WO2018205045A1 - Haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals - Google Patents

Haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals Download PDF

Info

Publication number
WO2018205045A1
WO2018205045A1 PCT/CL2017/000012 CL2017000012W WO2018205045A1 WO 2018205045 A1 WO2018205045 A1 WO 2018205045A1 CL 2017000012 W CL2017000012 W CL 2017000012W WO 2018205045 A1 WO2018205045 A1 WO 2018205045A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
vestibular
head
dummy
haptic
Prior art date
Application number
PCT/CL2017/000012
Other languages
Spanish (es)
French (fr)
Inventor
Miguel Angel BUSTAMANTE SUBIABRE
Original Assignee
BERTIN VILLABLANCA, Alejandro Esteban
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERTIN VILLABLANCA, Alejandro Esteban filed Critical BERTIN VILLABLANCA, Alejandro Esteban
Priority to PCT/CL2017/000012 priority Critical patent/WO2018205045A1/en
Publication of WO2018205045A1 publication Critical patent/WO2018205045A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts

Definitions

  • the present invention is directed to the Vestibular Simulation Haptic System that provides an experience of simulation of the behavior of phenomena related to human balance for the training of future professionals in the area of health. Specifically, it is directed to a system that is composed of a phantom that comprises a head or a head and mannequin trunk that has the ability to rotate 360 ° with respect to its longitudinal axis and from a horizontal position to vertical (90 °) when The dummy is arranged on a stretcher and a sensor module that captures the movements applied on the dummy's head, and communicates this information to a Central Processing Unit, and then, through a specific software of the invention, the information captured by A sensor module is interpreted by the Central Processing Unit and reproduces these movements in real time in a three-dimensional model (3D model), anatomically correct of the inner ear and its semicircular canals. It also comprises a second sensor module connected to an embedded module that controls an engine module that allows simulating the movement of the eyes on the dummy.
  • diagrams and bibliography are used to learn the sense of balance and patient and / or student volunteers are needed to train the skills necessary for the evaluation of postural nystagmus, vertigo rehabilitation therapy and rehearsal vestibular system scanning procedures.
  • simulation equipment that covers the inner ear and balance systems, which support the learning and visualization of the biological process implicit in vestibular physiology and the vertigo phenomenon, with the exception of some models of Increased size of the inner ear composed of a transparent material inside which have a liquid with a density similar to that of the real fluid, in addition to containing spheres or cubes that resemble loose otoliths within the inner ear canals.
  • the internal ear posture adjustment monitoring system comprises a virtual reality unit, an internal ear posture capture unit and a central processing unit, in which the virtual reality unit is used to construct a reality image virtual posture of an inner ear of the human being;
  • the inner ear posture capture unit is used to obtain movement data when the inner ear posture of the human body changes;
  • the central processing unit is used to receive the motion data sent by the internal ear posture capture unit and to drive the virtual reality unit to adjust the virtual reality image of the human ear's internal body posture and a corresponding otolith movement path.
  • an individualized virtual reality model is generated in the inner ear on the basis of virtual reality, a somatosensory sensor is used to control the generated model, the spatial posture of the inner ear and the otolith movement of a individual in different position situations completely and specifically in real time, and a precise individualized guide is established for an otolith restoration method.
  • the system of the invention corresponds to a simulator in a phantom and that of publications in a kind of belt that has a sensor module incorporated to capture the movement of a person's inner ear.
  • the system of the invention has a sensor module comprising an accelerometer that is located on the head of a dummy, specifically in the zero sagittal section at the height of the ears.
  • patent publications are intended to be applied in specific clinical cases for each patient, instead the proposed invention to the pedagogical area for training future professionals in different simulated clinical cases through training in different replacement and release maneuvers of particles and, additionally, it is useful to inform patients about their treatment without them being moved before starting therapy.
  • patent publications require yes or yes of a patient from which to obtain the image of their inner ear, in addition to using it to place the sensors on their head and obtain the patient's movement. Unlike the foregoing, the invention does not require the use of patients since a phantom (dummy) is used. In the same way, patent publications use the information of the sensors to obtain the path of the otoliths in a virtual model of the specific inner ear for each patient.
  • the invention uses the information of the sensor module to recreate (in real time) the movement of the dummy's head, in a three-dimensional model of the inner ear where inside of this model are the otoliths that will move inside the semicircular canals depending on the movement of the three-dimensional model of the inner ear, and then Our, and unlike the cited patents, proceed to simulate on an screen the ocular response (nystagmic movements) of a person when subjected to the movements in each maneuver of replacement and release of particles.
  • the invention has the ability to represent in real time within the 3D model, the change in inclination of the vestibular sensors responsible for interpreting gravitational changes, linear and angular accelerations anatomical structures (3D model) or linear and angular velocity sensors typical of the vestibular system, which are the utricule and saccular macules, in addition to the vestibular blisters of each semicircular canal. This tilt shift is consistent with the direction of endolymphatic flow.
  • the invention has an ocular simulation sub-system that operates in conjunction with the simulation of the ear, which makes it unique in its kind.
  • the problem that the system of the invention intends to solve is to avoid the use of patients for the study of vertigo and its maneuvers of rehabilitation and testing of procedures of exploration of the vestibular system. Many times the schedules arranged for clinical practice do not coincide with patients with vertigo. , leaving the student without his corresponding practice. Moreover, the exam itself can only be carried out once per session for each person, which is why, if the student makes a mistake, he will not have another opportunity to observe a correct result in the same patient, and even worse, he can cause an even greater problem to the patient, because generally, other diseases are associated. From another point of view, the use of patients can only be carried out in clinical care centers, with prior permission by informed consent, so if a patient refuses attention by a student, they must be treated by a professional, undermining the opportunity for the student to learn.
  • Figure 1 Representative scheme of the 3D Vestibular Simulation System that is part of the invention.
  • Figure 2 Representative scheme of the Eye Simulation System that is part of the invention.
  • Figure 3 Representative scheme of the Compact Vestibular Simulation Haptic System which is a variation of the invention and fulfills the same functions.
  • Figure 4 Representative figure showing the components of the invention, with which the user interacts (dummy, stretcher and computer).
  • Figure 5 Corresponds to an illustration of how the 3D image of the ear on the dummy is displayed on the screen.
