WO2018203686A1 - Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same - Google Patents

Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same Download PDF

Info

Publication number
WO2018203686A1
WO2018203686A1 PCT/KR2018/005149 KR2018005149W WO2018203686A1 WO 2018203686 A1 WO2018203686 A1 WO 2018203686A1 KR 2018005149 W KR2018005149 W KR 2018005149W WO 2018203686 A1 WO2018203686 A1 WO 2018203686A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
ack
transmission
information
harq
Prior art date
Application number
PCT/KR2018/005149
Other languages
French (fr)
Korean (ko)
Inventor
박한준
김선욱
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202310140700.XA priority Critical patent/CN116318567A/en
Priority to CN201880017517.8A priority patent/CN110431905B/en
Priority to EP23156194.5A priority patent/EP4203590A1/en
Priority to EP18794894.8A priority patent/EP3471489B1/en
Priority to JP2019535359A priority patent/JP6845330B2/en
Priority claimed from KR1020180051192A external-priority patent/KR102004271B1/en
Publication of WO2018203686A1 publication Critical patent/WO2018203686A1/en
Priority to US16/248,653 priority patent/US10568124B2/en
Priority to US16/658,731 priority patent/US11032838B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the following description relates to a wireless communication system, and a method for transmitting and receiving a scheduling request between a terminal and a base station in a wireless communication system and an apparatus supporting the same.
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime, anywhere, is also being considered in next-generation communications.
  • MTC Massive Machine Type Communications
  • a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
  • An object of the present invention is to provide a method for transmitting and receiving a scheduling request between a terminal and a base station in a wireless communication system and apparatuses supporting the same.
  • the present invention provides a method for transmitting and receiving a scheduling request between a terminal and a base station in a wireless communication system and apparatuses supporting the same.
  • a method for transmitting a scheduling request (SR) by a terminal to a base station in a wireless communication system the first configuration information for one or more first uplink resources for the SR transmission from the base station
  • UCI uplink control information
  • N is a natural number greater than 1
  • the first configuration information may be received through higher layer signaling.
  • the second configuration information may be received through downlink control information (DCI).
  • DCI downlink control information
  • the bit information indicating the SR information for the N SR configuration may indicate information about one SR configuration among the N SR configuration and positive SR information corresponding to the one SR configuration. .
  • the bit information indicating the SR information for the N SR settings may include a plurality of bits indicating whether the SR information corresponding to each of the N SR settings is a positive SR or a negative SR. It may consist of bits.
  • each of the plurality of bits may have a value of 1 when the corresponding SR information is a positive SR and a value of 0 when the corresponding SR information is a negative SR.
  • the plurality of bits may be configured in an order based on identification information of the N SR settings.
  • the N first uplink resources and the second uplink resource may overlap all or part of the time domain.
  • the second uplink resource may correspond to a physical uplink control channel (PUCCH) resource for transmitting the UCI.
  • PUCCH physical uplink control channel
  • bit information may be transmitted in the second uplink resource in a coded bits format generated in combination with the UCI.
  • the UCI may include channel state information (CSI) or Hybrid Automatic Repeat Request Acknowledge (HARQ-ACK) information.
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat Request Acknowledge
  • a method for receiving a scheduling request (SR) from a terminal by a base station in a wireless communication system the first configuration information for one or more first uplink resources for SR transmission to the terminal; Transmitting second configuration information for a second uplink resource for transmitting uplink control information (UCI); And a bit indicating SR information for N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain. And receiving information in the second uplink resource together with the UCI.
  • SR scheduling request
  • N uplink control information
  • a terminal for transmitting a scheduling request (SR) to a base station in a wireless communication system comprising: a receiving unit; A transmitter; And a processor operatively connected to the receiver and the transmitter, the processor comprising: first configuration information and uplink control information for one or more first uplink resources for SR transmission from the base station; Receiving second configuration information for a second uplink resource transmitting UCI); And a bit indicating SR information for N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain.
  • the terminal is configured to transmit information in the second uplink resource together with the UCI.
  • a base station for receiving a scheduling request (SR) from a terminal in a wireless communication system, comprising: a receiving unit; A transmitter; And a processor operating in connection with the receiver and the transmitter, wherein the processor comprises: first configuration information and uplink control information for one or more first uplink resources for SR transmission to the terminal; Transmitting second configuration information for a second uplink resource transmitting UCI); And a bit indicating SR information for N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain. And a base station configured to receive information in the second uplink resource together with the UCI.
  • SR scheduling request
  • a method for transmitting a scheduling request (SR) by a terminal to a base station in a wireless communication system comprising: a first physical uplink control channel (PUCCH) for transmitting SR information; Determine a second PUCCH format for transmitting the format and HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) information; And a first PUCCH format consisting of one or two symbols and corresponding to a PUCCH format supporting uplink control information (UCI) of up to two bits in size, wherein the second PUCCH format is four or more symbols.
  • PUCCH physical uplink control channel
  • HARQ-ACK Hybrid Automatic Repeat request Acknowledge
  • a terminal for transmitting a scheduling request (SR) to a base station in a wireless communication system comprising: a receiving unit; A transmitter; And a processor operatively connected to the receiver and the transmitter, wherein the processor comprises: a first physical uplink control channel (PUCCH) format and a HARQ-ACK (Hybrid Automatic Repeat request) for transmitting SR information; Determine a second PUCCH format for transmitting Acknowledge information; And a first PUCCH format consisting of one or two symbols and corresponding to a PUCCH format supporting uplink control information (UCI) of up to two bits in size, wherein the second PUCCH format is four or more symbols.
  • PUCCH physical uplink control channel
  • HARQ-ACK Hybrid Automatic Repeat request
  • It corresponds to a PUCCH format that supports a UCI of up to 2 bits in size, and when the SR information is a positive SR, the SR information by transmitting only the HARQ-ACK information using the second PUCCH format And to perform simultaneous transmission of the HARQ-ACK information.
  • a terminal when a first uplink resource for transmitting a plurality of scheduling request information and a second uplink resource for transmitting acknowledgment information overlap in a time domain, a terminal corresponds to a bit corresponding to the plurality of scheduling request information. Information may be transmitted in the second uplink resource together with the acknowledgment information.
  • the terminal may adaptively transmit the plurality of scheduling request information according to a situation.
  • 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating an example of a structure of a radio frame.
  • 3 is a diagram illustrating a resource grid for a downlink slot.
  • FIG. 4 is a diagram illustrating an example of a structure of an uplink subframe.
  • 5 is a diagram illustrating an example of a structure of a downlink subframe.
  • FIG. 6 is a diagram illustrating a self-contained subframe structure applicable to the present invention.
  • FIG. 7 and 8 illustrate exemplary connection schemes of a TXRU and an antenna element.
  • FIG. 9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
  • FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a third SR transmission method according to an embodiment of the present invention.
  • FIG. 12 is a diagram briefly illustrating an SR transmission method of a terminal when an SR has a higher priority than an HARQ-ACK according to the present invention.
  • FIG. 13 and 14 illustrate a method for transmitting an SR of a terminal when HARQ-ACK has a higher priority than an SR according to the present invention.
