WO2018206419A1 - Dérivés hétérobicycliques microbiocides - Google Patents

Dérivés hétérobicycliques microbiocides Download PDF

Info

Publication number
WO2018206419A1
WO2018206419A1 PCT/EP2018/061470 EP2018061470W WO2018206419A1 WO 2018206419 A1 WO2018206419 A1 WO 2018206419A1 EP 2018061470 W EP2018061470 W EP 2018061470W WO 2018206419 A1 WO2018206419 A1 WO 2018206419A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
halogen
independently selected
chs
formula
Prior art date
Application number
PCT/EP2018/061470
Other languages
English (en)
Inventor
Laura Quaranta
Matthias Weiss
Farhan BOU HAMDAN
Original Assignee
Syngenta Participations Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations Ag filed Critical Syngenta Participations Ag
Publication of WO2018206419A1 publication Critical patent/WO2018206419A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to microbiocidal heterobicyclic derivatives, e.g. as active ingredients, which have microbiocidal activity, in particular fungicidal activity.
  • the invention also relates to preparation of these heterobicyclic derivatives, to intermediates useful in the preparation of these heterobicyclic derivatives, to the preparation of these intermediates, to agrochemical compositions which comprise at least one of the heterobicyclic derivatives, to preparation of these compositions and to the use of the heterobicyclic derivatives or compositions in agriculture or horticulture for controlling or preventing infestation of plants, harvested food crops, seeds or non-living materials by phytopathogenic microorganisms, in particular fungi.
  • Ri and F3 ⁇ 4 are each independently selected from hydrogen, C1-C6 alkyl, C3-C7 cycloalkyi, C2- C6 alkenyl and C2-C6 alkynyl, in which the alkyl, cycloalkyi, alkenyl and alkynyl groups may be optionally substituted with 1 to 3 substituents independently selected from halogen, C1-C6 alkoxy and C1-C6 alkylthio; or
  • Ri and R2 together with the carbon atom to which they are attached represent a C3-C10 cycloalkyi group (which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of halogen and C1-C6 alkyl);
  • R3 and R 4 are each independently selected from hydrogen, halogen, hydroxyl, C1-C6 alkyl, C1-C6 alkoxy, C3-C7 cycloalkyi, C2-C6 alkenyl and C2-C6 alkynyl, in which the alkyl, alkoxy, cycloalkyi, alkenyl and alkynyl groups may be optionally substituted with 1 to 3 substituents independently selected from halogen, C1-C6 alkoxy and C1-C6 alkylthio; or
  • C C(R a )(Rb) or C3-C10 cycloalkyi (which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of a halogen, C1-C6 alkyl, C1-C6 alkoxy and Ci-C 6 alkylthio);
  • R5 and R6 together with the carbon atoms to which they are attached form a thiophene ring, wherein the thiophene ring may be optionally substituted with one or two R10 groups;
  • R7 is hydrogen, OH, SH, halogen, C1-C6 alkyl, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 alkenylthio or , C1-C6 alkynylthio, in which the alkyl, alkenyl and alkynyl groups may be optionally substituted with 1 to 2 substituents independently selected from halogen, cyano, C1-C3 alkoxy or C1-C3 alkylsulfonyl;
  • each Re independently represents hydroxyl, cyano, halogen, C1-C6 alkyl, C1-C6 haloalkyl, C2- C6 alkenyl, C2-C6 alkynyl, C2-C6 haloalkenyl, C3-C6 haloalkynyl, C1-C6 alkylthio, C1-C6 haloalkoxy, C1-C6 haloalkylthio, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C3-C7 cycloalkyl, C1-C6 alkoxy, C3-C6 alkenyloxy or C3-C6 alkynyloxy; m is 0, 1 , 2, 3 or 4; or
  • Re subsitutents together with the carbon atoms to which they are attached represent a C5-C7 cycloalkyl (which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 alkoxy and C1-C6 alkylthio, and, additionally, a ring carbon unit may be replaced by an oxygen or sulphur atom);
  • R a and Rb are each independently selected from hydrogen, halogen, cyano, C1-C6 alkyl, C3- C7 cycloalkyl, C2-C6 alkenyl, C1-C6 alkoxy and C1-C6 alkylthio, in which the alkyl, cycloalkyl and alkenyl groups may be optionally substituted with 1 to 3 substituents independently selected from halogen, C1-C6 alkoxy and C1-C6 alkylthio; or a salt or N-oxide thereof.
  • the present invention provides an agrochemical composition comprising a compound of formula (I).
  • Compounds of formula (I) may be used to control phytopathogenic microorganisms.
  • a compound of formula (I), or a composition comprising a compound of formula (I), according to the invention may be applied directly to the phytopathogen, or to the locus of a phytopathogen, in particular to a plant susceptible to attack by phytopathogens.
  • the present invention provides the use of a compound of formula (I), or a composition comprising a compound of formula (I), as described herein to control a phytopathogen.
  • the present invention provides a method of controlling
  • phytopathogens comprising applying a compound of formula (I), or a composition
  • Compounds of formula (I) are particularly effective in the control of phytopathogenic fungi.
  • the present invention provides the use of a compound of formula (I), or a composition comprising a compound of formula (I), as described herein to control phytopathogenic fungi.
  • the present invention provides a method of controlling
  • phytopathogenic fungi comprising applying a compound of formula (I), or a composition comprising a compound of formula (I), as described herein to said phytopathogenic fungi, or to the locus of said phytopathogenic fungi, in particular to a plant susceptible to attack by phytopathogenic fungi.
  • substituents are indicated as being optionally substituted, this means that they may or may not carry one or more identical or different substituents, e.g. one to three substituents. Normally not more than three such optional substituents are present at the same time.
  • substituents are indicated as being optionally substituted, this means that they may or may not carry one or more identical or different substituents, e.g. one to three substituents. Normally not more than three such optional substituents are present at the same time.
  • a group is indicated as being substituted, e.g. alkyl, this includes those groups that are part of other groups, e.g. the alkyl in alkylthio.
  • halogen refers to fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine.
  • Alkyl substituents may be straight-chained or branched. Alkyl on its own or as part of another substituent is, depending upon the number of carbon atoms mentioned, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and the isomers thereof, for example, iso- propyl, iso-butyl, sec-butyl, tert-butyl or iso-amyl.
  • Alkenyl substituents can be in the form of straight or branched chains, and the alkenyl moieties, where appropriate, can be of either the (E)- or (Z)-configuration. Examples are vinyl and allyl.
  • the alkenyl groups are preferably C2-C6, more preferably C2-C 4 and most preferably C2-C3 alkenyl groups.
  • Alkynyl substituents can be in the form of straight or branched chains. Examples are ethynyl and propargyl.
  • the alkynyl groups are preferably C2-C6, more preferably C2-C 4 and most preferably C2-C3 alkynyl groups.
  • Haloalkyl groups may contain one or more identical or different halogen atoms and, for example, may stand for CH 2 CI, CHC , CCI 3 , CH 2 F, CHF 2 , CF 3 , CF3CH2, CH3CF2, CF3CF2 or CCIsCC .
  • Haloalkenyl groups are alkenyl groups, respectively, which are substituted with one or more of the same or different halogen atoms and are, for example, 2,2-difluorovinyl or 1 ,2- dichloro-2-fluoro-vinyl.
  • Haloalkynyl groups are alkynyl groups, respectively, which are substituted with one or more of the same or different halogen atoms and are, for example, 1 -chloro-prop-2-ynyl.
  • Alkoxy means a radical -OR, where R is alkyl, e.g. as defined above.
  • Alkoxy groups include, but are not limited to, methoxy, ethoxy, 1 -methylethoxy, propoxy, butoxy, 1 - methylpropoxy and 2-methylpropoxy.
  • Cyano means a -CN group.
  • Amino means an -NH2 group.
  • Hydroxyl or hydroxy stands for a -OH group.
  • Aryl groups are aromatic ring systems which can be in mono-, bi- or tricyclic form. Examples of such rings include phenyl, naphthyl, anthracenyl, indenyl or phenanthrenyl. Preferred aryl groups are phenyl and naphthyl, phenyl being most preferred. Where an aryl moiety is said to be substituted, the aryl moiety is preferably substituted by one to four substituents, most preferably by one to three substituents.
  • Heterocyclyl groups or heterocyclic rings are non-aromatic ring structures containing up to 10 atoms including one or more (preferably one, two or three) heteroatoms selected from O, S and N.
  • Examples of monocyclic groups include, oxetanyl, 4,5-dihydro-isoxazolyl, thietanyl, pyrrolidinyl, tetrahydrofuranyl, [1 ,3]dioxolanyl, piperidinyl, piperazinyl, [1 ,4]dioxanyl, imidazolidinyl, [1 ,3,5]oxadiazinanyl, hexahydro-pyrimidinyl, [1 ,3,5]triazinanyl and morpholinyl or their oxidised versions such as 1 -oxo-thietanyl and 1 ,1 -dioxo-thietanyl.
  • bicyclic groups examples include 2,3-dihydro-benzofuranyl, benzo[1 ,4]dioxolanyl, benzo[1 ,3]dioxolanyl, chromenyl, and 2,3-dihydro-benzo[1 ,4]dioxinyl.
  • a heterocyclyl moiety is said to be substituted, the heterocyclyl moiety is preferably substituted by one to four substituents, most preferably by one to three substituents.
  • Formula (I) is intended to include all those possible isomeric forms and mixtures thereof.
  • the present invention includes all those possible isomeric forms and mixtures thereof for a compound of formula (I).
  • formula (I) is intended to include all possible tautomers.
  • the present invention includes all possible tautomeric forms for a compound of formula (I).
  • the compounds of formula (I) according to the invention are in free form, in oxidized form as a N-oxide or in salt form, e.g. an agronomically usable salt form.
  • N-oxides are oxidized forms of tertiary amines or oxidized forms of nitrogen containing heteroaromatic compounds. They are described for instance in the book
  • Ri , R2, R3, R 4 , Rs, R6, R7, Rs, R10, R a , Rb, and m are, in any combination thereof, as set out below:
  • Ri and R2 are each independently selected from hydrogen, C1-C6 alkyl and C3-C7 cycloalkyi, in which the alkyl and cycloalkyi groups may be optionally substituted with 1 to 3 halogen atoms; or Ri and R2 together with the carbon atom to which they are attached represent a C3-C6 cycloalkyi group (which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of halogen and C1-C6 alkyl).
  • Ri and R2 are each independently selected from hydrogen and Ci-C 4 alkyl, in which the alkyl group may be optionally substituted with 1 to 3 fluorine atoms; or Ri and R2 together with the carbon atom to which they are attached represent a C3-C6 cycloalkyi group (which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of halogen and C1-C3 alkyl).
  • Ri and R2 are each independently selected from hydrogen and C1-C3 alkyl; or Ri and R2 together with the carbon atom to which they are attached represent a C3-C4 cycloalkyl group.
  • Ri and R2 are each independently selected from hydrogen, CH3, CH2CH3, and (CH2)2CH3; or Ri and R2 together with the carbon atom to which they are attached represent a cyclopropyl or cyclobutyl group.
  • Ri and R2 are each independently selected from hydrogen, CH3, CH2CH3. It is especially most preferred if Ri and R2 are both CH3.
  • R5, R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "TV or "T3" configuration:
  • R5, R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "TV configuration:
  • R7 IS hydrogen, SH, halogen or C1-C6 alkyl.
  • R7 is hydrogen, SH or C1-C3 alkyl.
  • R 7 is hydrogen, SH or methyl.
  • R7 is hydrogen or SH (most especially preferred is hydrogen).
  • each Re independently represents cyano, halogen, C1-C6 alkyl, C1-C6 haloalkyi, C2-C6 alkenyl, C2-C6 alkynyl, C2-C6 haloalkenyl, C3-C6 haloalkynyl, C1-C6 alkylthio, C1-C6 haloalkoxy, C1-C6 haloalkylthio, C3-C7 cycloalkyl, C1-C6 alkoxy, C3-C6 alkenyloxy or Cs- Ce alkynyloxy; m is 0, 1 , 2, 3 or 4; or two adjacent R 8 substituents together with the carbon atoms to which they are attached represent a C5-C7 cycloalkyl group (which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 alkoxy and C1
  • each Re independently represents cyano, halogen, C1-C6 alkyl, C1-C6 haloalkyi, C2-C6 alkynyl, C1-C6 alkylthio, C1-C6 haloalkoxy, C1-C6 haloalkylthio, C3-C7 cycloalkyl, C1-C6 alkoxy, C3-C6 alkenyloxy or C3-C6 alkynyloxy; m is 0, 1 , 2 or 3; or two adjacent Re substituents together with the carbon atoms to which they are attached represent a C5-C6 cycloalkyl group.
  • each Re independently represents cyano, halogen, C1-C3 alkyl, C1-C3 haloalkyi or C3-C4 cycloalkyl; m is 0, 1 or 2.
  • each Re independently represents fluoro, chloro, methyl, ethyl, propyl or isopropyl; m is 0, 1 or 2. Most preferably each Re independently represents fluoro, chloro or methyl; m is 1 or
