WO2018207526A1 - Structure abnormality detector - Google Patents

Structure abnormality detector Download PDF

Info

Publication number
WO2018207526A1
WO2018207526A1 PCT/JP2018/014952 JP2018014952W WO2018207526A1 WO 2018207526 A1 WO2018207526 A1 WO 2018207526A1 JP 2018014952 W JP2018014952 W JP 2018014952W WO 2018207526 A1 WO2018207526 A1 WO 2018207526A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
point
information
imaging
gas leakage
Prior art date
Application number
PCT/JP2018/014952
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 森本
基広 浅野
都築 斉一
裕晶 鈴木
輝夫 日置
任晃 堀田
明史 土岐
Original Assignee
コニカミノルタ株式会社
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 千代田化工建設株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2018207526A1 publication Critical patent/WO2018207526A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to a structure abnormality detection device, for example, a structure abnormality detection device that detects gas leakage from an image of a structure obtained by an infrared imaging device.
  • a gas detection device using a detection probe detects the presence of gas by utilizing the change in electrical characteristics of the probe caused by gas molecules coming into contact with the detection probe. For this reason, even if the gas leaks, the gas cannot be detected unless the gas molecules reach the detection probe.
  • gas detectors are arranged at high density throughout the facility, detection at a stage where gas leakage is relatively small becomes possible. However, the installation cost and the maintenance management cost are increased. Furthermore, when the gas is blown into the wind, etc., a large number of gas detection devices are issued all at once, and as a result, the true position of the leakage source becomes difficult to understand.
  • the gas detectors are arranged at a low density, they cannot be detected until the gas leakage scale becomes large, and the risk of accidents increases.
  • Patent Document 1 and the like propose a method using an infrared imaging device as another method for detecting the presence of gas.
  • the method uses light radiation mainly in the infrared region from the background (called black body radiation emitted from any object) and light absorption characteristics of the gas in the infrared region.
  • the gas is visualized and detected by utilizing the change in the amount of infrared light incident on the imaging device from the background due to the presence of the gas.
  • this gas detection technology a wide range of gas can be detected with a single detection device, so it is possible to detect gas without a large number of detection devices, and it is also possible to specify the location of gas leaks by techniques such as image analysis. is there.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a structure abnormality detection device capable of quickly specifying the position of a gas leakage source in a structure.
  • a structural abnormality detection device of the present invention is an imaging device that detects the presence of the gas by imaging a change in incident light from the structure accompanying light absorption of the gas present in the space.
  • An evaluation processing device that outputs point information of the structure based on the evaluation result; It is characterized by having.
  • the structure design information is used to evaluate the possibility that a gas leakage source exists at the gas detection location, the position of the gas leakage source in the structure can be quickly identified. Is possible. Accordingly, it is possible to accurately and quickly instruct the worker about the work place, and to perform a gas leak repairing operation safely and in a short time.
  • FIG. 1 and FIG. 2 show schematic configurations of the structure abnormality detection devices 10A and 10B according to the first and second embodiments.
  • the structure abnormality detection devices 10A and 10B include a gas imaging device 1, an evaluation processing device 2, and an output device 3, and the evaluation processing device 2 includes a gas leakage location candidate calculation unit 4, an evaluation value calculation unit 5, and an output.
  • the information generation unit 6 and the recording unit 7 are provided as functional blocks.
  • structure design information, structure environment information, and the like are stored as information to be input to the evaluation value calculation unit 5.
  • Information gas list etc.
  • the gas imaging device 1 is, for example, an infrared imaging device, and includes an imaging lens, a two-dimensional area sensor, a control circuit, and the like, as in a normal visible image imaging device, and converts incident light into an electrical signal. Output.
  • the difference from the visible image capturing apparatus is the wavelength of light to be targeted, and the wavelength includes a wavelength band that is absorbed by the gas to be detected.
  • a preferable target wavelength is an infrared region of 1 to 14 ⁇ m, and a more preferable target wavelength is an infrared region of 1 to 5 ⁇ m. Since many hydrocarbon gases absorb in these wavelength bands, it is possible to deal with most of the gases used by structures such as gas plants, petrochemical plants, thermal power plants, and steelmaking facilities. .
  • an infrared transmitting material such as Si, Ge, chalcogenide, sapphire, ZnS, ZnSe is used as the lens material of the imaging lens, and an appropriate surface coating is used to prevent light loss due to Fresnel reflection. It is applied to the lens surface.
  • a so-called cooling type sensor or non-cooling type sensor is used as the two-dimensional area sensor.
  • the cooling type sensor uses a semiconductor material such as InSb or MCT, and is configured to cool the sensor in order to prevent light radiation from being mixed due to the heat of the sensor chip itself.
  • the uncooled sensor uses a thermal resistance conversion material such as VO 2 or a-Si.
  • What is imaged by the gas imaging device 1 is an image showing a change in the amount of incident light caused by the presence or absence of gas. If there is no gas, black body light radiated from the background is incident on the gas imaging device 1, but if gas is present, both absorption of background radiated light by the gas and black body light emitted by the gas itself are generated. The light enters the gas imaging device 1. A change between the incident light to the gas imaging device 1 when no gas is present and the incident light to the gas imaging device 1 when the gas is present is detected as a gas image. It is possible to detect a gas leakage source by performing image processing on the temporal and spatial changes of the detected gas image.
  • the evaluation processing apparatus 2 is a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive) in digital devices such as personal computers and portable devices (smartphones, tablet terminals, etc.). ) And the like, and as described above, the gas leakage point candidate calculation unit 4, the evaluation value calculation unit 5, the output information generation unit 6 and the recording unit 7 are provided as functional blocks.
  • the functional block is realized by the CPU reading the evaluation program for structural abnormality detection stored in the HDD, developing it in the RAM, and executing it.
  • the output device 3 corresponds to a digital device that displays information such as a gas leak point candidate point (a point where a gas leak source may exist), gas leak notification, and the like when a gas leak occurs.
  • a control terminal device in a central monitoring room a personal computer (stationary type, portable type, etc.), a portable terminal (smart phone, touch pad, etc.) can be mentioned.
  • the gas leakage point information on the image detected by the gas imaging device 1 (that is, the gas detection point on the imaging screen) is input to the gas leakage point candidate calculation unit 4.
  • the structure design information is also input from the recording unit 7, and the point information of the gas leak location candidate is calculated.
  • This point information is input to the evaluation value calculation unit 5 together with the structure environment information from the recording unit 7, and an evaluation value is calculated for each gas leakage point candidate point.
  • the calculated evaluation value is input to the output information generation unit 6, and the output information generated by the output information generation unit 6 is displayed by the output device 3.
  • handling chemical substance information is added as an input to the evaluation value calculation unit 5.
  • FIG. 4 is a flowchart showing an outline of processing steps performed by the structure abnormality detection devices 10A and 10B.
  • the evaluation processing device 2 converts the gas leakage detection point on the imaging screen into a three-dimensional straight line (# 20). That is, a three-dimensional straight line corresponding to the gas leakage detection position is calculated from the detection position of the gas leakage on the image, the three-dimensional installation coordinates of the gas imaging device 1, and the imaging direction of the gas imaging device 1. .
  • the structure design information one or a plurality of coordinates of the point of the structure that intersects with the straight line calculated in step # 20 is calculated, and this is set as a gas leakage point candidate point (# 30).
  • a gas leakage source possibility evaluation value is calculated for each one or a plurality of gas leakage location candidate points calculated (# 40).
  • a gas leak location candidate point is displayed by a display method based on the evaluation value (# 50).
  • FIG. 3 shows a configuration example of the gas leak location candidate calculation unit 4.
  • the gas leak location candidate calculation unit 4 includes a straight line conversion unit 4a and an intersection calculation unit 4b.
  • the straight line conversion unit 4a is a part that converts the gas leakage detection point (gas detection point) on the imaging screen into a three-dimensional straight line in step # 20 of FIG.
  • the intersection calculation part 4b is a part which calculates the intersection of a three-dimensional straight line and a structure in step # 30 of FIG.
  • FIG. 6 shows the relationship between the position and direction of the gas imaging device 1, the actual gas leakage point Jp, and the gas leakage detection point Ip shown on the imaging screen Io, where GS is the leakage gas and Jo is Virtual space coordinates are shown.
  • the offset amount with respect to the coordinates (uc, vc) of the screen center Ic of the coordinates (up, vp) of the gas leakage detection point Ip on the imaging screen Io is a vector (gas leakage) from the gas imaging device 1 to the actual gas leakage point Jp. This corresponds to the angle between the point direction vector (Kp) and the direction vector Kc of the gas imaging device 1. From the coordinates (up, vp) of the gas leakage detection point Ip and the coordinates (uc, vc) of the screen center Ic, an angle ⁇ in the horizontal direction (horizontal direction) and an angle ⁇ in the vertical direction (vertical direction) are calculated.
  • the three-dimensional straight line LN corresponding to the gas leakage detection point Ip passes through the installation coordinates Ho: (x0, y0, z0) of the gas imaging device 1 and the direction vector Kp: (a ′, b ′, c ') Is a straight line with
  • the equation of the straight line LN is an orthogonal coordinate system (x, y, z) in which the horizontal direction of the imaging screen Io is the x direction, the vertical direction of the imaging screen Io is the z direction, and the normal direction of the imaging screen Io is the y direction.
  • FIG. 7A shows the imaging screen Io of the gas imaging device 1 when there is no gas leakage (normal time)
  • FIG. 7B shows the imaging screen Io of the gas imaging device 1 when gas leakage is detected.
  • the gas leakage detection point Ip is indicated by a black circle, but the depth direction (y direction in FIG. 6) cannot be distinguished on the imaging screen Io.
  • On the three-dimensional straight line LN corresponding to the gas leak detection point Ip there are a plurality of locations where a gas leak source may exist. An example is shown in FIG. FIG.
  • FIG. 7C shows the arrangement relationship of the structures ST as viewed from an angle different from that of FIGS. 7A and 7B (the state of the subject in FIG. 7B viewed from the side).
  • the straight line LN corresponding to the gas leakage detection point Ip corresponds to the line of sight that the gas imaging apparatus 1 has with respect to the gas leakage detection point Ip on the imaging screen Io, so the intersection of the straight line LN that is the line of sight and the structure ST Are all gas leak point candidate points CP.
  • the intersection is calculated next.
  • FIG. 5 shows an example of an evaluation value calculation process (# 40 in FIG. 4) for evaluating the possibility that a gas leakage source exists at the intersection coordinates.
  • a list of gases that are likely to cause gas leakage and a list of gases that can be detected by the gas imaging device 1 are collated (# 42), and the gas that can be detected by the gas imaging device 1 is a gas. It is determined whether it is in the imaging device list (# 44).
  • a high evaluation value is given to those having a long elapsed time.
  • the evaluation value for example, data such as whether or not the elapsed time is longer than the average failure time (MTBF) of the apparatus, and how long it is when it is long can be used.
  • MTBF average failure time
  • the ambient environment information that is design information of the structure ST
  • there is a deterioration environment factor of the structure ST for example, when it is always exposed to water vapor or when it is exposed to a salty atmosphere.
  • a high evaluation value is given.
  • points are given using a mathematical formula such as an average value ⁇ 10 of the ratio of the time during which the deterioration environment factor is acting in one day (for example, the time during which water vapor strikes in one day). May be.
  • An evaluation value that considers the possibility of the occurrence of an initial failure may be given to those that have a small number of years since the structure ST was installed.
  • the evaluation values for each factor are added or multiplied to calculate a final evaluation value.
  • a value obtained by dividing the evaluation value of each candidate point CP by the total value of the evaluation values of all candidate points CP may be newly set as the evaluation value.
  • design information of the structure ST As an example of design information of the structure ST, ⁇ 3D layout information (3D CAD design information), ⁇ Elapsed years since installation or installation date, ⁇ Deterioration environment factor information: For example, whether there is an atmosphere containing water vapor or salt in the vicinity of the structure, whether it is exposed to rain water in the rain, high temperature due to solar radiation or heat source, or whether the temperature changes drastically
  • ⁇ Deterioration environment factor information For example, whether there is an atmosphere containing water vapor or salt in the vicinity of the structure, whether it is exposed to rain water in the rain, high temperature due to solar radiation or heat source, or whether the temperature changes drastically
  • information on chemical substances handled by the structure ST -Substances flowing into or out of the structure ST (water, water vapor, gas, etc.), types of chemical substances handled in the structure ST, ⁇ Information on the operational status of the structure, such as whether gas is flowing through the piping, ⁇ Information on the maintenance status of structures, such as whether the flanges have been tightened Is mentioned.
  • the output device 3 that outputs the information on the gas leakage point candidate point CP in step # 50 for example, a control terminal device in a central monitoring room may be mentioned.
  • a personal computer stationary type, portable type, etc.
  • a portable terminal smart phone, touchpad, etc.
  • Information on the gas leak location candidate point CP is output according to the operation content of the operator.
  • the display order may be set in descending order of the gas leakage source possibility evaluation value according to an instruction from the operator, and the setting may be set in the initial setting. By doing so, it is possible to quickly identify the location of the gas leakage source and to perform the repair work, and to reduce the danger of the worker.
  • gas leak location candidate point CP As information of the gas leak location candidate point CP, for example, -The name and location of the device at the candidate point CP, ⁇ Placement of equipment at the candidate point CP, Is mentioned. Also, as an example of the output contents, -Text display of device name and position existing at the leak candidate point CP -Display on the 3D CAD screen of the layout of the equipment existing at the leak point candidate point CP, Is mentioned. Furthermore, a gas leakage source possibility evaluation value may be added and displayed.
  • the above-described embodiments include the following characteristic configurations (C1) to (C6) and the like.
  • (C3) imaging the incident light change from the structure accompanying the light absorption of the gas existing in the space, thereby detecting the presence of the gas, the line of sight of imaging with respect to the gas detection location on the imaging screen, and the For the point where the structure intersects, using the design information of the structure, a process for evaluating the possibility that a gas leakage source exists at the point, and outputting the point information of the structure based on the evaluation result
  • An abnormality processing evaluation processing program characterized by causing a computer to execute processing.
  • (C4) As the structure design information in the above configurations (C1) to (C3), the arrangement information of the three-dimensional structure, the information about the installation time and the environment in the vicinity of the installation location, the operation status of the structure A configuration including at least one of information and information on the maintenance status of the structure.
  • (C5) A configuration in which information on chemical substances handled by the structure is further used to evaluate the possibility of a gas leak source at the point in the above configurations (C1) to (C4).
  • (C6) A configuration for obtaining the location using the information on the installation location and the imaging direction of the imaging device in the configurations (C1) to (C5).
  • the design information of the structure ST (plant) in order to evaluate the possibility that a gas leakage source exists at the gas detection location. Therefore, it is possible to quickly specify the position of the gas leakage source in the structure ST. This is the same even when the structure abnormality detection method and the structure abnormality detection evaluation processing program are used.
  • the gas leakage source possibility evaluation is performed on a plurality of gas leakage point candidate points CP corresponding to the gas leakage positions on the image obtained by using the gas imaging device 1, and the gas leakage source If it is presented as a highly likely location, the location and repair work of the gas leakage source can be performed more quickly, and the danger to workers can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This structure abnormality detector comprises an imaging device and an evaluation processing device. The imaging device senses the presence of gas by imaging changes in incident light from a structure due to light absorption of gas that is present in a space. The evaluation processing device uses design information for the structure regarding sites where sight lines of the imaging device for gas detection locations on an imaging screen intersect with the structure, evaluates the possibility that a gas leak source is present in a site, and outputs site information for the structure on the basis of the evaluation results.