  • 15 is a flowchart illustrating a method for transmitting a scheduling request by a terminal according to the present invention.
  • 16 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiments can be implemented.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' is replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system
  • embodiments of the present invention include 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents
  • Transmission Opportunity Period may be used in the same meaning as the term transmission period, transmission burst (Tx burst) or RRP (Reserved Resource Period).
  • LBT process may be performed for the same purpose as a carrier sensing process, a clear channel assessment (CCA), and a channel access procedure (CAP) for determining whether a channel state is idle.
  • CCA clear channel assessment
  • CAP channel access procedure
  • 3GPP NR system as well as a 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention are described not only for the 3GPP LTE / LTE-A system but also for the 3GPP NR system, but may also be applied to the IEEE 802.16e / m system.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S11.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14).
  • PRACH physical random access channel
  • the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
  • the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 2 shows a structure of a radio frame used in embodiments of the present invention.
  • the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
  • FDD Frequency Division Duplex
  • One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
  • the terminal cannot transmit and receive at the same time.
  • the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
  • the configuration of a special frame (the length of DwPTS / GP / UpPTS) is provided by X (the number of additional SC-FDMA symbols and the upper layer parameter srs-UpPtsAdd) as shown in the following table. Otherwise, X is equal to 0), and a new configuration is added, and Special subframe configuration # 10 is newly added in the LTE Rel-14 system.
  • the UE adds two additional UpPTSs for special subframeconfigurations ⁇ 3, 4, 7, 8 ⁇ for general CP in downlink and special subframeconfigurations ⁇ 2, 3, 5, 6 ⁇ for extended CP in downlink. You may not expect SC-FDMA symbols to be set.
  • the UE has special subframeconfigurations ⁇ 1, 2, 3, 4, 6, 7, 8 ⁇ for general CP in downlink and special subframeconfigurations ⁇ 1, 2, 3, 5 for extended CP in downlink May not expect four additional UpPTS SC-FDMA symbols to be set.
  • the UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations ⁇ 3, 4, 7, 8 ⁇ for normal cyclic prefix in downlink and special subframeconfigurations ⁇ 2, 3, 5, 6 ⁇ for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations ⁇ 1, 2, 3, 4, 6, 7, 8 ⁇ for normal cyclic prefix in downlink and special subframeconfigurations ⁇ 1, 2, 3, 5, 6 ⁇ for extended cyclic prefix in downlink.
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCH carrying uplink control information.
  • a PUSCH carrying user data is allocated.
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • the RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
  • FIG. 5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
  • up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. )to be.
  • a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Hybrid-ARQ Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • MTC Massive Machine Type Communications
  • a new wireless access technology system has been proposed as a new wireless access technology that considers such enhanced mobile broadband communication, massive MTC, and ultra-reliable and low latency communication (URLLC).
  • the technology is referred to as New RAT or NR (New Radio) for convenience.
  • ⁇ and cyclic prefix information for each carrier bandwidth part may be signaled for each downlink (DL) or uplink (UL).
  • DL downlink
  • UL uplink
  • ⁇ and cyclic prefix information for a downlink carrier bandwidth part may be signaled through higher layer signaling DL-BWP-mu and DL-MWP-cp.
  • ⁇ and cyclic prefix information for an uplink carrier bandwidth part may be signaled through higher layer signaling UL-BWP-mu and UL-MWP-cp.
  • Downlink and uplink transmission consists of a frame of 10ms long.
  • the frame may be composed of 10 subframes of length 1ms. In this case, the number of consecutive OFDM symbols for each subframe is to be.
  • Each frame may consist of two equally sized half frames.
  • each half-frame may be configured of subframes 0-4 and subframes 5-9, respectively.
  • slots are in ascending order within one subframe. Numbered as in ascending order within a frame It may be numbered as follows. In this case, the number of consecutive OFDM symbols in one slot ( ) Can be determined according to the circulation translocation as shown in the table below. Start slot in one subframe ( ) Is the starting OFDM symbol () in the same subframe ) And time dimension. Table 4 shows the number of OFDM symbols per slot / frame / subframe for a normal cyclic prefix, and Table 5 shows slots / frame / for extended cyclic prefix. This indicates the number of OFDM symbols per subframe.
  • a self-contained slot structure may be applied as the slot structure as described above.
  • FIG. 6 is a diagram illustrating a self-contained slot structure applicable to the present invention.
  • the base station and the UE may sequentially perform DL transmission and UL transmission in one slot, and may transmit and receive DL data and transmit and receive UL ACK / NACK for the DL data in the one slot.
  • this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
  • a time gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set to a guard period (GP).
  • the independent slot structure includes both the DL control region and the UL control region.
  • the control regions may be selectively included in the independent slot structure.
  • the independent slot structure according to the present invention may include not only a case in which both the DL control region and the UL control region are included as shown in FIG. 6, but also a case in which only the DL control region or the UL control region is included.
  • a slot may have various slot formats.
  • the OFDM symbol of each slot may be classified into downlink (denoted 'D'), flexible (denoted 'X'), and uplink (denoted 'U').
  • the UE may assume that downlink transmission occurs only in 'D' and 'X' symbols. Similarly, in the uplink slot, the UE may assume that uplink transmission occurs only in the 'U' and 'X' symbols.
  • millimeter wave the short wavelength allows the installation of multiple antenna elements in the same area. That is, since the wavelength is 1 cm in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimension array at 0.5 lambda intervals on a 5 * 5 cm panel. Accordingly, in millimeter wave (mmW), a plurality of antenna elements may be used to increase beamforming (BF) gain to increase coverage or to increase throughput.
  • BF beamforming
  • each antenna element may include a TXRU (Transceiver Unit) to enable transmission power and phase adjustment for each antenna element.
  • TXRU Transceiver Unit
  • each antenna element may perform independent beamforming for each frequency resource.
  • a hybrid BF having B TXRUs having a smaller number than Q antenna elements may be considered as an intermediate form between digital beamforming and analog beamforming.
  • the direction of the beam that can be transmitted at the same time may be limited to B or less.
  • the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna element.
  • FIG. 7 is a diagram illustrating how a TXRU is connected to a sub-array. In the case of FIG. 7, the antenna element is connected to only one TXRU.
  • FIG. 8 shows how TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • the antenna element requires a separate adder as shown in FIG. 8 to be connected to all TXRUs.
  • W represents the phase vector multiplied by an analog phase shifter.
  • W is a main parameter that determines the direction of analog beamforming.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1: 1 or 1: 1-to-many.
  • the beamforming focusing is difficult, but there is an advantage that the entire antenna configuration can be configured at a low cost.
  • analog beamforming refers to an operation of performing precoding (or combining) in the RF stage.
  • the baseband stage and the RF stage respectively perform precoding (or combining). This reduces the number of RF chains and the number of digital-to-analog (D / A) (or analog-to-digital) converters while providing near-digital beamforming performance.
  • the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas.
  • TXRUs transceiver units
  • the digital beamforming for the L data layers to be transmitted by the transmitter may be represented by an N * L (N by L) matrix.
