WO2018207745A1 - Flow pressure loss reducing adsorption system using hierarchical structure - Google Patents

Flow pressure loss reducing adsorption system using hierarchical structure Download PDF

Info

Publication number
WO2018207745A1
WO2018207745A1 PCT/JP2018/017687 JP2018017687W WO2018207745A1 WO 2018207745 A1 WO2018207745 A1 WO 2018207745A1 JP 2018017687 W JP2018017687 W JP 2018017687W WO 2018207745 A1 WO2018207745 A1 WO 2018207745A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
adsorbent
cartridges
transition metal
contaminants
Prior art date
Application number
PCT/JP2018/017687
Other languages
French (fr)
Japanese (ja)
Inventor
和之 石井
恭子 榎本
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2018207745A1 publication Critical patent/WO2018207745A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the present invention relates to an aquatic environment, particularly a pollutant adsorption removal system and method using a hierarchical structure for removing pollutants from running water, particularly a water environment contaminated with radioactive cesium (especially running water). Relates to a decontamination system and method for radioactive cesium from
  • a cesium adsorbent composed of a hydrophilic fiber substrate carrying a Prussian blue analog
  • Prussian blue is generally a powder substance that is insoluble in water, and it has been difficult to immobilize not only the surface of hydrophilic fibers but also the inside.
  • cesium can be adsorbed and removed from the contaminated water.
  • it is necessary to quickly purify a large amount of contaminated water.
  • even if such a cesium adsorbent is used as a filter medium, there is a problem that a rapid purification treatment cannot be realized. .
  • radioactive material adsorption / recovery in which a ferrocyanide compound is supported on a tubular woven fabric formed by knitting with a thread material to purify contaminated water by adsorbing rather than filtering the radioactive material
  • An installation structure for example, see Patent Document 5 of a storage container containing a radioactive cesium adsorbent used for a device (for example, see Patent Document 4), a flow path in the middle of flowing into a dam or pond from a mountain area, and the like has been reported.
  • these devices are used by being installed in rivers and seawater, and do not quickly purify contaminated water flowing out in large quantities, and there is a problem that radioactive substances are not sufficiently removed.
  • a cesium adsorbent comprising a hydrophilic fiber substrate carrying a Prussian blue analog
  • Such a cesium adsorbent is obtained by immobilizing Prussian blue analogue on a hydrophilic fiber substrate, and is safe and easy to handle.
  • it since it can be obtained from an inexpensive and easily available material by a simple manufacturing method, it is excellent in application to environmental purification over a wide range from an economical aspect.
  • the cesium adsorbent can be easily processed into an optimal mode, and after adsorbing radioactive cesium in the environment, the transition of Prussian blue analogue (adsorbed with cesium) Only the adsorbent can be easily recovered without leaving the metal salt in the environment.
  • the adsorbent is made of a flammable hydrophilic fiber substrate, the adsorbent after use can be incinerated without any special treatment, and compared with conventional decontamination methods, radioactive waste This is advantageous in that the amount can be suppressed.
  • the present inventors have processed the adsorbent and flowing water installed in the flow path in order to quickly treat the pollutant from the water environment, particularly flowing water, and sufficiently remove the pollutant.
  • a system for reducing and removing pollutant using a hierarchical structure we established a system for reducing and removing pollutant using a hierarchical structure.
  • a decontamination system for radioactive cesium from a water environment, particularly flowing water which is inexpensive and does not require the presence of an expert, is constructed. was completed.
  • a system for adsorbing and removing pollutants in polluted water installed in a flow path of polluted water, including a plurality of cartridges including an adsorbent that adsorbs pollutants by contacting with polluted water; And means for holding the cartridge in the flow path, each of the cartridges having a container having a plurality of water passage holes, a plurality of adsorbents enclosed in the container, and the adsorbent flowing out of the water passage holes And a means for preventing contact between the adsorbent and water, and the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants. And the system.
  • a means for preventing the adsorbent from flowing out from the water passage hole but preventing the adsorbent and water from contacting each other is a mesh bag having a mesh size that allows water to pass and does not penetrate the adsorbent.
  • the hydrophilic fiber is a cellulose fiber.
  • the pollutant is radioactive cesium, the substance capable of trapping the pollutant is a transition metal salt of hexacyano metal acid, and the transition metal salt of hexacyano metal acid is fixed to a hydrophilic fiber. [1] to [4]. [6] The system according to [5], wherein the transition metal salt of hexacyanometal acid is iron (III) hexacyanoferrate (II) hydrate.
  • a system for adsorbing and removing radioactive cesium in contaminated water installed in a flow path of water contaminated with radioactive cesium, -Comprising a plurality of cartridges comprising an adsorbent that adsorbs radioactive cesium by contact with contaminated water, and means for holding the cartridges in said flow path;
  • Each of the cartridges has a substantially spherical capsule having a plurality of water passage holes, a plurality of adsorbents enclosed in the capsule, and a mesh having a size capable of passing water and not penetrating the adsorbents;
  • a method for adsorbing and removing contaminants in contaminated water (I) a step of installing a plurality of cartridges including an adsorbent that adsorbs contaminants in contact with contaminated water in the flow path; (Ii) contacting the contaminated water with the adsorbent in the cartridge; and (iii) collecting the cartridge from the flow path; and (iv) collecting the adsorbent from the cartridge.
  • a means for holding the cartridge in the flow path is provided, and each of the cartridges has a container having a plurality of water holes, a plurality of adsorbents enclosed in the container, and an adsorbent from the water holes.
  • Means for preventing the outflow of the adsorbent, but does not hinder the contact between the adsorbent and water, and the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants.
  • the pollutant is radioactive cesium
  • the substance capable of trapping the pollutant is a transition metal salt of hexacyano metal acid
  • the transition metal salt of hexacyano metal acid is fixed to a hydrophilic fiber.
  • a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants is used as an adsorbent.
  • a porous structure As an adsorbent carrier, the surface area of the adsorbent increases, so the amount of substances that can trap contaminants increases, and the contact efficiency between contaminated water and the adsorbent is greatly increased. It is improved and the pollutant can be removed sufficiently.
  • a plurality of adsorbents are further sealed in a container having a plurality of water passage holes, and a plurality of them are used as cartridges.
  • Pressure loss can be reduced, and a large amount of contaminated water can be treated quickly.
  • a hierarchical structure in which a plurality of porous structures are collected to form one cartridge, and a plurality of cartridges are collected to form one unit (system), the flow pressure loss reducing contaminants can be reduced.
  • An adsorption removal system was established.
  • the adsorbent is a cesium adsorbent
  • the cesium adsorbent has a Prussian blue analog as a hydrophilic fiber as will be described later. Since it is fixed to the fiber of the porous structure which consists of this, it is safe and easy to handle. Moreover, since it can be obtained from an inexpensive and easily available material by a simple manufacturing method, it is excellent in application to water environment purification over a wide range from an economical aspect.
  • the adsorbent can be easily recovered without leaving the transition metal salt of Prussian blue analog (adsorbed with cesium) in the water environment.
  • the adsorbent is formed of a flammable hydrophilic fiber base material, it can be incinerated, which is advantageous in that the amount of radioactive waste can be suppressed as compared with conventional decontamination methods. .
  • FIG. 1A is a bag body in which about 3000 pieces of the adsorbent shown in FIG. 1A are packed in a mesh bag having a size that allows water to pass and does not penetrate the adsorbent, and (a) closes the opening of the mesh bag. Before, (b) shows after closing the opening part of a mesh bag.
  • FIG. 1A is a bag body in which about 3000 pieces of the adsorbent shown in FIG. 1A are packed in a mesh bag having a size that allows water to pass and does not penetrate the adsorbent, and (a) closes the opening of the mesh bag. Before, (b) shows after closing the opening part of a mesh bag.
  • FIG. 2 is an example of a cartridge, in which (a) is a water passage hole, a capsule in which about 10 to 30 circular holes having a diameter of about 1.2 cm are formed, and the bag shown in FIG. 2 is enclosed; (b) Indicates a capsule enclosing a bag and a capsule not encapsulating.
  • Fig. 4 shows a schematic diagram of a system using the cartridge of Fig. 3;
  • the present invention relates to a system that is installed in a contaminated water flow path to adsorb and remove contaminants in contaminated water.
  • “polluted water” refers to water contaminated with harmful substances such as chemical substances (hereinafter referred to as “pollutants”). Examples of contaminants, mercury, lead, tin, copper, cadmium, nickel, cobalt, a heavy metal such as chromium, dioxin, cyanide, organic or inorganic compounds, such as arsenic compounds, or radioactive cesium (134 Cs, 137 Cs) And the like.
  • the contaminated water includes water environments such as polluted seas, rivers, ponds and lakes, water taken from the polluted water environment, and industrial wastewater.
  • the contaminated water includes water contaminated with radioactive cesium, that is, seas, rivers, ponds, lakes and the like contaminated with radioactive cesium.
  • Water water taken from the water environment contaminated with radioactive cesium, waste water containing radioactive cesium, groundwater, etc.
  • water contaminated with radioactive cesium refers to water containing radioactive cesium ( 134 Cs, 137 Cs).
  • the radioactive cesium concentration indicates that cesium 134 is more than 60 Bq / L and cesium 137 is more than 90 Bq / L.
  • the “flow path” refers to a path through which water flows, and may be an existing flow path such as a sea, a river, a water channel, or the like, and is provided separately as a part of the system of the present invention. Also good.
  • the system of the present invention includes a plurality of cartridges including an adsorbent that adsorbs contaminants by coming into contact with contaminated water, and means for holding the cartridge in the flow path.
  • the “adsorbent” is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants.
  • “substances capable of trapping contaminants” can be appropriately selected by those skilled in the art depending on the contaminants intended to be adsorbed and removed using the system of the present invention.
  • Typical of substances that can trap pollutants when the pollutants are heavy metals such as mercury, lead, tin, copper, cadmium, nickel, cobalt, chromium, or organic or inorganic compounds such as dioxins, cyanides, arsenic compounds
  • Specific examples include activated carbon and various chelate resins.
  • the pollutant is radioactive cesium ( 134 Cs, 137 Cs)
  • a typical example of a substance that can trap the pollutant is Prussian blue analog.
  • Substances capable of capturing such contaminants can be obtained from reagent suppliers, or can be prepared from reagents available from reagent suppliers by those skilled in the art according to known methods.
  • the substance capable of trapping these contaminants is supported on the “porous structure made of hydrophilic fibers”.
  • the hydrophilic fiber may be rephrased as a water absorbent fiber.
  • the hydrophilic fiber is a general term for fibers that are generally easy to take up water molecules, and is typically a cellulose fiber. Examples of cellulose fibers include natural fibers such as wool, cotton, silk, hemp and pulp, regenerated fibers such as rayon, polynosic, cupra (Bemberg (registered trademark)), lyocell (Tencel (registered trademark)), or those A composite fiber is mentioned.
  • Semi-synthetic fibers such as acetate and triacetate, or synthetic fibers such as polyamide, polyvinyl alcohol, polyvinylidene chloride, polyvinyl chloride, polyester, polyacrylonitrile, polyolefin or polyurethane, or composites thereof
  • the fiber may be modified by a known method to impart hydrophilicity.
  • it may be a composite material of hydrophilic fibers and synthetic fibers, for example, cellulose composite fibers of cellulose fibers and synthetic fibers (for example, polyolefin fibers such as polyethylene and polypropylene).
  • cellulose fibers or cellulose composite fibers are preferable as the hydrophilic fibers.
  • the porous structure made of hydrophilic fibers is not particularly limited to the shape or the like as long as it is composed of hydrophilic fibers and has voids through which water can permeate.
  • the porosity of the porous structure (ratio of the volume of the space to the total volume of the structure) is at least about 10%, preferably about 30% or more, more preferably about 50% or more, especially Preferably it is about 75% or more.
  • Typical examples of the structure porous structure include porous particles made of hydrophilic fibers and fiber rods.
  • Porous particles can be obtained from a specialist, or can be prepared by granulating a fine powder of hydrophilic fibers available from a specialist according to a method known to those skilled in the art.
  • the porous particles may be substantially spherical porous particles, but the average particle diameter (median diameter) is about 1 to about 30 mm, preferably about 1 to about 10 mm, more preferably about 2 ⁇ 8mm.
  • the average particle diameter is preferably about 10 mm or less.
  • the average particle size is preferably about 1 mm or more.
  • the porosity of the porous particles is not particularly limited, but is preferably about 70 to about 98%, more preferably about 75 to about 95%.