  • each Rio is independently selected from halogen, CN, C1-C4 alkyl, C1-C4 halogenalkyl, C2-C6 alkenyloxy, C2-C6 alkynyloxy and C3-C4 cycloalkyl.
  • each Rio is independently selected from halogen, cyano, methyl and trifluoromethyl.
  • R a and Rb are each independently selected from hydrogen, halogen, cyano, C1-C6 alkyl, C3-C7 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy and C1-C6 alkylthio, in which the alkyl, cycloalkyl, alkenyl and alkynyl groups may be optionally substituted with 1 to 3 substituents independently selected from halogen, C1-C6 alkoxy and Ci-C 6 alkylthio.
  • a preferred group of compounds according to the invention are those of formula (IA):
  • Ri , R2, R3, R 4 , R7, Rs, R10, R a , Rb and m are as defined for compounds of formula (I), or a salt or N-oxide thereof.
  • Preferred definitions of Ri , R2, R3, R 4 , R7, Rs, R10, R a , Rb and m are as defined for compounds of formula (I).
  • Ri , R2, R3, R 4 , R7, Rs, R10, R a , Rb and m are as defined for compounds of formula (I), or a salt or N-oxide thereof.
  • Preferred definitions of Ri , R2, R3, R 4 , R7, Rs, R10, R a , Rb and m are as defined for compounds of formula (I).
  • Another preferred group of compounds according to the invention are those of formula (IC):
  • Ri, R2, R3, R 4 , R7, Rs, R10, R a , Rb and m are as defined for compounds of formula (I), or a salt or N-oxide thereof.
  • Preferred definitions of Ri, R2, R3, R 4 , R7, Rs, R10, R a , Rb and m are as defined for compounds of formula (I).
  • Ri and R2 are each independently selected from hydrogen, C1-C6 alkyl and C3-C7 cycloalkyl, in which the alkyl and cycloalkyl groups may be optionally substituted with 1 to 3 halogen atoms; or Ri and R2 together with the carbon atom to which they are attached represent a C3-C6 cycloalkyl group (which may be optionally substituted with 1 to 3 substituents independently selected from the group consisting of halogen and C1-C6 alkyl); R3 and R 4 are each independently selected from hydrogen, halogen, hydroxyl, C1-C6 alkyl, C1-C4 alkoxy, C3-C5 cycloalkyl, C2-C6 alkenyl and C2-C6 alkynyl, in which the alkyl, alkoxy, cycloalkyl, alkenyl and alkynyl groups may
  • One group of compounds according to this embodiment are compounds of formula ID-a which are compounds of formula ID wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T1 " configuration:
  • Another group of compounds according to this embodiment are compounds of formula ID-b which are compounds of formula ID wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T2" configuration:
  • Another group of compounds according to this embodiment are compounds of formula ID-c which are compounds of formula ID wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T3" configuration:
  • One group of compounds according to this embodiment are compounds of formula ⁇ -a which are compounds of formula IE wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T1 " configuration:
  • Another group of compounds according to this embodiment are compounds of formula ⁇ -b which are compounds of formula IE wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T2" configuration:
  • Another group of compounds according to this embodiment are compounds of formula lE-c which are compounds of formula IE wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T3" configuration:
  • Another preferred group of compounds according to the invention are those of formula (IF) which are compounds of formula (I) wherein Ri and R2 are each independently selected from hydrogen and C1-C3 alkyl; or Ri and R2 together with the carbon atom to which they are attached represent a C3-C4 cycloalkyl group; R3 and R 4 are each
  • R7 is hydrogen, SH or methyl; each Re independently represents cyano, halogen, C1-C3 alkyl, C1-C3 haloalkyl or C3-C4 cycloalkyl; m is 0, 1 or 2; and each Rio is independently selected from halogen, cyano, methyl and trifluoromethyl; or a salt or N-oxide thereof.
  • One group of compounds according to this embodiment are compounds of formula IF-a which are compounds of formula IF wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T1 " configuration:
  • Another group of compounds according to this embodiment are compounds of formula IF-b which are compounds of formula IF wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T2" configuration:
  • Another group of compounds according to this embodiment are compounds of formula IF-c which are compounds of formula IF wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T3" configuration: T3
  • Ri and R2 are each independently selected from hydrogen, CH3, CH2CH3, and (Chb ⁇ CHs; or Ri and R2 together with the carbon atom to which they are attached represent a cyclopropyl or cyclobutyl group
  • R5 and R6 together with the carbon atoms to which they are attached form a thiophene ring, wherein the thiophene ring may be optionally substituted with one or two R10 groups
  • R7 is hydrogen or SH (preferably hydrogen); each Re independently represents fluoro, chloro, methyl, ethyl, propyl or isopropyl; m is 0, 1 or 2; and each Rio is independently selected from halogen,
  • One group of compounds according to this embodiment are compounds of formula IG-a which are compounds of formula IG wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T1 " configuration:
  • Another group of compounds according to this embodiment are compounds of formula IG-b which are compounds of formula IG wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T2" configuration:
  • Another group of compounds according to this embodiment are compounds of formula IG-c which are compounds of formula IG wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T3" configuration:
  • IH-a which are compounds of formula IH wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T1 " configuration:
  • Another group of compounds according to this embodiment are compounds of formula IH-b which are compounds of formula IH wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T2" configuration:
  • Another group of compounds according to this embodiment are compounds of formula IH-c which are compounds of formula IH wherein R 5 , R6 and the carbon atoms to which these subsitutents are attached represent a thiophene ring with a "T3" configuration:
  • Table A1 provides 238 compounds of formula (l-z) wherein R 5 and R6 form a thiophene ring designated as T1 , R 7 is H and R10 is H and wherein the values of Ri , R2, R3, R 4 , Rs a and Rsb are as defined in Table Z1 below: Table Z1
  • Table A2 provides 238 compounds of formula (l-z) wherein R 5 and R6 form a thiophene ring designated as T2, R 7 is H and R10 is H and wherein the values of Ri , R2, R3, R 4 , Rs a and Rsb are as defined in Table Z1 above.
  • Table A3 provides 238 compounds of formula (l-z) wherein R 5 and R6 form a thiophene ring designated as T3, R7 is H and R10 is H and wherein the values of Ri , R2, R3, R 4 , Rsa and Rsb are as defined in Table Z1 above.
  • Table A4 provides 238 compounds of formula (l-z) wherein R 5 and R6 form a thiophene ring designated as T1 , R 7 is SH and R10 is H and wherein the values of Ri , R2, R3, R 4 , Rsa and Rsb are as defined in Table Z1 above.
  • Table A5 provides 238 compounds of formula (l-z) wherein R 5 and R6 form a thiophene ring designated as T2, R 7 is SH and R10 is H and wherein the values of Ri , R2, R3, R 4 , Rsa and Rsb are as defined in Table Z1 above.
  • Table A6 provides 238 compounds of formula (l-z) wherein R 5 and R6 form a thiophene ring designated as T3, R7 is SH and R10 is H and wherein the values of Ri , R2, R3, R 4 , Rsa and Rsb are as defined in Table Z1 above.
  • Compounds according to the invention may possess any number of benefits including, inter alia, advantageous levels of biological activity for protecting plants against diseases that are caused by fungi or superior properties for use as agrochemical active ingredients (for example, greater biological activity, an advantageous spectrum of activity, an increased safety profile, improved physico-chemical properties, or increased
  • acetylacetonate or copper (I) bromide-1 ,10-phenanthroline complex a nickel catalyst such as Dichloro(1 ,3-bis(diphenylphosphino)propane)nickel or a palladium-based catalyst such as Chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1 ,1 '-biphenyl)[2-(2'-amino-1 ,1 '- biphenyl)]palladium(ll), X-Phos aminobiphenyl palladium chloride precatalyst or [1 ,3-Bis(2,6- diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl)palladium(ll) dichloride in an aprotic solvent such as pyridine, toluene or ⁇ , ⁇ -dimethylformamide while heating.
  • the compounds of formula III wherein Ri , R2, R3, R 4 , Rs and R6 are as defined for compounds of formula (I) and Hal is halogen, preferably chloro or bromo, can be obtained by transformation of a compound of formula IV, wherein Ri , R2, R3, R 4 , Rs and R6 are as defined for compounds of formula (I), with a halogenating reagent, such as phosphorus oxychloride phosphorus oxybromide, thionyl chloride, thionyl bromide or Vilsmeier reagent, neat or in the presence an inert solvent such as dichloromethane at various temperatures ranging from -40 °C to 100 °C. This is shown in Scheme 2.
  • a halogenating reagent such as phosphorus oxychloride phosphorus oxybromide, thionyl chloride, thionyl bromide or Vilsmeier reagent
  • the compounds of formula IV wherein Ri, R2, R3, R 4 , Rs and R6 are as defined for compounds of formula (I), can be obtained by transformation of a compound of formula V, wherein Ri, R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I) and Rg is C1-C6 alkyl, with sodium acetate in acetic acid as described in the literature (Yu. B. Vikharev et al. Pharmaceutical Chemistry Journal, 2005, 39, 405-408). This is shown in Scheme 3.
  • the compounds of formula I II wherein Ri, R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I) and Hal is halogen, preferably chloro or bromo, can be obtained by transformation of a compound of formula V, wherein Ri, R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I) and Rg is C1-C6 alkyl, with a halogenating reagent, such as sulfuryl chloride as described in the literature (Taebo Sim et al.
  • the compounds of formula V wherein Ri, R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I) and Rg is C1-C6 alkyl, can be obtained by transformation of a compound of formula Vl-a, Vl-b or Vl-c, wherein Ri, R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I) and R' is either H or C1-C6 alkyl, with a C1-C6 alkyl thiocyanate under acidic conditions, e.g. with sulfuric acid as described in the literature (Yu. B. Vikharev et al. Pharmaceutical Chemistry Journal, 2005, 39, 405-408). This is shown in Scheme 5.
  • the compounds of formula IV wherein Ri , R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I)
  • Ri3 is C1-C6 alkyl
  • acid conditions e.g. sulfuric acid or trifluoromethane sulfonic acid as described in the literature (Tomohiko Ohwada et al. Journal of Organic Chemistry, 2012, 77, 9313). This is shown in Scheme 6.
  • the compounds of formula IV wherein Ri , R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I), can be obtained by transformation of a compound of formula Vll-a, wherein Ri , R2, R3, R 4 , R5 and R6 are as defined for compounds of formula (I), and Hal is halogen, preferably chloro, bromo, or iodo, utilizing an intramolecular
  • a palladium catalyst such as Dichlorobis(tricyclohexylphosphine)palladium(ll) or Dichlorobis(triphenlphosphine) palladium(ll) and an organic base such as triethyl amine, pyrrolidine or an inorganic base such cesium carbonte or potassium carbonate as reported in the literature (Ruimao Hua et al. Tetrahedron Letters, 2013, 54, 5159-5161 ). This is shown in Scheme 7.
  • DAST diethylaminosulfur trifluoride
  • DFI 2,2-difluoro-1 ,3-dimethyl- imidazolidine
  • a halogenating reagent such as phosphorus oxychloride phosphorus oxybromide, thionyl chloride, thionyl bromide or
  • an oxidizing agent such as 1 ,1 ,1 -triacetoxy-1 ,1 -dihydro-1 ,2-benziodoxol3(1 H)-one
  • the compounds of formula IV-b wherein R3 represents hydrogen, R 4 represents OH and Ri , R2, R5 and R6 are as defined for formula (I), can be obtained by transformation of a compound of formula IV-c, wherein R3 represents hydrogen, R 4 represents Hal, wherein Hal is halogen, preferably chloro or bromo, and Ri , R2, R5 and R6 are as defined for formula (I), under hydrolysis conditions such as heating in a mixture of an organic solvent such as tetrahydrofuran or 1 ,4-dioxane and water in the presence or absence of an inorganic acid such as hydrochloric acid or an inorganic base such as sodium hydrogencarbonate at temperatures ranging from ambient temperature to heating. This is shown in Scheme 12.
  • the compounds of formula IV-c wherein R3 represents hydrogen, R 4 represents Hal, wherein Hal is halogen, preferably chloro or bromo, and Ri, R2, R5 and R6 are as defined for formula (I), can be obtained by transformation of a compound of formula IV-d, wherein R3 and R 4 represent hydrogen and Ri, R2, R5 and R6 are as defined for formula (I), with a halogenating agent such as N-chloro succinimide (NCS), N-bromo succinimide (NBS) or 1 ,3- dibromo-5,5-dimethylhydantoin in the presence of a radical initiator such as benzoyl peroxide or azobisisobutyronitrile (AIBN) as described in the literature (Jahangir et a! Journal of Organic Chemistry, 1989, 54, 2992). This is shown in Scheme 14.