Description

構造物異常検知装置Structure abnormality detection device
 本発明は、構造物異常検知装置に関するものであり、例えば、赤外線撮像装置で得られた構造物の画像からガス漏洩を検知する構造物異常検知装置に関するものである。 The present invention relates to a structure abnormality detection device, for example, a structure abnormality detection device that detects gas leakage from an image of a structure obtained by an infrared imaging device.
 ガスプラント,石油化学プラント,火力発電所,製鉄関連施設等の構造物では、操業時に大量のガスが取り扱われている。このような施設においては、施設の経年劣化や運転ミスによるガス漏洩の危険性が認識されており、大事故に至る前にガス漏洩を最小限にとどめるため、検知プローブを用いたガス検知装置が多数備え付けられている。 In structures such as gas plants, petrochemical plants, thermal power plants, and steelmaking facilities, a large amount of gas is handled during operation. In such facilities, the risk of gas leakage due to aging of the facility and operational mistakes is recognized, and in order to minimize gas leakage before reaching a major accident, a gas detection device using a detection probe is installed. Many are installed.
 検知プローブを用いたガス検知装置は、検知プローブにガス分子が接触することでプローブの電気的特性が変化することを利用して、ガスの存在を検知するものである。このため、ガスが漏洩しても、ガス分子が検知プローブに届かない限りガスを検知することはできない。ガス検知装置を施設内のいたるところに高密度に配置すれば、ガス漏洩が比較的小さい段階での検知が可能となる。しかし、設置コストや保守管理コストは高くなってしまう。さらに、ガスが風に流されたりした場合等には、多数配置されたガス検知装置が一斉に発報してしまい、その結果、漏洩源の真の位置が分かりにくくなってしまう。また、ガス検知装置を低密度に配置した場合には、ガス漏洩規模が大きくなるまで検知できず、事故の危険性が高まってしまう。 A gas detection device using a detection probe detects the presence of gas by utilizing the change in electrical characteristics of the probe caused by gas molecules coming into contact with the detection probe. For this reason, even if the gas leaks, the gas cannot be detected unless the gas molecules reach the detection probe. If gas detectors are arranged at high density throughout the facility, detection at a stage where gas leakage is relatively small becomes possible. However, the installation cost and the maintenance management cost are increased. Furthermore, when the gas is blown into the wind, etc., a large number of gas detection devices are issued all at once, and as a result, the true position of the leakage source becomes difficult to understand. In addition, when the gas detectors are arranged at a low density, they cannot be detected until the gas leakage scale becomes large, and the risk of accidents increases.
 これに対し、ガスの存在を検知する別の手法として赤外線撮像装置を用いた方法が、特許文献1等で提案されている。その方法では、背景からの主に赤外領域の光放射(あらゆる物体から放射されている黒体放射と呼ばれるもの)と、ガスの赤外領域の光吸収特性と、を利用する。つまり、ガスの存在によって、その背景から撮像装置に入射する赤外線量が変化することを利用して、ガスを可視化して検知するのである。このガス検知技術によると、一台の検知装置で広範囲のガスを検知できるので、多数の検知装置がなくてもガス検知が可能であり、画像解析等の手法によってガス漏洩位置の特定も可能である。 On the other hand, Patent Document 1 and the like propose a method using an infrared imaging device as another method for detecting the presence of gas. The method uses light radiation mainly in the infrared region from the background (called black body radiation emitted from any object) and light absorption characteristics of the gas in the infrared region. In other words, the gas is visualized and detected by utilizing the change in the amount of infrared light incident on the imaging device from the background due to the presence of the gas. According to this gas detection technology, a wide range of gas can be detected with a single detection device, so it is possible to detect gas without a large number of detection devices, and it is also possible to specify the location of gas leaks by techniques such as image analysis. is there.
特開2006-30214号公報JP 2006-30214 A
 特許文献1に記載されているように、ガスによる赤外線吸収を利用した撮像装置でガス漏れを2次元的に可視化すれば、ガス漏洩位置の撮像画面上での特定は可能となる。しかし、奥行方向の場所の特定が行えないため、ガス漏れの修復作業を行う際に作業員への作業場所の指示が困難であったり、作業員が危険にさらされたりすることがある。 As described in Patent Document 1, if a gas leak is visualized two-dimensionally with an imaging device using infrared absorption by gas, the gas leak position can be specified on the imaging screen. However, since the location in the depth direction cannot be specified, it is difficult to instruct the worker of the work location when performing the gas leakage repair work, or the worker may be in danger.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、構造物におけるガス漏洩源の位置を迅速に特定することの可能な構造物異常検知装置を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a structure abnormality detection device capable of quickly specifying the position of a gas leakage source in a structure.
 上記目的を達成するために、本発明の構造物異常検知装置は、空間に存在するガスの光吸収に伴う構造物からの入射光変化を撮像することで、前記ガスの存在を検知する撮像装置と、
 前記撮像装置が撮像画面上のガス検知箇所に対して有する視線と前記構造物とが交わる地点について、前記構造物の設計情報を用いて、前記地点にガス漏洩源が存在する可能性を評価し、その評価結果に基づいて前記構造物の地点情報を出力する評価処理装置と、
 を有することを特徴とする。
In order to achieve the above object, a structural abnormality detection device of the present invention is an imaging device that detects the presence of the gas by imaging a change in incident light from the structure accompanying light absorption of the gas present in the space. When,
For the point where the line of sight that the imaging device has on the gas detection location on the imaging screen and the structure intersect, the possibility that a gas leakage source exists at the point is evaluated using the design information of the structure. , An evaluation processing device that outputs point information of the structure based on the evaluation result;
It is characterized by having.
 本発明によれば、ガス検知箇所にガス漏洩源が存在する可能性を評価するために構造物の設計情報等を用いる構成になっているため、構造物におけるガス漏洩源の位置を迅速に特定することが可能である。したがって、作業員への作業場所の指示を正確かつ迅速に行って、ガス漏れの修復作業を安全かつ短時間で行うことができる。 According to the present invention, since the structure design information is used to evaluate the possibility that a gas leakage source exists at the gas detection location, the position of the gas leakage source in the structure can be quickly identified. Is possible. Accordingly, it is possible to accurately and quickly instruct the worker about the work place, and to perform a gas leak repairing operation safely and in a short time.
構造物異常検知装置の第1の実施の形態を示すブロック図。The block diagram which shows 1st Embodiment of a structure abnormality detection apparatus. 構造物異常検知装置の第2の実施の形態を示すブロック図。The block diagram which shows 2nd Embodiment of a structure abnormality detection apparatus. 第1,第2の実施の形態におけるガス漏洩箇所候補算出部の構成例を示すブロック図。The block diagram which shows the structural example of the gas leak location candidate calculation part in 1st, 2nd embodiment. 第1,第2の実施の形態による全体処理を示すフローチャート。The flowchart which shows the whole process by 1st, 2nd embodiment. 評価値算出処理(図4の#40)の一例を示すフローチャート。The flowchart which shows an example of an evaluation value calculation process (# 40 of FIG. 4). ガス撮像装置が撮像画面上のガス漏洩検知箇所に対して有する視線と実際のガス漏洩地点との関係を説明するための模式図。The schematic diagram for demonstrating the relationship between the eyes | visual_axis which a gas imaging device has with respect to the gas leak detection location on an imaging screen, and an actual gas leak location. 撮像画面上のガス検知点とガス漏洩箇所候補地点との関係を説明するための模式図。The schematic diagram for demonstrating the relationship between the gas detection point on an imaging screen, and a gas leak location candidate point.
 以下、本発明を実施した構造物異常検知装置等を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。 Hereinafter, a structure abnormality detection device and the like embodying the present invention will be described with reference to the drawings. In addition, the same code | symbol is mutually attached | subjected to the part which is the same in each embodiment etc., and the corresponding part, and duplication description is abbreviate | omitted suitably.