  • Porous particles for example, porous cellulose particles are Viscopar® A (average particle size 2 mm, 4 mm; porosity 93%) or Viscopearl® P (average particle size 1 mm, 4 mm, 6 mm, 8 mm; 80% porosity), available from Rengo Co., Ltd.
  • the fiber rod can be obtained from a specialist, or can be prepared by molding a hydrophilic heat-fusible fiber available from a specialist according to a method known to those skilled in the art.
  • the fiber rod is generally cylindrical, and examples thereof include those having a diameter of about 1 to about 30 mm, a length of about 1 to about 300 mm, and a porosity of about 50 to about 90%.
  • the shape is not particularly limited.
  • Such a fiber rod can be obtained from Asahi Textile Industry Co., Ltd., for example.
  • a cesium adsorbent in which a Prussian blue analog, particularly preferably Prussian blue is supported on a porous structure made of hydrophilic fibers, is characterized in that the Prussian blue analog is fixed not only on the surface of the fiber but also inside.
  • a “pigment” such as Prussian blue is insoluble in a medium such as water or an organic solvent and has no dyeing property to a substrate. Therefore, when dyeing (printing) a fiber substrate with a pigment, it is usually necessary to post-treat with a binder resin or the like and fix the pigment attached to the fiber surface.
  • the binder resin adheres to the surface of the substance that can simultaneously trap the contaminant (for example, Prussian blue analog), the surface activity is impaired and the trapping ability of the contaminant is reduced. Not desirable.
  • the Prussian blue analog reacts with “an inorganic salt of hexacyano metal acid” and “an inorganic compound containing a transition metal element” in the presence of a porous structure composed of hydrophilic fibers. It is formed in-situ and is present as fine particles on the surface and inside of the fiber, so it is stably fixed to the porous structure made of hydrophilic fibers regardless of the binder resin, etc. A decrease in capture ability can be avoided.
  • the Prussian blue analog (that is, a transition metal salt of hexacyano metal acid) is a kind of cyano-bridged metal complex having hexacyano metal acid ions as a building element, and has a general formula: M A m [M B ( CN) 6 ] n ⁇ hH 2 O, which is understood to have a face-centered cubic structure in which the metal ions (M A , M B ) are alternately crosslinked with cyano groups.
  • M A is the first transition metal. Therefore, the Prussian blue analog according to the present invention may be rephrased as a transition metal salt of hexacyano metal acid.
  • the first transition metal scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu And one or more metals selected from zinc (Zn).
  • one or more metals selected from iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn) are used, and more preferably copper (Cu ) Or iron (Fe), especially ferric iron (Fe (III)).
  • M B may be any metal species capable of forming a octahedral six-coordinate structure, preferably, chromium (Cr), manganese (Mn), iron (Fe), copper (Cu) and cobalt ( One or more metals selected from Co), more preferably iron (Fe) or copper (Cu), particularly ferrous iron (Fe (II)).
  • Cr chromium
  • Mn manganese
  • Fe iron
  • Cu copper
  • cobalt One or more metals selected from Co
  • Co more preferably iron (Fe) or copper (Cu), particularly ferrous iron (Fe (II)
  • m the values of n and h is determined according to the oxidation number of M A and M B.
  • the Prussian blue analog may be a product obtained by a reaction between an inorganic salt of hexacyano metal acid and an inorganic compound containing a transition metal element, and any product represented by the above general formula may be used.
  • the Prussian blue analog according to the present invention may include those in which some of the metal ions of the transition metal salt of hexacyano metal acid are substituted with alkali metal ions derived from the raw material.
  • transition metal salt of hexacyanoferrate (II) which is an embodiment of the Prussian blue analog according to the present invention
  • its scandium (Sc) salt, titanium (Ti) salt, vanadium (V) salt, chromium ( Cr) salt, manganese (Mn) salt, iron (Fe) salt, cobalt (Co) salt, nickel (Ni) salt, copper (Cu) salt, zinc (Zn) salt, and one or more thereof Mixed salts are mentioned.
  • iron (Fe) salt cobalt (Co) salt, nickel (Ni) salt, copper (Cu) salt, zinc (Zn) salt of hexacyanoferrate (II) acid, and one or more thereof
  • a mixed salt is mentioned, More preferably, a copper (Cu) salt or an iron (Fe) salt, especially a ferric iron (Fe (III)) salt is mentioned.
  • the transition metal salt of hexacyanoferrate (II) acid is a product obtained by the reaction of an inorganic salt of hexacyanoferrate (II) acid and an inorganic compound containing a transition metal element, formula (However, the M B, particularly ferrous (Fe (II)) is a) may be any, including those represented by, but part of the metal ions, alkali metal ions such as derived from the raw material May be substituted with.
  • a ferric (Fe (III)) salt of hexacyanoferrate (II), which is the most preferred example of the Prussian blue analog according to the present invention, is also called Prussian blue or bitumen and has been used as a pigment for a long time. ing. Its ideal chemical composition is Fe (III) 4 [Fe (II) (CN) 6 ] 3 ⁇ xH 2 O (x 14 to 16) (ie, “iron (III) hexacyanoferrate (II) hydrate) )), But some iron ions may be substituted depending on the production method.
  • Prussian blue according to the present invention is obtained by a reaction between an inorganic salt of hexacyanoferrate (II) and an inorganic compound containing ferric iron (III), and includes those having the above chemical composition. What is necessary is that some iron ions may be substituted with raw material-derived alkali metal ions or the like.
  • “Inorganic salt of hexacyanometal acid” is water-soluble and forms a Prussian blue analog according to the present invention (ie, transition metal salt of hexacyanometal acid) by reaction with an inorganic compound containing a transition metal element.
  • transition metal salt of hexacyanometal acid ie, transition metal salt of hexacyanometal acid
  • examples include alkali metal salts (sodium salt, potassium salt, etc.) of hexacyano metal acid, mixed salts thereof, or hydrates thereof.
  • hexacyanochromium (III) acid hexacyanomanganese (II) acid, hexacyanoiron (II) acid or hexacyanocobalt (III) acid alkali metal salt (sodium salt, potassium salt, etc.), or a mixed salt thereof Or a hydrate thereof.
  • the inorganic salt of hexacyanoiron (II) acid is water-soluble and reacts with an inorganic compound containing a transition metal element to form hexacyanoiron (II).
  • an inorganic compound containing a transition metal element there is no particular limitation as long as it can form a transition metal salt of an acid.
  • Specific examples include potassium hexacyanoferrate (II), sodium hexacyanoferrate (II), or a mixed salt thereof, or a hydrate thereof.
  • the use of potassium hexacyanoferrate (II) or its hydrate is preferred.
  • the “inorganic compound containing a transition metal element” is water-soluble and forms a Prussian blue analog of the present invention (that is, a transition metal salt of hexacyano metal acid) by reaction with an inorganic salt of hexacyano metal acid.
  • a transition metal salt of hexacyano metal acid that is, a transition metal salt of hexacyano metal acid
  • the inorganic compound containing such a transition metal element include halides, nitrates, sulfates, perchlorates, mixed salts thereof, and hydrates of the first transition metal.
  • halides such as ferric chloride (III), cobalt chloride (II), nickel chloride (II); nitrates such as ferric nitrate (III), cobalt nitrate (II), nickel nitrate (II); sulfuric acid
  • sulfates such as ferric iron (III) and cobalt sulfate (II)
  • perchlorates such as ferric iron (III) perchlorate; or a mixed salt thereof, or a hydrate thereof.
  • the inorganic compound containing ferric iron (III) is not particularly limited as long as it is water-soluble and can form Prussian blue by reaction with an inorganic salt of hexacyanoferrate (II) acid.
  • ferric chloride (III), ferric nitrate (III), ferric sulfate (III), ferric perchlorate (III), or a mixed salt thereof, or a hydrate thereof may be mentioned. .
  • the cesium adsorbent according to the present invention can be produced according to the method described in International Publication No. 2013/027652.
  • a step of treating a porous structure comprising hydrophilic fibers with an aqueous solution of an inorganic salt of hexacyanometal acid and
  • a substrate treated in step (a) is treated with a transition metal element. It is produced by the manufacturing method including the process of processing with the aqueous solution of the containing inorganic compound. Note that the order of steps (a) and (b) may be reversed.
  • the adsorbent according to the present invention is collected from several tens to several tens of thousands, for example, about 20 to about 20,000, preferably about 50 to about 5,000, and is enclosed in a “container having a water passage hole”.
  • the size and material of the “container” are not particularly limited in size, material, and the like, but it is preferable to use a substantially spherical container from the viewpoint of ease of filling and reduction of pressure loss of running water.
  • the diameter of the spherical container can be about 10 mm to about 1.0 ⁇ 10 3 mm, preferably about 30 mm to about 0.5 ⁇ 10 3 mm, more preferably about 40 mm to about 0.2 ⁇ 10 3 mm.
  • 3 is a mm, polystyrene, plastic capsules polypropylene or the like. Such capsules are cheap, easily available, and easy to process, and may be capsules for capsule toys.
  • the “water hole” provided in the container does not impair the independence of the container or the strength against the flowing water pressure of the contaminated water, and does not prevent the contaminated water from entering the container in the flow path.
  • about 3 to about 50 substantially circular holes having a diameter of about 0.5 to about 3 cm, more preferably about 5 to 30 substantially circular holes having a diameter of about 1 to 2 cm, are provided as water passage holes in the container. .
  • the cartridge according to the present invention includes “means for preventing the adsorbent from flowing out from the water passage hole but not preventing the adsorbent from contacting with water”.
  • Such means prevents the adsorbent from flowing out of the water passage hole, but is not particularly limited as long as it does not hinder contact between the adsorbent and water.
  • the size of the water passage hole may be a size that allows water to pass and does not penetrate the adsorbent. It is considered that the adsorbent is prevented from flowing out of the hole but provided with means that do not hinder the contact between the adsorbent and water.
  • a mesh bag having a mesh size that allows water to pass and does not allow the adsorbent to penetrate therethrough is used.
  • Tens to tens of thousands of adsorbents are collected and sealed in a spherical container in a state of being filled in a mesh bag.
  • the material of the mesh bag and the size of the mesh prevent the adsorbent from flowing out from the water passage hole, but are not particularly limited as long as the contact between the adsorbent and water is not hindered, preferably polyethylene, polypropylene, It is made of resin such as polyester and has a mesh of 20 to 200 mesh.
  • Tens to hundreds of cartridges according to the present invention are collected and installed in the flow path by “means for holding the cartridge”.
  • the means for holding the cartridge is not particularly limited as long as it keeps the cartridge within a predetermined range of the flow path against the contaminated water flowing through the flow path, and inhibits the flow of water and does not significantly increase the pressure loss.
  • a wire mesh basket suitable for the width and depth of the flow path may be installed in the flow path, and several tens to several hundreds of cartridges may be placed and held there.
  • the cartridge may be put into a net and put into a flow path, and held so as not to be poured into running water.
  • the present invention also relates to a method for adsorbing and removing contaminants in contaminated water.
  • the method of the present invention includes (i) a step of installing a plurality of cartridges in the flow path including an adsorbent that adsorbs contaminants by contacting the contaminated water, and (ii) contaminated water and adsorbents in the cartridge. (Iii) a step of recovering the cartridge from the flow path, and (iv) a step of recovering the adsorbent from the cartridge.
  • the method of the present invention also relates to a method for adsorbing and removing radioactive cesium in contaminated water, wherein the pollutant is radioactive cesium.
  • each of the cartridges has a container having a plurality of water passage holes, a plurality of adsorbents enclosed in the container, and the adsorbent is prevented from flowing out of the water passage holes.
  • the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants. Specific embodiments and examples of “pollutant”, “substance capable of trapping pollutant”, “porous structure comprising hydrophilic fibers”, “adsorbent”, “cartridge” and the like in the method of the present invention are as described above. It is synonymous with.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The present invention pertains to a flow pressure loss reducing system and method using a hierarchical structure, for the adsorption and removal of contaminants, for removing contaminants from aqueous environments, particularly flowing water. The present invention particularly pertains to a system and method for removing radioactive cesium from an aqueous environment (particularly flowing water) contaminated by radioactive cesium. Specifically, a system is provided that is arranged in a flow path for contaminated water, is for the adsorption and removal of contaminants in the contaminated water, and comprises: a plurality of cartridges including an adsorbent that adsorbs contaminants by coming in contact with contaminated water; and a means for holding the cartridges in the flow path. The system is characterized by: each of the cartridges comprising a container having a plurality of water through-holes, a plurality of adsorbents sealed in the container, and a means that prevents the adsorbent from flowing out of the water through-holes but does not prevent the adsorbent and the water from coming in contact; and the adsorbent being a porous structure comprising hydrophilic fibers and carrying a substance capable of trapping contaminants.

