を覆う絶縁体を含み、
     前記捕捉工程において、前記探針部材が、前記試料に0mmより大きく2mm以下の深さで接触して前記試料を捕捉し、
     前記イオン化工程において前記試料の一部がイオン化すると共に、前記溶媒供給工程において、前記絶縁体の表面で保持されている液状の溶媒を前記試料に供給する、
     請求項9に記載のエレクトロスプレーイオン化の方法。
    The probe member includes a probe and an insulator covering the probe;
    In the capturing step, the probe member contacts the sample at a depth greater than 0 mm and 2 mm or less to capture the sample,
    A part of the sample is ionized in the ionization step, and in the solvent supply step, a liquid solvent held on the surface of the insulator is supplied to the sample.
    The method of electrospray ionization according to claim 9.
  13.  前記溶媒供給工程で、前記探針部材を前記探針部材の長手方向に反復移動させる、請求項9~請求項13のいずれか1つに記載のエレクトロスプレーイオン化の方法。 The electrospray ionization method according to any one of claims 9 to 13, wherein the probe member is repeatedly moved in a longitudinal direction of the probe member in the solvent supply step.
  14.  前記捕捉工程で、前記探針部材が、前記試料を全方位から採取することができる、請求項9~請求項13のいずれか1つに記載のエレクトロスプレーイオン化の方法。 The method of electrospray ionization according to any one of claims 9 to 13, wherein, in the capturing step, the probe member can collect the sample from all directions.
  15.  請求項9~請求項14のいずれか1つに記載のエレクトロスプレーイオン化の方法と、
     前記イオン化の方法によってイオン化されたイオンを分離する分析工程と、
     前記分析工程で分離されたイオンを検出するイオン検出工程と、
     を有する、質量分析方法。
    The method of electrospray ionization according to any one of claims 9 to 14,
    An analysis step of separating ions ionized by the ionization method;
    An ion detection step of detecting ions separated in the analysis step;
    A mass spectrometric method.
PCT/JP2018/018263 2017-05-12 2018-05-11 Electrospray ionization device, mass analysis apparatus, electrospray ionization method, and mass analysis method WO2018207903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517709A JP7109731B2 (en) 2017-05-12 2018-05-11 Electrospray ionization device, mass spectrometer, method of electrospray ionization, and method of mass spectrometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017095719 2017-05-12
JP2017-095719 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207903A1 true WO2018207903A1 (en) 2018-11-15

Family

ID=64104595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018263 WO2018207903A1 (en) 2017-05-12 2018-05-11 Electrospray ionization device, mass analysis apparatus, electrospray ionization method, and mass analysis method

Country Status (2)

Country Link
JP (1) JP7109731B2 (en)
WO (1) WO2018207903A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432990A (en) * 2019-08-06 2021-03-02 岛津企业管理(中国)有限公司 Method for analyzing aristolochic acid and/or aristoloclactam
US20220130652A1 (en) * 2018-08-31 2022-04-28 Shimadzu Corporation Analysis method, analysis device, and program
CN114496717A (en) * 2022-01-18 2022-05-13 中国科学院成都生物研究所 Electrospray excitation device and ionization method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047399A1 (en) * 2008-10-22 2010-04-29 国立大学法人山梨大学 Ionization method and apparatus with probe, and analytical method and apparatus
WO2011071182A1 (en) * 2009-12-08 2011-06-16 国立大学法人山梨大学 Electrospray ionization method and device, and analysis method and device
JP2011120582A (en) * 2009-11-16 2011-06-23 Humanix:Kk Automated apparatus for component capture, injection, and molecular analysis accompanied by observation of microregion such as cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047399A1 (en) * 2008-10-22 2010-04-29 国立大学法人山梨大学 Ionization method and apparatus with probe, and analytical method and apparatus
JP2011120582A (en) * 2009-11-16 2011-06-23 Humanix:Kk Automated apparatus for component capture, injection, and molecular analysis accompanied by observation of microregion such as cell
WO2011071182A1 (en) * 2009-12-08 2011-06-16 国立大学法人山梨大学 Electrospray ionization method and device, and analysis method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRAOKA, KENZO: "Fundamental Aspects of Electrospray", TMS RESEARCH, 2013, XP055613098, Retrieved from the Internet <URL:http://www.tms-soc.jp/journal/2013_2_05_Hiraoka.pdf> [retrieved on 20180731] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220130652A1 (en) * 2018-08-31 2022-04-28 Shimadzu Corporation Analysis method, analysis device, and program
CN112432990A (en) * 2019-08-06 2021-03-02 岛津企业管理(中国)有限公司 Method for analyzing aristolochic acid and/or aristoloclactam
CN112432990B (en) * 2019-08-06 2022-12-02 岛津企业管理(中国)有限公司 Method for analyzing aristolochic acid and/or aristoloclactam
CN114496717A (en) * 2022-01-18 2022-05-13 中国科学院成都生物研究所 Electrospray excitation device and ionization method

Also Published As

Publication number Publication date
JP7109731B2 (en) 2022-08-01
JPWO2018207903A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
Harris et al. Recent developments in ambient ionization techniques for analytical mass spectrometry
US9709529B2 (en) Method and device for in vivo desorption ionization of biological tissue
Van Berkel et al. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry
EP2352022B1 (en) Ionization method and apparatus with probe, and analytical method and apparatus
US8410452B2 (en) Ion source means for desorption/ionisation of analyte substances and method of desorbing/ionising of analyte substances
CA2559847C (en) Method and system for desorption electrospray ionization
JP5277509B2 (en) Electrospray ionization method and apparatus, and analysis method and apparatus
US8097845B2 (en) Focused analyte spray emission apparatus and process for mass spectrometric analysis
WO2018207903A1 (en) Electrospray ionization device, mass analysis apparatus, electrospray ionization method, and mass analysis method
Lebedev Ambient ionization mass spectrometry
EP1734560B1 (en) Ionizing method and device for mass analysis
Huang et al. Sample preparation and direct electrospray ionization on a tip column for rapid mass spectrometry analysis of complex samples
CN210897196U (en) Electrospray ion source and mass spectrum device
Jorabchi et al. Charge assisted laser desorption/ionization mass spectrometry of droplets
CN115308294A (en) Open-type mass spectrometry imaging method based on laser desorption-assisted carbon fiber ionization
JP2000097911A (en) Mass spectrometer and its ion source
Matiur Development of novel ionization methods for mass spectrometry using the high pressure ion source and their applications to biological molecules
CN109390206A (en) Miniaturized portable mass spectrograph and ion source device for generating water body cluster ion
CN114068287A (en) Energy-adjustable in-situ ionization method
Barry Matrix-Assisted Laser Desorption Electrospray Ionization: Fundamental Principles and Applications Towards Molecular Imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799138

Country of ref document: EP

Kind code of ref document: A1