  • a halogenating agent such as N-chloro succinimide (NCS), N-bromo succinimide
  • the compounds of formula IV-e, wherein R3 and R 4 represent Hal, wherein Hal is halogen, preferably chloro or bromo, and Ri, R2, R5 and R6 are as defined for formula (I), can be obtained by transformation of a compound of formula IV-d, wherein R3 and R 4 represent hydrogen and Ri, R2, R5 and R6 are as defined for formula (I), with a halogenating agent such as N-chloro succinimide (NCS), N-bromo succinimide (NBS) or 1 ,3-dibromo-5,5- dimethylhydantoin in the presence of a radical initiator such as benzoyl peroxide or azobisisobutyronitrile (AIBN) as described in the literature (Jahangir et a! Journal of Organic Chemistry, 1989, 54, 2992). This is shown in Scheme 16.
  • a halogenating agent such as N-chloro succinimide (NCS), N-bromo succinimide (
  • the compounds of formula (l-b), wherein R3 and R 4 are fluoro and Ri, R2, R5, R6, R7, Re, and m are as defined for compounds of formula (I), can be obtained by transformation of a compound of formula I I, wherein R 7 , Rs and m are as defined for compounds of formula (I), with a compound of formula ll l-b, wherein Rs and R 4 are fluoro and Ri, R2, R5 and R6 are as defined for formula (I) and Hal is halogen, preferably chloro or bromo, in the presence of a hindered organic base such as triethylamine,
  • a transition metal catalyst such as a copper-based catalyst such as copper (I) acetylacetonate or copper (I) bromide- 1 ,10-phenanthroline complex, a nickel catalyst such as Dichloro(1 ,3- bis(diphenylphosphino)propane)nickel or a palladium-based catalyst such as Chloro(2- dicyclohexylphosphino-2',4',6'-triisopropyl-1 , 1 '-biphenyl)[2-(2'-amino-1 , 1 '- biphenyl)]palladium(l l), X-Phos aminobiphenyl palladium chloride precatalyst or [1 ,3-Bis(2,6- Diisopropylphenyl)imidazol-2-ylidene](3-chloro
  • a transition metal catalyst such as a copper-based catalyst such as copper (I) acetylaceton
  • the compounds of formula ll l-b, wherein R3 and R4 are fluoro and Ri , R2, R5 and R6 are as defined for compounds of formula (I) and Hal is halogen, preferably chloro or bromo, can be obtained by transformation of a compound of formula IV-f, wherein R3 and R 4 are fluoro and Ri , R2, R5 and R6 are as defined for compounds of formula (I), with a halogenating reagent, such as phosphorus oxychloride phosphorus oxybromide, thionyl chloride, thionyl bromide or Vilsmeier reagent neat or in the presence an inert solvent such as
  • the compounds of formula (I), wherein Ri , F3 ⁇ 4, R3, R 4 , R5, R6, R7, Rs, and m are as defined for formula (I), can be obtained by transformation of a compound of formula (l-d), wherein Ri , R2, R3, R 4 , R7, Rs, and m are as defined for formula (I), R5 and R6 are represented as an heterocycle (Het), and Z represents halogen, in the presence of or absence of a base, and in the presence of a coupling reagent and a metal catalyst.
  • the compounds of formula (I), wherein Ri , R2, R3, R 4 , R5, R6, R7, Rs, and m are as defined for formula (I), can be obtained by transformation of a compound of formula (l-e), wherein Ri , R2, R3, R 4 , R5, R6, R7 and m are as defined for formula (I) and Y represents chloro, bromo or iodo in a solvent, in the presence of or absence of a base, and in the presence of a coupling reagent and a metal catalyst.
  • coupling agent there are no particular limitations on the coupling agent, catalyst, solvent and bases, provided it is used in ordinary coupling reactions, such as those described in "Cross-Coupling Reactions: A Practical Guide (Topics in Current Chemistry)", edited by Norio Miyaura und S.L Buchwald (editions Springer), or "Metal-Catalyzed Cross-Coupling Reactions”, edited by Armin de Meijere and Frangois Diederich (editions WILEY-VCH). This is shown in Scheme 21.
  • the compounds of formula (I) wherein Ri , R2, R3, R 4 , R5, R6, R7, Rs, and m are as defined above can be obtained by transformation of another, closely related, compound of formula (I) (or an analogue thereof) using standard synthesis techniques known to the person skilled in the art.
  • Non-exhaustive examples include oxidation reactions, reduction reactions, hydrolysis reactions, coupling reactions, aromatic nucleophilic or electrophilic substitution reactions, nucleophilic substitution reactions, nucleophilic addition reactions, and halogenation reactions.
  • the compounds of formula (I) can be used in the agricultural sector and related fields of use e.g. as active ingredients for controlling plant pests or on non-living materials for control of spoilage microorganisms or organisms potentially harmful to man.
  • the novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and may be used for protecting numerous cultivated plants.
  • the compounds of formula (I) can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.
  • fungicide as used herein means a compound that controls, modifies, or prevents the growth of fungi.
  • fungicidally effective amount means the quantity of such a compound or combination of such compounds that is capable of producing an effect on the growth of fungi. Controlling or modifying effects include all deviation from natural development, such as killing, retardation and the like, and prevention includes barrier or other defensive formation in or on a plant to prevent fungal infection.
  • compounds of formula (I) as dressing agents for the treatment of plant propagation material, e.g., seed, such as fruits, tubers or grains, or plant cuttings (for example rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.
  • the propagation material can be treated with a composition comprising a compound of formula (I) before planting: seed, for example, can be dressed before being sown.
  • the compounds of formula (I) can also be applied to grains (coating), either by impregnating the seeds in a liquid formulation or by coating them with a solid formulation.
  • the composition can also be applied to the planting site when the propagation material is being planted, for example, to the seed furrow during sowing.
  • the invention relates also to such methods of treating plant propagation material and to the plant propagation material so treated.
  • the compounds according to present invention can be used for controlling fungi in related areas, for example in the protection of technical materials, including wood and wood related technical products, in food storage, in hygiene
  • the invention could be used to protect non-living materials from fungal attack, e.g. lumber, wall boards and paint.
  • Compounds of formula (I) and fungicidal compositions containing them may be used to control plant diseases caused by a broad spectrum of fungal plant pathogens. They are effective in controlling a broad spectrum of plant diseases, such as foliar pathogens of ornamental, turf, vegetable, field, cereal, and fruit crops.
  • fungi and fungal vectors of disease as well as phytopathogenic bacteria and viruses, which may be controlled are for example:
  • Absidia corymbifera Alternaria spp, Aphanomyces spp, Ascochyta spp, Aspergillus spp. including A. flavus, A. fumigatus, A. nidulans, A. niger, A. terrus, Aureobasidium spp. including A. pullulans, Blastomyces dermatitidis, Blumeria graminis, Bremia lactucae, Botryosphaeria spp. including B. dothidea, B. obtusa, Botrytis spp. comprising B. cinerea, Candida spp. including C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, C. tropicalis, Cephaloascus fragrans, Ceratocystis spp, Cercospora spp. including C.
  • Coccidioides immitis Cochliobolus spp, Colletotrichum spp. including C. musae, Cryptococcus neoformans, Diaporthe spp, Didymella spp, Drechslera spp, Elsinoe spp,
  • Epidermophyton spp Erwinia amylovora, Erysiphe spp. including E. cichoracearum, Eutypa lata, Fusarium spp. including F. culmorum, F. graminearum, F. langsethiae, F. moniliforme, F. oxysporum, F. proliferatum, F. subglutinans, F.
  • Penicillium spp. including P. digitatum, P. italicum, Petriellidium spp, Peronosclerospora spp. Including P. maydis, P. philippinensis and P. sorghi, Peronospora spp, Phaeosphaeria nodorum, Phakopsora pachyrhizi, Phellinus igniarus, Phialophora spp, Phoma spp,
  • Sphaerotheca macularis Sphaerotheca fusca (Sphaerotheca fuliginea), Sporothorix spp, Stagonospora nodorum, Stemphylium spp,. Stereum hirsutum, Thanatephorus cucumeris, Thielaviopsis basicola, Tilletia spp, Trichoderma spp. including T. harzianum, T.
  • Trichophyton spp Trichophyton spp, Typhula spp, Uncinula necator, Urocystis spp, Ustilago spp,
  • Venturia spp. including V. inaequalis, Verticillium spp, and Xanthomonas spp.
  • compounds of formula (I) and fungicidal compositions containing them may be used to control plant diseases caused by a broad spectrum of fungal plant pathogens in the Basidiomycete, Ascomycete, Oomycete and/or Deuteromycete, Blasocladiomycete, Chrytidiomycete, Glomeromycete and/or Mucoromycete classes.
  • pathogens may include:
  • Oomycetes including Phytophthora diseases such as those caused by Phytophthora capsici, Phytophthora infestans, Phytophthora sojae, Phytophthora fragariae, Phytophthora nicotianae, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora and Phytophthora erythroseptica; Pythium diseases such as those caused by Pythium
  • Ascomycetes including blotch, spot, blast or blight diseases and/or rots for example those caused by Pleosporales such as Stemphylium solani, Stagonospora tainanensis, Spilocaea oleaginea, Setosphaeria turcica, Pyrenochaeta lycoperisici, Pleospora herbarum, Phoma destructiva, Phaeosphaeria herpotrichoides, Phaeocryptocus gaeumannii,
  • Pleosporales such as Stemphylium solani, Stagonospora tainanensis, Spilocaea oleaginea, Setosphaeria turcica, Pyrenochaeta lycoperisici, Pleospora herbarum, Phoma destructiva, Phaeosphaeria herpotrichoides, Phaeocryptocus gaeumannii,
  • Ophiosphaerella graminicola Ophiobolus graminis, Leptosphaeria maculans, Hendersonia creberrima, Helminthosporium triticirepentis, Setosphaeria turcica, Drechslera glycines,
  • Microdochium nivale Monilinia fructicola, Monographella albescens, Monosporascus cannonballus, Naemacyclus spp., Ophiostoma novo-ulmi, Paracoccidioides brasiliensis, Penicillium expansum, Pestalotia rhododendri, Petriellidium spp., Pezicula spp., Phialophora gregata, Phyllachora pomigena, Phymatotrichum omnivora, Physalospora abdita, Plectosporium tabacinum, Polyscytalum pustulans, Pseudopeziza medicaginis,
  • Botryosphaeriales such as Dothiorella aromatica, Diplodia seriata, Guignardia bidwellii, Botrytis cinerea, Botryotinia allii, Botryotinia fabae, Fusicoccum amygdali, Lasiodiplodia theobromae, Macrophoma theicola, Macrophomina phaseolina, Phyllosticta
  • cucurbitacearum cucurbitacearum
  • anthracnoses for example those caused by Glommerelales such as Colletotrichum gloeosporioides, Colletotrichum lagenarium, Colletotrichum gossypii,
  • Gerlachia nivale Gibberella fujikuroi
  • Gibberella zeae Gibberella zeae
  • Gliocladium spp. Myrothecium verrucaria
  • Nectria ramulariae Trichoderma viride
  • Trichothecium roseum Trichothecium roseum
  • Verticillium theobromae Myrothecium verrucaria
  • Basidiomycetes including smuts for example those caused by Ustilaginales such as Ustilaginoidea virens, Ustilago nuda, Ustilago tritici, Ustilago zeae, rusts for example those caused by Pucciniales such as Cerotelium fici, Chrysomyxa arctostaphyli, Coleosporium ipomoeae, Hemileia vastatrix, Puccinia arachidis, Puccinia cacabata, Puccinia graminis, Puccinia recondita, Puccinia sorghi, Puccinia hordei, Puccinia striiformis f.sp.
  • Ustilaginales such as Ustilaginoidea virens, Ustilago nuda, Ustilago tritici, Ustilago zeae
  • rusts for example those caused by Pucciniales such as Cerotelium fici, Chr
  • Puccinia striiformis f.sp. Secalis Pucciniastrum coryli, or Uredinales such as Cronartium ribicola, Gymnosporangium juniperi-viginianae, Melampsora medusae, Phakopsora pachyrhizi, Phragmidium mucronatum, Physopella ampelosidis, Tranzschelia discolor and Uromyces viciae-fabae; and other rots and diseases such as those caused by Cryptococcus spp., Exobasidium vexans, Marasmiellus inoderma, Mycena spp., Sphacelotheca reiliana, Typhuia ishikariensis, Urocystis agropyri, Itersonilia perplexans, Corticium invisum, Laetisaria fuciformis, Waitea circinata, Rhizoctonia solani, Thanet
  • Blastocladiomycetes such as Physoderma maydis. Mucoromycetes, such as Choanephora cucurbitarum.; Mucor spp.; Rhizopus arrhizus,
  • the compounds and compositions comprising them may also have activity against bacteria such as Erwinia amylovora, Erwinia caratovora, Xanthomonas campestris, Pseudomonas syringae, Strptomyces scabies and other related species as well as certain protozoa.