Description

階層構造を利用した流水圧損低減型吸着システムAdsorption system with reduced flow pressure loss using hierarchical structure
 本発明は、水環境、特に流水より汚染物質を除去するための、階層構造を利用した流水圧損低減型の汚染物質の吸着除去システムおよび方法、特に放射性セシウムで汚染された水環境(特に流水)からの放射性セシウムの除染システムおよび方法に関する。 The present invention relates to an aquatic environment, particularly a pollutant adsorption removal system and method using a hierarchical structure for removing pollutants from running water, particularly a water environment contaminated with radioactive cesium (especially running water). Relates to a decontamination system and method for radioactive cesium from
 2011年3月11日に発生した東日本大震災による福島第一原子力発電所における未曾有の事故は、今もなお、農業、水産業、畜産業はもとより、周辺住民の生活に深刻な影響を及ぼしている。原発事故そのものの収束はもちろんのこと、事故により環境中に放出されたヨウ素(131I)、セシウム(134Cs、137Cs)、ストロンチウム(90Sr)等の放射性物質の除去は、現在、我が国の喫緊の課題となっている。特に主要な放射性物質であって、約30年という長い半減期を有するセシウム137(137Cs)の環境中、特に、海、川、池、湖沼等の水環境からの除去については、現在、各種機関により様々なアプローチが検討されている。 The unprecedented accident at the Fukushima Daiichi NPS due to the Great East Japan Earthquake that occurred on March 11, 2011 still has a serious impact on the lives of local residents as well as agriculture, fisheries and livestock industries. . The removal of radioactive materials such as iodine ( 131 I), cesium ( 134 Cs, 137 Cs), and strontium ( 90 Sr) released into the environment by the accident as well as the convergence of the nuclear accident itself is currently It is an urgent issue. Especially a major radioactive material, environment 137Cs with a long half-life of about 30 years (137 Cs), in particular, sea, rivers, ponds, for removal from the water environment of lakes such as is currently various Various approaches are being considered by the institution.
 例えば、セシウム137を漏出した排水中から吸着除去するための放射性物質吸着材として、ゼオライトを不織布にバインダ樹脂を用いて固定した放射性物質回収シートが報告されている(例えば、特許文献1参照)。
 また、ゼオライトを用いたセシウム除去用水浄化フィルタカートリッジが報告されている(例えば、特許文献2参照)。これは、ゼオライト粒子を表面に固定した不織布を巻き回してなる濾過層を設け、セシウムを除去しようとしたものである。
 しかしながら、ゼオライトを使用した場合、使用したゼオライトと同量の放射性廃棄物が発生するという問題がある。
For example, as a radioactive material adsorbent for adsorbing and removing cesium 137 from drained wastewater, a radioactive material recovery sheet in which zeolite is fixed to a nonwoven fabric using a binder resin has been reported (see, for example, Patent Document 1).
Moreover, a water purification filter cartridge for removing cesium using zeolite has been reported (for example, see Patent Document 2). This is intended to remove cesium by providing a filtration layer formed by winding a nonwoven fabric with zeolite particles fixed on the surface.
However, when zeolite is used, there is a problem that the same amount of radioactive waste as that of the used zeolite is generated.
 さらに、放射性物質吸着材として、プルシアンブルー類縁体を担持した親水性繊維基材からなるセシウム吸着材が知られている(例えば、特許文献3参照)。これは、繊維の内部にプルシアンブルー類縁体が固定化したものである。プルシアンブルーは一般に、水に不溶性の粉末物質であり、従前、親水性繊維の表面のみならず内部への固定化は困難であったが、かかるセシウム吸着材は、プルシアンブルーを繊維の表面のみならず内部へ固定化することに成功したものであり、これによれば、汚染水からセシウムを吸着して除去できる。しかしながら、汚染水から放射性物質を除去する場合、大量の汚染水を迅速に浄化する必要があるが、かかるセシウム吸着材を濾過材として利用したとしても、迅速な浄化処理が実現されないという問題がある。 Furthermore, as a radioactive substance adsorbent, a cesium adsorbent composed of a hydrophilic fiber substrate carrying a Prussian blue analog is known (for example, see Patent Document 3). This is a Prussian blue analogue fixed inside the fiber. Prussian blue is generally a powder substance that is insoluble in water, and it has been difficult to immobilize not only the surface of hydrophilic fibers but also the inside. First, it was successfully fixed inside, and according to this, cesium can be adsorbed and removed from the contaminated water. However, when removing radioactive substances from contaminated water, it is necessary to quickly purify a large amount of contaminated water. However, even if such a cesium adsorbent is used as a filter medium, there is a problem that a rapid purification treatment cannot be realized. .
 同様に、放射性物質を濾過するのではなく、吸着することにより、汚染水を浄化するものとして、糸材で編まれて形成された筒状織物にフェロシアン化化合物が担持された放射性物質吸着回収装置(例えば、特許文献4参照)や、山地からダムやため池に流れ込む途中の流路等に用いる放射性セシウム吸着剤入り収納容器の設置構造(例えば、特許文献5参照)が報告されている。しかしながら、これらの装置は、河川や海水中に設置して使用するものであり、大量に流れ出る汚染水を迅速に浄化するものではなく、また放射性物質の除去が十分になされないという問題がある。 Similarly, radioactive material adsorption / recovery in which a ferrocyanide compound is supported on a tubular woven fabric formed by knitting with a thread material to purify contaminated water by adsorbing rather than filtering the radioactive material An installation structure (for example, see Patent Document 5) of a storage container containing a radioactive cesium adsorbent used for a device (for example, see Patent Document 4), a flow path in the middle of flowing into a dam or pond from a mountain area, and the like has been reported. However, these devices are used by being installed in rivers and seawater, and do not quickly purify contaminated water flowing out in large quantities, and there is a problem that radioactive substances are not sufficiently removed.
特開2015-99140号公報JP2015-99140A 特開2013-88411号公報JP 2013-88411 A 再表2013/27652号公報Table 2013/27652 gazette 特開2014-122809号公報JP 2014-122809 A 特開2014-98640号公報JP 2014-98640 A
 このように、これまでに報告されている水環境の除染方法では、使用済みの濾過材や吸着剤が、そのまま放射性廃棄物となるという点において、また大量の汚染水を迅速に処理し、かつ放射性物質を十分に除去するという点において、改善すべき課題があった。 As described above, in the water environment decontamination methods that have been reported so far, used filter media and adsorbents become radioactive waste as they are, and a large amount of contaminated water is quickly treated, In addition, there is a problem to be improved in terms of sufficiently removing radioactive substances.
 本発明者らは、これまでに、「プルシアンブルー類縁体を担持した親水性繊維基材からなるセシウム吸着材」に係る発明を完成させた(例えば、特許文献3参照)。かかるセシウム吸着材は、プルシアンブルー類縁体を、親水性繊維基材に固定化したものであり、安全かつ取扱いが容易である。また安価で入手が容易な材料から、簡便な製造方法により得ることが出来るため、経済的な側面からも、広範囲に亘る環境浄化への適用に優れたものである。さらには、除染の対象に応じて、セシウム吸着材を最適な態様へと容易に加工できる点、また環境中の放射性セシウムを吸着させた後、(セシウムが吸着した)プルシアンブルー類縁体の遷移金属塩を環境中に取り残すことなく、吸着材のみを容易に回収できる。また、吸着材が可燃性の親水性繊維基材で形成されているため使用後の吸着材を特別な処理を施すことなく、焼却処分でき、従来の除染方法と比較して、放射性廃棄物の量を抑制することもできる点で有利である。 The inventors of the present invention have so far completed an invention relating to “a cesium adsorbent comprising a hydrophilic fiber substrate carrying a Prussian blue analog” (see, for example, Patent Document 3). Such a cesium adsorbent is obtained by immobilizing Prussian blue analogue on a hydrophilic fiber substrate, and is safe and easy to handle. In addition, since it can be obtained from an inexpensive and easily available material by a simple manufacturing method, it is excellent in application to environmental purification over a wide range from an economical aspect. Furthermore, depending on the object of decontamination, the cesium adsorbent can be easily processed into an optimal mode, and after adsorbing radioactive cesium in the environment, the transition of Prussian blue analogue (adsorbed with cesium) Only the adsorbent can be easily recovered without leaving the metal salt in the environment. In addition, since the adsorbent is made of a flammable hydrophilic fiber substrate, the adsorbent after use can be incinerated without any special treatment, and compared with conventional decontamination methods, radioactive waste This is advantageous in that the amount can be suppressed.
 本発明者らは、上記課題を解決するために、水環境、特に流水より汚染物質を迅速に処理し、且つ汚染物質を十分に除去するためには、流路に設置される吸着剤と流水との接触効率を改善すると同時に、流水の圧力損失を低減させることに着目し、鋭意検討した結果、階層構造を利用した流水圧損低減型の汚染物質の吸着除去システムを確立した。さらにかかる除去システムと、本発明者らが開発した前記セシウム吸着材とを組合せ、低コストで専門家の立ち会い不要な、水環境、特に流水からの放射性セシウムの除染システムを構築し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors have processed the adsorbent and flowing water installed in the flow path in order to quickly treat the pollutant from the water environment, particularly flowing water, and sufficiently remove the pollutant. As a result of diligent investigation focusing on reducing the pressure loss of running water while improving the contact efficiency with water, we established a system for reducing and removing pollutant using a hierarchical structure. Further, by combining such a removal system and the cesium adsorbent developed by the present inventors, a decontamination system for radioactive cesium from a water environment, particularly flowing water, which is inexpensive and does not require the presence of an expert, is constructed. Was completed.
 本発明は、以下のとおりである:
[1] 汚染水の流路に設置し、汚染水中の汚染物質を吸着除去するためのシステムであって、汚染水と接触することにより汚染物質を吸着する吸着材を含む、複数個のカートリッジと、前記流路にカートリッジを保持する手段とを備え、前記カートリッジのそれぞれが、複数の通水孔を有する容器と、容器に封入される複数個の吸着材と、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段とを備え、そして前記吸着材が、汚染物質を捕捉しうる物質を担持した、親水性繊維からなる多孔質構造体であることを特徴とする、システム。
[2] 通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段が、通水が可能でかつ吸着材を貫通させない大きさのメッシュを有するメッシュ袋であり、ここで吸着材がメッシュ袋に充填された状態でカプセルに封入されていることを特徴とする、[1]に記載のシステム。
[3] 通水孔を有する容器の最大長の平均が、10mm~1×10mmである、[1]または[2]に記載のシステム。
[4] 親水性繊維が、セルロース繊維である、[1]~[3]のいずれかに記載のシステム。
[5] 汚染物質が放射性セシウムであり、汚染物質を捕捉しうる物質がヘキサシアノ金属酸の遷移金属塩であり、ヘキサシアノ金属酸の遷移金属塩が親水性繊維に固定されていることを特徴とする、[1]~[4]のいずれかに記載のシステム。
[6] ヘキサシアノ金属酸の遷移金属塩が、ヘキサシアノ鉄(II)酸鉄(III)水和物である、[5]に記載のシステム。
[7] 放射性セシウムで汚染された水の流路に設置し、汚染水中の放射性セシウムを吸着除去するためのシステムであって、
- 汚染水と接触することにより放射性セシウムを吸着する吸着材を含む、複数個のカートリッジと、前記流路にカートリッジを保持する手段とを備え、
- 前記カートリッジのそれぞれが、複数の通水孔を有する略球状のカプセルと、カプセルに封入される複数個の吸着材と、通水が可能でかつ吸着材を貫通させない大きさのメッシュを有するメッシュ袋とを備え、ここで吸着材はメッシュ袋に充填された状態でカプセルに封入されており、そして
- 前記吸着材が、ヘキサシアノ金属酸の遷移金属塩を担持した、親水性繊維からなる多孔質粒子であって、ヘキサシアノ金属酸の遷移金属塩が繊維に固定されていることを特徴とする、システム。
[8] 汚染水中の汚染物質を吸着除去する方法であって、
(i)流路に、汚染水と接触することにより汚染物質を吸着する吸着材を含む、複数個のカートリッジを設置する工程、
(ii)汚染水とカートリッジ中の吸着材とを接触させる工程、および
(iii)流路よりカートリッジを回収する工程、および
(iv)カートリッジより吸着材を回収する工程を含み、
 ここで、前記流路にカートリッジを保持する手段を備え、かつ前記カートリッジのそれぞれが、複数の通水孔を有する容器と、容器に封入される複数個の吸着材と、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段を備え、そして前記吸着材が、汚染物質を捕捉しうる物質を担持した、親水性繊維からなる多孔質構造体であることを特徴とする、方法。
[9] 汚染物質が放射性セシウムであり、汚染物質を捕捉しうる物質がヘキサシアノ金属酸の遷移金属塩であり、ヘキサシアノ金属酸の遷移金属塩が親水性繊維に固定されていることを特徴とする、[8]に記載の方法。
The present invention is as follows:
[1] A system for adsorbing and removing pollutants in polluted water installed in a flow path of polluted water, including a plurality of cartridges including an adsorbent that adsorbs pollutants by contacting with polluted water; And means for holding the cartridge in the flow path, each of the cartridges having a container having a plurality of water passage holes, a plurality of adsorbents enclosed in the container, and the adsorbent flowing out of the water passage holes And a means for preventing contact between the adsorbent and water, and the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants. And the system.
[2] A means for preventing the adsorbent from flowing out from the water passage hole but preventing the adsorbent and water from contacting each other is a mesh bag having a mesh size that allows water to pass and does not penetrate the adsorbent. The system according to [1], wherein the adsorbent is enclosed in a capsule in a state of being filled in a mesh bag.
[3] The system according to [1] or [2], wherein the average of the maximum lengths of the containers having water passage holes is 10 mm to 1 × 10 3 mm.
[4] The system according to any one of [1] to [3], wherein the hydrophilic fiber is a cellulose fiber.
[5] The pollutant is radioactive cesium, the substance capable of trapping the pollutant is a transition metal salt of hexacyano metal acid, and the transition metal salt of hexacyano metal acid is fixed to a hydrophilic fiber. [1] to [4].
[6] The system according to [5], wherein the transition metal salt of hexacyanometal acid is iron (III) hexacyanoferrate (II) hydrate.
[7] A system for adsorbing and removing radioactive cesium in contaminated water installed in a flow path of water contaminated with radioactive cesium,
-Comprising a plurality of cartridges comprising an adsorbent that adsorbs radioactive cesium by contact with contaminated water, and means for holding the cartridges in said flow path;