 図1,図2に、第1,第2の実施の形態に係る構造物異常検知装置10A,10Bの概略構成を示す。構造物異常検知装置10A,10Bは、ガス撮像装置1,評価処理装置2及び出力装置3を有しており、評価処理装置2は、ガス漏洩箇所候補算出部4,評価値算出部5,出力情報生成部6及び記録部7を、機能ブロックとして有している。記録部7には、評価値算出部5に入力する情報として、構造物設計情報,構造物環境情報等が蓄えられており、構造物異常検知装置10Bでは、構造物が取り扱っている化学物質の情報(ガスリスト等)が追加されている。 FIG. 1 and FIG. 2 show schematic configurations of the structure abnormality detection devices 10A and 10B according to the first and second embodiments. The structure abnormality detection devices 10A and 10B include a gas imaging device 1, an evaluation processing device 2, and an output device 3, and the evaluation processing device 2 includes a gas leakage location candidate calculation unit 4, an evaluation value calculation unit 5, and an output. The information generation unit 6 and the recording unit 7 are provided as functional blocks. In the recording unit 7, structure design information, structure environment information, and the like are stored as information to be input to the evaluation value calculation unit 5. In the structure abnormality detection device 10B, the chemical substance handled by the structure is stored. Information (gas list etc.) has been added.
 ガス撮像装置1は、例えば赤外線撮像装置であり、通常の可視像撮像装置のように、撮像レンズ,2次元エリアセンサー,制御回路等からなっており、入射した光を電気信号に変換して出力する。可視像撮像装置との違いは対象とする光の波長であり、検知対象とするガスが吸収する波長帯を含むような波長を対象とする。好ましい対象波長は1~14μmの赤外領域であり、さらに好ましい対象波長は1~5μmの赤外領域である。これらの波長帯には多くの炭化水素系ガスが吸収を持つため、ガスプラント,石油化学プラント,火力発電所,製鉄関連施設等の構造物が利用しているガスの多くに対応することができる。 The gas imaging device 1 is, for example, an infrared imaging device, and includes an imaging lens, a two-dimensional area sensor, a control circuit, and the like, as in a normal visible image imaging device, and converts incident light into an electrical signal. Output. The difference from the visible image capturing apparatus is the wavelength of light to be targeted, and the wavelength includes a wavelength band that is absorbed by the gas to be detected. A preferable target wavelength is an infrared region of 1 to 14 μm, and a more preferable target wavelength is an infrared region of 1 to 5 μm. Since many hydrocarbon gases absorb in these wavelength bands, it is possible to deal with most of the gases used by structures such as gas plants, petrochemical plants, thermal power plants, and steelmaking facilities. .
 上記波長帯に対応するため、撮像レンズのレンズ材料としては、Si,Ge,カルコゲナイド,サファイヤ,ZnS,ZnSe等の赤外線透過材料が用いられ、フレネル反射による光損失を防ぐため、適切な表面コーティングがレンズ面に施される。2次元エリアセンサーとしては、いわゆる冷却型センサーや非冷却型センサーが用いられる。冷却型センサーは、InSb,MCT等の半導体材料を用いたものであり、センサーチップ自身の熱に起因する光放射の混入を防ぐためにセンサーを冷却する構成になっている。非冷却型センサーは、VO2,a-Si等の熱抵抗変換材料を用いたものである。 In order to cope with the above-mentioned wavelength band, an infrared transmitting material such as Si, Ge, chalcogenide, sapphire, ZnS, ZnSe is used as the lens material of the imaging lens, and an appropriate surface coating is used to prevent light loss due to Fresnel reflection. It is applied to the lens surface. A so-called cooling type sensor or non-cooling type sensor is used as the two-dimensional area sensor. The cooling type sensor uses a semiconductor material such as InSb or MCT, and is configured to cool the sensor in order to prevent light radiation from being mixed due to the heat of the sensor chip itself. The uncooled sensor uses a thermal resistance conversion material such as VO 2 or a-Si.
 ここで、ガス撮像装置1によるガス検知の原理を説明する。ガス撮像装置1によって撮像されるのは、ガスの有無によって生じる入射光量の変化を示した画像である。ガスが存在しなければ、背景から放射される黒体光がガス撮像装置1に入射するが、ガスが存在すれば、ガスによる背景放射光の吸収とガス自身が放射する黒体光の両方がガス撮像装置1に入射することになる。ガスが存在しないときのガス撮像装置1への入射光とガスが存在するときのガス撮像装置1への入射光との変化がガス画像として検知される。検知されたガス画像の時間的・空間的変化を画像処理することによって、ガス漏洩源を検知することが可能となる。 Here, the principle of gas detection by the gas imaging apparatus 1 will be described. What is imaged by the gas imaging device 1 is an image showing a change in the amount of incident light caused by the presence or absence of gas. If there is no gas, black body light radiated from the background is incident on the gas imaging device 1, but if gas is present, both absorption of background radiated light by the gas and black body light emitted by the gas itself are generated. The light enters the gas imaging device 1. A change between the incident light to the gas imaging device 1 when no gas is present and the incident light to the gas imaging device 1 when the gas is present is detected as a gas image. It is possible to detect a gas leakage source by performing image processing on the temporal and spatial changes of the detected gas image.
 評価処理装置2は、パーソナルコンピュータ,携帯機器(スマートフォン,タブレット端末等)等のデジタル機器において、CPU(Central Processing Unit),RAM(Random Access Memory),ROM(Read Only Memory),HDD(Hard Disk Drive)等によって構成されており、前述したように、ガス漏洩箇所候補算出部4,評価値算出部5,出力情報生成部6及び記録部7を、機能ブロックとして備えている。HDDに格納されている構造物異常検知用の評価処理プログラムをCPUが読み出し、RAMに展開して実行することによって、上記機能ブロックが実現される。 The evaluation processing apparatus 2 is a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive) in digital devices such as personal computers and portable devices (smartphones, tablet terminals, etc.). ) And the like, and as described above, the gas leakage point candidate calculation unit 4, the evaluation value calculation unit 5, the output information generation unit 6 and the recording unit 7 are provided as functional blocks. The functional block is realized by the CPU reading the evaluation program for structural abnormality detection stored in the HDD, developing it in the RAM, and executing it.
 出力装置3は、ガス漏れが発生した場合にガス漏洩箇所候補地点(ガス漏洩源が存在する可能性のある地点)等の情報表示,ガス漏れ報知等を行うデジタル機器に相当する。例えば、中央監視室における制御端末装置,パーソナルコンピュータ(据え置き型,可搬型等),携帯端末(スマートフォン,タッチパッド等)が挙げられる。 The output device 3 corresponds to a digital device that displays information such as a gas leak point candidate point (a point where a gas leak source may exist), gas leak notification, and the like when a gas leak occurs. For example, a control terminal device in a central monitoring room, a personal computer (stationary type, portable type, etc.), a portable terminal (smart phone, touch pad, etc.) can be mentioned.
 構造物異常検知装置10A,10Bでは、ガス撮像装置1によって検知された画像上のガス漏洩地点情報(つまり撮像画面上のガス検知箇所)が、ガス漏洩箇所候補算出部4に入力される。ここには、記録部7から構造物設計情報も入力されて、ガス漏洩箇所候補の地点情報が算出される。この地点情報は、記録部7からの構造物環境情報とともに評価値算出部5に入力され、ガス漏洩箇所候補地点ごとに評価値が算出される。算出された評価値は出力情報生成部6に入力され、出力情報生成部6によって生成された出力情報が出力装置3によって表示される。なお、構造物異常検知装置10Bでは、評価値算出部5への入力として取扱い化学物質情報が追加される。 In the structure abnormality detection devices 10 </ b> A and 10 </ b> B, the gas leakage point information on the image detected by the gas imaging device 1 (that is, the gas detection point on the imaging screen) is input to the gas leakage point candidate calculation unit 4. Here, the structure design information is also input from the recording unit 7, and the point information of the gas leak location candidate is calculated. This point information is input to the evaluation value calculation unit 5 together with the structure environment information from the recording unit 7, and an evaluation value is calculated for each gas leakage point candidate point. The calculated evaluation value is input to the output information generation unit 6, and the output information generated by the output information generation unit 6 is displayed by the output device 3. In the structure abnormality detection device 10 </ b> B, handling chemical substance information is added as an input to the evaluation value calculation unit 5.
 図4のフローチャートに、構造物異常検知装置10A,10Bによる処理工程の概略を示す。ガス撮像装置1によりガス漏洩を検知すると(#10)、評価処理装置2は、撮像画面上のガス漏洩検知点を3次元的な直線に変換する(#20)。つまり、画像上のガス漏洩の検知位置と、ガス撮像装置1の3次元的な設置座標と、ガス撮像装置1の撮影方向とから、ガス漏洩検知位置が対応する3次元上の直線を算出する。次に、構造物設計情報を用いて、ステップ#20で算出した直線と交わる構造物の地点の座標を1つ又は複数算出し、これをガス漏洩箇所候補地点とする(#30)。1つ又は複数算出されたガス漏洩箇所候補地点ごとにガス漏洩源可能性評価値を計算する(#40)。その評価値に基づいた表示方法でガス漏洩箇所候補地点を表示する(#50)。 FIG. 4 is a flowchart showing an outline of processing steps performed by the structure abnormality detection devices 10A and 10B. When the gas imaging device 1 detects gas leakage (# 10), the evaluation processing device 2 converts the gas leakage detection point on the imaging screen into a three-dimensional straight line (# 20). That is, a three-dimensional straight line corresponding to the gas leakage detection position is calculated from the detection position of the gas leakage on the image, the three-dimensional installation coordinates of the gas imaging device 1, and the imaging direction of the gas imaging device 1. . Next, using the structure design information, one or a plurality of coordinates of the point of the structure that intersects with the straight line calculated in step # 20 is calculated, and this is set as a gas leakage point candidate point (# 30). A gas leakage source possibility evaluation value is calculated for each one or a plurality of gas leakage location candidate points calculated (# 40). A gas leak location candidate point is displayed by a display method based on the evaluation value (# 50).