  • target crops and/or useful plants to be protected typically comprise perennial and annual crops, such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries; cereals for example barley, maize (corn), millet, oats, rice, rye, sorghum triticale and wheat; fibre plants for example cotton, flax, hemp, jute and sisal; field crops for example sugar and fodder beet, coffee, hops, mustard, oilseed rape (canola), poppy, sugar cane, sunflower, tea and tobacco; fruit trees for example apple, apricot, avocado, banana, cherry, citrus, nectarine, peach, pear and plum; grasses for example Bermuda grass, bluegrass, bentgrass, centipede grass, fescue, ryegrass, St.
  • perennial and annual crops such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries
  • cereals for example barley, maize (corn), millet, oats
  • Augustine grass and Zoysia grass herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme; legumes for example beans, lentils, peas and soya beans; nuts for example almond, cashew, ground nut, hazelnut, peanut, pecan, pistachio and walnut; palms for example oil palm; ornamentals for example flowers, shrubs and trees; other trees, for example cacao, coconut, olive and rubber; vegetables for example asparagus, aubergine, broccoli, cabbage, carrot, cucumber, garlic, lettuce, marrow, melon, okra, onion, pepper, potato, pumpkin, rhubarb, spinach and tomato; and vines for example grapes.
  • herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme
  • legumes for example beans, lentils, peas and soya beans
  • the useful plants and / or target crops in accordance with the invention include conventional as well as genetically enhanced or engineered varieties such as, for example, insect resistant (e.g. Bt. and VIP varieties) as well as disease resistant, herbicide tolerant (e.g. glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®) and nematode tolerant varieties.
  • suitable genetically enhanced or engineered crop varieties include the Stoneville 5599BR cotton and Stoneville 4892BR cotton varieties.
  • useful plants and/or “target crops” is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering.
  • herbicides like bromoxynil or classes of herbicides
  • EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors
  • GS glutamine synthetase
  • PPO protoporphyrinogen-oxidase
  • crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® , Herculex I® and
  • useful plants and/or target crops is to be understood as including those which naturally are or have been rendered resistant to harmful insects. This includes plants transformed by the use of recombinant DNA techniques, for example, to be capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria. Examples of toxins which can be expressed include ⁇ -endotoxins, vegetative insecticidal proteins (Vip), insecticidal proteins of bacteria colonising nematodes, and toxins produced by scorpions, arachnids, wasps and fungi.
  • Vip vegetative insecticidal proteins
  • insecticidal proteins of bacteria colonising nematodes and toxins produced by scorpions, arachnids, wasps and fungi.
  • An example of a crop that has been modified to express the Bacillus thuringiensis toxin is the Bt maize KnockOut® (Syngenta Seeds).
  • An example of a crop comprising more than one gene that codes for insecticidal resistance and thus expresses more than one toxin is VipCot® (Syngenta Seeds).
  • Crops or seed material thereof can also be resistant to multiple types of pests (so- called stacked transgenic events when created by genetic modification).
  • a plant can have the ability to express an insecticidal protein while at the same time being herbicide tolerant, for example Herculex I® (Dow AgroSciences, Pioneer Hi-Bred International).
  • useful plants and/or target crops is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called “pathogenesis-related proteins” (PRPs, see e.g. EP-A-0 392 225).
  • PRPs pathogenesis-related proteins
  • Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818, and EP-A-0 353 191 .
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Toxins that can be expressed by transgenic plants include, for example, insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as ⁇ -endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
  • insecticidal proteins from Bacillus cereus or Bacillus popilliae such as ⁇ -endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal
  • Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect- specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors;
  • ribosome-inactivating proteins such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP- glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.
  • RIP ribosome-inactivating proteins
  • ⁇ - endotoxins for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701 ).
  • Truncated toxins for example a truncated CrylAb, are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • amino acid replacements preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see
  • Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651 .
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry1 Ac toxin); Bollgard I® (cotton variety that expresses a
  • transgenic crops are:
  • MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
  • NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810.
  • NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylAb toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
  • locus means fields in or on which plants are growing, or where seeds of cultivated plants are sown, or where seed will be placed into the soil. It includes soil, seeds, and seedlings, as well as established vegetation.
  • plants refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits.
  • plant propagation material is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably "plant propagation material” is understood to denote seeds.
  • Pesticidal agents referred to herein using their common name are known, for example, from “The Pesticide Manual”, 15th Ed., British Crop Protection Council 2009.
  • the compounds of formula (I) may be used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they may be conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions or suspensions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
  • Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers.
  • Such carriers are for example described in WO 97/33890.
  • Suspension concentrates are aqueous formulations in which finely divided solid particles of the active compound are suspended. Such formulations include anti-settling agents and dispersing agents and may further include a wetting agent to enhance activity as well an anti-foam and a crystal growth inhibitor. In use, these concentrates are diluted in water and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate.
  • Wettable powders are in the form of finely divided particles which disperse readily in water or other liquid carriers.
  • the particles contain the active ingredient retained in a solid matrix.
  • Typical solid matrices include fuller's earth, kaolin clays, silicas and other readily wet organic or inorganic solids. Wettable powders normally contain from 5% to 95% of the active ingredient plus a small amount of wetting, dispersing or emulsifying agent.
  • Emulsifiable concentrates are homogeneous liquid compositions dispersible in water or other liquid and may consist entirely of the active compound with a liquid or solid emulsifying agent, or may also contain a liquid carrier, such as xylene, heavy aromatic naphthas, isophorone and other non-volatile organic solvents. In use, these concentrates are dispersed in water or other liquid and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate.
  • Granular formulations include both extrudates and relatively coarse particles and are usually applied without dilution to the area in which treatment is required.
  • Typical carriers for granular formulations include sand, fuller's earth, attapulgite clay, bentonite clays, montmorillonite clay, vermiculite, perlite, calcium carbonate, brick, pumice, pyrophyllite, kaolin, dolomite, plaster, wood flour, ground corn cobs, ground peanut hulls, sugars, sodium chloride, sodium sulphate, sodium silicate, sodium borate, magnesia, mica, iron oxide, zinc oxide, titanium oxide, antimony oxide, cryolite, gypsum, diatomaceous earth, calcium sulphate and other organic or inorganic materials which absorb or which can be coated with the active compound.
  • Granular formulations normally contain 5% to 25% of active ingredients which may include surface-active agents such as heavy aromatic naphthas, kerosene and other petroleum fractions, or vegetable oils
  • Dusts are free-flowing admixtures of the active ingredient with finely divided solids such as talc, clays, flours and other organic and inorganic solids which act as dispersants and carriers.
  • Microcapsules are typically droplets or granules of the active ingredient enclosed in an inert porous shell which allows escape of the enclosed material to the surroundings at controlled rates.
  • Encapsulated droplets are typically 1 to 50 microns in diameter.
  • the enclosed liquid typically constitutes 50 to 95% of the weight of the capsule and may include solvent in addition to the active compound.
  • Encapsulated granules are generally porous granules with porous membranes sealing the granule pore openings, retaining the active species in liquid form inside the granule pores.
  • Granules typically range from 1 millimetre to 1 centimetre and preferably 1 to 2 millimetres in diameter. Granules are formed by extrusion, agglomeration or prilling, or are naturally occurring.
  • Shell or membrane materials include natural and synthetic rubbers, cellulosic materials, styrene- butadiene copolymers, polyacrylonitriles, polyacrylates, polyesters, polyamides, polyureas, polyurethanes and starch xanthates.
  • Pressurised sprayers wherein the active ingredient is dispersed in finely-divided form as a result of vaporisation of a low boiling dispersant solvent carrier, may also be used.
  • Suitable agricultural adjuvants and carriers that are useful in formulating the compositions of the invention in the formulation types described above are well known to those skilled in the art.
  • Liquid carriers that can be employed include, for example, water, toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, acetic anhydride, acetonitrile, acetophenone, amyl acetate, 2-butanone, chlorobenzene, cyclohexane, cyclohexanol, alkyl acetates, diacetonalcohol, 1 ,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, ⁇ , ⁇ -dimethyl formamide, dimethyl sulfoxide, 1 ,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glyco
  • Suitable solid carriers include, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, chalk, diatomaxeous earth, lime, calcium carbonate, bentonite clay, fuller's earth, cotton seed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour and lignin.
  • a broad range of surface-active agents are advantageously employed in both said liquid and solid compositions, especially those designed to be diluted with carrier before application. These agents, when used, normally comprise from 0.1 % to 15% by weight of the formulation. They can be anionic, cationic, non-ionic or polymeric in character and can be employed as emulsifying agents, wetting agents, suspending agents or for other purposes.
  • Typical surface active agents include salts of alkyl sulfates, such as
  • alkylarylsulfonate salts such as calcium
  • dodecylbenzenesulfonate alkylphenol-alkylene oxide addition products, such as
  • nonylphenol-C.sub. 18 ethoxylate alcohol-alkylene oxide addition products, such as tridecyl alcohol-C.sub. 16 ethoxylate; soaps, such as sodium stearate; alkylnaphthalenesulfonate salts, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl) sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryl trimethylammonium chloride; polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono and dialkyl phosphate esters.
  • soaps such as sodium stearate
  • alkylnaphthalenesulfonate salts such as sodium
  • adjuvants commonly utilized in agricultural compositions include crystallisation inhibitors, viscosity modifiers, suspending agents, spray droplet modifiers, pigments, antioxidants, foaming agents, anti-foaming agents, light-blocking agents, compatibilizing agents, antifoam agents, sequestering agents, neutralising agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, micronutrients, emollients, lubricants and sticking agents.
  • biocidally active ingredients or compositions may be combined with the compositions of the invention and used in the methods of the invention and applied simultaneously or sequentially with the compositions of the invention. When applied simultaneously, these further active ingredients may be formulated together with the compositions of the invention or mixed in, for example, the spray tank. These further biocidally active ingredients may be fungicides, herbicides, insecticides, bactericides, acaricides, nematicides and/or plant growth regulators.
  • compositions of the invention may also be applied with one or more systemically acquired resistance inducers ("SAR" inducer).
  • SAR inducers are known and described in, for example, United States Patent No. US 6,919,298 and include, for example, salicylates and the commercial SAR inducer acibenzolar-S-methyl.
  • the compounds of formula (I) are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds.
  • further compounds can be e.g. fertilizers or micronutrient donors or other preparations, which influence the growth of plants. They can also be selective herbicides or non-selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
  • the compounds of formula (I) may be used in the form of (fungicidal) compositions for controlling or protecting against phytopathogenic microorganisms, comprising as active ingredient at least one compound of formula (I) or of at least one preferred individual compound as above-defined, in free form or in agrochemically usable salt form, and at least one of the above-mentioned adjuvants.
  • the invention therefore provides a composition, preferably a fungicidal composition, comprising at least one compound formula (I) an agriculturally acceptable carrier and optionally an adjuvant.
  • An agricultural acceptable carrier is for example a carrier that is suitable for agricultural use.
  • Agricultural carriers are well known in the art.
  • said composition may comprise at least one or more pesticidally active compounds, for example an additional fungicidal active ingredient in addition to the compound of formula (I).
  • the compound of formula (I) may be the sole active ingredient of a composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate.
  • An additional active ingredient may, in some cases, result in unexpected synergistic activities.
  • Suitable additional active ingredients include the following acycloamino acid fungicides, aliphatic nitrogen fungicides, amide fungicides, anilide fungicides, antibiotic fungicides, aromatic fungicides, arsenical fungicides, aryl phenyl ketone fungicides, benzamide fungicides, benzanilide fungicides, benzimidazole fungicides, benzothiazole fungicides, botanical fungicides, bridged diphenyl fungicides, carbamate fungicides, carbanilate fungicides, conazole fungicides, copper fungicides, dicarboximide fungicides, , dinitrophenol fungicides, dithiocarbamate fungicides, dithiolane fungicides, furamide fungicides, furanilide fungicides, hydrazide fungicides, imidazole fungicides, mercury fungicides, morpholine
  • Suitable additional active ingredients also include the following: 3- difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxylic acid (9-dichloromethylene-1 ,2,3,4- tetrahydro-1 ,4-methano-naphthalen-5-yl)-amide , 3-difluoromethyl-1 -methyl-1 H-pyrazole-4- carboxylic acid methoxy-[1 -methyl-2-(2,4,6-trichlorophenyl)-ethyl]-amide , 1 -methyl-3- difluoromethyl-1 H-pyrazole-4-carboxylic acid (2-dichloromethylene-3-ethyl-1 -methyl-indan-4- yl)-amide (1072957-71 -1 ), 1 -methyl-3-difluoromethyl-1 H-pyrazole-4-carboxylic acid (4'- methylsulfanyl-biphenyl-2-yl)-amide, 1 -methyl-3-diflu
  • the compounds of the invention may also be used in combination with anthelmintic agents.
  • anthelmintic agents include, compounds selected from the macrocyclic lactone class of compounds such as ivermectin, avermectin, abamectin, emamectin, eprinomectin, doramectin, selamectin, moxidectin, nemadectin and milbemycin derivatives as described in EP- 357460, EP-444964 and EP-594291 .
  • Additional anthelmintic agents include
  • Additional anthelmintic agents include the benzimidazoles such as albendazole, cambendazole, fenbendazole, flubendazole, mebendazole, oxfendazole, oxibendazole, parbendazole, and other members of the class. Additional anthelmintic agents include imidazothiazoles and tetrahydropyrimidines such as tetramisole, levamisole, pyrantel pamoate, oxantel or morantel. Additional anthelmintic agents include flukicides, such as triclabendazole and clorsulon and the cestocides, such as praziquantel and epsiprantel.
  • the compounds of the invention may be used in combination with derivatives and analogues of the paraherquamide/marcfortine class of anthelmintic agents, as well as the antiparasitic oxazolines such as those disclosed in US-5478855, US- 4639771 and DE- 19520936.
  • the compounds of the invention may be used in combination with derivatives and analogues of the general class of dioxomorpholine antiparasitic agents as described in WO- 9615121 and also with anthelmintic active cyclic depsipeptides such as those described in WO-961 1945, WO-9319053, WO- 9325543, EP-626375, EP-382173, WO-9419334, EP- 382173, and EP-503538.
  • the compounds of the invention may be used in combination with other compounds
  • ectoparasiticides for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like;
  • neonicotinoids such as imidacloprid and the like.
  • the compounds of the invention may be used in combination with terpene alkaloids, for example those described in International Patent Application Publication Numbers
  • Organophosphates acephate, azamethiphos, azinphos-ethyl, azinphos- methyl, bromophos, bromophos-ethyl, cadusafos, chlorethoxyphos, chlorpyrifos, chlorfenvinphos, chlormephos, demeton, demeton-S-methyl, demeton-S-methyl sulphone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitrothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, me
  • Carbamates alanycarb, aldicarb, 2-sec-butylphenyl methylcarbamate, benfuracarb, carbaryl, carbofuran, carbosulfan, cloethocarb, ethiofencarb, fenoxycarb, fenthiocarb, furathiocarb, HCN-801 , isoprocarb, indoxacarb, methiocarb, methomyl, 5-methyl-m- cumenylbutyryl(methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, UC-51717.
  • Arthropod growth regulators a) chitin synthesis inhibitors: benzoylureas:
  • antiparasitics acequinocyl, amitraz, AKD-1022, ANS-1 18, azadirachtin, Bacillus thuringiensis, bensultap, bifenazate, binapacryl, bromopropylate, BTG-504, BTG- 505, camphechlor, cartap, chlorobenzilate, chlordimeform, chlorfenapyr, chromafenozide, clothianidine, cyromazine, diacloden, diafenthiuron, DBI-3204, dinactin,
  • Biological agents Bacillus thuringiensis ssp aizawai, kurstaki, Bacillus thuringiensis delta endotoxin, baculovirus, entomopathogenic bacteria, virus and fungi.
  • Bactericides chlortetracycline, oxytetracycline, streptomycin.
  • TX means "one compound selected from the group consisting of the compounds described in Tables A1 -A6 or Table E of the present invention
  • an adjuvant selected from the group of substances consisting of petroleum oils
  • an acaricide selected from the group of substances consisting of 1 ,1 -bis(4-chloro- phenyl)-2-ethoxyethanol (lUPAC name) (910) + TX, 2,4-dichlorophenyl benzenesulfonate (lUPAC/Chemical Abstracts name) (1059) + TX, 2-fluoro-/V-methyl-/V-1 -naphthylacetamide (lUPAC name) (1295) + TX, 4-chlorophenyl phenyl sulfone (lUPAC name) (981 ) + TX, abamectin (1 ) + TX, acequinocyl (3) + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, alpha-cypermethrin (202) + TX, amidithion (870) + T
  • chlorfensulfide (971 ) + TX, chlorfenvinphos (131 ) + TX, chlorobenzilate (975) + TX, chloromebuform (977) + TX, chloromethiuron (978) + TX, chloropropylate (983) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, clofentezine (158) + TX, closantel (alternative name) [CCN] + TX, coumaphos (174) + TX, crotamiton (alternative name) [CCN] + TX, crotoxyphos (1010) + TX, cufraneb (1013) + TX, cyanthoate (1020) + TX, cyflumetofen (CAS Reg.
  • TX isopropyl 0-(methoxyaminothiophosphoryl)salicylate (lUPAC name) (473) + TX, ivermectin (alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, lindane (430) + TX, lufenuron (490) + TX, malathion (492) + TX, malonoben (1254) + TX, mecarbam (502) + TX, mephosfolan (1261 ) + TX, mesulfen (alternative name) [CCN] + TX, methacrifos (1266) + TX, methamidophos (527) + TX, methidathion (529) + TX, methiocarb (530) + TX, methomy
  • polychloroterpenes (traditional name) (1347) + TX, polynactins (alternative name) (653) + TX, proclonol (1350) + TX, profenofos (662) + TX, promacyl (1354) + TX, propargite (671 ) + TX, propetamphos (673) + TX, propoxur (678) + TX, prothidathion (1360) + TX, prothoate (1362) + TX, pyrethrin I (696) + TX, pyrethrin II (696) + TX, pyrethrins (696) + TX, pyridaben (699) + TX, pyridaphenthion (701 ) + TX, pyrimidifen (706) + TX, pyrimitate (1370) + TX, quinalphos (71 1 ) + TX, quintiofos (1381 ) + TX,
  • development code (development code) (1382) + TX, RA-17 (development code) (1383) + TX, rotenone (722) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, sophamide (1402) + TX,
  • spirodiclofen (738) + TX, spiromesifen (739) + TX, SSI-121 (development code) (1404) + TX, sulfiram (alternative name) [CCN] + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulfur (754) + TX, SZI-121 (development code) (757) + TX, tau-fluvalinate (398) + TX, tebufenpyrad (763) + TX, TEPP (1417) + TX, terbam (alternative name) + TX, tetrachlorvinphos (777) + TX, tetradifon (786) + TX, tetranactin (alternative name) (653) + TX, tetrasul (1425) + TX, thiafenox (alternative name) + TX, thiocarboxime (1431
  • an algicide selected from the group of substances consisting of bethoxazin [CCN] + TX, copper dioctanoate (lUPAC name) (170) + TX, copper sulfate (172) + TX, cybutryne [CCN] + TX, dichlone (1052) + TX, dichlorophen (232) + TX, endothal (295) + TX, fentin (347) + TX, hydrated lime [CCN] + TX, nabam (566) + TX, quinoclamine (714) + TX, quinonamid (1379) + TX, simazine (730) + TX, triphenyltin acetate (lUPAC name) (347) and triphenyltin hydroxide (lUPAC name) (347) + TX,
  • an anthelmintic selected from the group of substances consisting of abamectin (1 ) + TX, crufomate (101 1 ) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, eprinomectin (alternative name) [CCN] + TX, ivermectin (alternative name) [CCN] + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, piperazine [CCN] + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) and thiophanate (1435) + TX,
  • an avicide selected from the group of substances consisting of chloralose (127) + TX, endrin (1 122) + TX, fenthion (346) + TX, pyridin-4-amine (lUPAC name) (23) and strychnine (745) + TX,
  • a bactericide selected from the group of substances consisting of 1 -hydroxy-1 /-/- pyridine-2-thione (lUPAC name) (1222) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC name) (748) + TX, 8-hydroxyquinoline sulfate (446) + TX, bronopol (97) + TX, copper dioctanoate (lUPAC name) (170) + TX, copper hydroxide (lUPAC name) (169) + TX, cresol [CCN] + TX, dichlorophen (232) + TX, dipyrithione (1 105) + TX, dodicin (1 1 12) + TX, fenaminosulf (1 144) + TX, formaldehyde (404) + TX, hydrargaphen (alternative name) [CCN] + TX, kasugamycin (483) + TX, kasugamycin hydrochloride
  • a biological agent selected from the group of substances consisting of Adoxophyes orana GV (alternative name) (12) + TX, Agrobacterium radiobacter (alternative name) (13) + TX, Amblyseius spp. (alternative name) (19) + TX, Anagrapha falcifera NPV (alternative name) (28) + TX, Anagrus atomus (alternative name) (29) + TX, Aphelinus abdominalis (alternative name) (33) + TX, Aphidius colemani (alternative name) (34) + TX, Aphidoletes aphidimyza (alternative name) (35) + TX, Autographa californica NPV (alternative name) (38) + TX, Bacillus firmus (alternative name) (48) + TX, Bacillus sphaericus Neide
  • a soil sterilant selected from the group of substances consisting of iodomethane (lUPAC name) (542) and methyl bromide (537) + TX,
  • a chemosterilant selected from the group of substances consisting of apholate [CCN] + TX, bisazir (alternative name) [CCN] + TX, busulfan (alternative name) [CCN] + TX, diflubenzuron (250) + TX, dimatif (alternative name) [CCN] + TX, hemel [CCN] + TX, hempa [CCN] + TX, metepa [CCN] + TX, methiotepa [CCN] + TX, methyl apholate [CCN] + TX, morzid [CCN] + TX, penfluron (alternative name) [CCN] + TX, tepa [CCN] + TX, thiohempa (alternative name) [CCN] + TX, thiotepa (alternative name) [CCN] + TX, tretamine (alternative name) [CCN] and
  • an insect pheromone selected from the group of substances consisting of (£)-dec-5- en-1 -yl acetate with (£)-dec-5-en-1 -ol (lUPAC name) (222) + TX, (£)-tridec-4-en-1 -yl acetate (lUPAC name) (829) + TX, (£)-6-methylhept-2-en-4-ol (lUPAC name) (541 ) + TX, (£,Z)-tetradeca-4,10-dien-1 -yl acetate (lUPAC name) (779) + TX, (Z)-dodec-7-en-1 -yl acetate (lUPAC name) (285) + TX, (Z)-hexadec-l 1 -enal (lUPAC name) (436) + TX, (Z)- hexadec-1 1 -en-1 -yl acetate (lUPAC name) (437) + T
  • an insecticide selected from the group of substances consisting of 1 -dichloro-1 - nitroethane (lUPAC/Chemical Abstracts name) (1058) + TX, 1 ,1 -dichloro-2,2-bis(4- ethylphenyl)ethane (lUPAC name) (1056), + TX, 1 ,2-dichloropropane (lUPAC/Chemical Abstracts name) (1062) + TX, 1 ,2-dichloropropane with 1 ,3-dichloropropene (lUPAC name) (1063) + TX, 1 -bromo-2-chloroethane (lUPAC/Chemical Abstracts name) (916) + TX, 2,2,2-trichloro-1 -(3,4-dichlorophenyl)ethyl acetate (lUPAC name) (1451 ) + TX, 2,2- dichlorovinyl 2-ethylsulfinylethyl
  • hexafluorosilicate (alternative name) [CCN] + TX, barium polysulfide (lUPAC/Chemical Abstracts name) (892) + TX, barthrin [CCN] + TX, Bayer 22/190 (development code) (893) + TX, Bayer 22408 (development code) (894) + TX, bendiocarb (58) + TX, benfuracarb (60) + TX, bensultap (66) + TX, beta-cyfluthrin (194) + TX, beta-cypermethrin (203) + TX, bifenthrin (76) + TX, bioallethrin (78) + TX, bioallethrin S-cyclopentenyl isomer (alternative name) (79) + TX, bioethanomethrin [CCN] + TX, biopermethrin (908) + TX, bioresmethrin (80) + TX
  • chlordecone (963) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorethoxyfos (129) + TX, chlorfenapyr (130) + TX, chlorfenvinphos (131 ) + TX, chlorfluazuron (132) + TX, chlormephos (136) + TX, chloroform [CCN] + TX, chloropicrin (141 ) + TX, chlorphoxim (989) + TX, chlorprazophos (990) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, chromafenozide (150) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, cis-resmethrin (alternative name) + TX,
  • methoxyfenozide (535) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, methylchloroform (alternative name) [CCN] + TX, methylene chloride [CCN] + TX, metofluthrin [CCN] + TX, metolcarb (550) + TX, metoxadiazone (1288) + TX, mevinphos (556) + TX, mexacarbate (1290) + TX, milbemectin (557) + TX, milbemycin oxime (alternative name) [CCN] + TX, mipafox (1293) + TX, mirex (1294) + TX, monocrotophos (561 ) + TX, morphothion (1300) + TX, moxidectin (alternative name) [CCN] + TX, naftalofos (alternative name) [CCN] +
  • development code (development code) (1382) + TX, rafoxanide (alternative name) [CCN] + TX, resmethrin (719) + TX, rotenone (722) + TX, RU 15525 (development code) (723) + TX, RU 25475 (development code) (1386) + TX, ryania (alternative name) (1387) + TX, ryanodine (traditional name) (1387) + TX, sabadilla (alternative name) (725) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, SI-0205 (compound code) + TX, SI-0404 (compound code) + TX, SI-0405 (compound code) + TX, silafluofen (728) + TX, SN 72129
  • trichlormetaphos-3 (alternative name) [CCN] + TX, trichloronat (1452) + TX, trifenofos (1455) + TX, triflumuron (835) + TX, trimethacarb (840) + TX, triprene (1459) + TX, vamidothion (847) + TX, vaniliprole [CCN] + TX, veratridine (alternative name) (725) + TX, veratrine (alternative name) (725) + TX, XMC (853) + TX, xylylcarb (854) + TX, YI-5302
  • a molluscicide selected from the group of substances consisting of bis(tributyltin) oxide (lUPAC name) (913) + TX, bromoacetamide [CCN] + TX, calcium arsenate [CCN] + TX, cloethocarb (999) + TX, copper acetoarsenite [CCN] + TX, copper sulfate (172) + TX, fentin (347) + TX, ferric phosphate (lUPAC name) (352) + TX, metaldehyde (518) + TX, methiocarb (530) + TX, niclosamide (576) + TX, niclosamide-olamine (576) + TX, pentachlorophenol (623) + TX, sodium pentachlorophenoxide (623) + TX, tazimcarb (1412) + TX, thiodicarb (799) + TX, tributyltin oxide (913)
  • a nematicide selected from the group of substances consisting of AKD-3088
  • eprinomectin (alternative name) [CCN] + TX, ethoprophos (312) + TX, ethylene dibromide (316) + TX, fenamiphos (326) + TX, fenpyrad (alternative name) + TX, fensulfothion (1 158) + TX, fosthiazate (408) + TX, fosthietan (1 196) + TX, furfural (alternative name) [CCN] + TX, GY-81 (development code) (423) + TX, heterophos [CCN] + TX,
  • iodomethane (lUPAC name) (542) + TX, isamidofos (1230) + TX, isazofos (1231 ) + TX, ivermectin (alternative name) [CCN] + TX, kinetin (alternative name) (210) + TX, mecarphon (1258) + TX, metam (519) + TX, metam-potassium (alternative name) (519) + TX, metam-sodium (519) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name)
  • a nitrification inhibitor selected from the group of substances consisting of potassium ethylxanthate [CCN] and nitrapyrin (580) + TX,
  • a plant activator selected from the group of substances consisting of acibenzolar (6) + TX, acibenzolar-S-methyl (6) + TX, probenazole (658) and Reynoutria sachalinensis extract (alternative name) (720) + TX,
  • a rodenticide selected from the group of substances consisting of 2-isovalerylindan- 1 ,3-dione (lUPAC name) (1246) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide
  • a synergist selected from the group of substances consisting of 2-(2-butoxyethoxy)- ethyl piperonylate (lUPAC name) (934) + TX, 5-(1 ,3-benzodioxol-5-yl)-3-hexylcyclohex-2- enone (lUPAC name) (903) + TX, farnesol with nerolidol (alternative name) (324) + TX, MB-599 (development code) (498) + TX, MGK 264 (development code) (296) + TX, piperonyl butoxide (649) + TX, piprotal (1343) + TX, propyl isomer (1358) + TX, S421 (development code) (724) + TX, sesamex (1393) + TX, sesasmolin (1394) and sulfoxide (1406) + TX,
  • an animal repellent selected from the group of substances consisting of
  • a virucide selected from the group of substances consisting of imanin (alternative name) [CCN] and ribavirin (alternative name) [CCN] + TX,
  • a wound protectant selected from the group of substances consisting of mercuric oxide (512) + TX, octhilinone (590) and thiophanate-methyl (802) + TX, and biologically active compounds selected from the group consisting of azaconazole (60207-31 -0] + TX, bitertanol [70585-36-3] + TX, bromuconazole [1 16255-48-2] + TX,
  • microbials including: Acinetobacter Iwoffii + TX, Acremonium alternatum + TX + TX, Acremonium cephalosporium + TX + TX, Acremonium diospyri + TX, Acremonium
  • obclavatum + TX Adoxophyes orana granulovirus (AdoxGV) (Capex®) + TX, Agrobacterium radiobacter strain K84 (Galltrol-A®) + TX, Alternaria alternate + TX, Alternaria cassia + TX, Alternaria destruens (Smolder®) + TX, Ampelomyces quisqualis (AQ10®) + TX, Aspergillus flavus AF36 (AF36®) + TX, Aspergillus flavus NRRL 21882 (Aflaguard®) + TX, Aspergillus spp.
  • AdoxGV Adoxophyes orana granulovirus
  • Bacillus subtilis strain AQ178 + TX Bacillus subtilis strain QST 713 (CEASE® + TX, Serenade® + TX, Rhapsody®) + TX, Bacillus subtilis strain QST 714 (JAZZ®) + TX, Bacillus subtilis strain AQ153 + TX, Bacillus subtilis strain AQ743 + TX, Bacillus subtilis strain QST3002 + TX, Bacillus subtilis strain QST3004 + TX, Bacillus subtilis var.
  • amyloliquefaciens strain FZB24 (Taegro® + TX, Rhizopro®) + TX, Bacillus thuringiensis Cry 2Ae + TX, Bacillus thuringiensis Cry1 Ab + TX, Bacillus thuringiensis aizawai GC 91 (Agree®) + TX, Bacillus thuringiensis israelensis (BMP123® + TX, Aquabac® + TX, VectoBac®) + TX, Bacillus thuringiensis kurstaki (Javelin® + TX, Deliver® + TX, CryMax® + TX, Bonide® + TX, Scutella WP® + TX, Turilav WP ® + TX, Astuto® + TX, Dipel WP® + TX, Biobit® + TX, Foray®) + TX, Bacillus thuringiensis kurstaki BMP 123 (Baritone
  • aizawai (XenTari® + TX, DiPel®) + TX, bacteria spp. (GROWMEND® + TX, GROWSWEET® + TX, Shootup®) + TX, bacteriophage of Clavipacter michiganensis (AgriPhage®) + TX, Bakflor® + TX, Beauveria bassiana (Beaugenic® + TX, Brocaril WP®) + TX, Beauveria bassiana GHA (Mycotrol ES® + TX, Mycotrol O® + TX, BotaniGuard®) + TX, Beauveria brongniartii (Engerhngspilz® + TX, Schweizer Beauveria® + TX, Melocont®) + TX, Beauveria spp.
  • TX Botrytis cineria + TX, Bradyrhizobium japonicum (Terra Max®) + TX, Brevibacillus brevis + TX, Bacillus thuringiensis tenebrionis (Novodor®) + TX, BtBooster + TX, Burkholderia cepacia (Deny® + TX, Intercept® + TX, Blue Circle®) + TX, Burkholderia gladii + TX, Burkholderia gladioli + TX, Burkholderia spp.
  • TX Canadian thistle fungus (CBH Canadian Bioherbicide®) + TX, Candida butyri + TX, Candida famata + TX, Candida fructus + TX, Candida glabrata + TX, Candida guilliermondii + TX, Candida melibiosica + TX, Candida oleophila strain O + TX, Candida parapsilosis + TX, Candida pelliculosa + TX, Candida pulcherrima + TX, Candida reuêtii + TX, Candida saitoana (Bio-Coat® + TX, Biocure®) + TX, Candida sake + TX, Candida spp.
  • Clonostachys rosea (EndoFine®) + TX, Colletotrichum acutatum + TX, Coniothyrium minitans (Cotans WG®) + TX, Coniothyrium spp. + TX, Cryptococcus albidus
  • Penicillium griseofulvum + TX Penicillium purpurogenum + TX, Penicillium spp. + TX, Penicillium viridicatum + TX, Phlebiopsis gigantean (Rotstop®) + TX, phosphate solubilizing bacteria (Phosphomeal®) + TX, Phytophthora cryptogea + TX, Phytophthora palmivora (Devine®) + TX, Pichia anomala + TX, Pichia guilermondii + TX, Pichia membranaefaciens + TX, Pichia onychis + TX, Pichia stipites + TX, Pseudomonas aeruginosa + TX,
  • Pseudomonas aureofasciens Spot-Less Biofungicide® + TX
  • Pseudomonas cepacia + TX Pseudomonas chlororaphis (AtEze®) + TX
  • Pseudomonas corrugate + TX Pseudomonas fluorescens strain A506 (BlightBan A506®) + TX
  • Pseudomonas putida + TX Pseudomonas reactans + TX, Pseudomonas spp.
  • Sclerotinia minor SARRITOR® + TX, Scytalidium spp. + TX, Scytalidium uredinicola + TX, Spodoptera exigua nuclear polyhedrosis virus (Spod-X® + TX, Spexit®) + TX, Serratia marcescens + TX, Serratia plymuthica + TX, Serratia spp.
  • Trichoderma asperellum T34 Biocontrol®
  • Trichoderma gamsii TX
  • Trichoderma atroviride Plantmate®
  • Trichoderma harzianum rifai Mycostar®
  • Trichoderma harzianum T-22 Trianum-P® + TX, PlantShield HC® + TX, RootShield® + TX, Trianum-G®) + TX, Trichoderma harzianum T-39 (Trichodex®) + TX, Trichoderma inhamatum + TX, Trichoderma koningii + TX, Trichoderma spp.
  • LC 52 (Sentinel®) + TX, Trichoderma lignorum + TX, Trichoderma longibrachiatum + TX, Trichoderma polysporum (Binab T®) + TX, Trichoderma taxi + TX, Trichoderma virens + TX, Trichoderma virens (formerly Gliocladium virens GL-21 ) (SoilGuard®) + TX, Trichoderma viride + TX,
  • Trichoderma viride strain ICC 080 (Remedier®) + TX
  • Plant extracts including: pine oil (Retenol®) + TX, azadirachtin (Plasma Neem Oil® + TX, AzaGuard® + TX, MeemAzal® + TX, Molt-X® + TX, Botanical IGR (Neemazad® + TX, Neemix®) + TX, canola oil (Lilly Miller Vegol®) + TX, Chenopodium ambrosioides near ambrosioides (Requiem®) + TX, Chrysanthemum extract (Crisant®) + TX, extract of neem oil (Trilogy®) + TX, essentials oils of Labiatae (Botania®) + TX, extracts of clove rosemary peppermint and thyme oil (Garden insect killer®) + TX, Glycinebetaine (Greenstim®) + TX, garlic + TX, lemongrass oil (Green Match®) + TX, neem oil + T
  • pheromones including: blackheaded fireworm pheromone (3M Sprayable
  • Sprayable pheromone® + TX, Entostat powder (extract from palm tree) (Exosex CM®) + TX, (E + ⁇ , ⁇ + TX,Z)-3 + TX,8 + TX,1 1 Tetradecatrienyl acetate + TX, (Z + ⁇ , ⁇ + TX,E)-7 + TX,1 1 + TX,13-Hexadecatrienal + TX, (E + TX,Z)-7 + TX,9-Dodecadien-1 -yl acetate + TX, 2-Methyl-1 -butanol + TX, Calcium acetate + TX, Scenturion® + TX, Biolure® + TX, Check- Mate® + TX, Lavandulyl senecioate; and
  • Macrobials including: Aphelinus abdominalis + TX, Aphidius ervi (Aphelinus- System®) + TX, Acerophagus papaya + TX, Adalia bipunctata (Adalia-System®) + TX, Adalia bipunctata (Adaline®) + TX, Adalia bipunctata (Aphidalia®) + TX, Ageniaspis citricola + TX, Ageniaspis fuscicollis + TX, Amblyseius andersoni (Anderline® + TX, Andersoni- System®) + TX, Amblyseius californicus (Amblyline® + TX, Spical®) + TX, Amblyseius cucumeris (Thripex® + TX, Bugline cucumeris®) + TX, Amblyseius fallacis (Fallacis®) + TX, Amblyseius swirskii (Bugline
  • TX Bombus terrestris (Natupol Beehive®) + TX, Bombus terrestris (Beeline® + TX, Tripol®) + TX, Cephalonomia stephanoderis + TX, Chilocorus nigritus + TX,
  • Chrysoperla carnea (Chrysoline®) + TX
  • Chrysoperla carnea (Chrysopa®) + TX
  • Chrysoperla rufilabris + TX Cirrospilus ingenuus + TX
  • Cirrospilus quadristriatus Cirrostichus phyllocnistoides + TX
  • Closterocerus chamaeleon + TX Closterocerus spp. + TX
  • Coccidoxenoides perminutus Plantopar® + TX, Coccophagus cowperi + TX, Coccophagus lycimnia + TX, Cotesia flavipes + TX, Cotesia plutellae + TX, Cryptolaemus montrouzieri (Cryptobug® + TX, Cryptoline®) + TX, Cybocephalus nipponicus + TX, Dacnusa sibirica + TX, Dacnusa sibirica (Minusa®) + TX, Diglyphus isaea (Diminex®) + TX, Delphastus catalinae (Delphastus®) + TX, Delphastus pusillus + TX, Diachasmimorpha krausii + TX, Diachasmimorpha longicaudata + TX, Diaparsis jucunda + TX, Diaphorencyrtus aligarhensis + TX,
  • TX Steinernematid spp. (Guardian Nematodes®) + TX, Stethorus punctillum (Stethorus®) + TX, Tamarixia radiate + TX, Tetrastichus setifer + TX, Thripobius semiluteus + TX, Torymus sinensis + TX, Trichogramma brassicae (Tricholine b®) + TX, Trichogramma brassicae (Tricho-Strip®) + TX, Trichogramma evanescens + TX, Trichogramma minutum + TX, Trichogramma ostriniae + TX, Trichogramma platneri + TX, Trichogramma pretiosum + TX, Xanthopimpla stemmator, and
  • Nucleopolyhedrovirus + TX Heliothis punctigera Nucleopolyhedrovirus + TX, Helicoverpa zea Nucleopolyhedrovirus + TX, Spodoptera frugiperda Nucleopolyhedrovirus + TX, Plutella xylostella Nucleopolyhedrovirus + TX, p-cymene + TX, Pyflubumide + TX, Pyrafluprole + TX, QRD 420 + TX, QRD 452 + TX, QRD 460 + TX, Terpenoid blends + TX, Terpenoids + TX, Tetraniliprole + TX, and oterpinene + TX; or an active substance referenced by a code + TX, such as code AE 1887196 (BSC- BX60309) + TX, code NNI-0745 GR + TX, code IKI-3106 + TX, code JT-L
  • pyrapropoyne + TX florylpicoxamid + TX, metyltetraprole + TX, ipflufenoquin + TX, pyridachlometyl + TX or chlopyridiflu + TX, tetrachlorantraniliprole + TX, tetrachloraniliprole + TX, Tyclopyrazoflor + TX, flupyrimin + TX or pyrifluramide + TX, benzpyrimoxan + TX, Benzosufyl + TX or oxazosulfyl + TX, etpyrafen + TX, acynonapyr + TX or pyrinonafen + TX, oxotrione + TX, bixlozone + TX or clofendizone + TX or dicloroxizone + TX, cyclopyranil + TX or pyrazocyclonil + TX
  • the active ingredient mixture of the compounds of formula I selected from Tables A1 - A6 or Table E with active ingredients described above comprises a compound selected from Tables A1 -A6 or Table E and an active ingredient as described above preferably in a mixing ratio of from 100:1 to 1 :6000, especially from 50:1 to 1 :50, more especially in a ratio of from 20:1 to 1 :20, even more especially from 10:1 to 1 :10, very especially from 5:1 and 1 :5, special preference being given to a ratio of from 2:1 to 1 :2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1 :1 , or 5:1 , or 5:2, or 5:3, or 5:4, or 4:1 , or 4:2, or 4:3, or 3:1 , or 3:2, or 2:1 , or 1 :5, or 2:5, or 3:5, or 4:5, or 1 :4, or 2:4, or 3:4, or 1 :3, or 2:3, or 1 :2, or 1
  • the mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment
  • compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
  • auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides
  • compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • Another aspect of invention is related to the use of a compound of formula (I) or of a preferred individual compound as above-defined, of a composition comprising at least one compound of formula (I) or at least one preferred individual compound as above-defined, or of a fungicidal or insecticidal mixture comprising at least one compound of formula (I) or at least one preferred individual compound as above-defined, in admixture with other fungicides or insecticides as described above, for controlling or preventing infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
  • useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
  • a further aspect of invention is related to a method of controlling or preventing an infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, which comprises the application of a compound of formula (I) or of a preferred individual compound as above-defined as active ingredient to the plants, to parts of the plants or to the locus thereof, to the propagation material thereof, or to any part of the non-living materials.
  • plants e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms
  • a compound of formula (I) or of a preferred individual compound as above-defined as active ingredient to the plants,
  • Controlling or preventing means reducing infestation by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, to such a level that an improvement is demonstrated.
  • a preferred method of controlling or preventing an infestation of crop plants by phytopathogenic microorganisms, especially fungal organisms, or insects which comprises the application of a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application.
  • the frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen or insect.
  • the compounds of formula (I) can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granular form (soil application). In crops of water rice such granulates can be applied to the flooded rice field.
  • the compounds of formula (I) may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.
  • a formulation e.g. a composition containing the compound of formula (I), and, if desired, a solid or liquid adjuvant or monomers for encapsulating the compound of formula (I), may be prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • extenders for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • compositions that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances - and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention.
  • Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient.
  • the rate of application per hectare is preferably 1 g to 2000 g of active ingredient per hectare, more preferably 10 to 1000 g/ha, most preferably 10 to 600 g/ha.
  • convenient dosages are from 10mg to 1 g of active substance per kg of seeds.
  • rates of 0.001 to 50 g of a compound of formula (I) per kg of seed preferably from 0.01 to 10g per kg of seed are generally sufficient.
  • composition comprising a compound of formula (I) according to the present invention is applied either preventative, meaning prior to disease development or curative, meaning after disease development.
  • compositions of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK
  • compositions may be produced in conventional manner, e.g. by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects).
  • appropriate formulation inerts diiluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects.
  • conventional slow release formulations may be employed where long lasting efficacy is intended.
  • Particularly formulations to be applied in spraying forms such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g.
  • a seed dressing formulation is applied in a manner known per se to the seeds employing the combination of the invention and a diluent in suitable seed dressing formulation form, e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • suitable seed dressing formulation form e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • seed dressing formulations are known in the art.
  • Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
  • the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of formula (I) together with component (B) and (C), and optionally other active agents, particularly microbiocides or conservatives or the like.
  • Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent.
  • Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
  • LC/MS Liquid Chromatography Mass Spectroscopy and the description of the apparatus and the methods are:
  • Extractor 2.00 V
  • Source Temperature 150°C
  • Desolvation Temperature 350°C
  • Cone Gas Flow 0 L/Hr
  • Desolvation Gas Flow 650 L/Hr
  • Mass range 100 to 900 Da
  • an Acquity UPLC from Waters Binary pump, heated column compartment and diode-array detector.
  • Solvent degasser binary pump, heated column compartment and diode-array detector.
  • Method H Spectra were recorded on a Mass Spectrometer (ACQUITY UPLC) from Waters (SQD, SQDII or ZQ Single quadrupole mass spectrometer) equipped with an electrospray source (Polarity: positive or negative ions, Capillary: 3.00 kV, Cone range: 30-60 V, Extractor: 2.00 V, Source Temperature: 150°C, Desolvation Temperature: 350°C, Cone Gas Flow: 0 L/Hr, Desolvation Gas Flow: 650 L/Hr, Mass range: 100 to 900 Da) and an Acquity UPLC from Waters: Binary pump, heated column compartment and diode-array detector.
  • ACQUITY UPLC Waters
  • Solvent degasser binary pump, heated column compartment and diode-array detector.
  • Wettable powders a) b) c) active ingredient [compound of formula (I)] 25 % 50 % 75 % sodium lignosulfonate 5 % 5 %
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
  • Powders for drv seed treatment a) b) c) active ingredient [compound of formula (I)] 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 % -
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • active ingredient [compound of formula (I)] 10 % octylphenol polyethylene glycol ether 3 %
  • Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
  • Active ingredient [compound of formula (I)] 5 % 6 % 4 % talcum 95 %
  • Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • the active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • polyethylene glycol (mol. wt. 200) 3 %
  • the finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner. Suspension concentrate
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • active ingredient 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
  • Silicone oil (in the form of a 75 % emulsion in water) 0.2 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • 28 parts of a combination of the compound of formula (I) are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate- mixture (8:1 ).
  • This mixture is emulsified in a mixture of 1 .2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51.6 parts of water until the desired particle size is achieved.
  • To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • Example 1 This example illustrates the preparation of 4-(4,5-dimethylbenzimidazol-1 -yl)-7,7- difluoro-6,6-dimethyl-thieno[3,2-c]pyridine.
  • Step 1 Preparation of 4-chloro-6,6-dimethyl-thieno[3,2-c]pyridin-7-one
  • Step 2 Preparation of 4-(4,5-dimethylbenzimidazol-1 -yl)-6,6-dimethyl-thieno[3,2-c]pyridin-7- one
  • 4-chloro-6,6-dimethyl-thieno[3,2-c]pyridin-7-one (0.47 mmol, 100 mg) in N,N- dimethylformamide (1 .87 ml) were added 2,6-lutidine (0.98 mmol, 0.12 ml, 2.1 equiv.) and 4,5-dimethyl benzimidazole (0.70 mmol, 103 mg, 1.5 equiv.).
  • the resulting yellow solution was stirred at 90 °C for 16 h.
  • reaction was quenched by pouring into an aqueous saturated sodium hydrogenocarbonate solution.
  • aqueous phase was extracted twice with ethyl acetate.
  • the combined organic phases were washed twice with water then with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 3 Preparation of 4-(4,5-dimethylbenzimidazol-1 -yl)-7,7-difluoro-6,6-dimethyl- thieno[3,2-c]pyridine
  • Botryotinia fuckeliana Botryotis cinerea I liquid culture (Gray mould)
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (Vogels broth). After placing a (DMSO) solution of test compound into a microtiter plate (96- well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24°C and the inhibition of growth is determined photometrically 3-4 days after application.
  • DMSO fetal sulfate
  • Mycelial fragments of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores iss added. The test plates are incubated at 24°C and the inhibition of growth is determined photometrically 4-5 days after application.
  • nutrient broth PDB potato dextrose broth
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24°C and the inhibition of growth is measured photometrically 3-4 days after application.
  • nutrient broth PDB potato dextrose broth
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24°C and the inhibition of growth is determined photometrically 4- 5 days after application.
  • nutrient broth PDB potato dextrose broth
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24°C and the inhibition of growth is determined photometrically 4- 5 days after application.
  • nutrient broth PDB potato dextrose broth
  • Rice leaf segments cv. Ballila are placed on agar in a multiwell plate (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf segments are inoculated with a spore suspension of the fungus 2 days after application.
  • the inoculated leaf segments are incubated at 22°C and 80% r.h. under a light regime of 24 h darkness followed by 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (5 - 7 days after application).
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
  • nutrient broth PDB potato dextrose broth
  • Wheat spikelets cv. Monsun are placed on agar in multiwell plates (24-well format) and sprayed with the formulated test compound diluted in water.
  • the spikelets are inoculated with a spore suspension of the fungus 1 day after application.
  • the inoculated spikelets are incubated at 20 °C and 60% rh under a light regime of 72 h semi darkness followed by 12 h light / 12 h darkness in a climate chamber and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears on untreated check spikelets (6 - 8 days after application).
  • Barley leaf segments cv. Hasso are placed on agar in a multiwell plate (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf segmens are inoculated with a spore suspension of the fungus 2 days after application.
  • the inoculated leaf segments are incubated at 20 °C and 65% rh under a light regime of 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (5 - 7 days after application).
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (Vogels broth). After placing a (DMSO) solution of test compound into a microtiter plate (96- well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
  • DMSO fetal sulfate
  • Mycelia fragments of a newly grown liquid culture of the fungus are directly mixed into nutrient broth (Vogels broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format) the nutrient broth containing the fungal material is added. The test plates are incubated at 24 °C and the inhibition of growth is determined

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne des composés représentés par la formule (I), dans laquelle les substituants sont tels que définis dans la revendication 1. La présente invention concerne en outre, des compositions agrochimiques comprenant les composés de formule (I), la préparation de ces compositions et l'utilisation des composés ou des compositions dans le domaine agricole ou horticole pour combattre, prévenir ou contrôler l'infestation de plantes, de cultures vivrières récoltées, de semences ou de matières non vivantes par des micro-organismes phytopathogènes, en particulier par des champignons.
PCT/EP2018/061470 2017-05-12 2018-05-04 Dérivés hétérobicycliques microbiocides WO2018206419A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17170915.7 2017-05-12
EP17170915 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018206419A1 true WO2018206419A1 (fr) 2018-11-15

Family

ID=58707423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/061470 WO2018206419A1 (fr) 2017-05-12 2018-05-04 Dérivés hétérobicycliques microbiocides

Country Status (1)

Country Link
WO (1) WO2018206419A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342147A (zh) * 2020-11-12 2021-02-09 兰州理工大学 一株能拮抗多种病原菌的季也蒙毕赤酵母菌株及其应用
CN114342941A (zh) * 2022-01-19 2022-04-15 河南农业职业学院 一种防治芍药病虫害的组合物

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0353191A2 (fr) 1988-07-29 1990-01-31 Ciba-Geigy Ag Séquences d'ADN codant des polypeptides avec activité béta-1,3-glucanase
EP0357460A2 (fr) 1988-09-02 1990-03-07 Sankyo Company Limited Dérivés de la milbémycine, leur préparation et leur utilisation
EP0367474A1 (fr) 1988-11-01 1990-05-09 Mycogen Corporation Souche de bacillus thuringiensis appelée b.t. ps81gg, active contre les lépidoptères nuisibles et gène codant une toxine active contre les lépidoptères.
EP0374753A2 (fr) 1988-12-19 1990-06-27 American Cyanamid Company Toxines insecticides, gènes les codant, anticorps les liant, ainsi que cellules végétales et plantes transgéniques exprimant ces toxines
EP0382173A2 (fr) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. Substance PF 1022, procédé pour sa préparation et composition anthelmintique contenant cette substance
EP0392225A2 (fr) 1989-03-24 1990-10-17 Ciba-Geigy Ag Plantes transgéniques résistantes aux maladies
WO1990013651A1 (fr) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Genes bacteriens
EP0401979A2 (fr) 1989-05-18 1990-12-12 Mycogen Corporation Souches de bacillus thuringiensis actives contre les lépidoptères nuisibles, et gènes codant pour des toxines actives contre les lépidoptères
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0427529A1 (fr) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Lectines larvicides, et résistance induite des plantes aux insectes
EP0444964A1 (fr) 1990-03-01 1991-09-04 Sankyo Company Limited Dérivés d'éthers milbémycine, leur préparation et leur utilisation comme anthelmintiques
EP0451878A1 (fr) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modification de plantes par techniques de génie génétique pour combattre ou contrôler les insectes
EP0503538A1 (fr) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Composition médicale contenant un dépepsipeptide cyclique ayant une activité anthelminthique
WO1993007278A1 (fr) 1991-10-04 1993-04-15 Ciba-Geigy Ag Sequence d'adn synthetique ayant une action insecticide accrue dans le mais
WO1993019053A1 (fr) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Derive de depsipeptide, production et utilisation
WO1993025543A2 (fr) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines et derives d'enniatines utilises dans la lutte contre les endoparasites
EP0594291A1 (fr) 1992-09-01 1994-04-27 Sankyo Company Limited Procédés pour la préparation de dérivés des milbémycines ayant un groupe d'éther sur la position 13
WO1994015944A1 (fr) 1993-01-18 1994-07-21 Pfizer Limited Nouveaux agents antiparasitaires apparentes aux milbemycines et aux avermectines
WO1994019334A1 (fr) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Derive du pf 1022 utilise comme depsipeptide cyclqiue
EP0626375A1 (fr) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides ayant une activité endoparasiticide
WO1995019363A1 (fr) 1994-01-14 1995-07-20 Pfizer Inc. COMPOSéS ANTIPARASITAIRES A BASE DE PYRROLOBENZOXAZINE
WO1995022552A1 (fr) 1994-02-16 1995-08-24 Pfizer Limited Agents antiparasitaires
WO1995033818A2 (fr) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes pour la synthese des substances antipathogenes
WO1995034656A1 (fr) 1994-06-10 1995-12-21 Ciba-Geigy Ag Nouveaux genes du bacillus thuringiensis codant pour des toxines actives contre les lepidopteres
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1996011945A2 (fr) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Procede de sulfonylation, de sulfenylation et de phosphorylation de depsipeptides cycliques
WO1996015121A1 (fr) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Utilisation de dioxomorpholines pour lutter contre les endoparasites, nouvelles dioxomorpholines et leur procede de production
DE19520936A1 (de) 1995-06-08 1996-12-12 Bayer Ag Ektoparasitizide Mittel
WO1997033890A1 (fr) 1996-03-11 1997-09-18 Novartis Ag Derives de pyrimidine-4-one utilises comme pesticide
WO2002015701A2 (fr) 2000-08-25 2002-02-28 Syngenta Participations Ag Nouvelles toxines insecticides derivees de proteines cristallines insecticides de $i(bacillus thuringiensis)
WO2003018810A2 (fr) 2001-08-31 2003-03-06 Syngenta Participations Ag Toxines cry3a modifiees et sequences d'acides nucleiques les codant
WO2003052073A2 (fr) 2001-12-17 2003-06-26 Syngenta Participations Ag Nouvel evenement du mais
WO2004072086A2 (fr) 2003-02-14 2004-08-26 Pfizer Limited Terpene alcaloides antiparasitiques
US6919298B2 (en) 2002-04-04 2005-07-19 Valent Biosciences Corporation Enhanced herbicide composition
WO2005077934A1 (fr) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci
WO2006087343A1 (fr) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Anilides d'acide carboxylique pyrazole, procedes de production associes et agents les contenant pour la lutte antifongique
WO2007026965A1 (fr) 2005-09-02 2007-03-08 Nissan Chemical Industries, Ltd. Composé de benzamide à substitution isoxazoline et agent de lutte contre les organismes nuisibles
WO2007048556A1 (fr) 2005-10-25 2007-05-03 Syngenta Participations Ag Dérivés d'amides hétérocycliques utiles en tant que microbiocides
WO2010060231A1 (fr) 2008-11-25 2010-06-03 Qin Zhaohai Aminonitroguanidines condensées, leur synthèse et leur emploi en tant qu'insecticides botaniques
WO2012092115A1 (fr) 2010-12-29 2012-07-05 E. I. Du Pont De Nemours And Company Pesticides à base pyrido[1,2-a]pyrimidines mésoioniques
WO2013047749A1 (fr) 2011-09-29 2013-04-04 三井化学アグロ株式会社 Procédé de fabrication de dérivé de 4,4-difluoro-3,4-dihydroisoquinoléine
WO2016156085A1 (fr) 2015-03-27 2016-10-06 Syngenta Participations Ag Dérivés hétérobicycliques microbiocides
WO2016156129A1 (fr) 2015-04-02 2016-10-06 Basf Se Composés de quinoléine

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0451878A1 (fr) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modification de plantes par techniques de génie génétique pour combattre ou contrôler les insectes
EP0353191A2 (fr) 1988-07-29 1990-01-31 Ciba-Geigy Ag Séquences d'ADN codant des polypeptides avec activité béta-1,3-glucanase
EP0357460A2 (fr) 1988-09-02 1990-03-07 Sankyo Company Limited Dérivés de la milbémycine, leur préparation et leur utilisation
EP0367474A1 (fr) 1988-11-01 1990-05-09 Mycogen Corporation Souche de bacillus thuringiensis appelée b.t. ps81gg, active contre les lépidoptères nuisibles et gène codant une toxine active contre les lépidoptères.
EP0374753A2 (fr) 1988-12-19 1990-06-27 American Cyanamid Company Toxines insecticides, gènes les codant, anticorps les liant, ainsi que cellules végétales et plantes transgéniques exprimant ces toxines
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0382173A2 (fr) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. Substance PF 1022, procédé pour sa préparation et composition anthelmintique contenant cette substance
EP0392225A2 (fr) 1989-03-24 1990-10-17 Ciba-Geigy Ag Plantes transgéniques résistantes aux maladies
WO1990013651A1 (fr) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Genes bacteriens
EP0401979A2 (fr) 1989-05-18 1990-12-12 Mycogen Corporation Souches de bacillus thuringiensis actives contre les lépidoptères nuisibles, et gènes codant pour des toxines actives contre les lépidoptères
EP0427529A1 (fr) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Lectines larvicides, et résistance induite des plantes aux insectes
EP0444964A1 (fr) 1990-03-01 1991-09-04 Sankyo Company Limited Dérivés d'éthers milbémycine, leur préparation et leur utilisation comme anthelmintiques
EP0503538A1 (fr) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Composition médicale contenant un dépepsipeptide cyclique ayant une activité anthelminthique
WO1993007278A1 (fr) 1991-10-04 1993-04-15 Ciba-Geigy Ag Sequence d'adn synthetique ayant une action insecticide accrue dans le mais
WO1993019053A1 (fr) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Derive de depsipeptide, production et utilisation
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1993025543A2 (fr) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines et derives d'enniatines utilises dans la lutte contre les endoparasites
EP0594291A1 (fr) 1992-09-01 1994-04-27 Sankyo Company Limited Procédés pour la préparation de dérivés des milbémycines ayant un groupe d'éther sur la position 13
WO1994015944A1 (fr) 1993-01-18 1994-07-21 Pfizer Limited Nouveaux agents antiparasitaires apparentes aux milbemycines et aux avermectines
WO1994019334A1 (fr) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Derive du pf 1022 utilise comme depsipeptide cyclqiue
EP0626375A1 (fr) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides ayant une activité endoparasiticide
WO1995019363A1 (fr) 1994-01-14 1995-07-20 Pfizer Inc. COMPOSéS ANTIPARASITAIRES A BASE DE PYRROLOBENZOXAZINE
WO1995022552A1 (fr) 1994-02-16 1995-08-24 Pfizer Limited Agents antiparasitaires
WO1995033818A2 (fr) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes pour la synthese des substances antipathogenes
WO1995034656A1 (fr) 1994-06-10 1995-12-21 Ciba-Geigy Ag Nouveaux genes du bacillus thuringiensis codant pour des toxines actives contre les lepidopteres
WO1996011945A2 (fr) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Procede de sulfonylation, de sulfenylation et de phosphorylation de depsipeptides cycliques
WO1996015121A1 (fr) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Utilisation de dioxomorpholines pour lutter contre les endoparasites, nouvelles dioxomorpholines et leur procede de production
DE19520936A1 (de) 1995-06-08 1996-12-12 Bayer Ag Ektoparasitizide Mittel
WO1997033890A1 (fr) 1996-03-11 1997-09-18 Novartis Ag Derives de pyrimidine-4-one utilises comme pesticide
WO2002015701A2 (fr) 2000-08-25 2002-02-28 Syngenta Participations Ag Nouvelles toxines insecticides derivees de proteines cristallines insecticides de $i(bacillus thuringiensis)
WO2003018810A2 (fr) 2001-08-31 2003-03-06 Syngenta Participations Ag Toxines cry3a modifiees et sequences d'acides nucleiques les codant
WO2003052073A2 (fr) 2001-12-17 2003-06-26 Syngenta Participations Ag Nouvel evenement du mais
US6919298B2 (en) 2002-04-04 2005-07-19 Valent Biosciences Corporation Enhanced herbicide composition
WO2004072086A2 (fr) 2003-02-14 2004-08-26 Pfizer Limited Terpene alcaloides antiparasitiques
WO2005077934A1 (fr) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci
WO2006087343A1 (fr) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Anilides d'acide carboxylique pyrazole, procedes de production associes et agents les contenant pour la lutte antifongique
WO2007026965A1 (fr) 2005-09-02 2007-03-08 Nissan Chemical Industries, Ltd. Composé de benzamide à substitution isoxazoline et agent de lutte contre les organismes nuisibles
WO2007048556A1 (fr) 2005-10-25 2007-05-03 Syngenta Participations Ag Dérivés d'amides hétérocycliques utiles en tant que microbiocides
WO2010060231A1 (fr) 2008-11-25 2010-06-03 Qin Zhaohai Aminonitroguanidines condensées, leur synthèse et leur emploi en tant qu'insecticides botaniques
WO2012092115A1 (fr) 2010-12-29 2012-07-05 E. I. Du Pont De Nemours And Company Pesticides à base pyrido[1,2-a]pyrimidines mésoioniques
WO2013047749A1 (fr) 2011-09-29 2013-04-04 三井化学アグロ株式会社 Procédé de fabrication de dérivé de 4,4-difluoro-3,4-dihydroisoquinoléine
WO2016156085A1 (fr) 2015-03-27 2016-10-06 Syngenta Participations Ag Dérivés hétérobicycliques microbiocides
WO2016156129A1 (fr) 2015-04-02 2016-10-06 Basf Se Composés de quinoléine

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Cross-Coupling Reactions: A Practical Guide (Topics in Current Chemistry"
"Cross-Coupling Reactions: A Practical Guide (Topics in Current Chemistry", SPRINGER
"Metal-Catalyzed Cross-Coupling Reactions", WILEY-VCH
"The Pesticide Manual - A World Compendium", THE BRITISH CROP PROTECTION COUNCIL, article "The Pesticide Manual"
"The Pesticide Manual", 2009, BRITISH CROP PROTECTION COUNCIL
A. WOOD: "Compendium of Pesticide Common Names", 1995
GRIMMET, M. R.: "In Imidazole and Benzimidazole Synthesis", 1997, ELSEVIER SCIENCE
JAHANGIR ET AL., JOURNAL OF ORGANIC CHEMISTRY, vol. 54, 1989, pages 2992
PROC. BCPC, INT. CONGR., vol. 1, 2003, pages 93
RUIMAO HUA, TETRAHEDRON LETTERS, vol. 54, 2013, pages 5159 - 5161
TAEBO SIM ET AL., TETRAHEDRON LETTERS, vol. 51, 2010, pages 4609
TOMOHIKO OHWADA ET AL., JOURNAL OF ORGANIC CHEMISTRY, vol. 77, 2012, pages 9313
WERMUTH C G: "MOLECULAR VARIATIONS BASED ON ISOSTERIC REPLACEMENTS", PRACTICE OF MEDICINAL CHEMISTRY, XX, XX, 1 January 1996 (1996-01-01), pages 203 - 237, XP002190259 *
YU. B. VIKHAREV ET AL., PHARMACEUTICAL CHEMISTRY JOURNAL, vol. 39, 2005, pages 405 - 408

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342147A (zh) * 2020-11-12 2021-02-09 兰州理工大学 一株能拮抗多种病原菌的季也蒙毕赤酵母菌株及其应用
CN114342941A (zh) * 2022-01-19 2022-04-15 河南农业职业学院 一种防治芍药病虫害的组合物
CN114342941B (zh) * 2022-01-19 2023-05-23 河南农业职业学院 一种防治芍药病虫害的组合物

Similar Documents

Publication Publication Date Title
AU2016239625B2 (en) Microbiocidal heterobicyclic derivatives
WO2017103219A1 (fr) Dérivés d'oxadiazole microbiocides
US9896454B2 (en) Microbiocidal heterobicyclic derivatives
WO2017103223A1 (fr) Dérivés d'oxadiazole microbiocides
WO2017072247A1 (fr) Dérivés d'oxadiazole microbiocides
WO2017162868A1 (fr) Dérivés d'oxadiazole microbiocides
US20180370927A1 (en) Microbiocidal oxadiazole derivatives
US9586969B2 (en) Microbiocidal heterobicyclic derivatives
WO2017157962A1 (fr) Dérivés d'oxadiazole microbiocides
EP3390399A1 (fr) Dérivés d'oxadiazole microbiocides
WO2019012011A1 (fr) Dérivés d'oxadiazole microbiocides
WO2018206419A1 (fr) Dérivés hétérobicycliques microbiocides
WO2019012001A1 (fr) Dérivés d'oxadiazole microbiocides
WO2018219825A1 (fr) Dérivés d'oxadiazole microbiocides
US10357035B2 (en) Microbiocidal anilide derivatives
US10329272B2 (en) Microbiocidal heterobicyclic derivatives
WO2017178408A1 (fr) Silicium microbiocide contenant des dérivés d'aryle
WO2020070132A1 (fr) Dérivés de quinoléine dihydro-(thiazine) oxazine microbiocides
EP3853207A1 (fr) Dérivés de quinoléine carboxamide microbiocides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18723785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18723785

Country of ref document: EP

Kind code of ref document: A1