Each of the cartridges has a substantially spherical capsule having a plurality of water passage holes, a plurality of adsorbents enclosed in the capsule, and a mesh having a size capable of passing water and not penetrating the adsorbents; A bag, wherein the adsorbent is enclosed in a capsule in a mesh bag, and the adsorbent is a porous fiber made of hydrophilic fibers carrying a transition metal salt of hexacyanometal acid A system, characterized in that a transition metal salt of hexacyanometal acid is fixed to a fiber.
[8] A method for adsorbing and removing contaminants in contaminated water,
(I) a step of installing a plurality of cartridges including an adsorbent that adsorbs contaminants in contact with contaminated water in the flow path;
(Ii) contacting the contaminated water with the adsorbent in the cartridge; and (iii) collecting the cartridge from the flow path; and (iv) collecting the adsorbent from the cartridge.
Here, a means for holding the cartridge in the flow path is provided, and each of the cartridges has a container having a plurality of water holes, a plurality of adsorbents enclosed in the container, and an adsorbent from the water holes. Means for preventing the outflow of the adsorbent, but does not hinder the contact between the adsorbent and water, and the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants. Features, a method.
[9] The pollutant is radioactive cesium, the substance capable of trapping the pollutant is a transition metal salt of hexacyano metal acid, and the transition metal salt of hexacyano metal acid is fixed to a hydrophilic fiber. The method according to [8].
 本発明の汚染水中の汚染物質を吸着除去するシステムでは、吸着材として、汚染物質を捕捉し得る物質を担持した、親水性繊維からなる多孔質構造体を使用する。吸着材の担体として多孔質構造体を使用することにより、吸着材の表面積が増えることから、汚染物質を捕捉し得る物質の担持量が増え、かつ汚染水と吸着材との接触効率が大幅に改善され、汚染物質を十分に除去できる。また、本発明の汚染水中の汚染物質を吸着除去するシステムでは、複数個の吸着材を、さらに複数の通水孔を有する容器に封入し、それをカートリッジとして複数個使用することにより、流水の圧力損失を低減させることができ、大量の汚染水を迅速に処理できる。このように、多孔質構造体を複数集め一つのカートリッジを形成し、そのカートリッジを複数集め一つのユニット(システム)を形成するといった、階層構造を利用することにより、流水圧損低減型の汚染物質の吸着除去システムを確立した。 In the system for adsorbing and removing contaminants in the contaminated water of the present invention, a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants is used as an adsorbent. By using a porous structure as an adsorbent carrier, the surface area of the adsorbent increases, so the amount of substances that can trap contaminants increases, and the contact efficiency between contaminated water and the adsorbent is greatly increased. It is improved and the pollutant can be removed sufficiently. Moreover, in the system for adsorbing and removing pollutants in the contaminated water of the present invention, a plurality of adsorbents are further sealed in a container having a plurality of water passage holes, and a plurality of them are used as cartridges. Pressure loss can be reduced, and a large amount of contaminated water can be treated quickly. In this way, by using a hierarchical structure in which a plurality of porous structures are collected to form one cartridge, and a plurality of cartridges are collected to form one unit (system), the flow pressure loss reducing contaminants can be reduced. An adsorption removal system was established.
 また本発明のシステムが、汚染水中の放射性セシウムを吸着除去するシステムである場合、吸着材は、セシウム吸着材であり、かかるセシウム吸着材は、後述するように、プルシアンブルー類縁体が親水性繊維からなる多孔質構造体の繊維に固定されていることを特徴とするものであるから、安全かつ取扱いが容易である。また安価で入手が容易な材料から、簡便な製造方法により得ることが出来るため、経済的な側面からも、広範囲に亘る水環境浄化への適用に優れたものである。また汚染水中の放射性セシウムを吸着させた後、(セシウムが吸着した)プルシアンブルー類縁体の遷移金属塩を水環境中に取り残すことなく、吸着材のみを容易に回収できる。また、吸着材が可燃性の親水性繊維基材で形成されているため焼却処分にでき、従来の除染方法と比較して、放射性廃棄物の量を抑制することもできる点で有利である。 When the system of the present invention is a system that adsorbs and removes radioactive cesium in contaminated water, the adsorbent is a cesium adsorbent, and the cesium adsorbent has a Prussian blue analog as a hydrophilic fiber as will be described later. Since it is fixed to the fiber of the porous structure which consists of this, it is safe and easy to handle. Moreover, since it can be obtained from an inexpensive and easily available material by a simple manufacturing method, it is excellent in application to water environment purification over a wide range from an economical aspect. Further, after adsorbing radioactive cesium in the contaminated water, only the adsorbent can be easily recovered without leaving the transition metal salt of Prussian blue analog (adsorbed with cesium) in the water environment. Moreover, since the adsorbent is formed of a flammable hydrophilic fiber base material, it can be incinerated, which is advantageous in that the amount of radioactive waste can be suppressed as compared with conventional decontamination methods. .
吸着材の例であり、プルシアンブルー類縁体を担持した、セルロース繊維からなる多孔質粒子(直径約4mm)を示す。It is an example of an adsorbent, and shows porous particles (diameter of about 4 mm) made of cellulose fibers carrying a Prussian blue analog. 左が多孔質構造体の例である、セルロース複合繊維からなるファイバーロッド(直径約15mm、高さ15mm)を示し、右が、そのファイバーロッドにプルシアンブルー類縁体を担持した吸着材を示す。The left shows an example of a porous structure, a fiber rod (diameter: about 15 mm, height: 15 mm) made of cellulose composite fiber, and the right shows an adsorbent carrying Prussian blue analog on the fiber rod. 通水が可能でかつ吸着材を貫通させない大きさのメッシュを有するメッシュ袋に、図1Aに示した吸着材を約3000個詰めた袋体であり、(a)がメッシュ袋の開口部を閉じる前、(b)がメッシュ袋の開口部を閉じた後を示す。1A is a bag body in which about 3000 pieces of the adsorbent shown in FIG. 1A are packed in a mesh bag having a size that allows water to pass and does not penetrate the adsorbent, and (a) closes the opening of the mesh bag. Before, (b) shows after closing the opening part of a mesh bag. カートリッジの例であり、(a)が通水孔として、直径約1.2cmの円形の穴を約10~30個空けたカプセルに、図2に示した袋体を封入したもの、(b)が袋体を封入したカプセルと封入していないカプセルを示す。FIG. 2 is an example of a cartridge, in which (a) is a water passage hole, a capsule in which about 10 to 30 circular holes having a diameter of about 1.2 cm are formed, and the bag shown in FIG. 2 is enclosed; (b) Indicates a capsule enclosing a bag and a capsule not encapsulating. 図3のカートリッジを使用するシステムの模式図を示す。Fig. 4 shows a schematic diagram of a system using the cartridge of Fig. 3;
 本発明は、汚染水の流路に設置し、汚染水中の汚染物質を吸着除去するためのシステムに関する。本発明において「汚染水」は、化学物質などの有害物質(以下、「汚染物質」と称する)に汚染された水を指す。汚染物質の例としては、水銀、鉛、錫、銅、カドミウム、ニッケル、コバルト、クロム等の重金属、ダイオキシン、シアン化合物、ヒ素化合物等の有機または無機化合物、あるいは放射性セシウム(134Cs、137Cs)等の放射性物質が挙げられる。したがって汚染水としては、汚染された海、川、池、湖沼等の水環境、汚染された水環境から取水した水、工業排水等が挙げられる。中でも、本発明のシステムは、放射性セシウムを吸着除去するのに好適であることから、汚染水としては、放射性セシウムで汚染された水、すなわち放射性セシウムで汚染された海、川、池、湖沼等の水環境、放射性セシウムで汚染された水環境から取水した水、放射性セシウムを含む排水や地下水等が対象とされる。 The present invention relates to a system that is installed in a contaminated water flow path to adsorb and remove contaminants in contaminated water. In the present invention, “polluted water” refers to water contaminated with harmful substances such as chemical substances (hereinafter referred to as “pollutants”). Examples of contaminants, mercury, lead, tin, copper, cadmium, nickel, cobalt, a heavy metal such as chromium, dioxin, cyanide, organic or inorganic compounds, such as arsenic compounds, or radioactive cesium (134 Cs, 137 Cs) And the like. Accordingly, the contaminated water includes water environments such as polluted seas, rivers, ponds and lakes, water taken from the polluted water environment, and industrial wastewater. Among them, since the system of the present invention is suitable for adsorbing and removing radioactive cesium, the contaminated water includes water contaminated with radioactive cesium, that is, seas, rivers, ponds, lakes and the like contaminated with radioactive cesium. Water, water taken from the water environment contaminated with radioactive cesium, waste water containing radioactive cesium, groundwater, etc.
 本発明において、「放射性セシウムで汚染された水」は、放射性セシウム(134Cs、137Cs)を含む水を指す。特には、放射性セシウム濃度が、セシウム134で60Bq/L超、セシウム137で90Bq/L超のものを指す。これらの基準は、廃棄物を安全に処分するために法律で定められた目安であり、例えば、放射性セシウム濃度がこれらの基準以下であれば、河川や海などへの放流できる。 In the present invention, “water contaminated with radioactive cesium” refers to water containing radioactive cesium ( 134 Cs, 137 Cs). In particular, the radioactive cesium concentration indicates that cesium 134 is more than 60 Bq / L and cesium 137 is more than 90 Bq / L. These standards are guidelines established by law to safely dispose of waste. For example, if the radioactive cesium concentration is below these standards, it can be discharged into rivers, the sea, and the like.
 本発明において「流路」は、水が流れる道すじを指し、海、河川、用水路等、既在の流路であってもよく、本発明のシステムの一部として別途設けられたものであってもよい。 In the present invention, the “flow path” refers to a path through which water flows, and may be an existing flow path such as a sea, a river, a water channel, or the like, and is provided separately as a part of the system of the present invention. Also good.
 本発明のシステムは、汚染水と接触することにより汚染物質を吸着する吸着材を含む、複数個のカートリッジと、前記流路にかかるカートリッジを保持する手段とを備える。本発明において、「吸着材」は、汚染物質を捕捉しうる物質を担持した、親水性繊維からなる多孔質構造体であることを特徴とする。 The system of the present invention includes a plurality of cartridges including an adsorbent that adsorbs contaminants by coming into contact with contaminated water, and means for holding the cartridge in the flow path. In the present invention, the “adsorbent” is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants.
 本発明において「汚染物質を捕捉しうる物質」は、本発明のシステムを用いて吸着・除去することを目的とする汚染物質に応じて、当業者であれば適宜選択できる。汚染物質が水銀、鉛、錫、銅、カドミウム、ニッケル、コバルト、クロム等の重金属、あるいはダイオキシン、シアン化合物、ヒ素化合物等の有機または無機化合物である場合、汚染物質を捕捉しうる物質の典型的な例としては、活性炭や各種キレート樹脂が挙げられる。汚染物質が放射性セシウム(134Cs、137Cs)である場合、汚染物質を捕捉しうる物質の典型的な例としては、プルシアンブルー類縁体が挙げられる。このような汚染物質を捕捉しうる物質は、試薬供給業者より入手できるか、または試薬供給業者より入手できる試薬より、当業者が公知の方法に従い調製できる。 In the present invention, “substances capable of trapping contaminants” can be appropriately selected by those skilled in the art depending on the contaminants intended to be adsorbed and removed using the system of the present invention. Typical of substances that can trap pollutants when the pollutants are heavy metals such as mercury, lead, tin, copper, cadmium, nickel, cobalt, chromium, or organic or inorganic compounds such as dioxins, cyanides, arsenic compounds Specific examples include activated carbon and various chelate resins. When the pollutant is radioactive cesium ( 134 Cs, 137 Cs), a typical example of a substance that can trap the pollutant is Prussian blue analog. Substances capable of capturing such contaminants can be obtained from reagent suppliers, or can be prepared from reagents available from reagent suppliers by those skilled in the art according to known methods.
 これらの汚染物質を捕捉しうる物質は、「親水性繊維からなる多孔質構造体」に担持される。親水性繊維は、吸水性繊維と言い換えてもよい。親水性繊維は、一般に水分子を取り込みやすい繊維の総称であり、典型的には、セルロース繊維である。セルロース繊維の例としては、羊毛、綿、絹、麻、パルプ等の天然繊維、レーヨン、ポリノジック、キュプラ(ベンベルグ(登録商標))、リヨセル(テンセル(登録商標))等の再生繊維、またはそれらの複合繊維が挙げられる。またアセテート、トリアセテートなどの半合成繊維、あるいはポリアミド系、ポリビニルアルコール系、ポリ塩化ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ポリアクリロニトリル系、ポリオレフィン系もしくはポリウレタン系繊維等の合成繊維、またはそれらの複合繊維を公知の方法で改質し、親水性を付与したものであってもよい。また所望の親水性を有する範囲であれば、親水性繊維と合成繊維の複合素材、例えば、セルロース繊維と合成繊維(例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維)のセルロース複合繊維であってもよい。価格や入手の容易さから、親水性繊維としてはセルロース繊維またはセルロース複合繊維が好ましい。 The substance capable of trapping these contaminants is supported on the “porous structure made of hydrophilic fibers”. The hydrophilic fiber may be rephrased as a water absorbent fiber. The hydrophilic fiber is a general term for fibers that are generally easy to take up water molecules, and is typically a cellulose fiber. Examples of cellulose fibers include natural fibers such as wool, cotton, silk, hemp and pulp, regenerated fibers such as rayon, polynosic, cupra (Bemberg (registered trademark)), lyocell (Tencel (registered trademark)), or those A composite fiber is mentioned. Semi-synthetic fibers such as acetate and triacetate, or synthetic fibers such as polyamide, polyvinyl alcohol, polyvinylidene chloride, polyvinyl chloride, polyester, polyacrylonitrile, polyolefin or polyurethane, or composites thereof The fiber may be modified by a known method to impart hydrophilicity. Moreover, as long as it has the desired hydrophilicity, it may be a composite material of hydrophilic fibers and synthetic fibers, for example, cellulose composite fibers of cellulose fibers and synthetic fibers (for example, polyolefin fibers such as polyethylene and polypropylene). . In view of price and availability, cellulose fibers or cellulose composite fibers are preferable as the hydrophilic fibers.