 図3に、ガス漏洩箇所候補算出部4の構成例を示す。ガス漏洩箇所候補算出部4は、直線変換部4aと交点算出部4bからなっている。直線変換部4aは、図4のステップ#20において、撮像画面上のガス漏洩検知点(ガス検知箇所)を3次元的な直線に変換する部分である。交点算出部4bは、図4のステップ#30において、3次元的な直線と構造物との交点を計算する部分である。 FIG. 3 shows a configuration example of the gas leak location candidate calculation unit 4. The gas leak location candidate calculation unit 4 includes a straight line conversion unit 4a and an intersection calculation unit 4b. The straight line conversion unit 4a is a part that converts the gas leakage detection point (gas detection point) on the imaging screen into a three-dimensional straight line in step # 20 of FIG. The intersection calculation part 4b is a part which calculates the intersection of a three-dimensional straight line and a structure in step # 30 of FIG.
 ここで、撮像画面上のガス漏洩検知点の位置と、その位置に対応する3次元的な直線とを、図6を参照しつつ説明する。図6は、ガス撮像装置1の位置及び方向と、実際のガス漏洩地点Jpと、撮像画面Io上に写ったガス漏洩検知点Ipと、の関係を示しており、GSは漏洩ガス、Joは仮想的な空間座標をそれぞれ示している。なお、ガス撮像装置1が向いている方向のベクトルをガス撮像装置1の方向ベクトルと呼び、ガス撮像装置1の方向ベクトルKcを(a,b,c)とする(ただし、方向ベクトルの大きさは1、すなわち√(a2+b2+c2)=1とする。)。 Here, the position of the gas leakage detection point on the imaging screen and the three-dimensional straight line corresponding to the position will be described with reference to FIG. FIG. 6 shows the relationship between the position and direction of the gas imaging device 1, the actual gas leakage point Jp, and the gas leakage detection point Ip shown on the imaging screen Io, where GS is the leakage gas and Jo is Virtual space coordinates are shown. The vector in the direction in which the gas imaging device 1 is directed is called the direction vector of the gas imaging device 1, and the direction vector Kc of the gas imaging device 1 is (a, b, c) (however, the magnitude of the direction vector) Is 1, that is, √ (a 2 + b 2 + c 2 ) = 1).
 撮像画面Io上におけるガス漏洩検知点Ipの座標(up,vp)の画面中心Icの座標(uc,vc)に対するオフセット量は、ガス撮像装置1から実際のガス漏洩地点Jpに向かうベクトル(ガス漏洩地点の方向ベクトル)Kpと、ガス撮像装置1の方向ベクトルKcと、の間の角度に対応する。ガス漏洩検知点Ipの座標(up,vp)と画面中心Icの座標(uc,vc)から、横方向(水平方向)の角度βと縦方向(鉛直方向)の角度γをそれぞれ算出する。 The offset amount with respect to the coordinates (uc, vc) of the screen center Ic of the coordinates (up, vp) of the gas leakage detection point Ip on the imaging screen Io is a vector (gas leakage) from the gas imaging device 1 to the actual gas leakage point Jp. This corresponds to the angle between the point direction vector (Kp) and the direction vector Kc of the gas imaging device 1. From the coordinates (up, vp) of the gas leakage detection point Ip and the coordinates (uc, vc) of the screen center Ic, an angle β in the horizontal direction (horizontal direction) and an angle γ in the vertical direction (vertical direction) are calculated.
 上記角度β,γは、ガス撮像装置1の視野角と縦横の画素数との関係から容易に算出可能である。例えば、撮像画面Ioの横方向画素数をUn、縦方向画素数をVnとし、ガス撮像装置1の視野角を横方向にW、縦方向にHとすれば、角度βは式:β={(up-uc)/Un}×Wで表され、角度γはγ={(vp-vc)/Vn}×Hで表される。 The angles β and γ can be easily calculated from the relationship between the viewing angle of the gas imaging apparatus 1 and the number of vertical and horizontal pixels. For example, if the horizontal pixel number of the imaging screen Io is Un, the vertical pixel number is Vn, and the viewing angle of the gas imaging device 1 is W in the horizontal direction and H in the vertical direction, the angle β is expressed by the formula: β = { (Up−uc) / Un} × W, and the angle γ is represented by γ = {(vp−vc) / Vn} × H.
 ガス漏洩地点の方向ベクトルKp:(a’,b’,c’)は、ガス撮像装置1の方向ベクトルKc:(a,b,c)と角度β,γを用いて計算することができ、以下の式:
a’=-{bsinβcosγ/√(1-c2)}+acosβcosγ-{acsinγ/√(1-c2)} …(1a)
b’={asinβcosγ/√(1-c2)}+bcosβcosγ-{bcsinγ/√(1-c2)} …(1b)
c’=ccosβcosγ-√(1-c2)sinγ …(1c)
で表される。
The direction vector Kp: (a ′, b ′, c ′) of the gas leakage point can be calculated using the direction vector Kc: (a, b, c) of the gas imaging device 1 and the angles β, γ, The following formula:
a ′ = − {bsin βcosγ / √ (1−c 2 )} + acosβcosγ− {acsinγ / √ (1-c 2 )} (1a)
b ′ = {asinβcosγ / √ (1-c 2 )} + bcosβcosγ− {bcsinγ / √ (1-c 2 )} (1b)
c ′ = c cos βcos γ−√ (1−c 2 ) sin γ (1c)
It is represented by
 ガス漏洩検知点Ipに対応する3次元的な直線LNとは、ガス撮像装置1の設置座標Ho:(x0,y0,z0)を通り、かつ、方向ベクトルKp:(a’,b’,c’)を持つ直線である。この直線LNの式は、撮像画面Ioの横方向をx方向、撮像画面Ioの縦方向をz方向、撮像画面Ioの法線方向をy方向とする直交座標系(x,y,z)を用いた以下の式:
(x-x0)/a’=(y-y0)/b’=(z-z0)/c’ …(2)
で表される。そして、この直線LNは、ガス撮像装置1が撮像画面Io上のガス漏洩検知箇所Ipに対して有する視線に相当する。
The three-dimensional straight line LN corresponding to the gas leakage detection point Ip passes through the installation coordinates Ho: (x0, y0, z0) of the gas imaging device 1 and the direction vector Kp: (a ′, b ′, c ') Is a straight line with The equation of the straight line LN is an orthogonal coordinate system (x, y, z) in which the horizontal direction of the imaging screen Io is the x direction, the vertical direction of the imaging screen Io is the z direction, and the normal direction of the imaging screen Io is the y direction. The following formula used:
(X−x0) / a ′ = (y−y0) / b ′ = (z−z0) / c ′ (2)
It is represented by The straight line LN corresponds to the line of sight that the gas imaging apparatus 1 has with respect to the gas leakage detection location Ip on the imaging screen Io.
 次に、図7を参照しつつ、撮像画面Io上のガス検知点Ipとガス漏洩箇所候補地点CPとの関係を説明する。図7(A)はガス漏洩が無い時(通常時)のガス撮像装置1の撮像画面Ioを示しており、図7(B)はガス漏洩検知時のガス撮像装置1の撮像画面Ioを示している。図7(B)ではガス漏洩検知点Ipを黒丸印で示しているが、撮像画面Io上では奥行方向(図6におけるy方向)の場所の区別ができない。ガス漏洩検知点Ipに対応する3次元上の直線LN上には、ガス漏洩源が存在する可能性のある箇所が複数存在する。その一例を図7(C)に示す。図7(C)は構造物STの配置関係を、図7(A),(B)とは別の角度から見た状態(図7(B)の被写体を横から見た状態)を示している。ガス漏洩検知点Ipに対応する直線LNは、ガス撮像装置1が撮像画面Io上のガス漏洩検知箇所Ipに対して有する視線に相当するので、その視線である直線LNと構造物STとの交点がすべてガス漏洩箇所候補地点CPとなる。 Next, the relationship between the gas detection point Ip on the imaging screen Io and the gas leakage point candidate point CP will be described with reference to FIG. FIG. 7A shows the imaging screen Io of the gas imaging device 1 when there is no gas leakage (normal time), and FIG. 7B shows the imaging screen Io of the gas imaging device 1 when gas leakage is detected. ing. In FIG. 7B, the gas leakage detection point Ip is indicated by a black circle, but the depth direction (y direction in FIG. 6) cannot be distinguished on the imaging screen Io. On the three-dimensional straight line LN corresponding to the gas leak detection point Ip, there are a plurality of locations where a gas leak source may exist. An example is shown in FIG. FIG. 7C shows the arrangement relationship of the structures ST as viewed from an angle different from that of FIGS. 7A and 7B (the state of the subject in FIG. 7B viewed from the side). Yes. The straight line LN corresponding to the gas leakage detection point Ip corresponds to the line of sight that the gas imaging apparatus 1 has with respect to the gas leakage detection point Ip on the imaging screen Io, so the intersection of the straight line LN that is the line of sight and the structure ST Are all gas leak point candidate points CP.
 この直線LNが構造物STと交わる地点を求めるには、構造物表面の方程式が必要である。面の方程式は一般に次の式:
Ax+By+Cz=D …(3)
で表される。ここで(A,B,C)は面の法線ベクトルを表す。面の方程式は構造物STの設計データから容易に計算される。例えば、座標(xs,ys,zs)を通る面の方程式は次の式:
Ax+By+Cz=Axs+Bys+Czs …(4)
で表される。
In order to obtain a point where the straight line LN intersects the structure ST, an equation of the structure surface is necessary. The surface equation is generally:
