WO2018205799A1 - 信号发送方法、通信设备及存储介质 - Google Patents

信号发送方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2018205799A1
WO2018205799A1 PCT/CN2018/083214 CN2018083214W WO2018205799A1 WO 2018205799 A1 WO2018205799 A1 WO 2018205799A1 CN 2018083214 W CN2018083214 W CN 2018083214W WO 2018205799 A1 WO2018205799 A1 WO 2018205799A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
wake
signal
communication node
transmitting
Prior art date
Application number
PCT/CN2018/083214
Other languages
English (en)
French (fr)
Inventor
李楠
吕开颖
卢忱
位宁
韩志强
孙波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18799268.0A priority Critical patent/EP3624491A4/en
Priority to US16/612,378 priority patent/US11483813B2/en
Publication of WO2018205799A1 publication Critical patent/WO2018205799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication technology, and more particularly to a signal transmission method, a communication device, and a storage medium.
  • the unlicensed frequency band used by the wireless system can be divided into multiple channels in advance, and each channel is numbered, and each channel has parameters such as a starting frequency point, a channel spacing, and a bandwidth size. Taking 2.4 GHz and 5 GHz as an example, the bandwidth of each channel defaults to 20 MHz.
  • a communication node may select a 20MHz channel as the primary transmission channel, and may also use multiple 20MHz channels as the secondary transmission channel, and the specific channel bandwidth of the communication node or system configuration may be smaller than the bandwidth used for data transmission. May be one or more. This involves how to send signals on these particular roads and how to protect the channel while transmitting the signal.
  • Embodiments of the present invention provide a signal transmitting method, a communication device, and a storage medium, and a communication method, a communication device, and a storage medium to perform channel protection when a signal is transmitted.
  • an embodiment of the present invention provides a signal sending method, including: a first communications node transmitting a signal on one or more first channels, where the first channel is located at a primary of the first communications node Within the transport channel and/or the secondary transport channel, channel protection is performed on the transport channel in which the first channel is located and/or the primary transport channel before transmitting the signal.
  • the embodiment of the invention further provides a communication method, which is applied to the second communication node, and includes: the second communication node receives a signal sent by the first communication node on the first channel, where the first channel is located in the first Within the primary transport channel and/or secondary transport channel of the communication node.
  • Embodiments of the present invention also provide a communication device including a transmitter and a processor, the transmitter configured to transmit a signal on one or more first channels, where the first channel is located at a primary of the first communication node Within the transport channel and/or the secondary transport channel; prior to transmitting the signal, channel protection is performed on the transport channel in which the first channel is located and/or the primary transport channel; the processor is coupled to the transmitter.
  • An embodiment of the present invention further provides another communication device, including a receiver configured to receive a signal sent by a first communication node, and a first channel located at a primary transmission channel of the first communication node. And/or within a secondary transport channel; the processor is coupled to the receiver.
  • An embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, where the program is executed to execute the signal sending method.
  • the signals are transmitted on the plurality of first channels, and the channels of the transmitted signals are protected during the signal transmission, thereby reducing system loss and interference.
  • 1 is a WLAN system to which an embodiment of the present invention can be applied;
  • FIG. 2 is a schematic diagram of a power saving mechanism of a WLAN system according to an embodiment
  • FIG. 3 is a schematic diagram of channel division in an embodiment
  • FIG. 4 is a schematic diagram of a signal sending method according to an embodiment of the present invention.
  • Figure 5 is a schematic view of a specific embodiment 1 of the present invention.
  • Embodiment 1 of Embodiment 2 of the present invention is a schematic diagram of Embodiment 1 of Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of Embodiment 2 of Embodiment 2 of the present invention.
  • Figure 8 is a schematic view of a third embodiment of the present invention.
  • Embodiment 9 is a schematic diagram of Embodiment 1 of Embodiment 4 of the present invention.
  • Embodiment 10 is a schematic diagram of Embodiment 2 of Embodiment 4 of the present invention.
  • Embodiment 1 of Embodiment 5 of the present invention is a schematic diagram of Embodiment 1 of Embodiment 5 of the present invention.
  • FIG. 12 is a schematic diagram of Embodiment 2 of Embodiment 5 of the present invention.
  • Figure 13 is a schematic view of a sixth embodiment of the present invention.
  • Figure 14 is a schematic view of a seventh embodiment of the present invention.
  • Figure 15 is a schematic view of a eighth embodiment of the present invention.
  • FIG. 16 is a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 17 is a block diagram of another communication device according to an embodiment of the present invention.
  • the Internet of Things industry is developing rapidly.
  • a large number of IoT devices are connected to the network and connected to each other through wired or wireless means, covering intelligent traffic, environmental protection, public safety, safe home, industrial monitoring, and personal health.
  • the number of IoT devices involved in IoT applications is huge and can be called massive terminals. Most of these terminals work on battery power.
  • the installation location of the equipment is not easy to detect and repair at any time, and to replace the battery, in other scenarios, such as intelligent transportation, power meter reading, service providers It is also hoped that once the device is installed, it can be replaced for several months or even years without replacing the battery, which requires the IoT device to have a high-performance power-saving mechanism.
  • FIG. 1 is a wireless local area network (WLAN) system to which an embodiment of the present invention is applicable.
  • the WLAN system 100 includes an access point (AP) 110 and a non-connection.
  • the AP 110 establishes a basic service set (BSS) 130, and the STA 120 associates with the AP 110 by scanning for authentication association and the like, and communicates with the AP 110 or communicates with other STAs 120 through the AP 110.
  • BSS basic service set
  • IBSS independent BSS
  • an AP or an STA in the above network may be collectively referred to as a wireless communication node.
  • FIG. 2 is a schematic diagram of a power saving mechanism of the WLAN system in an embodiment.
  • the STA 120 includes a power saving module 121 and a main module 122.
  • the main module 122 can be a logical concept, which is a collection of modules other than the power saving module in the device, such as a sensor module, a microprocessor module, a memory module, a wireless communication module, and the like.
  • the STA 120 can only reserve the power saving module 121 for receiving the wake-up signal when there is no service, that is, when the power saving module 121 is turned on, the device can close the main module 122.
  • the AP 110 When the AP 110 needs to send downlink data to the STA 120, the AP 110 first sends a wake-up signal to the STA 120.
  • the power-saving module 121 of the STA 120 receives the wake-up signal, and confirms that the wake-up signal is sent to itself, and then starts the main module 122 according to the content of the wake-up signal. Perform related operations, such as receiving downlink data from the AP 110.
  • power-saving modules consume very little power during operation, typically at the microwatt level.
  • the power saving module needs to monitor whether there is a wake-up signal sent to itself. Once received, the other modules are triggered to work according to the request of the wake-up signal, for example, the micro-processing module is turned on, the wireless communication module is turned on, and the like. This achieves the effect of saving electricity.
  • the unlicensed frequency band used by the WLAN is pre-divided into multiple channels, and each channel is numbered.
  • Each channel has parameters such as a starting frequency point, a channel spacing, and a bandwidth. Taking 2.4 GHz and 5 GHz as an example, the bandwidth of each channel defaults to 20 MHz.
  • Figure 3 is a schematic diagram of channel division in an embodiment. As shown in FIG. 3, a primary transport channel 210 and a secondary transport channel 220 are included within one AP operating bandwidth. In some embodiments, the AP selects a certain 20 MHz channel as the primary transport channel to establish the BSS, and may also use multiple 20 MHz channels as the secondary transport channel.
  • the working channel bandwidth of the AP may be 20/40/80/160/80+80 MHz. (Two 80MHz discontinuities).
  • the AP 110 periodically transmits a beacon frame including a capability parameter of the AP 110, the beacon frame having a signal format that the main module 122 of the STA can parse.
  • the AP 110 is the time reference of the BSS 130, and carries the current time information of the AP in each beacon frame. All the STAs 120 that receive the beacon frame in the BSS need to synchronize and calibrate with the time information sent by the AP 110.
  • the beacon frame of the AP 110 can be transmitted on the primary transmission channel of the AP 110, and the bandwidth of the beacon frame is equal to the bandwidth of the primary transmission channel.
  • the AP or system configuration may configure one or more wake-up channels 230 in the primary transport channel 210 and/or the secondary transport channel 220 for transmitting to the STA 120 a signal 240 that the power save module 121 of the STA can resolve.
  • the modulation and coding scheme of the signal 240 may be the same as or different from the modulation and coding scheme of the signal transmitted and received by the main module 122 of the STA 120.
  • Signal 240 can be a wake-up signal or a wake-up beacon frame.
  • the wake-up channel bandwidth is typically less than the bandwidth used by the AP and STA for data transmission.
  • the location of the wake-up channel is as follows: the wake-up channels are all located in the primary transport channel of the AP, both located in the secondary transport channel of the AP, or in the primary transport channel and the secondary transport channel of the AP.
  • the main function of the wake-up beacon frame is to declare the existence of the BSS established by the AP, and to transmit the current clock information of the AP in the BSS, so that the STA performs network detection and clock calibration.
  • the information carried in the wake-up beacon frame may include at least one of the following: the identification information of the AP, the current time information of the AP, and the sending period of the wake-up beacon frame.
  • the identification information of the AP is as follows: all or part of the network-wide unique identifier (such as the Media Access Control (MAC) address) assigned to the AP, and the unique identifier in the BSS allocated to the AP. All or part of all or part of the non-network-wide unique identifier (such as BSS color, BSS color) assigned to the AP.
  • the network-wide unique identifier such as the Media Access Control (MAC) address
  • MAC Media Access Control
  • the AP in the beacon frame, the probe response frame or the association response frame sent by itself indicates whether it supports the power saving mode of the STA and which type of power saving mode is specifically supported.
  • the STA also declares to the AP whether it supports the power saving mode and which type of power saving mode is specifically supported. If both the AP and the STA support the power saving mode that only saves the power saving module, a series of parameters in the power saving mode are further negotiated, for example, the power saving module works (the power saving module is normally open, or periodically). The length and period of the wake-up window when the timer is turned on, the channel on which the STA listens for the wake-up signal (ie, the wake-up channel), and the like.
  • the AP sends a signal on the wake-up channel in a contention manner.
  • the AP uses the parameters of any access category in the enhanced distributed channel access (EDCA) to compete for access.
  • EDCA enhanced distributed channel access
  • the AP uses the parameters of the highest priority access category for contention access, or use the parameters of the specific access category defined for the signal for contention access, or use point coordination function interframe space (point coordination function interframe space PIFS) for competitive access.
  • point coordination function interframe space point coordination function interframe space
  • the first communication node transmits a signal 420 on one or more first channels 410, wherein the first channel 410 is located in the primary transport channel and/or the secondary transport channel of the first communication node, transmitting a signal Before 420, channel protection is performed on the transport channel where the first channel 410 is located and/or the primary transport channel.
  • the first channel 410 is a wake-up channel having a bandwidth that is less than the bandwidth of the transmission channel in which it is located, and the bandwidth of the signal 420 is equal to the bandwidth of the first channel in which it is located.