  • a Haptic Vestibular Simulation System that provides an experience of simulation of the behavior of phenomena related to human balance for the training of future professionals in the area of health. It consists of a 3D vestibular simulation sub-system (1) and an ocular simulation subsystem (2).
  • the Haptic Vestibular Simulation System comprises a phantom that is composed of a head or a head with a mannequin body (42) real size (either full body or half body comprising head and trunk, with or without arms) of a person adult arranged on a stretcher, desk or desk.
  • a mannequin body 42 real size (either full body or half body comprising head and trunk, with or without arms) of a person adult arranged on a stretcher, desk or desk.
  • the preferred mode is only the mannequin head, it is not placed on a stretcher, desk or work table, but is manipulated or taken directly by the user, allowing the learning maneuvers to be carried out without being limited to a fixed place.
  • This mannequin (in the case of the half body) is embedded in the stretcher, table or desk in an articulated form and its base sits on a pivot that allows it to rotate on its own axis up to 360 °, in addition, it can remain. in a vertical position (simulating a seated patient) and move up to 90 ° towards the feet of the stretcher and 90 ° towards the head of the same, being in a horizontal position (lying down).
  • the neck of the dummy (422) is articulated, which allows the user to move the head of the dummy forward, backward, left and right, besides being able to print 90 ° turns to the left and 90 ° to the right.
  • a vestibular simulation subsystem is installed inside the dummy's head, comprising a sensor module (11), which is made up of at least one sensor which can correspond to a single accelerometer or an accelerometer and a gyroscope or an accelerometer and A gyroscope and a compass.
  • This sensor module captures the movements applied on the head of the dummy and sends the information to a Central Processing Unit (12), which can be a computer outside the dummy, connected wired (USB cable) or wirelessly ( via a Wifi or Bluetooth module arranged on the dummy's head).
  • This sensor module can be connected to an embedded module to process the information of the sensors and send the information in quaternions to the Central Processing Unit (12).
  • the information sent by said sensor module (11) is interpreted by a Central Processing Unit (12) and reproduces these movements in real time in a three-dimensional model (3D model) anatomically correct of the inner ear and its semicircular canals, displayed on a screen (13) that will display the images (see figure 5) according to the movements applied on the head of the dummy.
  • This software also allows the user, in the same deployment, to practice the movements specific to the different maneuvers for the treatment of Benign Paroxysmal Postural Vertigo (for example: the Eplay Maneuver, Semont, lempert and Gufoni among others).
  • the Central Processing Unit (12) when the user chooses, in the Central Processing Unit (12), to practice a certain maneuver on the dummy, it will begin to perform the movements of the maneuver on the dummy and on the screen the real-time movement of the three-dimensional model and will indicate to the user if the movements applied to the dummy are performed correctly or not according to the selected maneuver, in addition to dynamically showing the movement of the otoliths and the ampules within the semicircular canals of the inner ear in the image 3D and in a two-dimensional image of the semicircular canal that is affected, in addition to showing the movement of the macules (utricular and saccular) and the nystagmic movement of the eyes as will be explained later, according to the steps corresponding to the maneuver that is practiced.
  • the sensor module in the dummy also allows the user to practice the acceleration movements that the expert delivers for the Cephalic Impulse Test (HIT) exams, delivering motion, speed and frequency graphs with which the movements on the dummy, allowing the user to compare the results of the movements he performs on the dummy with the expected results that should be applied to a real patient.
  • An ocular simulation sub-system (2) comprising a second sensor module (21), similar to the sensor module (11) used to create movement in the 3D model of the ear is also installed on the dummy's head internal.
  • This second sensor module (21) captures the movements applied to the dummy's head, and communicates this information to an embedded module (22) where there is also software specially created for the Vestibular Simulation Haptic System of the invention.
  • the ocular simulation sub-system (2) also includes a selector (25) used to select the type of test that will be performed on the dummy.
  • This selector (25) is also communicated with said embedded module (22) so that it processes all the information received and thus drives a motor module (23) (which can be composed of two or more motors) that control the movement of the eyes (411) of the dummy, which will move according to the natural response of the human eyes to each movement of the head if the maneuvers were applied for the treatment of Benign Paroxysmal Postural Vertigo or when practicing HIT.
  • a motor module (23) which can be composed of two or more motors
  • modules (11) and (21) work independently forming part of the Haptic Vestibular Simulation System of the invention, which allows the same to use all its functionalities when both systems are working at the same time.
  • modules (11) and (21) transmit the position information and acceleration of the dummy and send it to the Central Processing Unit (12) and to the embedded module (22) respectively, while the Central Processing Unit processes the information of the module (11) and uses it to move the 3D model in real time and the 2D model of the inner ear and the path of the otoliths in the semicircular canals
  • the embedded module (22) uses the information of the second module (21) and the information of the selector (25) to determine the speed and direction of rotation on the motor system (23) to perform the correct movement of the eyes according to the maneuver that is applied.
  • the Central Processing Unit processes the motion and acceleration information of the sensor module (11) and uses it to generate two-dimensional graphs that will be superimposed on each test and compared with the ideal movement, speed and frequency to perform the HIT, while the embedded module (22) uses the information from the second sensor module (21) and the selector information (25) to determine the speed and direction of rotation on the motor system (23) to perform the correct movement of the eyes (in terms of direction of movement) according to the acceleration and direction of rotation that is applied to the head of the dummy.
  • the Haptic Vestibular Simulation System is composed of the 3D vestibular simulation sub-system (1) and the Ocular simulation sub-system (2). These are separated to achieve a higher speed of analysis and response for the three-dimensional model and for eye movement. Now, if the Speed of analysis and response is not a major problem for development, there is the possibility of using a single system composed of the union of the sub-systems (1) and (2), this single system is called "Compact Vestibular Simulation Haptic System " (3).
  • This system uses a single sensor module (31) similar to the sensor module (11) and (21) that captures the movements applied to the dummy's head, and communicates this information to an embedded module (32), similar to the embedded module (22).
  • the embedded module (32) also receives information on the position of a selector (37).
  • the embedded module (32) processes all the information received and thus drives a motor system (38) (similar to the motor system (23)) that controls the movement of the eyes (411) of the dummy.
  • the embedded module (32) is responsible for sending to the Central Processing Unit (33) all the information received from the sensor module (31) and from the selector (37), if necessary, to move in real time the 3D model and the 2D model of the inner ear and the path of the otoliths in the semicircular canals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Rehabilitation Tools (AREA)