Ax + By + Cz = D (3)
It is represented by Here, (A, B, C) represents a normal vector of the surface. The surface equation is easily calculated from the design data of the structure ST. For example, the equation of the plane passing through the coordinates (xs, ys, zs) is:
Ax + By + Cz = Axs + Bys + Czs (4)
It is represented by
 ガス漏洩検知点Ipに対応する3次元上の直線LNの式(2)と、構造物表面の方程式(4)が求まったので、次に交点を計算する。まず、直線LNの式(2)を媒介変数tを使って次の式:
x=at+x0 …(5a)
y=bt+y0 …(5b)
z=ct+z0 …(5c)
のように変形する。なお、構造物が配管などの場合、視線である直線LNが配管の近傍を通過し、実際の配管とは交わらない場合がありえるので、実際の配管よりも少し太い位置に仮想的な構造物を設定して、構造物表面と直線LNとの交点を計算するのが好ましい。
Since the equation (2) of the three-dimensional straight line LN corresponding to the gas leakage detection point Ip and the equation (4) of the structure surface are obtained, the intersection is calculated next. First, the equation (2) of the straight line LN is converted into the following equation using the parameter t:
x = at + x0 (5a)
y = bt + y0 (5b)
z = ct + z0 (5c)
It transforms as follows. If the structure is a pipe, etc., the straight line LN, which is the line of sight, may pass through the vicinity of the pipe and may not intersect with the actual pipe. Therefore, the virtual structure is placed slightly thicker than the actual pipe. It is preferable to set and calculate the intersection of the structure surface and the straight line LN.
 次に式(5a),(5b),(5c)を式(4)に代入すると、式:
A(at+x0)+B(bt+y0)+C(ct+z0)=Axs+Bys+Czs …(6)
が得られる。式(6)から式:
t={A(xs-x0)+B(ys-y0)+C(zs-z0)}/{Aa+Bb+Cc} …(7)
が得られる。この式(7)を式(5)に代入することで、交点座標が求まる。
Next, when the expressions (5a), (5b), and (5c) are substituted into the expression (4), the expression:
A (at + x0) + B (bt + y0) + C (ct + z0) = Axs + Bys + Czs (6)
Is obtained. From equation (6):
t = {A (xs−x0) + B (ys−y0) + C (zs−z0)} / {Aa + Bb + Cc} (7)
Is obtained. By substituting Equation (7) into Equation (5), the intersection coordinates can be obtained.
 図5のフローチャートに、上記交点座標にガス漏洩源が存在する可能性を評価するための評価値算出処理(図4の#40)の一例を示す。1つ又は複数算出されたガス漏洩箇所候補地点CPのそれぞれに対して、地点CPに対応した構造物STへの流入物質や取扱い物質の種類(構造物が取り扱っている化学物質の情報)から、予め求めておいたガス漏れ発生の可能性のあるガスのリストと、ガス撮像装置1で検知可能なガスのリストと、を照合し(#42)、ガス撮像装置1で検知可能なガスがガス撮像装置リストにあるか否か判定する(#44)。 5 shows an example of an evaluation value calculation process (# 40 in FIG. 4) for evaluating the possibility that a gas leakage source exists at the intersection coordinates. From each of one or more calculated gas leakage point candidate points CP, from the inflow material to the structure ST corresponding to the point CP and the type of handled material (information on chemical substances handled by the structure), A list of gases that are likely to cause gas leakage and a list of gases that can be detected by the gas imaging device 1 are collated (# 42), and the gas that can be detected by the gas imaging device 1 is a gas. It is determined whether it is in the imaging device list (# 44).
 ステップ#44で合致したものが無ければ、ガス漏洩源の可能性無し(評価値=0)としてガス漏洩源可能性候補から外す(#46)。ステップ#44で合致したものがあれば、ガス漏洩源の可能性ありと判断して、構造物STが設置されてからの経過年数(設置時期等の経年情報)や構造物劣化環境要因(設置箇所近傍環境等の周囲環境情報)を考慮した評価値の算出を行う(#48)。なお、ガスリストの照合等(#42,#44,#46)は必要に応じて省略可能である。 If there is no match in step # 44, the gas leakage source possibility candidate is evaluated as no possibility (evaluation value = 0) (# 46). If there is a match in step # 44, it is determined that there is a possibility of a gas leakage source, and the number of years since the structure ST was installed (aged information such as installation time) and structural deterioration environment factors (installation) An evaluation value is calculated in consideration of the surrounding environment information such as the environment near the location (# 48). Note that the gas list collation (# 42, # 44, # 46) can be omitted as necessary.
 構造物STの設計情報である経年情報に関しては、例えば経過年数が長いものについては高い評価値を付与する。その評価値の算出には、例えば、装置の平均故障時間(MTBF)よりも経過年月が長いか否か、長い場合にはどれぐらい長いか、等のデータを用いることができる。また、(経過年数/MTBF)×10といった数式等を用いて点数付与を行ってもよい。 Regarding the aged information that is the design information of the structure ST, for example, a high evaluation value is given to those having a long elapsed time. For the calculation of the evaluation value, for example, data such as whether or not the elapsed time is longer than the average failure time (MTBF) of the apparatus, and how long it is when it is long can be used. Moreover, you may give a score using numerical formulas, such as (elapsed years / MTBF) * 10.
 構造物STの設計情報である周囲環境情報に関しては、構造物STの劣化環境要因が存在する場合(例えば、常に水蒸気が当たっている場合、塩気を含んだ雰囲気が当たっている場合等)にも高い評価値を付与する。その評価値の算出において、1日における劣化環境要因が作用している時間(例えば1日のうちで水蒸気が当たっている時間)の割合の平均値×10といった数式等を用いて点数付与を行ってもよい。構造物STが設置されてからの経過年数が少ないものについては、初期不良発生の可能性を考慮した評価値を付与するようにしてもよい。複数要因がある場合には、各要因における評価値を加算又は乗算して、最終的な評価値として計算する。 As for the ambient environment information that is design information of the structure ST, there is a deterioration environment factor of the structure ST (for example, when it is always exposed to water vapor or when it is exposed to a salty atmosphere). A high evaluation value is given. In the calculation of the evaluation value, points are given using a mathematical formula such as an average value × 10 of the ratio of the time during which the deterioration environment factor is acting in one day (for example, the time during which water vapor strikes in one day). May be. An evaluation value that considers the possibility of the occurrence of an initial failure may be given to those that have a small number of years since the structure ST was installed. When there are a plurality of factors, the evaluation values for each factor are added or multiplied to calculate a final evaluation value.
 なお、すべてのガス漏洩箇所候補地点CPについて評価値を計算した後、各候補地点CPの評価値を全ての候補地点CPの評価値の合計値で割った値を新たに評価値としてもよい。こうすることで、ガス漏洩箇所候補地点CPの評価値の相対比較が容易になる。 In addition, after calculating the evaluation values for all the gas leakage point candidate points CP, a value obtained by dividing the evaluation value of each candidate point CP by the total value of the evaluation values of all candidate points CP may be newly set as the evaluation value. By doing so, the relative comparison of the evaluation values of the gas leak location candidate points CP is facilitated.
 構造物STの設計情報の例としては、
・3次元的な配置情報(3D CAD設計情報)、
・設置されてからの経過年数又は設置年月日、
・劣化環境要因情報:例えば水蒸気や塩気を含んだ雰囲気が構造物近辺に存在するか、雨天時に雨水にさらされるか、日射や熱源によって高温になるか、温度の変化が激しいか等、が挙げられ、
 構造物STが取り扱っている化学物質の情報の例としては、
・構造物STに流入している、あるいは構造物STから流出している物質(水,水蒸気,ガス等)や、構造物STで取り扱っている化学物質の種類、
・配管にガスを流しているかなど、構造物の運転状況についての情報、
・フランジを増し締めしたかなど、構造物の保全状況についての情報、
が挙げられる。
As an example of design information of the structure ST,
・ 3D layout information (3D CAD design information),
・ Elapsed years since installation or installation date,
・ Deterioration environment factor information: For example, whether there is an atmosphere containing water vapor or salt in the vicinity of the structure, whether it is exposed to rain water in the rain, high temperature due to solar radiation or heat source, or whether the temperature changes drastically And
As an example of information on chemical substances handled by the structure ST,
-Substances flowing into or out of the structure ST (water, water vapor, gas, etc.), types of chemical substances handled in the structure ST,
・ Information on the operational status of the structure, such as whether gas is flowing through the piping,
・ Information on the maintenance status of structures, such as whether the flanges have been tightened
Is mentioned.