 親水性繊維からなる多孔質構造体は、親水性繊維で構成され、その内部に水が浸透しうる空隙を有するものであれば、その形状等に特に限定なはい。多孔質構造体の空隙率(構造体の全体積に占める空間の体積の割合)は、少なくとも約10%であり、好ましくは約30%以上であり、より好ましくは約50%以上であり、特に好ましくは約75%以上である。構造体多孔質構造体の典型的な例としては、親水性繊維からなる多孔質粒子やファイバーロッドが挙げられる。 The porous structure made of hydrophilic fibers is not particularly limited to the shape or the like as long as it is composed of hydrophilic fibers and has voids through which water can permeate. The porosity of the porous structure (ratio of the volume of the space to the total volume of the structure) is at least about 10%, preferably about 30% or more, more preferably about 50% or more, especially Preferably it is about 75% or more. Typical examples of the structure porous structure include porous particles made of hydrophilic fibers and fiber rods.
 多孔質粒子は、専門業者より入手できるか、または専門業者より入手できる親水性繊維の微粉末を、当業者が公知の方法に従い造粒することにより調製できる。多孔質粒子は、略球状の多孔質粒子であればよいが、その平均粒子径(メジアン径)は、約1~約30mmであり、好ましくは約1~約10mmであり、より好ましくは約2~約8mmである。吸着材の表面積を増やし、汚染物質を捕捉しうる物質の担持量や、汚染水と吸着材との接触効率を改善するためには、平均粒子径は約10mm以下であることが好ましく、吸着材の汚染水(流水)中への流出を防ぎ、回収を容易にするためには平均粒子径は約1mm以上であることが好ましい。また多孔質粒子の空隙率は、特に制限はないが、約70~約98%であることが好ましく、約75~約95%であることがより好ましい。多孔質粒子、例えば、多孔質セルロース粒子は、ビスコパール(登録商標)A(平均粒子径2mm、4mm;空隙率93%)またはビスコパール(登録商標)P(平均粒子径1mm、4mm、6mm、8mm;空隙率80%)としてレンゴー株式会社より入手できる。 Porous particles can be obtained from a specialist, or can be prepared by granulating a fine powder of hydrophilic fibers available from a specialist according to a method known to those skilled in the art. The porous particles may be substantially spherical porous particles, but the average particle diameter (median diameter) is about 1 to about 30 mm, preferably about 1 to about 10 mm, more preferably about 2 ~ 8mm. In order to increase the surface area of the adsorbent and improve the amount of the substance capable of trapping pollutants and the contact efficiency between the contaminated water and the adsorbent, the average particle diameter is preferably about 10 mm or less. In order to prevent outflow into contaminated water (running water) and facilitate recovery, the average particle size is preferably about 1 mm or more. The porosity of the porous particles is not particularly limited, but is preferably about 70 to about 98%, more preferably about 75 to about 95%. Porous particles, for example, porous cellulose particles are Viscopar® A (average particle size 2 mm, 4 mm; porosity 93%) or Viscopearl® P (average particle size 1 mm, 4 mm, 6 mm, 8 mm; 80% porosity), available from Rengo Co., Ltd.
 ファイバーロッドは、専門業者より入手できるか、または専門業者より入手できる親水性の熱融着繊維を、当業者が公知の方法に従い成型することにより調製できる。ファイバーロッドは、一般的には円柱状であり、例えば、その直径が約1~約30mm、長さが約1~約300mm、空隙率が約50~約90%であるものが挙げられるが、その形状に特に限定はない。そのようなファイバーロッドは、例えば、アサヒ繊維工業株式会社より入手できる。 The fiber rod can be obtained from a specialist, or can be prepared by molding a hydrophilic heat-fusible fiber available from a specialist according to a method known to those skilled in the art. The fiber rod is generally cylindrical, and examples thereof include those having a diameter of about 1 to about 30 mm, a length of about 1 to about 300 mm, and a porosity of about 50 to about 90%. The shape is not particularly limited. Such a fiber rod can be obtained from Asahi Textile Industry Co., Ltd., for example.
 汚染物質を捕捉しうる物質を、親水性繊維からなる多孔質構造体に担持する方法は、特に制限はなく、汚染物質を捕捉しうる物質の性質等に応じて、当業者は適切な方法を採用できる。例えば、汚染物質を捕捉しうる物質が水溶性である場合、汚染物質を捕捉しうる物質の水溶液に、親水性繊維からなる多孔質構造体を含浸させることにより、汚染物質を捕捉しうる物質を担持した多孔質構造体を得ることができる。また、汚染物質を捕捉しうる物質が非水溶性である場合、親水性繊維の微粉末を造粒する際に、汚染物質を捕捉しうる物質を混ぜ込むことにより、複合化粒子として造粒してもよい。汚染物質を捕捉しうる物質がプルシアンブルー類縁体である場合の例を、以下に詳述する。 There is no particular limitation on the method for supporting a substance capable of trapping contaminants on a porous structure made of hydrophilic fibers, and those skilled in the art will use an appropriate method depending on the nature of the substance capable of trapping contaminants. Can be adopted. For example, when a substance capable of trapping pollutants is water-soluble, an aqueous solution of a substance capable of trapping pollutants is impregnated with a porous structure made of hydrophilic fibers to thereby remove a substance capable of trapping pollutants. A supported porous structure can be obtained. In addition, when a substance capable of trapping pollutants is water-insoluble, it can be granulated as composite particles by mixing the substances capable of trapping pollutants when granulating hydrophilic fiber fine powder. May be. An example in which the substance capable of trapping the contaminant is a Prussian blue analog will be described in detail below.
 プルシアンブルー類縁体、特に好ましくはプルシアンブルーを、親水性繊維からなる多孔質構造体に担持したセシウム吸着材は、繊維の表面のみならず内部にプルシアンブルー類縁体が固定していることを特徴とするものである。プルシアンブルーのような「顔料」は、水や有機溶媒などの媒質に不溶で、基質に対して染着性がない。したがって、顔料により繊維基材を染色(捺染)する場合、通常、バインダ樹脂などで後処理し、顔料を繊維の表面に付着した形で固定化することを要した。しかしながら、バインダ樹脂による処理では、同時に汚染物質を捕捉しうる物質(例えば、プルシアンブルー類縁体)の表面にもバインダ樹脂が付着するため、その表面活性を損ない、汚染物質の捕捉能が低下するため望ましくない。本発明に係るセシウム吸着材では、プルシアンブルー類縁体は、親水性繊維からなる多孔質構造体の存在下に、「ヘキサシアノ金属酸の無機塩」と「遷移金属元素を含む無機化合物」との反応によりin situで形成され、繊維の表面および内部に微粒子として存在するため、バインダ樹脂などによらず安定的に親水性繊維からなる多孔質構造体に固定しており、またバインダ樹脂による汚染物質の捕捉能の低下を回避することができる。 A cesium adsorbent in which a Prussian blue analog, particularly preferably Prussian blue is supported on a porous structure made of hydrophilic fibers, is characterized in that the Prussian blue analog is fixed not only on the surface of the fiber but also inside. To do. A “pigment” such as Prussian blue is insoluble in a medium such as water or an organic solvent and has no dyeing property to a substrate. Therefore, when dyeing (printing) a fiber substrate with a pigment, it is usually necessary to post-treat with a binder resin or the like and fix the pigment attached to the fiber surface. However, in the treatment with the binder resin, since the binder resin adheres to the surface of the substance that can simultaneously trap the contaminant (for example, Prussian blue analog), the surface activity is impaired and the trapping ability of the contaminant is reduced. Not desirable. In the cesium adsorbent according to the present invention, the Prussian blue analog reacts with “an inorganic salt of hexacyano metal acid” and “an inorganic compound containing a transition metal element” in the presence of a porous structure composed of hydrophilic fibers. It is formed in-situ and is present as fine particles on the surface and inside of the fiber, so it is stably fixed to the porous structure made of hydrophilic fibers regardless of the binder resin, etc. A decrease in capture ability can be avoided.
 ここで、プルシアンブルー類縁体(すなわち、ヘキサシアノ金属酸の遷移金属塩)とは、ヘキサシアノ金属酸イオンを構築素子としたシアノ架橋型金属錯体の一種であり、一般式:M [M(CN)・hHOで示される化合物であり、この金属イオン(M、M)がシアノ基で交互に架橋した面心立方構造をしていると解される。ここで、Mは、第一遷移金属である。したがって、本発明に係るプルシアンブルー類縁体は、ヘキサシアノ金属酸の遷移金属塩であると言い換えてもよい。第一遷移金属としては、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)および亜鉛(Zn)から選択される1種または2種以上の金属が挙げられる。好ましくは、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)および亜鉛(Zn)から選択される1種または2種以上の金属が挙げられ、より好ましくは、銅(Cu)または鉄(Fe)、特に第二鉄(Fe(III))が挙げられる。 Here, the Prussian blue analog (that is, a transition metal salt of hexacyano metal acid) is a kind of cyano-bridged metal complex having hexacyano metal acid ions as a building element, and has a general formula: M A m [M B ( CN) 6 ] n · hH 2 O, which is understood to have a face-centered cubic structure in which the metal ions (M A , M B ) are alternately crosslinked with cyano groups. Here, M A is the first transition metal. Therefore, the Prussian blue analog according to the present invention may be rephrased as a transition metal salt of hexacyano metal acid. As the first transition metal, scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu And one or more metals selected from zinc (Zn). Preferably, one or more metals selected from iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn) are used, and more preferably copper (Cu ) Or iron (Fe), especially ferric iron (Fe (III)).
 前記一般式において、Mは、八面体6配位構造をとりうる金属種であればよく、好ましくは、クロム(Cr)、マンガン(Mn)、鉄(Fe)、銅(Cu)およびコバルト(Co)から選択される1種または2種以上の金属であり、より好ましくは、鉄(Fe)または銅(Cu)、特に第一鉄(Fe(II))である。なお前記一般式において、m、nおよびhの値は、MおよびMの酸化数に応じて定まる。 In the general formula, M B may be any metal species capable of forming a octahedral six-coordinate structure, preferably, chromium (Cr), manganese (Mn), iron (Fe), copper (Cu) and cobalt ( One or more metals selected from Co), more preferably iron (Fe) or copper (Cu), particularly ferrous iron (Fe (II)). Note in the general formula, m, the values of n and h is determined according to the oxidation number of M A and M B.
 プルシアンブルー類縁体は、ヘキサシアノ金属酸の無機塩と、遷移金属元素を含む無機化合物との反応により得られる生成物であって、前記一般式で表されるものを含むものであればよい。なお、本発明に係るプルシアンブルー類縁体は、そのヘキサシアノ金属酸の遷移金属塩の一部の金属イオンが、原料由来のアルカリ金属イオン等で置換されているものを含んでいてもよい。 The Prussian blue analog may be a product obtained by a reaction between an inorganic salt of hexacyano metal acid and an inorganic compound containing a transition metal element, and any product represented by the above general formula may be used. The Prussian blue analog according to the present invention may include those in which some of the metal ions of the transition metal salt of hexacyano metal acid are substituted with alkali metal ions derived from the raw material.
 例えば、本発明に係るプルシアンブルー類縁体の一態様である、ヘキサシアノ鉄(II)酸の遷移金属塩としては、そのスカンジウム(Sc)塩、チタン(Ti)塩、バナジウム(V)塩、クロム(Cr)塩、マンガン(Mn)塩、鉄(Fe)塩、コバルト(Co)塩、ニッケル(Ni)塩、銅(Cu)塩、亜鉛(Zn)塩、およびそれらの1種または2種以上の混合塩が挙げられる。好ましくは、ヘキサシアノ鉄(II)酸の鉄(Fe)塩、コバルト(Co)塩、ニッケル(Ni)塩、銅(Cu)塩、亜鉛(Zn)塩、およびそれらの1種または2種以上の混合塩が挙げられ、より好ましくは、銅(Cu)塩または鉄(Fe)塩、特に第二鉄(Fe(III))塩が挙げられる。なお、本発明に係るヘキサシアノ鉄(II)酸の遷移金属塩は、ヘキサシアノ鉄(II)酸の無機塩と、遷移金属元素を含む無機化合物との反応により得られる生成物であって、前記一般式(但し、Mが、特に第一鉄(Fe(II))である)で表されるものを含むものであればよいが、その一部の金属イオンが、原料由来のアルカリ金属イオン等で置換されているものを含んでいてもよい。 For example, as a transition metal salt of hexacyanoferrate (II) which is an embodiment of the Prussian blue analog according to the present invention, its scandium (Sc) salt, titanium (Ti) salt, vanadium (V) salt, chromium ( Cr) salt, manganese (Mn) salt, iron (Fe) salt, cobalt (Co) salt, nickel (Ni) salt, copper (Cu) salt, zinc (Zn) salt, and one or more thereof Mixed salts are mentioned. Preferably, iron (Fe) salt, cobalt (Co) salt, nickel (Ni) salt, copper (Cu) salt, zinc (Zn) salt of hexacyanoferrate (II) acid, and one or more thereof A mixed salt is mentioned, More preferably, a copper (Cu) salt or an iron (Fe) salt, especially a ferric iron (Fe (III)) salt is mentioned. The transition metal salt of hexacyanoferrate (II) acid according to the present invention is a product obtained by the reaction of an inorganic salt of hexacyanoferrate (II) acid and an inorganic compound containing a transition metal element, formula (However, the M B, particularly ferrous (Fe (II)) is a) may be any, including those represented by, but part of the metal ions, alkali metal ions such as derived from the raw material May be substituted with.
 本発明に係るプルシアンブルー類縁体の最も好適な例である、ヘキサシアノ鉄(II)酸の第二鉄(Fe(III))塩は、プルシアンブルーまたは紺青等とも称され、古くから顔料として用いられている。その理想的な化学組成はFe(III)[Fe(II)(CN)・xHO(x=14~16)(すなわち「ヘキサシアノ鉄(II)酸鉄(III)水和物」)であるが、その製法等に応じて一部の鉄イオンが置換されていることもある。本発明に係るプルシアンブルーは、ヘキサシアノ鉄(II)酸の無機塩と、第二鉄(III)を含む無機化合物との反応により得られるものであって、前記化学組成を有するものを含むものであればよいが、一部の鉄イオンが、原料由来のアルカリ金属イオン等で置換されているものを含んでいてもよい。 A ferric (Fe (III)) salt of hexacyanoferrate (II), which is the most preferred example of the Prussian blue analog according to the present invention, is also called Prussian blue or bitumen and has been used as a pigment for a long time. ing. Its ideal chemical composition is Fe (III) 4 [Fe (II) (CN) 6 ] 3 · xH 2 O (x = 14 to 16) (ie, “iron (III) hexacyanoferrate (II) hydrate) )), But some iron ions may be substituted depending on the production method. Prussian blue according to the present invention is obtained by a reaction between an inorganic salt of hexacyanoferrate (II) and an inorganic compound containing ferric iron (III), and includes those having the above chemical composition. What is necessary is that some iron ions may be substituted with raw material-derived alkali metal ions or the like.
 「ヘキサシアノ金属酸の無機塩」は、水溶性であって、かつ遷移金属元素を含む無機化合物との反応により、本発明に係るプルシアンブルー類縁体(すなわち、ヘキサシアノ金属酸の遷移金属塩)を形成しうるものであれば特に制限はない。例としては、ヘキサシアノ金属酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)、またはそれらの混合塩、もしくはその水和物が挙げられる。具体的には、ヘキサシアノクロム(III)酸、ヘキサシアノマンガン(II)酸、ヘキサシアノ鉄(II)酸若しくはヘキサシアノコバルト(III)酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)、またはそれらの混合塩、もしくはその水和物が挙げられる。 “Inorganic salt of hexacyanometal acid” is water-soluble and forms a Prussian blue analog according to the present invention (ie, transition metal salt of hexacyanometal acid) by reaction with an inorganic compound containing a transition metal element. There is no particular limitation as long as it is possible. Examples include alkali metal salts (sodium salt, potassium salt, etc.) of hexacyano metal acid, mixed salts thereof, or hydrates thereof. Specifically, hexacyanochromium (III) acid, hexacyanomanganese (II) acid, hexacyanoiron (II) acid or hexacyanocobalt (III) acid alkali metal salt (sodium salt, potassium salt, etc.), or a mixed salt thereof Or a hydrate thereof.
 例えば、ヘキサシアノ金属酸が、ヘキサシアノ鉄(II)酸である場合、ヘキサシアノ鉄(II)酸の無機塩は、水溶性であって、かつ遷移金属元素を含む無機化合物との反応によりヘキサシアノ鉄(II)酸の遷移金属塩を形成しうるものであれば特に制限はない。具体例としては、ヘキサシアノ鉄(II)酸カリウム、ヘキサシアノ鉄(II)酸ナトリウム、またはそれらの混合塩、もしくはその水和物が挙げられる。ヘキサシアノ鉄(II)酸カリウムまたはその水和物の使用が好ましい。 For example, when the hexacyanometallic acid is hexacyanoiron (II) acid, the inorganic salt of hexacyanoiron (II) acid is water-soluble and reacts with an inorganic compound containing a transition metal element to form hexacyanoiron (II There is no particular limitation as long as it can form a transition metal salt of an acid. Specific examples include potassium hexacyanoferrate (II), sodium hexacyanoferrate (II), or a mixed salt thereof, or a hydrate thereof. The use of potassium hexacyanoferrate (II) or its hydrate is preferred.
 「遷移金属元素を含む無機化合物」は、水溶性であって、かつヘキサシアノ金属酸の無機塩との反応により、本発明のプルシアンブルー類縁体(すなわち、ヘキサシアノ金属酸の遷移金属塩)を形成しうるものであれば特に制限はない。そのような遷移金属元素を含む無機化合物としては、前記第一遷移金属のハロゲン化物、硝酸塩、硫酸塩、過塩素酸塩、またはそれらの混合塩、もしくはそれらの水和物等が挙げられる。例えば、塩化第二鉄(III)、塩化コバルト(II)、塩化ニッケル(II)等のハロゲン化物;硝酸第二鉄(III)、硝酸コバルト(II)、硝酸ニッケル(II)等の硝酸塩;硫酸第二鉄(III)、硫酸コバルト(II)等の硫酸塩;過塩素酸第二鉄(III)等の過塩素酸塩;またはそれらの混合塩、もしくはそれらの水和物が挙げられる。 The “inorganic compound containing a transition metal element” is water-soluble and forms a Prussian blue analog of the present invention (that is, a transition metal salt of hexacyano metal acid) by reaction with an inorganic salt of hexacyano metal acid. There is no particular limitation as long as it is possible. Examples of the inorganic compound containing such a transition metal element include halides, nitrates, sulfates, perchlorates, mixed salts thereof, and hydrates of the first transition metal. For example, halides such as ferric chloride (III), cobalt chloride (II), nickel chloride (II); nitrates such as ferric nitrate (III), cobalt nitrate (II), nickel nitrate (II); sulfuric acid Examples thereof include sulfates such as ferric iron (III) and cobalt sulfate (II); perchlorates such as ferric iron (III) perchlorate; or a mixed salt thereof, or a hydrate thereof.
 例えば、第二鉄(III)を含む無機化合物は、水溶性であって、かつヘキサシアノ鉄(II)酸の無機塩との反応によりプルシアンブルーを形成しうるものであれば特に制限はない。例えば、塩化第二鉄(III)、硝酸第二鉄(III)、硫酸第二鉄(III)、過塩素酸第二鉄(III)またはそれらの混合塩、もしくはそれらの水和物が挙げられる。 For example, the inorganic compound containing ferric iron (III) is not particularly limited as long as it is water-soluble and can form Prussian blue by reaction with an inorganic salt of hexacyanoferrate (II) acid. For example, ferric chloride (III), ferric nitrate (III), ferric sulfate (III), ferric perchlorate (III), or a mixed salt thereof, or a hydrate thereof may be mentioned. .
 本発明に係るセシウム吸着材は、国際公開第2013/027652号パンフレットに記載の方法に従い製造できる。典型的には、(a)親水性繊維からなる多孔質構造体をヘキサシアノ金属酸の無機塩の水溶液で処理する工程;および(b)工程(a)で処理した基材を、遷移金属元素を含む無機化合物の水溶液で処理する工程を含む製造方法により作製される。なお、工程(a)および(b)の順序は逆であってもよい。 The cesium adsorbent according to the present invention can be produced according to the method described in International Publication No. 2013/027652. Typically, (a) a step of treating a porous structure comprising hydrophilic fibers with an aqueous solution of an inorganic salt of hexacyanometal acid; and (b) a substrate treated in step (a) is treated with a transition metal element. It is produced by the manufacturing method including the process of processing with the aqueous solution of the containing inorganic compound. Note that the order of steps (a) and (b) may be reversed.
 本発明に係る吸着材は、数十~数万個、例えば約20~約2万個、好ましくは約50~約5000個集められ、「通水孔を有する容器」に封入され、「カートリッジ」を形成する。「容器」の形状は、その大きさ・材質等に特に制限はないが、充填のしやすさ、および流水の圧力損失の低減の観点から、略球状の容器を用いることが好ましい。球状容器の直径は、約10mm~約1.0×10mmであってよく、好ましくは約30mm~約0.5×10mmであり、より好ましくは約40mm~約0.2×10mmであり、ポリスチレン、ポリプロピレン等の樹脂製のカプセルが好ましい。そのようなカプセルは、安価で容易に入手ができ、また加工も容易であることから、カプセルトイ用のカプセル等であってもよい。 The adsorbent according to the present invention is collected from several tens to several tens of thousands, for example, about 20 to about 20,000, preferably about 50 to about 5,000, and is enclosed in a “container having a water passage hole”. Form. The size and material of the “container” are not particularly limited in size, material, and the like, but it is preferable to use a substantially spherical container from the viewpoint of ease of filling and reduction of pressure loss of running water. The diameter of the spherical container can be about 10 mm to about 1.0 × 10 3 mm, preferably about 30 mm to about 0.5 × 10 3 mm, more preferably about 40 mm to about 0.2 × 10 3 mm. 3 is a mm, polystyrene, plastic capsules polypropylene or the like. Such capsules are cheap, easily available, and easy to process, and may be capsules for capsule toys.
 容器に設けられる「通水孔」は、容器の自立性や汚染水の流水圧に対する強度を損なわず、かつ流路において汚染水の容器内部への侵入を妨げず、汚染水と吸着材とを十分に接触させることができる程度の大きさと数であれば特に制限はない。好ましくは直径約0.5~約3cmの略円形の穴を約3~約50個、より好ましくは直径約1~2cmの略円形の穴を約5~30個、容器に通水孔として設ける。 The “water hole” provided in the container does not impair the independence of the container or the strength against the flowing water pressure of the contaminated water, and does not prevent the contaminated water from entering the container in the flow path. There is no particular limitation as long as the size and number are sufficient to allow sufficient contact. Preferably, about 3 to about 50 substantially circular holes having a diameter of about 0.5 to about 3 cm, more preferably about 5 to 30 substantially circular holes having a diameter of about 1 to 2 cm, are provided as water passage holes in the container. .
 本発明に係るカートリッジは、「通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段」を備える。かかる手段は、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げなければ、特に制限はない。例えば、本発明では、通水孔の大きさと吸着材の大きさを考慮して、通水孔の大きさを、通水が可能でかつ吸着材を貫通させない大きさとすることもまた、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段を備えるとみなされる。好ましくは、通水が可能でかつ吸着材を貫通させない大きさのメッシュを有するメッシュ袋が用いられる。吸着材は、数十~数万個集められ、メッシュ袋に充填された状態で球状容器に封入される。そのようなメッシュ袋の材質やメッシュの大きさは、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない限り特に制限はないが、好ましくは、ポリエチレン、ポリプロピレン、ポリエステル等の樹脂製であり、20~200メッシュである。 The cartridge according to the present invention includes “means for preventing the adsorbent from flowing out from the water passage hole but not preventing the adsorbent from contacting with water”. Such means prevents the adsorbent from flowing out of the water passage hole, but is not particularly limited as long as it does not hinder contact between the adsorbent and water. For example, in the present invention, in consideration of the size of the water passage hole and the size of the adsorbent, the size of the water passage hole may be a size that allows water to pass and does not penetrate the adsorbent. It is considered that the adsorbent is prevented from flowing out of the hole but provided with means that do not hinder the contact between the adsorbent and water. Preferably, a mesh bag having a mesh size that allows water to pass and does not allow the adsorbent to penetrate therethrough is used. Tens to tens of thousands of adsorbents are collected and sealed in a spherical container in a state of being filled in a mesh bag. The material of the mesh bag and the size of the mesh prevent the adsorbent from flowing out from the water passage hole, but are not particularly limited as long as the contact between the adsorbent and water is not hindered, preferably polyethylene, polypropylene, It is made of resin such as polyester and has a mesh of 20 to 200 mesh.
 本発明に係るカートリッジは、数十~数百個集められ、「カートリッジを保持する手段」により流路に設置される。カートリッジを保持する手段は、流路を流れる汚染水に対してカートリッジを流路の所定の範囲内に留め、かつ流水を阻害し、その圧力損失を大幅に上昇させないものであれば特に制限はない。例えば、流路に、その幅や深さに適した金網かごを流路に設置し、数十~数百個のカートリッジをそこに入れて保持してもよく、また数十~数百個のカートリッジを網(ネット)に入れて流路に投入し、流水にながされないように保持してもよい。 Tens to hundreds of cartridges according to the present invention are collected and installed in the flow path by “means for holding the cartridge”. The means for holding the cartridge is not particularly limited as long as it keeps the cartridge within a predetermined range of the flow path against the contaminated water flowing through the flow path, and inhibits the flow of water and does not significantly increase the pressure loss. . For example, a wire mesh basket suitable for the width and depth of the flow path may be installed in the flow path, and several tens to several hundreds of cartridges may be placed and held there. The cartridge may be put into a net and put into a flow path, and held so as not to be poured into running water.
 本発明は、汚染水中の汚染物質を吸着除去する方法にも関する。本発明の方法は、(i)流路に、汚染水と接触することにより汚染物質を吸着する吸着材を含む、複数個のカートリッジを設置する工程、(ii)汚染水とカートリッジ中の吸着材とを接触させる工程、(iii)流路よりカートリッジを回収する工程、および(iv)カートリッジより吸着材を回収する工程を含む。 The present invention also relates to a method for adsorbing and removing contaminants in contaminated water. The method of the present invention includes (i) a step of installing a plurality of cartridges in the flow path including an adsorbent that adsorbs contaminants by contacting the contaminated water, and (ii) contaminated water and adsorbents in the cartridge. (Iii) a step of recovering the cartridge from the flow path, and (iv) a step of recovering the adsorbent from the cartridge.
 好ましくは、本発明の方法は、汚染物質が放射性セシウムである、汚染水中の放射性セシウムを吸着除去する方法にも関する。 Preferably, the method of the present invention also relates to a method for adsorbing and removing radioactive cesium in contaminated water, wherein the pollutant is radioactive cesium.
 またこれらの方法では、カートリッジのそれぞれが、複数の通水孔を有する容器と、容器に封入される複数個の吸着材と、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段を備え、そして前記吸着材が、汚染物質を捕捉しうる物質を担持した、親水性繊維からなる多孔質構造体であることを特徴とする。本発明の方法における「汚染物質」、「汚染物質を捕捉しうる物質」、「親水性繊維からなる多孔質構造体」、「吸着材」、「カートリッジ」等の具体的態様や例示は、上記と同義である。 In these methods, each of the cartridges has a container having a plurality of water passage holes, a plurality of adsorbents enclosed in the container, and the adsorbent is prevented from flowing out of the water passage holes. And the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants. Specific embodiments and examples of “pollutant”, “substance capable of trapping pollutant”, “porous structure comprising hydrophilic fibers”, “adsorbent”, “cartridge” and the like in the method of the present invention are as described above. It is synonymous with.
 なお本発明は前記具体的態様や例示に示すものに限られず、目的、用途に応じて、本発明の範囲内で種々変更できる。 The present invention is not limited to the specific embodiments and examples described above, and various modifications can be made within the scope of the present invention depending on the purpose and application.

Claims (9)

  1.  汚染水の流路に設置し、汚染水中の汚染物質を吸着除去するためのシステムであって、汚染水と接触することにより汚染物質を吸着する吸着材を含む、複数個のカートリッジと、前記流路にカートリッジを保持する手段とを備え、前記カートリッジのそれぞれが、複数の通水孔を有する容器と、該容器に封入される複数個の吸着材と、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段を備え、そして前記吸着材が、汚染物質を捕捉しうる物質を担持した、親水性繊維からなる多孔質構造体であることを特徴とする、システム。 A system for adsorbing and removing pollutants in polluted water installed in a path of polluted water, comprising a plurality of cartridges containing adsorbents that adsorb pollutants by contact with the polluted water, and the flow Means for holding the cartridge in the path, each of the cartridges having a container having a plurality of water passage holes, a plurality of adsorbents enclosed in the container, and preventing the adsorbent from flowing out of the water passage holes. Comprises a means that does not hinder the contact between the adsorbent and water, and the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants, system.
  2.  通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段が、通水が可能でかつ吸着材を貫通させない大きさのメッシュを有するメッシュ袋であり、ここで吸着材がメッシュ袋に充填された状態でカプセルに封入されていることを特徴とする、請求項1に記載のシステム。 The means for preventing the adsorbent from flowing out from the water passage hole but not hindering the contact between the adsorbent and water is a mesh bag having a mesh size that allows water to pass and does not penetrate the adsorbent. The system according to claim 1, wherein the material is enclosed in a capsule in a mesh bag.
  3.  通水孔を有する容器の最大長の平均が、10mm~1×10mmである、請求項1または2に記載のシステム。 The system according to claim 1 or 2, wherein the average of the maximum length of the container having water passage holes is 10 mm to 1 x 10 3 mm.
  4.  親水性繊維が、セルロース繊維である、請求項1~3のいずれか一項に記載のシステム。 The system according to any one of claims 1 to 3, wherein the hydrophilic fiber is a cellulose fiber.
  5.  汚染物質が放射性セシウムであり、汚染物質を捕捉しうる物質がヘキサシアノ金属酸の遷移金属塩であり、ヘキサシアノ金属酸の遷移金属塩が親水性繊維に固定されていることを特徴とする、請求項1~4のいずれか一項に記載のシステム。 The pollutant is radioactive cesium, the substance capable of trapping the pollutant is a transition metal salt of hexacyano metal acid, and the transition metal salt of hexacyano metal acid is fixed to a hydrophilic fiber. The system according to any one of 1 to 4.
  6.  ヘキサシアノ金属酸の遷移金属塩が、ヘキサシアノ鉄(II)酸鉄(III)水和物である、請求項5に記載のシステム。 The system according to claim 5, wherein the transition metal salt of hexacyano metal acid is iron (III) hexacyanoferrate (II) hydrate.
  7.  放射性セシウムで汚染された水の流路に設置し、汚染水中の放射性セシウムを吸着除去するためのシステムであって、
    - 汚染水と接触することにより放射性セシウムを吸着する吸着材を含む、複数個のカートリッジと、前記流路にカートリッジを保持する手段とを備え、
    - 前記カートリッジのそれぞれが、複数の通水孔を有する略球状のカプセルと、カプセルに封入される複数個の吸着材と、通水が可能でかつ吸着材を貫通させない大きさのメッシュを有するメッシュ袋とを備え、ここで吸着材はメッシュ袋に充填された状態でカプセルに封入されており、そして
    - 前記吸着材が、ヘキサシアノ金属酸の遷移金属塩を担持した、親水性繊維からなる多孔質粒子であって、ヘキサシアノ金属酸の遷移金属塩が繊維に固定されていることを特徴とする、システム。
    A system for adsorbing and removing radioactive cesium in contaminated water by installing it in a flow path of water contaminated with radioactive cesium,
    -Comprising a plurality of cartridges comprising an adsorbent that adsorbs radioactive cesium by contact with contaminated water, and means for holding the cartridges in said flow path;
    Each of the cartridges has a substantially spherical capsule having a plurality of water passage holes, a plurality of adsorbents enclosed in the capsule, and a mesh having a size capable of passing water and not penetrating the adsorbents; A bag, wherein the adsorbent is enclosed in a capsule in a mesh bag, and the adsorbent is a porous fiber made of hydrophilic fibers carrying a transition metal salt of hexacyanometal acid A system, characterized in that a transition metal salt of hexacyanometal acid is fixed to a fiber.
  8.  汚染水中の汚染物質を吸着除去する方法であって、
    (i)流路に、汚染水と接触することにより汚染物質を吸着する吸着材を含む、複数個のカートリッジを設置する工程、
    (ii)汚染水とカートリッジ中の吸着材とを接触させる工程、
    (iii)流路よりカートリッジを回収する工程、および
    (iv)カートリッジより吸着材を回収する工程を含み、
     ここで、前記流路にカートリッジを保持する手段を備え、かつ前記カートリッジのそれぞれが、複数の通水孔を有する容器と、容器に封入される複数個の吸着材と、通水孔より吸着材の流出を防ぐが、吸着材と水との接触を妨げない手段を備え、そして前記吸着材が、汚染物質を捕捉しうる物質を担持した、親水性繊維からなる多孔質構造体であることを特徴とする、方法。
    A method for adsorbing and removing contaminants in contaminated water,
    (I) a step of installing a plurality of cartridges including an adsorbent that adsorbs contaminants in contact with contaminated water in the flow path;
    (Ii) contacting contaminated water with the adsorbent in the cartridge;
    (Iii) collecting the cartridge from the flow path; and (iv) collecting the adsorbent from the cartridge.
    Here, a means for holding the cartridge in the flow path is provided, and each of the cartridges has a container having a plurality of water holes, a plurality of adsorbents enclosed in the container, and an adsorbent from the water holes. Means for preventing the outflow of the adsorbent, but does not hinder the contact between the adsorbent and water, and the adsorbent is a porous structure made of hydrophilic fibers carrying a substance capable of trapping contaminants. Features, a method.
  9.  汚染物質が放射性セシウムであり、汚染物質を捕捉しうる物質がヘキサシアノ金属酸の遷移金属塩であり、ヘキサシアノ金属酸の遷移金属塩が親水性繊維に固定されていることを特徴とする、請求項8に記載の方法。 The pollutant is radioactive cesium, the substance capable of trapping the pollutant is a transition metal salt of hexacyano metal acid, and the transition metal salt of hexacyano metal acid is fixed to a hydrophilic fiber. 9. The method according to 8.
PCT/JP2018/017687 2017-05-08 2018-05-08 Flow pressure loss reducing adsorption system using hierarchical structure WO2018207745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017092647A JP7089263B2 (en) 2017-05-08 2017-05-08 Flow pressure loss reduction type adsorption system using a hierarchical structure
JP2017-092647 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018207745A1 true WO2018207745A1 (en) 2018-11-15

Family

ID=64104729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017687 WO2018207745A1 (en) 2017-05-08 2018-05-08 Flow pressure loss reducing adsorption system using hierarchical structure

Country Status (3)

Country Link
JP (1) JP7089263B2 (en)
TW (1) TW201906789A (en)
WO (1) WO2018207745A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199516U1 (en) * 2020-02-05 2020-09-04 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) FILTER-CONTAINER CARTRIDGE FOR PURIFICATION OF LIQUID RADIOACTIVE WASTE FROM CESIUM RADIONUCLIDES

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102745A (en) * 1988-10-13 1990-04-16 Nippon Atom Ind Group Co Ltd Ion exchange body for treatment of waste liquid
JPH04256490A (en) * 1990-12-26 1992-09-11 Hiroyoshi Machii Water purifying device
JPH07328613A (en) * 1994-06-08 1995-12-19 Daimatsu Kensetsu Kk Box device for purifying river
JP3170857U (en) * 2011-07-13 2011-10-06 吉江 勝廣 Radiation material adsorption tool
JP2011200754A (en) * 2010-03-24 2011-10-13 Kurita Water Ind Ltd Structure for purifying groundwater by permeable reactive wall
WO2013027652A1 (en) * 2011-08-19 2013-02-28 一般財団法人生産技術研究奨励会 Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent
JP2013160517A (en) * 2012-02-01 2013-08-19 Nisshoku Corp Method and structure for adsorbing cesium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055855A (en) * 2012-09-12 2014-03-27 Kureha Ltd Decontamination bag, decontamination instrument, and decontamination method using decontamination bag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102745A (en) * 1988-10-13 1990-04-16 Nippon Atom Ind Group Co Ltd Ion exchange body for treatment of waste liquid
JPH04256490A (en) * 1990-12-26 1992-09-11 Hiroyoshi Machii Water purifying device
JPH07328613A (en) * 1994-06-08 1995-12-19 Daimatsu Kensetsu Kk Box device for purifying river
JP2011200754A (en) * 2010-03-24 2011-10-13 Kurita Water Ind Ltd Structure for purifying groundwater by permeable reactive wall
JP3170857U (en) * 2011-07-13 2011-10-06 吉江 勝廣 Radiation material adsorption tool
WO2013027652A1 (en) * 2011-08-19 2013-02-28 一般財団法人生産技術研究奨励会 Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent
JP2013160517A (en) * 2012-02-01 2013-08-19 Nisshoku Corp Method and structure for adsorbing cesium

Also Published As

Publication number Publication date
TW201906789A (en) 2019-02-16
JP7089263B2 (en) 2022-06-22
JP2018187569A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6469762B2 (en) Radioactive cesium adsorbent, method for producing the same, and method for removing radioactive cesium in the environment using the adsorbent
Khulbe et al. Removal of heavy metals and pollutants by membrane adsorption techniques
Olatunji et al. Influence of adsorption parameters on cesium uptake from aqueous solutions-a brief review
JP3045148B2 (en) Alginate gel water treatment agent and method for producing the same
US7662291B2 (en) Canister for treatment of contaminated fluids
US7718071B2 (en) Treatment of contaminated fluids
JP5999688B2 (en) Radioactive strontium adsorbing material, method for producing the same, and method for removing radioactive substances using the same
KR102017989B1 (en) Nanofiber Composite for Adsorption of Radioactive cesium ions and decontamination Method of Radioactive cesium ions using the Same
EP2004301A2 (en) Layered filter for treatment of contaminated fluids
Ding et al. Engineering a high-Selectivity PVDF hollow-fiber membrane for cesium removal
KR102366654B1 (en) Hybrid system and method for removing radioactive material
WO2018207745A1 (en) Flow pressure loss reducing adsorption system using hierarchical structure
JP2015118010A (en) Decontamination method for soil contaminated with radioactive materials, and decontamination device
JP2016206164A (en) Filter vent device
JP2013061220A (en) Radioactive cesium adsorptive cloth
JP2015087369A (en) Strontium removal method by fiber formed by introducing iminodiacetic group to graft chain
JP2015114315A (en) Method for removing strontium using crystallization
JP6210404B2 (en) Method for removing radioactive cesium and radioactive strontium
RU199516U1 (en) FILTER-CONTAINER CARTRIDGE FOR PURIFICATION OF LIQUID RADIOACTIVE WASTE FROM CESIUM RADIONUCLIDES
JP2014109461A (en) Cesium recovery method
JP2013148552A (en) Method for removing cesium ion and device for removing cesium ion
JP5808945B2 (en) Equipment for removing radioactive pollutants
JP2017096967A (en) Method for manufacturing radioactive cesium adsorptive fabric
JP3785118B2 (en) Refractory organic substance adsorbent, purification method of persistent organic substance-containing water, and persistent organic substance-containing water purification system
JP2017164698A (en) Adsorbent with enhanced ratio of polymer brush and method for removing useful or harmful material using the adsorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798407

Country of ref document: EP

Kind code of ref document: A1