  • Signal 420 can be a wake-up beacon frame or a wake-up signal.
  • Channel protection is implemented in one of the following ways:
  • Mode 1 transmitting a legacy preamble 430 before transmitting the signal 420, the legacy preamble 430 carrying time length information of the medium to be occupied by the first communication node; in some embodiments, the conventional preamble is located at the beginning of the signal 420, or The transmission interval between the legacy preamble 430 and the signal 420 is a short interframe space (SIFS).
  • SIFS short interframe space
  • the wake-up preamble and the frame body are also transmitted.
  • Mode 2 Send a legacy station identifiable protection frame 440 before transmitting the signal 420.
  • the protection frame 440 carries time length information of the medium to be occupied by the first communication node.
  • the protection frame 440 is a Clear to send (CTS) frame whose received address is the MAC address of the first communication node, or a null data packet that only includes a conventional preamble. .
  • CTS Clear to send
  • Mode 3 Send a radio frame (not shown) before transmitting the signal 420, where the radio frame carries time length information of the medium to be occupied by the first communication node.
  • the time length information of the first communication node to be occupied by the first communication node carried in the radio frame may be the time when the first communication node occupies the first channel in the primary transmission channel and/or the secondary transmission channel. During the time period, only the first communication node is allowed to transmit within the BSS.
  • the length of time for which the medium is to be occupied may also be referred to as the channel protection duration.
  • mixing may occur and no distinction is made.
  • Transmitting the legacy preamble 430 in mode 1 may include at least one of the following:
  • a conventional preamble is transmitted prior to transmitting the first signal; a conventional preamble is sent before each signal is transmitted, the traditional preamble corresponding to each signal being the same or different.
  • transmitting the legacy preamble 430 can include at least one of transmitting a legacy preamble 430 within the primary transport channel, the bandwidth of the legacy preamble 430 being equal to the bandwidth of the primary transport channel;
  • the preamble is transmitted in multiple secondary transport channels, and the bandwidth of the legacy preamble 430 is equal to the bandwidth of the secondary transport channel.
  • the transmit protection frame 440 can include at least one of: transmitting the protection frame 440 within a primary transmission channel, the bandwidth of the protection frame 440 being equal to the primary transmission channel bandwidth;
  • the protection frame 440 is transmitted within one or more secondary transport channels, the bandwidth of the protection frame 440 being equal to the bandwidth of the secondary transmission channel.
  • a predetermined number of first channel transmit signals can be selected from a plurality of first channels. For example, if the total number of the first channels is 10 and the predetermined number is 1 or 2, one or two first channel transmission signals are selected from all 10 first channels.
  • a predetermined number of first channels may also be selected from a plurality of first channels located on the same transport channel, for example, three first channels in the primary transport channel and three first channels in the secondary transport channel, from the primary transport channel One first channel transmission signal is selected, and one first channel transmission signal is selected from the secondary transmission channel.
  • the first communication node may also send first information before transmitting the signal 420, the first information indicating at least one of the following: the first channel allocated for the second communication node, the signal 420 The sending cycle.
  • the embodiment of the invention further provides a communication method for applying the second communication node, comprising: receiving, by the second communication node, a signal sent by the first communication node on the first channel, where the first channel is located in the first Within the primary transport channel and/or secondary transport channel of a communication node.
  • the second communication node receives the first channel on the first channel according to a sending period of the wake-up beacon frame. Wake up the beacon frame.
  • the second communications node may further receive first information sent by the first communications node, where the first information includes at least one of: the first communications node is the The first channel allocated by the second communication node, the transmission period of the signal.
  • the second communication node is on the first channel that sends the wake-up signal
  • the wake-up signal is received, and the wake-up beacon frame is received on the first channel that is transmitted to the wake-up beacon frame before the transmission of the wake-up beacon frame arrives.
  • FIG. 5 is a schematic view of a first embodiment of the present invention.
  • the number of wake-up channels is one, which is located in the primary transmission channel of the AP.
  • the AP sends a wake-up beacon frame on the wake-up channel, and the bandwidth of the wake-up beacon frame is equal to the bandwidth of the wake-up channel.
  • the AP can use traditional preambles and/or guard frames for transmission protection.
  • the AP includes a legacy preamble in the preamble of the wake-up beacon frame, the traditional preamble being located at the beginning of the wake-up beacon frame, the traditional preamble being used to inform the traditional terminal of the media time that the currently transmitted signaling needs to occupy, thereby Avoid interference with the transmission of the next wake-up beacon frame.
  • Traditional terminals include terminals that work according to the following standards: 802.11a, 802.11ac, 802.11ax, and the like.
  • the bandwidth of the traditional preamble is equal to the bandwidth of the AP's primary transport channel.
  • the protection frame is used: before the wake-up beacon frame is transmitted (when the wake-up beacon frame can include the traditional preamble or not), the AP sends a protection frame identifiable by the traditional station to notify the traditional terminal of the media time that the terminal needs to occupy. .
  • the bandwidth of the protection frame is equal to the bandwidth of the primary transmission channel of the AP.
  • the reserved channel occupation time of the protection frame is not less than the duration of the AP transmitting the wake-up beacon frame on the wake-up channel.
  • the interval between the guard frame and the wake-up beacon frame is the short inter-frame interval SIFS.
  • the protection frame is, for example, a CTS frame whose reception address is the AP's own MAC address, or an empty data frame containing only the legacy preamble.
  • FIG. 6 is a schematic diagram of Embodiment 1 of Embodiment 2 of the present invention.
  • the number of wake-up channels is multiple, and the wake-up channel is located in the primary transport channel of the AP.
  • the AP transmits a wake-up beacon frame on all wake-up channels.
  • the AP simultaneously transmits the wake-up beacon frames in parallel on the multiple wake-up channels, and the bandwidth of each wake-up beacon frame is equal to the bandwidth of the wake-up channel in which it is located.
  • the AP can use traditional preambles and/or guard frames for transmission protection.
  • the traditional preamble is located at the start position of the wake-up beacon frame, and the wake-up beacon frame on all the wake-up channels adopts the same conventional preamble, and the bandwidth of the conventional preamble is equal to the main transport channel of the AP. Bandwidth.
  • the AP uses the protection frame, before the wake-up beacon frame is transmitted (when the wake-up beacon frame can include the traditional preamble or not), the AP sends the protection frame, and the interval between the protection frame and the wake-up beacon frame is SIFS.
  • the bandwidth of the protection frame is equal to the bandwidth of the primary transmission channel of the AP.
  • FIG. 7 is a schematic diagram of Embodiment 2 of Embodiment 2 of the present invention.
  • the AP transmits a plurality of wake-up beacon frames in a predetermined order on a plurality of wake-up channels.
  • the order of transmission may be from low to high, or high to low, depending on the center frequency of the wake-up channel, or in ascending or descending order of the logical number of the wake-up channel.
  • the AP uses traditional preambles and/or guard frames for transmission protection.
  • the AP transmits a legacy preamble at the beginning of each wake-up beacon frame, and the bandwidth of the legacy preamble is equal to the bandwidth of the AP's primary transport channel.
  • the protection frame is used for transmission protection, before the first wake-up beacon frame is transmitted (when the wake-up beacon frame can include the traditional preamble or not), the AP sends a protection frame identifiable by the legacy station, and the bandwidth of the protection frame is equal to The bandwidth of the AP's primary transport channel.
  • the reserved channel occupation time of the protection frame is not less than the total duration of the AP transmitting the wake-up beacon frame on the multiple wake-up channels.
  • the AP uses the protection frame, when the AP sends the wake-up beacon frame on multiple wake-up channels, the AP can directly transmit without using the contention access mode.
  • the interval between the guard frame and the first wake-up beacon frame is short interframe space (SIFS).
  • the AP may also send a radio frame before the first wake-up beacon frame is transmitted, and the radio frame carries a guard period length for notifying the AP of multiple wake-ups.
  • the duration of the channel occupied by the multiple wake-up beacon frames on the channel within the duration, only the AP is allowed to transmit in the BSS.
  • the bandwidth of the radio frame is equal to the bandwidth of the main transmission channel. Different from the protection frames identifiable by the traditional site, this method does not restrict the stations of other BSSs from transmitting during the time period of AP transmission on the channel.
  • FIG. 8 is a schematic view of a third embodiment of the present invention.
  • the number of wake-up channels is one, and the wake-up channel is located in the secondary transport channel of the AP.
  • the AP transmits a wake-up beacon frame on the wake-up channel on the secondary transport channel, and the bandwidth of the wake-up beacon frame is equal to the bandwidth of the wake-up channel.
  • the AP can use traditional preamble and/or guard frames for transmission protection. When the traditional preamble is used for transmission protection, the traditional preamble is transmitted at the beginning of each wake-up beacon frame, and the bandwidth of the conventional preamble is equal to the bandwidth of the AP's secondary transmission channel.
  • the AP transmits a protection frame identifiable by the legacy station, and the bandwidth of the protection frame is equal to the secondary transmission of the AP.
  • the bandwidth of the channel, the interval between the guard frame and the wake-up beacon frame is the short inter-frame interval SIFS.
  • the first embodiment differs from the second embodiment in that the AP transmits a protection frame on the primary transmission channel and performs channel protection on the secondary transmission channel, and the transmission bandwidth is equal to the bandwidth of the primary transmission channel. .
  • the contention access process is performed according to the busy state of the AP primary transport channel, and the AP performs the channel reservation on the primary transport channel while transmitting on the secondary transport channel, the other stations can be avoided.
  • the transmission channel is idle and occupies the primary transmission channel for transmission. At this time, the AP is in the transmitting state, and actually cannot receive data transmitted by other stations, causing unnecessary system loss and interference.
  • FIG. 9 is a schematic diagram of Embodiment 1 of Embodiment 4 of the present invention.
  • the number of wake-up channels is multiple, and the wake-up channel is located in the secondary transport channel of the AP, and the AP transmits the wake-up beacon frame on the multiple wake-up channels.
  • the AP simultaneously transmits the wake-up beacon frames in parallel on the multiple wake-up channels of the secondary transport channel, and the bandwidth of each wake-up beacon frame is equal to the bandwidth of the wake-up channel in which it is located.
  • the AP uses legacy preamble and/or guard frames.
  • the traditional preamble is located at the beginning of the wake-up beacon frame, and the wake-up beacon frames on all the wake-up channels use the same conventional preamble, and the bandwidth of the conventional preamble is equal to the bandwidth of the AP's secondary transport channel.
  • the AP sends a protection frame identifiable by the traditional station, and the bandwidth of the protection frame is equal to the bandwidth of the auxiliary transmission channel of the AP.
  • the interval between the guard frame and the wake-up beacon frame is the short inter-frame interval SIFS.
  • the AP While transmitting the wake-up beacon frame on the secondary transport channel, the AP sends a protection frame on the primary transport channel for channel protection, and the transmit bandwidth is equal to the bandwidth of the primary transport channel.