Abstract

The invention relates to a haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals, which comprises a phantom made up of a head or a head plus a body of a life-sized mannequin (whether a whole body or half a body comprising head and torso, with or without arms) of an adult person placed on a stretcher, desk or work table, comprising a 3D vestibular simulation sub-system and an ocular simulation sub-system, in which the two sub-systems are arranged inside the head of said mannequin and connected to a central processing unit that includes at least one specific software program, so that the information collected by the two sub-systems is interpreted by said central processing unit and reproduces in real time the movements in a three-dimensional model of the inner ear and its semi-circular channels, as well as a real-time representation of the vestibulo-ocular reflex via the movement of a 3D model of the eyes and the movement of the eyes in said mannequin, which is built into a stretcher, table or desk in an articulated fashion and the base thereof is seated on a pivot that allows it to rotate about its own axis through 360º, and in addition can remain in vertical position (simulating a seated patient) and move up to 90º towards the foot of the stretcher and 90º towards the head of same, ending up in horizontal position (lying down).

Description

"Sistema háptico de simulación vestibular que entrega una experiencia de simulación, del comportamiento de los fenómenos relacionados con el equilibrio humano para el entrenamiento de futuros profesionales en el área de la salud"  "Haptic vestibular simulation system that provides an experience of simulation, of the behavior of phenomena related to human balance for the training of future professionals in the area of health"
La presente invención se dirige a Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación, del comportamiento de los fenómenos relacionados con el equilibrio humano para el entrenamiento de futuros profesionales en el área de la salud. Específicamente, se dirige a un sistema que está compuesto por un fantoma que comprende una cabeza o una cabeza y tronco de maniquí que tiene la capacidad de girar en 360° respecto a su eje longitudinal y desde una posición horizónal a vertical (90°) cuando el maniquí es dispuesto en una camilla y un módulo de sensores que captan los movimientos aplicados sobre la cabeza del maniquí, y comunica esta Información a una Unidad de Procesamiento Central, para luego, través de un software específico de la invención, la información captada por un módulo de sensores sea interpretada por la Unidad de Procesamiento Central y reproducir en tiempo real estos movimientos en un modelo tridimensional (modelo 3D), anatómicamente correcto del oído interno y sus canales semicirculares. Además comprende un segundo módulo de sensores conectado a un módulo embebido que controla a un módulo de motores que permiten simular el movimiento de los ojos en el maniquí. The present invention is directed to the Vestibular Simulation Haptic System that provides an experience of simulation of the behavior of phenomena related to human balance for the training of future professionals in the area of health. Specifically, it is directed to a system that is composed of a phantom that comprises a head or a head and mannequin trunk that has the ability to rotate 360 ° with respect to its longitudinal axis and from a horizontal position to vertical (90 °) when The dummy is arranged on a stretcher and a sensor module that captures the movements applied on the dummy's head, and communicates this information to a Central Processing Unit, and then, through a specific software of the invention, the information captured by A sensor module is interpreted by the Central Processing Unit and reproduces these movements in real time in a three-dimensional model (3D model), anatomically correct of the inner ear and its semicircular canals. It also comprises a second sensor module connected to an embedded module that controls an engine module that allows simulating the movement of the eyes on the dummy.
HOJA DE REEMPLAZO (Regía 26) ARTE PREVIO REPLACEMENT SHEET (Regía 26) PRIOR ART
En la actualidad, el desarrollo de competencias profesionales en la salud, se resuelve mediante la práctica clínica con pacientes reales. Pero últimamente, el pensamiento ético profesional en Chile y el mundo, apunta al uso de la simulación clínica por medio de fantomas y realidad virtual, para evitar la manipulación de pacientes en la etapa de entrenamiento profesional, con el fin de evitar malas prácticas y errores por parte de los estudiantes sobre los pacientes. At present, the development of professional competences in health is resolved through clinical practice with real patients. But lately, professional ethical thinking in Chile and the world, points to the use of clinical simulation through phantoms and virtual reality, to avoid manipulating patients in the professional training stage, in order to avoid bad practices and errors by students about patients.
En el área docente, se utilizan diagramas y bibliografía para el aprendizaje del sentido del equilibrio y se necesita de pacientes y/o alumnos voluntarios para el entrenamiento de las destrezas necesarias para la evaluación del nistagmo postural , la terapia de rehabilitación del vértigo y ensayo de procedimientos de exploración del sistema vestibular. Por lo menos en el área de otorrinolaringología, no existen equipos de simulación que abarquen el oído interno y sistemas de equilibrio, que apoyen al aprendizaje y visualización del proceso biológico implícito en la fisiología vestibular y el fenómeno del vértigo, a excepción de algunas maquetas de tamaño aumentado del oído interno compuestas de un material transparente en cuyo interior poseen un líquido con una densidad similar a la del fluido real, además de contener esferas o cubos que asemejan a los otolitos sueltos dentro de los canales del oído interno. Estas maquetas permiten visualizar y comprender cómo se mueven los otolitos, dentro de los canales vestibulares, cuando se mueve el oído interno en una dirección u otra. Además de lo anterior, existen fantomas diseñados para la simulación de procedimientos de enfermería, los cuales tienen un orificio en el área del pabellón auditivo, con la finalidad de practicar la aplicación de gotas óticas o irrigación del canal auditivo, sin la capacidad de que el fantoma pueda responder a este procedimiento. In the teaching area, diagrams and bibliography are used to learn the sense of balance and patient and / or student volunteers are needed to train the skills necessary for the evaluation of postural nystagmus, vertigo rehabilitation therapy and rehearsal vestibular system scanning procedures. At least in the area of otolaryngology, there are no simulation equipment that covers the inner ear and balance systems, which support the learning and visualization of the biological process implicit in vestibular physiology and the vertigo phenomenon, with the exception of some models of Increased size of the inner ear composed of a transparent material inside which have a liquid with a density similar to that of the real fluid, in addition to containing spheres or cubes that resemble loose otoliths within the inner ear canals. These models allow to visualize and understand how otoliths move, within the vestibular channels, when the inner ear moves in a address or other. In addition to the above, there are symptoms designed for the simulation of nursing procedures, which have a hole in the area of the auditory pavilion, with the purpose of practicing the application of ear drops or irrigation of the auditory canal, without the ability of the phantom can respond to this procedure.
En este contexto, el mercado de la simulación clínica ha sido un éxito para cubrir esta necesidad, con el desarrollo de diferentes equipos que abarcan distintas áreas médicas, pero esto no ocurre dentro del área audiológica, y específicamente dentro del estudio y ensayo de la rehabilitación del vértigo postural paroxístico benigno. Por lo tanto, el estudio y puesta en práctica de estas competencias, para la adquisición de destrezas esenciales para la rehabilitación del vértigo, se utilizan voluntarios, o peor aún, pacientes reales con síntomas muy molestos y expuestos a maniobras físicas que generan aún más, sensaciones vertiginosas muy poco toleradas y que no son replicables. Si bien existen muchas tecnologías que ayudan a los profesionales a simular el comportamiento de órganos o sistemas internos y/o visualizar la reacción del paciente frente a un determinado tratamiento o estimulación, la mayoría de estas tecnología no están disponibles o no están diseñadas para ser utilizadas por estudiantes a libre disposición para aprender y practicar con ellas. Dentro del arte previo más cercano podemos citar las publicaciones de patentes CN10393271 1 y CN204016295, describen un sistema de monitorización de ajuste de postura de oído interno basado en realidad virtual y un dispositivo de captura de postura de oído interno. El sistema de monitorización de ajuste de postura de oído interno comprende una unidad de realidad virtual, una unidad de captura de postura de oído interno y una unidad de procesamiento central, en la que la unidad de realidad virtual se utiliza para construir una imagen de realidad virtual de la postura de un oído interno del ser humano; La unidad de captura de postura del oído interno se utiliza para obtener datos de movimiento cuando la postura del oído interno del cuerpo humano cambia; La unidad de procesamiento central se utiliza para recibir los datos de movimiento enviados por la unidad de captura de postura del oído interno y para impulsar la unidad de realidad virtual para ajustar la imagen de realidad virtual de la postura