 ステップ#50でガス漏洩箇所候補地点CPの情報を出力する出力装置3としては、前述したように、例えば、中央監視室における制御端末装置が挙げられる。その他にパソコン(据え置き型,可搬型等)や携帯端末(スマートフォン,タッチパッド等)も挙げられる。操作者の操作内容に応じて、ガス漏洩箇所候補地点CPの情報を出力する。その際、操作者の指示により、ガス漏洩源可能性評価値の高い順番に表示順序を設定できるようにしておき、初期設定ではその設定となるようにしてもよい。そうしておけば、ガス漏洩源の位置特定や修復作業を迅速に行うことができ、作業員の危険性を低減することができる。 As described above, as the output device 3 that outputs the information on the gas leakage point candidate point CP in step # 50, for example, a control terminal device in a central monitoring room may be mentioned. In addition, a personal computer (stationary type, portable type, etc.) and a portable terminal (smart phone, touchpad, etc.) are also included. Information on the gas leak location candidate point CP is output according to the operation content of the operator. At that time, the display order may be set in descending order of the gas leakage source possibility evaluation value according to an instruction from the operator, and the setting may be set in the initial setting. By doing so, it is possible to quickly identify the location of the gas leakage source and to perform the repair work, and to reduce the danger of the worker.
 ガス漏洩箇所候補地点CPの情報としては、例えば、
・候補地点CPに存在する機器の名称とその位置、
・候補地点CPに存在する機器の配置図、
が挙げられる。また、出力内容の例としては、
・漏洩箇所候補地点CPに存在する機器名称と位置のテキスト表示、
・漏洩箇所候補地点CPに存在する機器の配置図の3D CAD画面での表示、
が挙げられる。さらに、ガス漏洩源可能性評価値を追加して表示してもよい。
As information of the gas leak location candidate point CP, for example,
-The name and location of the device at the candidate point CP,
・ Placement of equipment at the candidate point CP,
Is mentioned. Also, as an example of the output contents,
-Text display of device name and position existing at the leak candidate point CP
-Display on the 3D CAD screen of the layout of the equipment existing at the leak point candidate point CP,
Is mentioned. Furthermore, a gas leakage source possibility evaluation value may be added and displayed.
 以上の説明から分かるように、上述した各実施の形態には以下の特徴的な構成(C1)~(C6)等が含まれている。 As can be seen from the above description, the above-described embodiments include the following characteristic configurations (C1) to (C6) and the like.
 (C1):空間に存在するガスの光吸収に伴う構造物からの入射光変化を撮像することで、前記ガスの存在を検知する撮像装置と、
 前記撮像装置が撮像画面上のガス検知箇所に対して有する視線と前記構造物とが交わる地点について、前記構造物の設計情報を用いて、前記地点にガス漏洩源が存在する可能性を評価し、その評価結果に基づいて前記構造物の地点情報を出力する評価処理装置と、
 を有することを特徴とする構造物異常検知装置。
(C1): an imaging device that detects the presence of the gas by imaging an incident light change from a structure accompanying light absorption of the gas existing in the space;
For the point where the line of sight that the imaging device has on the gas detection location on the imaging screen and the structure intersect, the possibility that a gas leakage source exists at the point is evaluated using the design information of the structure. , An evaluation processing device that outputs point information of the structure based on the evaluation result;
A structure abnormality detection device comprising:
 (C2):空間に存在するガスの光吸収に伴う構造物からの入射光変化を撮像することで、前記ガスの存在を検知し、撮像画面上のガス検知箇所に対する撮像の視線と前記構造物とが交わる地点について、前記構造物の設計情報を用いて、前記地点にガス漏洩源が存在する可能性を評価し、その評価結果に基づいて前記構造物の地点情報を出力することを特徴とする構造物異常検知方法。 (C2): Imaging the incident light change from the structure accompanying the light absorption of the gas existing in the space to detect the presence of the gas, and the line of sight of the image to the gas detection location on the imaging screen and the structure For the point where the point intersects, using the design information of the structure, evaluate the possibility that a gas leak source exists at the point, and output the point information of the structure based on the evaluation result To detect structural anomalies.
 (C3):空間に存在するガスの光吸収に伴う構造物からの入射光変化を撮像することで、前記ガスの存在を検知する処理と、撮像画面上のガス検知箇所に対する撮像の視線と前記構造物とが交わる地点について、前記構造物の設計情報を用いて、前記地点にガス漏洩源が存在する可能性を評価する処理と、その評価結果に基づいて前記構造物の地点情報を出力する処理と、をコンピュータに実行させることを特徴とする構造物異常検知用評価処理プログラム。 (C3): imaging the incident light change from the structure accompanying the light absorption of the gas existing in the space, thereby detecting the presence of the gas, the line of sight of imaging with respect to the gas detection location on the imaging screen, and the For the point where the structure intersects, using the design information of the structure, a process for evaluating the possibility that a gas leakage source exists at the point, and outputting the point information of the structure based on the evaluation result An abnormality processing evaluation processing program characterized by causing a computer to execute processing.
 (C4):上記構成(C1)~(C3)における構造物の設計情報として、3次元的な構造物の配置情報、設置時期と設置箇所近傍の環境についての情報、構造物の運転状況についての情報、構造物の保全状況についての情報のうちの少なくとも1つを含む構成。 (C4): As the structure design information in the above configurations (C1) to (C3), the arrangement information of the three-dimensional structure, the information about the installation time and the environment in the vicinity of the installation location, the operation status of the structure A configuration including at least one of information and information on the maintenance status of the structure.
 (C5):上記構成(C1)~(C4)における前記地点にガス漏洩源が存在する可能性の評価に、前記構造物が取り扱っている化学物質の情報を更に用いる構成。 (C5): A configuration in which information on chemical substances handled by the structure is further used to evaluate the possibility of a gas leak source at the point in the above configurations (C1) to (C4).
 (C6):上記構成(C1)~(C5)における前記撮像装置の設置箇所及び撮影方向の情報を用いて前記地点を求める構成。 (C6): A configuration for obtaining the location using the information on the installation location and the imaging direction of the imaging device in the configurations (C1) to (C5).
 上述した各実施の形態から分かるように、構造物異常検知装置の実施の形態によれば、ガス検知箇所にガス漏洩源が存在する可能性を評価するために構造物STの設計情報等(プラントの構造物設計データ等)を用いる構成になっているため、構造物STにおけるガス漏洩源の位置を迅速に特定することが可能である。これは上記構造物異常検知方法や構造物異常検知用評価処理プログラムを用いた場合でも同様である。 As can be seen from each of the above-described embodiments, according to the embodiment of the structure abnormality detection device, the design information of the structure ST (plant) in order to evaluate the possibility that a gas leakage source exists at the gas detection location. Therefore, it is possible to quickly specify the position of the gas leakage source in the structure ST. This is the same even when the structure abnormality detection method and the structure abnormality detection evaluation processing program are used.
 そして、ガス漏洩源の位置を迅速に特定することにより、作業員への作業場所の指示を正確かつ迅速に行って、ガス漏れの修復作業を安全かつ短時間で行うことが可能となる。例えば、ガス撮像装置1を用いて得られた画像上のガス漏洩位置に該当する複数のガス漏洩箇所候補地点CPに対してガス漏洩源可能性評価を行い、評価値の高い順にガス漏洩源の可能性の高い箇所として提示するようにすれば、ガス漏洩源の位置特定や修復作業をより一層迅速にでき、作業員の危険性を低減することができる。 And, by quickly specifying the position of the gas leakage source, it is possible to accurately and quickly instruct the worker about the work location, and to perform the gas leakage repair work safely and in a short time. For example, the gas leakage source possibility evaluation is performed on a plurality of gas leakage point candidate points CP corresponding to the gas leakage positions on the image obtained by using the gas imaging device 1, and the gas leakage source If it is presented as a highly likely location, the location and repair work of the gas leakage source can be performed more quickly, and the danger to workers can be reduced.
 1  ガス撮像装置
 2  評価処理装置
 3  出力装置
 4  ガス漏洩箇所候補算出部
 5  評価値算出部
 6  出力情報生成部
 7  記録部
 10A,10B  構造物異常検知装置
 GS  漏洩ガス
 Jo  仮想的な空間座標
 Jp  実際のガス漏洩地点
 Kc  ガス撮像装置の方向ベクトル
 Kp  ガス漏洩地点の方向ベクトル
 Io  撮像画面
 Ic  画面中心
 Ip  画面上のガス漏洩検知点
 Ho  ガス撮像装置の設置座標
 CP  ガス漏洩箇所候補地点
 ST  構造物
DESCRIPTION OF SYMBOLS 1 Gas imaging device 2 Evaluation processing device 3 Output device 4 Gas leak location candidate calculation part 5 Evaluation value calculation part 6 Output information generation part 7 Recording part 10A, 10B Structure abnormality detection device GS Leakage gas Jo Virtual space coordinate Jp Actual Gas leakage point Kc Direction vector of gas imaging device Kp Direction vector of gas leakage point Io Imaging screen Ic Screen center Ip Gas leakage detection point on screen Ho Gas imaging device installation point CP Gas leakage point candidate point ST Structure