  • FIG. 10 is a schematic diagram of Embodiment 2 of Embodiment 4 of the present invention.
  • the AP transmits a plurality of wake-up beacon frames in a predetermined order on a plurality of wake-up channels of the secondary transport channel. Transmission order: according to the center frequency of the wake-up channel from low to high, or high to low, or in ascending or descending order according to the logical number of the wake-up channel.
  • the AP contends to send wake-up beacon frames on multiple wake-up channels.
  • the starting position of each wake-up beacon frame is a traditional preamble, and the bandwidth of the conventional preamble is equal to the bandwidth of the AP's main transport channel.
  • the AP sends a protection frame identifiable by the traditional station to notify the traditional terminal of the media time that the traditional terminal needs to occupy, and the bandwidth of the protection frame is equal to the bandwidth of the secondary transmission channel of the AP.
  • the reserved channel occupation time of the protection frame is not less than the total duration of the AP transmitting the wake-up beacon frame on the multiple wake-up channels. If the AP uses the protection frame, when the AP sends the wake-up beacon frame on multiple wake-up channels, the AP can directly transmit without using the contention access mode.
  • the interval between the guard frame and the first wake-up beacon frame is the short inter-frame interval SIFS.
  • the AP While transmitting the wake-up beacon frame on the secondary transport channel, the AP sends a protection frame on the primary transport channel for channel protection, and the transmission bandwidth is equal to the bandwidth of the primary transport channel.
  • the AP may also send a radio frame on the primary transmission channel before the first wake-up beacon frame is transmitted, and the radio frame carries a guard period length for notifying the AP.
  • the duration of the channel occupied by the multiple wake-up beacon frames is sent on multiple wake-up channels, only the AP is allowed to transmit within the BSS within the duration.
  • the AP transmits a radio frame on the primary transport channel, notifying the channel protection period, the primary transport channel does not have to transmit the guard frame to perform channel protection, and the guard frame can be transmitted only on the secondary transport channel where the wake-up channel is located.
  • the bandwidth of the radio frame is equal to the bandwidth of the main transmission channel.
  • FIG. 11 is a schematic diagram of Embodiment 1 of Embodiment 5 of the present invention.
  • the AP simultaneously transmits the wake-up beacon frames in parallel on one or more wake-up channels of the primary transport channel and the secondary transport channel, and the bandwidth of each wake-up beacon frame is equal to the bandwidth of the wake-up channel in which it is located.
  • the AP uses legacy preamble and/or guard frames.
  • the preamble of the wake-up beacon frame includes a traditional preamble, which is located at the beginning of the wake-up beacon frame, and the wake-up beacon frame on all the wake-up channels adopts the same conventional preamble, and the bandwidth of the traditional preamble is equal to the main transmission channel or The bandwidth of the secondary transport channel.
  • the AP sends a protection frame identifiable by the traditional station, and the bandwidth of the protection frame is equal to the main transmission channel or The bandwidth of the secondary transport channel, the interval between the guard frame and the wake-up beacon frame is the short inter-frame interval SIFS.
  • FIG. 12 is a schematic diagram of Embodiment 2 of Embodiment 5 of the present invention.
  • the AP transmits a plurality of wake-up beacon frames in a predetermined order on one or more wake-up channels of the primary transport channel and the secondary transport channel. Transmission order: according to the center frequency of the wake-up channel from low to high, or high to low, or in ascending or descending order according to the logical number of the wake-up channel. There is a certain interval between wake-up beacon frames on two adjacent wake-up channels. The AP contends to send wake-up beacon frames on multiple wake-up channels.
  • the preamble of each wake-up beacon frame includes a legacy preamble, and the bandwidth of the conventional preamble is equal to the bandwidth of the primary transport channel or the secondary transport channel where the wake-up beacon frame is located.
  • the AP sends a protection frame identifiable by the traditional station, and the bandwidth of the protection frame is equal to the protection frame.
  • the reserved channel occupation time of the protection frame is not less than the total duration of the AP transmitting the wake-up beacon frame on the multiple wake-up channels.
  • the AP uses the protection frame, when the AP sends the wake-up beacon frame on multiple wake-up channels, the AP can directly transmit without using the contention access mode.
  • the interval between the guard frame and the first wake-up beacon frame is the short inter-frame interval SIFS.
  • the AP may also send a radio frame on the primary transmission channel before the first wake-up beacon frame is transmitted, and the radio frame carries a guard period length for notifying the AP.
  • the duration of the channel occupied by the multiple wake-up beacon frames is sent on multiple wake-up channels, only the AP is allowed to transmit within the BSS within the duration.
  • the AP transmits a radio frame on the primary transport channel, notifying the channel protection period, the primary transport channel does not have to transmit the guard frame to perform channel protection, and the guard frame can be transmitted only on the secondary transport channel where the wake-up channel is located.
  • the bandwidth of the radio frame is equal to the bandwidth of the main transport channel.
  • FIG. 13 is a schematic view of Embodiment 6 of the present invention.
  • the AP or the system configures multiple wake-up channels in the primary transport channel and each secondary transport channel, and the AP selects one wake-up channel from the transport channels in which the multiple wake-up channels are located to send the wake-up beacon frame.
  • the AP notifies the STA of the wake-up channel for receiving the wake-up signal configured for the STA, and the wake-up channel for receiving the wake-up beacon frame (if the two channels are not the same).
  • the STA receives the wake-up signal on its own wake-up channel, and receives the wake-up beacon frame on the channel transmitted to the wake-up beacon frame before the arrival of the wake-up beacon frame.
  • FIG. 14 is a schematic view of Embodiment 7 of the present invention.
  • the AP sends the wake-up beacon frame on the multiple wake-up channels, and the sending period of the wake-up beacon frame on each wake-up channel is configured to be the same or different.
  • the AP has three wake-up channels in the primary transport channel, one of which is selected as the wake-up channel for transmitting the wake-up beacon frame, and three wake-up channels in the secondary transport channel, one of which is selected as the transmit wake-up beacon frame. Wake up the channel.
  • the sending period of the wake-up beacon frame sent on the wake-up channel in the primary transport channel is different from the sending period of the wake-up beacon frame sent on the wake-up channel in the secondary transport channel.
  • FIG. 15 is a schematic view of an eighth embodiment of the present invention.
  • the AP configures three wake-up channels in the primary transport channel, and transmits wake-up beacon frames on different wake-up channels according to different periods.
  • the AP may group the stations according to specific parameters, configure a wake-up channel for each group of sites, notify the station of the configured sending period of the wake-up channel and the wake-up beacon frame, and configure the parameters according to the parameters of the group of stations.
  • the period of the wake-up beacon frame is sent on the wake-up channel of the group site, and the wake-up beacon frame is transmitted according to the period.
  • the specific parameter that groups the sites can be the synchronization accuracy of the site.
  • the time precision that the site can achieve is different.
  • the synchronization accuracy of some sites is ⁇ 20ppm (the clock offset is 20 microseconds per second), and the synchronization accuracy of some sites is ⁇ 40ppm.
  • the synchronization precision of the station is different, and the wake-up beacon frame can be received in different periods for time synchronization and correction. Therefore, the AP can send the wake-up beacon frame in different periods to save overhead.
  • the AP when the signal transmitted by the AP is a wake-up beacon frame, since the wake-up beacon frame has a periodic transmission feature, the AP according to the transmission period of the wake-up beacon frame, and the position and number of the wake-up channel, When the secondary transmission time arrives, signal transmission and channel protection are performed in accordance with the manners described in various embodiments of the present invention.
  • signal transmission and channel protection can be performed according to the service requirements according to the manners of the embodiments of the present invention.
  • FIG. 16 is a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1600 includes a transmitter 1610 and a first processor 1620.
  • Transmitter 1610 is configured to transmit a signal on one or more first channels, the first channel being located within a primary transport channel and/or a secondary transport channel of the first communication node; prior to transmitting the signal, The transmission channel on which the first channel is located and/or the primary transmission channel performs channel protection; the first processor 1620 is coupled to the transmitter 1610.
  • performing channel protection as described above is implemented in one of the following ways:
  • the wake-up preamble and the frame body are also transmitted.
  • the radio frame carries time length information of the medium to be occupied by the first communication node.
  • FIG. 17 is a block diagram of another communication device according to an embodiment of the present invention.
  • a communication device 1700 includes a receiver 1710 configured to receive a signal transmitted by a first communication node, and a second processor 1720 located at a primary transmission of the first communication node. Within the channel and/or the secondary transmission channel; a second processor 1720 is coupled to the receiver 1710.
  • the receiver 1710 is further configured to receive the first information sent by the first communication node before receiving the signal, the first information being displayed including at least one of: the first communication node is The first channel allocated by the second communication node, the transmission period of the signal.
  • the receiver 1710 receives the wake-up beacon frame on the first channel when the transmission time arrives according to a transmission period of the wake-up beacon frame.
  • the receiver When the first channel of the received reception wake-up signal is different from the wake-up channel receiving the wake-up beacon frame, the receiver receives the wake-up signal on the first channel transmitting the wake-up signal, and before the arrival time of the wake-up beacon frame is reached And receiving a wake-up beacon frame on the first channel that transmits the wake-up beacon frame.
  • the transport channel may include a primary transport channel (also referred to as a primary channel), and may also include a secondary transport channel (which may also be referred to as a secondary channel), which may be determined by a person skilled in the art according to the context.
  • the conventional preamble in each embodiment is only used as a description of the preamble that can be resolved by a conventional device, and is not limited thereto.
  • the descriptions of the various embodiments are all different, and the parts that are not detailed in a certain embodiment can be referred to the related description of other embodiments.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Each of the above units may be stored in a computer readable storage medium when implemented in a single software form and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .
  • an embodiment of the present invention further provides a storage medium on which a computer program is stored, and when the computer program is executed by the processor, executes:
  • the transmission channel and/or the primary transmission channel perform channel protection.
  • a signal transmitted by the first communication node is received on the first channel, the first channel being located within a primary transport channel and/or a secondary transport channel of the first communication node.
  • the first communications node sends a signal on one or more first channels, where the first channel is located in a primary transport channel and/or a secondary transport channel of the first communications node, Before the signal, channel protection is performed on the transmission channel where the first channel is located and/or the primary transmission channel; and the second communication node receives the signal sent by the first communication node on the first channel.
  • the signal is transmitted on the plurality of first channels, and the channel of the transmitted signal is protected during the signal transmission, which reduces system loss and interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术,尤其涉及一种信号发送方法及通信设备。其中,信号发送方法包括:第一通信节点在一个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内,在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护。相应的,本发明还提供了一种通信设备。

Description

信号发送方法、通信设备及存储介质
相关申请的交叉引用
本申请基于申请号为201710329202.4、申请日为2017年05月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术,尤指一种信号发送方法、通信设备及存储介质。
背景技术
根据各个国家和地区的频谱规划,无线系统使用的免授权频段可以预先划分为多个信道,对每个信道进行编号,每个信道均有起始频点,信道间隔,带宽大小等参数。以2.4GHz和5GHz为例,每个信道的带宽默认是20MHz。一个通信节点可以选择某个20MHz信道作为主传输信道,还可以同时使用多个20MHz信道作为辅传输信道,而通信节点或者系统配置的某类特定信道带宽可能小于进行数据传输所用的带宽,个数可能是一个或多个。这就涉及到如何在这些特定行道上发送信号,以及如何在发送信号的同时进行信道保护的问题。
发明内容
本发明实施例提供了一种信号发送方法、通信设备及存储介质,以及一种通信方法、通信设备及存储介质,以在信号发送时进行信道保护。
为了达到本发明目的,本发明实施例提供了一种信号发送方法,包括: 第一通信节点在一个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内,在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护。
本发明实施例还提供一种通信方法,应用于第二通信节点,包括:所述第二通信节点在第一信道上接收第一通信节点发送的信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内。
本发明实施例还提供一种通信设备,包括发射器和处理器,所述发射器配置为在一个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内;在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护;所述处理器与所述发射器耦合。
本发明实施例还提供另一种通信设备,包括接收器和处理器,所述接收器配置为接收第一通信节点发送的信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内;所述处理器与所述接收器耦合。
本发明实施例还提供一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述信号发送方法。
通过本发明实施例提供的方法、通信设备及存储介质,实现了在多个第一信道上发送信号,并且在信号发送了过程中对发送信号的信道进行了保护,降低了系统损耗和干扰。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一 部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是一种可以应用本发明实施例的WLAN系统;
图2是一实施例中WLAN系统节电机制示意图;
图3是一实施例中信道划分示意图;
图4是本发明实施例信号发送方法的示意图;
图5是本发明具体实施例一的示意图;
图6是本发明具体实施例二实现方式一的示意图;
图7是本发明具体实施例二实现方式二的示意图;
图8是本发明具体实施例三的示意图;
图9是本发明具体实施例四实现方式一的示意图;
图10是本发明具体实施例四实现方式二的示意图;
图11是本发明具体实施例五实现方式一的示意图;
图12是本发明具体实施例五实现方式二的示意图;
图13是本发明具体实施例六的示意图;
图14是本发明具体实施例七的示意图;
图15是本发明具体实施例八的示意图;
图16是本发明实施例提供的一种通信设备框图;
图17是本发明实施例提供的另一种通信设备框图。
具体实施方式
物联网行业快速发展,大量物联网设备接入网络,通过有线或者无线的方式互相连接,遍及智能交通、环境保护、公共安全、平安家居、工业监测、个人健康等多个领域。物联网应用中涉及的物联网设备数量巨大,可以称之为海量终端。这些终端大多通过电池供电进行工作。在多数应用场景中,如水质监测、环境监测和工业监测中,设备的安装地点并不容易 随时进行检测维修,以及更换电池,在另一些场景中,如智能交通,电力抄表,服务提供商也希望设备一旦安装,可以长达数月甚至数年无需更换电池,这就需要物联网设备具有高性能的省电机制。
图1是一种可以应用本发明实施例的无线局域网(wireless local area network,简称WLAN)系统,如图1所示,该WLAN系统100包括接入站点(Access Point,简称AP)110以及非接入站点(non-AP STA,简称STA)120。通常,AP110建立一个基本服务集(Basic Service Set,简称BSS)130,STA120通过扫描认证关联等过程,与AP110关联,并与AP110通信,或者通过AP110与其他STA120通信。在另一种无线局域网络中,也可能不存在类似AP的接入点,所有站点可以直接和彼此进行通信。例如是独立BSS(independent BSS,简称IBSS)中,并不存在类似AP的接入点。因此,对以上网络中的AP或者STA可以统称为无线通信节点。
在WLAN系统,一种可行的省电机制是为具备无线通信能力的物联网设备增加一个省电模块,图2是一实施例中WLAN系统节电机制示意图。如图2所示,STA120包括省电模块121和主模块122。主模块122可以是一个逻辑概念,是设备内除省电模块以外其他模块的集合,例如传感器模块、微处理器模块、存储器模块、无线通信模块等等。STA120在没有业务的情况下可以仅保留省电模块121工作,用于接收唤醒信号,也就是说当省电模块121开启时,设备可以关闭主模块122。当AP110需要向STA120发送下行数据时,AP110首先发送唤醒信号给STA120,STA120的省电模块121收到唤醒信号,确认该唤醒信号是发送给自己的,则根据唤醒信号的内容,开启主模块122,执行相关操作,例如接收来自AP110的下行数据。通常,省电模块在工作时耗电量极低,一般在微瓦级别。省电模块需要监听是否有发送给自己的唤醒信号,一旦收到,则根据唤醒信号的要求,触发其他模块进行工作,例如开启微处理模块,开启无线通信模块等。这 样就达到了节电的效果。
根据各个国家和地区的频谱规划,WLAN使用的免授权频段预先划分为多个信道,对每个信道进行编号,每个信道均有起始频点,信道间隔,带宽大小等参数。以2.4GHz和5GHz为例,每个信道的带宽默认是20MHz。图3是一实施例中信道划分示意图。如图3所示,在一个AP工作带宽内包括主传输信道210和辅传输信道220。在一些实施例中,AP选择某个20MHz信道作为主传输信道建立BSS,还可以同时使用多个20MHz信道作为辅传输信道,AP的工作信道带宽可以是20/40/80/160/80+80MHz(两个80MHz不连续的情况)。根据图1至图3,在一些实施例中AP110周期性地发送信标帧,该信标帧内包括了AP110的能力参数,此信标帧具有STA的主模块122能够解析的信号格式。在一个BSS130内,AP110是本BSS130的时间基准,在每个信标帧中都携带AP当前的时间信息,BSS内所有收到信标帧的STA120需要和AP110发送的时间信息进行同步和校准。AP110的信标帧可以在AP110的主传输信道上发送的,信标帧的带宽等于主传输信道的带宽。
AP或者系统配置可以在主传输信道210和/或辅传输信道220内配置一个或多个唤醒信道230,该唤醒信道用于向STA120发送STA的省电模块121能够解析的信号240。该信号240的调制编码方式与STA120的主模块122收发的信号的调制编码方式可以相同,也可以不同。信号240可以是唤醒信号,也可以唤醒信标帧。唤醒信道带宽通常小于AP和STA进行数据传输所用的带宽。唤醒信道的位置有以下几种情况:唤醒信道均位于AP的主传输信道内,均位于AP的辅传输信道内,或者位于AP的主传输信道和辅传输信道内。唤醒信标帧的主要作用是声明AP建立的BSS的存在,以及在BSS内发送AP当前的时钟信息,以便STA进行网络探测和时钟校准。唤醒信标帧内携带的信息可以包括以下至少之一:AP的标识信息、AP当 前的时间信息,唤醒信标帧的发送周期。其中,AP的标识信息有以下几种情况:为AP分配的全网唯一标识(例如媒体访问控制(Media Access Control,简称MAC)地址)的全部或部分,为AP分配的BSS内的唯一标识的全部或部分,为AP分配的非全网唯一标识(例如BSS颜色,BSS color)的全部或部分。
在一些实施例中,AP在自己发送的信标帧,探测响应帧或者关联响应帧中,会指示自己是否支持STA的省电模式,以及具体支持哪种类型的省电模式。相应地,STA在探测请求帧或者关联请求帧中,也会向AP声明自己是否支持省电模式,以及具体支持哪类省电模式。若AP和STA都支持仅保留省电模块工作的省电模式,还会进一步协商该省电模式下的一系列参数,例如:省电模块工作方式(省电模块常开,或者周期性开启),周期性开启时的唤醒窗口长度和周期、STA监听唤醒信号的信道(即唤醒信道)等等。
在一些实施例中,AP在唤醒信道上发送信号采用竞争发送方式,具体来说,采用增强分布式信道接入机制(enhanced distributed channel access,简称EDCA)中的任意接入类别的参数进行竞争接入,或者使用优先级最高接入类别的参数进行竞争接入,或者使用为该信号定义的特定接入类别的参数进行竞争接入,或者使用点协调帧间间隔(point coordination function interframe space,简称PIFS)进行竞争接入。
图4是本发明实施例信号发送方法的示意图。如图4所示,第一通信节点在一个或多个第一信道410上发送信号420,其中,第一信道410位于第一通信节点的主传输信道和/或辅传输信道内,在发送信号420之前,对所述第一信道410所在的传输信道和/或所述主传输信道进行信道保护。
在一些实施例中,第一信道410为唤醒信道,其带宽小于所在传输信道的带宽,所述信号420的带宽等于所在第一信道的带宽。信号420可以 为唤醒信标帧或唤醒信号。进行信道保护通过以下方式之一实现:
方式1:在发送信号420前发送传统前导430,传统前导430中携带有所述第一通信节点即将占用媒介的时间长度信息;在一些实施例中,传统前导位于信号420的起始位置,或者,传统前导430与信号420之间的发送间隔为短帧间间隔(short interframe space,简称SIFS)。
这里,在发送信号420前,还发送唤醒前导和帧体。
方式2:在发送信号420前发送传统站点可识别的保护帧440,保护帧440携带有第一通信节点即将占用媒介的时间长度信息。在一些实施例中,保护帧440是接收地址是所述第一通信节点的MAC地址的清除发送(Clear to send,简称CTS)帧,或者是仅包含传统前导的空数据帧(Null data Packet)。
方式3:在发送信号420前发送无线帧(图中未示出),所述无线帧中携带有所述第一通信节点即将占用媒介的时间长度信息。在一些实施例中,无线帧中携带的所述第一通信节点即将占用媒介的时间长度信息可以是所述第一通信节点占用主传输信道和/或辅传输信道内的第一信道的时间,在所述时间内,本BSS内仅允许第一通信节点进行传输。
上述即将占用媒介的时间长度,也可称为信道保护时长,在发明人的各实施例中可能出现混用,不做区分。
在方式1中发送传统前导430可以包括以下至少之一:
在发送首个信号之前发送一个传统前导;在每个信号发送前各发送一个传统前导,所述每个信号对应的传统前导相同或不同。
在一些实施例中,发送传统前导430可以包括以下至少之一:在主传输信道内发送传统前导430,传统前导430的带宽等于所述主传输信道的带宽;在第一信道410所在的一个或多个辅传输信道内发送所述前导,传统前导430的带宽等于所在辅传输信道的带宽。
在方式2中,发送保护帧440可以包括以下至少之一:在主传输信道内发送所述保护帧440,所述保护帧440的带宽等于所述主传输信道带宽;在第一信道410所在的一个或多个辅传输信道内发送所述保护帧440,所述保护帧440的带宽等于所在辅传输信道的带宽。
在一些实施例中,可以从多个第一信道中选择预定数量的第一信道发送信号。例如:第一信道的总数为10个,预定数量为1个或2个,则从所有10个第一信道中选择1或者2个第一信道发送信号。也可以从位于同一传输信道的多个第一信道中选择预订数量的第一信道,例如主传输信道内有3个第一信道,辅传输信道内3个第一信道,则从主传输信道内选择1个第一信道发送信号,且从辅传输信道内选择1个第一信道发送信号。
在一些实施例中,第一通信节点在发送信号420之前还可以先发送第一信息,所述第一信息指示以下内容至少之一:为第二通信节点分配的所述第一信道,信号420的发送周期。
相应的,在发明实施例还提供一种应用与第二通信节点的通信方法,包括:第二通信节点在第一信道上接收第一通信节点发送的信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内。在一些实施例中,当所述信号是唤醒信标帧时,所述第二通信节点根据所述唤醒信标帧的发送周期,在发送时刻到达时,在所述第一信道上接收所述唤醒信标帧。
在一些实施例中,第二通信节点在接收所述信号之前,还可以接收第一通信节点发送的第一信息,该第一信息包括以下内容至少之一:所述第一通信节点为所述第二通信节点分配的所述第一信道,所述信号的发送周期。
当所述第一通信节点为所述第二通信节点分配的接收唤醒信号的第一信道不同于接收唤醒信标帧的唤醒信道时,所述第二通信节点在发送唤醒 信号的第一信道上接收唤醒信号,并且在唤醒信标帧的发送时刻到达之前,转换到发送唤醒信标帧的第一信道上接收唤醒信标帧。
图5是本发明具体实施例一的示意图。如图5所示,唤醒信道的数量是一个,位于AP的主传输信道内。AP在唤醒信道上发送唤醒信标帧,唤醒信标帧的带宽等于唤醒信道的带宽。
为了保护唤醒信标帧的传输,AP可以使用传统前导,和/或保护帧进行传输保护。
使用传统前导:AP在唤醒信标帧的前导中包括传统前导,该传统前导位于唤醒信标帧的起始位置,该传统前导用以通知传统终端当前传输的信令需要占用的媒介时间,从而避免接下来的唤醒信标帧的传输受到干扰。传统终端包括遵循以下标准工作的终端:802.11a,802.11ac,802.11ax等。传统前导的带宽等于AP的主传输信道的带宽。
使用保护帧:在唤醒信标帧发送之前(此时唤醒信标帧可以包括传统前导,也可以不包括),AP发送传统站点可识别的保护帧,用以通知传统终端自身需要占用的媒介时间。保护帧的带宽等于AP的主传输信道的带宽。保护帧所预约的信道占用时长不小于AP在唤醒信道上发送唤醒信标帧的时长。保护帧和唤醒信标帧之间的间隔是短帧间间隔SIFS。保护帧例如是一个接收地址是AP自己的MAC地址的CTS帧,或者一个仅包含传统前导的空数据帧。
图6是本发明具体实施例二实现方式一的示意图。如图6所示,唤醒信道的数量是多个,唤醒信道位于AP的主传输信道内。AP在全部唤醒信道上发送唤醒信标帧。AP在多个唤醒信道上同时并行发送唤醒信标帧,每个唤醒信标帧的带宽等于自己所在的唤醒信道的带宽。AP可以使用传统前导,和/或保护帧进行传输保护。唤醒信标帧的前导中包括传统前导时,该传统前导位于唤醒信标帧的起始位置,所有唤醒信道上的唤醒信标帧采用 同一个传统前导,传统前导的带宽等于AP的主传输信道的带宽。AP使用保护帧时,在唤醒信标帧发送之前(此时唤醒信标帧可以包括传统前导,也可以不包括),AP发送保护帧,保护帧和唤醒信标帧之间的间隔是SIFS,保护帧的带宽等于AP的主传输信道的带宽。
图7是本发明具体实施例二实现方式二的示意图。如图7所示,AP在多个唤醒信道上按照预定次序发送多个唤醒信标帧。发送次序可以是按照唤醒信道的中心频点由低至高,或者由高至低,或者按照唤醒信道的逻辑编号的递增或者递减顺序。相邻两个唤醒信道上的唤醒信标帧之间具有一定间隔,例如至少是SIFS。AP使用传统前导,和/或保护帧进行传输保护。使用传统前导时,AP在每个唤醒信标帧的起始位置均发送传统前导,传统前导的带宽等于AP的主传输信道的带宽。使用保护帧进行传输保护时,在首个唤醒信标帧发送之前(此时唤醒信标帧可以包括传统前导,也可以不包括),AP发送传统站点可识别的保护帧,保护帧的带宽等于AP的主传输信道的带宽。保护帧所预约的信道占用时长不小于AP在多个唤醒信道上发送唤醒信标帧的总时长。若AP使用了保护帧,则在AP在多个唤醒信道上发送唤醒信标帧时可以不采用竞争接入方式,直接进行发送。保护帧和首个唤醒信标帧之间的间隔是短帧间间隔SIFS(short interframe space)。除传统前导,和/或保护帧的传输保护方式外,AP还可以在首个唤醒信标帧发送之前发送一个无线帧,该无线帧内携带一个保护期长度,用于通知AP在多个唤醒信道上发送多个唤醒信标帧所占用信道的时长,则在该时长内,该BSS内仅允许AP进行传输。无线帧的带宽等于主传输信道带宽。不同于传统站点可识别的保护帧,此方式并不会限制其他BSS的站点在该信道上AP传输的时间段内进行传输。
图8是本发明实施例三的示意图。如图8所示,唤醒信道的数量是一个,唤醒信道位于AP的辅传输信道内。AP在辅传输信道上的唤醒信道上 发送唤醒信标帧,唤醒信标帧的带宽等于唤醒信道的带宽。为了保护唤醒信标帧的传输,AP可以使用传统前导和/或保护帧进行传输保护。使用传统前导进行传输保护时,在每个唤醒信标帧的起始位置均发送传统前导,传统前导的带宽等于AP的辅传输信道的带宽。使用保护帧进行传输保护时,在唤醒信标帧发送之前(唤醒信标帧可以包括传统前导,也可以不包括),AP发送传统站点可识别的保护帧,保护帧的带宽等于AP的辅传输信道的带宽,保护帧和唤醒信标帧之间的间隔是短帧间间隔SIFS。当使用保护帧时,实施例一和实施例二不同的是,AP在辅传输信道发送唤醒信标帧的同时,在主传输信道发送保护帧,进行信道保护,发送带宽等于主传输信道的带宽。由于AP内的站点,包括AP的竞争接入过程都依据AP主传输信道的忙闲状态执行,AP在辅传输信道上进行发送的同时,在主传输信道进行信道预约,能够避免其他站点认为主传输信道空闲而占用主传输信道进行发送,而此时AP处于发送状态,实际上无法接收其他站点发送的数据,造成不必要的系统损耗和干扰。
图9是本发明实施例四实现方式一的示意图。如图9所示,唤醒信道的数量是多个,唤醒信道位于AP的辅传输信道内,AP在多个唤醒信道上发送唤醒信标帧。AP在辅传输信道的多个唤醒信道上同时并行发送唤醒信标帧,每个唤醒信标帧的带宽等于自己所在的唤醒信道的带宽。为了保护唤醒信标帧的传输,AP使用传统前导和/或保护帧。使用传统前导时,该传统前导位于唤醒信标帧的起始位置,所有唤醒信道上的唤醒信标帧采用同一个传统前导,传统前导的带宽等于AP的辅传输信道的带宽。可选地,在唤醒信标帧发送之前(此时唤醒信标帧可以包括传统前导,也可以不包括)AP发送传统站点可识别的保护帧,保护帧的带宽等于AP的辅传输信道的带宽,保护帧和唤醒信标帧之间的间隔是短帧间间隔SIFS。AP在辅传输信道发送唤醒信标帧的同时,在主传输信道发送保护帧,进行信道保护,发 送带宽等于主传输信道的带宽。
