WO2018207306A1 - Electronic device for immersion cooling, and processor module for immersion cooling - Google Patents

Electronic device for immersion cooling, and processor module for immersion cooling Download PDF

Info

Publication number
WO2018207306A1
WO2018207306A1 PCT/JP2017/017837 JP2017017837W WO2018207306A1 WO 2018207306 A1 WO2018207306 A1 WO 2018207306A1 JP 2017017837 W JP2017017837 W JP 2017017837W WO 2018207306 A1 WO2018207306 A1 WO 2018207306A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
processor
memory
module
mounting area
Prior art date
Application number
PCT/JP2017/017837
Other languages
French (fr)
Japanese (ja)
Inventor
齊藤 元章
Original Assignee
株式会社ExaScaler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ExaScaler filed Critical 株式会社ExaScaler
Priority to PCT/JP2017/017837 priority Critical patent/WO2018207306A1/en
Priority to JP2017541133A priority patent/JP6494773B1/en
Publication of WO2018207306A1 publication Critical patent/WO2018207306A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • the present invention relates to an electronic device, and more particularly to an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled.
  • the present invention also relates to an immersion cooling processor module that is preferably used in the electronic apparatus.
  • an electronic device generally refers to an electronic device that requires ultra-high performance operation or stable operation such as a supercomputer or a data center and generates a large amount of heat from itself, but is not limited thereto. It is not a thing.
  • liquid cooling Conventionally, air cooling and liquid cooling have been used to cool supercomputers and data centers.
  • the liquid cooling type is generally considered to have good cooling efficiency because it uses a liquid that has a heat transfer performance far superior to that of air.
  • an immersion cooling system that uses a fluorocarbon-based coolant is superior to electronic device maintenance (specifically, for example, adjustment, inspection, repair, replacement, expansion, etc.) as compared with a system that uses synthetic oil. In recent years, it has attracted attention.
  • the present inventor has already developed a small-sized immersion cooling device with excellent cooling efficiency for a small-scale immersion cooling supercomputer.
  • This apparatus is applied to and operated in a small supercomputer “Suiren” installed in the High Energy Accelerator Research Organization (Non-patent Document 1).
  • Patent Document 1 Non-Patent Document 2, Non-Patent Document 2, Patent Document 3, Non-Patent Document 4.
  • ExaScaler-1 an immersion-cooled small supercomputer, measures the value equivalent to the world's first in the latest supercomputer power consumption performance ranking “Green500” by improving performance by more than 25% ”, March 31, 2015. Press release, ExaScaler Co., Ltd., URL: http://www.exascaler.co.jp/wp-content/uploads/2015/03/20150331.pdf "Aiming to be an Exa-class high-performance machine, renewing semiconductors, cooling and connections (top)", Nikkei Electronics July 2015 issue, pp.99-105, published June 20, 2015, Nikkei BP Inc.
  • Non-Patent Document 3 describes an immersion cooling electronic device “Multi-Xeon Server Brick” capable of mounting 16 Xeon processors (“Xeon” is a trademark of Intel Corporation) at high density. Is disclosed. According to this technique, two Xeon processors are connected according to QPI (Quick Path Interconnect of Intel Corporation), so that one electronic device includes eight Multi-Xeon server nodes. Eight general-purpose 16GB or 32GB DDR4 (Double-Data-Rate4) VLP DIMM (Very Low Profile Dual Dual Inline Memory Module) is installed in the memory per processor. Can do.
  • Patent Document 1 discloses a configuration example of a substrate group that realizes the immersion cooling electronic device disclosed in Non-Patent Document 3.
  • the immersion cooling electronic device disclosed in Non-Patent Document 3 is mounted with a 32 GB DDR4 VLP DIMM, which is a very low-profile memory module. However, it may be requested to further increase the memory capacity per processor. As a method for responding to such a request, it is conceivable to increase the number of memory modules of 32 GB DIMM or to install a memory module having a larger capacity, for example, 64 GB DIMM. However, when increasing the number of memory modules, it is necessary to increase the mounting area on the board for mounting the memory modules, the board becomes larger and the volume of the combined group of boards, that is, the brick, increases, and the mounting density is increased. There is a problem of being lowered.
  • the general-purpose 64GB DIMM has a higher Standard Height than the VLP, so the distance between the boards should be reduced so that the memory module does not interfere with the surface of another board. Need to be separated. For this reason, there is a problem that the volume of the brick increases and the mounting density decreases.
  • the mounting density does not decrease even if Standard Height or other relatively tall memory modules are mounted, or the mounting density can be further increased. It is desired to develop an electronic device and a processor module having a new configuration that is suitably used for the electronic device.
  • a processor module for immersion cooling applied to an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face.
  • the memory mounting area includes a plurality of memory sockets for fixing individual memory modules, and the one of the first circuit boards.
  • the distance H between the surface and the one surface of the second circuit board is (h 1 + h 2 ) with respect to the height h 1 of the memory module and the height h 2 of the memory socket from the one surface. ⁇ H ⁇ 2h 1 should be satisfied.
  • the memory module is a Standard Height memory module, and the module has a board surface of the memory module relative to the one surface.
  • the memory socket may be inserted vertically or inclined.
  • the processor of the first circuit board and the processor of the second circuit board are connected to each other. It is good to be connected through.
  • an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled is a carrier substrate having a voltage input terminal that supplies a DC voltage for the electronic device.
  • the voltage input terminal is electrically connected to the voltage output terminal of the power supply unit; and a carrier substrate;
  • a plurality of module connectors arranged on one surface of the carrier substrate;
  • a plurality of processor modules each of the plurality of processor modules having a module connector plug electrically coupled to each of the plurality of module connectors;
  • a support member that supports the carrier substrate so as to be positioned above the power supply unit installed at the bottom of a cooling tank included in the cooling device;
  • the processor module is A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area;
  • a plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface
  • the support member may include a backboard or a frame structure in which the carrier substrate is fixed to one surface.
  • the backboard or frame structure is slidably supported by a plurality of support pillars that are vertically erected and fixed in the cooling tank. It is good to be done.
  • a processor module for immersion cooling applied to an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face.
  • a first circuit board and a second circuit board A first connector for electrically connecting the first circuit board and the second circuit board; A third circuit board disposed between the first circuit board and the second circuit board; A second connector for electrically connecting the third circuit board and the first circuit board or the second circuit board; Including The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively.
  • the third circuit board is disposed in a space formed by the upper surfaces of the processors of the first circuit board and the second circuit board facing each other.
  • the memory mounting area includes a plurality of memory sockets for fixing individual memory modules
  • the first circuit board includes: distance H between the one surface of the said one face a second circuit board, the height h 1 of the memory module from the one surface, with respect to the height h 2 of the memory socket, (h 1 + H 2 ) ⁇ H ⁇ 2h 1 is satisfied.
  • the memory module is a Standard Height memory module
  • the module surface of the memory module is the one in which the substrate surface of the memory module is the one.
  • the memory socket may be inserted perpendicularly or inclined with respect to the surface.
  • the processor of the first circuit board and the processor of the second circuit board are connected to each other. It may be connected via a connection interface.
  • the third circuit board is a circuit board on which a storage device and / or an I / O control chip set is mounted. It is good to be.
  • an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled is A carrier substrate having a voltage input terminal for supplying a DC voltage for the electronic device, wherein the voltage input terminal is electrically connected to a voltage output terminal of a power supply unit; and A plurality of module connectors arranged on one surface of the carrier substrate; A plurality of processor modules, each of the plurality of processor modules having a module connector plug electrically coupled to each of the plurality of module connectors; When the electronic device is electrically connected to the power supply unit, a support member that supports the carrier substrate so as to be positioned above the power supply unit installed at the bottom of a cooling tank included in the cooling device; Including The processor module is A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface
  • a first circuit board and a second circuit board A first connector for electrically connecting the first circuit board and the second circuit board; A third circuit board disposed between the first circuit board and the second circuit board; A second connector for electrically connecting the third circuit board and the first circuit board or the second circuit board; Including The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively.
  • the third circuit board is disposed in a space formed by the upper surfaces of the processors of the first circuit board and the second circuit board facing each other.
  • the distance between the substrates is: It had to be longer than twice the height h 1 of the memory module from the surface of the one.
  • the first circuit board and the second circuit board are such that the processor mounting area and the memory mounting area of the first circuit board face the processor mounting area and the memory mounting area of the second circuit board, respectively.
  • the tip portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the tip portions of the plurality of memory modules arranged in a comb shape on the second circuit board are arranged between adjacent memory modules.
  • the problem that the memory modules interfere with each other can be solved, and the processor and the memory module can be mounted in a smaller volume in an extremely high density.
  • the memory mounting area includes a plurality of memory sockets into which individual memory modules are inserted, the distance H between one surface of the first circuit board and one surface of the second circuit board is determined from one surface.
  • memory height h 1 of the modules, of the memory socket with respect to the height h 2, so as to satisfy the (h 1 + h 2) ⁇ H ⁇ 2h 1, can be shortened.
  • the tip portions of the plurality of memory modules are arranged in a staggered manner with gaps between adjacent memory modules, so that the cooling liquid removes heat from the surface of the memory modules through the gaps. Since the heat generation amount of the memory module is much smaller than the heat generation amount of the processor, even if the gap between adjacent memory modules is relatively narrow, the heat removal action by the cooling liquid is not impaired.
  • a heat spreader a processor in which a heat spreader is integrated is also commercially available
  • a heat sink are thermally connected to the upper surface of the processor, and the processor is mounted on the heat spreader.
  • the circulating coolant is configured to efficiently take away heat generated from the processor.
  • the heat sink fins need to be raised to obtain a relatively large heat radiation area. May be low. Accordingly, the height from one surface of the first or second circuit board to the upper surface of the processor including the heat spreader and the heat sink can be lower than the height h 1 of the memory module from the one surface.
  • the present invention by utilizing this height difference, when the one surface of the first circuit board and the one surface of the second circuit board are combined to face each other, the upper surfaces of the processors face each other.
  • the third circuit board is arranged in a relatively large space. This makes it possible to expand or enhance the function of the processor module by utilizing the space that can be created inside the processor module. In addition, since another circuit board is arranged in the surplus space in the processor module, it is possible to realize much higher density mounting.
  • the cooling tank having an “open space” in this specification includes a cooling tank having a simple sealed structure that does not impair maintainability of the electronic device.
  • a structure in which a top plate for closing the open space of the cooling tank can be placed in the opening of the cooling tank, or a structure in which the top plate can be detachably attached via packing etc. is a simple sealed structure It can be said.
  • FIG. 5B is a cross-sectional view taken along the line AA of the processor module shown in FIG. 5A. It is a perspective view which shows an example of the stage in a power supply unit. It is a perspective view which shows the state which attached the unit board
  • FIG. 1 is a perspective view of an electronic device 100 according to an embodiment of the present invention
  • FIG. 2 is a partial assembly view.
  • the electronic device 100 is an electronic device that is immersed and cooled directly in a cooling liquid in a cooling device described later.
  • the electronic device 100 includes a backboard or frame structure 110 (hereinafter simply referred to as “backboard 110”), a plurality of processor modules 120, a carrier board 121, and a network card 122.
  • backboard 110 backboard or frame structure 110
  • the power supply unit is abolished from the electronic device 100. As will be described later, the power supply unit is installed at the bottom of the cooling tank provided in the cooling device. In FIG. 2, only one processor module 120 is depicted, and no network card is depicted.
  • the backboard 110 constitutes a support member that supports the carrier substrate 121.
  • the backboard 110 includes an outer frame portion 110b and a beam portion 110c that traverses the inside of the outer frame portion 110b in the width direction.
  • a suspension fitting hole (not shown) through which a suspension tool is passed when the electronic device 100 is put into or taken out of the cooling bath may be formed in the upper portion of the outer frame 110b.
  • the backboard 110 may include a pair of support pins or guide pins (hereinafter simply referred to as “support pins”) extending downward from the lower portion of the outer frame portion 110b.
  • support pins a pair of support pins or guide pins
  • a plurality of support plates may be attached to the outer frame portion 110b and the beam portion 110c via fasteners such as screws that penetrate the carrier substrate 121.
  • the carrier substrate 121 is fixed to one surface of the backboard 110, and a plurality of support plates (not shown) are attached at predetermined intervals in the longitudinal direction of the carrier substrate 121.
  • Each of the support plates (not shown) is formed with a plurality of grooves, and each of the end portions of the plurality of processor modules 120 may be inserted into each of the plurality of grooves. In this way, adjacent support plates (not shown) may hold the upper and lower ends of the plurality of processor modules 120.
  • a DC voltage input connector 131 for supplying a DC voltage for electronic equipment is provided at the bottom of the carrier substrate 121.
  • the DC voltage input connector 131 corresponds to a voltage input end provided on the carrier substrate 121.
  • a plurality of module connectors 128 are arranged on one surface of the carrier substrate 121.
  • each of the plurality of processor modules 120 has a pair of module connector plugs 129 that are electrically coupled to each pair of module connectors 128. Therefore, each processor module 120 can be inserted into the carrier substrate 121 and pulled out from the carrier substrate 121.
  • four network cards 122 are attached to the carrier substrate 121.
  • 16 processor modules 120 are attached to the carrier substrate 121, the number of the processor modules 120 is arbitrary and is not particularly limited.
  • the processor module 120 includes a first circuit board 123A, a second circuit board 123B, and connectors 125A and 125B that electrically connect the first circuit board 123A and the second circuit board 123B. .
  • the processor module 120 includes a third circuit board 123C and connectors 125C and 125D that electrically connect the third circuit board 123C and the first circuit board 123A. It may be omitted if necessary.
  • the first circuit board 123A includes a processor mounting area PA located near the center of the board and two memory mounting areas MA located on both sides of the processor mounting area PA. And have. At least one processor 124A is mounted in the processor mounting area PA.
  • the processor 124A is not particularly limited, but may be, for example, an Intel® Corporation Xeon processor (“Xeon” is a trademark of Intel® Corporation).
  • the processor 124A may include a back plate, a socket, a heat spreader (which may be integrated with the processor 124A) thermally connected to the upper surface of the processor 124A, and a heat sink (see FIG. 5B).
  • FIG. 5B see FIG.
  • the fins of the heat sink are not drawn, and the heat spreader under the heat sink is not drawn.
  • the arrangement direction of the fins of the heat sink is the same as the arrangement direction of the memory modules described later so as to coincide with the flow direction of the coolant.