Claims (6)

  1.  空間に存在するガスの光吸収に伴う構造物からの入射光変化を撮像することで、前記ガスの存在を検知する撮像装置と、
     前記撮像装置が撮像画面上のガス検知箇所に対して有する視線と前記構造物とが交わる地点について、前記構造物の設計情報を用いて、前記地点にガス漏洩源が存在する可能性を評価し、その評価結果に基づいて前記構造物の地点情報を出力する評価処理装置と、
     を有する構造物異常検知装置。
    An imaging device that detects the presence of the gas by imaging an incident light change from a structure accompanying light absorption of the gas present in the space;
    For the point where the line of sight that the imaging device has on the gas detection location on the imaging screen and the structure intersect, the possibility that a gas leakage source exists at the point is evaluated using the design information of the structure. , An evaluation processing device that outputs point information of the structure based on the evaluation result;
    A structure abnormality detection device having
  2.  前記構造物の設計情報として、3次元的な構造物の配置情報を含む請求項1記載の構造物異常検知装置。 2. The structure abnormality detection apparatus according to claim 1, wherein the structure design information includes three-dimensional structure arrangement information.
  3.  前記構造物の設計情報として、設置時期と設置箇所近傍の環境についての情報を含む請求項1又は2記載の構造物異常検知装置。 The structure abnormality detection device according to claim 1 or 2, wherein the design information of the structure includes information about an installation time and an environment in the vicinity of the installation location.
  4.  前記構造物の設計情報として、構造物の運転状況についての情報を含む請求項1~3のいずれか1項に記載の構造物異常検知装置。 The structure abnormality detection device according to any one of claims 1 to 3, wherein the structure design information includes information on an operation state of the structure.
  5.  前記構造物の設計情報として、構造物の保全状況についての情報を含む請求項1~4のいずれか1項に記載の構造物異常検知装置。 The structure abnormality detection device according to any one of claims 1 to 4, wherein the structure design information includes information on a maintenance status of the structure.
  6.  前記評価処理装置が、前記地点にガス漏洩源が存在する可能性の評価に、前記構造物が取り扱っている化学物質の情報を更に用いる請求項1~5のいずれか1項に記載の構造物異常検知装置。 The structure according to any one of claims 1 to 5, wherein the evaluation processing device further uses information on a chemical substance handled by the structure for evaluating a possibility that a gas leakage source exists at the point. Anomaly detection device.
PCT/JP2018/014952 2017-05-10 2018-04-09 Structure abnormality detector WO2018207526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017093582A JP2020115082A (en) 2017-05-10 2017-05-10 Structure abnormality detection device
JP2017-093582 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018207526A1 true WO2018207526A1 (en) 2018-11-15