图10是本发明实施例四实现方式二的示意图。如图10所示,AP在辅传输信道的多个唤醒信道上按照预定次序发送多个唤醒信标帧。发送次序:按照唤醒信道的中心频点由低至高,或者由高至低,或者按照唤醒信道的逻辑编号的递增或者递减顺序。相邻两个唤醒信道上的唤醒信标帧之间具有一定间隔,至少是SIFS。AP在多个唤醒信道上竞争发送唤醒信标帧。每个唤醒信标帧的起始位置均为传统前导,传统前导的带宽等于AP的主传输信道的带宽。可选的,在首个唤醒信标帧发送之前,AP发送传统站点可识别的保护帧,用以通知传统终端自身需要占用的媒介时间,保护帧的带宽等于AP的辅传输信道的带宽。保护帧所预约的信道占用时长不小于AP在多个唤醒信道上发送唤醒信标帧的总时长。若AP使用了保护帧,则在AP在多个唤醒信道上发送唤醒信标帧时可以不采用竞争接入方式,直接进行发送。保护帧和首个唤醒信标帧之间的间隔是短帧间间隔SIFS。AP在辅传输信道发送唤醒信标帧的同时,在主传输信道发送保护帧,进行信道保护,发送带宽等于主传输信道的带宽。除传统前导,和/或保护帧的传输保护方式外,AP还可以在首个唤醒信标帧发送之前在主传输信道发送一个无线帧,该无线帧内携带一个保护期长度,用于通知AP在多个唤醒信道上发送多个唤醒信标帧所占用信道的时长,则在该时长内,该BSS内仅允许AP进行传输。并且,若AP在主传输信道发送无线帧,通知信道保护期,在主传输信道不必再发送保护帧执行信道保护,保护帧可以仅在唤醒信道所在的辅传输信道上发送。无线帧的带宽等于主传输信道带宽。
图11是本发明实施例五实现方式一的示意图。如图11所示,AP在主传输信道和辅传输信道的一个或多个唤醒信道上同时并行发送唤醒信标帧,每个唤醒信标帧的带宽等于自己所在的唤醒信道的带宽。为了保护唤醒信标帧的传输,AP使用传统前导和/或保护帧。唤醒信标帧的前导中包括 传统前导,该传统前导位于唤醒信标帧的起始位置,所有唤醒信道上的唤醒信标帧采用同一个传统前导,传统前导的带宽等于所在的主传输信道或者辅传输信道的带宽。可选地,在唤醒信标帧发送之前(此时唤醒信标帧可以包括传统前导,也可以不包括),AP发送传统站点可识别的保护帧,保护帧的带宽等于所在的主传输信道或者辅传输信道的带宽,保护帧和唤醒信标帧之间的间隔是短帧间间隔SIFS。
图12是本发明实施例五实现方式二的示意图。如图12所示,AP在主传输信道和辅传输信道的一个或多个唤醒信道上按照预定次序发送多个唤醒信标帧。发送次序:按照唤醒信道的中心频点由低至高,或者由高至低,或者按照唤醒信道的逻辑编号的递增或者递减顺序。相邻两个唤醒信道上的唤醒信标帧之间具有一定间隔。AP在多个唤醒信道上竞争发送唤醒信标帧。每个唤醒信标帧的前导中均包括传统前导,传统前导的带宽等于唤醒信标帧所在的主传输信道或者辅传输信道的带宽。可选的,在首个唤醒信标帧发送之前(此时唤醒信标帧可以包括传统前导,也可以不包括),AP发送传统站点可识别的保护帧,保护帧的带宽等于保护帧所在的主传输信道或者辅传输信道的带宽。保护帧所预约的信道占用时长不小于AP在多个唤醒信道上发送唤醒信标帧的总时长。若AP使用了保护帧,则在AP在多个唤醒信道上发送唤醒信标帧时可以不采用竞争接入方式,直接进行发送。保护帧和首个唤醒信标帧之间的间隔是短帧间间隔SIFS。除传统前导,和/或保护帧的传输保护方式外,AP还可以在首个唤醒信标帧发送之前在主传输信道发送一个无线帧,该无线帧内携带一个保护期长度,用于通知AP在多个唤醒信道上发送多个唤醒信标帧所占用信道的时长,则在该时长内,该BSS内仅允许AP进行传输。并且,若AP在主传输信道发送无线帧,通知信道保护期,在主传输信道不必再发送保护帧执行信道保护,保护帧可以仅在唤醒信道所在的辅传输信道上发送。无线帧的带宽等于主传输信道 带宽。
图13是本发明实施例六的示意图。如图13所示,AP或系统在主传输信道和每个辅传输信道内配置了多个唤醒信道,AP从多个唤醒信道所在的传输信道中选择一个唤醒信道发送唤醒信标帧。AP向STA通知为STA配置的接收唤醒信号的唤醒信道,以及接收唤醒信标帧的唤醒信道(如果两个信道不是同一个的话)。STA在自己的唤醒信道上接收唤醒信号,并且在唤醒信标帧的发送时刻到达之前,转换到唤醒信标帧发送的信道上接收唤醒信标帧。
图14是本发明实施例七的示意图。在本实施例中,AP在多个唤醒信道上发送唤醒信标帧,每个唤醒信道上的唤醒信标帧的发送周期配置为相同或者不同。如图14所示,AP在主传输信道内有三个唤醒信道,选择其中一个作为发送唤醒信标帧的唤醒信道,在辅传输信道内有三个唤醒信道,选择其中一个作为发送唤醒信标帧的唤醒信道。且主传输信道内的唤醒信道上发送的唤醒信标帧的发送周期与辅传输信道内的唤醒信道上发送的唤醒信标帧的发送周期不同。
图15是本发明实施例八的示意图。如图15所示,AP在主传输信道内配置了三个唤醒信道,在三个唤醒信道上分别按照不同的周期发送唤醒信标帧。具体来说,AP可以将站点根据特定参数进行分组,为每组站点配置唤醒信道,向站点通知为其配置的唤醒信道和唤醒信标帧的发送周期,并根据该组站点的参数配置在该组站点的唤醒信道上发送唤醒信标帧的周期,按照该周期发送唤醒信标帧。将站点进行分组的特定参数可以是站点的同步精度。由于不同站点的软硬件能力不同,站点能够达到的时间精度也不相同,例如某些站点的同步精度为±20ppm(每1秒钟时钟偏移为20微秒),某些站点的同步精度为±40ppm。站点的同步精度不同,可以以不同的周期接收唤醒信标帧进行时间同步和校正,因此,AP可以以不同的周期 发送唤醒信标帧,以节省开销。
本领域的技术人员应当知晓,AP发送的信号是唤醒信标帧时,由于唤醒信标帧具有周期发送的特征,AP根据唤醒信标帧的发送周期,以及唤醒信道的位置和数量,在每次发送时刻到达时,根据本发明各实施例所述的方式执行信号发送和信道保护。AP发送的信号是唤醒信号时,可以根据业务需要,根据本发明各实施例所述的方式执行信号发送和信道保护。
图16是本发明实施例提供的一种通信设备框图。如图16所示,通信设备1600,包括发射器1610和第一处理器1620。发射器1610配置为在一个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内;在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护;第一处理器1620与发射器1610耦合。
在一些实施例中,上述进行信道保护通过以下方式之一实现:
在传输所述信号前发送传统前导,所述传统前导携带有所述第一通信节点即将占用媒介的时间长度信息;
这里,在发送信号420前,还发送唤醒前导和帧体。
在传输所述信号前发送传统站点可识别的保护帧,所述保护帧携带有所述第一通信节点即将占用媒介的时间长度信息;
在传输所述信号前发送无线帧,所述无线帧中携带有所述第一通信节点即将占用媒介的时间长度信息。
本领域技术人员应当知道,本发明实施例一至八中AP的功能可以通过通信设备1600实现。
图17是本发明实施例提供的另一种通信设备框图。如图17所示,通信设备1700,包括接收器1710和第二处理器1720,接收器1710配置为接收第一通信节点发送的信号,所述第一信道位于所述第一通信节点的主传 输信道和/或辅传输信道内;第二处理器1720与所述接收器1710耦合。在一些实施例中,接收器1710还配置为在接收所述信号之前,接收第一通信节点发送的第一信息,所示第一信息包括以下内容至少之一:所述第一通信节点为所述第二通信节点分配的所述第一信道,所述信号的发送周期。
当所述信号是唤醒信标帧时,接收器1710根据所述唤醒信标帧的发送周期,在发送时刻到达时,在所述第一信道上接收所述唤醒信标帧。
当分配的接收唤醒信号的第一信道不同于接收唤醒信标帧的唤醒信道时,所述接收器在发送唤醒信号的第一信道上接收唤醒信号,并且在唤醒信标帧的发送时刻到达之前,转换到发送唤醒信标帧的第一信道上接收唤醒信标帧。
本领域技术人员应当知道,本发明实施例一至八中STA的功能都可以通过通信设备1700实现。
在本发明的上述实施例中,传输信道可以包括了主传输信道(也可称为主信道),也可以包括辅传输信道(也可称为辅信道),本领域技术人员可以根据上下文来确定;各实施例中的传统前导仅作为对传统设备可以解析的前导的一种描述,不做其他限定。对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述各单元以软件功能单一的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个 存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
相应的,本发明实施例还提供一种存储介质,其上存储有计算机程序,该计算机程序被处理器运行时,执行:
在一个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内,在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护。
或该计算机程序被处理器运行时,执行:
在第一信道上接收第一通信节点发送的信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例中,第一通信节点在一个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内,在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护;第二通信节点在第一信道上接收第一通信节点发送的信号。如此,实现了在多个第一信道上发送信号,并且在信号发送了过程中对发送信号的信道进行了保护,降低了系统损耗和干扰。

Claims (34)

  1. 一种信号发送方法,包括:
    第一通信节点在一个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内,在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护。
  2. 根据权利要求1所述的方法,其中,所述第一信道的带宽小于所在传输信道的带宽,所述信号的带宽等于所在第一信道的带宽。
  3. 根据权利要求1所述的方法,其中,所述信号为唤醒信标帧或唤醒信号。
  4. 根据权利要求1所述的方法,其中,所述进行信道保护通过以下方式之一实现:
    在发送所述信号前发送传统前导,所述传统前导携带有所述第一通信节点即将占用媒介的时间长度信息;
    在发送所述信号前发送传统站点可识别的保护帧,所述保护帧携带有所述第一通信节点即将占用媒介的时间长度信息;
    在发送所述信号前发送无线帧,所述无线帧中携带有所述第一通信节点即将占用媒介的时间长度信息。
  5. 根据权利要求4所述的方法,其中,所述传统前导位于所述信号的起始位置,或者,所述传统前导与所述信号之间的发送间隔为短帧间间隔。
  6. 根据权利要求4所述的方法,其中,所述保护帧是接收地址为所述第一通信节点的媒体访问控制MAC地址的清除发送CTS帧,或者是仅包含所述传统前导的空数据帧。
  7. 根据权利要求4所述的方法,其中,所述无线帧中携带的所述第 一通信节点即将占用媒介的时间长度信息是指所述第一通信节点占用主传输信道和/或辅传输信道内的第一信道的时间,在所述时间内,本基本服务集BSS内仅允许所述第一通信节点进行传输。
  8. 根据权利要求4所述的方法,其中,所述发送传统前导包括以下至少之一:
    在发送首个信号之前发送一个传统前导;
    在每个信号发送前各发送一个传统前导,所述每个信号对应的传统前导相同或不同。
  9. 根据权利要求4所述的方法,其中,所述发送传统前导包括以下至少之一:
    在主传输信道内发送所述传统前导,所述传统前导的带宽等于所述主传输信道的带宽;
    在所述第一信道所在的一个或多个辅传输信道内发送所述前导,所述传统前导的带宽等于所在辅传输信道的带宽。
  10. 根据权利要求4所述的方法,其中,所述发送保护帧包括以下至少之一:
    在主传输信道内发送所述保护帧,所述保护帧的带宽等于所述主传输信道带宽;
    在所述第一信道所在的一个或多个辅传输信道内发送所述保护帧,所述保护帧的带宽等于所在辅传输信道的带宽。
  11. 根据权利要求1所述的方法,其中,所述在一个或多个第一信道上发送信号,包括:在多个第一信道上并行发送信号,或者按照预定次序发送多个信号。
  12. 根据权利要求11所述的方法,其中,所述预定次序包括:按照第一信道中心频点由低至高的顺序,或者按照第一信道中心频点由高至 低的顺序,或者按照第一信道的逻辑编号的递增或者递减顺序。
  13. 根据权利要求1所述的方法,其中,所述在一个或多个第一信道上发送信号,包括,在一个或多个第一信道上采用竞争接入的方式发送所述信号。
  14. 根据权利要求1所述的方法,其中,所述信号是唤醒信标帧,所述在一个或多个第一信道上发送信号包括:根据唤醒信标帧的发送周期,在发送时刻到达时,在所述一个或多个第一信道上发送所述唤醒信标帧。
  15. 根据权利要求1所述的方法,其中,所述在一个或多个第一信道上发送信号,包括,从多个第一信道中选择预定数量的第一信道发送信号。
  16. 根据权利要求15所述的方法,其中,所述从多个第一信道中选择预定数量的第一信道,包括:从多个位于同一传输信道的所述第一信道中选择预定数量的第一信道。
  17. 根据权利要求1至16所述的方法,其中,所述在一个或多个第一信道上发送信号,包括:通过一个或多个所述第一信道发送唤醒信标帧,每个所述第一信道上的唤醒信标帧的发送周期配置为相同或者不同。
  18. 根据权利要求1至16任一项所述的方法,其中,所述方法还包括:所述第一通信节点根据特定参数将多个与其通信的第二通信站点进行分组,并为所述每组第二通信节点配置唤醒信标帧的发送周期,所述发送周期相同或不同。
  19. 根据权利要求18所述的方法,其中,所述第一通信节点为每组所述第二通信节点配置所述第一信道,并按照所述发送周期在每组站点对应的所述第一信道上发送唤醒信标帧。
  20. 根据权利要求18所述的方法,所述特定参数是站点的同步精度。
  21. 根据权利要求1至16任一项所述的方法,其中,所述方法还包括,所述第一通信节点在发送所述信号之前发送第一信息,所述第一信息指示以下内容至少之一:为所述第二通信节点分配的所述第一信道,所述信号的发送周期。
  22. 一种通信方法,应用于第二通信节点,包括:所述第二通信节点在第一信道上接收第一通信节点发送的信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内。
  23. 根据权利要求22所述的方法,其中,所述第二通信节点在接收所述信号之前,接收第一通信节点发送的第一信息,所示第一信息包括以下内容至少之一:所述第一通信节点为所述第二通信节点分配的所述第一信道、所述信号的发送周期。
  24. 根据权利要求22所述的方法,其中,所述第一信道的带宽小于所在传输信道的带宽,所述信号的带宽等于所在第一信道的带宽。
  25. 根据权利要求22所述的方法,其中,所述信号为唤醒信标帧或唤醒信号。
  26. 根据权利要求22所述的方法,其中,当所述信号是唤醒信标帧时,所述第二通信节点根据所述唤醒信标帧的发送周期,在发送时刻到达时,在所述第一信道上接收所述唤醒信标帧。
  27. 根据权利要求22至26任一项所述的方法,其中,所述第二通信节点接收所述信号,包括:当所述第一通信节点为所述第二通信节点分配的接收唤醒信号的第一信道不同于接收唤醒信标帧的唤醒信道时,所述第二通信节点在发送唤醒信号的第一信道上接收唤醒信号,并且在唤醒信标帧的发送时刻到达之前,转换到发送唤醒信标帧的第一信道上接收唤醒信标帧。
  28. 一种通信设备,包括发射器和处理器,所述发射器配置为在一 个或多个第一信道上发送信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内;在传输所述信号之前,对所述第一信道所在的传输信道和/或所述主传输信道进行信道保护;所述处理器与所述发射器耦合。
  29. 根据权利要求28所述的通信设备,其中,所述进行信道保护通过以下方式之一实现:
    在传输所述信号前发送传统前导,所述传统前导携带有所述第一通信节点即将占用媒介的时间长度信息;
    在传输所述信号前发送传统站点可识别的保护帧,所述保护帧携带有所述第一通信节点即将占用媒介的时间长度信息;
    在传输所述信号前发送无线帧,所述无线帧中携带有所述第一通信节点即将占用媒介的时间长度信息。
  30. 一种通信设备,包括接收器和处理器,所述接收器配置为接收第一通信节点发送的信号,所述第一信道位于所述第一通信节点的主传输信道和/或辅传输信道内;所述处理器与所述接收器耦合。
  31. 根据权利要求30所述的通信设备,其中,所述接收器还配置为在接收所述信号之前,接收第一通信节点发送的第一信息,所示第一信息包括以下内容至少之一:所述第一通信节点为所述第二通信节点分配的所述第一信道,所述信号的发送周期。
  32. 根据权利要求30所述的通信设备,其中,当所述信号是唤醒信标帧时,所述接收器根据所述唤醒信标帧的发送周期,在发送时刻到达时,在所述第一信道上接收所述唤醒信标帧。
  33. 根据权利要求30至32任一项所述的通信设备,其中,当分配的接收唤醒信号的第一信道不同于接收唤醒信标帧的唤醒信道时,所述接收器在发送唤醒信号的第一信道上接收唤醒信号,并且在唤醒信标帧 的发送时刻到达之前,转换到发送唤醒信标帧的第一信道上接收唤醒信标帧。
  34. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求1至21任一项所述的方法;
    或所述程序运行时执行上述权利要求22至26所述的方法。
PCT/CN2018/083214 2017-05-11 2018-04-16 信号发送方法、通信设备及存储介质 WO2018205799A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18799268.0A EP3624491A4 (en) 2017-05-11 2018-04-16 SIGNAL SENDING PROCESS, COMMUNICATION DEVICE AND STORAGE MEDIA
US16/612,378 US11483813B2 (en) 2017-05-11 2018-04-16 Signal transmission method, communication device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710329202.4 2017-05-11
CN201710329202.4A CN108880767B (zh) 2017-05-11 2017-05-11 信号发送方法及通信设备

Publications (1)

Publication Number Publication Date
WO2018205799A1 true WO2018205799A1 (zh) 2018-11-15

Family

ID=64105256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083214 WO2018205799A1 (zh) 2017-05-11 2018-04-16 信号发送方法、通信设备及存储介质

Country Status (4)

Country Link
US (1) US11483813B2 (zh)
EP (1) EP3624491A4 (zh)
CN (1) CN108880767B (zh)
WO (1) WO2018205799A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856331B1 (en) * 2019-09-10 2020-12-01 Cypress Semiconductor Corporation Devices, systems, and methods for mitigating aggressive medium reservations
CN114271009A (zh) * 2020-03-10 2022-04-01 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
US20220400439A1 (en) * 2021-06-09 2022-12-15 Verizon Patent And Licensing Inc. Side channel mechanism for controlling data flows
US11716362B1 (en) * 2021-12-29 2023-08-01 The Nielsen Company (Us), Llc Methods and apparatus to de-authenticate and reroute client sessions for media monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926591A (zh) * 2003-12-19 2007-03-07 摩托罗拉公司 在用于实时通信的无线局域网中的非调度功率节约传送方法
CN102469561A (zh) * 2010-11-16 2012-05-23 北京中电华大电子设计有限责任公司 一种802.11n低功耗实现方法
CN103098514A (zh) * 2010-09-13 2013-05-08 诺基亚公司 信道预留中的合作

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110237239A1 (en) * 2010-03-25 2011-09-29 Industrial Technology Research Institiute Method and apparatus for selectively muting a control channel for a femtocell for interference avoidance
US9014105B2 (en) * 2010-11-30 2015-04-21 Stmicroelectronics, Inc. 80MHZ/160MHZ transmission opportunity (TXOP) protection in 802.11ac transmissions
US9781745B2 (en) * 2012-03-19 2017-10-03 Tyco Fire & Security Gmbh Scalable protocol for large WSNS having low duty cycle end nodes
CN102740363B (zh) * 2012-06-20 2015-01-28 东南大学 一种无线传感器网络数据采集方法
US9313739B2 (en) * 2012-10-23 2016-04-12 Qualcomm Incorporated Systems and methods for low power wake up signal and operations for WLAN
US9351250B2 (en) * 2013-01-31 2016-05-24 Qualcomm Incorporated Methods and apparatus for low power wake up signal and operations for WLAN
US9350520B2 (en) * 2013-11-27 2016-05-24 Broadcom Corporation Full bandwidth protection mechanism for co-existence of single/multi-channel wide-bandwidth wireless systems
US10218555B2 (en) * 2015-03-06 2019-02-26 Intel IP Corporation Usage of early bits in wireless communications
US9992741B2 (en) * 2016-01-11 2018-06-05 Intel IP Corporation Device and method of providing grant frame for bandwidth scheduling
US10178694B2 (en) * 2016-03-01 2019-01-08 Intel IP Corporation Random access with carrier sensing
US10356759B2 (en) * 2016-03-11 2019-07-16 Intel Corporation Parameter encoding techniques for wireless communication networks
US10897739B2 (en) * 2016-08-23 2021-01-19 Electronics And Telecommunications Research Institute Method for operating communication node supporting low power mode in wireless LAN
US10313888B2 (en) * 2016-09-30 2019-06-04 Intel Corporation Methods and devices for channel selection and access coordination
KR102531753B1 (ko) * 2016-11-08 2023-05-12 주식회사 윌러스표준기술연구소 장거리 전송을 위한 무선 통신 단말과의 무선 통신 방법 및 이를 사용하는 무선 통신 단말
KR102462737B1 (ko) * 2017-05-05 2022-11-02 인터디지탈 패튼 홀딩스, 인크 웨이크업 라디오들에 대한 협대역 다중 채널 전송을 위한 절차들 및 메커니즘들
WO2018208058A1 (ko) * 2017-05-08 2018-11-15 한국전자통신연구원 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926591A (zh) * 2003-12-19 2007-03-07 摩托罗拉公司 在用于实时通信的无线局域网中的非调度功率节约传送方法
CN103098514A (zh) * 2010-09-13 2013-05-08 诺基亚公司 信道预留中的合作
CN102469561A (zh) * 2010-11-16 2012-05-23 北京中电华大电子设计有限责任公司 一种802.11n低功耗实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624491A4 *

Also Published As

Publication number Publication date
EP3624491A4 (en) 2021-03-03
CN108880767B (zh) 2023-02-24
EP3624491A1 (en) 2020-03-18
CN108880767A (zh) 2018-11-23
US20210160825A1 (en) 2021-05-27
US11483813B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
US9756660B2 (en) Method and apparatus for accessing channel in WLAN system
US9877276B2 (en) Method and apparatus for transmitting and receiving power save-polling frame and response frame in wireless LAN system
JP5990327B2 (ja) 無線lanシステムにおいてチャネルアクセス制御方法及び装置
AU2013364741B2 (en) Backoff method and device in slot-type channel access of wireless LAN system
RU2603499C2 (ru) Способ и устройство для выполнения доступа к каналу в системе беспроводной lan
US9426832B2 (en) Methods and arrangements to coordinate communications in a wireless network
US20180020410A1 (en) Power saving for wireless local area network
US9848381B2 (en) Channel access method and apparatus in wireless LAN system
WO2018205799A1 (zh) 信号发送方法、通信设备及存储介质
KR20150104568A (ko) 무선랜 시스템에서 제한된 액세스 윈도우 기반 채널 액세스 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018799268

Country of ref document: EP

Effective date: 20191211