  • each of the two memory mounting areas MA two memory modules 127A arranged in a comb shape are mounted.
  • the number of memory modules 127A mounted in the memory mounting area MA may be two or more.
  • the memory module 127A may be a general-purpose Standard Height 64GB DIMM instead of a VLP module in accordance with the object of the present invention.
  • a necessary number of general-purpose memory sockets 126A are mounted on the substrate at a predetermined interval, and the memory module 127A is inserted into each of the memory sockets 126A.
  • first circuit board 123A On one surface of the first circuit board 123A, a connector 125A for electrical connection with the second circuit board 123B, a connector 125D for electrical connection with the third circuit board 123B, and And one of the pair of module connector plugs 129 coupled to one of the pair of module connectors 128 of the carrier substrate 121.
  • various electronic components are mounted on one surface of the first circuit board 123A, but the electronic components are not drawn.
  • the first circuit board 123 configured as described above and the entire components mounted thereon may be hereinafter referred to as “A board 120A”.
  • the second circuit board 123B has a configuration similar to that of the first circuit board 123A. Specifically, the second circuit board 123B has a processor mounting area PB located near the center of the board and two memory mounting areas MB located on both sides of the processor mounting area PB on one surface. Have. At least one processor 124B is mounted in the processor mounting area PB. Since the processor 124B is the same as the processor 124A, description thereof is omitted here.
  • Two memory modules 127B arranged in a comb shape are mounted in each of the two memory mounting areas MB.
  • the number of memory modules 127B mounted in the memory mounting area MB may be two or more.
  • the memory module 127B and the memory socket 126B are the same as the memory module 127A and the memory socket 126A, and thus description thereof is omitted here.
  • B board 120B The second circuit board 123B configured as described above and the entire components mounted thereon may be hereinafter referred to as “B board 120B”.
  • the size of the first circuit board 123A and the size of the second circuit board 123B are the same, and the processor mounting area PA of the first circuit board 123A.
  • the positions of the memory mounting area MA and the module connector plug 129 and the positions of the processor mounting area PB, the memory mounting area MB, and the module connector plug 129 of the second circuit board 123B are substantially vertically symmetrical. However, the entire processor mounting area PB and memory mounting area MB of the second circuit board 123B are slightly shifted toward the center of the board (downward).
  • the third circuit board 123 ⁇ / b> C has four storage devices 130 mounted on one surface of the board, and electrical connection with the first circuit board 123 ⁇ / b> A on the other surface of the board.
  • a connector 125D for connection is provided.
  • the third circuit board 123C may alternatively or additionally be mounted with an I / O control chip set.
  • the third circuit board 123C may alternatively or additionally be mounted with a programmable logic device.
  • the storage device 130 may use flash storage such as M.2 SSD (Solid State Drive) or mSATA (mini Serial ATA) SSD.
  • an FPGA Field-ProgrammablemGate Array
  • the programmable logic device may be used as the programmable logic device.
  • C board 120C In addition to the above-described components, various electronic components are mounted on one surface of the third circuit board 123C, but the electronic components are not drawn.
  • the third circuit board 123C configured as described above and the entire components mounted thereon may be hereinafter referred to as “C board 120C”.
  • FIG. 4 is an assembly view when the processor board 120 is configured by combining the A board 120A, the B board 120B, and the C board 120C
  • FIG. 5A is a perspective view of the assembled processor module 120
  • FIG. FIG. 5B is a cross-sectional view taken along line AA of the processor module 120 shown in FIG. 5A.
  • the fins of the heat sink that are thermally connected to the upper surfaces of the processors 124A and 124B are not drawn.
  • the arrangement direction of the fins of the heat sink is the same as the arrangement direction of the memory modules described later so as to coincide with the flow direction of the coolant. As shown in FIG.
  • the processor module 120 is assembled by first coupling the connector 125C of the C board 120C to the connector 125D of the A board 120A, and then making one surface of the B board 120B one of the A boards 120A.
  • the B board 120B is turned over so as to face the surface, and the connector 125B of the B board 120B is coupled to the connector 125A of the A board 120A.
  • the front ends of the plurality of memory modules 127A arranged in a comb shape on the A substrate 120A and the front ends of the plurality of memory modules 127B arranged in a comb shape on the B substrate 120B are In addition to helping to align the A substrate 120A and the B substrate 120B so that gaps are formed between adjacent memory modules, the one surface of the A substrate 120A and one surface of the B substrate 120B are used. It is useful to keep the distance H to a predetermined length.
  • the A substrate 120A and the B substrate 120B include the front ends of the plurality of memory modules 127A arranged in a comb shape of the A substrate 120A and the plurality of memories arranged in a comb shape of the B substrate 120C.
  • the front ends of the modules 127B are aligned so as to be alternately arranged with a gap between adjacent memory modules.
  • the memory sockets 126A can be installed at an interval such that the distance between the center lines is about 8 mm.
  • the distance H between one surface of the A substrate 120A and one surface of the B substrate 120B is set such that the height h 1 of the memory modules 127A and 127B from the one surface and the memory sockets 126A and 126B.
  • the height h 2 can be shortened so as to satisfy (h 1 + h 2 ) ⁇ H ⁇ 2h 1 .
  • the distance H can be shortened to 36 mm to 40 mm, and higher density mounting can be realized. Can do.
  • This approximately 10 mm high space created in the processor module 120 is large enough for additional placement of various components to expand or enhance the functionality of the processor module (if any). If the space is about 5 mm in height, the height is too low and it is very difficult to place the components there).
  • the C substrate 120 ⁇ / b> C is another circuit substrate for function expansion or expansion arranged in this space.
  • the gap between the upper surface of the processor 124A of the A substrate 120A and the back surface of the C substrate 120C, and the gap between the upper surface of the processor 124B of the B substrate 120B and the surface of the C substrate 120C Since it can be ensured without any problem, there is no problem in achieving the desired heat removal performance by the coolant passing therethrough.
  • a plurality of the electronic devices 100 are arranged along the longitudinal direction of the outer frame portion 110 b of the backboard 110.
  • a slider (not shown) may be attached.
  • a pair of sliders attached to both the left and right sides of the outer frame portion 110b are engaged with rail grooves provided in adjacent support pillars that are vertically raised and fixed in a cooling tank, which will be described later.
  • the board 110 may be supported so as to be slidable (up and down in the vertical direction).
  • the electronic device 100 When the electronic device 100 configured as described above slides the backboard 110 with respect to the plurality of support pillars and is immersed in the cooling liquid in the cooling device and directly cooled, the electronic device 100 circulates in the electronic device.
  • the cooling liquid that passes through and out of the processor module 120 quickly and efficiently removes heat from the processor module 120 and the carrier substrate 121, so that the electronic device 100 is stable even when mounted at a high density. Operation can be secured.
  • a gap between the A board 120A and the C board 120C, a gap between the B board 120B and the C board 120C, and a gap between adjacent memory modules are respectively secured.
  • the flow channel through which the coolant flows is formed.
  • each processor module 120 can be attached to and removed from the carrier substrate 121. As a result, adjustment, inspection, repair, replacement, expansion, etc. can be performed for each processor module 120, so that maintainability is significantly improved.
  • FIG. 6 is a perspective view showing an example of the stage 22 in the power supply unit 20
  • FIG. 7 is a perspective view showing a state in which the unit substrate 21 in the power supply unit 20 is mounted on the stage 22.
  • the power supply unit 20 is a component not included in the electronic device 100, and is installed at the bottom of the cooling tank provided in the cooling device.
  • the power supply unit 20 includes a unit substrate 21 and a step-down device 215 mounted on the unit substrate 21.
  • the unit board 21 includes a power supply voltage input connector 212 that supplies an external power supply voltage from an external power supply (not shown) via a power supply cable 211, a DC voltage output connector 213 that outputs a DC voltage stepped down by the step-down device 215, and Is provided.
  • the step-down device 215 is, for example, a converter module that steps down an external high-voltage DC voltage of 200V-420V to a DC voltage of 24V-52V, or a single-phase or three-phase external high-voltage AC voltage of 100V-250V, It is preferable to include a converter module that performs AC / DC conversion and step-down to a DC voltage. More specifically, the former converter module may be capable of stepping down DC380V to DC48V, and the latter converter module may be capable of AC / DC conversion and stepping down to DC48V from AC200V.
  • the step-down device 215 may include any one or more peripheral circuits of a power factor correction circuit, a noise filter, an additional rectifier, and a surge circuit, as needed.
  • a heat sink 216 for heat dissipation is preferably thermally connected to the surface of the step-down device 215.
  • the unit substrate 21 may include a plurality of input fuses 217 that protect against failure. As shown in FIG. 7, the unit substrate 21 is fixed to the stage 22 via a plurality of spacers 218. Thus, the unit substrate 21 is arranged away from the bottom so as to form a flow channel 219 through which the coolant flows between one surface of the unit substrate 21 and the bottom of the cooling tank described later.
  • the unit substrate 21 may be configured to have a flow channel through which the coolant passes.
  • the unit substrate 21 may be formed in a hierarchical structure or a hollow structure having an intermediate space, and a cooling liquid may be passed through the structure.
  • the stage 22 includes a flat plate placed at the bottom of a cooling tank described later. Near the center in the width direction of the flat plate, a plurality of holes 23 through which the coolant flowing in from the bottom is passed are formed at intervals in the longitudinal direction. Further, a plurality of notches 24 are formed at intervals in the longitudinal direction at the end in the width direction of the flat plate. The adjacent cutouts 24 have a length and a width necessary for the adjacent cutouts 24 to form the same hole as the hole 23 when the plurality of stages 22 are arranged side by side.
  • a plurality of support pillars 25 are vertically mounted on the stage 22 using an L-shaped bracket 26. Therefore, when the stage 22 is installed in the bottom part of a cooling tank, the some support pillar 25 will stand upright in a cooling tank.
  • a plurality of brackets 27 are fixed on the stage 22.
  • a support pin insertion hole 28 is formed in the bracket 27.
  • a rail groove 251 is formed in each of the plurality of support pillars 25.
  • a pair of sliders (not shown) included in the backboard 110 of the electronic device 100 engage with rail grooves 251 provided in adjacent support pillars, so that the backboard 110 can be slid (raised and lowered in the vertical direction). Supported by
  • the electronic device 100 can raise or lower the backboard 110 by sliding the backboard 110 with respect to the plurality of support pillars 25.
  • a pair of support pins (not shown) extending downward from the lower portion of the outer frame portion 110b of the backboard 110 of the electronic device 100 are fixed to the power supply unit 20.
  • 27 is inserted into the support pin insertion hole 27 and the DC voltage output connector 213 of the power supply unit 20 and the DC voltage input connector 131 of the electronic device 100 may be accurately aligned.
  • the DC voltage output connector 213 and the DC voltage input connector 131 are electrically connected.
  • the pair of support columns 25 and the pair of brackets 27 support the weight of the electronic device 100 of one unit.
  • the power supply unit 20 may further include a first controller that starts supplying a DC voltage to the electronic device 100 when it detects that the DC voltage output connector 213 is coupled to the DC voltage input connector 131 of the electronic device 100.
  • the first controller may be mounted on the unit substrate 21 as an additional circuit or an electronic mechanism. As a result, the electronic device 100 can be plugged in immediately by energizing the electronic device 100 by simply lowering the electronic device 100 into the cooling tank and coupling the electronic device 100 to the power supply unit 20.
  • the power supply unit 20 detects ON / OFF of a switch that can be operated from the upper part of the liquid level of the cooling liquid in the cooling tank, the wall surface structure part of the cooling tank, or a control panel installed in the vicinity of the cooling tank, A second controller that switches start / disconnection of voltage supply to the electronic device 100 may be further included. Thereby, since an operator can switch ON / OFF for every electronic device 100 manually, a maintainability can be improved.
  • the second controller may also be mounted on the unit board 21 as an additional circuit or an electronic mechanism.
  • a switch for sending a signal for switching start / cut of voltage supply to the electronic device 100 to the second controller may be provided at the upper end or the side surface of each of the plurality of support pillars 25.
  • a configuration of a high-density immersion cooling apparatus that stores and cools a total of 24 electronic devices 100 and power supply units 20 in 6 ⁇ 4 sections of a cooling tank will be described. This is merely an example, and the number of units of the electronic device in the high-density immersion cooling apparatus is arbitrary, and does not limit the configuration of the electronic device that can be used in the present invention.
  • the immersion cooling apparatus 1 includes a cooling tank 10, and an open space 10 a is formed by the bottom wall 11 and the side wall 12 of the cooling tank 10.
  • a plurality of inflow openings 150 into which the cooling liquid flows are formed in a 9 ⁇ 3 pattern.
  • the side wall 12 is formed with a power cable introduction port 12a, a network cable introduction port 12b, and an outflow opening 170 formed in the vicinity of the liquid surface of the coolant.
  • the immersion cooling device 1 has a top plate 10b for closing the open space 10a of the cooling bath 10. During maintenance work of the immersion cooling device 1, the top plate 10 b is removed from the opening to open the open space 10 a, and during operation of the immersion cooling device 1, the top plate 10 b is placed in the opening of the cooling tank 10 to open it. The space 10a can be closed.
  • the cooling tank 10 is filled with a sufficient amount of coolant to immerse the entire electronic device 100 up to the liquid level shown in FIG. 10 (see FIG. 10).
  • coolant trade names of 3M Company “Fluorinert (trademark of 3M Company, hereinafter the same) FC-72” (boiling point 56 ° C.), “Fluorinert FC-770” (boiling point 95 ° C.), “Fluorinert FC-3283” ( Fluorine inert liquid composed of perfluorinated compounds (perfluorocarbon compounds) known as “Fluorinert FC-40” (boiling point 155 ° C.), “Fluorinert FC-43” (boiling point 174 ° C.) Although it can be used, it is not limited to these. Since Fluorinert FC-40 and FC-43 have a boiling point higher than 150 ° C. and are extremely difficult to evaporate, when one of them is used as a cooling liquid, the liquid level in the
  • a plurality of inflow headers 16 having a coolant inlet 15 at one end are provided below the bottom wall 11 of the cooling tank 10.
  • a receiving portion 17 having a coolant outlet 18 is provided outside the side wall 12 of the cooling tank 10. The receiving part 17 covers the outflow opening 170 and receives the coolant flowing out from the outflow opening 170 without leaking.
  • each of the plurality of holes 23 formed in the stage 22 and the notches 24 adjacent to each other, which are substantially the same as the holes 23, are respectively formed in the plurality of inflow openings 150 formed in the bottom wall 11. Match. Therefore, the cooling liquid flowing in from the inflow opening 150 is not blocked by the power supply unit 20.
  • the coolant since a flow channel through which the coolant flows is secured between the unit substrate 21 of the power supply unit 20 and the stage 22 (bottom wall 11), the coolant quickly heats up from both sides of the unit substrate 21, and Take away efficiently. Accordingly, the cooling efficiency of the power supply unit 20 is excellent.
  • the cooling tank 10 can be designed to have a low height (a shallow depth).
  • the cooling liquid flowing in from the inflow opening 150 passes through the inside and outside of the processor module from the lower side to the upper side of the electronic device 100, and quickly and efficiently heats the processor module 120 and the carrier substrate 121. Steal well.
  • the coolant thus warmed reaches the outlet 18 through the outlet opening 170 and the receiving portion 17.
  • a pipe (not shown) that leads to the inlet 15 through a heat exchanger (not shown) is connected to the outlet 18, and the cooling liquid is cooled in the heat exchanger, and the cooled cooling liquid flows into the inlet 15. To be supplied.
  • the present invention can be widely applied to an immersion cooling processor module and electronic equipment that are mounted at an ultra-high density.

Abstract

Provided are an electronic device and a processor module that, even if a relatively tall memory module is mounted, can experience no reduction in packing density, or can further increase packing density. This processor module includes a first circuit board and a second circuit board that each have, on one surface of the board, a processor mounting region and a memory mounting region. At least one processor is mounted to the processor mounting region, and a plurality of memory modules arranged in a comb shape are mounted to the memory mounting region. The one surface of the first circuit board and the one surface of the second surface board are brought together in a facing manner. The first circuit board and the second circuit board are positioned such that the processor mounting region and the memory mounting region of the first circuit board respectively face the processor mounting region and the memory mounting region of the second circuit board, and such that tip end sections of the plurality of memory modules of the first circuit board, said memory modules being arranged in a comb shape, and tip end sections of the plurality of memory modules of the second circuit board, said memory modules being arranged in a comb shape, are alternatingly arranged, with gaps created between neighboring memory modules. A third circuit board is positioned in a space that is formed by upper surfaces of the processors of the first circuit board and the second circuit board facing one another.

Description

液浸冷却用電子機器、及び液浸冷却用プロセッサモジュールImmersion cooling electronic device and immersion cooling processor module
 本発明は電子機器に係り、特に、冷却装置内の冷却液中に浸漬されて直接冷却される電子機器に関するものである。また、本発明は、当該電子機器に好適に使用される、液浸冷却用プロセッサモジュールに関するものである。本明細書において電子機器とは、一般に、スーパーコンピュータやデータセンター等の超高性能動作や安定動作が要求され、かつ、それ自体からの発熱量が大きな電子機器をいうが、これに限定されるものではない。 The present invention relates to an electronic device, and more particularly to an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled. The present invention also relates to an immersion cooling processor module that is preferably used in the electronic apparatus. In this specification, an electronic device generally refers to an electronic device that requires ultra-high performance operation or stable operation such as a supercomputer or a data center and generates a large amount of heat from itself, but is not limited thereto. It is not a thing.
 近年のスーパーコンピュータの性能の限界を決定する最大の課題の一つは消費電力であり、スーパーコンピュータの省電力性に関する研究の重要性は、既に広く認識されている。すなわち、消費電力当たりの速度性能(Flops/W)が、スーパーコンピュータを評価する一つの指標となっている。また、データセンターにおいては、データセンター全体の消費電力の45%程度を冷却に費やしているとされ、冷却効率の向上による消費電力の削減の要請が大きくなっている。 One of the biggest issues that determine the limits of the performance of supercomputers in recent years is power consumption, and the importance of research on power saving performance of supercomputers has already been widely recognized. That is, the speed performance (Flops / W) per power consumption is one index for evaluating a supercomputer. Further, in the data center, it is said that about 45% of the power consumption of the entire data center is spent for cooling, and there is a growing demand for reduction of power consumption by improving cooling efficiency.
 スーパーコンピュータやデータセンターの冷却には、従来から空冷式と液冷式が用いられている。液冷式は、空気より格段に熱伝達性能の優れる液体を用いるため、一般的に冷却効率がよいとされている。特に、フッ化炭素系冷却液を用いる液浸冷却システムは、合成油を用いるものに比べて電子機器のメンテナンス(具体的には、例えば調整、点検、修理、交換、増設。以下同様)に優れる等の利点を有しており、近年注目されている。 Conventionally, air cooling and liquid cooling have been used to cool supercomputers and data centers. The liquid cooling type is generally considered to have good cooling efficiency because it uses a liquid that has a heat transfer performance far superior to that of air. In particular, an immersion cooling system that uses a fluorocarbon-based coolant is superior to electronic device maintenance (specifically, for example, adjustment, inspection, repair, replacement, expansion, etc.) as compared with a system that uses synthetic oil. In recent years, it has attracted attention.
 本発明者は、小規模液浸冷却スーパーコンピュータ向けの、小型で冷却効率の優れた液浸冷却装置をすでに開発している。当該装置は、高エネルギー加速器研究機構に設置されている小型スーパーコンピュータ「Suiren(睡蓮)」に適用され、運用されている(非特許文献1)。 The present inventor has already developed a small-sized immersion cooling device with excellent cooling efficiency for a small-scale immersion cooling supercomputer. This apparatus is applied to and operated in a small supercomputer “Suiren” installed in the High Energy Accelerator Research Organization (Non-patent Document 1).
 また、本発明者は、液浸冷却される電子機器における実装密度を大幅に高めることのできる、種々の改良された液浸冷却装置を提案している(特許文献1、非特許文献2、非特許文献3、非特許文献4)。 In addition, the present inventor has proposed various improved immersion cooling devices that can significantly increase the mounting density in an electronic device that is immersion-cooled (Patent Document 1, Non-Patent Document 2, Non-Patent Document 2, Patent Document 3, Non-Patent Document 4).
日本国特許第6042587号公報Japanese Patent No. 6042587
 上記先行技術文献のうち非特許文献3は、16個のXeonプロセッサ(「Xeon」はIntel Corporationの商標)を高密度に実装することができる、液浸冷却用電子機器「Multi-Xeon Server Brick」を開示する。この技術によれば、2個のXeonプロセッサをQPI(Intel CorporationのQuickPath Interconnect)に従い接続することにより、1つの電子機器が8台のMulti-Xeonサーバノードを含むよう構成されている。また、1個のプロセッサあたりのメモリに、超低背なメモリモジュールである、汎用の16GB又は32GB DDR4(Double-Data-Rate4) VLP DIMM(Very Low Profile Dual Inline Memory Module)を8個実装することができる。また、特許文献1は、非特許文献3が開示する液浸冷却用電子機器を実現する基板群の構成例を開示する。 Among the above prior art documents, Non-Patent Document 3 describes an immersion cooling electronic device “Multi-Xeon Server Brick” capable of mounting 16 Xeon processors (“Xeon” is a trademark of Intel Corporation) at high density. Is disclosed. According to this technique, two Xeon processors are connected according to QPI (Quick Path Interconnect of Intel Corporation), so that one electronic device includes eight Multi-Xeon server nodes. Eight general-purpose 16GB or 32GB DDR4 (Double-Data-Rate4) VLP DIMM (Very Low Profile Dual Dual Inline Memory Module) is installed in the memory per processor. Can do. Patent Document 1 discloses a configuration example of a substrate group that realizes the immersion cooling electronic device disclosed in Non-Patent Document 3.
 上記のとおり、非特許文献3が開示する液浸冷却用電子機器は、超低背なメモリモジュールである32GB DDR4 VLP DIMMを実装している。しかるに、プロセッサあたりのメモリ容量をさらに増やすことを要請されることがある。かかる要請に応えるための方法には、32GB DIMMのメモリモジュール数を増やすことや、より容量の大きいメモリモジュール、例えば64GB DIMMを実装することが考えられる。しかしながら、メモリモジュール数を増やす場合、メモリモジュールを実装するための基板上の実装領域を増やす必要があり、基板が大型化して基板群の結合体すなわちBrickの体積が大きくなってしまい、実装密度が低くなってしまうという問題がある。他方、より大容量な64GB DIMMを実装する場合、汎用の64GB DIMM が、VLPよりも背の高いStandard Heightを有するため、メモリモジュールが別の基板の面に干渉しないように、基板間の距離を離す必要が生じる。このため、Brickの体積が大きくなってしまい、実装密度が低くなってしまうという問題がある。 As described above, the immersion cooling electronic device disclosed in Non-Patent Document 3 is mounted with a 32 GB DDR4 VLP DIMM, which is a very low-profile memory module. However, it may be requested to further increase the memory capacity per processor. As a method for responding to such a request, it is conceivable to increase the number of memory modules of 32 GB DIMM or to install a memory module having a larger capacity, for example, 64 GB DIMM. However, when increasing the number of memory modules, it is necessary to increase the mounting area on the board for mounting the memory modules, the board becomes larger and the volume of the combined group of boards, that is, the brick, increases, and the mounting density is increased. There is a problem of being lowered. On the other hand, when installing a larger capacity 64GB DIMM, the general-purpose 64GB DIMM has a higher Standard Height than the VLP, so the distance between the boards should be reduced so that the memory module does not interfere with the surface of another board. Need to be separated. For this reason, there is a problem that the volume of the brick increases and the mounting density decreases.
 よって、液浸冷却装置に適用される電子機器において、Standard Heightその他の比較的背の高いメモリモジュールを実装してもなお実装密度が低下しない、もしくは実装密度をより一層高めることのできる新構成の電子機器と、当該電子機器に好適に使用される新構成のプロセッサモジュールを開発することが望まれている。 Therefore, in the electronic equipment applied to the immersion cooling device, the mounting density does not decrease even if Standard Height or other relatively tall memory modules are mounted, or the mounting density can be further increased. It is desired to develop an electronic device and a processor module having a new configuration that is suitably used for the electronic device.
 加えて、プロセッサモジュールにおいて、プロセッサモジュールの内部に作り出すことのできるスペースを活用する技術を開発することが望まれている。 In addition, it is desired to develop a technology that utilizes the space that can be created inside the processor module.
 上記の課題を解決するために、本発明の一局面によれば、冷却装置内の冷却液中に浸漬されて直接冷却される電子機器に適用される、液浸冷却用プロセッサモジュールは、
 第1の回路基板及び第2の回路基板であって、それぞれの基板の一の面にプロセッサ実装領域とメモリ実装領域とを有し、前記プロセッサ実装領域に少なくとも1つのプロセッサを実装し、前記メモリ実装領域に櫛状配列された複数のメモリモジュールを実装し、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面とが向かい合わせに組み合わされた状態にある、第1の回路基板及び第2の回路基板と、
 前記第1の回路基板と前記第2の回路基板との間を電気的に接続するコネクタと、
 を含み、
 前記第1の回路基板と前記第2の回路基板とは、前記第1の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域が前記第2の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域とそれぞれ向かい合うように、かつ、前記第1の回路基板の前記櫛状配列された複数のメモリモジュールの先端部及び前記第2の回路基板の前記櫛状配列された複数のメモリモジュールの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされている。
In order to solve the above problems, according to one aspect of the present invention, there is provided a processor module for immersion cooling applied to an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled.
A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face. A first circuit board and a second circuit board;
A connector for electrically connecting the first circuit board and the second circuit board;
Including
The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively. The front end portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the front end portions of the plurality of memory modules arranged in a comb shape on the second circuit board, respectively, facing each other, The memory modules are aligned so that gaps are formed between adjacent memory modules.
 本発明の一局面に係る液浸冷却用プロセッサモジュールの好ましい実施の形態において、前記メモリ実装領域は、個々のメモリモジュールを固定する複数のメモリソケットを含み、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面との距離Hは、前記一の面からの前記メモリモジュールの高さh、前記メモリソケットの高さhに関して、(h+h)<H<2hを満たすとよい。 In a preferred embodiment of the processor module for immersion cooling according to one aspect of the present invention, the memory mounting area includes a plurality of memory sockets for fixing individual memory modules, and the one of the first circuit boards. The distance H between the surface and the one surface of the second circuit board is (h 1 + h 2 ) with respect to the height h 1 of the memory module and the height h 2 of the memory socket from the one surface. <H <2h 1 should be satisfied.
 また、本発明の一局面に係る液浸冷却用プロセッサモジュールの好ましい実施の形態において、前記メモリモジュールがStandard Heightのメモリモジュールであり、当該モジュールは、メモリモジュールの基板面が前記一の面に対し垂直にもしくは傾斜して、前記メモリソケットに差し込まれるとよい。 Further, in a preferred embodiment of the immersion cooling processor module according to one aspect of the present invention, the memory module is a Standard Height memory module, and the module has a board surface of the memory module relative to the one surface. The memory socket may be inserted vertically or inclined.
 また、本発明の一局面に係る液浸冷却用プロセッサモジュールの好ましい実施の形態において、前記第1の回路基板の前記プロセッサと前記第2の回路基板の前記プロセッサとが、プロセッサ間相互接続用インターフェースを介して接続されているとよい。 Further, in a preferred embodiment of the immersion cooling processor module according to one aspect of the present invention, the processor of the first circuit board and the processor of the second circuit board are connected to each other. It is good to be connected through.
 本発明のもう一つの局面によれば、冷却装置内の冷却液中に浸漬されて直接冷却される電子機器は、前記電子機器用の直流電圧を供給する電圧入力端を備えるキャリア基板であって、前記電圧入力端は、電源ユニットの電圧出力端に電気的に接続される、キャリア基板と、
 前記キャリア基板の一の面に配置された複数のモジュールコネクタと、
 複数のプロセッサモジュールであって、前記複数のプロセッサモジュールの各々は、前記複数のモジュールコネクタの各々に電気的に結合されるモジュールコネクタプラグを有する、プロセッサモジュールと、
 前記電子機器が前記電源ユニットと電気的に接続されたときに、前記冷却装置が備える冷却槽の底部に設置された前記電源ユニットの上部に位置するように前記キャリア基板を支持する支持部材と、
 を含み、
 前記プロセッサモジュールは、
 第1の回路基板及び第2の回路基板であって、それぞれの基板の一の面にプロセッサ実装領域とメモリ実装領域とを有し、前記プロセッサ実装領域に少なくとも1つのプロセッサを実装し、前記メモリ実装領域に櫛状配列された複数のメモリモジュールを実装し、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面とが向かい合わせに組み合わされた状態にある、第1の回路基板及び第2の回路基板と、
 前記第1の回路基板と前記第2の回路基板との間を電気的に接続するコネクタと、
 を含み、
 前記第1の回路基板と前記第2の回路基板とは、前記第1の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域が前記第2の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域とそれぞれ向かい合うように、かつ、前記第1の回路基板の前記櫛状配列された複数のメモリモジュールの先端部及び前記第2の回路基板の前記櫛状配列された複数のメモリモジュールの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされている。
According to another aspect of the present invention, an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled is a carrier substrate having a voltage input terminal that supplies a DC voltage for the electronic device. The voltage input terminal is electrically connected to the voltage output terminal of the power supply unit; and a carrier substrate;
A plurality of module connectors arranged on one surface of the carrier substrate;
A plurality of processor modules, each of the plurality of processor modules having a module connector plug electrically coupled to each of the plurality of module connectors;
When the electronic device is electrically connected to the power supply unit, a support member that supports the carrier substrate so as to be positioned above the power supply unit installed at the bottom of a cooling tank included in the cooling device;
Including
The processor module is
A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face. A first circuit board and a second circuit board;
A connector for electrically connecting the first circuit board and the second circuit board;
Including
The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively. The front end portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the front end portions of the plurality of memory modules arranged in a comb shape on the second circuit board, respectively, facing each other, The memory modules are aligned so that gaps are formed between adjacent memory modules.