Family

ID=64104480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014952 WO2018207526A1 (en) 2017-05-10 2018-04-09 Structure abnormality detector

Country Status (2)

Country Link
JP (1) JP2020115082A (en)
WO (1) WO2018207526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276305A1 (en) * 2021-06-29 2023-01-05 コニカミノルタ株式会社 Surveillance assisting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056342B2 (en) * 2018-04-13 2022-04-19 コニカミノルタ株式会社 Image processing device for gas detection, image processing method for gas detection, and image processing program for gas detection

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518464A (en) * 2003-01-31 2006-08-10 マイクロン インフラレッド インコーポレイテッド Infrared imaging device
JP2009042965A (en) * 2007-08-08 2009-02-26 Shikoku Electric Power Co Inc Onboard type leakage gas detection system and method
US20100127173A1 (en) * 2008-11-26 2010-05-27 Fluke Corporation System and method for detecting gas leaks
JP2012022668A (en) * 2010-06-17 2012-02-02 Ns Solutions Corp Information processor, information processing method and program
JP2015204744A (en) * 2014-04-10 2015-11-16 ゼネラル・エレクトリック・カンパニイ Method and system for detecting coolant leaks in generators
JP2015203412A (en) * 2014-04-10 2015-11-16 ゼネラル・エレクトリック・カンパニイ Method and system for detecting leaks in steam turbines
WO2016133049A1 (en) * 2015-02-17 2016-08-25 富士通株式会社 Determination device, determination method, and determination program
WO2016181854A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Gas concentration measurement device
WO2017022556A1 (en) * 2015-08-04 2017-02-09 コニカミノルタ株式会社 Gas detection device and gas detection method
WO2017061351A1 (en) * 2015-10-05 2017-04-13 コニカミノルタ株式会社 Navigation device and navigation method
WO2017086230A1 (en) * 2015-11-16 2017-05-26 コニカミノルタ株式会社 Gas measurement device and gas measurement method
WO2018038149A1 (en) * 2016-08-24 2018-03-01 コニカミノルタ株式会社 Gas detection information display system and gas detection information display program

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518464A (en) * 2003-01-31 2006-08-10 マイクロン インフラレッド インコーポレイテッド Infrared imaging device
JP2009042965A (en) * 2007-08-08 2009-02-26 Shikoku Electric Power Co Inc Onboard type leakage gas detection system and method
US20100127173A1 (en) * 2008-11-26 2010-05-27 Fluke Corporation System and method for detecting gas leaks
JP2012022668A (en) * 2010-06-17 2012-02-02 Ns Solutions Corp Information processor, information processing method and program
JP2015204744A (en) * 2014-04-10 2015-11-16 ゼネラル・エレクトリック・カンパニイ Method and system for detecting coolant leaks in generators
JP2015203412A (en) * 2014-04-10 2015-11-16 ゼネラル・エレクトリック・カンパニイ Method and system for detecting leaks in steam turbines
WO2016133049A1 (en) * 2015-02-17 2016-08-25 富士通株式会社 Determination device, determination method, and determination program
WO2016181854A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Gas concentration measurement device
WO2017022556A1 (en) * 2015-08-04 2017-02-09 コニカミノルタ株式会社 Gas detection device and gas detection method
WO2017061351A1 (en) * 2015-10-05 2017-04-13 コニカミノルタ株式会社 Navigation device and navigation method
WO2017086230A1 (en) * 2015-11-16 2017-05-26 コニカミノルタ株式会社 Gas measurement device and gas measurement method
WO2018038149A1 (en) * 2016-08-24 2018-03-01 コニカミノルタ株式会社 Gas detection information display system and gas detection information display program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276305A1 (en) * 2021-06-29 2023-01-05 コニカミノルタ株式会社 Surveillance assisting system

Also Published As

Publication number Publication date
JP2020115082A (en) 2020-07-30

Similar Documents

Publication Publication Date Title
US9947138B2 (en) System and method for augmented reality display of dynamic environment information
US10871444B2 (en) Inspection and failure detection of corrosion under fireproofing insulation using a hybrid sensory system
Natephra et al. Live data visualization of IoT sensors using augmented reality (AR) and BIM
US8334513B1 (en) Imaging for evaluating performance characteristics
JP6428381B2 (en) Fluid leak detection device
AU2015258535B2 (en) Electromagnetic radiation detection apparatus for hidden fire danger in mine, and method therefor
WO2019138873A1 (en) Gas detection-use image processing device, and gas detection-use image processing method
CN109564716A (en) For detecting the devices, systems, and methods of emergency
WO2018207526A1 (en) Structure abnormality detector
JP6610640B2 (en) Position recognition method and system, and abnormality determination method and system
US20190355111A1 (en) Integrating extended reality with inspection systems
US10600057B2 (en) Evaluating a placement of optical fire detector(s) based on a plume model
Cai et al. Actively-exploring thermography-enabled autonomous robotic system for detecting and registering HVAC thermal leaks
CN112733646B (en) Liquid medium leakage automatic detection method and system based on thermal imaging
WO2018207527A1 (en) Moving body risk assessment device, and moving body monitoring system
CN110349288B (en) Pipeline inspection blind area calculation method and device
Rokrakthong et al. Applying cnn to infrared thermography for preventive maintenance of electrical equipment
Rangel et al. Gas leak inspection using thermal, visual and depth images and a depth-enhanced gas detection strategy
KR20210036173A (en) Real time leak gas detection device and method using infrared spectral imaging camera analysis technique
McKay et al. Fixed AI-Powered Imaging for Automated Leak Detection on Offshore Production Platforms
Singh Use of Optical Gas Imaging for Visualizing Gas Leakage and Other Thermal Camera Applications in Oil & Gas Sector
Rafibakhsh et al. Applying fuzzy logic for optimal placement of XBOX Kinect sensors for industrial applications
JP3769259B2 (en) Disaster prevention support system
Deng et al. The infrared diagnostic technology of power transmission devices and experimental study
Srivastava et al. Design of Fire and Gas Detection System in Process Industry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP