WO2018207699A1 - Polymer having graphite- or graphene-like lamellar structure - Google Patents

Polymer having graphite- or graphene-like lamellar structure Download PDF

Info

Publication number
WO2018207699A1
WO2018207699A1 PCT/JP2018/017519 JP2018017519W WO2018207699A1 WO 2018207699 A1 WO2018207699 A1 WO 2018207699A1 JP 2018017519 W JP2018017519 W JP 2018017519W WO 2018207699 A1 WO2018207699 A1 WO 2018207699A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
substituent
hydroxy
halogen
Prior art date
Application number
PCT/JP2018/017519
Other languages
French (fr)
Japanese (ja)
Inventor
佑哉 緒明
宏亮 佐藤
翔一郎 矢野
惇平 鈴木
Original Assignee
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾 filed Critical 学校法人 慶應義塾
Priority to JP2019517594A priority Critical patent/JP7166635B2/en
Publication of WO2018207699A1 publication Critical patent/WO2018207699A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer having a graphite or graphene-like layered structure, a sheet containing the polymer, nanoflakes containing the polymer, a method for producing the polymer, and a coating or electrode material for the polymer. Regarding use.
  • nanosheets have properties different from bulk, such as formation of two-dimensional anisotropic shapes, high specific surface area, and quantum size effects. It has been reported to show.
  • Non-Patent Document 1 describes oxidative synthesis and coating of a copolymer from the gas phase by the o-CVD method and the VPP method.
  • Non-Patent Document 2 describes the synthesis of a layered organic compound (two-dimensional polymer nanostructure) using a bis-acylurea derivative or the like.
  • Non-Patent Document 1 In the synthesis of the copolymer of Non-Patent Document 1, high temperature or vacuum conditions are required as synthesis conditions. Moreover, since it is necessary to apply an oxidizing agent to a target substrate in advance, there is a problem that the types of substrates or base materials to be coated are limited.
  • Non-Patent Document 2 For the synthesis of the polymer of Non-Patent Document 2, the designed molecule and the interaction between molecules (non-covalent bond such as complex formation including hydrogen bond) are utilized. A polymer using a bond and its laminated structure cannot be synthesized.
  • An object of the present invention is to provide a polymer having a graphite or graphene-like covalent bond that can be synthesized even under a mild environment of 100 ° C. or lower and normal pressure.
  • the inventors have surprisingly found that benzoquinone or a monocyclic aromatic hydrocarbon having an electron-withdrawing substituent, a heterocyclic aromatic compound optionally having a substituent, or a plurality of alkenyl groups. Is reacted with a monocyclic aromatic hydrocarbon having an electron-withdrawing substituent and a heterocyclic aromatic compound or a plurality of alkenyl groups. It has been found that a polymer having a layered structure similar to graphite or graphene can be synthesized by forming a condensed ring with a monocyclic aromatic hydrocarbon having a substituent, and the present invention has been completed.
  • a benzoquinone which may have a substituent which causes a cycloaddition reaction with each other, or a monocyclic aromatic hydrocarbon which has an electron-withdrawing substituent, and a heterocyclic which may have a substituent
  • a polymer comprising an aromatic compound or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents, or a reduced product thereof.
  • a benzoquinone which may have a substituent, or a group having at least one of carbons at the 2nd and 3rd positions and the 5th and 6th positions having an electron withdrawing substituent Consists of a monocyclic aromatic hydrocarbon in which carbon is not substituted and a heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having an alkenyl group as a substituent at the para position.
  • the heterocyclic aromatic compound which may have the substituent or the monocyclic aromatic hydrocarbon which has a plurality of alkenyl groups as substituents may have the heterocyclic aromatic which may have the substituent
  • the polymer according to [1] or [2] which has a moiety in which a monocyclic aromatic hydrocarbon having an electron-withdrawing substituent and one molecule of the heterocyclic aromatic compound form a condensed ring. Or its reduced form.
  • the heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is an azole, pyridine or pyrimidine which may have a substituent Or the polymer or the reduced product thereof according to any one of [1] to [3], which is pyridazine.
  • the heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is pyrrole, pyridine, pyridazine or thiazole.
  • Cy1 is a 5-membered nitrogen-containing heterocycle
  • Cy2 is a monocyclic aromatic hydrocarbon
  • Cy3 is a 6-membered nitrogen-containing heterocycle
  • A is an electron-withdrawing substituent selected from vinyl group, acyl group, cyano group, halogen group, nitro group, hydroxy group; alkenyl substituted by halogen group, cyano group, nitro group, or hydroxy group: Yes, The bond between A and Cy is a single bond or a double bond.
  • the polymer according to any one of [1] to [6], which includes a moiety represented by the following formula (I) or formula (II).
  • R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 1 and R 2 are both an adjacent pyrrole group and an adjacent benzoquinolyl group.
  • R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 3 and R 4 together are an adjacent pyrrole group and an adjacent benzoquinolyl group.
  • R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring
  • R 5 , R 6 and R 7 are each independently hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group.
  • R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 1 and R 2 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups.
  • R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 3 and R 4 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups.
  • R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
  • R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
  • R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
  • R 23 , R 25 , and R 26 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
  • R 24 , R 27 and R 30 are each independently a hydrogen, halogen, hydroxy or alkyl group;
  • R 28 and R 29 are each independently a hydrogen, halogen, hydroxy or alkyl group, m and n are each an integer of 1 or more, x is a real number from 0 to 100.
  • the heterocyclic aromatic compound optionally having a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is a monocyclic aroma having a plurality of alkenyl groups as a substituent.
  • the heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is divinylbenzene [1], [2] or [12 Or a reduced product thereof.
  • Nanoflakes having a length of 1 to 1000 nm and a thickness of 1 to 100 nm comprising the polymer according to any one of claims 1 to 14.
  • a two-dimensional or planar polymer in which a monomer is incorporated by a covalent bond can be obtained under milder conditions than before.
  • the coating containing the polymer of the present invention can be applied to any substrate or substrate.
  • a laminate in which a plurality of planar polymers of the present invention are laminated can be peeled in various liquid phases, and an improvement in specific surface area, an improvement in reactivity, and the like due to peeling are expected.
  • FIG. 1 is a schematic diagram illustrating a reaction system for synthesizing a BQ / Py polymer by a gas phase method.
  • Estimated structural formula consisting of oxidant, reductant and water molecule in BQ / Py polymer.
  • B BQ / Py polymer molecular model in the interlayer direction
  • C BQ / Py polymer in the surface model.
  • (A) to (F) SEM images of BQ / Py polymers are particles having a smooth surface, and (D) to (F) are particles having a rough surface.
  • A Cyclic voltammogram of benzoquinone (BQ) sample and anthraquinone (AQ) sample
  • B Cyclic voltammogram of polymer BQ / Py
  • C Oxidation and reduction states of benzoquinone (BQ)
  • D Structural formula of BQ-like site (I) and AQ-like site (II). Cyclic voltammogram before and after peeling of polymer BQ / Py.
  • Theoretical capacity 317.2 mA h g -1 .
  • IR spectra of BQ / Th polymer and BQ / Py polymer The graph of the mass decreasing rate of BQ / Py polymer, BQ / Th polymer, and BQ / Pyr polymer measured with the thermogravimetry apparatus. Partial structural formula of BQ / Th polymer.
  • the polymer of the present invention causes a cycloaddition reaction with each other.
  • the benzoquinone which may have a substituent hereinafter sometimes simply referred to as benzoquinone
  • the monocyclic which has an electron withdrawing substituent Aromatic hydrocarbon and optionally substituted heterocyclic aromatic compound (hereinafter sometimes referred to simply as “heteroaromatic compound”) or monocyclic aroma having a plurality of alkenyl groups as substituents Group hydrocarbon (B) as a structural unit. That is, the polymer of the present invention has a benzoquinone which may have a substituent as a monomer component or a monocyclic aromatic hydrocarbon having an electron withdrawing substituent and a substituent as a monomer component.
  • the monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents is preferably a monocyclic aromatic hydrocarbon having an alkenyl group as a substituent at the para position.
  • the cycloaddition reaction is one of the pericyclic reactions (a reaction in which a plurality of bonds including a ⁇ -electron system are simultaneously formed and cleaved without forming a reaction intermediate through a cyclic transition state) It refers to a reaction in which an unsaturated molecule loses two ⁇ bonds and is linked by two new ⁇ bonds to form a cyclic compound.
  • Cycloaddition reactions include Diels-Alder reaction in which a six-membered ring is formed from a conjugated diene and an alkene (double bond), and two new ⁇ bonds, each of which loses a ⁇ bond. Reactions that produce linked cyclic compounds are included.
  • the cycloaddition reaction is preferably a Diels-Alder reaction between a benzene ring of a benzoquinone which may have a substituent and a heterocycle of a heterocyclic aromatic compound which may have a substituent.
  • the present invention includes a reduced form of such a polymer. That is, a monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent and a monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound or a plurality of alkenyl groups as a substituent And the like, which are reduced with hydrogen after the polymerization reaction.
  • the present invention includes a polymer obtained by reducing the polymer after the polymerization reaction using benzoquinone (A) and reducing the oxygen atom of benzoquinone (A) with a hydrogen atom to hydroquinone.
  • the monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent has carbon at the 2nd and 3rd positions, and 5 At least one of the carbons at the 6th and 6th positions is not substituted.
  • the 2-position, 3-position, 5-position and 6-position of the benzoquinone or monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent are all hydrogen.
  • the carbon adjacent to the carbon to which the substituent is bonded becomes deficient in electrons.
  • the heterocyclic aromatic compound (B) has a hetero atom (O, S, N) on the aromatic ring.
  • benzoquinone or an electron withdrawing substitution is performed by an electrophilic substitution reaction between a monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent and a heterocyclic aromatic compound (B).
  • a carbon-carbon bond is newly formed between the monocyclic aromatic hydrocarbon (A) having a group and the heterocyclic aromatic compound (B).
  • a cycloaddition reaction Diels-Alder reaction or a cycloaddition reaction between a triple bond and a double bond
  • each alkylene group reacts with a different benzoquinone (A) to achieve high polymerization of the polymer. ing.
  • a benzoquinone which may have a substituent or a monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent and a heterocyclic aromatic compound which may have a substituent or Monocyclic aromatic hydrocarbons (B) having a plurality of alkenyl groups as substituents are polymerized using the monomer component as a monomer component, thereby obtaining monocyclic aromatic hydrocarbons having a benzoquinone or electron-withdrawing substituent ( A carbon-carbon bond between A) and a heterocyclic aromatic compound or a monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents and condensed ring formation occur, and the polymer is in a plane.
  • a layered structure similar to graphite or graphene can be synthesized.
  • a monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron withdrawing substituent and a heterocyclic aromatic compound which may have a substituent or a plurality of alkenyl groups are substituted. It was found that these two reactions occur by selecting the monocyclic aromatic hydrocarbon (B) as a group.
  • the average molecular weight of the polymer is not particularly limited, but is preferably 1000 to 10000000, and preferably 10000 to 1000000.
  • Benzoquinone (A) may be unsubstituted or substituted.
  • substituents include hydrogen, halogen, nitro, amide, thiol, hydroxy and the like.
  • Examples of the aromatic ring of the monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent include a benzene ring, cyclohexadiene, cyclopentadiene and the like.
  • the electron-withdrawing substituent of the monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent is not particularly limited, but a vinyl group, an acyl group, a cyano group, a halogen group, a nitro group, A hydroxy group; a halogen group, a cyano group, a nitro group, or an alkenyl group substituted by a hydroxy group; and the like, and a vinyl group is preferred.
  • the carbon chain of the alkenyl group is preferably 2-5.
  • the number of electron-withdrawing substituents may be one, two, or three or more, but two is preferable for forming a layered polymer.
  • the substituent can take an ortho position, a meta position, or a para position, but is preferably a para position.
  • benzoquinone (A) examples include 1,2-benzoquinone and 1,4-benzoquinone.
  • the monocyclic aromatic hydrocarbon (A) having a preferable electron-withdrawing substituent include divinylbenzene.
  • a polymer After polymerizing 1,4-benzoquinone and a heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents, a polymer is obtained.
  • a reduced product of a polymer which is reduced to hydrogen by adding hydrogen to the oxygen of the carbonyl group of 1,4-benzoquinone is also encompassed in the present invention.
  • the heterocyclic aromatic compound (B) having a plurality of alkenyl groups as substituents is a compound having a hetero atom on the aromatic ring.
  • the heterocyclic aromatic compound is preferably a nitrogen-containing heterocyclic aromatic compound.
  • the nitrogen-containing heterocyclic aromatic compound needs to have a carbon-carbon double bond in the nitrogen heterocyclic ring.
  • the heterocyclic ring can be a 3- to 10-membered ring, is preferably a monocyclic compound, more preferably a 5-membered ring or a 6-membered ring, and a 5-membered or 6-membered nitrogen-containing heterocyclic ring
  • the aromatic compound is more preferably an aromatic compound
  • the 5-membered nitrogen-containing heterocyclic aromatic compound is preferably an azole.
  • An azole refers to a heterocyclic 5-membered compound containing one or more nitrogens, and includes pyrrole (also referred to as 1H-azole), 2H-pyrrole (also referred to as 2H-azole), imidazole (1,3-diazole), pyrazole (1, 2-diazole), thiazole, isothiazole (1,3-thiazole), oxazole, isoxazole (1,3-oxazole), furazane (1,2,5-oxadiazole), 1,2,5-thiadiazole, Examples include 1,2,3-thiadiazole and 1,2,3-triazole, and pyrrole and thiazole are preferable.
  • the 6-membered nitrogen-containing heterocyclic aromatic compound is preferably pyridine, pyrimidine, pyridazine or the like.
  • Examples of the aromatic ring of the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents include a benzene ring, cyclohexadiene, cyclopentadiene and the like.
  • alkenyl group of the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents include a vinyl group, an allyl group, a methylvinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, and a cyclopropenyl group. , Cyclobutenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • the alkenyl group may further have a substituent, such as an aryl group such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group; a pyridyl group, a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, Heteroaromatic groups such as pyrazinyl group, oxazolyl group, thiazolyl group, pyrazolyl group, benzothiazolyl group, benzoimidazolyl group; methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert- Alkoxy groups such as butoxy group, pentyloxy group, isopentyloxy group, neopentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group
  • the plurality of alkenyl groups of the monocyclic aromatic hydrocarbon (B) can be the same or different, but are preferably the same from the viewpoint of production.
  • the number of alkenyl groups in the monocyclic aromatic hydrocarbon (B) is preferably 2 to 4, and more preferably 2.
  • the position of the two alkenyl groups may be ortho, meta or para, but is preferably para.
  • An example of a preferred monocyclic aromatic hydrocarbon (B) is divinylbenzene. Note that the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents has a different structure from the monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent.
  • the polymer of the present invention contains 1,4-benzoquinone which may have a substituent or 1,4-hydroquinone which may have a substituent, and an azole which may have a substituent.
  • 1,4-benzoquinone which may have a substituent or 1,4-hydroquinone which may have a substituent
  • an azole which may have a substituent.
  • pyridine as a structural unit, a portion where 1,4-benzoquinone or 1,4-hydroquinone and azole or pyridine are carbon-carbon-carbon bonded, and 1,4-benzoquinone or 1,4-hydroquinone
  • the azole or pyridine has a moiety that forms a condensed ring.
  • the polymer of the present invention may have 1,4-benzoquinone which may have a substituent or 1,4-hydroquinone which may have a substituent, and a substituent.
  • a part containing 1,4-benzoquinone or 1,4-hydroquinone and pyrrole or thiazole in a carbon-carbon-carbon bond, and 1,4-benzoquinone or 1,4-hydroquinone And pyrrole or thiazole have a portion forming a condensed ring.
  • the polymer of the present invention has 1,4-benzoquinone which may have a substituent or 1,4-hydroquinone which may have a substituent, and an alkenyl group substituted at the para position. It contains a monocyclic aromatic hydrocarbon as a group as a structural unit, and 1,4-benzoquinone or 1,4-hydroquinone and a monocyclic aromatic hydrocarbon have a portion that forms a condensed ring.
  • 1,4-benzoquinone as benzoquinone (A), azole (especially pyrrole, thiazole, etc.) as a heterocyclic aromatic compound or monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents
  • divinylbenzene when divinylbenzene is used, the benzoquinone that acts as a reactive organic oxidant and the monomer liquid azole or divinylbenzene are simply sealed in a single sealed container at a low temperature (100 ° C. or lower) and normal pressure. Therefore, the polymer having a layered structure similar to graphite or graphene can be synthesized even in a mild environment, which is advantageous as compared with the conventional method.
  • the polymer of the present invention (including the reduced form thereof) can extend into a planar shape, that is, a two-dimensional sheet shape, and further, a plurality of sheet-like polymers are laminated to form a tertiary layer.
  • An original laminate can be formed.
  • the polymer of the present invention (including the reduced form thereof) is dispersed in water or an organic solvent such as benzyl alcohol, ethanol, toluene, chloroform, hexane, etc., and subjected to ultrasonic treatment to obtain a dispersion liquid. It can also be made into flakes. Nanoflakes refer to a flaky material in which at least one of the length and thickness dimensions is in the range of 1 to 1000 nm, and the length dimension is larger than the thickness dimension. By adjusting the temperature and length of sonication, the dimensions of the nanoflakes can be changed. The dimensions of the nanoflakes are not particularly limited, but are preferably 1 to 1000 nm in length and 1 to 100 nm in thickness.
  • the length of the nanoflakes refers to the maximum length viewed from the vertical direction of the surface when the nanoflakes are placed on a horizontal surface.
  • the thickness of the nanoflakes refers to the thickness of the nanoflakes in the direction perpendicular to the surface.
  • the average length is preferably 1 to 1000 nm and the average thickness is preferably 1 to 100 nm.
  • the average length and thickness of 10 may be measured.
  • the polymer of the present invention includes a moiety represented by any of the following formulas (i) to (iv).
  • Cy1 is a 5-membered nitrogen-containing heterocycle
  • Cy2 is a monocyclic aromatic hydrocarbon
  • Cy3 is a 6-membered nitrogen-containing heterocycle
  • A is an electron-withdrawing substituent selected from vinyl group, acyl group, cyano group, halogen group, nitro group, hydroxy group; alkenyl substituted by halogen group, cyano group, nitro group, or hydroxy group: Yes,
  • the bond between A and Cy is a single bond or a double bond.
  • Cy1 is preferably pyrrole (also called 1H-azole), 2H-pyrrole (also called 2H-azole), imidazole (1,3-diazole), pyrazole (1,2-diazole), thiazole, isothiazole (1,3 -Thiazole), oxazole, isoxazole (1,3-oxazole), furazane (1,2,5-oxadiazole), 1,2,5-thiadiazole, 1,2,3-thiadiazole, or 1,2, 3-triazole.
  • Cy2 is preferably a benzene ring, cyclohexadiene, or cyclopentadiene.
  • Cy3 is preferably pyridine, pyrimidine, or pyridazine.
  • the polymer of the present invention includes a moiety represented by the following formula (I) or formula (II).
  • the polymer includes a moiety represented by the following formula (III) or (IV).
  • R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 1 and R 2 are both an adjacent pyrrole group and an adjacent benzoquinolyl group.
  • R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 3 and R 4 together are an adjacent pyrrole group and an adjacent benzoquinolyl group.
  • R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring
  • R 5 , R 6 and R 7 are each independently hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group.
  • R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 1 and R 2 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups.
  • R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 3 and R 4 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups.
  • R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring
  • R 6 is hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are alkyl groups, it is preferably independently a C1-C6 alkyl group.
  • Examples of the C1-C6 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, Examples thereof include 1,1-dimethylbutyl group and 1,3-dimethylbutyl group.
  • the benzoquinolyl group that forms a condensed ring with R 1 and R 2 and the benzoquinolyl group that forms a condensed ring with R 3 and R 4 are represented by formula (V).
  • the benzoquinolyl group that forms a condensed ring with R 1 and R 2 and the benzoquinolyl group that forms a condensed ring with R 3 and R 4 are represented by formula (VI).
  • R 8 and R 9 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, or an alkyl group.
  • R 8 and R 9 are each independently hydrogen, halogen, hydroxy or an alkyl group.
  • R 10 is hydrogen, halogen, hydroxy or an alkyl group.
  • the benzoquinolyl group that is R 5 , R 6 and R 7 is represented by formula (VII).
  • the benzoquinolyl group represented by formula (VII) is a benzoquinolyl group represented by formula (VIII).
  • R 11 and R 12 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, or an alkyl group.
  • R 11 and R 12 are each independently hydrogen, halogen, hydroxy or an alkyl group.
  • R 13 is hydrogen, halogen, hydroxy or an alkyl group.
  • Formula (V) and formula (VII) may be the same or different, but are preferably the same in terms of production efficiency.
  • the group of formula (VI) and the group of formula (VIII) can be the same or different, but are preferably the same in terms of production efficiency.
  • the polymer of the present invention includes a polymer containing a moiety represented by the following formula (IX) or a reduced form thereof.
  • R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
  • R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
  • R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
  • k is an integer greater than or equal to 1, x is a real number from 0 to 100.
  • K is preferably 1 to 1000, more preferably 5 to 40.
  • R 15 , R 16 , R 17 , R 18, R 19 , R 20 , R 21 , R 22 are alkyl groups, it is preferably independently a C1-C6 alkyl group.
  • the C1-C6 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, Examples thereof include 1,1-dimethylbutyl group and 1,3-dimethylbutyl group.
  • R 15 , R 16 , R 17 , R 18, R 19 , R 20 are
  • the polymer of the present invention includes a polymer containing a moiety represented by the following formula (X) or a reduced form thereof.
  • R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group
  • R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group
  • R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group
  • R 23 , R 25 , and R 26 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group
  • R 24 , R 27 and R 30 are each independently a hydrogen, halogen, hydroxy or alkyl group
  • R 28 and R 29 are each independently a hydrogen, halogen, hydroxy or alkyl group
  • m and n are each an integer of 1 or more
  • x is a real number from 0 to 100.
  • m and n are each preferably 1 to 1000, and more preferably 5 to 40.
  • R 15 , R 16 , R 17 , R 18, R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 When is an alkyl group, it is preferably each independently a C1-C6 alkyl group.
  • Examples of the C1-C6 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, Examples thereof include 1,1-dimethylbutyl group and 1,3-dimethylbutyl group.
  • R 15 , R 16 , R 17 , R 18, R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 are both hydrogen.
  • the polymer of the present invention includes a polymer comprising a moiety represented by formula (XI).
  • the polymer of the present invention includes a polymer containing a moiety represented by the following formulas (XII) to (XVII).
  • the polymer of the present invention includes a polymer comprising a moiety represented by formulas (XII), (XIII), (XIV), and (XV) and hydrated water.
  • the present invention includes a functional nanosheet containing the polymer of the present invention. That is, the sheet of the present invention is a sheet having a thickness of 0.2 nm to 2.0 nm containing the above-described polymer of the present invention extending in a planar shape.
  • the present invention further includes a laminate in which a plurality of the above sheets are laminated.
  • the interlayer distance of the sheet is 0.2 nm to 2.0 nm.
  • the thickness of the laminated body is not limited, and may be, for example, 5 nm to 10000 nm.
  • This laminated structure can be peeled to a desired thickness in various liquid phases. The peeling is expected to improve the specific surface area and the reactivity of the laminate.
  • the polymer of the present invention causes a cycloaddition reaction with each other, and may have a substituent as a monomer component, or a monocycle having an electron-withdrawing substituent.
  • a monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound which may have a substituent as a monomer component or a plurality of alkenyl groups as a substituent.
  • These two monomer components are benzoquinone or monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent and a heterocyclic aromatic compound or a monocyclic aromatic having a plurality of alkenyl groups as substituents.
  • a monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent and a monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound or a plurality of alkenyl groups as a substituent.
  • Each may optionally be dissolved in a solvent, methyl isobutyl ketone, methyl ethyl ketone, ethanol, N-methyl-2-pyrrolidone, 2, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphamide These may be used, and these may be used alone or in combination of two or more.
  • a monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron withdrawing substituent and a monocyclic aromatic hydrocarbon having a heterocyclic aromatic compound or a plurality of alkenyl groups as a substituent (B) is polymerized without dissolving in the solvent.
  • the temperature of the polymerization reaction is preferably low temperature, that is, 100 ° C. or lower in order to prevent the product from volatilizing.
  • the lower limit of the temperature is preferably 0 ° C. or higher, and preferably 20 ° C. or higher. In order to accelerate the reaction, it may be 60 ° C. or higher.
  • the polymerization reaction temperature is the heterocyclic aromatic The temperature is preferably higher than the melting point of the compound or the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents.
  • the polymerization time is not particularly limited, but is preferably 0.5 minutes to 120 hours, and more preferably 15 minutes to 72 hours.
  • the polymer extends in a planar shape to form a sheet, and a plurality of sheet structures extending in the planar shape are further laminated to form a laminated structure.
  • the obtained polymer has a layered structure similar to graphite or graphene having excellent conductivity.
  • the thickness of the above-mentioned sheet and laminate can be adjusted by adjusting the polymerization reaction time, and can also be adjusted by peeling the laminate made of the polymer to a desired thickness in various solvents.
  • solvents known solvents can be used; low polarity solvents such as hexane and toluene; medium polarity solvents such as chloroform, dichloromethane, diethyl ether, tetrahydrofuran (THF), ethyl acetate, acetone, and acetonitrile.
  • Water a highly polar solvent such as methanol, ethanol or the like, or an aqueous solution containing additional molecules such as various ionic surfactants and organic ions, but is not limited thereto.
  • the polymerization pressure is not particularly limited and is usually normal pressure (also referred to as standard pressure, 1.01325 ⁇ 10 5 Pa), but may be performed at a pressure lower than normal pressure in order to promote the reaction.
  • the polymerization reaction is usually performed in an air atmosphere, but is not limited thereto.
  • Examples of the synthesis method include (i) synthesis by a gas phase method, (ii) synthesis by a liquid phase method, or (iii) synthesis by direct mixing.
  • the cyclic aromatic hydrocarbon (B) can be put in another container, and these two containers can be sealed in one sealed container.
  • the monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent has volatility, the reaction can proceed spontaneously.
  • the reaction product can be washed with a solvent and optionally dried.
  • a benzoquinone or an electron withdrawing substituent is added to a container and a monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent and a solvent are added to the container.
  • the monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound or a plurality of alkenyl groups as substituents is further added, and the temperature is constant.
  • the solution after the reaction is washed with a solvent and optionally dried.
  • a coating made of a polymer can be directly applied to the substrate or the base material.
  • the state of the substrate or base material is not limited, and it may be liquid or solid.
  • the type of the substrate or base material is not limited, and examples thereof include, but are not limited to, metal, glass, ceramics, plastic, wood, fiber, and composite materials thereof.
  • the coating of the polymer of the present invention can be applied to a substrate or base material of any material and state placed in the reaction vessel, the polymer of the present invention is applicable as a coating material. Is wide. Such coatings can be used, for example, for electrode deposition and electronic circuit interconnection.
  • the polymer of the present invention and the flakes produced from the polymer undergo charge / discharge reactions associated with redox of the quinone moiety of benzoquinone or the electron-withdrawing substituent of monocyclic aromatic hydrocarbons, resulting in a high capacity.
  • the present invention can be applied to charge storage using electrode materials such as supercapacitors.
  • the polymer of the present invention and the flakes produced from the polymer can be used as an electrode active material.
  • the polymer of the present invention since the polymer of the present invention has a small hydrogen generation overvoltage, it can serve as an excellent hydrogen generation electrode catalyst.
  • the polymer of the present invention can be applied to the field of renewable energy because it can save hydrogen with high efficiency and save energy.
  • the powder sample was pressure-bonded to a sample holder and measured by a continuous scanning method using CuK ⁇ rays, with a scanning speed of 5 degree min -1 and a scanning range of 3 to 80 degree.
  • Mass spectrometry MALDI-TOFMS
  • MALDI-7090 SHIMADZU
  • a sample and a matrix (2,5-dihydroxybenzonic acid) were dispersed in NMP, cast on a plate, dried, and measured with an m / z value of 1-5000 and an integration count of 50 times. 6).
  • Molecular mechanics method (MM2) The simulation of the most stable state of the molecular model of the synthesized sample was performed using ChemBioProfessional. A molecular model was created from the software using ChemBio3D, stacked vertically, and the most stable state of energy was simulated using the Molecular Mechanics (MM2) program. 7). Observation by Scanning Electron Microscope (SEM) SEM (VE-9800, KEYENCE) was used to observe the shape of the BQ / Py polymer sample before peeling.
  • SEM Scanning Electron Microscope
  • the silicon substrate was immersed in methanol / hydrochloric acid (1: 1 (volume ratio)) and concentrated sulfuric acid for 30 minutes. The substrate was taken out, washed with water, and dried by blowing argon gas. The cleaned substrate was heated to 100 ° C. on a hot plate, and the dispersion was dropped and observed. 10. Cyclic voltammetry Cyclic voltammetry (VerasSTAT / PARSTAT, Princeton Applied Research) was used to examine the electrochemical activity of the obtained samples. In the aqueous measurement, a silver-silver chloride electrode was used as the reference electrode, a Pt substrate as the counter electrode, and 1 mol cm -3 H 2 SO4 as the electrolyte.
  • Example 1 Synthesis of BQ / Py polymer (synthesis method) 1,4-benzoquinone (BQ) powder (purity 98.0%, Tokyo Chemical Industry Co., Ltd.) and pyrrole (Py) liquid (purity 99,0%, Tokyo Chemical Industry Co., Ltd.) are separated as shown in FIG. They were placed in containers 1 and 2 and placed in a sealed container 3 in an air atmosphere and allowed to stand for 48 hours. The crude product was recovered from container 1 that contained BQ. Suction filtration was used to remove unreacted monomer molecules from the crude product and washed with acetone.
  • BQ 1,4-benzoquinone
  • Py pyrrole
  • NMP N-methyl-2-pyrrolidone
  • Teflon registered trademark
  • the polymer was produced with a sample in which the ratio of BQ and Py was changed from 10 nmol: 50 nmol to 50 nmol: 10 nmol, but the composition of the product did not change (data not shown). In order to make the supply amount of Py sufficient, the ratio of BQ to Py was set to 30 nmol: 30 nmol.
  • the BQ / Py polymer has a polymerized structure containing BQ and Py.
  • part of the structure was a reduced form and the presence of water molecules.
  • FIG. 5A shows the XRD results of the BQ / Py polymer.
  • FIG. 5B shows a molecular model in ChemBio3D after MM2 calculation in the interlayer direction of the BQ / Py polymer
  • FIG. 5C shows a molecular model in ChemBio3D after MM2 calculation in the surface direction of the BQ / Py polymer.
  • the d value at the peak (1) in FIG. 5A was calculated to be 0.37 nm (FIGS. 5A and 5B), and the d value at the peak (2) in FIG. 5B was calculated to be 0.21 nm (FIGS. 5A and 5C).
  • the values of these periods and the shape of the diffraction pattern were found to be similar to those when graphene formed a turbulent layer structure. From this, it is considered that the polymer has a two-dimensional polymer forming a turbulent layer structure.
  • SEM images of the BQ / Py polymer are shown in FIGS.
  • the macro particles having a size of about 100 to 500 ⁇ m were observed.
  • the surface of one particle was magnified and observed, a very smooth surface without irregularities and a rough surface with small particles gathered were observed.
  • the size of one particle on the rough surface was about 100 nm, and it was confirmed that they gathered to form secondary particles.
  • Example 2 Elemental analysis of BQ / Py polymer and construction of model The BQ / Py polymer obtained in Example 1 was subjected to elemental analysis. As a result, as shown in Table 2, the calculated value of the CHN element ratio agreed with the measured value within 0.5%.
  • the BQ / Py polymer when the obtained BQ / Py polymer was represented by a model by ChemBio3D, as shown in FIG. 7, the BQ / Py polymer had a structure spreading in a two-dimensional plane, and the vertical direction with respect to the plane. It has been found that it has a portion where the connection extends.
  • Example 3 Reduction of BQ / Py polymer (experimental method) 5 mg of the BQ / Py polymer obtained by the gas phase method and 15 cm 3 of a hydrazine solution having a predetermined concentration were placed in a glass container and stirred for a predetermined time in an air atmosphere. The stirring time was set to 10 minutes for hydrazine / pure water (1: 1 (volume ratio)) and 24 hours for hydrazine stock solution. Next, the sample was washed with pure water using suction filtration, and then hydrazine was removed by vacuum drying at 60 ° C. for 12 hours.
  • Example 4 Nanosheet Formation from BQ / Py Polymer (Experimental Method)
  • the BQ / Py polymer 15 mg obtained in Example 1 and 20 mL of pure water were placed in a glass container, subjected to ultrasonic waves for 2 hours, and then stirred at room temperature for 16 hours to peel off the sample.
  • the obtained dispersion was freeze-dried to remove pure water, and the peeled sample was collected. It was observed whether the nanosheet of the sample was formed.
  • TEM transmission electron microscope
  • AFM atomic force microscope
  • the BQ / Py polymer Since the redox peak was confirmed as shown in FIG. 11B, it was confirmed that the BQ / Py polymer had a redox ability derived from the quinone moiety (FIGS. 11B and 11C). In addition, by comparing the shape of the BQ / Py polymer with the BQ standard and AQ standard, it was confirmed that the polymer had a BQ-like part near 0.5V and an AQ-like part near 0V. (FIGS. 11A and 11B). From this, it is considered that the BQ / Py polymer has a BQ site (i) corresponding to benzoquinone and an AQ site (ii) corresponding to anthraquinone as shown in FIG. 11D.
  • the structure has a structure in which 1,4-benzoquinone and pyrrole have a carbon-carbon bond and a structure in which 1,4-benzoquinone and pyrrole form a condensed ring was supported.
  • the incorporated quinone moiety is electrochemically active and is considered to be applicable to efficient charge storage.
  • FIG. 12 shows a cyclic voltammogram before and after peeling of the BQ / Py polymer. Capacity before peeling Whereas a 50.1mA h g -1, volume after peeling was increased to 152.5 mA h g -1. In the BQ / Py copolymer laminated by peeling, an increase in the reaction interface due to nanosheet formation was confirmed.
  • Example 5 Coating of BQ / Py copolymer on substrate (experimental method)
  • the substrate to be coated was fixed to the lid of the closed container of the reaction system in which BQ and Py of Example 1 were reacted by the vapor phase method so as to be positioned above the glass bottle containing BQ. After completion of the reaction, the surface of the substrate was washed with acetone.
  • a glass substrate, ITO glass substrate, KBr substrate, Ti substrate, Cu mesh, or Ti mesh was selected as the substrate.
  • Example 6 Characteristic evaluation of polymer as a hydrogen generating electrode catalyst Experimental method After casting a dispersion medium of BQ / Py copolymer on a glassy carbon electrode (GC electrode) and drying in a 60 ° C constant temperature bath. Evaluation was performed by Linear Sweep Voltammetry (LSV). At this time, 1 mg of BQ / Py copolymer was dispersed in 200 ⁇ L of 2-propanol as a dispersion medium.
  • the GC electrode used was a CPE carbon paste electrode manufactured by BAS with a diameter of 3 mm. LSV measurement is performed at a scanning range of -0.19 to -0.8 V (vs. Ag / AgCl), that is, 0 to -0.61 V (vs. SHE), at a scanning speed of 5 mV / s, and the electrolyte is 0.5M H 2 SO 4 .
  • the reference electrode was Ag / AgCl, and the counter electrode was Pt.
  • Example 7 Synthesis of BQ / Th polymer (synthesis method)
  • a copolymer consisting of 1,4-benzoquinone and thiazole (hereinafter referred to as BQ / Th polymer) was used under the same conditions except that pyrrole (Py) was replaced with thiazole (Th) having the same substance amount.
  • the ratio of BQ to Th was 30 nmol: 30 nmol.
  • the obtained BQ / Th polymer was subjected to “1. Structural analysis by Fourier transform infrared spectroscopy (FTIR)” to “3. Elemental analysis” in the experimental procedure.
  • FTIR Fourier transform infrared spectroscopy
  • the mass reduction start temperature of the BQ / Th polymer is higher than 400 ° C. of the BQ / Py polymer. Although it is low, it exceeds 300 ° C., and the graph of BQ / Th polymer is similar to that of BQ / Py polymer.
  • FIG. 16 shows a partial structural formula of the BQ / Th polymer.
  • Example 8 Synthesis of BQ / Pyr polymer (synthesis method)
  • a copolymer consisting of 1,4-benzoquinone and pyridine (hereinafter referred to as BQ / Pyr polymer) was used under the same conditions except that pyrrole (Py) was replaced with pyridine (Pyr) having the same substance amount.
  • the ratio of BQ to Pyr was 30 nmol: 30 nmol.
  • Example 9 Synthesis of BQ / DVB polymer (Synthesis method) 1,4-benzoquinone (BQ) powder (purity 98.0%, Tokyo Chemical Industry Co., Ltd.) 4.32 g and 1,4-divinylbenzene (DVB) liquid (purity> 50%, Tokyo Chemical Industry Co., Ltd.) 1.14 cm 3
  • BQ 1,4-benzoquinone
  • DVB 1,4-divinylbenzene
  • NMP N-methyl-2-pyrrolidone
  • Teflon registered trademark
  • FIG. 17 shows the IR measurement result of the purified BQ / DVB polymer.
  • the peak near 3400 cm -1 in (1) is OH stretching vibration
  • the peak near 1400 cm -1 in (3) is carbon aromatic ring stretching. Attributed to vibration.
  • thermogravimetry As shown in FIG. 18, according to the TG graph, the mass reduction start temperature of the BQ / DVB polymer is 400 ° C., which is higher than that of the BQ standard. It was found that mass reduction began at temperature. From this, it was confirmed that the BQ / DVB polymer was polymerized.
  • FIG. 19 shows the results of XRD measurement
  • FIG. 20 shows the results of mass spectrometry.
  • the molecular weight of the BQ / DVB polymer is about 700 to 4000.
  • a molecular model was prepared from the molecular structure and molecular weight. The model is shown in FIG. From this model, it is considered that the BQ / DVB polymer molecules have a linear and branched structure.
  • Example 10 Synthesis of BQ / DVB nanoflakes (synthesis method) 30 mg of the BQ / DVB polymer obtained in Example 9 was placed in 20 cm 3 of benzyl alcohol, sonicated for 90 minutes, and then stirred at 60 ° C. for 48 hours to obtain a dispersion. . This dispersion was used as a BQ / DVB nanoflakes suspension.
  • FIG. 22 shows TEM images of BQ / DVB nanoflakes ( FIGS. 22A and 22B). When the average length of the nanoflakes observed by TEM was measured (FIG. 22 (c)), it was about 50 nm.
  • Fig. 23 shows an AFM image of BQ / DVB nanoflakes.
  • the average thickness of BQ / DVB nanoflakes was about 15 nm.
  • FIG. 24 shows the results of cyclic voltammetry of BQ / DVB polymer and BQ / DVB nanoflakes.
  • the oxidation peak of the BQ / DVB polymer was around 0.8 V, and the oxidation peak of the BQ / DVB nanoflakes was around 0.6 V, indicating a decrease in overvoltage.
  • the capacitance of BQ / DVB nanoflakes was improved to 209.0 mA h g -1 compared to the capacitance of BQ / DVB polymer of 70.0 mA h g -1 .
  • FIG. 25 shows the results of charge / discharge measurement of BQ / DVB nanoflakes. This showed a capacitance of 162 mA h g -1 at 0.2 A g -1 . In addition, a plateau derived from the quinone site was observed in the vicinity of 0.2 to 0.6 V from the charge / discharge curve, which was consistent with the cyclic voltammetry results of FIG.
  • Example 11 Synthesis of TCNQ / DVB Polymer (Synthesis Method)
  • BQ 1,4-benzoquinone
  • TCNQ 7, 7, 8, 8-tetracyanoquinodimethane
  • TCNQ / DVB polymer A copolymer composed of dimethane and 1,4-divinylbenzene (hereinafter referred to as TCNQ / DVB polymer) was obtained.
  • the ratio of TCNQ to DVB was 5 mmol: 1 mmol.
  • TCNQ / DVB polymer was subjected to the experimental procedures “1. Structural analysis by Fourier transform infrared spectroscopy (FTIR)” to “3. Elemental analysis”.
  • FTIR Fourier transform infrared spectroscopy
  • thermogravimetric measuring apparatus Next, as shown in FIG. 27, according to the TG graph, weight loss initiation temperature of the TCNQ / DVB polymers, TCNQ single weight loss initiation temperature 300 ° C. Is over. Combining the results of TG and IR, it was confirmed that the TCNQ / DVB polymer was polymerized.

Abstract

A polymer or a reduced form thereof is disclosed, the polymer comprising, as constituent units, optionally substituted benzoquinone and either an optionally substituted heterocyclic aromatic compound or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents, the benzoquinone and the aromatic compound or hydrocarbon undergoing an addition cyclization reaction with each other.

Description

グラファイト又はグラフェン様の層状構造を有する重合体Polymer having a layered structure like graphite or graphene
 本発明は、グラファイト又はグラフェン様の層状構造を有する重合体、及び該重合体を含むシート、該重合体を含むナノフレーク、該重合体の製造方法、並びに該重合体のコーティング又は電極材料としての使用に関する。 The present invention relates to a polymer having a graphite or graphene-like layered structure, a sheet containing the polymer, nanoflakes containing the polymer, a method for producing the polymer, and a coating or electrode material for the polymer. Regarding use.
 層状無機化合物のはく離による無機ナノシートの作製と応用が盛んに研究されており、ナノシート化により、二次元異方的な形状の形成、高比表面積化、量子サイズ効果など、バルクとは異なる性質を示すことが報告されている。 The production and application of inorganic nanosheets by peeling off layered inorganic compounds has been actively studied, and nanosheets have properties different from bulk, such as formation of two-dimensional anisotropic shapes, high specific surface area, and quantum size effects. It has been reported to show.
 一方、層状有機化合物のナノシートの作製には、複雑な分子設計や合成が必要となるため、報告例がまだ少ない。例えば非特許文献1には、o-CVD法及びVPP法による、気相からの共重合体の酸化的合成とコーティングが記載されている。非特許文献2には、bis-アシル尿素誘導体等を用いた層状有機化合物(二次元高分子のナノ構造)の合成が記載されている。 On the other hand, the production of nanosheets of layered organic compounds requires complicated molecular design and synthesis, so there are few reports. For example, Non-Patent Document 1 describes oxidative synthesis and coating of a copolymer from the gas phase by the o-CVD method and the VPP method. Non-Patent Document 2 describes the synthesis of a layered organic compound (two-dimensional polymer nanostructure) using a bis-acylurea derivative or the like.
 非特許文献1の共重合体の合成では、合成条件として高温又は真空条件が必要である。また、酸化剤を事前に対象基板に塗布しておく必要があるため、コーティング対象の基板又は基材の種類が限定されるという問題がある。 In the synthesis of the copolymer of Non-Patent Document 1, high temperature or vacuum conditions are required as synthesis conditions. Moreover, since it is necessary to apply an oxidizing agent to a target substrate in advance, there is a problem that the types of substrates or base materials to be coated are limited.
 非特許文献2の高分子の合成には、設計された分子及び分子間の相互作用(水素結合を初めとする、錯形成などの非共有結合)を利用しており、グラファイト又はグラフェン様の共有結合を利用した高分子及びその積層構造は合成できていない。 For the synthesis of the polymer of Non-Patent Document 2, the designed molecule and the interaction between molecules (non-covalent bond such as complex formation including hydrogen bond) are utilized. A polymer using a bond and its laminated structure cannot be synthesized.
 本発明の課題は、100℃以下及び常圧という穏和な環境下でも合成できる、グラファイト又はグラフェン様の共有結合を有する重合体を提供することにある。 An object of the present invention is to provide a polymer having a graphite or graphene-like covalent bond that can be synthesized even under a mild environment of 100 ° C. or lower and normal pressure.
 本発明者らは、驚くべきことに、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と、置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素とを反応させると、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と、複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素とが縮環を形成することにより、グラファイト又はグラフェン類似の層状構造を有する重合体を合成できることを見出し、本発明を完成するに至った。 The inventors have surprisingly found that benzoquinone or a monocyclic aromatic hydrocarbon having an electron-withdrawing substituent, a heterocyclic aromatic compound optionally having a substituent, or a plurality of alkenyl groups. Is reacted with a monocyclic aromatic hydrocarbon having an electron-withdrawing substituent and a heterocyclic aromatic compound or a plurality of alkenyl groups. It has been found that a polymer having a layered structure similar to graphite or graphene can be synthesized by forming a condensed ring with a monocyclic aromatic hydrocarbon having a substituent, and the present invention has been completed.
 本発明によれば、以下の態様が提供される。
[1]互いに付加環化反応を起こす、置換基を有してもよいベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と、置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素とを構成単位として含む重合体又はその還元体。
[2]置換基を有してもよいベンゾキノン、又は電子求引性の置換基を有し2位及び3位の炭素、並びに5位及び6位の炭素のうちの少なくともいずれか一方の組の炭素が置換されていない単環式芳香族炭化水素と、置換基を有してもよい複素環式芳香族化合物又はパラ位にアルケニル基を置換基として有する単環式芳香族炭化水素とを構成単位として含む重合体又はその還元体。
[3]前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、前記置換基を有してもよい複素環式芳香族化合物であり、前記ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と前記複素環式芳香族化合物とが炭素-炭素結合している部分と、2分子の前記ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と1分子の前記複素環式芳香族化合物とが縮環を形成する部分とを有する[1]又は[2]に記載の重合体又はその還元体。
[4]前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、置換基を有してもよいアゾール、ピリジン、ピリミジン、又はピリダジンである[1]~[3]のいずれか一項に記載の重合体又はその還元体。
[5]前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、ピロール、ピリジン、ピリダジン又はチアゾールである[1]~[4]のいずれか一項に記載の重合体又はその還元体。
[6]下記式(i)~式(iv)で表わされるいずれかの部分を含む[1]~[5]のいずれか一項に記載の重合体。
According to the present invention, the following aspects are provided.
[1] A benzoquinone which may have a substituent which causes a cycloaddition reaction with each other, or a monocyclic aromatic hydrocarbon which has an electron-withdrawing substituent, and a heterocyclic which may have a substituent A polymer comprising an aromatic compound or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents, or a reduced product thereof.
[2] A benzoquinone which may have a substituent, or a group having at least one of carbons at the 2nd and 3rd positions and the 5th and 6th positions having an electron withdrawing substituent Consists of a monocyclic aromatic hydrocarbon in which carbon is not substituted and a heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having an alkenyl group as a substituent at the para position. A polymer or a reduced form thereof as a unit.
[3] The heterocyclic aromatic compound which may have the substituent or the monocyclic aromatic hydrocarbon which has a plurality of alkenyl groups as substituents may have the heterocyclic aromatic which may have the substituent A compound in which the benzoquinone or the monocyclic aromatic hydrocarbon having an electron-withdrawing substituent and the heterocyclic aromatic compound are carbon-carbon bonded, and two molecules of the benzoquinone or The polymer according to [1] or [2], which has a moiety in which a monocyclic aromatic hydrocarbon having an electron-withdrawing substituent and one molecule of the heterocyclic aromatic compound form a condensed ring. Or its reduced form.
[4] The heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is an azole, pyridine or pyrimidine which may have a substituent Or the polymer or the reduced product thereof according to any one of [1] to [3], which is pyridazine.
[5] The heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is pyrrole, pyridine, pyridazine or thiazole. [4] The polymer or the reduced product thereof according to any one of [4].
[6] The polymer according to any one of [1] to [5], including any part represented by the following formulas (i) to (iv):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Cy1は5員環の含窒素複素環であり、
 Cy2は単環式芳香族炭化水素であり、
 Cy3は6員環の含窒素複素環であり、
 Aはビニル基、アシル基、シアノ基、ハロゲン基、ニトロ基、ヒドロキシ基;ハロゲン基、シアノ基、ニトロ基、若しくはヒドロキシ基により置換されたアルケニル:から選択される電子求引性の置換基であり、
AとCyの間の結合は単結合又は二重結合である。)
[7]下記式(I)又は式(II)で表わされる部分を含む[1]~[6]のいずれか一項に記載の重合体。
(In the formula, Cy1 is a 5-membered nitrogen-containing heterocycle,
Cy2 is a monocyclic aromatic hydrocarbon,
Cy3 is a 6-membered nitrogen-containing heterocycle,
A is an electron-withdrawing substituent selected from vinyl group, acyl group, cyano group, halogen group, nitro group, hydroxy group; alkenyl substituted by halogen group, cyano group, nitro group, or hydroxy group: Yes,
The bond between A and Cy is a single bond or a double bond. )
[7] The polymer according to any one of [1] to [6], which includes a moiety represented by the following formula (I) or formula (II).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[8]下記式(III)又は(IV)で表わされる部分を含む[7]に記載の重合体。 [8] The polymer according to [7], including a moiety represented by the following formula (III) or (IV).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、
 R1及びR2はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはピロリル基であるか、又は
 R1及びR2は共に、隣り合うピロール基及び隣り合うベンゾキノリル基と縮環形成し、
 R3及びR4はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはピロリル基であるか、又は
 R3及びR4は共に、隣り合うピロール基及び隣り合うベンゾキノリル基と縮環形成し、
 ただし、R1及びR2、若しくはR3及びR4が縮環形成する場合は、いずれか一方の組が縮環形成し、
 R5、R6及びR7は、それぞれ独立して、水素、ハロゲン、ヒドロキシ、アルキル基、又はベンゾキノリル基である。)
(Where
R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 1 and R 2 are both an adjacent pyrrole group and an adjacent benzoquinolyl group. Forming a condensed ring with the group,
R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 3 and R 4 together are an adjacent pyrrole group and an adjacent benzoquinolyl group. Forming a condensed ring with the group,
However, when R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring,
R 5 , R 6 and R 7 are each independently hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group. )
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、
 R1及びR2はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはチアゾリル基であるか、又は
 R1及びR2は共に、隣り合うチアゾリル基及び隣り合うベンゾキノリル基と縮環形成し、
 R3及びR4はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはチアゾリル基であるか、又は
 R3及びR4は共に、隣り合うチアゾリル基及び隣り合うベンゾキノリル基と縮環形成し、
 ただし、R1及びR2、若しくはR3及びR4が縮環形成する場合は、いずれか一方の組が縮環形成し、
 R6は水素、ハロゲン、ヒドロキシ、アルキル基、又はベンゾキノリル基である。)
[9]下記式(IX)で表わされる部分を含む[1]~[8]のいずれかに記載の重合体又はその還元体。
(Where
R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 1 and R 2 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups. Forming a condensed ring with the group,
R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 3 and R 4 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups. Forming a condensed ring with the group,
However, when R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring,
R 6 is hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group. )
[9] The polymer or a reduced product thereof according to any one of [1] to [8], including a moiety represented by the following formula (IX).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、
 R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 kは1以上の整数であり、
 xは0~100の実数である。)
[10]下記式(X)で表わされる部分を含む[1]~[8]のいずれかに記載の重合体又はその還元体。
(Where
R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
k is an integer greater than or equal to 1,
x is a real number from 0 to 100. )
[10] The polymer or a reduced product thereof according to any one of [1] to [8], including a moiety represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、
 R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R23、R25、及びR26はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R24、R27、及びR30はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R28、R29はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 m、nはそれぞれ1以上の整数であり、
 xは0~100の実数である。)
[11]式(XI)で表わされる部分を含む重合体。
(Where
R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 23 , R 25 , and R 26 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 24 , R 27 and R 30 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 28 and R 29 are each independently a hydrogen, halogen, hydroxy or alkyl group,
m and n are each an integer of 1 or more,
x is a real number from 0 to 100. )
[11] A polymer containing a moiety represented by the formula (XI).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、
 R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 nは1以上の整数であり、
 xは0~20の実数である。)
[12]前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、複数のアルケニル基を置換基として有する単環式芳香族炭化水素であり、前記ベンゾキノンと前記複数のアルケニル基を置換基として有する単環式芳香族炭化水素とが縮環を形成する部分とを有する[1]又は[2]に記載の重合体又はその還元体。
[13]前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素がジビニルベンゼンである[1]、[2]又は[12]に記載の重合体又はその還元体。
[14]式(XII)~(XVII)のうちの少なくとも一つで表わされる部分を含む[1]、[2]、[12]、又は[13]に記載の重合体。
(Where
R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
n is an integer of 1 or more,
x is a real number from 0 to 20. )
[12] The heterocyclic aromatic compound optionally having a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is a monocyclic aroma having a plurality of alkenyl groups as a substituent. The polymer according to [1] or [2], which is a group hydrocarbon and has a moiety in which the benzoquinone and the monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent form a condensed ring, or Its reductant.
[13] The heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is divinylbenzene [1], [2] or [12 Or a reduced product thereof.
[14] The polymer according to [1], [2], [12], or [13], which contains a moiety represented by at least one of formulas (XII) to (XVII).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[15]平面状に延びる[1]~[14]のいずれかに記載の重合体を有する厚さ0.2nm~2.0nmのシート。
[16]0.2nm~2.0nmの層間間隔で複数の[15]に記載のシートが積層された積層体。
[17]請求項1~14のいずれかに記載の重合体を含む長さ1~1000nm及び厚み1~100nmのナノフレーク。
[18]互いに付加環化反応を起こす、置換基を有してもよいベンゾキノンと、置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素とを重合させることを含む重合体の製造方法。
[19][1]~[14]のいずれかに記載の重合体のコーティングとしての使用方法。
[20][1]~[14]のいずれかに記載の重合体を含む電極材料。
[21]電極活物質または電極触媒である[20]に記載の電極材料。
[15] A sheet having a thickness of 0.2 nm to 2.0 nm having the polymer according to any one of [1] to [14] extending in a planar shape.
[16] A laminate in which a plurality of sheets according to [15] are laminated with an interlayer spacing of 0.2 nm to 2.0 nm.
[17] Nanoflakes having a length of 1 to 1000 nm and a thickness of 1 to 100 nm comprising the polymer according to any one of claims 1 to 14.
[18] Monocyclic aroma having a benzoquinone which may have a substituent and a heterocyclic aromatic compound which may have a substituent or a plurality of alkenyl groups as a substituent, causing a cycloaddition reaction with each other A method for producing a polymer, comprising polymerizing an aromatic hydrocarbon.
[19] A method of using the polymer according to any one of [1] to [14] as a coating.
[20] An electrode material comprising the polymer according to any one of [1] to [14].
[21] The electrode material according to [20], which is an electrode active material or an electrode catalyst.
 本発明によれば、従来よりも穏和な条件で、モノマーが共有結合により組み込まれた二次元状又は平面状の重合体を得ることができる。また、本発明の重合体を含有するコーティングは、任意の基板又は基材に適用することができる。さらに、平面状の本発明の重合体が複数個積層した積層体は、種々の液相中ではく離でき、はく離による比表面積の向上、反応性の向上等が見込まれる。 According to the present invention, a two-dimensional or planar polymer in which a monomer is incorporated by a covalent bond can be obtained under milder conditions than before. In addition, the coating containing the polymer of the present invention can be applied to any substrate or substrate. Further, a laminate in which a plurality of planar polymers of the present invention are laminated can be peeled in various liquid phases, and an improvement in specific surface area, an improvement in reactivity, and the like due to peeling are expected.
気相法によるBQ/Py重合体の合成の反応系を説明する略図。1 is a schematic diagram illustrating a reaction system for synthesizing a BQ / Py polymer by a gas phase method. BQ/Py重合体、BQ 標品、HQ 標品、及びPPy標品のIR スペクトル。IR spectra of BQ / Py polymer, BQ standard, HQ standard, and PPy standard. 熱重量測定装置により測定したBQ/Py重合体、BQ 標品、BQ/HQ電荷移動錯体、及びPPy標品の質量減少率のグラフ。The graph of the mass reduction | decrease rate of the BQ / Py polymer, BQ standard sample, BQ / HQ charge-transfer complex, and PPy sample measured with the thermogravimetry apparatus. BQ/Py重合体における酸化体と還元体と水分子からなる推定構造式。Estimated structural formula consisting of oxidant, reductant and water molecule in BQ / Py polymer. (A)BQ/Py 重合体のXRD データ。(B)BQ/Py重合体の層間方向の分子模型、(C)BQ/Py重合体の面方向の分子模型。(A) XRD data of BQ / Py polymer. (B) BQ / Py polymer molecular model in the interlayer direction, (C) BQ / Py polymer in the surface model. (A)~(F)BQ/Py重合体のSEM像。(A)~(C)は表面が滑らかな粒子、(D)~(F)は表面が粗い粒子。(A) to (F) SEM images of BQ / Py polymers. (A) to (C) are particles having a smooth surface, and (D) to (F) are particles having a rough surface. 重合体BQ/Pyのモデル図。点線で囲んだ箇所は重合体が延びる平面に対して上方向又は下方向へ結合が延びる部分を示す。Model diagram of polymer BQ / Py. A portion surrounded by a dotted line indicates a portion where the bond extends upward or downward with respect to the plane in which the polymer extends. BQ/Py 重合体及び2つの還元体のIRスペクトル。IR spectra of BQ / Py soot polymer and two reductants. (A)~(D)BQ/Py 重合体のはく離後のBQ/PyナノシートのTEM像。(A) to (D) TEM images of BQ / Py nanosheets after peeling of BQ / Py soot polymer. (A)図9のBQ/PyナノシートのAFM像。(B) BQ/Py15 mgを純水20 mL中に分散させることではく離し、その分散液を単結晶シリコン基板上にキャストし、シートの厚さを測定したグラフ。(A) AFM image of the BQ / Py nanosheet of FIG. (B) A graph in which BQ / Py15 mg is released by dispersing in 20 mL of pure water, the dispersion is cast on a single crystal silicon substrate, and the thickness of the sheet is measured. (A)ベンゾキノン(BQ)標品とアントラキノン(AQ)標品のサイクリックボルタモグラム、(B)重合体BQ/Pyのサイクリックボルタモグラム、(C)ベンゾキノン(BQ)の酸化及び還元状態を示す説明図、(D)BQ類似箇部位(I)とAQ類似部位(II)の構造式。(A) Cyclic voltammogram of benzoquinone (BQ) sample and anthraquinone (AQ) sample, (B) Cyclic voltammogram of polymer BQ / Py, (C) Oxidation and reduction states of benzoquinone (BQ) (D) Structural formula of BQ-like site (I) and AQ-like site (II). 重合体BQ/Pyのはく離前後におけるサイクリックボルタモグラム。理論容量: 317.2 mA h g-1  Cyclic voltammogram before and after peeling of polymer BQ / Py. Theoretical capacity: 317.2 mA h g -1 .   Linear Sweep Voltammetry(LSV)のグラフ。縦軸は反応電流値、横軸は電位である。Linear Sweep Voltammetry (LSV) graph. The vertical axis represents the reaction current value, and the horizontal axis represents the potential. BQ/Th重合体及びBQ/Py重合体のIR スペクトル。IR spectra of BQ / Th polymer and BQ / Py polymer. 熱重量測定装置により測定したBQ/Py重合体、BQ/Th重合体、及びBQ/Pyr重合体の質量減少率のグラフ。The graph of the mass decreasing rate of BQ / Py polymer, BQ / Th polymer, and BQ / Pyr polymer measured with the thermogravimetry apparatus. BQ/Th重合体の一部の構造式。Partial structural formula of BQ / Th polymer. BQ/DVB重合体、BQ及びDVBのIR スペクトル。IR spectra of BQ / DVB polymer, BQ and DVB. 熱重量測定装置により測定したBQ及びBQ/DVB重合体の質量減少率のグラフ。The graph of the mass decreasing rate of BQ and BQ / DVB polymer measured with the thermogravimetry apparatus. BQ/DVB重合体のXRD測定の結果を示すグラフ。The graph which shows the result of the XRD measurement of a BQ / DVB polymer. BQ/DVB重合体の質量分析の結果を示すグラフ。The graph which shows the result of mass spectrometry of a BQ / DVB polymer. BQ/DVB重合体の分子モデルの模式図。Schematic diagram of molecular model of BQ / DVB polymer. BQ/DVBナノフレークのTEM像((a),(b))、及び長さのヒストグラム(c))。TEM image of BQ / DVB nanoflakes ((a), (b)) and length histogram (c)). BQ/DVBナノフレークのAFM像(A)及び厚さのグラフ(B)。AFM image (A) and thickness graph (B) of BQ / DVB nanoflakes. BQ/DVB重合体及びBQ/DVBナノフレークのサイクリックボルタモグラム。Cyclic voltammogram of BQ / DVB polymer and BQ / DVB nanoflakes. BQ/DVBナノフレークのサイクルレート特性(a)及び充放電曲線(b)。Cycle rate characteristics (a) and charge / discharge curve (b) of BQ / DVB nanoflakes. TCNQ/DVB重合体のIR スペクトル。IR spectrum of TCNQ / DVB polymer. 熱重量測定装置により測定したTCNQ/DVB重合体の質量減少率のグラフ。The graph of the mass decreasing rate of the TCNQ / DVB polymer measured with the thermogravimetry apparatus. TCNQ/DVB重合体の一部の推定構造式。Some presumed structural formulas of TCNQ / DVB polymer.
1.重合体
 本発明の重合体は、互いに付加環化反応を起こす、置換基を有してもよいベンゾキノン(以下、単にベンゾキノンと称する場合もある)又は電子求引性の置換基を有する単環式芳香族炭化水素と、置換基を有してもよい複素環式芳香族化合物(以下、単に複素環式芳香族化合物と称する場合もある)又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とを構成単位として含む。すなわち、本発明の重合体は、モノマー成分としての置換基を有してもよいベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と、モノマー成分としての置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素とを重合してなる重合体である。複数のアルケニル基を置換基として有する単環式芳香族炭化水素は好ましくはパラ位にアルケニル基を置換基として有する単環式芳香族炭化水素である。
1. Polymer The polymer of the present invention causes a cycloaddition reaction with each other. The benzoquinone which may have a substituent (hereinafter sometimes simply referred to as benzoquinone) or the monocyclic which has an electron withdrawing substituent Aromatic hydrocarbon and optionally substituted heterocyclic aromatic compound (hereinafter sometimes referred to simply as “heteroaromatic compound”) or monocyclic aroma having a plurality of alkenyl groups as substituents Group hydrocarbon (B) as a structural unit. That is, the polymer of the present invention has a benzoquinone which may have a substituent as a monomer component or a monocyclic aromatic hydrocarbon having an electron withdrawing substituent and a substituent as a monomer component. It is a polymer obtained by polymerizing a heterocyclic aromatic compound which may be substituted or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents. The monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents is preferably a monocyclic aromatic hydrocarbon having an alkenyl group as a substituent at the para position.
 付加環化反応は、ペリ環状反応(π電子系を含む複数の結合が、環状の遷移状態を経て反応中間体を生成せずに同時に形成、切断される反応)の一つであり、二つの不飽和分子が二つのπ結合を失って新しい二つのσ結合でつながり環状化合物を生成する反応を指す。付加環化反応には、共役ジエンとアルケン(二重結合)から六員環が形成されるDiels-Alder反応、及び三重結合と二重結合のそれぞれがπ結合を失って新しい二つのσ結合でつながり環状化合物を生成する反応が含まれる。 The cycloaddition reaction is one of the pericyclic reactions (a reaction in which a plurality of bonds including a π-electron system are simultaneously formed and cleaved without forming a reaction intermediate through a cyclic transition state) It refers to a reaction in which an unsaturated molecule loses two π bonds and is linked by two new σ bonds to form a cyclic compound. Cycloaddition reactions include Diels-Alder reaction in which a six-membered ring is formed from a conjugated diene and an alkene (double bond), and two new σ bonds, each of which loses a π bond. Reactions that produce linked cyclic compounds are included.
 本願発明において、付加環化反応は好ましくは、置換基を有してもよいベンゾキノンのベンゼン環と置換基を有してもよい複素環式芳香族化合物の複素環との間のDiels-Alder反応であるか、置換基を有してもよいベンゾキノンのベンゼン環と複数のアルケニル基を置換基として有する単環式芳香族炭化水素のアルケニル基との間のDiels-Alder反応であるか、電子求引性の置換基を有する単環式芳香族炭化水素の電子求引性と複数のアルケニル基を置換基として有する単環式芳香族炭化水素のアルケニル基との間の付加環化反応である。 In the present invention, the cycloaddition reaction is preferably a Diels-Alder reaction between a benzene ring of a benzoquinone which may have a substituent and a heterocycle of a heterocyclic aromatic compound which may have a substituent. Or a Diels-Alder reaction between a benzene ring of benzoquinone which may have a substituent and an alkenyl group of a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents, or an electron This is a cycloaddition reaction between an electron withdrawing property of a monocyclic aromatic hydrocarbon having an attractive substituent and an alkenyl group of a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents.
 本発明には、かかる重合体の還元体も包含される。つまり、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とを重合反応した後で、水素等により還元したものも含まれる。例えば、ベンゾキノン(A)を用いて重合反応を行った後で重合体を還元し、ベンゾキノン(A)の酸素原子が水素原子により還元されてヒドロキノンとなった重合体も本発明に含まれる。 The present invention includes a reduced form of such a polymer. That is, a monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent and a monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound or a plurality of alkenyl groups as a substituent And the like, which are reduced with hydrogen after the polymerization reaction. For example, the present invention includes a polymer obtained by reducing the polymer after the polymerization reaction using benzoquinone (A) and reducing the oxygen atom of benzoquinone (A) with a hydrogen atom to hydroquinone.
 本発明において、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)は、置換基の一つを1位とした場合に、2位及び3位の炭素、並びに5位及び6位の炭素のうちの少なくともいずれか一方の組の炭素が置換されていない。一実施形態では、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)の2位並びに3位、及び5位並びに6位がいずれも水素である。 In the present invention, the monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent has carbon at the 2nd and 3rd positions, and 5 At least one of the carbons at the 6th and 6th positions is not substituted. In one embodiment, the 2-position, 3-position, 5-position and 6-position of the benzoquinone or monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent are all hydrogen.
 ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)が電子求引性の置換基を有することで、置換基が結合している炭素の隣の炭素が電子不足になる。他方で、複素環式芳香族化合物(B)は芳香環上にヘテロ原子(O、S、N)を有する。このため、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物(B)との求電子置換反応により、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物(B)との間に炭素-炭素結合が新たに形成される。 Since the monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent has an electron-withdrawing substituent, the carbon adjacent to the carbon to which the substituent is bonded becomes deficient in electrons. Become. On the other hand, the heterocyclic aromatic compound (B) has a hetero atom (O, S, N) on the aromatic ring. For this reason, benzoquinone or an electron withdrawing substitution is performed by an electrophilic substitution reaction between a monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent and a heterocyclic aromatic compound (B). A carbon-carbon bond is newly formed between the monocyclic aromatic hydrocarbon (A) having a group and the heterocyclic aromatic compound (B).
 また、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とは、いずれも芳香環のπ共役骨格を有するため、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)の2位並びに3位、及び/又は5位並びに6位の位置において、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)との間で付加環化反応(Diels-Alder反応または三重結合と二重結合の間の付加環化反応)が起こり、縮合環が形成される。本発明において、単環式芳香族炭化水素(B)は複数のアルキレン基を置換基として有するため、各アルキレン基が異なるベンゾキノン(A)と反応することにより、重合体の高分子化を達成している。 In addition, benzoquinone or a monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent and a monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound or a plurality of alkenyl groups as a substituent And has a π-conjugated skeleton of an aromatic ring, so that the 2-position and 3-position and / or 5-position and 6-position of the monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent Monocyclic aromatic hydrocarbon having a benzoquinone or electron-withdrawing substituent (A) and a heterocyclic aromatic compound or a plurality of alkenyl groups as substituents at the position A cycloaddition reaction (Diels-Alder reaction or a cycloaddition reaction between a triple bond and a double bond) occurs between (B) and a condensed ring is formed. In the present invention, since the monocyclic aromatic hydrocarbon (B) has a plurality of alkylene groups as substituents, each alkylene group reacts with a different benzoquinone (A) to achieve high polymerization of the polymer. ing.
 ベンゾキノン(A)又は電子求引性の置換基を有する単環式芳香族炭化水素と、アゾール、ピリジン等の複素環式芳香族化合物とを反応させると、2分子のベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と、1分子の複素環式芳香族化合物(B)との間で付加環化反応(Diels-Alder反応または三重結合と二重結合の間の付加環化反応)が起こり、縮合環が形成される。 When benzoquinone (A) or a monocyclic aromatic hydrocarbon having an electron withdrawing substituent is reacted with a heterocyclic aromatic compound such as azole or pyridine, two molecules of benzoquinone or electron withdrawing Cycloaddition reaction between a monocyclic aromatic hydrocarbon (A) having a substituent and one molecule of a heteroaromatic compound (B) (Diels-Alder reaction or between a triple bond and a double bond) Of the resulting cycloaddition reaction, and a condensed ring is formed.
 ベンゾキノン(A)又は電子求引性の置換基を有する単環式芳香族炭化水素と、複数のアルケニル基を置換基として有する単環式芳香族炭化水素とを反応させると、1分子のベンゾキノン(A)と、1分子又は2分子の単環式芳香族炭化水素(B)との間で付加環化反応(Diels-Alder反応または三重結合と二重結合の間の付加環化反応)が起こり、縮合環が形成される。 When a benzoquinone (A) or a monocyclic aromatic hydrocarbon having an electron-withdrawing substituent is reacted with a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents, one molecule of benzoquinone ( Cycloaddition reaction (Diels-Alder reaction or cycloaddition reaction between triple bond and double bond) occurs between A) and one or two molecules of monocyclic aromatic hydrocarbon (B). A condensed ring is formed.
 このように、置換基を有してもよいベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と、置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とをモノマー成分として用いて重合させることにより、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)の間の炭素-炭素結合と、縮合環形成とが起こり、重合体が平面上又は立体状に延び、グラファイト又はグラフェン類似の層状構造を合成することができる。 Thus, a benzoquinone which may have a substituent or a monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent and a heterocyclic aromatic compound which may have a substituent or Monocyclic aromatic hydrocarbons (B) having a plurality of alkenyl groups as substituents are polymerized using the monomer component as a monomer component, thereby obtaining monocyclic aromatic hydrocarbons having a benzoquinone or electron-withdrawing substituent ( A carbon-carbon bond between A) and a heterocyclic aromatic compound or a monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents and condensed ring formation occur, and the polymer is in a plane. Alternatively, a layered structure similar to graphite or graphene can be synthesized.
 以前から、染料の合成の分野において、1,4-ナフトキノンと1-メチルピロールの求電子置換反応によりこれらの分子間に炭素-炭素結合が新たに形成されること(Heterocycl.Chem.2000,37,1635)、及びナフトキノンとインドールのDiels-Alder反応によりこれらの分子の間に縮環が形成されること(Tetrahedron Lett.1974,15,1361)が個別に知られてはいたが、多環式化合物である等の理由からいずれの文献で重合させても層状の重合物を得るには至っていなかった。本発明の重合体では、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とを選択することで、これら2つの反応が起こることを見出した。 In the field of dye synthesis, a new carbon-carbon bond is formed between these molecules by electrophilic substitution of 1,4-naphthoquinone and 1-methylpyrrole (Heterocycl. Chem. 2000, 37 , 1635), and the diels-alder reaction of naphthoquinone and indole formed a condensed ring between these molecules (Tetrahedron Lett. 1974,15,1361), although individually known, polycyclic Due to the fact that it is a compound, it has not been possible to obtain a layered polymer by polymerization in any document. In the polymer of the present invention, a monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron withdrawing substituent and a heterocyclic aromatic compound which may have a substituent or a plurality of alkenyl groups are substituted. It was found that these two reactions occur by selecting the monocyclic aromatic hydrocarbon (B) as a group.
 重合体の平均分子量は特に限定されないが、1000~10000000であることが好ましく、10000~1000000であることが好ましい。 The average molecular weight of the polymer is not particularly limited, but is preferably 1000 to 10000000, and preferably 10000 to 1000000.
 ベンゾキノン(A)は非置換でも置換されていてもよい。置換されている場合、置換基としては、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ等が挙げられる。 Benzoquinone (A) may be unsubstituted or substituted. When substituted, examples of the substituent include hydrogen, halogen, nitro, amide, thiol, hydroxy and the like.
 電子求引性の置換基を有する単環式芳香族炭化水素(A)の芳香環としては、ベンゼン環、シクロヘキサジエン、シクロペンタジエン等が挙げられる。 Examples of the aromatic ring of the monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent include a benzene ring, cyclohexadiene, cyclopentadiene and the like.
 電子求引性の置換基を有する単環式芳香族炭化水素(A)の電子求引性の置換基としては、特に限定されないが、ビニル基、アシル基、シアノ基、ハロゲン基、ニトロ基、ヒドロキシ基;ハロゲン基、シアノ基、ニトロ基、又はヒドロキシ基により置換されたアルケニル基;等が挙げられ、ビニル基が好ましい。アルケニル基の炭素鎖は2~5個が好ましい。 The electron-withdrawing substituent of the monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent is not particularly limited, but a vinyl group, an acyl group, a cyano group, a halogen group, a nitro group, A hydroxy group; a halogen group, a cyano group, a nitro group, or an alkenyl group substituted by a hydroxy group; and the like, and a vinyl group is preferred. The carbon chain of the alkenyl group is preferably 2-5.
 電子求引性の置換基の数は、1つ、2つ又は3つ以上であることができるが、2つであることが層状の重合体形成のために好ましい。電子求引性の置換基が2つである場合、置換基はオルト位、メタ位、パラ位をとり得るが、パラ位であることが好ましい。 The number of electron-withdrawing substituents may be one, two, or three or more, but two is preferable for forming a layered polymer. When there are two electron-withdrawing substituents, the substituent can take an ortho position, a meta position, or a para position, but is preferably a para position.
 好ましいベンゾキノン(A)の例としては、1,2-ベンゾキノン、1,4-ベンゾキノンが挙げられる。好ましい電子求引性の置換基を有する単環式芳香族炭化水素(A)の例としてはジビニルベンゼン等が挙げられる。1,4-ベンゾキノンと置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とを重合させた後、重合体を還元させて、1,4-ベンゾキノンのカルボニル基の酸素に水素が付加してヒドロキシとなった重合体の還元体も、本発明に包含される。 Preferred examples of benzoquinone (A) include 1,2-benzoquinone and 1,4-benzoquinone. Examples of the monocyclic aromatic hydrocarbon (A) having a preferable electron-withdrawing substituent include divinylbenzene. After polymerizing 1,4-benzoquinone and a heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents, a polymer is obtained. A reduced product of a polymer which is reduced to hydrogen by adding hydrogen to the oxygen of the carbonyl group of 1,4-benzoquinone is also encompassed in the present invention.
 複数のアルケニル基を置換基として有する複素環式芳香族化合物(B)は、芳香環上にヘテロ原子を有する化合物である。複素環式芳香族化合物は、含窒素複素環式芳香族化合物であることが好ましい。本発明の重合体を製造するために、含窒素複素環式芳香族化合物は窒素複素環中に炭素-炭素二重結合を有する必要がある。複素環は3~10員環であることができ、単環式化合物であることが好ましく、5員環又は6員環であることがより好ましく、5員環又は6員環の含窒素複素環式芳香族化合物であることがさらに好ましく、5員環の含窒素複素環式芳香族化合物はアゾールであることが好まししい。 The heterocyclic aromatic compound (B) having a plurality of alkenyl groups as substituents is a compound having a hetero atom on the aromatic ring. The heterocyclic aromatic compound is preferably a nitrogen-containing heterocyclic aromatic compound. In order to produce the polymer of the present invention, the nitrogen-containing heterocyclic aromatic compound needs to have a carbon-carbon double bond in the nitrogen heterocyclic ring. The heterocyclic ring can be a 3- to 10-membered ring, is preferably a monocyclic compound, more preferably a 5-membered ring or a 6-membered ring, and a 5-membered or 6-membered nitrogen-containing heterocyclic ring The aromatic compound is more preferably an aromatic compound, and the 5-membered nitrogen-containing heterocyclic aromatic compound is preferably an azole.
 アゾールは1つ以上の窒素を含む複素5員環化合物を指し、ピロール(1H-アゾールとも言う)、2H-ピロール(2H-アゾールとも言う)、イミダゾール(1,3-ジアゾール)、ピラゾール(1,2-ジアゾール)、チアゾール、イソチアゾール(1,3-チアゾール)、オキサゾール、イソオキサゾール(1,3-オキサゾール)、フラザン(1,2,5-オキサジアゾール)、1,2,5-チアジアゾール、1,2,3-チアジアゾール、1,2,3-トリアゾール等が挙げられ、ピロール、チアゾールが好ましい。 An azole refers to a heterocyclic 5-membered compound containing one or more nitrogens, and includes pyrrole (also referred to as 1H-azole), 2H-pyrrole (also referred to as 2H-azole), imidazole (1,3-diazole), pyrazole (1, 2-diazole), thiazole, isothiazole (1,3-thiazole), oxazole, isoxazole (1,3-oxazole), furazane (1,2,5-oxadiazole), 1,2,5-thiadiazole, Examples include 1,2,3-thiadiazole and 1,2,3-triazole, and pyrrole and thiazole are preferable.
 6員環の含窒素複素環式芳香族化合物は、ピリジン、ピリミジン、ピリダジン等が好ましい。 The 6-membered nitrogen-containing heterocyclic aromatic compound is preferably pyridine, pyrimidine, pyridazine or the like.
 複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)の芳香環としては、ベンゼン環、シクロヘキサジエン、シクロペンタジエン等が挙げられる。 Examples of the aromatic ring of the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents include a benzene ring, cyclohexadiene, cyclopentadiene and the like.
 複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)のアルケニル基としては、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。 アルケニル基がさらに置換基を有してよく、そのような置換基としてはフェニル基、ナフチル基、アントリル基、フェナントリル基等のアリール基;ピリジル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラジニル基、オキサゾリル基、チアゾリル基、ピラゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基等の複素芳香環基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基等のアルコキシ基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等のアルキルチオ基;フェニルチオ基、ナフチルチオ基等のアリールチオ基;tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基等の三置換シリルオキシ基;メチルスルフィニル基、エチルスルフィニル基等のアルキルスルフィニル基;フェニルスルフィニル基等のアリールスルフィニル基;メチルスルホニルオキシ基、エチルスルホニルオキシ基、フェニルスルホニルオキシ基、メトキシスルホニル基、エトキシスルホニル基、フェニルオキシスルホニル基等のスルホン酸エステル基;シアノ基;ニトロ基等が挙げられる。 Examples of the alkenyl group of the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents include a vinyl group, an allyl group, a methylvinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, and a cyclopropenyl group. , Cyclobutenyl group, cyclopentenyl group, cyclohexenyl group and the like. The alkenyl group may further have a substituent, such as an aryl group such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group; a pyridyl group, a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, Heteroaromatic groups such as pyrazinyl group, oxazolyl group, thiazolyl group, pyrazolyl group, benzothiazolyl group, benzoimidazolyl group; methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert- Alkoxy groups such as butoxy group, pentyloxy group, isopentyloxy group, neopentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, dodecyloxy group; methylthio group, ethyl Alkylthio groups such as thio group, propylthio group and butylthio group; arylthio groups such as phenylthio group and naphthylthio group; trisubstituted silyloxy groups such as tert-butyldimethylsilyloxy group and tert-butyldiphenylsilyloxy group; methylsulfinyl group and ethyl Alkylsulfinyl groups such as sulfinyl groups; arylsulfinyl groups such as phenylsulfinyl groups; sulfonic acid ester groups such as methylsulfonyloxy group, ethylsulfonyloxy group, phenylsulfonyloxy group, methoxysulfonyl group, ethoxysulfonyl group, and phenyloxysulfonyl group Cyano group; nitro group and the like.
 単環式芳香族炭化水素(B)の複数のアルケニル基は同じであることもできるし、異なることもできるが、製造上の利点から同じであることが好ましい。単環式芳香族炭化水素(B)におけるアルケニル基の数は2~4個であることが好ましく、2個であることが好ましい。2個のアルケニル基の位置はオルト、メタ、パラのいずれであってもよいが、パラ位であることが好ましい。好ましい単環式芳香族炭化水素(B)の例はジビニルベンゼンである。なお、複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)は、電子求引性の置換基を有する単環式芳香族炭化水素(A)とは異なる構造とする。 The plurality of alkenyl groups of the monocyclic aromatic hydrocarbon (B) can be the same or different, but are preferably the same from the viewpoint of production. The number of alkenyl groups in the monocyclic aromatic hydrocarbon (B) is preferably 2 to 4, and more preferably 2. The position of the two alkenyl groups may be ortho, meta or para, but is preferably para. An example of a preferred monocyclic aromatic hydrocarbon (B) is divinylbenzene. Note that the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents has a different structure from the monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent.
 一実施形態では、本発明の重合体は、置換基を有してもよい1,4-ベンゾキノン又は置換基を有してもよい1,4-ヒドロキノンと、置換基を有してもよいアゾール又はピリジンとを構成単位として含み、1,4-ベンゾキノン又は1,4-ヒドロキノンとアゾール又はピリジンとが炭素-炭素-炭素結合している部分と、1,4-ベンゾキノン又は1,4-ヒドロキノンとアゾール又はピリジンとが縮環を形成する部分とを有する。 In one embodiment, the polymer of the present invention contains 1,4-benzoquinone which may have a substituent or 1,4-hydroquinone which may have a substituent, and an azole which may have a substituent. Or pyridine as a structural unit, a portion where 1,4-benzoquinone or 1,4-hydroquinone and azole or pyridine are carbon-carbon-carbon bonded, and 1,4-benzoquinone or 1,4-hydroquinone The azole or pyridine has a moiety that forms a condensed ring.
 別の実施形態では、本発明の重合体は、置換基を有してもよい1,4-ベンゾキノン又は置換基を有してもよい1,4-ヒドロキノンと、置換基を有してもよいピロール又はチアゾールとを構成単位として含み、1,4-ベンゾキノン又は1,4-ヒドロキノンとピロール又はチアゾールとが炭素-炭素-炭素結合している部分と、1,4-ベンゾキノン又は1,4-ヒドロキノンとピロール又はチアゾールとが縮環を形成する部分とを有する。 In another embodiment, the polymer of the present invention may have 1,4-benzoquinone which may have a substituent or 1,4-hydroquinone which may have a substituent, and a substituent. A part containing 1,4-benzoquinone or 1,4-hydroquinone and pyrrole or thiazole in a carbon-carbon-carbon bond, and 1,4-benzoquinone or 1,4-hydroquinone And pyrrole or thiazole have a portion forming a condensed ring.
 さらに別の実施形態では、本発明の重合体は、置換基を有してもよい1,4-ベンゾキノン又は置換基を有してもよい1,4-ヒドロキノンと、パラ位にアルケニル基を置換基として有する単環式芳香族炭化水素とを構成単位として含み、1,4-ベンゾキノン又は1,4-ヒドロキノンと単環式芳香族炭化水素とが縮環を形成する部分を有する。 In still another embodiment, the polymer of the present invention has 1,4-benzoquinone which may have a substituent or 1,4-hydroquinone which may have a substituent, and an alkenyl group substituted at the para position. It contains a monocyclic aromatic hydrocarbon as a group as a structural unit, and 1,4-benzoquinone or 1,4-hydroquinone and a monocyclic aromatic hydrocarbon have a portion that forms a condensed ring.
 特に、ベンゾキノン(A)として1,4-ベンゾキノンを、複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)としてアゾール(特にはピロール、チアゾール等)又はジビニルベンゼンを用いた場合、反応性有機酸化剤として作用するベンゾキノンと、モノマー液体であるアゾール又はジビニルベンゼンとを1つの密閉容器に封入しておくだけで、低温(100℃以下)及び常圧という穏和な環境下でもグラファイト又はグラフェン類似の層状構造を有する重合体を合成できるため、従来法と比較して有利である。 In particular, 1,4-benzoquinone as benzoquinone (A), azole (especially pyrrole, thiazole, etc.) as a heterocyclic aromatic compound or monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents Alternatively, when divinylbenzene is used, the benzoquinone that acts as a reactive organic oxidant and the monomer liquid azole or divinylbenzene are simply sealed in a single sealed container at a low temperature (100 ° C. or lower) and normal pressure. Therefore, the polymer having a layered structure similar to graphite or graphene can be synthesized even in a mild environment, which is advantageous as compared with the conventional method.
 上述の構成をとるため、本発明の重合体(その還元体を含む)は、平面状すなわち二次元のシート状に延びることができ、さらには複数のシート状の重合体が積層することにより三次元の積層体を形成することができる。シート構造にすることで、積層体の比表面積の向上、反応性の向上などが見込まれる。 Because of the above-described configuration, the polymer of the present invention (including the reduced form thereof) can extend into a planar shape, that is, a two-dimensional sheet shape, and further, a plurality of sheet-like polymers are laminated to form a tertiary layer. An original laminate can be formed. By using a sheet structure, it is expected that the specific surface area of the laminate is improved and the reactivity is improved.
 さらに、本発明の重合体(その還元体を含む)は、水又はベンジルアルコール、エタノール、トルエン、クロロホルム、ヘキサン等の有機溶媒に分散させ、超音波処理を加えて分散液とすることにより、ナノフレーク状にすることもできる。ナノフレークとは、長さ及び厚みの寸法の少なくとも一方が1~1000nmの範囲にあり、長さの寸法が厚みの寸法よりも大きい薄片状の材料を指す。超音波処理の温度と長さを調節することにより、ナノフレークの寸法を変更することができる。ナノフレークの寸法は特に限定されないが、長さ1~1000nm及び厚み1~100nmであることが好ましい。なお、ナノフレークの長さとは、ナノフレークを水平な面に置いた場合に当該面の垂直方向から見た最大の長さを指す。ナノフレークの厚みは、当該面に垂直な方向におけるナノフレークの厚みを指す。ナノフレークが複数ある場合は、平均長さが1~1000nm、平均厚みが1~100nmであることが好ましい。ナノフレークが10個以上ある場合、10個の平均の長さ及び厚みを測定すればよい。 Furthermore, the polymer of the present invention (including the reduced form thereof) is dispersed in water or an organic solvent such as benzyl alcohol, ethanol, toluene, chloroform, hexane, etc., and subjected to ultrasonic treatment to obtain a dispersion liquid. It can also be made into flakes. Nanoflakes refer to a flaky material in which at least one of the length and thickness dimensions is in the range of 1 to 1000 nm, and the length dimension is larger than the thickness dimension. By adjusting the temperature and length of sonication, the dimensions of the nanoflakes can be changed. The dimensions of the nanoflakes are not particularly limited, but are preferably 1 to 1000 nm in length and 1 to 100 nm in thickness. The length of the nanoflakes refers to the maximum length viewed from the vertical direction of the surface when the nanoflakes are placed on a horizontal surface. The thickness of the nanoflakes refers to the thickness of the nanoflakes in the direction perpendicular to the surface. When there are a plurality of nanoflakes, the average length is preferably 1 to 1000 nm and the average thickness is preferably 1 to 100 nm. When there are 10 or more nanoflakes, the average length and thickness of 10 may be measured.
 本発明の重合体をナノフレーク化することで、過電圧が減少すると共に、静電容量が増大するため、電荷貯蔵能力を向上させることができる。 </ RTI> By converting the polymer of the present invention into nanoflakes, the overvoltage is reduced and the capacitance is increased, so that the charge storage ability can be improved.
 別の実施形態では、本発明の重合体は、下記式(i)~(iv)のいずれかで表わされる部分を含む。 In another embodiment, the polymer of the present invention includes a moiety represented by any of the following formulas (i) to (iv).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、Cy1は5員環の含窒素複素環であり、
 Cy2は単環式芳香族炭化水素であり、
 Cy3は6員環の含窒素複素環であり、
 Aはビニル基、アシル基、シアノ基、ハロゲン基、ニトロ基、ヒドロキシ基;ハロゲン基、シアノ基、ニトロ基、若しくはヒドロキシ基により置換されたアルケニル:から選択される電子求引性の置換基であり、
AとCyの間の結合は単結合又は二重結合である。)
 Cy1は好ましくはピロール(1H-アゾールとも言う)、2H-ピロール(2H-アゾールとも言う)、イミダゾール(1,3-ジアゾール)、ピラゾール(1,2-ジアゾール)、チアゾール、イソチアゾール(1,3-チアゾール)、オキサゾール、イソオキサゾール(1,3-オキサゾール)、フラザン(1,2,5-オキサジアゾール)、1,2,5-チアジアゾール、1,2,3-チアジアゾール、又は1,2,3-トリアゾールである。
(In the formula, Cy1 is a 5-membered nitrogen-containing heterocycle,
Cy2 is a monocyclic aromatic hydrocarbon,
Cy3 is a 6-membered nitrogen-containing heterocycle,
A is an electron-withdrawing substituent selected from vinyl group, acyl group, cyano group, halogen group, nitro group, hydroxy group; alkenyl substituted by halogen group, cyano group, nitro group, or hydroxy group: Yes,
The bond between A and Cy is a single bond or a double bond. )
Cy1 is preferably pyrrole (also called 1H-azole), 2H-pyrrole (also called 2H-azole), imidazole (1,3-diazole), pyrazole (1,2-diazole), thiazole, isothiazole (1,3 -Thiazole), oxazole, isoxazole (1,3-oxazole), furazane (1,2,5-oxadiazole), 1,2,5-thiadiazole, 1,2,3-thiadiazole, or 1,2, 3-triazole.
 Cy2は好ましくはベンゼン環、シクロヘキサジエン、又はシクロペンタジエンである。 Cy2 is preferably a benzene ring, cyclohexadiene, or cyclopentadiene.
 Cy3は好ましくはピリジン、ピリミジン、又はピリダジンである。 Cy3 is preferably pyridine, pyrimidine, or pyridazine.
 別の実施形態では、本発明の重合体は、下記式(I)又は式(II)で表わされる部分を含む。 In another embodiment, the polymer of the present invention includes a moiety represented by the following formula (I) or formula (II).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一実施形態において、上記重合体は、下記式(III)又は(IV)で表わされる部分を含む。 In one embodiment, the polymer includes a moiety represented by the following formula (III) or (IV).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、
 R1及びR2はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはピロリル基であるか、又は
 R1及びR2は共に、隣り合うピロール基及び隣り合うベンゾキノリル基と縮環形成し、
 R3及びR4はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはピロリル基であるか、又は
 R3及びR4は共に、隣り合うピロール基及び隣り合うベンゾキノリル基と縮環形成し、
 ただし、R1及びR2、若しくはR3及びR4が縮環形成する場合は、いずれか一方の組が縮環形成し、
 R5、R6及びR7は、それぞれ独立して、水素、ハロゲン、ヒドロキシ、アルキル基、又はベンゾキノリル基である。)
(Where
R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 1 and R 2 are both an adjacent pyrrole group and an adjacent benzoquinolyl group. Forming a condensed ring with the group,
R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 3 and R 4 together are an adjacent pyrrole group and an adjacent benzoquinolyl group. Forming a condensed ring with the group,
However, when R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring,
R 5 , R 6 and R 7 are each independently hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group. )
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、
 R1及びR2はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはチアゾリル基であるか、又は
 R1及びR2は共に、隣り合うチアゾリル基及び隣り合うベンゾキノリル基と縮環形成し、
 R3及びR4はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはチアゾリル基であるか、又は
 R3及びR4は共に、隣り合うチアゾリル基及び隣り合うベンゾキノリル基と縮環形成し、
 ただし、R1及びR2、若しくはR3及びR4が縮環形成する場合は、いずれか一方の組が縮環形成し、
 R6は水素、ハロゲン、ヒドロキシ、アルキル基、又はベンゾキノリル基である。)
 R1、R2、R3、R4、R5、R6、R7がアルキル基である場合、それぞれ独立して、C1~C6のアルキル基であることが好ましい。C1~C6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、1,1-ジメチルブチル基および1,3-ジメチルブチル基が挙げられる。
(Where
R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 1 and R 2 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups. Forming a condensed ring with the group,
R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 3 and R 4 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups. Forming a condensed ring with the group,
However, when R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring,
R 6 is hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group. )
When R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are alkyl groups, it is preferably independently a C1-C6 alkyl group. Examples of the C1-C6 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, Examples thereof include 1,1-dimethylbutyl group and 1,3-dimethylbutyl group.
 一実施形態では、R1及びR2と縮環を形成するベンゾキノリル基、並びにR3及びR4と縮環を形成するベンゾキノリル基は、式(V)で表わされる。 In one embodiment, the benzoquinolyl group that forms a condensed ring with R 1 and R 2 and the benzoquinolyl group that forms a condensed ring with R 3 and R 4 are represented by formula (V).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 特定の実施形態では、R1及びR2と縮環を形成するベンゾキノリル基、並びにR3及びR4と縮環を形成するベンゾキノリル基は、式(VI)で表わされる。 In a particular embodiment, the benzoquinolyl group that forms a condensed ring with R 1 and R 2 and the benzoquinolyl group that forms a condensed ring with R 3 and R 4 are represented by formula (VI).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 R8、R9はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基である。好ましくは、R8、R9はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基である。 R 8 and R 9 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, or an alkyl group. Preferably, R 8 and R 9 are each independently hydrogen, halogen, hydroxy or an alkyl group.
 R10は水素、ハロゲン、ヒドロキシ又はアルキル基である。 R 10 is hydrogen, halogen, hydroxy or an alkyl group.
 一実施形態では、R5、R6及びR7であるベンゾキノリル基は、式(VII)で表わされる。 In one embodiment, the benzoquinolyl group that is R 5 , R 6 and R 7 is represented by formula (VII).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 特定の実施形態では、式(VII)で表わされるベンゾキノリル基は、式(VIII)で表わされるベンゾキノリル基である。 In certain embodiments, the benzoquinolyl group represented by formula (VII) is a benzoquinolyl group represented by formula (VIII).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 R11、R12はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基である。好ましくは、R11、R12はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基である。 R 11 and R 12 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, or an alkyl group. Preferably, R 11 and R 12 are each independently hydrogen, halogen, hydroxy or an alkyl group.
 R13は水素、ハロゲン、ヒドロキシ又はアルキル基である。
式(V)及び式(VII)は同一であることもできるし、異なることもできるが、製造効率の点では同じであることが好ましい。式(VI)の基と式(VIII)の基は同一であることもできるし、異なることもできるが、製造効率の点では同じであることが好ましい。
R 13 is hydrogen, halogen, hydroxy or an alkyl group.
Formula (V) and formula (VII) may be the same or different, but are preferably the same in terms of production efficiency. The group of formula (VI) and the group of formula (VIII) can be the same or different, but are preferably the same in terms of production efficiency.
 一実施形態では、本発明の重合体は、下記式(IX)で表わされる部分を含む重合体又はその還元体を包含する。 In one embodiment, the polymer of the present invention includes a polymer containing a moiety represented by the following formula (IX) or a reduced form thereof.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
式中、
 R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 kは1以上の整数であり、
 xは0~100の実数である。
Where
R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
k is an integer greater than or equal to 1,
x is a real number from 0 to 100.
 kは好ましくは1~1000であり、より好ましくは5~40である。 K is preferably 1 to 1000, more preferably 5 to 40.
 R15、R16、R17、R18、19、R20、R21、R22がアルキル基である場合、それぞれ独立して、C1~C6のアルキル基であることが好ましい。C1~C6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、1,1-ジメチルブチル基および1,3-ジメチルブチル基が挙げられる。
特には、R15、R16、R17、R18、19、R20、R21、R22がいずれも水素である。
When R 15 , R 16 , R 17 , R 18, R 19 , R 20 , R 21 , R 22 are alkyl groups, it is preferably independently a C1-C6 alkyl group. Examples of the C1-C6 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, Examples thereof include 1,1-dimethylbutyl group and 1,3-dimethylbutyl group.
In particular, R 15 , R 16 , R 17 , R 18, R 19 , R 20 , R 21 , R 22 are all hydrogen.
 別の実施形態では、本発明の重合体は、下記式(X)で表わされる部分を含む重合体又はその還元体を包含する。 In another embodiment, the polymer of the present invention includes a polymer containing a moiety represented by the following formula (X) or a reduced form thereof.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
式中、
 R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R23、R25、及びR26はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R24、R27、及びR30はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R28、R29はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 m、nはそれぞれ1以上の整数であり、
 xは0~100の実数である。
Where
R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 23 , R 25 , and R 26 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 24 , R 27 and R 30 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 28 and R 29 are each independently a hydrogen, halogen, hydroxy or alkyl group,
m and n are each an integer of 1 or more,
x is a real number from 0 to 100.
 m、nはそれぞれ好ましくは1~1000であり、より好ましくは5~40である。 式中、R15、R16、R17、R18、19、R20、R21、R22、R23、R24、R25、R26、R27、R28、R29、R30がアルキル基である場合、それぞれ独立して、C1~C6のアルキル基であることが好ましい。C1~C6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、1,1-ジメチルブチル基および1,3-ジメチルブチル基が挙げられる。 m and n are each preferably 1 to 1000, and more preferably 5 to 40. In the formula, R 15 , R 16 , R 17 , R 18, R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 When is an alkyl group, it is preferably each independently a C1-C6 alkyl group. Examples of the C1-C6 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, Examples thereof include 1,1-dimethylbutyl group and 1,3-dimethylbutyl group.
 特には、R15、R16、R17、R18、19、R20、R21、R22、R23、R24、R25、R26、R27、R28、R29、R30がいずれも水素である。 In particular, R 15 , R 16 , R 17 , R 18, R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 Are both hydrogen.
 さらなる実施形態では、本発明の重合体は、式(XI)で表わされる部分を含む重合体を包含する。 In a further embodiment, the polymer of the present invention includes a polymer comprising a moiety represented by formula (XI).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、
 R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
 R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
 nは1以上の整数であり、
 xは0~20の実数である)
 一つの実施形態では、本発明の重合体は、下記式(XII)~(XVII)で表わされる部分を含む重合体を包含する。
(Where
R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
n is an integer of 1 or more,
x is a real number between 0 and 20)
In one embodiment, the polymer of the present invention includes a polymer containing a moiety represented by the following formulas (XII) to (XVII).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 特定の実施形態では、本発明の重合体は、式(XII)、(XIII)、(XIV)、及び(XV)で表わされる部分と、水和水とを含む重合体を包含する。 In a specific embodiment, the polymer of the present invention includes a polymer comprising a moiety represented by formulas (XII), (XIII), (XIV), and (XV) and hydrated water.
 本発明は、本発明の重合体を含む機能性ナノシートを包含する。つまり、本発明のシートは、平面状に延びる上述の本発明の重合体を含む、厚さ0.2nm~2.0nmのシートである。本発明はさらに、上記のシートが複数積層された積層体を包含する。シートの層間間隔は0.2nm~2.0nmである。積層体の厚さは限定されず、例えば5nm~10000nmであってよい。この積層構造は、種々の液相中で、所望の厚みにはく離できることができる。はく離により、積層体の比表面積の向上、反応性の向上などが見込まれる。 The present invention includes a functional nanosheet containing the polymer of the present invention. That is, the sheet of the present invention is a sheet having a thickness of 0.2 nm to 2.0 nm containing the above-described polymer of the present invention extending in a planar shape. The present invention further includes a laminate in which a plurality of the above sheets are laminated. The interlayer distance of the sheet is 0.2 nm to 2.0 nm. The thickness of the laminated body is not limited, and may be, for example, 5 nm to 10000 nm. This laminated structure can be peeled to a desired thickness in various liquid phases. The peeling is expected to improve the specific surface area and the reactivity of the laminate.
2.重合体、シート及び積層体の製造方法
 本発明の重合体は、互いに付加環化反応を起こす、モノマー成分としての置換基を有してもよいベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と、モノマー成分としての置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とを重合させることにより製造される。これらの2つのモノマー成分を、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とが炭素-炭素結合を形成し、縮環を形成するように重合させることにより、二次元状若しくは平面状、又は立体状に延びる重合体が得られる。
2. Production method of polymer, sheet and laminate The polymer of the present invention causes a cycloaddition reaction with each other, and may have a substituent as a monomer component, or a monocycle having an electron-withdrawing substituent. And a monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound which may have a substituent as a monomer component or a plurality of alkenyl groups as a substituent. Manufactured by polymerization. These two monomer components are benzoquinone or monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent and a heterocyclic aromatic compound or a monocyclic aromatic having a plurality of alkenyl groups as substituents. By polymerizing the hydrocarbon group (B) to form a carbon-carbon bond to form a condensed ring, a polymer extending in a two-dimensional shape, a planar shape, or a steric shape is obtained.
 ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)及び複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)については「1.重合体」で説明した通りである。 About monocyclic aromatic hydrocarbons (B) having benzoquinone or electron-withdrawing substituents (A) and heterocyclic aromatic compounds or plural alkenyl groups as substituents As described in “1. Polymer”.
 ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)、及び複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)の各々は、任意選択で溶媒に溶解させてもよく、メチルイソブチルケトン、メチルエチルケトン、エタノール、N-メチル-2-ピロリドン、2、N,N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスファミド等が挙げられ、これらを1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。一実施形態において、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)及び複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)は、溶媒に溶解させずに重合させる。 A monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent, and a monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound or a plurality of alkenyl groups as a substituent. Each may optionally be dissolved in a solvent, methyl isobutyl ketone, methyl ethyl ketone, ethanol, N-methyl-2-pyrrolidone, 2, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphamide These may be used, and these may be used alone or in combination of two or more. In one embodiment, a monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron withdrawing substituent and a monocyclic aromatic hydrocarbon having a heterocyclic aromatic compound or a plurality of alkenyl groups as a substituent (B) is polymerized without dissolving in the solvent.
 重合反応の温度は、生成物の揮発を防ぐため、低温、すなわち100℃以下であることが好ましい。温度の下限値は0℃以上であることが好ましく、20℃以上であることが好ましい。反応を促進するために、60℃以上であってもよい。ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)及び複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)のうちのいずれか一方、特には複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)を液体状態とするために、重合反応温度は複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)の融点よりも高い温度であることが好ましい。 The temperature of the polymerization reaction is preferably low temperature, that is, 100 ° C. or lower in order to prevent the product from volatilizing. The lower limit of the temperature is preferably 0 ° C. or higher, and preferably 20 ° C. or higher. In order to accelerate the reaction, it may be 60 ° C. or higher. Among monocyclic aromatic hydrocarbons (B) having a benzoquinone or an electron-withdrawing substituent (A) and a heterocyclic aromatic compound or a plurality of alkenyl groups as substituents In particular, in order to bring the heterocyclic aromatic compound or the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents into a liquid state, the polymerization reaction temperature is the heterocyclic aromatic The temperature is preferably higher than the melting point of the compound or the monocyclic aromatic hydrocarbon (B) having a plurality of alkenyl groups as substituents.
 重合時間は特に限定されないが、0.5分~120時間であることが好ましく、15分~72時間であることがより好ましい。重合時間を長くすると、重合体は平面状に延びてシートを形成し、平面状に延びたシート構造がさらに複数積層し、積層体構造となる。得られた重合体は、導電性に優れたグラファイト又はグラフェン類似の層状構造を有する。 The polymerization time is not particularly limited, but is preferably 0.5 minutes to 120 hours, and more preferably 15 minutes to 72 hours. When the polymerization time is increased, the polymer extends in a planar shape to form a sheet, and a plurality of sheet structures extending in the planar shape are further laminated to form a laminated structure. The obtained polymer has a layered structure similar to graphite or graphene having excellent conductivity.
 上述のシート及び積層体の厚みは、重合反応時間の調節によっても調節することができるし、種々の溶媒中で、重合体からなる積層体を所望の厚みにはく離することによっても調節することができる。そのような溶媒の例としては、公知の溶媒を用いることができ、ヘキサン、トルエン等の低極性溶媒、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン(THF)、酢酸エチル、アセトン、アセトニトリル等の中極性溶媒、水、メタノール、エタノール等の高極性溶媒等又は各種イオン性の界面活性剤や有機イオンなどの添加分子を含む水溶液が挙げられるが、これらに限定されない。 The thickness of the above-mentioned sheet and laminate can be adjusted by adjusting the polymerization reaction time, and can also be adjusted by peeling the laminate made of the polymer to a desired thickness in various solvents. it can. As examples of such solvents, known solvents can be used; low polarity solvents such as hexane and toluene; medium polarity solvents such as chloroform, dichloromethane, diethyl ether, tetrahydrofuran (THF), ethyl acetate, acetone, and acetonitrile. , Water, a highly polar solvent such as methanol, ethanol or the like, or an aqueous solution containing additional molecules such as various ionic surfactants and organic ions, but is not limited thereto.
 重合圧力は特に限定されず、通常は常圧(標準気圧とも言う、1.01325×105Pa)であるが、反応を促進するために常圧よりも低い圧力で行ってもよい。 The polymerization pressure is not particularly limited and is usually normal pressure (also referred to as standard pressure, 1.01325 × 10 5 Pa), but may be performed at a pressure lower than normal pressure in order to promote the reaction.
 重合反応は、通常は空気雰囲気下で行われるが、これに限定されない。 The polymerization reaction is usually performed in an air atmosphere, but is not limited thereto.
 合成方法としては、例えば、(i)気相法による合成、(ii)液相法による合成、又は(iii)直接混合による合成が挙げられる。(i)の気相法による合成では、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とを別の容器に入れ、これら2つの容器を1つの密封容器に封入することにより行うことができる。ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)が揮発性を有する場合、反応は自発的に進行し得る。反応生成物は、溶媒により洗浄し、任意選択で乾燥させ得る。(ii)の液相法による合成では、容器にベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と溶媒を加えてベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)を溶媒に溶解させたのち、さらに複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)を加え、一定温度で一定時間撹拌し、反応後の溶液を溶媒により洗浄し、任意選択で乾燥させる。(iii)の直接混合による合成では、ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素(A)と複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素(B)とを同一のガラス容器に入れ、これを密閉容器に入れて封入し、一定温度で一定時間静置することにより行うことができる。反応生成物は、溶媒により洗浄し、任意選択で乾燥させ得る。 Examples of the synthesis method include (i) synthesis by a gas phase method, (ii) synthesis by a liquid phase method, or (iii) synthesis by direct mixing. In the synthesis by the gas phase method of (i), benzoquinone or a monocyclic aromatic hydrocarbon (A) having an electron-withdrawing substituent and a heterocyclic aromatic compound or a single group having a plurality of alkenyl groups as substituents. The cyclic aromatic hydrocarbon (B) can be put in another container, and these two containers can be sealed in one sealed container. When the monocyclic aromatic hydrocarbon (A) having a benzoquinone or an electron-withdrawing substituent has volatility, the reaction can proceed spontaneously. The reaction product can be washed with a solvent and optionally dried. In the synthesis by the liquid phase method of (ii), a benzoquinone or an electron withdrawing substituent is added to a container and a monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent and a solvent are added to the container. After dissolving the monocyclic aromatic hydrocarbon (A) in the solvent, the monocyclic aromatic hydrocarbon (B) having a heterocyclic aromatic compound or a plurality of alkenyl groups as substituents is further added, and the temperature is constant. The solution after the reaction is washed with a solvent and optionally dried. In the synthesis by direct mixing of (iii), benzoquinone or a monocyclic aromatic hydrocarbon (A) having an electron withdrawing substituent and a heterocyclic aromatic compound or a monocyclic having a plurality of alkenyl groups as substituents The aromatic hydrocarbon (B) can be placed in the same glass container, sealed in a sealed container, and allowed to stand at a constant temperature for a certain time. The reaction product can be washed with a solvent and optionally dried.
 さらに、重合反応の開始前に、密封容器内に種々の基板又は基材を配置しておくことにより、基板又は基材に直接、重合体からなるコーティングを施すことができる。 Furthermore, by arranging various substrates or base materials in a sealed container before the start of the polymerization reaction, a coating made of a polymer can be directly applied to the substrate or the base material.
 基板又は基材の状態は限定されず、液体状態であっても固体であってもよい。または、基板又は基材の種類も限定されず、金属、ガラス、セラミックス、プラスチック、木材、繊維、これらの複合材等が挙げられるが、これらに限定されない。 The state of the substrate or base material is not limited, and it may be liquid or solid. Alternatively, the type of the substrate or base material is not limited, and examples thereof include, but are not limited to, metal, glass, ceramics, plastic, wood, fiber, and composite materials thereof.
 このようにして、反応容器内に入れた任意の材質及び状態の基板又は基材に、本発明の重合体からなるコーティングを施すことができるため、本発明の重合体はコーティング材料としての応用範囲が広い。かかるコーティングは例えば電極の成膜や電子回路の相互接続に使用することができる。 In this way, since the coating of the polymer of the present invention can be applied to a substrate or base material of any material and state placed in the reaction vessel, the polymer of the present invention is applicable as a coating material. Is wide. Such coatings can be used, for example, for electrode deposition and electronic circuit interconnection.
 さらに、本願発明の重合体及び該重合体より製造したフレークはベンゾキノンのキノン部位又は単環式芳香族炭化水素の電子求引性の置換基の酸化還元に伴う充放電反応を起こし、高容量を示すことから、スーパーキャパシタを初めとする電極材料による電荷貯蔵に応用可能である。例えば、本願発明の重合体及び該重合体より製造したフレークは、電極活物質として使用することができる。 Furthermore, the polymer of the present invention and the flakes produced from the polymer undergo charge / discharge reactions associated with redox of the quinone moiety of benzoquinone or the electron-withdrawing substituent of monocyclic aromatic hydrocarbons, resulting in a high capacity. As shown, the present invention can be applied to charge storage using electrode materials such as supercapacitors. For example, the polymer of the present invention and the flakes produced from the polymer can be used as an electrode active material.
 さらに、本願発明の重合体は水素発生過電圧が小さいため、優れた水素発生電極触媒としての役割を果たすことができる。本願発明の重合体は、省エネルギーで高効率に水から水素を取り出すことができるため、再生可能エネルギーの分野に応用可能である。 Furthermore, since the polymer of the present invention has a small hydrogen generation overvoltage, it can serve as an excellent hydrogen generation electrode catalyst. The polymer of the present invention can be applied to the field of renewable energy because it can save hydrogen with high efficiency and save energy.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
実験手順
1.フーリエ変換赤外分光法(FTIR)による構造解析
 試料の重合の確認のためにフーリエ変換赤外分光装置(FT/IR-4200typeA, JASCO)を用いた。KBr 法にてサンプルをディスク状に成形し、測定範囲を4000-400cm-1、分解能を4 cm-1、積算回数を128 回と設定し測定を行った。
2.熱重量測定装置(TG‐DTA)による質量減少の測定
 試料の重合の確認のためにTG-DTA(TG/DTA7200, EXSTER)を用いた。温度範囲は25℃から 1000℃と設定し測定を行った。BQ/Py重合体、BQ 標品、BQ とヒドロキシキノン(HQ) の電解移動錯体であるキンヒドロン、ポリピロール(Ppy)標品のTG を測定した。
3.元素分析
 試料の元素比の測定のため、慶應義塾大学理工学部中央試験所にて元素分析を行った。
4.X線回折装置(XRD)による層状構造の解析
 BQ/Py重合体の試料の層間距離を解析するために、X 線回折装置(Mini Flex and Bruker D8 Advance, Rigaku)を用いた。粉末試料を試料ホルダーに圧着し、CuKα 線により連続スキャン法で、走査速度は 5 degree min-1、走査範囲は 3~80 degree と設定して測定した。
また、層間の距離は以下に示す Bragg の式を用いて計算した。
2dsinθ = nλ (n = 1)
dは結晶面の間隔(nm)、λは X 線の波長(λ = 0.1542 nm)、θは回折角である。
5.質量分析法(MALDI-TOFMS) 
 分子量の確認のため、質量分析装置(MALDI-7090 : SHIMADZU)を用いて測定を行った。試料及びマトリックス(2,5-dihydroxybenzonic acid)をNMPに分散させプレートにキャストし乾燥させ、m/z値1-5000、積算回数50回で測定した。
6.分子力学法(MM2)
合成した試料の分子模型のエネルギー最安定状態のシミュレーションをChemBioProfessionalを用いて行った。ソフトウェアからChemBio3Dを用いて分子模型を作製し、上下方向に重ね、分子力学法(MM2)プログラムを用いてエネルギー最安定状態のシミュレーションを行った。
7.走査型電子顕微鏡(SEM)による観察
 剥離前のBQ/Py重合体の試料の形状を観察するために、SEM(VE-9800, KEYENCE)を用いた。観察のため、試料を導電性テープでアルミニウム台に固定した。固定後の各試料はOSMIUM COATER(HPC-1S,真空デバイス株式会社)を用いて、表面に約5 nm のオスミウムコーティングを行い、導電性を確保した後に観察した。
8.透過型電子顕微鏡(TEM)による観察
 はく離したシート(下記の実施例3の試料)の形状観察のためにFE-TEM(Tecnai F20, FEI)とTEM-120( TecnaiSpirit, FEI)を用いた。
9.原子間力顕微鏡(AFM)による観察
 はく離したシート(下記の実施例3の試料)の厚さの測定のために原子間力顕微鏡(SPM9600, 島津製作所(株))を用いた。シリコン基板をメタノール/塩酸(1:1(体積比))、濃硫酸にそれぞれ 30 分間浸漬した。
 基板を取り出して水洗し、アルゴンガスを吹きかけて乾燥させた。洗浄した基板をホットプレート上で100℃に加熱し、 分散液を滴下し、観察を行った。
10.サイクリックボルタンメトリー
 得られた試料の電気化学的活性を調べるため、サイクリックボルタンメトリー(VerasSTAT/PARSTAT,プリンストンアプライドリサーチ)を用いた。水系の測定においては、参照極は銀-塩化銀電極、対極はPt 基板、電解液は1 mol cm-3H2SO4 を用いた。走査範囲を-0.5~1.2 V (vs. Ag/AgCl) とし,走査速度を1 mV S-1 と設定し測定を行った。
11.充放電測定
 充放電装置(HJ1001SD8:HOKUTO)を用いて測定を行った。測定セルはサイクリックボルタンメトリー測定と同じものを用い、同様に-0.3 Vの定電位で30分間電流を流した後、充放電測定を行った。
12.接触角測定
 コーティング前後におけるガラス基板のぬれ性の測定のため、接触角測定装置(DMe-201,協和界面化学(株))を用いた。液適法によって水とガラス基板の接触角の測定を行った。
Experimental procedure Structural analysis by Fourier transform infrared spectroscopy (FTIR) A Fourier transform infrared spectrometer (FT / IR-4200typeA, JASCO) was used to confirm the polymerization of the sample. The sample was molded into a disk shape by KBr method, the measuring range 4000-400 -1, resolution 4 cm -1, was measured by setting the number of integration 128 times.
2. Measurement of mass loss by thermogravimetry (TG-DTA) TG-DTA (TG / DTA7200, EXSTER) was used for confirmation of sample polymerization. The temperature range was set from 25 ° C to 1000 ° C and measurements were taken. The TG of BQ / Py polymer, BQ sample, quinhydrone, which is an electrolytic transfer complex of BQ and hydroxyquinone (HQ), and polypyrrole (Ppy) sample were measured.
3. Elemental analysis Elemental analysis was performed at Keio University Faculty of Science and Technology Central Laboratory to measure the elemental ratio of samples.
4). Analysis of layered structure by X-ray diffractometer (XRD) An X-ray diffractometer (Mini Flex and Bruker D8 Advance, Rigaku) was used to analyze the interlayer distance of BQ / Py polymer samples. The powder sample was pressure-bonded to a sample holder and measured by a continuous scanning method using CuKα rays, with a scanning speed of 5 degree min -1 and a scanning range of 3 to 80 degree.
The distance between layers was calculated using the following Bragg equation.
2dsinθ = nλ (n = 1)
d is the crystal plane spacing (nm), λ is the X-ray wavelength (λ = 0.1542 nm), and θ is the diffraction angle.
5). Mass spectrometry (MALDI-TOFMS)
For confirmation of molecular weight, measurement was performed using a mass spectrometer (MALDI-7090: SHIMADZU). A sample and a matrix (2,5-dihydroxybenzonic acid) were dispersed in NMP, cast on a plate, dried, and measured with an m / z value of 1-5000 and an integration count of 50 times.
6). Molecular mechanics method (MM2)
The simulation of the most stable state of the molecular model of the synthesized sample was performed using ChemBioProfessional. A molecular model was created from the software using ChemBio3D, stacked vertically, and the most stable state of energy was simulated using the Molecular Mechanics (MM2) program.
7). Observation by Scanning Electron Microscope (SEM) SEM (VE-9800, KEYENCE) was used to observe the shape of the BQ / Py polymer sample before peeling. For observation, the sample was fixed to an aluminum table with conductive tape. Each sample after fixation was observed after OSMIUM COATER (HPC-1S, Vacuum Device Co., Ltd.) was used to coat the surface with an osmium coating of about 5 nm to ensure conductivity.
8). Observation by Transmission Electron Microscope (TEM) FE-TEM (Tecnai F20, FEI) and TEM-120 (TecnaiSpirit, FEI) were used for shape observation of the peeled sheet (sample of Example 3 below).
9. Observation by Atomic Force Microscope (AFM) An atomic force microscope (SPM9600, Shimadzu Corporation) was used to measure the thickness of the peeled sheet (sample of Example 3 below). The silicon substrate was immersed in methanol / hydrochloric acid (1: 1 (volume ratio)) and concentrated sulfuric acid for 30 minutes.
The substrate was taken out, washed with water, and dried by blowing argon gas. The cleaned substrate was heated to 100 ° C. on a hot plate, and the dispersion was dropped and observed.
10. Cyclic voltammetry Cyclic voltammetry (VerasSTAT / PARSTAT, Princeton Applied Research) was used to examine the electrochemical activity of the obtained samples. In the aqueous measurement, a silver-silver chloride electrode was used as the reference electrode, a Pt substrate as the counter electrode, and 1 mol cm -3 H 2 SO4 as the electrolyte. Measurements were taken with a scanning range of -0.5 to 1.2 V (vs. Ag / AgCl) and a scanning speed of 1 mV S- 1 .
11. Charging / discharging measurement It measured using the charging / discharging apparatus (HJ1001SD8: HOKUTO). The same measurement cell as in the cyclic voltammetry measurement was used. Similarly, a current was passed at a constant potential of −0.3 V for 30 minutes, and then charge / discharge measurement was performed.
12 Contact angle measurement A contact angle measuring device (DMe-201, Kyowa Interface Chemical Co., Ltd.) was used to measure the wettability of the glass substrate before and after coating. The contact angle between water and the glass substrate was measured by a liquid suitability method.
実施例1 BQ/Py重合体の合成
(合成方法)
 1,4-ベンゾキノン(BQ)の粉末(純度98.0%、東京化成工業株式会社)とピロール(Py)の液体(純度99,0%、東京化成工業株式会社)を図1に示すように別々の容器1,2に入れ、それらを空気雰囲気の密閉容器3に入れて48時間静置した。BQを入れていた容器1から粗生成物を回収した。粗生成物から未反応のモノマー分子を取り除くために吸引ろ過を用い、アセトンで洗浄した。次に、低重合度分子を取り除くため、テフロン(登録商標)性遠沈管にN-メチル-2-ピロリドン(NMP)(純度99.0%、和光純薬工業株式会社)25 cm3 と回収物を加え13500rpm で15 分間遠心分離を行い、沈殿物を回収した。その後、残存NMP を取り除くため、吸引ろ過をもちいてアセトン洗浄した。さらに、試料の層間に残存するヒドロキノン、NMP を取り除くため、190℃で16 時間真空乾燥し、1,4-ベンゾキノンとピロールからなる共重合体(以下、BQ/Py重合体と称する)を得た。さらにこれを水に分散させることでナノシートの分散媒を得た。
Example 1 Synthesis of BQ / Py polymer (synthesis method)
1,4-benzoquinone (BQ) powder (purity 98.0%, Tokyo Chemical Industry Co., Ltd.) and pyrrole (Py) liquid (purity 99,0%, Tokyo Chemical Industry Co., Ltd.) are separated as shown in FIG. They were placed in containers 1 and 2 and placed in a sealed container 3 in an air atmosphere and allowed to stand for 48 hours. The crude product was recovered from container 1 that contained BQ. Suction filtration was used to remove unreacted monomer molecules from the crude product and washed with acetone. Next, in order to remove molecules with low polymerization degree, add 25 cm 3 of N-methyl-2-pyrrolidone (NMP) (purity 99.0%, Wako Pure Chemical Industries, Ltd.) and recovered material to a Teflon (registered trademark) centrifuge tube. Centrifugation was performed at 13500 rpm for 15 minutes to collect the precipitate. Thereafter, in order to remove the remaining NMP, it was washed with acetone using suction filtration. Further, in order to remove hydroquinone and NMP remaining between the layers of the sample, vacuum drying was performed at 190 ° C. for 16 hours to obtain a copolymer composed of 1,4-benzoquinone and pyrrole (hereinafter referred to as BQ / Py polymer). . Further, this was dispersed in water to obtain a nanosheet dispersion medium.
 BQとPyの比を、10nmol:50nmolから50nmol:10nmolまで変えたサンプルで重合体を生成したが、生成物の組成は変化しなかった(データ非図示)。Pyの供給量を十分にするため、以後、BQとPyの比を30nmol:30nmolとした。 The polymer was produced with a sample in which the ratio of BQ and Py was changed from 10 nmol: 50 nmol to 50 nmol: 10 nmol, but the composition of the product did not change (data not shown). In order to make the supply amount of Py sufficient, the ratio of BQ to Py was set to 30 nmol: 30 nmol.
(結果)
フーリエ変換赤外分光法(FTIR)による構造解析
 まず、フーリエ変換赤外分光装置で測定した、BQ/Py重合体、BQ 標品、HQ 標品、及びPPy標品のIR スペクトルを図2に示す。各スペクトルの比較から、(1)のピークはN-H 伸縮、(2)のピークはO-H 伸縮、(3)のピークはC=O 伸縮と帰属できた。また、(4)のピークは芳香族C-H 伸縮、であり、BQ/Py重合体では大きく減少していることが確認された。
(result)
Structural Analysis by Fourier Transform Infrared Spectroscopy (FTIR) First, IR spectra of BQ / Py polymer, BQ sample, HQ sample, and PPy sample measured with a Fourier transform infrared spectrometer are shown in Fig. 2. . From comparison of each spectrum, the peak of (1) can be attributed to NH stretching, the peak of (2) can be attributed to OH stretching, and the peak of (3) can be attributed to C = O stretching. In addition, the peak of (4) is aromatic CH 3 stretch, and it was confirmed that the BQ / Py polymer greatly decreased.
 BQ/Py重合体は、BQとPyを含む高分子化した構造であることが示唆された。また、HQ標品と比較することで構造の一部が還元体になっていることや、水分子の存在についても考えられた。 It was suggested that the BQ / Py polymer has a polymerized structure containing BQ and Py. In addition, by comparing with the HQ standard, it was thought that part of the structure was a reduced form and the presence of water molecules.
熱重量測定装置(TG‐DTA)による質量減少の測定
 次に、図3に示すように、TG グラフの比較から、BQ/Py重合体の質量減少開始温度は400℃程度であり、この値はPPy標品やBQ/HQ電荷移動錯体の質量減少温度よりも非常に高いことから、IRの結果と合わせて重合体が高分子化していることが確認された。
Measurement of mass reduction by thermogravimetry (TG-DTA) Next, as shown in Fig. 3, from the comparison of TG graphs, the mass reduction start temperature of BQ / Py polymer is about 400 ° C, and this value is Since it is much higher than the mass reduction temperature of PPy samples and BQ / HQ charge transfer complexes, it was confirmed that the polymer was polymerized together with IR results.
元素分析
 次に、表1に示すように、BQ/Py 重合体の元素分析の結果は、重量比でC = 67.02 wt%、H = 2.79 wt%、N = 6.22 wt%、O= 23.97 wt%であった。なお、O の重量比は、得られる生成物にはC、H、N、O のみが含まれていると仮定した際に得られる計算値を記載した。その結果から得られた各原子の重量比と、先の結果をもとに推定した構造により算出される原子の重量比を比較すると、表1に示すように、酸化体と還元体、および水和水から成る構造が推定された。
Elemental analysis Next, as shown in Table 1, the results of elemental analysis of BQ / Py polymer are as follows: C = 67.02 wt%, H = 2.79 wt%, N = 6.22 wt%, O = 23.97 wt% Met. As for the weight ratio of O 2, the calculated value obtained when assuming that the obtained product contains only C, H, N, and O 2 is described. When the weight ratio of each atom obtained from the result is compared with the weight ratio of the atom calculated from the structure estimated based on the previous result, as shown in Table 1, the oxidized form, the reduced form, and the water A structure composed of Japanese water was estimated.
 また、TGの結果から200℃までの質量減少を水の蒸発によるものと仮定した際の実験値と計算値についても誤差は少ないことから、推定構造の整合性が確認された。 Also, from the results of TG, there was little error in the experimental values and calculated values when it was assumed that the mass loss up to 200 ° C was due to water evaporation, so the consistency of the estimated structure was confirmed.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 BQ/Py重合体において、図4に示すように、BQとPyの炭素-炭素-炭素結合と、BQとPyの縮環反応により平面方向に広がる二次元高分子化反応が起こっていると考えられる。  In the BQ / Py polymer, as shown in Fig. 4, it is considered that a two-dimensional polymerization reaction that spreads in the plane direction occurs due to the carbon-carbon-carbon bond between BQ and Py and the ring-condensation reaction between BQ and Py. It is done.
X線回折装置(XRD)による層状構造の解析
 次に、BQ/Py 重合体のXRD の結果を図5Aに示す。また、BQ/Py重合体の層間方向のMM2計算後のChemBio3Dでの分子模型を図5Bに、BQ/Py重合体の面方向のMM2計算後のChemBio3Dでの分子模型を図5Cに示す。図5Aの(1)のピークにおけるd 値は0.37 nm(図5A,5B)、図5Bの(2)のピークにおけるd 値は0.21 nm (図5A,5C)と算出された。これらの周期の値、および回折パターンの形状はグラフェンが乱層構造を形成した際のものと類似していることが判明した。このことから、重合体は二次元高分子が乱層構造を形成していると考えられる。
Analysis of layered structure by X-ray diffractometer (XRD) Next, FIG. 5A shows the XRD results of the BQ / Py polymer. In addition, FIG. 5B shows a molecular model in ChemBio3D after MM2 calculation in the interlayer direction of the BQ / Py polymer, and FIG. 5C shows a molecular model in ChemBio3D after MM2 calculation in the surface direction of the BQ / Py polymer. The d value at the peak (1) in FIG. 5A was calculated to be 0.37 nm (FIGS. 5A and 5B), and the d value at the peak (2) in FIG. 5B was calculated to be 0.21 nm (FIGS. 5A and 5C). The values of these periods and the shape of the diffraction pattern were found to be similar to those when graphene formed a turbulent layer structure. From this, it is considered that the polymer has a two-dimensional polymer forming a turbulent layer structure.
走査型電子顕微鏡(SEM)による観察
 次に、BQ/Py重合体のSEM像を図6A~Fに示す。マクロには100~500 μm程度の大きさの粒子が観察された。一つの粒子についてその表面を拡大して観察すると、凹凸の無い非常に滑らかな面と、小さな粒子が集まっている荒い面が観察された。荒い面における一つの粒子の大きさは 100 nm程度であり、それらが集まって二次粒子を形成していることが確認された。
Observation by Scanning Electron Microscope (SEM) Next, SEM images of the BQ / Py polymer are shown in FIGS. In the macro, particles having a size of about 100 to 500 μm were observed. When the surface of one particle was magnified and observed, a very smooth surface without irregularities and a rough surface with small particles gathered were observed. The size of one particle on the rough surface was about 100 nm, and it was confirmed that they gathered to form secondary particles.
実施例2 BQ/Py重合体の元素分析及びモデルの構築
 実施例1で得られたBQ/Py重合体を元素分析した。その結果、表2に示すように、CHN元素比の計算値は実測値と0.5%以内で一致した。
Example 2 Elemental analysis of BQ / Py polymer and construction of model The BQ / Py polymer obtained in Example 1 was subjected to elemental analysis. As a result, as shown in Table 2, the calculated value of the CHN element ratio agreed with the measured value within 0.5%.
 また、得られたBQ/Py重合体をChemBio3Dによりモデルで表わしたところ、図7に示すように、BQ/Py重合体は2次元平面内に広がる構造を有すると共に、該平面に対して上下方向へ結合が延びる部分を備えていることが判明した。 Further, when the obtained BQ / Py polymer was represented by a model by ChemBio3D, as shown in FIG. 7, the BQ / Py polymer had a structure spreading in a two-dimensional plane, and the vertical direction with respect to the plane. It has been found that it has a portion where the connection extends.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
実施例3 BQ/Py重合体の還元
(実験方法)
 気相法によって得られたBQ/Py 重合体5 mg と所定濃度のヒドラジン溶液15 cm3 をガラス容器に入れ、空気雰囲気下、所定の時間攪拌した。攪拌時間は、ヒドラジン/純水(1:1(体積比))については10 分間、ヒドラジン原液については24 時間と設定した。次に、吸引ろ過を用いて試料を純水で洗浄、その後60℃で12 時間真空乾燥行うことでヒドラジンの除去を行った。
Example 3 Reduction of BQ / Py polymer (experimental method)
5 mg of the BQ / Py polymer obtained by the gas phase method and 15 cm 3 of a hydrazine solution having a predetermined concentration were placed in a glass container and stirred for a predetermined time in an air atmosphere. The stirring time was set to 10 minutes for hydrazine / pure water (1: 1 (volume ratio)) and 24 hours for hydrazine stock solution. Next, the sample was washed with pure water using suction filtration, and then hydrazine was removed by vacuum drying at 60 ° C. for 12 hours.
(結果)
フーリエ変換赤外分光法(FTIR)による構造解析
 ヒドラジン溶液と水を体積比で1:1 混合させた溶液にBQ/Py 重合体を加え、10 分間攪拌した際得られた還元体(以降、還元体1と記載)について、反応時に気体が発生していることが目視で確認できたため、還元反応が進行したと考えられた。また、図8に示すIR スペクトルからも3400 cm-1付近に大きくO-H 伸縮のピークが確認できることから、キノン由来のC=O部分における還元反応が進行していることがいえた。しかし、1650 cm-1 付近にC=O 由来のピークも存在するため、還元反応は十分に進行していないことが分かった。
(result)
Structural analysis by Fourier transform infrared spectroscopy (FTIR) A BQ / Py polymer was added to a solution in which a hydrazine solution and water were mixed at a volume ratio of 1: 1, and the reductant obtained after stirring for 10 minutes (hereinafter referred to as reduction) It was considered that the reduction reaction proceeded because it was visually confirmed that gas was generated during the reaction. Further, from the IR spectrum shown in FIG. 8, a large OH stretching peak can be confirmed in the vicinity of 3400 cm −1 , indicating that the reduction reaction at the C = O portion derived from quinone proceeds. However, it was found that the reduction reaction did not proceed sufficiently because there was also a peak derived from C = O near 1650 cm- 1 .
 次に、ヒドラジン原液に生成物を加え24 時間攪拌した際にも気体が発生していることが先の実験と同様に確認されたため、還元体(以降、還元体2と記載)が得られ、還元反応が進行していることが確認できた。しかし、図8のIR スペクトルの結果を見ると、1650 cm-1 付近のC=O 伸縮由来のピークが消失している一方で、3400 cm-1 付近の鋭いピークが観測されず、PPy のN-H ピークに類似したピークが観測された。 Next, since it was confirmed in the same manner as in the previous experiment that a gas was generated even when the product was added to the hydrazine stock solution and stirred for 24 hours, a reduced form (hereinafter referred to as reduced form 2) was obtained. It was confirmed that the reduction reaction was progressing. However, the IR spectrum results in FIG. 8 show that the peak derived from C = O stretching near 1650 cm -1 disappears, but no sharp peak near 3400 cm -1 is observed. A peak similar to the peak was observed.
元素分析
 また、表3に示すように、元素分析の結果から、還元体のN の割合が大きく増加していることが確認された。
Elemental analysis Also, as shown in Table 3, it was confirmed from the results of elemental analysis that the ratio of N in the reductant was greatly increased.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 図8の還元体1 から還元体2 へのIR スペクトルの変化から、還元前のBQ/Py重合体のIR と比較して還元体1 ではC=O 部分は一部ヒドラジンによる還元によってC-OH に還元されていることが考えられるが、還元体2 ではOH 伸縮のピークは消失し、NH 伸縮が大きく確認されることが分かる。このことから、ヒドラジンによる反応はC=O 部のC-OH への還元以外の反応が進行しているものと考えられた。 From the change in IR spectrum from reductant 1 to reductant 2 in Fig. 8, compared with IR of BQ / Py polymer before reduction, the C = O portion in reductant 1 is partially reduced by hydrazine to C-OH. However, in the reductant 2, the peak of OH stretching disappears, and it can be seen that NH stretching is greatly confirmed. From this, it was considered that the reaction with hydrazine was progressing other than the reduction of the C = O part to C-OH.
 上記元素分析の結果から、重合体への窒素原子の増加が伴う付加反応等が進行していることが考えられた。 From the results of the above elemental analysis, it was considered that an addition reaction accompanied by an increase in nitrogen atoms in the polymer progressed.
 ここで、1,4-ジカルボニル化合物のヒドラジンによる反応で、Fig. 5-2a に示すような酸素原子が窒素原子に置き換わり、新たにピリダジンが合成される反応(Tetrahedron Lett.,1974,15,1361)に着目すると、すべての1,4-ジカルボニル部位がピリダジンに変化したと仮定し、BQ/Py 重合体の推定構造に当てはめると、下記スキーム(I)のような反応が起こると考えられる。 Here, in the reaction of 1,4-dicarbonyl compound with hydrazine, the oxygen atom as shown in Fig. 5-2a is replaced with a nitrogen atom, and pyridazine is newly synthesized (Tetrahedron Lett., 1974, 15, 1361), assuming that all 1,4-dicarbonyl sites have been changed to pyridazine, and applying this to the presumed structure of BQ / Py polymer, the reaction shown in the following scheme (I) is considered to occur. .
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 ここから、下記式(VI)に示すように推定構造の分子のn 量体とのモル比がxである水分子が存在すると仮定すると、その原子の重量比は表4に示すようになる。 From here, assuming that there is a water molecule having a molar ratio x to the n-dimer of the molecule of the estimated structure as shown in the following formula (VI), the weight ratio of the atoms is as shown in Table 4.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 このことから、BQ/Py 重合体をヒドラジンによって還元した際に得られる化合物の構造はn=5 に対しx= 17 が還元体2 の元素分析の結果と最も近いことから、水分子を還元前のBQ/Py 重合体よりも非常に多く含むことが考えられた。1,4-ジカルボニル部位の存在から、BQ/Py 重合体において推定構造との整合性が確認できた。 From this, the structure of the compound obtained when the BQ / Py polymer is reduced with hydrazine is closest to the result of elemental analysis of the reductant 2 with x = 17 compared to n = 5. It was thought that it contained much more than the BQ / Py soot polymer. The presence of the 1,4-dicarbonyl moiety confirmed the consistency with the predicted structure in the BQ / Py polymer.
実施例4 BQ/Py重合体からのナノシートの形成
(実験方法)
 実施例1で得られたBQ/Py重合体15 mg と純水20 mL をガラス容器に入れ、2 時間超音波をかけたのち、室温で16 時間攪拌することで試料のはく離を行った。得られた分散液を、凍結乾燥することで純水を取り除き、はく離された試料を回収した。
 試料のナノシートが形成されているかどうかを観察した。
Example 4 Nanosheet Formation from BQ / Py Polymer (Experimental Method)
The BQ / Py polymer 15 mg obtained in Example 1 and 20 mL of pure water were placed in a glass container, subjected to ultrasonic waves for 2 hours, and then stirred at room temperature for 16 hours to peel off the sample. The obtained dispersion was freeze-dried to remove pure water, and the peeled sample was collected.
It was observed whether the nanosheet of the sample was formed.
(結果)
走査型電子顕微鏡(SEM)による観察
 実施例1のSEM像の観察では、剥離操作前の重合体の粒子は100 μm以上の大きな粒子であることが確認された。
(result)
Observation by Scanning Electron Microscope (SEM) Observation of the SEM image of Example 1 confirmed that the polymer particles before the peeling operation were large particles of 100 μm or more.
透過型電子顕微鏡(TEM)及び原子間力顕微鏡(AFM)による観察
 これに対し、図9のはく離後の生成物(以下、BQ/Pyナノシートとよぶ)のTEM 像に示すように、本実施例では剥離操作を行うことで、ナノシートの存在が確認された。次に、図10のBQ/Py ナノシートのAFM 像に示すように、シート一枚の厚さは約5 nm 程度であることが分かった。
Observation by transmission electron microscope (TEM) and atomic force microscope (AFM) On the other hand, as shown in the TEM image of the product after peeling (hereinafter referred to as BQ / Py nanosheet) in FIG. Then, the presence of the nanosheet was confirmed by performing a peeling operation. Next, as shown in the AFM image of the BQ / Py nanosheet in FIG. 10, the thickness of one sheet was found to be about 5 nm.
サイクリックボルタンメトリー
 次に水系電解液での酸化還元反応の確認のために行った電気化学特性の評価の結果を図11及び図12に示す。
Cyclic voltammetry Next, the results of the evaluation of electrochemical characteristics performed for confirmation of the oxidation-reduction reaction in the aqueous electrolyte are shown in FIGS.
 図11Bに示すように酸化還元ピークが確認されたことから、BQ/Py重合体はキノン部位由来の酸化還元能を有することが確認された(図11B,図11C)。また、BQ/Py重合体の形状とBQ標品及びAQ標品とを比較することで、重合体は0.5V付近にBQ類似の部位および0 V付近にAQ類似の部位を持つことが確認された(図11A,11B)。このことから、BQ/Py重合体の構造として、図11Dに示すようなベンゾキノンに対応するBQ部位(i)とアントラキノンに対応するAQ部位(ii)の存在が考えられ、BQ/Py重合体の構造が1,4-ベンゾキノンとピロールが炭素-炭素結合している部分と、1,4-ベンゾキノンとピロールが縮環を形成する部分とを有する構造という推定が支持された。 Since the redox peak was confirmed as shown in FIG. 11B, it was confirmed that the BQ / Py polymer had a redox ability derived from the quinone moiety (FIGS. 11B and 11C). In addition, by comparing the shape of the BQ / Py polymer with the BQ standard and AQ standard, it was confirmed that the polymer had a BQ-like part near 0.5V and an AQ-like part near 0V. (FIGS. 11A and 11B). From this, it is considered that the BQ / Py polymer has a BQ site (i) corresponding to benzoquinone and an AQ site (ii) corresponding to anthraquinone as shown in FIG. 11D. The presumption that the structure has a structure in which 1,4-benzoquinone and pyrrole have a carbon-carbon bond and a structure in which 1,4-benzoquinone and pyrrole form a condensed ring was supported.
 BQ/Py重合体では組み込まれたキノン部位が電気化学的に活性であり、効率的な電荷貯蔵へ応用できると考えられる。 In the BQ / Py polymer, the incorporated quinone moiety is electrochemically active and is considered to be applicable to efficient charge storage.
 図12は、BQ/Py重合体のはく離前後におけるサイクリックボルタモグラムを示す。はく離前の容量が50.1mA h g-1 であるのに対し、はく離後の容量は152.5 mA h g-1 に増加した。これははく離により積層していたBQ/Py共重合体では、ナノシート化による反応界面の増加が確認された。 FIG. 12 shows a cyclic voltammogram before and after peeling of the BQ / Py polymer. Capacity before peeling Whereas a 50.1mA h g -1, volume after peeling was increased to 152.5 mA h g -1. In the BQ / Py copolymer laminated by peeling, an increase in the reaction interface due to nanosheet formation was confirmed.
実施例5 BQ/Py共重合体の基板へのコーティング
(実験方法)
 コート対象となる基板を、BQ の入ったガラス瓶の上部に位置するよう、実施例1のBQとPyを気相法で反応させる反応系の密閉容器の蓋に固定した。反応終了後、基板の表面をアセトンで洗浄した。基板としてはガラス基板、ITO ガラス基板、KBr 基板、Ti 基板、Cu メッシュ、Ti メッシュを選択した。
Example 5 Coating of BQ / Py copolymer on substrate (experimental method)
The substrate to be coated was fixed to the lid of the closed container of the reaction system in which BQ and Py of Example 1 were reacted by the vapor phase method so as to be positioned above the glass bottle containing BQ. After completion of the reaction, the surface of the substrate was washed with acetone. A glass substrate, ITO glass substrate, KBr substrate, Ti substrate, Cu mesh, or Ti mesh was selected as the substrate.
(結果)
 いずれの基板の場合も、基板の表面が茶色くコートされていることが確認された。
(result)
In any case, it was confirmed that the surface of the substrate was coated brown.
接触角測定
 また、ガラス基板(n=10)について、コート前後の基板の接触角を測定したところ、表5に示すように、コートされたガラス基板(コート板)では、コート前のガラス基板(ガラス板)と比較して、接触角の増大が確認された。
Contact angle measurement Further , when the contact angle of the substrate before and after the coating was measured for the glass substrate (n = 10), as shown in Table 5, the coated glass substrate (coated plate) had a glass substrate (before coating) ( An increase in the contact angle was confirmed as compared with the glass plate.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
実施例6 重合体の水素発生電極触媒としての特性評価
実験方法
 グラッシーカーボン電極(GC電極)にBQ/Py共重合体の分散媒をキャストし、60℃恒温槽で乾燥させたのちにLinear Sweep Voltammetry(LSV)で評価した。このとき、分散媒として 2-プロパノール200 μLにBQ/Py共重合体を1 mg分散させた。GC電極は直径3 mm BAS社製CPEカーボンペースト電極を用いた。LSV測定は、走査範囲-0.19 ~-0.8 V (vs. Ag/AgCl)すなわち 0~-0.61 V(vs. SHE)、走査速度 5 mV/sで測定し、電解液は0.5M H2SO4、参照極はAg/AgCl、対極はPtを用いた。
Example 6 Characteristic evaluation of polymer as a hydrogen generating electrode catalyst Experimental method After casting a dispersion medium of BQ / Py copolymer on a glassy carbon electrode (GC electrode) and drying in a 60 ° C constant temperature bath. Evaluation was performed by Linear Sweep Voltammetry (LSV). At this time, 1 mg of BQ / Py copolymer was dispersed in 200 μL of 2-propanol as a dispersion medium. The GC electrode used was a CPE carbon paste electrode manufactured by BAS with a diameter of 3 mm. LSV measurement is performed at a scanning range of -0.19 to -0.8 V (vs. Ag / AgCl), that is, 0 to -0.61 V (vs. SHE), at a scanning speed of 5 mV / s, and the electrolyte is 0.5M H 2 SO 4 . The reference electrode was Ag / AgCl, and the counter electrode was Pt.
実験結果
 図13に示すグラフにおいて、横軸の切片は水素発生に要する過電圧に相当する。このLSVの結果から、キャスト回数3回のBQ/Py共重合体について還元操作を行うことで優れた水素発生能を有することがわかった。また、同一の条件でキャストした市販粉末のグラフェンと比較しても非常に高い活性を有することがわかった。
Experimental Results In the graph shown in FIG. 13, the intercept on the horizontal axis corresponds to the overvoltage required for hydrogen generation. From the results of this LSV, it was found that the BQ / Py copolymer having 3 casts has an excellent hydrogen generation ability by performing a reduction operation. Moreover, it turned out that it has very high activity compared with the graphene of the commercial powder cast on the same conditions.
実施例7 BQ/Th重合体の合成
(合成方法)
 実施例1において、ピロール(Py)を同じ物質量のチアゾール(Th)に置き換えた以外は同じ条件とし、1,4-ベンゾキノンとチアゾールからなる共重合体(以下、BQ/Th重合体と称する)を得た。BQとThの比を30nmol:30nmolとした。
Example 7 Synthesis of BQ / Th polymer (synthesis method)
In Example 1, a copolymer consisting of 1,4-benzoquinone and thiazole (hereinafter referred to as BQ / Th polymer) was used under the same conditions except that pyrrole (Py) was replaced with thiazole (Th) having the same substance amount. Got. The ratio of BQ to Th was 30 nmol: 30 nmol.
 得られたBQ/Th重合体に対して、実験手順の「1.フーリエ変換赤外分光法(FTIR)による構造解析」~「3.元素分析」を行った。 The obtained BQ / Th polymer was subjected to “1. Structural analysis by Fourier transform infrared spectroscopy (FTIR)” to “3. Elemental analysis” in the experimental procedure.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(結果)
フーリエ変換赤外分光法(FTIR)による構造解析
 まず、フーリエ変換赤外分光装置で測定した、BQ/Th重合体及びBQ/Py重合体のIR スペクトルを図14に示す。各スペクトルの比較から、(1)のピークはC=O 伸縮、(2)のピークはC=S 伸縮、(3)のピークはC=S伸縮と確認できた。BQ/Th重合体は、BQとThを含む高分子化した構造であることが示唆された。
(result)
Structural Analysis by Fourier Transform Infrared Spectroscopy (FTIR) First, IR spectra of BQ / Th polymer and BQ / Py polymer measured with a Fourier transform infrared spectrometer are shown in FIG. From comparison of each spectrum, it was confirmed that the peak of (1) was C = O stretching, the peak of (2) was C = S stretching, and the peak of (3) was C = S stretching. It was suggested that the BQ / Th polymer has a polymerized structure containing BQ and Th.
熱重量測定装置(TG‐DTA)による質量減少の測定
 次に、図15に示すように、TG グラフによると、BQ/Th重合体の質量減少開始温度はBQ/Py重合体の400℃よりも低いものの、300℃を超えており、BQ/Th重合体のグラフはBQ/Py重合体と類似している。このTGの結果とIRの結果を合わせて、BQ/Th重合体が高分子化していることが確認された。図16にBQ/Th重合体の一部の構造式を示す。
Measurement of mass reduction by thermogravimetry (TG-DTA) Next, as shown in FIG. 15, according to the TG graph, the mass reduction start temperature of the BQ / Th polymer is higher than 400 ° C. of the BQ / Py polymer. Although it is low, it exceeds 300 ° C., and the graph of BQ / Th polymer is similar to that of BQ / Py polymer. By combining the results of TG and IR, it was confirmed that the BQ / Th polymer was polymerized. FIG. 16 shows a partial structural formula of the BQ / Th polymer.
元素分析
 次に、BQ/Th 重合体の元素分析の結果は、重量比でC = 62 wt%、H = 2.98 wt%、N = 2.27 wt%、S=4.894 wt%、O= 27.856 wt%であった。元素分析の結果からもSおよびNの存在が確認される。TGの結果から高分子化していることがわかる。一方でDiels-Alder反応およびC-C結合の形成のみを仮定した推定構造と比較してSの重量が少ないことから、Th とBQ の結合だけでなく、BQ同士での結合も含む形での高分子化が考えられる。
Elemental analysisNext , the results of elemental analysis of BQ / Th polymer were as follows: C = 62 wt%, H = 2.98 wt%, N = 2.27 wt%, S = 4.894 wt%, O = 27.856 wt%. there were. The presence of S and N is also confirmed from the results of elemental analysis. It can be seen from the results of TG that the polymer is polymerized. On the other hand, since the weight of S is small compared to the estimated structure assuming only the Diels-Alder reaction and the formation of CC bond, not only the bond of Th and BQ but also the polymer that includes the bond between BQs Can be considered.
実施例8 BQ/Pyr重合体の合成
(合成方法)
 実施例1において、ピロール(Py)を同じ物質量のピリジン(Pyr)に置き換えた以外は同じ条件とし、1,4-ベンゾキノンとピリジンからなる共重合体(以下、BQ/Pyr重合体と称する)を得た。BQとPyrの比を30nmol:30nmolとした。
Example 8 Synthesis of BQ / Pyr polymer (synthesis method)
In Example 1, a copolymer consisting of 1,4-benzoquinone and pyridine (hereinafter referred to as BQ / Pyr polymer) was used under the same conditions except that pyrrole (Py) was replaced with pyridine (Pyr) having the same substance amount. Got. The ratio of BQ to Pyr was 30 nmol: 30 nmol.
 得られたBQ/Pyr重合体に対して、実験手順の「2.熱重量測定装置(TG‐DTA)による質量減少の測定」及び「3.元素分析」を行った。 The obtained BQ / Pyr polymer was subjected to “2. Measurement of mass reduction by thermogravimetry (TG-DTA)” and “3. Elemental analysis” in the experimental procedure.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(結果)
熱重量測定装置(TG‐DTA)による質量減少の測定
 図15に示すように、TG グラフによると、BQ/Pyr重合体の質量減少開始温度はBQ/Py重合体の400℃よりも低いものの、300℃を超えており、BQ/Pyr重合体のグラフはBQ/Py重合体と類似している。このTGの結果から、BQ/Pyr重合体が高分子化していることが確認された。
(result)
Measurement of mass reduction by thermogravimetry (TG-DTA) As shown in FIG. 15, according to the TG graph, the mass reduction start temperature of the BQ / Pyr polymer is lower than 400 ° C. of the BQ / Py polymer, Above 300 ° C, the graph of BQ / Pyr polymer is similar to BQ / Py polymer. From the results of this TG, it was confirmed that the BQ / Pyr polymer was polymerized.
元素分析
 次に、BQ/Pyr 重合体の元素分析の結果は、重量比でC = 65.76 wt%、H = 3.506 wt%、N = 0.974 wt%、O= 29.76 wt%であった。元素分析の結果からNの存在が確認され、ピリジンを組み込んだ構造であることが分かる。TGの結果から高分子化していることがわかる。一方でDiels-Alder反応およびC-C結合の形成のみを仮定した場合よりもNの重量が少ないことから、PyrとBQ の結合だけでなく、BQ同士での結合も含む形での高分子化が考えられる。
Elemental Analysis Next, the results of elemental analysis of the BQ / Pyr polymer were C = 65.76 wt%, H = 3.506 wt%, N = 0.974 wt%, and O = 29.76 wt% in weight ratio. The presence of N is confirmed from the results of elemental analysis, and it is understood that the structure incorporates pyridine. It can be seen from the results of TG that the polymer is polymerized. On the other hand, since the weight of N is smaller than when assuming only the Diels-Alder reaction and the formation of CC bond, it is considered to polymerize not only the bond of Pyr and BQ but also the bond between BQs. It is done.
実施例9 BQ/DVB重合体の合成
(合成方法)
 1,4-ベンゾキノン(BQ)の粉末(純度98.0%、東京化成工業株式会社)4.32 gと1,4-ジビニルベンゼン(DVB)液体(純度>50%、東京化成工業株式会社)1.14 cm3とを密封容器に入れ、それらを110℃恒温槽内に48時間静置し、粗生成物を回収した。粗生成物から未反応のモノマー分子を取り除くために吸引ろ過を用い、アセトンで洗浄した。次に、低重合度分子を取り除くため、テフロン(登録商標)性遠沈管にN-メチル-2-ピロリドン(NMP)(純度99.0%、和光純薬工業株式会社)25 cm3 と回収物を加え13500rpm で10 分間遠心分離を行い、沈殿物を回収した。その後、残存NMP を取り除くため、210℃で16時間真空乾燥し、1,4-ベンゾキノンと1,4-ジビニルベンゼンからなる共重合体(以下、BQ/ DVB重合体と称する)を得た。
Example 9 Synthesis of BQ / DVB polymer
(Synthesis method)
1,4-benzoquinone (BQ) powder (purity 98.0%, Tokyo Chemical Industry Co., Ltd.) 4.32 g and 1,4-divinylbenzene (DVB) liquid (purity> 50%, Tokyo Chemical Industry Co., Ltd.) 1.14 cm 3 Were placed in a sealed container and left in a 110 ° C. constant temperature bath for 48 hours to recover the crude product. Suction filtration was used to remove unreacted monomer molecules from the crude product and washed with acetone. Next, in order to remove molecules with low polymerization degree, add 25 cm 3 of N-methyl-2-pyrrolidone (NMP) (purity 99.0%, Wako Pure Chemical Industries, Ltd.) and recovered material to a Teflon (registered trademark) centrifuge tube. Centrifugation was carried out at 13500 rpm for 10 minutes to collect the precipitate. Thereafter, in order to remove residual NMP, it was vacuum-dried at 210 ° C. for 16 hours to obtain a copolymer composed of 1,4-benzoquinone and 1,4-divinylbenzene (hereinafter referred to as BQ / DVB polymer).
(結果)
フーリエ変換赤外分光法(FTIR)による構造解析
 図17に、精製したBQ/DVB重合体のIR測定結果を示す。(1)の3400 cm-1付近のピークはO-H伸縮振動、(2)の1600 cm-1付近のピークはC=O伸縮振動、(3)の1400 cm-1付近のピークは炭素芳香環伸縮振動に帰属した。
(result)
Structural Analysis by Fourier Transform Infrared Spectroscopy (FTIR) FIG. 17 shows the IR measurement result of the purified BQ / DVB polymer. The peak near 3400 cm -1 in (1) is OH stretching vibration, the peak near 1600 cm -1 in (2) is C = O stretching vibration, and the peak near 1400 cm -1 in (3) is carbon aromatic ring stretching. Attributed to vibration.
 C=O伸縮振動および炭素芳香環伸縮振動のピークが確認されたことから、共重合体はキノン部位が組み込まれた分子構造を有すると考えられる。 Since the peaks of C = O stretching vibration and carbon aromatic ring stretching vibration were confirmed, the copolymer is considered to have a molecular structure in which a quinone moiety is incorporated.
 重合時のBQとDVBの比を変化させた結果(非図示)から、以後の実験では、BQ/DVB重合体の比を5nmol:1nmolとした。 From the result of changing the ratio of BQ and DVB during polymerization (not shown), in the subsequent experiments, the ratio of BQ / DVB polymer was 5 nmol: 1 nmol.
熱重量測定装置(TG‐DTA)による質量減少の測定
 図18に示すように、TG グラフによると、BQ/DVB重合体の質量減少開始温度は400℃であり、BQ標品と比較して高い温度で質量減少が始まっていることが分かった。これよりBQ/DVB重合体は高分子化していることが確認された。
Measurement of mass reduction by thermogravimetry (TG-DTA) As shown in FIG. 18, according to the TG graph, the mass reduction start temperature of the BQ / DVB polymer is 400 ° C., which is higher than that of the BQ standard. It was found that mass reduction began at temperature. From this, it was confirmed that the BQ / DVB polymer was polymerized.
元素分析
 BQ/DVB重合体の元素分析の結果は、重量比でC=74.32 wt%、H=3.87 wt%、N=0.00 wt%、O=21.81 wt%であった。なお、Oの重量比は得られる生成物にはC、H、N、Oのみが含まれていると仮定した際に得られる計算値として記載した。これより、分子構造を下記の式(XIX)と推定すると、p:q:r:s:t:uの分子構造の比は2:6:2:2:0:0であり、水和水として3H2Oを含む構造であると考えられた。
The results of elemental analysis of the elemental analysis BQ / DVB polymer were C = 74.32 wt%, H = 3.87 wt%, N = 0.00 wt%, and O = 21.81 wt% in weight ratio. The weight ratio of O is described as a calculated value when it is assumed that the obtained product contains only C, H, N, and O. From this, when the molecular structure is estimated as the following formula (XIX), the ratio of the molecular structure of p: q: r: s: t: u is 2: 6: 2: 2: 0: 0, As a structure containing 3H 2 O.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
X線回折装置(XRD)による層状構造の解析及び質量分析法
 図19にXRD測定の結果を、図20に質量分析の結果を示す。
Analysis of layered structure and mass spectrometry using X-ray diffractometer (XRD) FIG. 19 shows the results of XRD measurement, and FIG. 20 shows the results of mass spectrometry.
 これよりBQ/DVB重合体の分子量は700~4000程度であることが判明した。分子構造と分子量から分子モデルを作製した。そのモデルを図21に示す。このモデルよりBQ/DVB重合体の分子は直線状で枝分かれを有する構造であると考えられる。 From this, it was found that the molecular weight of the BQ / DVB polymer is about 700 to 4000. A molecular model was prepared from the molecular structure and molecular weight. The model is shown in FIG. From this model, it is considered that the BQ / DVB polymer molecules have a linear and branched structure.
実施例10 BQ/DVBナノフレークの合成
(合成方法)
 実施例9で得られたBQ/DVB重合体を30 mgをベンジルアルコール20 cm3中に入れ、これに90分超音波処理を加え、その後60℃で48 時間撹拌を行い、分散液を得た。この分散液をBQ/DVBナノフレーク懸濁液とした。
Example 10 Synthesis of BQ / DVB nanoflakes (synthesis method)
30 mg of the BQ / DVB polymer obtained in Example 9 was placed in 20 cm 3 of benzyl alcohol, sonicated for 90 minutes, and then stirred at 60 ° C. for 48 hours to obtain a dispersion. . This dispersion was used as a BQ / DVB nanoflakes suspension.
(結果)
透過型電子顕微鏡(TEM)及び原子間力顕微鏡(AFM)による観察
 図22にBQ/DVBナノフレークのTEM像(図22(a),(b))を示す。TEMで観察されるナノフレークの平均長さを測定したところ(図22(c))、約50 nmであった。
(result)
Observation by Transmission Electron Microscope (TEM) and Atomic Force Microscope (AFM) FIG. 22 shows TEM images of BQ / DVB nanoflakes ( FIGS. 22A and 22B). When the average length of the nanoflakes observed by TEM was measured (FIG. 22 (c)), it was about 50 nm.
 図23にBQ/DVBナノフレークのAFM像を示す。BQ/DVBナノフレークの平均厚さは約15nmであった。 Fig. 23 shows an AFM image of BQ / DVB nanoflakes. The average thickness of BQ / DVB nanoflakes was about 15 nm.
サイクリックボルタンメトリー
 次に図24に、BQ/DVB重合体およびBQ/DVBナノフレークのサイクリックボルタンメトリーの結果をに示す。
Cyclic Voltammetry Next, FIG. 24 shows the results of cyclic voltammetry of BQ / DVB polymer and BQ / DVB nanoflakes.
 これより、BQ/DVB重合体の酸化ピークは0.8 V付近であり、BQ/DVBナノフレークの酸化ピークは0.6 V付近であり、過電圧の減少が見られた。また、BQ/DVB重合体の静電容量70.0 mA h g-1に対し、BQ/DVBナノフレークの静電容量は209.0 mA h g-1と向上した。 From this, the oxidation peak of the BQ / DVB polymer was around 0.8 V, and the oxidation peak of the BQ / DVB nanoflakes was around 0.6 V, indicating a decrease in overvoltage. In addition, the capacitance of BQ / DVB nanoflakes was improved to 209.0 mA h g -1 compared to the capacitance of BQ / DVB polymer of 70.0 mA h g -1 .
充放電測定
 図25に、BQ/DVBナノフレークの充放電測定の結果を示す。これより、0.2 A g-1で162 mA h g-1の静電容量を示した。また、充放電曲線から0.2~0.6 V付近にキノン部位に由来するプラトーが見られ、これは図24のサイクリックボルタンメトリーの結果と一致した。
Charge / Discharge Measurement FIG. 25 shows the results of charge / discharge measurement of BQ / DVB nanoflakes. This showed a capacitance of 162 mA h g -1 at 0.2 A g -1 . In addition, a plateau derived from the quinone site was observed in the vicinity of 0.2 to 0.6 V from the charge / discharge curve, which was consistent with the cyclic voltammetry results of FIG.
実施例11 TCNQ/DVB重合体の合成
(合成方法)
 実施例1において、1,4-ベンゾキノン(BQ)を7, 7, 8, 8-テトラシアノキノジメタン(TCNQ)に置き換えた以外は同じ条件とし、7, 7, 8, 8-テトラシアノキノジメタンと1, 4-ジビニルベンゼンからなる共重合体(以下、TCNQ/DVB重合体と称する)を得た。TCNQとDVBの比を5mmol:1mmolとした。
Example 11 Synthesis of TCNQ / DVB Polymer (Synthesis Method)
In Example 1, the same conditions were used except that 1,4-benzoquinone (BQ) was replaced with 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ), and 7, 7, 8, 8-tetracyanoquino was used. A copolymer composed of dimethane and 1,4-divinylbenzene (hereinafter referred to as TCNQ / DVB polymer) was obtained. The ratio of TCNQ to DVB was 5 mmol: 1 mmol.
 得られたTCNQ/DVB重合体に対して、実験手順の「1.フーリエ変換赤外分光法(FTIR)による構造解析」~「3.元素分析」を行った。 The obtained TCNQ / DVB polymer was subjected to the experimental procedures “1. Structural analysis by Fourier transform infrared spectroscopy (FTIR)” to “3. Elemental analysis”.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(結果)
フーリエ変換赤外分光法(FTIR)による構造解析
 まず、フーリエ変換赤外分光装置で測定した、TCNQ/DVB重合体のIR スペクトルを図26に示す。各スペクトルの比較から、(1)のピークはN-H 伸縮、(2)のピークはN-H変角と確認できた。TCNQ/DVB重合体は、TCNQとDVBが組み込まれて高分子化した構造であることが示唆された。なお、シアノ基が付加環化反応に関与したため、CN三重結合のピークが消失したと考えられる。
(result)
Structural Analysis by Fourier Transform Infrared Spectroscopy (FTIR) First, the IR spectrum of the TCNQ / DVB polymer measured with a Fourier transform infrared spectrometer is shown in FIG. From the comparison of each spectrum, the peak of (1) was confirmed to be NH stretching and the peak of (2) was confirmed to be NH deflection. It was suggested that the TCNQ / DVB polymer has a polymerized structure incorporating TCNQ and DVB. In addition, it is considered that the peak of the CN triple bond disappeared because the cyano group participated in the cycloaddition reaction.
熱重量測定装置(TG‐DTA)による質量減少の測定
 次に、図27に示すように、TG グラフによると、TCNQ/DVB重合体の質量減少開始温度は、TCNQ単体の重量減少開始温度300℃を超えている。このTGの結果とIRの結果を合わせて、TCNQ/DVB重合体が高分子化していることが確認された。図28にTCNQ/DVB重合体の一部の構造式を示す。
元素分析
 次に、TCNQ/DVB 重合体の元素分析の結果は、重量比でC = 74.4 wt%、H = 4.99 wt%、N = 11.1 wt%、O=  9.15 wt%であった。元素分析の結果からもNの存在が確認される。TGの結果から高分子化していることがわかる。
Measurement of weight loss by thermogravimetric measuring apparatus (TG-DTA) Next, as shown in FIG. 27, according to the TG graph, weight loss initiation temperature of the TCNQ / DVB polymers, TCNQ single weight loss initiation temperature 300 ° C. Is over. Combining the results of TG and IR, it was confirmed that the TCNQ / DVB polymer was polymerized. FIG. 28 shows a partial structural formula of the TCNQ / DVB polymer.
Elemental Analysis Next, the results of elemental analysis of the TCNQ / DVB polymer were C = 74.4 wt%, H = 4.99 wt%, N = 11.1 wt%, and O = 9.15 wt% in weight ratio. The presence of N is also confirmed from the results of elemental analysis. It can be seen from the results of TG that the polymer is polymerized.

Claims (21)

  1.  互いに付加環化反応を起こす、置換基を有してもよいベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と、置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素とを構成単位として含む重合体又はその還元体。 A benzoquinone which may have a substituent or a monocyclic aromatic hydrocarbon which has an electron-withdrawing substituent and a heterocyclic aromatic compound which may have a substituent, causing a cycloaddition reaction with each other Alternatively, a polymer containing a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents as a structural unit or a reduced product thereof.
  2.  置換基を有してもよいベンゾキノン、又は電子求引性の置換基を有し2位及び3位の炭素、並びに5位及び6位の炭素のうちの少なくともいずれか一方の組の炭素が置換されていない単環式芳香族炭化水素と、置換基を有してもよい複素環式芳香族化合物又はパラ位にアルケニル基を置換基として有する単環式芳香族炭化水素とを構成単位として含む重合体又はその還元体。 A benzoquinone which may have a substituent, or an electron-withdrawing substituent which is substituted with at least one of the carbons at the 2nd and 3rd positions, and the carbon at the 5th and 6th positions And a monocyclic aromatic hydrocarbon which may have a substituent and a monocyclic aromatic hydrocarbon having an alkenyl group as a substituent at the para position as a structural unit A polymer or a reduced form thereof.
  3.  前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、前記置換基を有してもよい複素環式芳香族化合物であり、前記ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と前記複素環式芳香族化合物とが炭素-炭素結合している部分と、2分子の前記ベンゾキノン又は電子求引性の置換基を有する単環式芳香族炭化水素と1分子の前記複素環式芳香族化合物とが縮環を形成する部分とを有する請求項1又は2に記載の重合体又はその還元体。 The heterocyclic aromatic compound which may have the substituent or the monocyclic aromatic hydrocarbon which has a plurality of alkenyl groups as a substituent is a heterocyclic aromatic compound which may have the substituent. A portion in which the monocyclic aromatic hydrocarbon having the benzoquinone or electron-withdrawing substituent and the heterocyclic aromatic compound are carbon-carbon bonded, and two molecules of the benzoquinone or electron-withdrawing group. The polymer according to claim 1 or 2, or a reduced product thereof, having a moiety in which a monocyclic aromatic hydrocarbon having a functional substituent and one molecule of the heterocyclic aromatic compound form a condensed ring.
  4.  前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、置換基を有してもよいアゾール、ピリジン、ピリミジン、又はピリダジンである請求項1~4のいずれか一項に記載の重合体又はその還元体。 The heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is an azole, pyridine, pyrimidine or pyridazine which may have a substituent The polymer according to any one of claims 1 to 4, or a reduced product thereof.
  5.  前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、ピロール、ピリジン、ピリダジン又はチアゾールである請求項1~4のいずれか一項に記載の重合体又はその還元体。 The heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is pyrrole, pyridine, pyridazine or thiazole. The polymer according to claim 1, or a reduced product thereof.
  6.  下記式(i)~式(iv)で表わされるいずれかの部分を含む請求項1~5のいずれか一項に記載の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Cy1は5員環の含窒素複素環であり、
     Cy2は単環式芳香族炭化水素であり、
     Cy3は6員環の含窒素複素環であり、
     Aはビニル基、アシル基、シアノ基、ハロゲン基、ニトロ基、ヒドロキシ基;ハロゲン基、シアノ基、ニトロ基、若しくはヒドロキシ基により置換されたアルケニル:から選択される電子求引性の置換基であり、
    AとCyの間の結合は単結合又は二重結合である。)
    The polymer according to any one of claims 1 to 5, comprising any part represented by the following formulas (i) to (iv):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Cy1 is a 5-membered nitrogen-containing heterocycle,
    Cy2 is a monocyclic aromatic hydrocarbon,
    Cy3 is a 6-membered nitrogen-containing heterocycle,
    A is an electron-withdrawing substituent selected from vinyl group, acyl group, cyano group, halogen group, nitro group, hydroxy group; alkenyl substituted by halogen group, cyano group, nitro group, or hydroxy group: Yes,
    The bond between A and Cy is a single bond or a double bond. )
  7. 下記式(I)又は式(II)で表わされる部分を含む請求項1~6のいずれか一項に記載の重合体。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    The polymer according to any one of claims 1 to 6, comprising a moiety represented by the following formula (I) or formula (II).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  8. 下記式(III)又は(IV)で表わされる部分を含む請求項7に記載の重合体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     R1及びR2はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはピロリル基であるか、又は
     R1及びR2は共に、隣り合うピロール基及び隣り合うベンゾキノリル基と縮環形成し、
     R3及びR4はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはピロリル基であるか、又は
     R3及びR4は共に、隣り合うピロール基及び隣り合うベンゾキノリル基と縮環形成し、
     ただし、R1及びR2、若しくはR3及びR4が縮環形成する場合は、いずれか一方の組が縮環形成し、
     R5、R6及びR7は、それぞれ独立して、水素、ハロゲン、ヒドロキシ、アルキル基、又はベンゾキノリル基である。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、
     R1及びR2はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはチアゾリル基であるか、又は
     R1及びR2は共に、隣り合うチアゾリル基及び隣り合うベンゾキノリル基と縮環形成し、
     R3及びR4はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、アルキル基、若しくはチアゾリル基であるか、又は
     R3及びR4は共に、隣り合うチアゾリル基及び隣り合うベンゾキノリル基と縮環形成し、
     ただし、R1及びR2、若しくはR3及びR4が縮環形成する場合は、いずれか一方の組が縮環形成し、
     R6は水素、ハロゲン、ヒドロキシ、アルキル基、又はベンゾキノリル基である。)
    The polymer of Claim 7 containing the part represented by following formula (III) or (IV).
    Figure JPOXMLDOC01-appb-C000004
    (Where
    R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 1 and R 2 are both an adjacent pyrrole group and an adjacent benzoquinolyl group. Forming a condensed ring with the group,
    R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or pyrrolyl group, or R 3 and R 4 together are an adjacent pyrrole group and an adjacent benzoquinolyl group. Forming a condensed ring with the group,
    However, when R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring,
    R 5 , R 6 and R 7 are each independently hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group. )
    Figure JPOXMLDOC01-appb-C000005
    (Where
    R 1 and R 2 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 1 and R 2 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups. Forming a condensed ring with the group,
    R 3 and R 4 are each independently hydrogen, halogen, nitro, amide, thiol, hydroxy, alkyl group, or thiazolyl group, or R 3 and R 4 are both adjacent thiazolyl groups and adjacent benzoquinolyl groups. Forming a condensed ring with the group,
    However, when R 1 and R 2 , or R 3 and R 4 form a condensed ring, either one of them forms a condensed ring,
    R 6 is hydrogen, halogen, hydroxy, an alkyl group, or a benzoquinolyl group. )
  9.  下記式(IX)で表わされる部分を含む請求項1~8のいずれかに記載の重合体又はその還元体。
    Figure JPOXMLDOC01-appb-C000006
    (式中、
     R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
     R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     kは1以上の整数であり、
     xは0~100の実数である。)
    The polymer or reduced product thereof according to any one of claims 1 to 8, which comprises a moiety represented by the following formula (IX).
    Figure JPOXMLDOC01-appb-C000006
    (Where
    R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
    R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
    R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
    k is an integer greater than or equal to 1,
    x is a real number from 0 to 100. )
  10.  下記式(X)で表わされる部分を含む請求項1~8のいずれかに記載の重合体又はその還元体。
    Figure JPOXMLDOC01-appb-C000007
    (式中、
     R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
     R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     R23、R25、及びR26はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
     R24、R27、及びR30はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     R28、R29はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     m、nはそれぞれ1以上の整数であり、
     xは0~100の実数である。)
    The polymer or the reduced product thereof according to any one of claims 1 to 8, which comprises a moiety represented by the following formula (X).
    Figure JPOXMLDOC01-appb-C000007
    (Where
    R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
    R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
    R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
    R 23 , R 25 , and R 26 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
    R 24 , R 27 and R 30 are each independently a hydrogen, halogen, hydroxy or alkyl group;
    R 28 and R 29 are each independently a hydrogen, halogen, hydroxy or alkyl group,
    m and n are each an integer of 1 or more,
    x is a real number from 0 to 100. )
  11.  式(XI)で表わされる部分を含む重合体。
    Figure JPOXMLDOC01-appb-C000008
    (式中、
     R15、R17、及びR18はそれぞれ独立して、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ、又はアルキル基であり、
     R16、R19、及びR20はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     R21、R22はそれぞれ独立して、水素、ハロゲン、ヒドロキシ又はアルキル基であり、
     nは1以上の整数であり、
     xは0~20の実数である)
    A polymer containing a moiety represented by the formula (XI).
    Figure JPOXMLDOC01-appb-C000008
    (Where
    R 15 , R 17 , and R 18 are each independently a hydrogen, halogen, nitro, amide, thiol, hydroxy, or alkyl group;
    R 16 , R 19 and R 20 are each independently a hydrogen, halogen, hydroxy or alkyl group;
    R 21 and R 22 are each independently a hydrogen, halogen, hydroxy or alkyl group;
    n is an integer of 1 or more,
    x is a real number between 0 and 20)
  12.  前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素は、複数のアルケニル基を置換基として有する単環式芳香族炭化水素であり、
     前記ベンゾキノンと前記複数のアルケニル基を置換基として有する単環式芳香族炭化水素とが縮環を形成する部分とを有する請求項1又は2に記載の重合体又はその還元体。
    The heterocyclic aromatic compound that may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent And
    The polymer or reduced product thereof according to claim 1 or 2, wherein the benzoquinone and the monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents form a condensed ring.
  13.  前記置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素がジビニルベンゼンである請求項1、2又は12に記載の重合体又はその還元体。 The polymer according to claim 1, 2, or 12, wherein the heterocyclic aromatic compound which may have a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent is divinylbenzene. Its reductant.
  14.  式(XII)~(XVII)のうちの少なくとも一つで表わされる部分を含む請求項1、2、12、又は13に記載の重合体。
    Figure JPOXMLDOC01-appb-C000009
    The polymer according to claim 1, 2, 12, or 13, comprising a moiety represented by at least one of formulas (XII) to (XVII).
    Figure JPOXMLDOC01-appb-C000009
  15.  平面状に延びる請求項1~14のいずれかに記載の重合体を有する厚さ0.2nm~2.0nmのシート。 A sheet having a thickness of 0.2 nm to 2.0 nm comprising the polymer according to claim 1 extending in a planar shape.
  16.  0.2nm~2.0nmの層間間隔で複数の請求項15に記載のシートが積層された積層体。 A laminate in which a plurality of sheets according to claim 15 are laminated at an interlayer spacing of 0.2 nm to 2.0 nm.
  17.  請求項1~14のいずれかに記載の重合体を含む長さ1~1000nm及び厚み1~100nmのナノフレーク。 A nanoflakes having a length of 1 to 1000 nm and a thickness of 1 to 100 nm comprising the polymer according to any one of claims 1 to 14.
  18.  互いに付加環化反応を起こす、置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素と、置換基を有してもよい複素環式芳香族化合物又は複数のアルケニル基を置換基として有する単環式芳香族炭化水素とを重合させることを含む重合体の製造方法。 A heteroaromatic compound having a substituent or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as a substituent, and a heterocycle having a substituent A method for producing a polymer, comprising polymerizing a cyclic aromatic compound or a monocyclic aromatic hydrocarbon having a plurality of alkenyl groups as substituents.
  19.  請求項1~14のいずれかに記載の重合体のコーティング材料としての使用方法。 Use of the polymer according to any one of claims 1 to 14 as a coating material.
  20.  請求項1~14のいずれかに記載の重合体を含む電極材料。 An electrode material comprising the polymer according to any one of claims 1 to 14.
  21.  電極活物質または電極触媒である請求項20に記載の電極材料。 The electrode material according to claim 20, which is an electrode active material or an electrode catalyst.
PCT/JP2018/017519 2017-05-08 2018-05-02 Polymer having graphite- or graphene-like lamellar structure WO2018207699A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517594A JP7166635B2 (en) 2017-05-08 2018-05-02 Polymer having a layered structure like graphite or graphene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017092533 2017-05-08
JP2017-092533 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018207699A1 true WO2018207699A1 (en) 2018-11-15

Family

ID=64105598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017519 WO2018207699A1 (en) 2017-05-08 2018-05-02 Polymer having graphite- or graphene-like lamellar structure

Country Status (2)

Country Link
JP (1) JP7166635B2 (en)
WO (1) WO2018207699A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100699A1 (en) * 2019-11-18 2021-05-27 積水化学工業株式会社 Black particles, black coating material, coating film, and black matrix for color filters
CN114349936A (en) * 2021-12-20 2022-04-15 武汉大学 Synthetic method of quinone-nitrogen heterocyclic polymer and application of quinone-nitrogen heterocyclic polymer in secondary battery
WO2023189855A1 (en) * 2022-03-29 2023-10-05 慶應義塾 Complexation of conductive polymer into matrix

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348330A (en) * 1986-08-19 1988-03-01 Matsushita Electric Ind Co Ltd Production of electroconductive polymer
JP2015504046A (en) * 2011-12-20 2015-02-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polymer precursor for producing graphene nanoribbon and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348330A (en) * 1986-08-19 1988-03-01 Matsushita Electric Ind Co Ltd Production of electroconductive polymer
JP2015504046A (en) * 2011-12-20 2015-02-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polymer precursor for producing graphene nanoribbon and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100699A1 (en) * 2019-11-18 2021-05-27 積水化学工業株式会社 Black particles, black coating material, coating film, and black matrix for color filters
CN114349936A (en) * 2021-12-20 2022-04-15 武汉大学 Synthetic method of quinone-nitrogen heterocyclic polymer and application of quinone-nitrogen heterocyclic polymer in secondary battery
CN114349936B (en) * 2021-12-20 2024-02-06 武汉大学 Synthesis method of quinone-nitrogen heterocyclic polymer and application of quinone-nitrogen heterocyclic polymer in secondary battery
WO2023189855A1 (en) * 2022-03-29 2023-10-05 慶應義塾 Complexation of conductive polymer into matrix

Also Published As

Publication number Publication date
JP7166635B2 (en) 2022-11-08
JPWO2018207699A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
Renault et al. Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate
WO2018207699A1 (en) Polymer having graphite- or graphene-like lamellar structure
Fu et al. Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT
JP6783832B2 (en) Heterocycle-containing compounds, polymers using the compounds, and their uses
Yadav et al. Simultaneous reduction and covalent grafting of polythiophene on graphene oxide sheets for excellent capacitance retention
Teimuri-Mofrad et al. Synthesis and characterization of ferrocene-functionalized reduced graphene oxide nanocomposite as a supercapacitor electrode material
Kung et al. A high-performance covalently bonded self-doped polyaniline–graphene assembly film with superior stability for supercapacitors
Asnawi et al. Impregnation of [Emim] Br ionic liquid as plasticizer in biopolymer electrolytes for EDLC application
Ouyang et al. Quinone-enriched conjugated microporous polymer as an organic cathode for Li-ion batteries
Alamro et al. Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications
Teimuri-Mofrad et al. Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material
Ye et al. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene
Siyahjani et al. Enhanced capacitive behaviour of graphene based electrochemical double layer capacitors by etheric substitution on ionic liquids
Teimuri-Mofrad et al. Green synthesis of carbon nanotubes@ tetraferrocenylporphyrin/copper nanohybrid and evaluation of its ability as a supercapacitor
Dutta et al. Ionic liquid-SnO2 nanoparticle hybrid electrolytes for secondary charge storage devices: Physicochemical and electrochemical studies
Wang et al. Facile and green synthesis of TiN/C as electrode materials for supercapacitors
Ramesh et al. Ultrasound-accelerated covalent-functionalization of reduced graphene oxide with imidazolium-based poly (ionic liquid) s by Diels-Alder click reaction for supercapacitors
Wysocka-Zolopa et al. Polypyrrole nanoparticles doped with fullerene uniformly distributed in the polymeric phase: synthesis, morphology, and electrochemical properties
Tian et al. Interface guide: In-situ integrating MoS2 nanosheets into highly ordered polypyrrole film for high performance flexible supercapacitor electrodes
Liu et al. Ta4C3-Modulated MOF-Derived 3D Crosslinking Network of VO2 (B)@ Ta4C3 for High-Performance Aqueous Zinc Ion Batteries
US20180198128A1 (en) Fluorinated-polymer coated electrodes
Chang et al. Extraordinary aspects of bromo-functionalized multi-walled carbon nanotubes as initiator for polymerization of ionic liquid monomers
US9755150B2 (en) Functionalized nanostructures and related devices
KR101400774B1 (en) Zwitterionic carbon nanotube, and composite of zwitterionic carbon nanotube- metallic nanoparticle
Rus et al. Efficient functionalization of reduced graphene oxide by 3-(pyridin-2-yl)-1, 2, 4, 5-tetrazine and design of hybrids with silver nanoparticles for electrocatalysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799326

Country of ref document: EP

Kind code of ref document: A1