 本発明のもう一つの局面に係る電子機器の好ましい実施の形態において、前記支持部材は、前記キャリア基板が一の面に固定されるバックボード又はフレーム構造を含むとよい。 In a preferred embodiment of an electronic device according to another aspect of the present invention, the support member may include a backboard or a frame structure in which the carrier substrate is fixed to one surface.
 また、本発明のもう一つの局面に係る電子機器の好ましい実施の形態において、前記バックボード又はフレーム構造は、前記冷却槽内に垂直に起立して固定された複数の支持柱によってスライド可能に支持されるとよい。 Also, in a preferred embodiment of the electronic device according to another aspect of the present invention, the backboard or frame structure is slidably supported by a plurality of support pillars that are vertically erected and fixed in the cooling tank. It is good to be done.
 また、本発明のさらにもう一つの局面によれば、冷却装置内の冷却液中に浸漬されて直接冷却される電子機器に適用される、液浸冷却用プロセッサモジュールは、
 第1の回路基板及び第2の回路基板であって、それぞれの基板の一の面にプロセッサ実装領域とメモリ実装領域とを有し、前記プロセッサ実装領域に少なくとも1つのプロセッサを実装し、前記メモリ実装領域に櫛状配列された複数のメモリモジュールを実装し、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面とが向かい合わせに組み合わされた状態にある、第1の回路基板及び第2の回路基板と、
 前記第1の回路基板と前記第2の回路基板との間を電気的に接続する第1のコネクタと、
 前記第1の回路基板と前記第2の回路基板との間に配置される、第3の回路基板と、
 前記第3の回路基板と前記第1の回路基板もしくは前記第2の回路基板との間を電気的に接続する第2のコネクタと、
 を含み、
 前記第1の回路基板と前記第2の回路基板とは、前記第1の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域が前記第2の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域とそれぞれ向かい合うように、かつ、前記第1の回路基板の前記櫛状配列された複数のメモリモジュールの先端部及び前記第2の回路基板の前記櫛状配列された複数のメモリモジュールの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされており、
 前記第3の回路基板は、前記第1の回路基板及び前記第2の回路基板の前記プロセッサの上面が互いに向かい合ってできる空間内に配置されている。
Further, according to still another aspect of the present invention, there is provided a processor module for immersion cooling applied to an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled.
A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face. A first circuit board and a second circuit board;
A first connector for electrically connecting the first circuit board and the second circuit board;
A third circuit board disposed between the first circuit board and the second circuit board;
A second connector for electrically connecting the third circuit board and the first circuit board or the second circuit board;
Including
The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively. The front end portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the front end portions of the plurality of memory modules arranged in a comb shape on the second circuit board, respectively, facing each other, It is aligned so that there is a gap between adjacent memory modules,
The third circuit board is disposed in a space formed by the upper surfaces of the processors of the first circuit board and the second circuit board facing each other.
 本発明のさらにもう一つの局面に係る液浸冷却用プロセッサモジュールの好ましい実施の形態において、前記メモリ実装領域は、個々のメモリモジュールを固定する複数のメモリソケットを含み、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面との距離Hは、前記一の面からの前記メモリモジュールの高さh、前記メモリソケットの高さhに関して、(h+h)<H<2hを満たすとよい。 In a preferred embodiment of the immersion cooling processor module according to still another aspect of the present invention, the memory mounting area includes a plurality of memory sockets for fixing individual memory modules, and the first circuit board includes: distance H between the one surface of the said one face a second circuit board, the height h 1 of the memory module from the one surface, with respect to the height h 2 of the memory socket, (h 1 + H 2 ) <H <2h 1 is satisfied.
 また、本発明のさらにもう一つの局面に係る液浸冷却用プロセッサモジュールの好ましい実施の形態において、前記メモリモジュールがStandard Heightのメモリモジュールであり、当該モジュールは、メモリモジュールの基板面が前記一の面に対し垂直にもしくは傾斜して、前記メモリソケットに差し込まれるとよい。 Further, in a preferred embodiment of the immersion cooling processor module according to still another aspect of the present invention, the memory module is a Standard Height memory module, and the module surface of the memory module is the one in which the substrate surface of the memory module is the one. The memory socket may be inserted perpendicularly or inclined with respect to the surface.
 また、本発明のさらにもう一つの局面に係る液浸冷却用プロセッサモジュールの好ましい実施の形態において、前記第1の回路基板の前記プロセッサと前記第2の回路基板の前記プロセッサとが、プロセッサ間相互接続用インターフェースを介して接続されているとよい。 In a preferred embodiment of the immersion cooling processor module according to still another aspect of the present invention, the processor of the first circuit board and the processor of the second circuit board are connected to each other. It may be connected via a connection interface.
 また、本発明のさらにもう一つの局面に係る液浸冷却用プロセッサモジュールの好ましい実施の形態において、前記第3の回路基板は、ストレージデバイス及び/又はI/O制御用チップセットを搭載した回路基板であるとよい。 In a preferred embodiment of the immersion cooling processor module according to still another aspect of the present invention, the third circuit board is a circuit board on which a storage device and / or an I / O control chip set is mounted. It is good to be.
 本発明のさらにもう一つの局面によれば、冷却装置内の冷却液中に浸漬されて直接冷却される電子機器は、
 前記電子機器用の直流電圧を供給する電圧入力端を備えるキャリア基板であって、前記電圧入力端は、電源ユニットの電圧出力端に電気的に接続される、キャリア基板と、
 前記キャリア基板の一の面に配置された複数のモジュールコネクタと、
 複数のプロセッサモジュールであって、前記複数のプロセッサモジュールの各々は、前記複数のモジュールコネクタの各々に電気的に結合されるモジュールコネクタプラグを有する、プロセッサモジュールと、
 前記電子機器が前記電源ユニットと電気的に接続されたときに、前記冷却装置が備える冷却槽の底部に設置された前記電源ユニットの上部に位置するように前記キャリア基板を支持する支持部材と、
 を含み、
 前記プロセッサモジュールは、
 第1の回路基板及び第2の回路基板であって、それぞれの基板の一の面にプロセッサ実装領域とメモリ実装領域とを有し、前記プロセッサ実装領域に少なくとも1つのプロセッサを実装し、前記メモリ実装領域に櫛状配列された複数のメモリモジュールを実装し、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面とが向かい合わせに組み合わされた状態にある、第1の回路基板及び第2の回路基板と、
 前記第1の回路基板と前記第2の回路基板との間を電気的に接続する第1のコネクタと、
 前記第1の回路基板と前記第2の回路基板との間に配置される、第3の回路基板と、
 前記第3の回路基板と前記第1の回路基板もしくは前記第2の回路基板との間を電気的に接続する第2のコネクタと、
 を含み、
 前記第1の回路基板と前記第2の回路基板とは、前記第1の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域が前記第2の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域とそれぞれ向かい合うように、かつ、前記第1の回路基板の前記櫛状配列された複数のメモリモジュールの先端部及び前記第2の回路基板の前記櫛状配列された複数のメモリモジュールの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされており、
 前記第3の回路基板は、前記第1の回路基板及び前記第2の回路基板の前記プロセッサの上面が互いに向かい合ってできる空間内に配置されている。
According to yet another aspect of the present invention, an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled is
A carrier substrate having a voltage input terminal for supplying a DC voltage for the electronic device, wherein the voltage input terminal is electrically connected to a voltage output terminal of a power supply unit; and
A plurality of module connectors arranged on one surface of the carrier substrate;
A plurality of processor modules, each of the plurality of processor modules having a module connector plug electrically coupled to each of the plurality of module connectors;
When the electronic device is electrically connected to the power supply unit, a support member that supports the carrier substrate so as to be positioned above the power supply unit installed at the bottom of a cooling tank included in the cooling device;
Including
The processor module is
A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face. A first circuit board and a second circuit board;
A first connector for electrically connecting the first circuit board and the second circuit board;
A third circuit board disposed between the first circuit board and the second circuit board;
A second connector for electrically connecting the third circuit board and the first circuit board or the second circuit board;
Including
The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively. The front end portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the front end portions of the plurality of memory modules arranged in a comb shape on the second circuit board, respectively, facing each other, It is aligned so that there is a gap between adjacent memory modules,
The third circuit board is disposed in a space formed by the upper surfaces of the processors of the first circuit board and the second circuit board facing each other.
 第1の回路基板の一の面と第2の回路基板の一の面とが向かい合わせに組み合わされるようにするとき、メモリモジュールが互いに干渉するのを避けるためには、基板間の距離を、当該一の面からのメモリモジュールの高さhの2倍よりも長くとる必要があった。本発明によれば、第1の回路基板と第2の回路基板とは、第1の回路基板のプロセッサ実装領域及びメモリ実装領域が第2の回路基板のプロセッサ実装領域及びメモリ実装領域とそれぞれ向かい合うように、かつ、第1の回路基板の櫛状配列された複数のメモリモジュールの先端部及び第2の回路基板の櫛状配列された複数のメモリモジュールの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされているため、メモリモジュールが互いに干渉し合うという課題を解決し、より小さい体積内に超高密度にプロセッサ及びメモリモジュールを実装することができる。例えば、メモリ実装領域が、個々のメモリモジュールを差し込む複数のメモリソケットを含む場合、第1の回路基板の一の面と第2の回路基板の一の面との距離Hを、一の面からのメモリモジュールの高さh、メモリソケットの高さhに関して、(h+h)<H<2hを満たすように、短くすることができる。なお、複数のメモリモジュールの先端部は、隣り合うメモリモジュール間に隙間を作って互い違いに並んでいるため、冷却液が当該隙間を通ってメモリモジュールの表面から熱を奪う。メモリモジュールの発熱量は、プロセッサの発熱量に比べてはるかに小さいため、隣り合うメモリモジュール間の隙間が比較的狭くても、冷却液による奪熱作用が損なわれることはない。 To prevent the memory modules from interfering with each other when one surface of the first circuit board and one surface of the second circuit board are combined face to face, the distance between the substrates is: It had to be longer than twice the height h 1 of the memory module from the surface of the one. According to the present invention, the first circuit board and the second circuit board are such that the processor mounting area and the memory mounting area of the first circuit board face the processor mounting area and the memory mounting area of the second circuit board, respectively. In addition, the tip portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the tip portions of the plurality of memory modules arranged in a comb shape on the second circuit board are arranged between adjacent memory modules. Since they are aligned so as to be arranged in a staggered manner by creating a gap, the problem that the memory modules interfere with each other can be solved, and the processor and the memory module can be mounted in a smaller volume in an extremely high density. For example, when the memory mounting area includes a plurality of memory sockets into which individual memory modules are inserted, the distance H between one surface of the first circuit board and one surface of the second circuit board is determined from one surface. memory height h 1 of the modules, of the memory socket with respect to the height h 2, so as to satisfy the (h 1 + h 2) < H <2h 1, can be shortened. Note that the tip portions of the plurality of memory modules are arranged in a staggered manner with gaps between adjacent memory modules, so that the cooling liquid removes heat from the surface of the memory modules through the gaps. Since the heat generation amount of the memory module is much smaller than the heat generation amount of the processor, even if the gap between adjacent memory modules is relatively narrow, the heat removal action by the cooling liquid is not impaired.
 液浸冷却用のモジュールに実装されるプロセッサにおいては、一般的にプロセッサの上面にヒートスプレッダ(ヒートスプレッダが一体化されたプロセッサも市販されている。)及びヒートシンクを熱的に接続して、その上を流通する冷却液がプロセッサからの発熱を効率的に奪うことができるよう構成している。空冷のときには、比較的大きい放熱面積を得るためにヒートシンクのフィンを高くする必要があるのとは対象的に、液浸冷却によると、冷却液による奪熱効率が優れるため、ヒートシンクのフィンの高さが低くてもよい。したがって、第1の又は第2の回路基板の一の面から、ヒートスプレッダ及びヒートシンクを含めたプロセッサの上面までの高さは、当該一の面からのメモリモジュールの高さhよりも低くできる。本発明によれば、この高低差を利用し、第1の回路基板の一の面と第2の回路基板の一の面とが向かい合わせに組み合わされるときに、プロセッサの上面が互いに向かい合ってできる比較的大きなスペース内に、第3の回路基板を配置するようにした。これにより、プロセッサモジュールの内部に作り出すことのできるスペースを活用して、プロセッサモジュールの機能を拡張もしくは増強することができる。また、プロセッサモジュール内の余ったスペースに別の回路基板が配置されているので、より一層の超高密度実装を実現することができる。 In a processor mounted on a module for immersion cooling, generally, a heat spreader (a processor in which a heat spreader is integrated is also commercially available) and a heat sink are thermally connected to the upper surface of the processor, and the processor is mounted on the heat spreader. The circulating coolant is configured to efficiently take away heat generated from the processor. In the case of air cooling, the heat sink fins need to be raised to obtain a relatively large heat radiation area. May be low. Accordingly, the height from one surface of the first or second circuit board to the upper surface of the processor including the heat spreader and the heat sink can be lower than the height h 1 of the memory module from the one surface. According to the present invention, by utilizing this height difference, when the one surface of the first circuit board and the one surface of the second circuit board are combined to face each other, the upper surfaces of the processors face each other. The third circuit board is arranged in a relatively large space. This makes it possible to expand or enhance the function of the processor module by utilizing the space that can be created inside the processor module. In addition, since another circuit board is arranged in the surplus space in the processor module, it is possible to realize much higher density mounting.
 なお、本明細書における「開放空間」を有する冷却槽には、電子機器の保守性を損なわない程度の簡素な密閉構造を有する冷却槽も含まれるものである。例えば、冷却槽の開口部に、冷却槽の開放空間を閉じるための天板を置くことのできる構造や、パッキン等を介して天板を着脱可能に取り付けることのできる構造は、簡素な密閉構造といえる。 In addition, the cooling tank having an “open space” in this specification includes a cooling tank having a simple sealed structure that does not impair maintainability of the electronic device. For example, a structure in which a top plate for closing the open space of the cooling tank can be placed in the opening of the cooling tank, or a structure in which the top plate can be detachably attached via packing etc. is a simple sealed structure It can be said.
 上記した本発明の目的及び利点、並びに他の目的及び利点は、以下の実施の形態の説明を通じてより明確に理解される。もっとも、以下に記述する実施の形態は例示であって、本発明はこれに限定されるものではない。 The above objects and advantages of the present invention, as well as other objects and advantages, will be understood more clearly through the following description of embodiments. However, the embodiment described below is an exemplification, and the present invention is not limited to this.
本発明の一実施形態に係る電子機器の斜視図である。It is a perspective view of the electronic device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子機器の部分組立図であり、バックボード又はフレーム構造、キャリア基板、及びプロセッサモジュールの組立図である。It is a partial assembly drawing of the electronic device which concerns on one Embodiment of this invention, and is an assembly drawing of a backboard or frame structure, a carrier board, and a processor module. 本発明の一実施形態に係る電子機器に含まれるプロセッサモジュールのうち、第1の回路基板の一例を示す平面図である。It is a top view which shows an example of the 1st circuit board among the processor modules contained in the electronic device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子機器に含まれるプロセッサモジュールのうち、第2の回路基板の一例を示す平面図である。It is a top view which shows an example of the 2nd circuit board among the processor modules contained in the electronic device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子機器に含まれるプロセッサモジュールのうち、第3の回路基板の一例を示し、(A)は平面図、(B)は側面図である。An example of a 3rd circuit board is shown among processor modules contained in electronic equipment concerning one embodiment of the present invention, (A) is a top view and (B) is a side view. プロセッサモジュールの一例を示す組立図であり、第1の回路基板、第2の回路基板、及び第3の回路基板の組立図である。It is an assembly drawing which shows an example of a processor module, and is an assembly drawing of a 1st circuit board, a 2nd circuit board, and a 3rd circuit board. プロセッサモジュールの一例を示す斜視図である。It is a perspective view which shows an example of a processor module. 図5Aに示すプロセッサモジュールのA-A断面図である。FIG. 5B is a cross-sectional view taken along the line AA of the processor module shown in FIG. 5A. 電源ユニットにおけるステージの一例を示す斜視図である。It is a perspective view which shows an example of the stage in a power supply unit. 電源ユニットのユニット基板をステージ上に取り付けた状態を示す斜視図である。It is a perspective view which shows the state which attached the unit board | substrate of the power supply unit on the stage. 本発明の一実施形態に係る冷却システムにおける、冷却装置が備える冷却槽の斜視図である。It is a perspective view of a cooling tub with which a cooling device is provided in a cooling system concerning one embodiment of the present invention. 本発明の一実施形態に係る冷却システムにおける、冷却装置が備える冷却槽の平面図である。It is a top view of the cooling tank with which a cooling device is provided in the cooling system concerning one embodiment of the present invention. 本発明の一実施形態に係る冷却システムにおける、冷却装置の一部断面図である。It is a partial sectional view of a cooling device in a cooling system concerning one embodiment of the present invention. ユニット基板が取り付けられた4つのステージを冷却槽の底部に並べて設置する例を示す平面図である。It is a top view which shows the example which installs and arranges four stages with a unit board | substrate attached to the bottom part of a cooling tank.
 以下、本発明に係る電子機器、及び当該電子機器に好適に使用される液浸冷却用プロセッサモジュールの好ましい実施の形態を、図面に基づいて詳細に説明する。
 まず、図1及び図2を参照して、本発明の一実施形態に係る電子機器100を説明する。図1は、本発明の一実施形態に係る電子機器100の斜視図、図2は部分組立図である。電子機器100は、後述する冷却装置内の冷却液中に浸漬されて直接冷却される電子機器である。電子機器100は、バックボード又はフレーム構造110(以下、単に「バックボード110」と記載する。)と、複数のプロセッサモジュール120と、キャリア基板121と、ネットワークカード122を含んでいる。なお、図示のとおり、電子機器100から、電源ユニットが廃されている。電源ユニットは、後述するように、冷却装置が備える冷却槽の底部に設置される。図2において、プロセッサモジュール120は1個のみ描かれており、ネットワークカードは描かれていない。
Hereinafter, preferred embodiments of an electronic device according to the present invention and an immersion cooling processor module suitably used for the electronic device will be described in detail with reference to the drawings.
First, with reference to FIG.1 and FIG.2, the electronic device 100 which concerns on one Embodiment of this invention is demonstrated. FIG. 1 is a perspective view of an electronic device 100 according to an embodiment of the present invention, and FIG. 2 is a partial assembly view. The electronic device 100 is an electronic device that is immersed and cooled directly in a cooling liquid in a cooling device described later. The electronic device 100 includes a backboard or frame structure 110 (hereinafter simply referred to as “backboard 110”), a plurality of processor modules 120, a carrier board 121, and a network card 122. As illustrated, the power supply unit is abolished from the electronic device 100. As will be described later, the power supply unit is installed at the bottom of the cooling tank provided in the cooling device. In FIG. 2, only one processor module 120 is depicted, and no network card is depicted.
 バックボード110は、キャリア基板121を支持する支持部材を構成する。バックボード110は、図2に示すように、外枠部110bと、外枠部110b内を幅方向に横断する梁部110cとから構成される。外枠110bの上部には、電子機器100を冷却槽に入れ又は取り出す際に、吊り下げ具を通す吊り金具穴(図示せず)が形成されていてよい。また、バックボード110は、外枠部110bの下部から下に延びる一対の支持ピン又はガイドピン(以下、単に「支持ピン」と記載する。)を含んでよい。複数の支持板(図示せず)が、キャリア基板121を貫通するねじ等の留め具を介して、外枠部110bと梁部110cに取り付けられていてよい。これにより、キャリア基板121がバックボード110の一の面に固定されるとともに、複数の支持板(図示せず)が、キャリア基板121の長手方向に所定間隔で取り付けられる。支持板(図示せず)の各々には、複数の溝が形成されており、複数の溝の各々に、複数のプロセッサモジュール120の端部の各々が挿入されるとよい。このようにして、隣り合う支持板(図示せず)は、複数のプロセッサモジュール120の上下両端を保持するとよい。 The backboard 110 constitutes a support member that supports the carrier substrate 121. As shown in FIG. 2, the backboard 110 includes an outer frame portion 110b and a beam portion 110c that traverses the inside of the outer frame portion 110b in the width direction. A suspension fitting hole (not shown) through which a suspension tool is passed when the electronic device 100 is put into or taken out of the cooling bath may be formed in the upper portion of the outer frame 110b. The backboard 110 may include a pair of support pins or guide pins (hereinafter simply referred to as “support pins”) extending downward from the lower portion of the outer frame portion 110b. A plurality of support plates (not shown) may be attached to the outer frame portion 110b and the beam portion 110c via fasteners such as screws that penetrate the carrier substrate 121. As a result, the carrier substrate 121 is fixed to one surface of the backboard 110, and a plurality of support plates (not shown) are attached at predetermined intervals in the longitudinal direction of the carrier substrate 121. Each of the support plates (not shown) is formed with a plurality of grooves, and each of the end portions of the plurality of processor modules 120 may be inserted into each of the plurality of grooves. In this way, adjacent support plates (not shown) may hold the upper and lower ends of the plurality of processor modules 120.
 キャリア基板121の下部には、電子機器用の直流電圧を供給する直流電圧入力コネクタ131を備える。直流電圧入力コネクタ131は、キャリア基板121が備える電圧入力端に相当する。キャリア基板121の一の面には、複数のモジュールコネクタ128が配置されている。図3A以下を参照して後述するように、複数のプロセッサモジュール120の各々は、複数のモジュールコネクタ128の各ペアに電気的に結合されるモジュールコネクタプラグ129のペアを有している。したがって、プロセッサモジュール120ごとに、キャリア基板121に差し込むこと、及びキャリア基板121から引き抜くことが可能である。なお、図示の例において、4枚のネットワークカード122がキャリア基板121に取り付けられている。また、16個のプロセッサモジュール120がキャリア基板121に取り付けられているが、プロセッサモジュール120の個数は任意であり、特に限定されない。 A DC voltage input connector 131 for supplying a DC voltage for electronic equipment is provided at the bottom of the carrier substrate 121. The DC voltage input connector 131 corresponds to a voltage input end provided on the carrier substrate 121. A plurality of module connectors 128 are arranged on one surface of the carrier substrate 121. As described below with reference to FIG. 3A and below, each of the plurality of processor modules 120 has a pair of module connector plugs 129 that are electrically coupled to each pair of module connectors 128. Therefore, each processor module 120 can be inserted into the carrier substrate 121 and pulled out from the carrier substrate 121. In the illustrated example, four network cards 122 are attached to the carrier substrate 121. In addition, although 16 processor modules 120 are attached to the carrier substrate 121, the number of the processor modules 120 is arbitrary and is not particularly limited.
 次に、図3A-図5Bを参照して、プロセッサモジュール120を詳しく説明する。
 プロセッサモジュール120は、第1の回路基板123A、第2の回路基板123B、及び第1の回路基板123Aと第2の回路基板123Bとの間を電気的に接続するコネクタ125A、125Bを含んでいる。また、プロセッサモジュール120は、第3の回路基板123C、並びに、第3の回路基板123Cと第1の回路基板123Aとの間を電気的に接続するコネクタ125C、125Dを含んでいるが、これらは必要に応じて省略してもよい。
Next, the processor module 120 will be described in detail with reference to FIGS. 3A-5B.
The processor module 120 includes a first circuit board 123A, a second circuit board 123B, and connectors 125A and 125B that electrically connect the first circuit board 123A and the second circuit board 123B. . The processor module 120 includes a third circuit board 123C and connectors 125C and 125D that electrically connect the third circuit board 123C and the first circuit board 123A. It may be omitted if necessary.
 図3Aに示すように、第1の回路基板123Aは、その一の面に、当該基板の中央寄りに位置するプロセッサ実装領域PAと、プロセッサ実装領域PAの両側に位置する2つのメモリ実装領域MAとを有する。プロセッサ実装領域PAには、少なくとも1つのプロセッサ124Aが実装されている。プロセッサ124Aは、特に限定しないが、例えば、Intel Corporation製のXeonプロセッサ(「Xeon」はIntel Corporationの商標)であるとよい。プロセッサ124Aは、バックプレート、ソケット、プロセッサ124Aの上面に熱的に接続されたヒートスプレッダ(プロセッサ124Aと一体化されていてよい。)、及びヒートシンクを有していてよい(図5B参照)。なお、図3Aにおいて、ヒートシンクのフィンが描かれておらず、ヒートシンクの下にあるヒートスプレッダも描かれていない。ここで、冷却液のフロー方向に一致させるべく、ヒートシンクのフィンの配列方向を、後述するメモリモジュールの配列方向と同じにするとよい。 As shown in FIG. 3A, the first circuit board 123A includes a processor mounting area PA located near the center of the board and two memory mounting areas MA located on both sides of the processor mounting area PA. And have. At least one processor 124A is mounted in the processor mounting area PA. The processor 124A is not particularly limited, but may be, for example, an Intel® Corporation Xeon processor (“Xeon” is a trademark of Intel® Corporation). The processor 124A may include a back plate, a socket, a heat spreader (which may be integrated with the processor 124A) thermally connected to the upper surface of the processor 124A, and a heat sink (see FIG. 5B). In FIG. 3A, the fins of the heat sink are not drawn, and the heat spreader under the heat sink is not drawn. Here, it is preferable that the arrangement direction of the fins of the heat sink is the same as the arrangement direction of the memory modules described later so as to coincide with the flow direction of the coolant.
 2つのメモリ実装領域MAのそれぞれに、櫛状配列された2個のメモリモジュール127Aが実装されている。メモリ実装領域MAに実装されるメモリモジュール127Aの個数は、2つ以上であればよい。なお、メモリモジュール127Aは、本発明の目的に従って、VLPのモジュールではなく、汎用のStandard Heightの64GB DIMMであるとよい。図示のように、基板上には汎用のメモリソケット126Aを、所定の間隔を置いて必要本数取り付けて、メモリソケット126Aの各々にメモリモジュール127Aを差し込むとよい。また、第1の回路基板123Aの一の面には、第2の回路基板123Bとの電気的接続のためのコネクタ125A、第3の回路基板123Bとの電気的接続のためのコネクタ125D、並びに、キャリア基板121のモジュールコネクタ128のペアの一方と結合される、モジュールコネクタプラグ129のペアの一方を有している。なお、第1の回路基板123Aの一の面上には、上記の構成部分以外に、種々の電子部品が搭載されるが、当該電子部品は描かれていない。以上のように構成されている第1の回路基板123とそれに実装される構成部分の全体を、以下、「A基板120A」と呼ぶことがある。 In each of the two memory mounting areas MA, two memory modules 127A arranged in a comb shape are mounted. The number of memory modules 127A mounted in the memory mounting area MA may be two or more. The memory module 127A may be a general-purpose Standard Height 64GB DIMM instead of a VLP module in accordance with the object of the present invention. As shown in the drawing, a necessary number of general-purpose memory sockets 126A are mounted on the substrate at a predetermined interval, and the memory module 127A is inserted into each of the memory sockets 126A. Further, on one surface of the first circuit board 123A, a connector 125A for electrical connection with the second circuit board 123B, a connector 125D for electrical connection with the third circuit board 123B, and And one of the pair of module connector plugs 129 coupled to one of the pair of module connectors 128 of the carrier substrate 121. In addition to the above-described components, various electronic components are mounted on one surface of the first circuit board 123A, but the electronic components are not drawn. The first circuit board 123 configured as described above and the entire components mounted thereon may be hereinafter referred to as “A board 120A”.
 図3Bに示すように、第2の回路基板123Bは、第1の回路基板123Aと類似する構成を有している。具体的には、第2の回路基板123Bは、その一の面に、当該基板の中央寄りに位置するプロセッサ実装領域PBと、プロセッサ実装領域PBの両側に位置する2つのメモリ実装領域MBとを有する。プロセッサ実装領域PBには、少なくとも1つのプロセッサ124Bが実装されている。プロセッサ124Bは、プロセッサ124Aと同様であるので、ここでの説明を省略する。 As shown in FIG. 3B, the second circuit board 123B has a configuration similar to that of the first circuit board 123A. Specifically, the second circuit board 123B has a processor mounting area PB located near the center of the board and two memory mounting areas MB located on both sides of the processor mounting area PB on one surface. Have. At least one processor 124B is mounted in the processor mounting area PB. Since the processor 124B is the same as the processor 124A, description thereof is omitted here.
 2つのメモリ実装領域MBのそれぞれに、櫛状配列された2個のメモリモジュール127Bを実装している。メモリ実装領域MBに実装されるメモリモジュール127Bの個数は、2つ以上であればよい。なお、メモリモジュール127B、メモリソケット126Bは、メモリモジュール127A、メモリソケット126Aと同様であるので、ここでの説明を省略する。第2の回路基板123Bの一の面には、第1の回路基板123Aとの電気的接続のためのコネクタ125B、並びに、キャリア基板121のモジュールコネクタ128のペアの他方と結合される、モジュールコネクタプラグ129のペアの他方を有している。なお、第2の回路基板123Bの一の面上には、上記の構成部分以外に、種々の電子部品が搭載されるが、当該電子部品は描かれていない。以上のように構成されている第2の回路基板123Bとそれに実装される構成部分の全体を、以下、「B基板120B」と呼ぶことがある。 Two memory modules 127B arranged in a comb shape are mounted in each of the two memory mounting areas MB. The number of memory modules 127B mounted in the memory mounting area MB may be two or more. Note that the memory module 127B and the memory socket 126B are the same as the memory module 127A and the memory socket 126A, and thus description thereof is omitted here. On one surface of the second circuit board 123B, a connector 125B for electrical connection with the first circuit board 123A, and a module connector coupled to the other of the pair of module connectors 128 of the carrier board 121 It has the other of the pair of plugs 129. In addition to the above-described components, various electronic components are mounted on one surface of the second circuit board 123B, but the electronic components are not drawn. The second circuit board 123B configured as described above and the entire components mounted thereon may be hereinafter referred to as “B board 120B”.
 ここで、図3Aと図3Bとを比較するとわかるように、第1の回路基板123Aのサイズと、第2の回路基板123Bのサイズは同じであり、第1の回路基板123Aのプロセッサ実装領域PA、メモリ実装領域MA、及びモジュールコネクタプラグ129の位置と、第2の回路基板123Bのプロセッサ実装領域PB、メモリ実装領域MB、及びモジュールコネクタプラグ129の位置とは、ほぼ上下対称の関係にある。ただし、第2の回路基板123Bのプロセッサ実装領域PB、及びメモリ実装領域MBの全体が、少しだけ基板中央寄りに(下側に)シフトしている。これは、第1の回路基板123Aの一の面と第2の回路基板123Bの一の面とが向かい合わせに組み合わされるときに、第1の回路基板123Aの四隅と、第2の回路基板123Bの四隅とを一致させて、プロセッサ領域及びメモリ実装領域を互いに向かい合わせて近づけると、第1の回路基板123Aの櫛状配列された複数のメモリモジュール127Aの先端部、及び第2の回路基板123Bの櫛状配列された複数のメモリモジュール127Bの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶようにするため(図5B参照)であり、これにより、メモリモジュールが互いに干渉し合うのを避けることができる。 Here, as can be seen by comparing FIG. 3A and FIG. 3B, the size of the first circuit board 123A and the size of the second circuit board 123B are the same, and the processor mounting area PA of the first circuit board 123A. The positions of the memory mounting area MA and the module connector plug 129 and the positions of the processor mounting area PB, the memory mounting area MB, and the module connector plug 129 of the second circuit board 123B are substantially vertically symmetrical. However, the entire processor mounting area PB and memory mounting area MB of the second circuit board 123B are slightly shifted toward the center of the board (downward). This is because when one surface of the first circuit board 123A and one surface of the second circuit board 123B are combined face to face, the four corners of the first circuit board 123A and the second circuit board 123B are combined. When the processor area and the memory mounting area are brought close to each other so that the four corners of the first and second memory boards face each other, the front ends of the plurality of memory modules 127A arranged in a comb shape on the first circuit board 123A and the second circuit board 123B This is because the front ends of the plurality of memory modules 127B arranged in a comb shape are arranged in a staggered manner by creating a gap between adjacent memory modules (see FIG. 5B). You can avoid fitting.
 次に、図3Cに示すように、第3の回路基板123Cは、基板の一の面に4枚のストレージデバイス130を実装し、基板の他の面に第1の回路基板123Aとの電気的接続のためのコネクタ125Dを有している。第3の回路基板123Cは、代替的にもしくは追加的にI/O制御用チップセットを実装してよい。また、第3の回路基板123Cは、代替的にもしくは追加的にプログラマブルロジックデバイスを実装してよい。ストレージデバイス130に、フラッシュストレージ、例えばM.2 SSD(Solid State Drive)又はmSATA (mini Serial ATA) SSDを使用してよい。また、プログラマブルロジックデバイスに、FPGA(Field-Programmable Gate Array)を使用してよい。第3の回路基板123Cの一の面上には、上記の構成部分以外に、種々の電子部品が搭載されるが、当該電子部品は描かれていない。以上のように構成されている第3の回路基板123Cとそれに実装される構成部分の全体を、以下、「C基板120C」と呼ぶことがある。 Next, as shown in FIG. 3C, the third circuit board 123 </ b> C has four storage devices 130 mounted on one surface of the board, and electrical connection with the first circuit board 123 </ b> A on the other surface of the board. A connector 125D for connection is provided. The third circuit board 123C may alternatively or additionally be mounted with an I / O control chip set. In addition, the third circuit board 123C may alternatively or additionally be mounted with a programmable logic device. The storage device 130 may use flash storage such as M.2 SSD (Solid State Drive) or mSATA (mini Serial ATA) SSD. Further, an FPGA (Field-ProgrammablemGate Array) may be used as the programmable logic device. In addition to the above-described components, various electronic components are mounted on one surface of the third circuit board 123C, but the electronic components are not drawn. The third circuit board 123C configured as described above and the entire components mounted thereon may be hereinafter referred to as “C board 120C”.
 図4は、A基板120Aと、B基板120Bと、C基板120Cとを組み合わせてプロセッサモジュール120を構成するときの組立図、図5Aは、組み立てられたプロセッサモジュール120の斜視図、図5Bは、図5Aに示すプロセッサモジュール120のA-A線断面図である。なお、図中、プロセッサ124A、124Bの上面に熱的に接続されているヒートシンクのフィンは描かれていない。ここで、冷却液のフロー方向に一致させるべく、ヒートシンクのフィンの配列方向を、後述するメモリモジュールの配列方向と同じにするとよい。プロセッサモジュール120の組み立て方法は、図4に示すように、まず、C基板120Cのコネクタ125CをA基板120Aのコネクタ125Dに結合し、次いで、B基板120Bの一の面がA基板120Aの一の面と向かい合わせになるように、B基板120Bを裏返して、B基板120Bのコネクタ125BをA基板120Aのコネクタ125Aに結合する。コネクタ125A、125Bは、互いに結合されたとき、A基板120Aの櫛状配列された複数のメモリモジュール127Aの先端部、及びB基板120Bの櫛状配列された複数のメモリモジュール127Bの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、A基板120AとB基板120Bと位置合わせをするのに役立つだけでなく、A基板120Aの一の面とB基板120Bの一の面との距離Hを所定の長さに保つのに役立つ。 4 is an assembly view when the processor board 120 is configured by combining the A board 120A, the B board 120B, and the C board 120C, FIG. 5A is a perspective view of the assembled processor module 120, and FIG. FIG. 5B is a cross-sectional view taken along line AA of the processor module 120 shown in FIG. 5A. In the drawing, the fins of the heat sink that are thermally connected to the upper surfaces of the processors 124A and 124B are not drawn. Here, it is preferable that the arrangement direction of the fins of the heat sink is the same as the arrangement direction of the memory modules described later so as to coincide with the flow direction of the coolant. As shown in FIG. 4, the processor module 120 is assembled by first coupling the connector 125C of the C board 120C to the connector 125D of the A board 120A, and then making one surface of the B board 120B one of the A boards 120A. The B board 120B is turned over so as to face the surface, and the connector 125B of the B board 120B is coupled to the connector 125A of the A board 120A. When the connectors 125A and 125B are coupled to each other, the front ends of the plurality of memory modules 127A arranged in a comb shape on the A substrate 120A and the front ends of the plurality of memory modules 127B arranged in a comb shape on the B substrate 120B are In addition to helping to align the A substrate 120A and the B substrate 120B so that gaps are formed between adjacent memory modules, the one surface of the A substrate 120A and one surface of the B substrate 120B are used. It is useful to keep the distance H to a predetermined length.
 図5Bを参照して、上述のとおり、A基板120A及びB基板120Bは、A基板120Aの櫛状配列された複数のメモリモジュール127Aの先端部及びB基板120Cの櫛状配列された複数のメモリモジュール127Bの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされている。例えば、メモリソケット126Aは、中心線間距離が約8mmになるような間隔に設置することができる。汎用のStandard Heightの64GB DIMMの高さは約30mm、厚さは約3mmであるので、メモリモジュール127Aとメモリモジュール127Bが互い違いに並んでいるときの、隣り合うメモリモジュール間の隙間は約1mm(=(8-3-1.5×2)/2)である。メモリモジュールの発熱量は、プロセッサの発熱量に比べてはるかに小さいため、隣り合うメモリモジュール間の隙間がこの程度に狭くても、冷却液による奪熱作用が損なわれることはない。 Referring to FIG. 5B, as described above, the A substrate 120A and the B substrate 120B include the front ends of the plurality of memory modules 127A arranged in a comb shape of the A substrate 120A and the plurality of memories arranged in a comb shape of the B substrate 120C. The front ends of the modules 127B are aligned so as to be alternately arranged with a gap between adjacent memory modules. For example, the memory sockets 126A can be installed at an interval such that the distance between the center lines is about 8 mm. The standard Standard Height 64GB DIMM is approximately 30mm in height and approximately 3mm in thickness, so when the memory modules 127A and 127B are arranged in a staggered manner, the gap between adjacent memory modules is approximately 1mm ( = (8-3-1.5 × 2) / 2). Since the heat generation amount of the memory module is much smaller than the heat generation amount of the processor, even if the gap between adjacent memory modules is so narrow, the heat removal action by the coolant is not impaired.
 図5Bに示すように、A基板120Aの一の面とB基板120Bの一の面との距離Hを、一の面からのメモリモジュール127A、127Bの高さh、メモリソケット126A、126Bの高さhに関して、(h+h)<H<2hを満たすように、短くすることができる。例えば、汎用のStandard Heightの64GB DIMM用のメモリソケット126A、126Bの高さは、約5mmであるので、距離Hを36mm~40mmまで短くすることができ、より一層の高密度実装を実現することができる。例えば、距離Hを約40mmに、基板の一の面からのプロセッサ(ヒートシンクのフィンを含む)の高さを約15mmに設計した場合、プロセッサ124A、124Bの上面が互いに向かい合ってできるスペースは、約10mm(=40-15×2)の高さを持つ。この、プロセッサモジュール120内に作られる約10mmの高さのスペースは、プロセッサモジュールの機能を拡張もしくは増強するための種々の構成部品を、追加的に配置するために十分な大きさである(もし、その半分の約5mmの高さのスペースであると、高さが低すぎてそこに構成部品を配置することが極めて困難である)。C基板120Cは、このスペースに配置される、機能拡張又は増大用の別の回路基板である。もちろん、この程度の高さがあると、A基板120Aのプロセッサ124Aの上面とC基板120Cの裏面との隙間、並びに、B基板120Bのプロセッサ124Bの上面とC基板120Cの表面との隙間を、問題なく確保することができるので、そこを通る冷却液による所望の奪熱性能を達成するうえで問題は生じないものである。 As shown in FIG. 5B, the distance H between one surface of the A substrate 120A and one surface of the B substrate 120B is set such that the height h 1 of the memory modules 127A and 127B from the one surface and the memory sockets 126A and 126B. Regarding the height h 2 , the height h 2 can be shortened so as to satisfy (h 1 + h 2 ) <H <2h 1 . For example, since the height of the memory sockets 126A and 126B for general-purpose Standard Height 64GB DIMMs is about 5 mm, the distance H can be shortened to 36 mm to 40 mm, and higher density mounting can be realized. Can do. For example, when the distance H is designed to be about 40 mm, and the height of the processor (including the heat sink fins) from one side of the substrate is about 15 mm, the space formed by the top surfaces of the processors 124A and 124B facing each other is about It has a height of 10 mm (= 40-15 × 2). This approximately 10 mm high space created in the processor module 120 is large enough for additional placement of various components to expand or enhance the functionality of the processor module (if any). If the space is about 5 mm in height, the height is too low and it is very difficult to place the components there). The C substrate 120 </ b> C is another circuit substrate for function expansion or expansion arranged in this space. Of course, with such a height, the gap between the upper surface of the processor 124A of the A substrate 120A and the back surface of the C substrate 120C, and the gap between the upper surface of the processor 124B of the B substrate 120B and the surface of the C substrate 120C, Since it can be ensured without any problem, there is no problem in achieving the desired heat removal performance by the coolant passing therethrough.
 次に、図2に戻って、電子機器100の構成をさらに詳しく説明すると、バックボード110の一の面と反対の面には、バックボード110の外枠部110bの長手方向に沿って、複数のスライダー(図示せず)が取り付けられていてよい。外枠部110bの左右両方に取り付けられた、一対のスライダーは、後述する冷却槽内に垂直に起立して固定された、隣り合う支持柱に設けられたレール溝に係合することにより、バックボード110は、スライド(垂直方向に上げ下げ)可能に支持されるとよい。 Next, returning to FIG. 2, the configuration of the electronic device 100 will be described in more detail. On the surface opposite to one surface of the backboard 110, a plurality of the electronic devices 100 are arranged along the longitudinal direction of the outer frame portion 110 b of the backboard 110. A slider (not shown) may be attached. A pair of sliders attached to both the left and right sides of the outer frame portion 110b are engaged with rail grooves provided in adjacent support pillars that are vertically raised and fixed in a cooling tank, which will be described later. The board 110 may be supported so as to be slidable (up and down in the vertical direction).
 以上のように構成されている電子機器100が、バックボード110を複数の支持柱に対してスライドさせて、冷却装置内の冷却液中に浸漬されて直接冷却されるとき、電子機器内を流通する冷却液が、プロセッサモジュール120の内と外を通って、プロセッサモジュール120、及びキャリア基板121から熱を速やかに、かつ、効率よく奪い取るので、高密度に実装しても電子機器100の安定した動作を確保できる。このとき、プロセッサモジュール120の内で、A基板120AとC基板120Cとの隙間、B基板120BとC基板120Cとの隙間、隣り合うメモリモジュール間の隙間が、それぞれ確保されており、それらの隙間が、冷却液の通るフローチャネルを形成することは、上述したとおりである。また、各プロセッサモジュール120を、キャリア基板121に取り付け、加えて、キャリア基板121から取り外すことができる。これにより、プロセッサモジュール120ごとに、調整、点検、修理、交換、増設等を行うことができるので、メンテナンス性が格段に向上する。 When the electronic device 100 configured as described above slides the backboard 110 with respect to the plurality of support pillars and is immersed in the cooling liquid in the cooling device and directly cooled, the electronic device 100 circulates in the electronic device. The cooling liquid that passes through and out of the processor module 120 quickly and efficiently removes heat from the processor module 120 and the carrier substrate 121, so that the electronic device 100 is stable even when mounted at a high density. Operation can be secured. At this time, in the processor module 120, a gap between the A board 120A and the C board 120C, a gap between the B board 120B and the C board 120C, and a gap between adjacent memory modules are respectively secured. However, as described above, the flow channel through which the coolant flows is formed. In addition, each processor module 120 can be attached to and removed from the carrier substrate 121. As a result, adjustment, inspection, repair, replacement, expansion, etc. can be performed for each processor module 120, so that maintainability is significantly improved.
 次に、図6-図7を参照して、冷却装置の下部に設置される電源ユニット20を説明する。図6は、電源ユニット20におけるステージ22の一例を示す斜視図、図7は、電源ユニット20におけるユニット基板21をステージ22上に取り付けた状態を示す斜視図である。 Next, the power supply unit 20 installed in the lower part of the cooling device will be described with reference to FIGS. FIG. 6 is a perspective view showing an example of the stage 22 in the power supply unit 20, and FIG. 7 is a perspective view showing a state in which the unit substrate 21 in the power supply unit 20 is mounted on the stage 22.
 前述のとおり、電源ユニット20は、電子機器100に含まれない構成部分であり、冷却装置が備える冷却槽の底部に設置される。電源ユニット20は、ユニット基板21と、ユニット基板21に搭載される降圧デバイス215とを含んでいる。ユニット基板21は、外部電源(図示せず)から電源ケーブル211を介して外部電源電圧を供給する電源電圧入力コネクタ212と、降圧デバイス215により降圧された直流電圧を出力する直流電圧出力コネクタ213とを備える。降圧デバイス215は、例えば、200V-420Vの外部高圧直流電圧を、24V-52Vの直流電圧に降圧するコンバータモジュール、又は100V-250Vの単相又は三相の外部高圧交流電圧を、24V-52Vの直流電圧に交直変換及び降圧するコンバータモジュールを含むとよい。前者のコンバータモジュールは、より具体的には、DC380VをDC48Vに降圧することができるとよく、後者のコンバータモジュールは、AC200VをDC48Vに交直変換及び降圧することができるとよい。必要に応じて、降圧デバイス215は、力率改善回路、ノイズフィルタ、追加の整流器、及びサージ回路のうちのいずれか1つ又は2つ以上の周辺回路を含むとよい。降圧デバイス215の表面には、放熱用のヒートシンク216が熱的に接続されているとよい。また、ユニット基板21には、故障時の保護を行う複数の入力ヒューズ217が含まれていてよい。ユニット基板21は、図7に示すように、複数のスペーサ218を介して、ステージ22に固定される。これにより、ユニット基板21は、ユニット基板21の一の面と、後述する冷却槽の底部との間に冷却液を通すフローチャネル219を形成するように、底部から離れて配置されている。なお、ユニット基板21が、冷却液を通すフローチャネルを有するように構成してもよい。例えば、ユニット基板21を、中間スペースを有する階層構造体もしくは中空構造体に形成し、構造体の内部に冷却液を通すとよい。 As described above, the power supply unit 20 is a component not included in the electronic device 100, and is installed at the bottom of the cooling tank provided in the cooling device. The power supply unit 20 includes a unit substrate 21 and a step-down device 215 mounted on the unit substrate 21. The unit board 21 includes a power supply voltage input connector 212 that supplies an external power supply voltage from an external power supply (not shown) via a power supply cable 211, a DC voltage output connector 213 that outputs a DC voltage stepped down by the step-down device 215, and Is provided. The step-down device 215 is, for example, a converter module that steps down an external high-voltage DC voltage of 200V-420V to a DC voltage of 24V-52V, or a single-phase or three-phase external high-voltage AC voltage of 100V-250V, It is preferable to include a converter module that performs AC / DC conversion and step-down to a DC voltage. More specifically, the former converter module may be capable of stepping down DC380V to DC48V, and the latter converter module may be capable of AC / DC conversion and stepping down to DC48V from AC200V. The step-down device 215 may include any one or more peripheral circuits of a power factor correction circuit, a noise filter, an additional rectifier, and a surge circuit, as needed. A heat sink 216 for heat dissipation is preferably thermally connected to the surface of the step-down device 215. Further, the unit substrate 21 may include a plurality of input fuses 217 that protect against failure. As shown in FIG. 7, the unit substrate 21 is fixed to the stage 22 via a plurality of spacers 218. Thus, the unit substrate 21 is arranged away from the bottom so as to form a flow channel 219 through which the coolant flows between one surface of the unit substrate 21 and the bottom of the cooling tank described later. The unit substrate 21 may be configured to have a flow channel through which the coolant passes. For example, the unit substrate 21 may be formed in a hierarchical structure or a hollow structure having an intermediate space, and a cooling liquid may be passed through the structure.
 ステージ22は、図6に示すように、後述する冷却槽の底部に置かれる平板を含む。平板の幅方向中央寄りに、底部から流入する冷却液を通す複数の穴23が、長手方向に間隔を隔てて、形成されている。また、平板の幅方向端部には、複数の切り欠き24が、長手方向に間隔を隔てて形成されている。隣り合う切り欠き24は、複数のステージ22が並べて配置されるとき、隣り合う切り欠き24同士が合わさって穴23と実質同じ穴を形成するのに必要な長さと幅を有する。ステージ22上には、L型ブラケット26を使用して、複数の支持柱25が垂直に取り付けられる。よって、ステージ22が、冷却槽の底部に設置されるとき、複数の支持柱25は、冷却槽内に垂直に起立することになる。また、ステージ22上には、複数のブラケット27が固定されている。ブラケット27には、支持ピン挿入穴28が形成されている。 As shown in FIG. 6, the stage 22 includes a flat plate placed at the bottom of a cooling tank described later. Near the center in the width direction of the flat plate, a plurality of holes 23 through which the coolant flowing in from the bottom is passed are formed at intervals in the longitudinal direction. Further, a plurality of notches 24 are formed at intervals in the longitudinal direction at the end in the width direction of the flat plate. The adjacent cutouts 24 have a length and a width necessary for the adjacent cutouts 24 to form the same hole as the hole 23 when the plurality of stages 22 are arranged side by side. A plurality of support pillars 25 are vertically mounted on the stage 22 using an L-shaped bracket 26. Therefore, when the stage 22 is installed in the bottom part of a cooling tank, the some support pillar 25 will stand upright in a cooling tank. A plurality of brackets 27 are fixed on the stage 22. A support pin insertion hole 28 is formed in the bracket 27.
 複数の支持柱25の各々にはレール溝251が形成されている。電子機器100のバックボード110が有する一対のスライダー(図示せず)が、隣り合う支持柱に設けられたレール溝251に係合することにより、バックボード110が、スライド(垂直方向に上げ下げ)可能に支持される。 A rail groove 251 is formed in each of the plurality of support pillars 25. A pair of sliders (not shown) included in the backboard 110 of the electronic device 100 engage with rail grooves 251 provided in adjacent support pillars, so that the backboard 110 can be slid (raised and lowered in the vertical direction). Supported by
 以上のように構成されている電源ユニット20に対して、電子機器100が、バックボード110を複数の支持柱25に対してスライドさせて上昇させ、又は下降させることができる。そして、電子機器100を下降させたとき、電子機器100のバックボード110の外枠部110bの下部から下に延びる一対の支持ピン(図示せず)が、電源ユニット20に固定された一対のブラケット27の支持ピン挿入穴に挿入され、電源ユニット20の直流電圧出力コネクタ213と、電子機器100の直流電圧入力コネクタ131との正確な位置合わせが行われるとよい。さらに電子機器100を下降させると、直流電圧出力コネクタ213と直流電圧入力コネクタ131とが電気的に接続される。このとき、一対の支持柱25及び一対のブラケット27が、1ユニットの電子機器100の重量を支えている。 With respect to the power supply unit 20 configured as described above, the electronic device 100 can raise or lower the backboard 110 by sliding the backboard 110 with respect to the plurality of support pillars 25. When the electronic device 100 is lowered, a pair of support pins (not shown) extending downward from the lower portion of the outer frame portion 110b of the backboard 110 of the electronic device 100 are fixed to the power supply unit 20. 27 is inserted into the support pin insertion hole 27 and the DC voltage output connector 213 of the power supply unit 20 and the DC voltage input connector 131 of the electronic device 100 may be accurately aligned. When the electronic device 100 is further lowered, the DC voltage output connector 213 and the DC voltage input connector 131 are electrically connected. At this time, the pair of support columns 25 and the pair of brackets 27 support the weight of the electronic device 100 of one unit.
 電源ユニット20は、直流電圧出力コネクタ213が電子機器100の直流電圧入力コネクタ131と結合した状態を検出したとき、電子機器100への直流電圧の供給を開始する第1のコントローラをさらに含むとよい。第1のコントローラは、付加回路又は電子的な機構として、ユニット基板21に実装されるとよい。これにより、電子機器100を冷却槽内に下降させ、電源ユニット20と結合させるだけで、直ちに通電動作させる、電子機器100のプラグイン動作が可能となる。 The power supply unit 20 may further include a first controller that starts supplying a DC voltage to the electronic device 100 when it detects that the DC voltage output connector 213 is coupled to the DC voltage input connector 131 of the electronic device 100. . The first controller may be mounted on the unit substrate 21 as an additional circuit or an electronic mechanism. As a result, the electronic device 100 can be plugged in immediately by energizing the electronic device 100 by simply lowering the electronic device 100 into the cooling tank and coupling the electronic device 100 to the power supply unit 20.
 また、電源ユニット20は、冷却槽の冷却液の液面の上部、冷却槽の壁面構造部、又は冷却槽の近傍に設置された制御盤から操作可能なスイッチのON/OFFを検出して、電子機器100への電圧の供給の開始/切断を切り替える第2のコントローラをさらに含むとよい。これにより、オペレータが、手動で、電子機器100ごとのON/OFFを切り替えることができるので、メンテナンス性を向上させることができる。第2のコントローラもまた、付加回路又は電子的な機構として、ユニット基板21に実装されるとよい。 Further, the power supply unit 20 detects ON / OFF of a switch that can be operated from the upper part of the liquid level of the cooling liquid in the cooling tank, the wall surface structure part of the cooling tank, or a control panel installed in the vicinity of the cooling tank, A second controller that switches start / disconnection of voltage supply to the electronic device 100 may be further included. Thereby, since an operator can switch ON / OFF for every electronic device 100 manually, a maintainability can be improved. The second controller may also be mounted on the unit board 21 as an additional circuit or an electronic mechanism.
 電子機器100への電圧の供給の開始/切断を切り替える信号を、第2のコントローラに送るためのスイッチは、複数の支持柱25の各々の上端、又は側面に設けられてよい。 A switch for sending a signal for switching start / cut of voltage supply to the electronic device 100 to the second controller may be provided at the upper end or the side surface of each of the plurality of support pillars 25.
 次に、以上説明した本発明の一実施形態に係る電子機器100と、上述の電源ユニット20を、冷却液中に浸漬して直接冷却するための液浸冷却装置の一例を、図面に基づいて説明する。以下の説明では、電子機器100及び電源ユニット20をそれぞれ合計24ユニット、冷却槽の6×4の区画にそれぞれ収納して冷却する、高密度液浸冷却装置の構成を説明する。なお、これは例示であって、高密度液浸冷却装置における電子機器のユニット数は任意であり、本発明に使用可能な電子機器の構成を何ら限定するものではない。 Next, based on the drawings, an example of an immersion cooling device for directly cooling the electronic device 100 according to an embodiment of the present invention described above and the power supply unit 20 described above by immersing them in the cooling liquid. explain. In the following description, a configuration of a high-density immersion cooling apparatus that stores and cools a total of 24 electronic devices 100 and power supply units 20 in 6 × 4 sections of a cooling tank will be described. This is merely an example, and the number of units of the electronic device in the high-density immersion cooling apparatus is arbitrary, and does not limit the configuration of the electronic device that can be used in the present invention.
 図8-図11を参照して、一実施形態に係る液浸冷却装置1は冷却槽10を有し、冷却槽10の底壁11及び側壁12によって開放空間10aが形成されている。底壁11には、冷却液が流入する複数の流入開口150が、9×3のパターンで形成されている。また、側壁12には、電源ケーブル導入口12aと、ネットワークケーブル導入口12bと、冷却液の液面近傍に形成された流出開口170が形成されている。 8 to 11, the immersion cooling apparatus 1 according to an embodiment includes a cooling tank 10, and an open space 10 a is formed by the bottom wall 11 and the side wall 12 of the cooling tank 10. In the bottom wall 11, a plurality of inflow openings 150 into which the cooling liquid flows are formed in a 9 × 3 pattern. Further, the side wall 12 is formed with a power cable introduction port 12a, a network cable introduction port 12b, and an outflow opening 170 formed in the vicinity of the liquid surface of the coolant.
 液浸冷却装置1は、冷却槽10の開放空間10aを閉じるための天板10bを有する。液浸冷却装置1の保守作業時には、天板10bを開口部から外して開放空間10aを開き、液浸冷却装置1の運用時には、天板10bを冷却槽10の開口部に置くことにより、開放空間10aを閉じることができる。 The immersion cooling device 1 has a top plate 10b for closing the open space 10a of the cooling bath 10. During maintenance work of the immersion cooling device 1, the top plate 10 b is removed from the opening to open the open space 10 a, and during operation of the immersion cooling device 1, the top plate 10 b is placed in the opening of the cooling tank 10 to open it. The space 10a can be closed.
 冷却槽10には、電子機器100の全体を浸漬するのに十分な量の冷却液が図10に示す液面まで入れられている(図10参照)。冷却液としては、3M社の商品名「フロリナート(3M社の商標、以下同様)FC-72」(沸点56℃)、「フロリナートFC-770」(沸点95℃)、「フロリナートFC-3283」(沸点128℃)、「フロリナートFC-40」(沸点155℃)、「フロリナートFC-43」(沸点174℃)として知られる、完全フッ素化物(パーフルオロカーボン化合物)からなるフッ素系不活性液体を好適に使用することができるが、これらに限定されるものではない。なお、フロリナートFC-40、FC-43は、沸点が150℃よりも高く、極めて蒸発しにくいため、いずれかを冷却液に使用する場合、冷却槽10内における液面の高さが長期間に亘って保たれ、有利である。 The cooling tank 10 is filled with a sufficient amount of coolant to immerse the entire electronic device 100 up to the liquid level shown in FIG. 10 (see FIG. 10). As the coolant, trade names of 3M Company “Fluorinert (trademark of 3M Company, hereinafter the same) FC-72” (boiling point 56 ° C.), “Fluorinert FC-770” (boiling point 95 ° C.), “Fluorinert FC-3283” ( Fluorine inert liquid composed of perfluorinated compounds (perfluorocarbon compounds) known as “Fluorinert FC-40” (boiling point 155 ° C.), “Fluorinert FC-43” (boiling point 174 ° C.) Although it can be used, it is not limited to these. Since Fluorinert FC-40 and FC-43 have a boiling point higher than 150 ° C. and are extremely difficult to evaporate, when one of them is used as a cooling liquid, the liquid level in the cooling tank 10 is long. This is advantageous over time.
 冷却槽10の底壁11の下に、冷却液の入口15を一端に有する複数の流入ヘッダ16が設けられている。また、冷却槽10の側壁12の外側に、冷却液の出口18を有する受部17が設けられている。受部17は、流出開口170を覆い、流出開口170から流出する冷却液を漏らさず受ける。 A plurality of inflow headers 16 having a coolant inlet 15 at one end are provided below the bottom wall 11 of the cooling tank 10. A receiving portion 17 having a coolant outlet 18 is provided outside the side wall 12 of the cooling tank 10. The receiving part 17 covers the outflow opening 170 and receives the coolant flowing out from the outflow opening 170 without leaking.
 図11を参照して、冷却槽10の底壁11の上には、4枚の平板のステージ22が並べて配置される。ステージ22に形成された複数の穴23、及び隣り合う切り欠き24同士が合わさって形成される、穴23と実質同じ穴のそれぞれは、底壁11に形成された複数の流入開口150のそれぞれに一致する。したがって、流入開口150から流入する冷却液は、電源ユニット20によって流入を阻害されることはない。また、電源ユニット20のユニット基板21とステージ22(底壁11)との間に冷却液が通るフローチャネルが確保されているので、冷却液がユニット基板21の両面から熱を速やかに、かつ、効率よく奪い取る。したがって、電源ユニット20の冷却効率に優れている。さらに、電源ユニット20のユニット基板21を、冷却槽10の底壁11と平行に置くことができるので、冷却槽10の高さ(深さ)方向における、電源ユニット20の高さを、従来に比べて低く抑えることができる。したがって、電子機器100と電源ユニット20を合わせた長さを短くできるので、冷却槽10の高さを低く(深さを浅く)設計することが可能となる。 Referring to FIG. 11, four flat stages 22 are arranged side by side on the bottom wall 11 of the cooling bath 10. Each of the plurality of holes 23 formed in the stage 22 and the notches 24 adjacent to each other, which are substantially the same as the holes 23, are respectively formed in the plurality of inflow openings 150 formed in the bottom wall 11. Match. Therefore, the cooling liquid flowing in from the inflow opening 150 is not blocked by the power supply unit 20. In addition, since a flow channel through which the coolant flows is secured between the unit substrate 21 of the power supply unit 20 and the stage 22 (bottom wall 11), the coolant quickly heats up from both sides of the unit substrate 21, and Take away efficiently. Accordingly, the cooling efficiency of the power supply unit 20 is excellent. Furthermore, since the unit substrate 21 of the power supply unit 20 can be placed parallel to the bottom wall 11 of the cooling tank 10, the height of the power supply unit 20 in the height (depth) direction of the cooling tank 10 is conventionally set. It can be kept low compared to this. Therefore, since the combined length of the electronic device 100 and the power supply unit 20 can be shortened, the cooling tank 10 can be designed to have a low height (a shallow depth).
 加えて、流入開口150から流入する冷却液は、電子機器100の下側から上側に、プロセッサモジュールの内と外を通って、プロセッサモジュール120、及びキャリア基板121から熱を速やかに、かつ、効率よく奪い取る。このようにして暖められた冷却液は、流出開口170、受け部17を通って、出口18に至る。出口18には、熱交換器(図示せず)を通って入口15に至る配管(図示せず)が接続されており、当該熱交換器において冷却液が冷やされ、冷えた冷却液が入口15に供給される。 In addition, the cooling liquid flowing in from the inflow opening 150 passes through the inside and outside of the processor module from the lower side to the upper side of the electronic device 100, and quickly and efficiently heats the processor module 120 and the carrier substrate 121. Steal well. The coolant thus warmed reaches the outlet 18 through the outlet opening 170 and the receiving portion 17. A pipe (not shown) that leads to the inlet 15 through a heat exchanger (not shown) is connected to the outlet 18, and the cooling liquid is cooled in the heat exchanger, and the cooled cooling liquid flows into the inlet 15. To be supplied.
 本発明は、超高密度に実装された液浸冷却用のプロセッサモジュール及び電子機器に広く適用することができる。 The present invention can be widely applied to an immersion cooling processor module and electronic equipment that are mounted at an ultra-high density.
 1  液浸冷却装置
 10  冷却槽
 10a  開放空間
 10b  天板
 11  底壁
 12  側壁
 12a  電源ケーブル導入口
 12b  ネットワークケーブル導入口
 100  電子機器
 110  バックボード又はフレーム構造
 110a  穴
 110b  外枠部
 110c  梁部
 120  プロセッサモジュール
 121  キャリア基板
 122  ネットワークカード
 123A、123B、123C  回路基板
 124A、124B  プロセッサ
 125A、125B、125C、125D  コネクタ
 126A、126B  メモリソケット
 127A、127B  メモリモジュール
 128  モジュールコネクタ
 129  モジュールコネクタプラグ
 130  ストレージデバイス
 PA、PB  プロセッサ実装領域
 MA、MB  メモリ実装領域
 
DESCRIPTION OF SYMBOLS 1 Immersion cooling device 10 Cooling tank 10a Open space 10b Top plate 11 Bottom wall 12 Side wall 12a Power cable inlet 12b Network cable inlet 100 Electronic device 110 Backboard or frame structure 110a Hole 110b Outer frame part 110c Beam part 120 Processor module 121 Carrier board 122 Network card 123A, 123B, 123C Circuit board 124A, 124B Processor 125A, 125B, 125C, 125D Connector 126A, 126B Memory socket 127A, 127B Memory module 128 Module connector 129 Module connector plug 130 Storage device PA, PB Processor mounting Area MA, MB Memory mounting area

Claims (11)

  1.  冷却装置内の冷却液中に浸漬されて直接冷却される電子機器に適用される、液浸冷却用プロセッサモジュールであって、
     第1の回路基板及び第2の回路基板であって、それぞれの基板の一の面にプロセッサ実装領域とメモリ実装領域とを有し、前記プロセッサ実装領域に少なくとも1つのプロセッサを実装し、前記メモリ実装領域に櫛状配列された複数のメモリモジュールを実装し、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面とが向かい合わせに組み合わされた状態にある、第1の回路基板及び第2の回路基板と、
     前記第1の回路基板と前記第2の回路基板との間を電気的に接続する第1のコネクタと、
     前記第1の回路基板と前記第2の回路基板との間に配置される、第3の回路基板と、
     前記第3の回路基板と前記第1の回路基板もしくは前記第2の回路基板との間を電気的に接続する第2のコネクタと、
     を含み、
     前記第1の回路基板と前記第2の回路基板とは、前記第1の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域が前記第2の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域とそれぞれ向かい合うように、かつ、前記第1の回路基板の前記櫛状配列された複数のメモリモジュールの先端部及び前記第2の回路基板の前記櫛状配列された複数のメモリモジュールの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされており、
     前記第3の回路基板は、前記第1の回路基板及び前記第2の回路基板の前記プロセッサの上面が互いに向かい合ってできる空間内に配置されている、
     液浸冷却用プロセッサモジュール。
    A processor module for immersion cooling applied to an electronic device that is immersed in a cooling liquid in a cooling device and directly cooled,
    A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face. A first circuit board and a second circuit board;
    A first connector for electrically connecting the first circuit board and the second circuit board;
    A third circuit board disposed between the first circuit board and the second circuit board;
    A second connector for electrically connecting the third circuit board and the first circuit board or the second circuit board;
    Including
    The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively. The front end portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the front end portions of the plurality of memory modules arranged in a comb shape on the second circuit board, respectively, facing each other, It is aligned so that there is a gap between adjacent memory modules,
    The third circuit board is disposed in a space formed by the upper surfaces of the processors of the first circuit board and the second circuit board facing each other.
    Processor module for immersion cooling.
  2.  前記メモリ実装領域は、個々のメモリモジュールを固定する複数のメモリソケットを含み、
     前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面との距離Hは、前記一の面からの前記メモリモジュールの高さh、前記メモリソケットの高さhに関して、(h+h)<H<2hを満たす、請求項1に記載の液浸冷却用プロセッサモジュール。
    The memory mounting area includes a plurality of memory sockets for fixing individual memory modules,
    The distance H between the one surface of the first circuit board and the one surface of the second circuit board is the height h 1 of the memory module from the one surface, and the height of the memory socket. 2. The immersion cooling processor module according to claim 1 , wherein (h 1 + h 2 ) <H <2h 1 is satisfied with respect to h 2 .
  3.  前記メモリモジュールがStandard Heightのメモリモジュールであり、当該モジュールは、メモリモジュールの基板面が前記一の面に対し垂直にもしくは傾斜して、前記メモリソケットに差し込まれる、請求項2に記載の液浸冷却用プロセッサモジュール。 The liquid immersion according to claim 2, wherein the memory module is a Standard メ モ リ Height memory module, and the module is inserted into the memory socket such that a substrate surface of the memory module is perpendicular or inclined with respect to the one surface. Cooling processor module.
  4.  前記第1の回路基板の前記プロセッサと前記第2の回路基板の前記プロセッサとが、プロセッサ間相互接続用インターフェースを介して接続されている、請求項1に記載の液浸冷却用プロセッサモジュール。 The processor module for immersion cooling according to claim 1, wherein the processor of the first circuit board and the processor of the second circuit board are connected via an inter-processor interconnection interface.
  5.  前記第3の回路基板は、ストレージデバイス及び/又はI/O制御用チップセットを搭載した回路基板である、請求項1に記載の液浸冷却用プロセッサモジュール。 The immersion cooling processor module according to claim 1, wherein the third circuit board is a circuit board on which a storage device and / or an I / O control chipset is mounted.
  6.  冷却装置内の冷却液中に浸漬されて直接冷却される電子機器であって、
     前記電子機器用の直流電圧を供給する電圧入力端を備えるキャリア基板であって、前記電圧入力端は、電源ユニットの電圧出力端に電気的に接続される、キャリア基板と、
     前記キャリア基板の一の面に配置された複数のモジュールコネクタと、
     複数のプロセッサモジュールであって、前記複数のプロセッサモジュールの各々は、前記複数のモジュールコネクタの各々に電気的に結合されるモジュールコネクタプラグを有する、プロセッサモジュールと、
     前記電子機器が前記電源ユニットと電気的に接続されたときに、前記冷却装置が備える冷却槽の底部に設置された前記電源ユニットの上部に位置するように前記キャリア基板を支持する支持部材と、
     を含み、
     前記プロセッサモジュールは、
     第1の回路基板及び第2の回路基板であって、それぞれの基板の一の面にプロセッサ実装領域とメモリ実装領域とを有し、前記プロセッサ実装領域に少なくとも1つのプロセッサを実装し、前記メモリ実装領域に櫛状配列された複数のメモリモジュールを実装し、前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面とが向かい合わせに組み合わされた状態にある、第1の回路基板及び第2の回路基板と、
     前記第1の回路基板と前記第2の回路基板との間を電気的に接続する第1のコネクタと、
     前記第1の回路基板と前記第2の回路基板との間に配置される、第3の回路基板と、
     前記第3の回路基板と前記第1の回路基板もしくは前記第2の回路基板との間を電気的に接続する第2のコネクタと、
     を含み、
     前記第1の回路基板と前記第2の回路基板とは、前記第1の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域が前記第2の回路基板の前記プロセッサ実装領域及び前記メモリ実装領域とそれぞれ向かい合うように、かつ、前記第1の回路基板の前記櫛状配列された複数のメモリモジュールの先端部及び前記第2の回路基板の前記櫛状配列された複数のメモリモジュールの先端部が、隣り合うメモリモジュール間に隙間を作って互い違いに並ぶように、位置合わせされており、
     前記第3の回路基板は、前記第1の回路基板及び前記第2の回路基板の前記プロセッサの上面が互いに向かい合ってできる空間内に配置されている、
     電子機器。
    An electronic device that is directly cooled by being immersed in a cooling liquid in a cooling device,
    A carrier substrate having a voltage input terminal for supplying a DC voltage for the electronic device, wherein the voltage input terminal is electrically connected to a voltage output terminal of a power supply unit; and
    A plurality of module connectors arranged on one surface of the carrier substrate;
    A plurality of processor modules, each of the plurality of processor modules having a module connector plug electrically coupled to each of the plurality of module connectors;
    When the electronic device is electrically connected to the power supply unit, a support member that supports the carrier substrate so as to be positioned above the power supply unit installed at the bottom of a cooling tank included in the cooling device;
    Including
    The processor module is
    A first circuit board and a second circuit board, each of which has a processor mounting area and a memory mounting area on one surface thereof, wherein at least one processor is mounted on the processor mounting area; A plurality of memory modules arranged in a comb shape are mounted in a mounting area, and the one surface of the first circuit board and the one surface of the second circuit board are combined face to face. A first circuit board and a second circuit board;
    A first connector for electrically connecting the first circuit board and the second circuit board;
    A third circuit board disposed between the first circuit board and the second circuit board;
    A second connector for electrically connecting the third circuit board and the first circuit board or the second circuit board;
    Including
    The first circuit board and the second circuit board are the processor mounting area and the memory mounting area of the first circuit board, and the processor mounting area and the memory mounting area of the second circuit board, respectively. The front end portions of the plurality of memory modules arranged in a comb shape on the first circuit board and the front end portions of the plurality of memory modules arranged in a comb shape on the second circuit board, respectively, facing each other, It is aligned so that there is a gap between adjacent memory modules,
    The third circuit board is disposed in a space formed by the upper surfaces of the processors of the first circuit board and the second circuit board facing each other.
    Electronics.
  7.  前記支持部材は、前記キャリア基板が一の面に固定されるバックボード又はフレーム構造を含む、請求項6に記載の電子機器。 The electronic device according to claim 6, wherein the support member includes a backboard or a frame structure in which the carrier substrate is fixed to one surface.
  8.  前記バックボード又はフレーム構造は、前記冷却槽内に垂直に起立して固定された複数の支持柱によってスライド可能に支持される、請求項7に記載の電子機器。 The electronic device according to claim 7, wherein the backboard or the frame structure is slidably supported by a plurality of support pillars which are vertically fixed in the cooling tank.
  9.  前記メモリ実装領域は、個々のメモリモジュールを固定する複数のメモリソケットを含み、
     前記第1の回路基板の前記一の面と前記第2の回路基板の前記一の面との距離Hは、前記一の面からの前記メモリモジュールの高さh、前記メモリソケットの高さhに関して、(h+h)<H<2hを満たす、請求項6に記載の電子機器。
    The memory mounting area includes a plurality of memory sockets for fixing individual memory modules,
    The distance H between the one surface of the first circuit board and the one surface of the second circuit board is the height h 1 of the memory module from the one surface, and the height of the memory socket. respect h 2, satisfy (h 1 + h 2) < H <2h 1, the electronic device according to claim 6.
  10.  前記メモリモジュールがStandard Heightのメモリモジュールであり、当該モジュールは、メモリモジュールの基板面が前記一の面に対し垂直にもしくは傾斜して、前記メモリソケットに差し込まれる、請求項6に記載の電子機器。 The electronic device according to claim 6, wherein the memory module is a Standard Height memory module, and the module module is inserted into the memory socket with a substrate surface of the memory module being perpendicular or inclined with respect to the one surface. .
  11.  前記第1の回路基板の前記プロセッサと前記第2の回路基板の前記プロセッサとが、プロセッサ間相互接続用インターフェースを介して接続されている、請求項6に記載の電子機器。 The electronic device according to claim 6, wherein the processor of the first circuit board and the processor of the second circuit board are connected via an inter-processor interconnection interface.
PCT/JP2017/017837 2017-05-11 2017-05-11 Electronic device for immersion cooling, and processor module for immersion cooling WO2018207306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/017837 WO2018207306A1 (en) 2017-05-11 2017-05-11 Electronic device for immersion cooling, and processor module for immersion cooling
JP2017541133A JP6494773B1 (en) 2017-05-11 2017-05-11 Immersion cooling electronic device and immersion cooling processor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017837 WO2018207306A1 (en) 2017-05-11 2017-05-11 Electronic device for immersion cooling, and processor module for immersion cooling

Publications (1)

Publication Number Publication Date
WO2018207306A1 true WO2018207306A1 (en) 2018-11-15

Family

ID=64105301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017837 WO2018207306A1 (en) 2017-05-11 2017-05-11 Electronic device for immersion cooling, and processor module for immersion cooling

Country Status (2)

Country Link
JP (1) JP6494773B1 (en)
WO (1) WO2018207306A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303842A (en) * 2003-03-28 2004-10-28 Zmp:Kk Stacked control substrate, electronic apparatus mounted therewith, and robot mounted therewith
JP2005236089A (en) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd Three-dimensional mounted structure, portable electronic apparatus equipped therewith and manufacturing method thereof
JP2007066480A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Disk array device
JP2008205402A (en) * 2007-02-22 2008-09-04 Fuji Xerox Co Ltd Electronic module
JP6042590B1 (en) * 2015-11-16 2016-12-14 株式会社ExaScaler Immersion cooling electronic device and cooling system using the same
US9596787B1 (en) * 2014-11-06 2017-03-14 Google Inc. Cooling electronic devices in a data center

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303842A (en) * 2003-03-28 2004-10-28 Zmp:Kk Stacked control substrate, electronic apparatus mounted therewith, and robot mounted therewith
JP2005236089A (en) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd Three-dimensional mounted structure, portable electronic apparatus equipped therewith and manufacturing method thereof
JP2007066480A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Disk array device
JP2008205402A (en) * 2007-02-22 2008-09-04 Fuji Xerox Co Ltd Electronic module
US9596787B1 (en) * 2014-11-06 2017-03-14 Google Inc. Cooling electronic devices in a data center
JP6042590B1 (en) * 2015-11-16 2016-12-14 株式会社ExaScaler Immersion cooling electronic device and cooling system using the same

Also Published As

Publication number Publication date
JP6494773B1 (en) 2019-04-03
JPWO2018207306A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6494772B1 (en) Immersion cooling electronic device and immersion cooling processor module
US8659897B2 (en) Liquid-cooled memory system having one cooling pipe per pair of DIMMs
WO2018087903A1 (en) Electronic device for liquid immersion cooling, power supply unit, and cooling system
WO2018087905A1 (en) Electronic device for liquid immersion cooling, power supply unit, and cooling system
JP6042587B1 (en) Immersion cooling electronic device and cooling system using the same
JP6042589B1 (en) Immersion cooling electronic device and cooling system using the same
JP6442066B2 (en) Immersion cooling electronics
WO2022242587A1 (en) Liquid-cooled electronic device
JP6042588B1 (en) Immersion cooling electronic device and cooling system using the same
CN109154847B (en) Electronic device for liquid immersion cooling
JP6523470B2 (en) Immersion cooling electronics
WO2018087904A1 (en) Electronic device for liquid immersion cooling, power supply unit, and cooling system
JP6494773B1 (en) Immersion cooling electronic device and immersion cooling processor module
JP6244067B1 (en) Immersion cooling electronics
WO2018087902A1 (en) Electronic device for liquid immersion cooling, power supply unit, and cooling system
JP6042590B1 (en) Immersion cooling electronic device and cooling system using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017541133

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908890

Country of ref document: EP

Kind code of ref document: A1