del oído interno del cuerpo humano y un sendero de movimiento de otolito correspondiente. De esta manera, se genera un modelo individualizado de realidad virtual en el oído interno sobre la base de la realidad virtual, se utiliza un sensor somatosensorial para controlar el modelo generado, se presenta la postura espacial del oído interno y el movimiento de otolito de un individuo en diferentes situaciones de posición de forma completa y específica en tiempo real, y se establece una guía individualizada precisa para un método de restauración de otolitos. A diferencia de las dos publicaciones mencionadas, el sistema de la invención correponde a un simulador en un fantoma y el de las publicaciones en una especie de cintillo que tiene incorporado un módulo de sensores para captar el movimiento del oído interno de una persona. El sistema de la invención posee un módulo de sensores que comprende un acelerómetro que va ubicado en la cabeza de un maniquí, específicamente en el corte sagital cero a la altura de los oídos. Además, las publicaciones de patentes se dirigen a ser aplicadas en casos clínicos específicos para cada paciente, en cambio la invención propuesta al área pedagógica para el entrenamiento de futuros profesionales en distintos casos clínicos simulados a través del entrenamiento en distintas maniobras de reposición y liberación de partículas y, adicionalmente, es útil para informar a los pacientes acerca de su tratamiento sin que éstos sean movidos previo a comenzar la terapia. In this context, the clinical simulation market has been a success to meet this need, with the development of different teams that cover different medical areas, but this does not occur within the audiological area, and specifically within the study and trial of rehabilitation of benign paroxysmal postural vertigo. Therefore, the study and implementation of these skills, for the acquisition of essential skills for the rehabilitation of vertigo, volunteers are used, or worse, real patients with very annoying symptoms and exposed to physical maneuvers that generate even more, vertiginous sensations very poorly tolerated and not replicable. Although there are many technologies that help professionals simulate the behavior of internal organs or systems and / or visualize the patient's reaction to a certain treatment or stimulation, most of these technologies are not available or are not designed to be used. by students freely available to learn and practice with them. Within the closest prior art we can cite the patent publications CN10393271 1 and CN204016295, describe an internal ear posture adjustment adjustment system based on virtual reality and an internal ear posture capture device. The internal ear posture adjustment monitoring system comprises a virtual reality unit, an internal ear posture capture unit and a central processing unit, in which the virtual reality unit is used to construct a reality image virtual posture of an inner ear of the human being; The inner ear posture capture unit is used to obtain movement data when the inner ear posture of the human body changes; The central processing unit is used to receive the motion data sent by the internal ear posture capture unit and to drive the virtual reality unit to adjust the virtual reality image of the human ear's internal body posture and a corresponding otolith movement path. In this way, an individualized virtual reality model is generated in the inner ear on the basis of virtual reality, a somatosensory sensor is used to control the generated model, the spatial posture of the inner ear and the otolith movement of a individual in different position situations completely and specifically in real time, and a precise individualized guide is established for an otolith restoration method. Unlike the two publications mentioned, the system of the invention corresponds to a simulator in a phantom and that of publications in a kind of belt that has a sensor module incorporated to capture the movement of a person's inner ear. The system of the invention has a sensor module comprising an accelerometer that is located on the head of a dummy, specifically in the zero sagittal section at the height of the ears. In addition, patent publications are intended to be applied in specific clinical cases for each patient, instead the proposed invention to the pedagogical area for training future professionals in different simulated clinical cases through training in different replacement and release maneuvers of particles and, additionally, it is useful to inform patients about their treatment without them being moved before starting therapy.
Por otra parte, las publicaciones de patentes citadas requieren sí o sí de un paciente del cual obtener la imagen de su oído interno, además de utilizarlo para colocar los sensores en su cabeza y obtener el movimiento del paciente. A diferencia de lo anterior, la invención no requiere el uso de pacientes ya que se utiliza un fantoma (maniquí). De la misma forma, las publicaciones de patentes utilizan la información de los sensores para obtener la trayectoria de los otolitos en un modelo virtual del oído interno específico para cada paciente. En cambio la invención utiliza la información del módulo de sensores para recrear (en tiempo real) el movimiento de la cabeza del maniquí, en un modelo tridimensional del oído interno donde dentro de este modelo se encuentran los otolitos que se moverán dentro de los canales semicirculares dependiendo del movimiento del modelo tridimensional del oído interno, para luego Nuestro, y a diferencia del de las patentes citadas, proceder a simular en una pantalla la respuesta ocular (movimientos nistágmicos) de una persona al ser sometida a los movimientos en cada maniobra de reposición y liberación de partículas. On the other hand, the cited patent publications require yes or yes of a patient from which to obtain the image of their inner ear, in addition to using it to place the sensors on their head and obtain the patient's movement. Unlike the foregoing, the invention does not require the use of patients since a phantom (dummy) is used. In the same way, patent publications use the information of the sensors to obtain the path of the otoliths in a virtual model of the specific inner ear for each patient. Instead, the invention uses the information of the sensor module to recreate (in real time) the movement of the dummy's head, in a three-dimensional model of the inner ear where inside of this model are the otoliths that will move inside the semicircular canals depending on the movement of the three-dimensional model of the inner ear, and then Our, and unlike the cited patents, proceed to simulate on an screen the ocular response (nystagmic movements) of a person when subjected to the movements in each maneuver of replacement and release of particles.
La invención posee la capacidad de poder representar en tiempo real dentro del modelo 3D, el cambio de inclinación de los sensores vestibulares encargados de interpretar los cambios gravitacionales, aceleraciones lineales y angulares las estructuras anatómicas (del modelo 3D) o sensores de velocidad lineal y angular propios del sistema vestibular, las cuales son las maculas utricúlar y sacular, además de las ampollas vestibulares de cada canal semicircular. Este desplazamiento de inclinación es acorde a la dirección del flujo endolinfático. The invention has the ability to represent in real time within the 3D model, the change in inclination of the vestibular sensors responsible for interpreting gravitational changes, linear and angular accelerations anatomical structures (3D model) or linear and angular velocity sensors typical of the vestibular system, which are the utricule and saccular macules, in addition to the vestibular blisters of each semicircular canal. This tilt shift is consistent with the direction of endolymphatic flow.
Por último, la invención cuenta con un sub-sistema de simulación ocular que opera en conjunto con la simulación del oído, lo cual lo hace único en su especie. Finally, the invention has an ocular simulation sub-system that operates in conjunction with the simulation of the ear, which makes it unique in its kind.
La problemática que pretende resolver el sistema de la invención es evitar el uso de pacientes para el estudio del vértigo y sus maniobras de rehabilitación y ensayo de procedimientos de exploración del sistema vestibular, Muchas veces los horarios dispuestos para práctica clínica no coinciden con pacientes con vértigo, dejando al alumno sin su práctica correspondiente. Más aun, el examen en sí solo puede llevarse a cabo una sola vez por sesión para cada persona, motivo por el cual, si el alumno se equivoca no tendrá otra oportunidad de observar un resultado correcto en el mismo paciente, y aun peor, puede provocar un problema aún mayor al paciente, debido a que generalmente, se asocian otras enfermedades. Desde otro punto de vista, la utilización de pacientes solo puede llevarse a cabo en centros de atención clínica, con previo permiso por consentimiento informado, con lo cual si un paciente se niega a la atención por parte de un alumno, deberá ser atendido por un profesional, socavando la oportunidad de que el alumno aprenda. The problem that the system of the invention intends to solve is to avoid the use of patients for the study of vertigo and its maneuvers of rehabilitation and testing of procedures of exploration of the vestibular system. Many times the schedules arranged for clinical practice do not coincide with patients with vertigo. , leaving the student without his corresponding practice. Moreover, the exam itself can only be carried out once per session for each person, which is why, if the student makes a mistake, he will not have another opportunity to observe a correct result in the same patient, and even worse, he can cause an even greater problem to the patient, because generally, other diseases are associated. From another point of view, the use of patients can only be carried out in clinical care centers, with prior permission by informed consent, so if a patient refuses attention by a student, they must be treated by a professional, undermining the opportunity for the student to learn.
De esta manera, la necesidad de una experiencia que se pueda repetir varias veces para adquirir destreza por ensayo y error y sin peligro de dañar a un paciente real, más la capacidad de llevar esta experiencia a la misma sala de clases, se hace evidente. Con este sistema se ofrece una herramienta que lograra evitar el uso de pacientes, entregando una experiencia segura y replicable. In this way, the need for an experience that can be repeated several times to acquire skill by trial and error and without danger of harming a real patient, plus the ability to take this experience to the same classroom, becomes evident. This system offers a tool that will avoid the use of patients, delivering a safe and replicable experience.
00012 00012
8  8
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Esquema representativo del Sistema de Simulación Vestibular 3D que forma parte del invento. Figure 1: Representative scheme of the 3D Vestibular Simulation System that is part of the invention.
Figura 2: Esquema representativo del Sistema de Simulación Ocular que forma parte del invento. Figure 2: Representative scheme of the Eye Simulation System that is part of the invention.
Figura 3: Esquema representativo del Sistema Háptico de Simulación Vestibular Compacto la cual es una variación del invento y que cumple las mismas funciones. Figure 3: Representative scheme of the Compact Vestibular Simulation Haptic System which is a variation of the invention and fulfills the same functions.
Figura 4: Figura representativa donde se muestran los componentes del invento, con los que interactúa el usuario (maniquí, camilla y computador). Figure 4: Representative figure showing the components of the invention, with which the user interacts (dummy, stretcher and computer).
Figura 5: Corresponde a una ilustración de cómo se despliega en la pantalla la imagen 3D del óido en el maniquí. Figure 5: Corresponds to an illustration of how the 3D image of the ear on the dummy is displayed on the screen.
DESCRIPCION DETALLADA DE LA INVENCION DETAILED DESCRIPTION OF THE INVENTION
Se describe un Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación, del comportamiento de los fenómenos relacionados con el equilibrio humano para el entrenamiento de futuros profesionales en el área de la salud. Está compuesto por un sub-sistema de simulación vestibular 3D (1) y un subsistema de simulación ocular (2). A Haptic Vestibular Simulation System is described that provides an experience of simulation of the behavior of phenomena related to human balance for the training of future professionals in the area of health. It consists of a 3D vestibular simulation sub-system (1) and an ocular simulation subsystem (2).
El Sistema Háptico de Simulación Vestibular comprende un fantoma que está compuesto por una cabeza o una cabeza con cuerpo de maniquí (42) tamaño real (ya sea de cuerpo entero o de medio cuerpo comprendiendo cabeza y tronco, con o sin brazos) de una persona adulta dispuesto sobre una camilla, escritorio o mesa de trabajo. Cuando la modalidad preferida es sólo la cabeza de maniquí, no se dispone sobre una camilla, escritorio o mesa de trabajo si no que es manipulada o tomada directamente por el usuario, permitiendo efectuar las maniobras de aprendizaje sin estar limitado a un lugar fijo. Este maniquí (en el caso del de medio cuerpo) está empotrado en la camilla, mesa o escritorio en forma articulada y su base se asienta en un pivote que le permite girar sobre su propio eje hasta en 360°, además, puede permanecer. en posición vertical (simulando un paciente sentado) y moverse hasta 90° hacia los pies de la camilla y 90° hacia la cabecera de la misma, quedando en posición horizontal (recostado). El cuello del maniquí (422) es articulado, lo que le permiten al usuario poder mover la cabeza del maniquí hacia adelante, atrás, izquierda y derecha, además de poder imprimirle giros de 90° hacia la izquierda y 90° hacia la derecha. The Haptic Vestibular Simulation System comprises a phantom that is composed of a head or a head with a mannequin body (42) real size (either full body or half body comprising head and trunk, with or without arms) of a person adult arranged on a stretcher, desk or desk. When the preferred mode is only the mannequin head, it is not placed on a stretcher, desk or work table, but is manipulated or taken directly by the user, allowing the learning maneuvers to be carried out without being limited to a fixed place. This mannequin (in the case of the half body) is embedded in the stretcher, table or desk in an articulated form and its base sits on a pivot that allows it to rotate on its own axis up to 360 °, in addition, it can remain. in a vertical position (simulating a seated patient) and move up to 90 ° towards the feet of the stretcher and 90 ° towards the head of the same, being in a horizontal position (lying down). The neck of the dummy (422) is articulated, which allows the user to move the head of the dummy forward, backward, left and right, besides being able to print 90 ° turns to the left and 90 ° to the right.
Dentro de la cabeza del maniquí se encuentra instalado un subsistema de simulación vestibular que comprende un módulo de sensores (11), que está conformado por al menos un sensor los cuáles pueden corresponder a un único acelerómetro o un acelerómetro y un giroscopio o un acelerómetro y un giroscopio y un compás. Este módulo de sensores capta los movimientos aplicados sobre la cabeza del maniquí y envía la información hacia una Unidad de Procesamiento Central (12), la cual puede ser un computador fuera del maniquí, conectado de forma alámbrica (cable USB) o de forma inalámbrica (a través de un módulo Wifi o Bluetooth dispuesto en la cabeza del maniquí). Este módulo de sensores, puede, conectarse a un módulo embebido para procesar la información de los sensores y enviar la información en cuaterniones hacia la Unidad de Procesamiento Central (12). A través de un software, especialmente creado para el Sistema Háptico de Simulación Vestibular de la invención, la información enviada por dicho módulo de sensores (11) es interpretada por una Unidad de Procesamiento Central (12) y reproduce en tiempo real estos movimientos en un modelo tridimensional (modelo 3D) anatómicamente correctos del oído interno y sus canales semicirculares, desplegado en una pantalla (13) que desplegará las imágenes (ver figura 5) de acuerdo a los movimientos aplicados sobre la cabeza del maniquí. Este software permite además al usuario, en un mismo despliegue, practicar los movimientos específicos de las distintas maniobras para el tratamiento del Vértigo Postural Paroxístico Benigno (por ejemplo: la Maniobra de Eplay, Semont, lempert y Gufoni entre otras). Es decir, cuando el usuario escoge, en la Unidad de Procesamiento Central (12), practicar una maniobra determinada sobre el maniquí, éste comenzará a realizar los movimientos propios de la maniobra sobre el maniquí y en pantalla se verá el movimiento en tiempo real del modelo tridimensional y le indicará al usuario si los movimientos aplicados al maniquí se realizan de manera correcta o no de acuerdo a la maniobra seleccionada, además de mostrar dinámicamente el movimiento de los otolitos y las ámpulas dentro de los canales semicirculares del oído interno en la imagen 3D y en una imagen en dos dimensiones del canal semicircular que se ve afectado, además de mostrar el movimiento de las máculas (utriculares y saculares) y el movimiento nistágmico de los ojos como se explicará mas adelante, de acuerdo a los pasos correspondientes a la maniobra que se practica. El módulo de sensores en el maniquí también permite al usuario practicar los movimientos de aceleración que entregan la expertíz para los exámenes de Prueba de Impulso Cefálico (HIT por sus siglas en inglés), entregando gráficas de movimiento, velocidad y frecuencia con que se realizan los movimientos sobre el maniquí, permitiendo que el usuario pueda comparar los resultados de los movimientos que él realiza sobre el maniquí con los resultados esperados que debiese aplicarse sobre un paciente real. En la cabeza del maniquí, se encuentra también instalado un sub-sistema de simulación ocular (2) que comprende un segundo módulo de sensores (21), similar al módulo de sensores (11) utilizado para crear el movimiento en el modelo 3D del oído interno. Este segundo módulo de sensores (21) capta los movimientos aplicados sobre la cabeza del maniquí, y comunica esta información a un módulo embebido (22) donde también existe un software creado especialmente para el Sistema Háptico de Simulación Vestibular de la invención. El sub-sistema de simulación ocular (2), además comprende un selector (25) utilizado para seleccionar el tipo de prueba que se realizará en el maniquí. Este selector (25) se encuentra igualmente comunicado con dicho módulo embebido (22) de modo que éste procesa toda la información recibida y con esto acciona un módulo de motores (23) (que puede estar compuesto por dos o más motores) que controlan el movimiento de los ojos (411) del maniquí, los cuales se moverán de acuerdo a la respuesta natural de los ojos humanos ante cada movimiento de la cabeza si se le aplicasen las maniobras para el tratamiento del Vértigo Postural Paroxístico Benigno o al practicar el HIT. A vestibular simulation subsystem is installed inside the dummy's head, comprising a sensor module (11), which is made up of at least one sensor which can correspond to a single accelerometer or an accelerometer and a gyroscope or an accelerometer and A gyroscope and a compass. This sensor module captures the movements applied on the head of the dummy and sends the information to a Central Processing Unit (12), which can be a computer outside the dummy, connected wired (USB cable) or wirelessly ( via a Wifi or Bluetooth module arranged on the dummy's head). This sensor module can be connected to an embedded module to process the information of the sensors and send the information in quaternions to the Central Processing Unit (12). Through software, specially created for the Vestibular Simulation Haptic System of the invention, the information sent by said sensor module (11) is interpreted by a Central Processing Unit (12) and reproduces these movements in real time in a three-dimensional model (3D model) anatomically correct of the inner ear and its semicircular canals, displayed on a screen (13) that will display the images (see figure 5) according to the movements applied on the head of the dummy. This software also allows the user, in the same deployment, to practice the movements specific to the different maneuvers for the treatment of Benign Paroxysmal Postural Vertigo (for example: the Eplay Maneuver, Semont, lempert and Gufoni among others). That is, when the user chooses, in the Central Processing Unit (12), to practice a certain maneuver on the dummy, it will begin to perform the movements of the maneuver on the dummy and on the screen the real-time movement of the three-dimensional model and will indicate to the user if the movements applied to the dummy are performed correctly or not according to the selected maneuver, in addition to dynamically showing the movement of the otoliths and the ampules within the semicircular canals of the inner ear in the image 3D and in a two-dimensional image of the semicircular canal that is affected, in addition to showing the movement of the macules (utricular and saccular) and the nystagmic movement of the eyes as will be explained later, according to the steps corresponding to the maneuver that is practiced. The sensor module in the dummy also allows the user to practice the acceleration movements that the expert delivers for the Cephalic Impulse Test (HIT) exams, delivering motion, speed and frequency graphs with which the movements on the dummy, allowing the user to compare the results of the movements he performs on the dummy with the expected results that should be applied to a real patient. An ocular simulation sub-system (2) comprising a second sensor module (21), similar to the sensor module (11) used to create movement in the 3D model of the ear is also installed on the dummy's head internal. This second sensor module (21) captures the movements applied to the dummy's head, and communicates this information to an embedded module (22) where there is also software specially created for the Vestibular Simulation Haptic System of the invention. The ocular simulation sub-system (2) also includes a selector (25) used to select the type of test that will be performed on the dummy. This selector (25) is also communicated with said embedded module (22) so that it processes all the information received and thus drives a motor module (23) (which can be composed of two or more motors) that control the movement of the eyes (411) of the dummy, which will move according to the natural response of the human eyes to each movement of the head if the maneuvers were applied for the treatment of Benign Paroxysmal Postural Vertigo or when practicing HIT.
Los módulos (11) y (21) trabajan de forma independiente formando parte del Sistema Háptico de Simulación Vestibular de la invención, lo cual permite al mismo utilizar todas sus funcionalidades cuando ambos sistemas están trabajando al mismo tiempo. Al practicar las maniobras para el tratamiento del Vértigo Postural Paroxístico Benigno, los módulos (11) y (21) transmiten la información de posición y aceleración del maniquí y la envían a la Unidad de Procesamiento Central (12) y al módulo embebido (22) respectivamente, mientras la Unidad de Procesamiento Central procesa la información del módulo (11) y la utiliza para mover en tiempo real el modelo 3D y el modelo 2D del oído interno y la trayectoria de los otolitos en los canales semicirculares, el módulo embebido (22) utiliza la información del segundo módulo (21) y la información del selector (25) para determinar la velocidad y sentido de giro sobre el sistema de motores (23) para realizar el correcto movimiento de los ojos de acuerdo a la maniobra que se aplica. Al practicar los exámenes de Prueba de Impulso Cefálico (HIT), la Unidad de Procesamiento Central procesa la información de movimiento y aceleración del módulo de sensores (11) y la utiliza para generar gráficas en dos dimensiones que se superpondrán en cada prueba y se compararán con el movimiento, velocidad y frecuencia ideal para realizar el HIT, mientras que el módulo embebido (22) utiliza la información del segundo módulo de sensores (21 ) y la información del selector (25) para determinar la velocidad y sentido de giro sobre el sistema de motores (23) para realizar el correcto movimiento de los ojos (en cuanto a sentido de movimiento) de acuerdo a la aceleración y sentido de giro que se aplica sobre la cabeza del maniquí. The modules (11) and (21) work independently forming part of the Haptic Vestibular Simulation System of the invention, which allows the same to use all its functionalities when both systems are working at the same time. When performing the maneuvers for the treatment of Benign Paroxysmal Postural Vertigo, modules (11) and (21) transmit the position information and acceleration of the dummy and send it to the Central Processing Unit (12) and to the embedded module (22) respectively, while the Central Processing Unit processes the information of the module (11) and uses it to move the 3D model in real time and the 2D model of the inner ear and the path of the otoliths in the semicircular canals, the embedded module (22) uses the information of the second module (21) and the information of the selector (25) to determine the speed and direction of rotation on the motor system (23) to perform the correct movement of the eyes according to the maneuver that is applied. When practicing the Cephalic Impulse Test (HIT) exams, the Central Processing Unit processes the motion and acceleration information of the sensor module (11) and uses it to generate two-dimensional graphs that will be superimposed on each test and compared with the ideal movement, speed and frequency to perform the HIT, while the embedded module (22) uses the information from the second sensor module (21) and the selector information (25) to determine the speed and direction of rotation on the motor system (23) to perform the correct movement of the eyes (in terms of direction of movement) according to the acceleration and direction of rotation that is applied to the head of the dummy.
Por lo tanto el Sistema Háptico de Simulación Vestibular está compuesto por el sub-sistema de simulación vestibular 3D (1) y el sub-sistema de simulación Ocular (2). Estos se encuentran separados para lograr una mayor velocidad de análisis y respuesta para el modelo tridimensional y para el movimiento ocular. Ahora, si la velocidad de análisis y respuesta no es mayor problema para el desarrollo, existe la posibilidad de utilizar un único sistema compuesto por la unión de los sub-sistemas (1) y (2), este único sistema se denomina "Sistema Háptico de Simulación Vestibular Compacto" (3). Este sistema utiliza un único módulo de sensores (31) similar al módulo de sensores (11) y (21) que capta los movimientos aplicados sobre la cabeza del maniquí, y comunica esta información a un módulo embebido (32), similar al módulo embebido (22). El módulo embebido (32) también recibe información de la posición de un selector (37). El módulo embebido (32) procesa toda la información recibida y con esto acciona ün sistema de motores (38) (similar al sistema de motores (23)) que controlan el movimiento de los ojos (411) del maniquí. Además el módulo embebido (32) se encarga de enviar a la Unidad de Procesamiento Central (33) toda la información recibida desde el módulo de sensores (31) y desde el selector (37), si fuese necesario, para mover en tiempo real el modelo 3D y el modelo 2D del oído interno y la trayectoria de los otolitos en los canales semicirculares. Therefore, the Haptic Vestibular Simulation System is composed of the 3D vestibular simulation sub-system (1) and the Ocular simulation sub-system (2). These are separated to achieve a higher speed of analysis and response for the three-dimensional model and for eye movement. Now, if the Speed of analysis and response is not a major problem for development, there is the possibility of using a single system composed of the union of the sub-systems (1) and (2), this single system is called "Compact Vestibular Simulation Haptic System " (3). This system uses a single sensor module (31) similar to the sensor module (11) and (21) that captures the movements applied to the dummy's head, and communicates this information to an embedded module (32), similar to the embedded module (22). The embedded module (32) also receives information on the position of a selector (37). The embedded module (32) processes all the information received and thus drives a motor system (38) (similar to the motor system (23)) that controls the movement of the eyes (411) of the dummy. In addition, the embedded module (32) is responsible for sending to the Central Processing Unit (33) all the information received from the sensor module (31) and from the selector (37), if necessary, to move in real time the 3D model and the 2D model of the inner ear and the path of the otoliths in the semicircular canals.

Claims

REIVINDICACIONES
1. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación, del comportamiento de los fenómenos relacionados con el equilibrio humano para el entrenamiento de futuros profesionales en el área de la salud, el cual está CARACTERIZADO porque comprende un fantoma que está compuesto por una cabeza o una cabeza más cuerpo de maniquí de tamaño real (ya sea de cuerpo entero o de medio cuerpo comprendiendo cabeza y tronco, con o sin brazos) de una persona adulta dispuesto sobre una carnilla, escritorio o mesa de trabajo cuando, un sub-sistema de simulación vestibular 3D y un sub-sistema de simulación ocular, en que ambos subsistemas se encuentran dispuestos dentro de la cabeza de dicho maniquí y conectados a una Unidad de Procesamiento Central que tiene incorporado al menos un software específico, de modo que ía información captada por ambos sub-sistemas es interpretada por dicha Unidad de Procesamiento Central y reproduce en tiempo real los movimientos en un modelo tridimensional del oído interno y sus canales semicirculares, además de una representación en tiempo real del reflejo vestibulo-ocular a través del movimiento de un modelo 3D de ojos, y del movimiento de los ojos en dicho maniquí, el cual está empotrado en una camilla, mesa o escritorio en forma articulada y su base se asienta en un pivote que le permite girar sobre su propio eje hasta en 360°, además, puede permanecer en posición vertical (simulando un paciente sentado) y moverse hasta 90° hacia los pies de la camilla y 90° hacia la cabecera de la misma, quedando en posición horizontal (recostado). 1. Haptic Vestibular Simulation System that provides an experience of simulation, of the behavior of phenomena related to human balance for the training of future professionals in the area of health, which is CHARACTERIZED because it comprises a phantom that is composed of a head or head plus life-size mannequin body (either full-length or half-body comprising head and trunk, with or without arms) of an adult person arranged on a book, desk or desk when, a sub- 3D vestibular simulation system and an ocular simulation sub-system, in which both subsystems are arranged inside the head of said dummy and connected to a Central Processing Unit that has at least one specific software incorporated, so that the information captured by both sub-systems is interpreted by said Central Processing Unit and reproduces in real time the movements s in a three-dimensional model of the inner ear and its semicircular canals, in addition to a real-time representation of the vestibulo-ocular reflex through the movement of a 3D model of eyes, and the movement of the eyes in said dummy, which is embedded on an articulated stretcher, table or desk and its base sits on a pivot that allows it to rotate on its own axis up to 360 °, in addition, it can remain in a vertical position (simulating a seated patient) and move up to 90 ° towards the feet of the stretcher and 90 ° towards the head of the same, being in a horizontal position (lying down).
2. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a la reivindicación 1 CARACTERIZADO porque dicho sub-sistema de simulación vestibular comprende un módulo de sensores que está conformado por al menos un sensor los cuáles pueden corresponder a un único acelerómetro o un acelerómetro y un giroscopio o un acelerómetro y un giroscopio y un compás, y envía la información hacia dicha Unidad de2. Haptic Vestibular Simulation System that delivers a simulation experience according to claim 1 CHARACTERIZED because said vestibular simulation sub-system comprises a sensor module that is made up of at least one sensor which may correspond to a single accelerometer or an accelerometer and a gyroscope or an accelerometer and a gyroscope and a compass, and sends the information to said Unit of
Procesamiento Central y una pantalla que despliega las imágenes de acuerdo a los movimientos aplicados sobre la cabeza de dicho maniquí. Central Processing and a screen that displays the images according to the movements applied on the head of said dummy.
3. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a la reivindicación 1 CARACTERIZADO porque dicho sub-sistema de simulación vestibular comprende un módulo de sensores que está conformado por al menos un sensor los cuáles pueden corresponder a un único acelerómetro o un acelerómetro y un giroscopio o un acelerómetro y un giroscopio y un compás y este módulo de sensores comprende conectarse a un módulo embebido para procesar la información de los sensores y enviar la información en cuaterniones hacia dicha Unidad de Procesamiento Central y una pantalla que despliega las imágenes de acuerdo a los movimientos aplicados sobre la cabeza de dicho maniquí. 3. Haptic Vestibular Simulation System that delivers a simulation experience according to claim 1 CHARACTERIZED because said vestibular simulation sub-system comprises a sensor module that is made up of at least one sensor which can correspond to a single accelerometer or an accelerometer and a gyroscope or an accelerometer and a gyroscope and a compass and this sensor module comprises connecting to an embedded module to process the information of the sensors and send the information in quaternions to said Central Processing Unit and a screen that displays the images according to the movements applied on the head of said dummy.
4. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a las reivindicaciones 1 y 2 CARACTERIZADO porque dicho sub-sistema de simulación ocular (2) comprende un segundo módulo de sensores, similar a dicho módulo de sensores del sub-sistema de simulación vestibular utilizado para crear el movimiento en el modelo 3D del oído interno, en que dicho segundo módulo de sensores (21) capta los movimientos aplicados sobre la cabeza del maniquí, y comunica esta información a dicho módulo embebido (22) provisto por un software específico; un selector (25) utilizado para seleccionar el tipo de prueba que se realizará en dicho maniquí y está igualmente comunicado con dicho módulo embebido (22); y un sistema de motores (23) que controlan el movimiento de los ojos (411 ) de dicho maniquí. 4. Haptic Vestibular Simulation System that delivers a simulation experience according to claims 1 and 2 CHARACTERIZED because said ocular simulation sub-system (2) comprises a second sensor module, similar to said sub-system sensor module of vestibular simulation used to create the movement in the 3D model of the inner ear, in which said second sensor module (21) captures the movements applied on the dummy's head, and communicates this information to said embedded module (22) provided by a specific software; a selector (25) used to select the type of test that will be performed on said dummy and is also communicated with said embedded module (22); and a system of motors (23) that control the movement of the eyes (411) of said dummy.
5. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a la reivindicación 1 CARACTERIZADO porque dicho maniquí es articulado, de modo que puede mover su cabeza hacia adelante, atrás, izquierda y derecha, además de poder imprimirle giros de 90° hacia la izquierda y 90° hacia la derecha. 5. Haptic Vestibular Simulation System that delivers a simulation experience according to claim 1 CHARACTERIZED because said dummy is articulated, so that it can move its head forward, backward, left and right, in addition to printing 90 ° turns to the left and 90 ° to the right.
6. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a las reivindicaciones 1 a 4 CARACTERIZADO porque dichos módulos de sensores son independientes entre sí. 6. Haptic Vestibular Simulation System that delivers a simulation experience according to claims 1 to 4 CHARACTERIZED because said sensor modules are independent of each other.
7. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a la reivindicación 1 CARACTERIZADO porque dicha Unidad de Procesamiento Central comprende un computador conectado fuera de dicho maniquí. 7. Haptic Vestibular Simulation System that delivers a simulation experience according to claim 1 CHARACTERIZED in that said Central Processing Unit comprises a computer connected outside said dummy.
8. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a la reivindicación 7 CARACTERIZADO porque dicha Unidad de Procesamiento Central se conecta de forma alámbrica (USB) con dicho maniquí. 8. Haptic Vestibular Simulation System that delivers a simulation experience according to claim 7 CHARACTERIZED because said Central Processing Unit is wired (USB) connected to said dummy.
9. Sistema Háptico de Simulación Vestibular que entrega una experiencia de simulación de acuerdo a la reivindicación 7 CARACTERIZADO porque dicha Unidad de Procesamiento Central se conecta de forma inalámbrica (WiFi o Bluetooth) con dicho maniquí. 9. Haptic Vestibular Simulation System that delivers a simulation experience according to claim 7 CHARACTERIZED in that said Central Processing Unit is connected wirelessly (WiFi or Bluetooth) with said dummy.
PCT/CL2017/000012 2017-05-08 2017-05-08 Haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals WO2018205045A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2017/000012 WO2018205045A1 (en) 2017-05-08 2017-05-08 Haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2017/000012 WO2018205045A1 (en) 2017-05-08 2017-05-08 Haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals

Publications (1)

Publication Number Publication Date
WO2018205045A1 true WO2018205045A1 (en) 2018-11-15

Family

ID=64104309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2017/000012 WO2018205045A1 (en) 2017-05-08 2017-05-08 Haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals

Country Status (1)

Country Link
WO (1) WO2018205045A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065094A (en) * 2004-08-27 2006-03-09 Giyourin Cho Eye movement simulation system, robot for eye movement simulation, and eye movement simulation system using virtual reality
CN201285616Y (en) * 2008-10-10 2009-08-05 崔勇 Demonstration model for canal reposition procedure
CN106128256A (en) * 2016-07-25 2016-11-16 张扬 The emulation full head model of semicircular duct otolith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065094A (en) * 2004-08-27 2006-03-09 Giyourin Cho Eye movement simulation system, robot for eye movement simulation, and eye movement simulation system using virtual reality
CN201285616Y (en) * 2008-10-10 2009-08-05 崔勇 Demonstration model for canal reposition procedure
CN106128256A (en) * 2016-07-25 2016-11-16 张扬 The emulation full head model of semicircular duct otolith

Similar Documents

Publication Publication Date Title
KR102045260B1 (en) Simulation method for training first aid treatment using augmented reality and virtual reality
US20100248200A1 (en) System, Method and Computer Program for Virtual Reality Simulation for Medical Procedure Skills Training
ES2679125T3 (en) System for interactive visualization in real time of muscular forces and joint pairs in the human body
ES2597809T3 (en) Simulation system for training in arthroscopic surgery
WO2009000939A1 (en) Laparoscopic surgical simulator
US20120270197A1 (en) Physiology simulation garment, systems and methods
US20100099067A1 (en) Mannequin for Medical Training
US20140038153A1 (en) Patient simulating mannequin eye module
WO2000008619A1 (en) Training device for teaching emergency help techniques for a person in an emergency situation
DE10130485A1 (en) Simulation device for simulating biomechanical properties of human and animal body sections
WO2017113022A1 (en) Medical simulator for the simulation of puncture operations
Tavkar et al. Simulation in dentistry
SE536175C2 (en) Extraction doll and method of using the extraction doll
ES2909745T3 (en) Surgical act simulation system
US20210312834A1 (en) Vibrotactile Method, Apparatus and System for Training and Practicing Dental Procedures
CN109545020B (en) Training device and training method for fracture reduction
JP2014134762A (en) Dental mannequin simulation device and system
WO2018205045A1 (en) Haptic system for vestibular simulation which provides an experience for simulating the behaviour of phenomena related with human balance for training future healthcare professionals
ES2534140B1 (en) Procedure and device for learning and training operations of laparoscopic surgery and similar interventions
US20220319355A1 (en) Apparatuses for simulating dental procedures and methods
WO2014178702A1 (en) Bovine gynaecological exam simulator for diagnosis of the oestrous cycle
US11403963B2 (en) Automated dental articulator and method for training and practicing dental procedures
WO2023089696A1 (en) Medical simulator
CN113539036A (en) Immersive neurosurgery simulation method with real touch
Zainal et al. The Applications of Augmented Reality (AR) and Virtual Reality (VR) in Teaching Medical and Dentistry Students: A Review on Advantages and Disadvantages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909240

Country of ref document: EP

Kind code of ref document: A1