  • the converted N digital signals are converted into analog signals through TXRU, and analog beamforming is applied to the converted signals represented by an M * N (M by N) matrix.
  • FIG. 9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
  • the number of digital beams is L and the number of analog beams is N in FIG. 9.
  • the base station is designed to change the analog beamforming in units of symbols and considers a method for supporting more efficient beamforming for a terminal located in a specific region.
  • specific N TXRU and M RF antennas as one antenna panel as shown in FIG. 9, in the NR system according to the present invention, a plurality of antenna panels to which hybrid beamforming independent of each other can be applied are defined. It is also considered to adopt.
  • the analog beams advantageous for signal reception may be different for each terminal. Accordingly, in the NR system to which the present invention is applicable, the base station transmits a signal (at least a synchronization signal, system information, paging, etc.) by applying a different analog beam for each symbol in a specific subframe (SF) so that all terminals can receive the signal. Beam sweeping operations are being contemplated that allow for receiving opportunities.
  • FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
  • a physical resource (or physical channel) through which system information of an NR system to which the present invention is applicable is transmitted in a broadcasting manner is referred to as a physical broadcast channel (xPBCH).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously.
  • a configuration for measuring channels for analog beams is applied to transmit a reference signal (Reference signal,
  • Reference signal The introduction of beam reference signals (Beam RS, BRS), which is RS, is under discussion.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • the synchronization signal or the xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive well.
  • a base station controls not only DL data transmission but also UL data transmission of a terminal.
  • the terminal is allocated a physical uplink shared channel (PUSCH), which is a physical channel for UL data transmission, from a base station (or network) for UL data transmission.
  • PUSCH physical uplink shared channel
  • the base station may schedule UL data transmission through a specific PUSCH to the UE through downlink control information (DCI) called UL grant.
  • DCI downlink control information
  • the base station (or the network may not know whether there is UL data (or UL traffic) to be transmitted by the terminal.) Therefore, a method of requesting UL data scheduling by the terminal first needs to be supported.
  • the terminal may transmit a UL scheduling request message (hereinafter, referred to as SR (scheduling request)) including UL data traffic to a base station (or network).
  • SR scheduling request message
  • the UE may transmit the SR on PUCCH, which is a physical channel for uplink control information (UCI) transmission purpose.
  • PUCCH which is a physical channel for uplink control information (UCI) transmission purpose.
  • the PUCCH including the SR may be transmitted in a time resource and a frequency resource set by the base station (or network) as a higher layer signal.
  • the NR system to which the present invention is applicable may support a plurality of logical networks in a single physical system, and have various requirements (eg, enhanced Mobile BroadBand (eMBB), massive machine type communication (MMTC), and URLLC (Ultra)). Reliable and Low Latency Communication).
  • eMBB enhanced Mobile BroadBand
  • MMTC massive machine type communication
  • URLLC Ultra-Reliable and Low Latency Communication
  • a PUCCH which is a physical channel for UCI transmission, is composed of a relatively large number of OFDM symbols (for example, 4 symbols or more), and supports PUCCH (hereinafter, referred to as Long PUCCH) and relatively few OFDM symbols (for example, 1 unit) to support a wide UL coverage. Or two symbols) may be configured as a PUCCH (hereinafter referred to as Short PUCCH) to support low latency transmission.
  • the Short PUCCH may have one or more transmission structures. For example, when the amount of information of the uplink control information (UCI) to be transmitted in the short PUCCH is small (for example, 1 or 2 bits), the base station allocates a sequence set composed of a plurality of sequences to the terminal as a short PUCCH resource. The UE may select and transmit a specific sequence corresponding to the UCI information to be transmitted among the sequences allocated as the Short PUCCH resource. In this case, the sequence may be designed to satisfy a low peak power to average power ratio (PAPR) characteristic.
  • PAPR peak power to average power ratio
  • the base station is composed of a short (RE) for transmitting the UCI to the UE and a RE for transmitting a reference signal (RS) PUCCH resources can be allocated.
  • the RS transmission RE and the UCI transmission RE may be classified according to a frequency division multiplexing (FDM) scheme for each symbol.
  • the terminal may generate coded bits for UCI and then transmit modulation symbols for the coded bits through REs for transmitting the UCI.
  • FDM-PUCCH the short PUCCH structure to which the FDM scheme between RSs and UCIs (per symbol) is applied as FDM-PUCCH as described above.
  • the SR transmission method of the UE using the Short PUCCH and Long PUCCH as described above will be described in detail.
  • the operation according to the present invention will be described in detail with operations of a terminal and a base station in an NR system.
  • the methods proposed in the present invention can be equally applied to a general wireless communication system.
  • a DM-RS demodulation reference signal
  • a SRS sounding reference signal
  • ACK / NACK is a confirmation of the data decoding result Response information
  • CSI channel state information
  • a CS (cyclic shift) resource for a specific sequence means a resource to which a Cyclic time shift (or Cyclic frequency shift) is applied on a time axis (or frequency axis) for the sequence, and a root index is a sequence generation. It means the seed value used at the time.
  • a physical resource block may mean a frequency axis resource allocation unit.
  • the base station may set a (potential) time resource (or slot set) for SR transmission to the terminal in one or more of the following ways.
  • the terminal may determine whether to actually transmit the SR in one or more of the following methods (potential) time resource (or slot set) for the SR transmission.
  • the terminal may perform the operation only for a time resource (or slot) set through a predetermined method or a broadcast channel or system information.
  • the terminal may perform the operation only for a time resource (or slot) set through a (terminal specific) higher layer signal.
  • the group common PDCCH means a physical transport channel of DL control information for a plurality of UE groups.
  • the resource allocation and the signal transmission method based on the same may be equally applied to (Periodic) SRS transmission.
  • the NR system may support DL or UL data transmission in a slot unit defined in the time axis.
  • the NR system minimizes the use of a slot capable of transmitting only DL data (hereinafter, fixed DL slot) or a slot capable of transmitting only UL data (hereinafter, fixed UL slot) to support flexible scheduling according to data traffic. May be applied.
  • a slot that can be flexibly switched for DL / UL data transmission purposes (hereinafter, a flexible DL / UL slot) may be supported for SR transmission.
  • the terminal determines whether the SR transmission is allowed for the flexible DL / UL slot other than the fixed UL slot (in the potential SR transmission slot set). I can't be sure.
  • the base station may indicate to the terminal through the group common PDCCH whether the actual SR transmission is allowed for a particular slot in the potential set of SR transmission slots. For example, the base station indicates a specific slot structure in the potential SR transmission slot through the group common PDCCH, and correspondingly, if the terminal indicates that the indicated slot structure includes a UL control transmission region (capable of transmitting SR), the corresponding slot It may be determined that SR transmission is possible at.
  • the first SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the base station may set the M sequence set as one or more of the following as a transmission resource for the SR having M states to the terminal.
  • sequences constituting the SEQ-PUCCH may be distinguished from a time resource / frequency resource / CS (Cyclic Shift) resource / root index.
  • the SRS (s) can be distinguished in terms of time resource / frequency resource / CS resource / root index.
  • the terminal may transmit a SR by selecting a sequence corresponding to a state that the terminal wants to request among M states for the SR.
  • the M states may not include a negative SR (that is, a state in which the UE does not request UL scheduling).
  • the UE may express that it does not request the UL scheduling by not transmitting the SR to the base station.
  • the SR may include a state in which the UE requests UL data scheduling (hereinafter, referred to as a positive SR) and a state in which the UE does not request UL data scheduling (Negative SR).
  • the negative SR may be represented by the terminal not transmitting any UL signal. Accordingly, the SR may have one state of positive SR from an information point of view.
  • the terminal may utilize the SEQ-PUCCH to which one sequence is allocated as a UL signal for transmitting the positive SR.
  • the UE may utilize SEQ-PUCCH to which M sequences are allocated for SR transmission having M states.
  • the base station when the terminal transmits the SR, the base station needs to perform the UL channel measurement in order to perform UL data scheduling for the terminal.
  • the base station may instruct the terminal to transmit a SRS (sound reference signal), which is a UL channel measurement RS.
  • SRS sound reference signal
  • the SR transmission process and the SRS transmission process of the UE may be combined into one process. That is, the terminal may utilize the SRS resource as a UL signal for transmitting the SR to the base station.
  • the base station may allocate M SRS resources corresponding to the M states.
  • the terminal may transmit the SR information to the base station by transmitting the SRS resources corresponding to the specific state.
  • the terminal when the terminal utilizes the SRS resource as the SR transmission resource, the terminal can reduce the delay by transmitting the UL channel estimation RS simultaneously with the SR transmission.
  • the (frequency axis) resource amount of the SRS resource may be differentially allocated according to the state of the SR. For example, when the states of the SR information indicate the size of the UL traffic, the larger the size of the UL traffic, the SRS resource may be configured to have more resources on the frequency axis.
  • the terminal according to the present invention may transmit an SR (eg, Data-SR) requesting UL scheduling and an SR (eg, Beam-SR) requesting beam refinement.
  • SR eg, Data-SR
  • SR eg, Beam-SR
  • the Data-SR and the Beam-SR may be transmitted through SR transmission resources set independently for each, or a joint coding result of the Data-SR and the Beam-SR may be transmitted through a single SR transmission resource. have.
  • the UE may perform a SEQ-PUCCH having three states (and corresponding three sequences) with the joint coded result as shown in the following table. Can be used for transmission. However, if both Data-SR and Beam-SR are negative SRs, the terminal may not transmit any signal.
  • an SR for eMBB data e.g., eMBB-SR
  • an SR for URLLC data e.g., URLLC-SR
  • the joint result may be sent in a single SR transmission resource.
  • the eMBB-SR and the URLLC-SR may be the Positive SR and the Negative SR, respectively, similarly to Table 6, the joint coded result may be transmitted in the SEQ-PUCCH having three states (and corresponding three sequences). Can be. Even in this case, when both the eMBB-SR and the URLLC-SR are negative SRs, the UE may not transmit any signal.
  • the second SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE may transmit SR and / or UCI as follows.
  • Option 1 SR and UCI are transmitted using each transmission resource (Method 1)
  • Option 2 SR and UCI are combined and transmitted as UCI transmission resource
  • the operation may be applied when the SR transmission resource and the UCI transmission resource are adjacent on the time axis, and the transmission power difference between the two transmission resources is greater than or equal to a predetermined size.
  • the SR transmission resource may be a sequence
  • the UCI transmission resource may be applied to the FDM PUCCH transmitted by being contiguous with the SR transmission resource on a time axis.
  • Option 1 SR and UCI are transmitted using each transmission resource (Method 2)
  • the CS (cyclic shift) / root index applied to the SR sequence and the UCI sequence may be set differently.
  • cyclic shift (CS) / root index values applied to an SR sequence and a UCI sequence may be set to have a predetermined gap with each other.
  • Option 2 SR and UCI are combined and transmitted as UCI transmission resource
  • the operation may be applied when the terminal exceeds the maximum transmission power (preset) to transmit the SR and the UCI to each transmission resource.
  • the SR information may be expressed as a sequence multiplexed with the PUCCH DM-RS and the CDM scheme.
  • the UCI transmission resources may be set to different PUCCH transmission structures depending on whether the corresponding slot is not a (potential) SR transmission slot or the (potential) SR transmission slot.
  • the UCI transmission resource may be set to FDM-PUCCH, and when the corresponding slot is not an SR transmission slot, the UCI transmission resource may be set to SEQ-PUCCH.
  • Method 1/2 may be applied when SRS and UCI are transmitted in the same slot (SR is replaced by SRS) or when SR and SRS are transmitted in the same slot (UCI is replaced by SRS).
  • FIG. 11 is a diagram illustrating a third SR transmission method according to an embodiment of the present invention.
  • SR and UCI eg, ACK / NACK, CSI (Channel State Information)
  • CSI Channel State Information
  • the SR transmission resource and the UCI transmission resource may be multiplexed and transmitted by using a TDM scheme in one slot. Accordingly, when the SR transmission resource and the UCI transmission resource do not overlap on the time axis, the SR and the UCI may be transmitted to the transmission resources allocated to the respective basic operations.
  • the UE combines the SR and the UCI to combine a single transmission resource (eg, short PUCCH) Can be sent to.
  • a single transmission resource eg, short PUCCH
  • the UE transmits an SR to the SEQ-PUCCH (satisfying the low PAPR (peak power to average power ratio) characteristic) in the first symbol for two adjacent OFDM symbols, FDM ACK / NACK in the second symbol
  • SEQ-PUCCH satisfying the low PAPR (peak power to average power ratio) characteristic
  • FDM ACK / NACK in the second symbol
  • the FDM-PUCCH will have a high PAPR and back-off on transmit power will be applied to avoid distortion due to non-linearity of the power amplifier (PA).
  • PA power amplifier
  • a difference in transmission power between the SR transmission symbol and the ACK / NACK transmission symbol may occur, and signal distortion may occur due to a slowly changing power transient period instead of immediately changing the transmission power.
  • the UE may include the SR information in the UCI transmission resources (PUCCH) and transmit. .
  • the UE may transmit information combining the SR and the ACK / NACK to the FDM-PUCCH allocated for the purpose of transmitting the ACK / NACK in the second symbol.
  • the terminal may transmit the SR and the UCI to each transmission resource.
  • the UE may combine the SR and the UCI to transmit the UCI transmission resources.
  • the UCI transmission resource is a PUCCH structure having a DM-RS
  • SR information may be represented by a specific sequence supported by the DM-RS and the CDM in the PUCCH.
  • the UE may transmit SR information having M states by selecting one of the M sequences supported by the PUCCH DM-RS and the CDM and transmitting the same through time / frequency resources.
  • the UE divides the UCI (eg, SR, CSI, ACK / NACK) into a plurality of subsets and divides the plurality of subset (s) into the same slot.
  • M can be transmitted on multiple PUCCHs on different / same symbols.
  • the UE may apply one of the following methods in a slot in which SR and UCI are simultaneously scheduled.
  • Method 1 (for UCI transmission) configure a plurality of PUCCH resources (corresponding to SR state), and transmit UCI to specific PUCCH resources according to SR state
  • Method 2 transmit SR and UCI to different PUCCH resources (divided by TDM / FDM / CDM)
  • Method 3 Combine SR and UCI and transmit as a single PUCCH resource (However, the PUCCH format may be different from SR only or UCI only)
  • the terminal may perform the aforementioned method 2 and if the symbols are the same, the terminal may perform the aforementioned method 1.
  • the third SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • N candidates (or DM-RS resources) for the PUCCH DM-RS may be configured.
  • the UE may express the SR information or the Negative SR having the (N-1) states by using a method of selecting and transmitting one of the N RS candidates (or DM-RS resources).
  • the negative SR means a state in which the UE does not request UL data scheduling.
  • candidates (or DM-RS resources) for the plurality of DM-RSs may be distinguished in terms of cyclic shift (CS) / orthogonal cover code (OCC).
  • CS cyclic shift
  • OCC orthogonal cover code
  • the coded bits for the UCI are UCI transmissions of the FDM-PUCCH. May be sent to REs for.
  • the SR information or the Negative SR having (N-1) states may be transmitted by selecting one of N CS (cyclic shift) resources (or OCC resources) supported by the PUCCH DM-RS.
  • the UE may express SR information through RS selection for the RS candidates.
  • the fourth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the terminal When the terminal transmits a plurality of PUCCHs having different transmit powers adjacent to each other on the time axis, the terminal may transmit the plurality of PUCCHs as follows.
  • the (single) transmit power may be a maximum (or minimum) value of transmit power of a PUCCH having a higher priority or transmit powers of a plurality of PUCCHs.
  • a signal may be distorted due to a power transient period.
  • the same transmission power may be applied to a plurality of PUCCHs transmitted adjacent to each other on the time axis (in the same slot) to mitigate signal distortion according to the power transition period.
  • the transmission power to be applied equally to the plurality of PUCCHs is the transmission power allocated to the PUCCH having the highest priority for UCI among the plurality of PUCCHs or the maximum value of the transmission powers allocated to the plurality of PUCCHs ( Or minimum value).
  • the terminal may transmit the plurality of PUCCHs at the allocated transmission power, respectively, and may apply a power transition interval generated due to a difference in transmission power for each PUCCH.
  • the PUCCH having a lower priority for UCI may be set to have a longer power transition period.
  • the fifth SR transmission method includes not only a case where Short PUCCH and Short PUCCH are TDM (adjacent in the time axis) but also when Long PUCCH and Short PUCCH are TDM (adjacent in the time axis) and Long PUCCH and Long PUCCH (time). This may also apply to the case of TDM) (adjacent to the axis). Additionally, when the Short PUCCH and the Short PUCCH are TDM (adjacent in the time axis), if the transmission power difference between the two channels is greater than or equal to a certain level, the UE gives up (Drop) the Short PUCCH having a low UCI priority among the two PUCCHs or each Short PUCCH.
  • the combined UCI may be transmitted to one Short PUCCH (or a third PUCCH) of the two Short PUCCHs by combining the UCI to be transmitted.
  • the UE may adjust the transmit power of the Short PUCCH to be equal to the transmit power of the Long PUCCH. Or, in this case, if the priority of the Short PUCCH is high, the UE may match the transmission power of the Long PUCCH with the transmission power of the Short PUCCH.
  • the UE may perform one of the following operations in a situation where the PUSCH / PUCCH or the PUCCH / PUCCH are TDM (adjacent in the time axis) to each other.
  • Opt 1 The power of the channel set to the small power is adjusted to the power of the channel with the large power
  • Opt 2 Set the power of short channel to the power of long channel, or configure power transient period on the long channel side. Channels that do not form a power transient period, the power in the symbol remains constant.
  • Opt 3 Set the power of the channel with the lower priority to the power of the channel with the higher priority, or configure the power transition section on the channel with the lower priority.
  • the UE when the UE transmits a 2-symbol PUCCH, frequency hopping between two symbols may be applied or a power difference between the two symbols may be large. In this case, the UE may perform the following operation in order to avoid performance degradation due to the power transition period.
  • the time gap may be set in symbol units.
  • the time gap may be set to one symbol.
  • the operation of setting the time gap may be selectively applied according to a frequency band in which 2-symbol PUCCH is transmitted or a subcarrier spacing (SCS) applied to 2-symbol PUCCH.
  • SCS subcarrier spacing
  • the UE when two 1-symbol PUCCHs (or SRSs) are transmitted by TDM, the UE performs the following operations to avoid performance degradation due to a power transition period that occurs with 1-symbol PUCCH (or SRS) on / off. can do.
  • the time gap may be set in symbol units.
  • the time gap may be set to one symbol.
  • the operation of setting the time gap may be selectively applied according to a frequency band in which 1-symbol PUCCH is transmitted or a subcarrier spacing (SCS) applied to 1-symbol PUCCH.
  • SCS subcarrier spacing
  • the UE may apply one of the following options.
  • the terminal when the terminal performs the first option, if the coding rate after the joint coding is a predetermined level or more, the terminal may apply one of the second to fourth options.
  • the fifth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the M sequences included in any sequence set S B divided into CS resources (with the same time resource and frequency resource) in the sequence set S A assigned to SEQ-PUCCH are (continuous) in ascending (or descending) order of the CS index.
  • M gray codes can correspond to each other.
  • sequences in the sequence set for the SEQ-PUCCH may have one of different time resources, frequency resources, lengths, CS resources, and root indices.
  • supported SEQ1, SEQ2, SEQ3 having time resource T1 and frequency resource F1 and separated by CS index 0, 3, 6, respectively, and time resource T2 and frequency (different from time resource T1 and frequency resource F1) SEQ4 with resource F2 may be allocated to SEQ-PUCCH.
  • a Hamming distance between UCI bits represented by each sequence may be set between sequences divided by CS resources in the same time and frequency resources.
  • the gray code for 2 bits is given by 00, 01, 11, and 10.
  • the gray code may correspond to each sequence in SEQ-PUCCH as follows.
  • the sequential order is ascending (or descending) of the CS index for sequences (where CS resources are separated) on the same time and frequency resource for the plural sequences.
  • the index can be applied under the condition that the index is allocated.
  • the kth gray code for the N bit UCI may be transmitted in a sequence having the kth index in the SEQ-PUCCH.
  • the SEQ-PUCCH is transmitted as a multi-time resource
  • the CS resource of the sequence set used for each time resource is different (e.g., CS hopping)
  • (contiguous) Gray code is corresponded between adjacent sequences on the CS resource by time resource.
  • the mapping between gray code and sequence can be set differently.
  • the above-described sixth SR transmission method may be applied to the mapping principle between the gray code and the sequence for each time resource.
  • the sixth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE may transmit the information in which the SR and the ACK / NACK are combined through (single) SEQ-PUCCH in one of the following ways.
  • the SR and the ACK / NACK The combined information can be expressed in eight states. That is, ⁇ Positive SR, 00 ⁇ , ⁇ Positive SR, 01 ⁇ , ⁇ Positive SR, 10 ⁇ , ⁇ Positive SR, 11 ⁇ , ⁇ Negative SR, 00 ⁇ , ⁇ Negative SR, 01 ⁇ , ⁇ Negative SR, 10 ⁇ , ⁇ Negative SR, 11 ⁇ .
  • the SEQ-PUCCH mainly targets 1 bit or 2 bits
  • bundling for ACK / NACK it is possible to reduce the total number of states to be transmitted in the SEQ-PUCCH.
  • the above-described eight states may be ⁇ Positive SR, 0 (bundled ACK / NACK of 00 or 01 or 10) ⁇ , ⁇ Positive SR, 1 (bundled ACK / NACK of 11) ⁇ , ⁇ Negative SR, 00 ⁇ , ⁇ Negative SR, 01 ⁇ , ⁇ Negative SR, 10 ⁇ , ⁇ Negative SR, 11 ⁇ , reduced to six states, or ⁇ Positive SR, 0 (bundled ACK / NACK of 00 or 01 or 10) ⁇ , ⁇ Positive SR, 1 (bundled ACK / NACK of 11) ⁇ , ⁇ Negative SR, 0 (bundled ACK / NACK of 00 or 01 or 10) ⁇ , ⁇ Negative SR, 1 (bundled ACK / NACK of 11) ⁇ Can be reduced to the dog state.
  • sequence resources may be allocated to ensure orthogonality best between sequence resources meaning positive SRs and sequence resources meaning negative SRs. For example, it is assumed that there are eight sequences in SEQ-PUCCH, and the eight sequences are composed of four sequences divided into CS resources for each symbol for two symbols. In this case, a sequence may be allocated such that only positive SR + ACK / NACK information is represented in the first symbol of the two symbols and only Negative SR + ACK / NACK information is represented in the second symbol.
  • the UE may determine the total (for all N) for the SR state (eg N 1 ) and the HARQ-ACK state (eg N 2 ). Or some) combinations (eg, N 1 * N 2 ) may transmit a particular single combination in one of the following ways.
  • Method # 1 send a specific single sequence
  • -Up to 1 M C combination can be represented for SR state and HARQ-ACK state.
  • maximum M C L combinations for SR state and HARQ-ACK state can be represented
  • the fact that the sequence is divided in the frequency domain and the code domain means that frequency axis resources allocated between the sequences and / or CS (cyclic shift) or OCC (orthogonal cover code) are distinguished.
  • the UE may not transmit any sequence for a specific SR and HARQ-ACK combination. (Ie expressed in DTX)
  • the terminal utilizes four sequences (eg, Seq. 1, Seq. 2, Seq. 3, Seq. 4) to the SR state (eg Positive SR or Negative SR) and the 2-bit HARQ-ACK state (eg ⁇ ACK, ACK ⁇ , ⁇ ACK, NACK ⁇ , ⁇ NACK, ACK ⁇ , ⁇ NACK, NACK ⁇ ).
  • SR state eg Positive SR or Negative SR
  • 2-bit HARQ-ACK state eg ⁇ ACK, ACK ⁇ , ⁇ ACK, NACK ⁇ , ⁇ NACK, ACK ⁇ , ⁇ NACK, NACK ⁇ .
  • the UE allocates and transmits different sequence pairs for different SR and HARQ-ACK combinations.
  • the terminal may transmit the sequence as follows. have. In this case, in the following table, 'O' means transmission of the sequence.
  • the base station may be set to transmit the sequence (s) according to Case 1 or Case 2 to the terminal.
  • the UE may not transmit any signal.
  • the UE may transmit the same sequence (eg Seq. 2) as Positive SR + ⁇ NACK, NACK ⁇ .
  • the base station may determine a combination of the SR and the HARQ-ACK based on the detected sequence (s) as follows.
  • Seq. 1 and Seq. 3 is transmitted in symbol A
  • the UE can always operate in Case 1. That is, when simultaneous transmission sequences are TDM, since the case of power limited does not occur, the terminal may always perform simultaneous transmission.
  • Seq. 1 and Seq. 3 is transmitted in symbol A and Seq. 2, Seq.
  • Seq. 2 is transmitted by TDM in symbol B ( ⁇ symbol A)
  • the UE may express a specific combination of SR and HARQ-ACK using one of the following eight cases of transmitting a sequence.
  • the eight sequence transmission combinations include a total of eight combinations of SR and 2 bits HARQ-ACK, that is, Negative SR + ⁇ ACK, ACK ⁇ , Negative SR + ⁇ ACK, NACK ⁇ , and Negative SR + ⁇ NACK, ACK ⁇ .
  • Negative SR + ⁇ NACK, NACK ⁇ , Positive SR + ⁇ ACK, ACK ⁇ , Positive SR + ⁇ ACK, NACK ⁇ , Positive SR + ⁇ NACK, ACK ⁇ , Positive SR + ⁇ NACK, NACK ⁇ ) Can be.
  • the eight sequence transmission combinations may correspond one-to-one as shown in the table corresponding to Case 1 described above.
  • Seq. 1 is transmitted in symbol A and Seq. 2, Seq. 3, Seq.
  • Seq. 2 is transmitted by TDM in symbol B ( ⁇ symbol A)
  • the UE may express a specific combination of SR and HARQ-ACK using one of the following seven cases of transmitting a sequence.
  • the seven sequence transmission combinations are seven combinations except Negative SR + ⁇ NACK, NACK ⁇ among all combinations of SR and 2 bits HARQ-ACK, that is, Negative SR + ⁇ ACK, ACK ⁇ , Negative SR + ⁇ ACK, NACK ⁇ , Negative SR + ⁇ NACK, ACK ⁇ , Positive SR + ⁇ ACK, ACK ⁇ , Positive SR + ⁇ ACK, NACK ⁇ , Positive SR + ⁇ NACK, ACK ⁇ , Positive SR + ⁇ NACK, ACK ⁇ , Positive SR + ⁇ NACK, NACK ⁇ Can correspond one to one.
  • the six sequence transmission combinations of the seven sequence transmission combinations may include the following six combinations of 2 bits HARQ-ACK, that is, Negative SR + ⁇ ACK, ACK ⁇ , Negative SR + ⁇ ACK, NACK ⁇ , and Negative SR + ⁇ NACK, ACK ⁇ , Negative SR + ⁇ NACK, NACK ⁇ , Positive SR + All ACK (ie, ⁇ ACK, ACK ⁇ ) ⁇ , Positive SR + Bundled NACK (ie, ⁇ NACK, ACK ⁇ , ⁇ ACK, NACK ⁇ ) Can correspond one to one.
  • one of the seven sequence transmission combinations is a transmission combination that transmits a plurality of sequences (for example, Seq. 1 + Seq. 2, Seq. 1 + Seq. 3, Seq. 1 + Seq. 4). It can correspond to either.
  • the terminal may perform sequence transmission for each SR and 2 bits HARQ-ACK combination as shown in the following table.
  • the UE allocates and transmits different sequence pairs for different SR and HARQ-ACK combinations.
  • Case 4 Only transmission for a single sequence (eg power limited case)
  • the base station may set to transmit the sequence (s) according to Case 3 or Case 4 to the terminal.
  • the terminal may not transmit any signal.
  • the base station may determine a combination of the SR and the HARQ-ACK based on the detected sequence (s) as follows.
  • the terminal may modify the sequence transmission for Positive SR + ⁇ NACK, NACK ⁇ and Positive SR + DTX (ie, Positive SR only) as shown in Table 13 or Table 14 below.
  • the base station may determine the combination of the SR and the HARQ-ACK as follows based on the detected sequence (s).
  • the base station can determine the combination of the SR and the HARQ-ACK as follows based on the detected sequence (s).
  • the terminal transmits 1 bit HARQ-ACK and SR
  • the following sequence allocation may be considered.
  • the terminal may operate as follows. .
  • the terminal may operate as one of the following tables.
  • the UE can always transmit a plurality of sequences, and in case of Positive SR (only), the UE transmits the same sequence as that of Positive SR + NACK (ie, Seq. 2), and Negative SR + NACK. When the terminal may not transmit any signal.
  • the terminal for example, positive SR, negative SR
  • the UE can express 8 combinations of SR and 2 bits HARQ-ACK by using 8 pairs of the total N * N sequence pairs transmitted for 2 symbols.
  • the UE may utilize a PUCCH (hereinafter SEQ-PUCCH) structure representing a specific state of the M-bits UCI by selecting and transmitting one of 2 M sequences for M-bits UCI (eg, HARQ-ACK).
  • SEQ-PUCCH PUCCH
  • the M-bits UCI 2 that may be used for transmitting the M sequence has the same frequency resource: 2 with (e.g., PRBs) cross each other (CS (from the cyclic shift) domain) having the same interval the M CS (cyclic shift ), PUCCH resources may be represented by a frequency resource index (for example, a PRB index) and a CS start value in the corresponding frequency resource.
  • the terminal may infer the interval between the CS start value and the CS based on the remaining 2 M -1 CS values.
  • the interval between CSs may be determined according to the UCI payload size or based on a value set by the base station through a higher layer signal.
  • the base station may set a plurality of PUCCH resources to the terminal, and then select and indicate a specific PUCCH resource to be used for UCI transmission among the plurality of PUCCH resources by DCI.
  • the UE may operate as follows according to whether it is a positive SR or a negative SR. Specifically, the UE may transmit a specific single sequence if Positive SR only, and may not transmit the corresponding sequence if Negative SR only (that is, specific sequence based on / off keying). In addition, in case of N bits HARQ-ACK only transmission, the UE may select and transmit a specific sequence (corresponding to HARQ-ACK state) among 2 N sequences (ie, sequence selection based PUCCH). In this case, when the transmission for the SR and the transmission for the HARQ-ACK occurs in the same time resource, the terminal may operate as follows.
  • the base station may regard the HARQ-ACK as DTX or All NACK.
  • a specific sequence (corresponding to HARQ-ACK state) is transmitted among 2 N sequences allocated for HARQ-ACK transmission purposes.
  • the terminal may operate as follows. .
  • a specific sequence (corresponding to HARQ-ACK state) is transmitted among 2 N sequences allocated for HARQ-ACK transmission purposes.
  • the seventh SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • a scheduling request refers to a physical layer signal through which a UE transmits a presence or absence of a UL transmission resource request (or UL transmission data) to a base station
  • a positive SR refers to a UL transmission resource request (or UL transmission data).
  • Negative SR is assumed to mean that there is no UL transmission resource request (or UL transmission data).
  • the terminal may perform one or more of the following schemes. Applicable
  • the UE when performing UCI piggyback on the SR, the UE applies puncturing (or rate-matching) on some UL data in the PUSCH, and then (1 bit) transmits (encoded) UCI bits for the SR (between the base station and the UE). In accordance with the promised RE mapping pattern), it may transmit to specific REs in the PUSCH.
  • the PUCCH resource for transmitting the SR information may be in the form of on / off keying for a specific sequence.
  • the PUSCH DM-RS whose sequence is switched according to the SR information is the PUSCH DM-RS nearest to the PUCCH resource allocated for the SR transmission purpose (or the fastest PUSCH DM-RS after the PUCCH resource allocated for the SR transmission purpose). Can be.
  • switching the PUSCH DM-RS sequence may mean switching a scrambling or cyclic shift value for the DM-RS.
  • the (short) PUCCH resource may have a transmission interval corresponding to one or two OFDM symbols.
  • the configuration may be equally applied between a (short) PUCCH resource for transmitting an SR and a DM-RS based (long) PUCCH resource for transmitting a UCI (eg, HARQ-ACK or CSI).
  • a UCI eg, HARQ-ACK or CSI.
  • 'PUSCH' may be replaced with 'DM-RS based (long) PUCCH' and 'PUSCH DM-RS' may be replaced with 'PUCCH DM-RS'.
  • the UE when the frequency resource between the (short) PUCCH for transmitting the SR and the (long) PUSCH for transmitting UL data is different, and the UE can transmit the FDM PUCCH and the PUSCH simultaneously, the UE may be connected to the (short) PUCCH and ( long) PUSCH can be transmitted simultaneously.
  • the SR is transmitted as a PUCCH resource based on a sequence selection in one symbol (eg, SEQ-PUCCH, a PUCCH resource representing UCI by selecting and transmitting one of a plurality of sequences) and transmitting to the SR.
  • a sequence selection in one symbol eg, SEQ-PUCCH, a PUCCH resource representing UCI by selecting and transmitting one of a plurality of sequences
  • the transmission period is set to one OFDM symbol, a case may occur in which a SR transmission collides with another PUSCH transmission in a slot.
  • the UE is already transmitting the PUSCH, and thus the MAC layer (or MAC layer) or higher layer is transmitted through the PUSCH without transmitting the SR separately in the physical layer (or PHY layer).
  • a buffer state report (BSR) or UL scheduling request may be transmitted as layer information.
  • the SR and the PUSCH are different service types, a requirement for transmission reliability required for each service type may be different. Accordingly, it may be preferable that the SR and the PUSCH are transmitted as physical layer signals, respectively.
  • the present invention when the SR and the PUSCH having different service types are transmitted, after performing puncturing (or rate-matching) on some REs or some symbols in the PUSCH, UCI REs containing SR information as corresponding resources or A method of transmitting a PUCCH resource or a method of transmitting SR information to a PUSCH DM-RS by changing a sequence of a PUSCH DM-RS according to SR information is proposed.
  • the eighth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE may perform one or more of the following schemes. Can be applied.
  • specific symbol (s) in the (long) PUCCH resource may be symbols corresponding to (time axis) transmission resource of (shot) PUCCH resource for SR transmission.
  • the (short) PUCCH resource may have a transmission period corresponding to one or two OFDM symbols.
  • sequence modulation-based (long) PUCCH resource means a PUCCH resource transmitted in a form in which a modulated symbol for a UCI and a sequence are multiplied for each symbol in a plurality of symbols (for example, four or more). do.
  • the UE can transmit the FDM (short) PUCCH and (long) PUCCH at the same time, the UE May simultaneously transmit the (short) PUCCH and the (long) PUCCH.
  • the UE multiplies a predetermined sequence and a modulated symbol for a UCI (eg, a modulation symbol for a binary phase shift keying (BPSK) or a quadrature phase shift keying (QPSK)) for each symbol for a plurality of symbols or more. It is possible to support a sequence modulation (long) PUCCH for transmitting the softened signal.
  • a modulated symbol for a UCI eg, a modulation symbol for a binary phase shift keying (BPSK) or a quadrature phase shift keying (QPSK)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the SR is transmitted as a PUCCH resource based on a sequence selection in one symbol (for example, SEQ-PUCCH, a PUCCH resource representing UCI by selecting and transmitting one of a plurality of sequences) and transmitting a single transmission period for the SR.
  • the PUCCH resources for transmitting the SR may overlap in specific transmission symbol (s) in a sequence modulation based (long) PUCCH for transmitting the UCI (other than SR).
  • the UE may express that SR information is transmitted in the symbol (s) by switching the sequence (s) of the sequence modulation based (long) PUCCH corresponding to the specific transmission symbol (s).
  • the UE does not transmit SR and (long) PUCCH at the same time so that the SR information is allocated within a frequency resource that is already allocated as a sequence modulation based (long) PUCCH resource while maintaining the Low PAPR characteristic.
  • the UE does not transmit SR and (long) PUCCH at the same time so that the SR information is allocated within a frequency resource that is already allocated as a sequence modulation based (long) PUCCH resource while maintaining the Low PAPR characteristic.
  • the base station sets two or more cyclic shift offset values (eg, CS offset 0, CS offset 1) for the sequence modulation based (long) PUCCH for the operation, and the specific symbols in the sequence modulation based (long) PUCCH By indicating whether to transmit the SR in the UE can be applied to different CS offset. For example, when the base station instructs SR transmission in a specific symbol in the sequence modulation based (long) PUCCH, the terminal applies CS offset 1 to the sequence in the symbol, the base station is specified in the sequence modulation based (long) PUCCH If the symbol does not indicate SR transmission, the terminal may apply CS offset 0 to the sequence in the symbol.
  • CS offset 0 the sequence modulation based (long) PUCCH
  • the ninth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • N HARQ-ACK states correspond to N sequences one to one for each symbol for two (OFDM) symbols, and the UE selects and transmits a sequence corresponding to the HARQ-ACK state.
  • SR information may be expressed as follows by changing a one-to-one correspondence between N HARQ-ACK states and a sequence in the first symbol and / or the second symbol.
  • Seq. 1, Seq. 2, Seq. 3. Seq. Four may be all different or some may be the same sequence.
  • the UE may express SR information by changing a HARQ-ACK state and a one-to-one correspondence between sequences in the first and / or second symbols. Can be.
  • the table below shows an example for this.
  • p-SR and n-SR mean positive SR and negative SR, respectively.
  • the terminal when the terminal transmits a 2-bit HARQ-ACK in a sequence selection scheme for two (OFDM) symbols according to the present invention, the terminal is four HARQ-ACK State (ACK / ACK) for each symbol as shown in the following table , 4 sequences for ACK / NACK, NACK / ACK, and NACK / NACK can be corresponded one-to-one.
  • Seq. 1, Seq. 2, ... . Seq. 8 may be all different or some may be the same sequence.
  • the UE changes SR information by changing a HARQ-ACK state and a one-to-one correspondence between sequences in the first and / or second symbols.
  • I can express it.
  • the table below shows an example for this.
  • p-SR and n-SR mean positive SR and negative SR, respectively.
  • N sequence pairs transmitted in the first symbol and the second symbol are represented by (Seq. X 1 , Seq. Y 1 ), (Seq. X 2 ) to represent N HARQ-ACK states. , Seq. Y 2 ),. , (Seq. X N , Seq. Y N ), the terminal is a sequence set ⁇ Seq. X 1 , Seq. X 2 ,.. , Seq. X N ⁇ and the sequence set ⁇ Seq. Y 1 , Seq. Y 2 ,.. , Seq. Y N ⁇ HARN-ACK + positive SR may be expressed using N sequence pairs among N 2 sequence pairs possible, and HARQ-ACK + negative SR may be expressed using other N sequence pairs.
  • the tenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the base station When the UE expresses the UCI state for the SR and the 2 bits HARQ-ACK in a manner of selecting and transmitting one of a plurality of sequences, the base station expresses some of the UCI states for the SR and the 2 bits HARQ-ACK as one state. Whether or not to bundle may be set to the terminal.
  • the base station may set whether to bundle the same through higher layer signals (such as RRC signaling) and / or downlink control information (DCI).
  • higher layer signals such as RRC signaling
  • DCI downlink control information
  • the number of sequences assumed by the UE to express the SR and the 2 bits HARQ-ACK may vary according to the bundling instruction.
  • the terminal when the terminal expresses the UCI state for the SR and 2 bits HARQ-ACK in a sequence selection method without a separate bundling process, the terminal needs eight sequences according to the eight UCI states as shown in the following table You can do
  • the terminal uses eight sequences as shown in the above table, the required sequence resources may be too large. Accordingly, a method of bundling some states and expressing them in one sequence may be considered.
  • the UE may bundle states having the same HARQ-ACK information and express them in one sequence as shown in the following table.
  • the base station may semi-statically or dynamically set one of the above two modes according to the PUCCH resource state.
  • the base station may configure whether to bundle some of the UCI states for the SR and the 2-bit HARQ-ACK to one terminal through RRC signaling and / or DCI.
  • the eleventh SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the base station may set a PUCCH resource set (for HARQ-ACK transmission) to the terminal through a higher layer signal, and indicate a PUCCH resource to be applied in the set according to DCI and / or implicit mapping scheme.
  • the base station may set the PUCCH resource set (for HARQ-ACK transmission) independently for a (mini-) slot to which the SR is transmitted and a (mini-) slot to which the SR is not transmitted.
  • the base station may be restricted in setting a PUCCH resource set for HARQ-ACK transmission. .
  • the base station may be more free in setting up a PUCCH resource set.
  • the base station may set the PUCCH resource set to be distributed in a wider band on the frequency axis so as to easily obtain frequency diversity. Therefore, preferably, the base station may independently set a PUCCH resource set for HARQ-ACK transmission for a (mini-) slot in which an SR is transmitted and a (mini-) slot in which an SR is not transmitted.
  • the 12th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE may select and transmit one of a plurality of sequences to express the UCI status for the SR and the HARQ-ACK.
  • the base station may configure the SR short PUCCH and HARQ-ACK short PUCCH resources as follows.
  • Opt. 1 Method for allocating four sequences as SR PUCCH resources and allocating N sequences as HARQ-ACK PUCCH resources
  • Cyclic shift values corresponding to the four sequences are Cyclic shifts.
  • index it may be set to cyclic shift values corresponding to k, (k + L / 4) mod L, (k + 2L / 4) mod L, and (k + 3L / 4) mod L.
  • One of the four sequences in the PUCCH resource may be used as a resource indicating whether the SR is in an on / off keying scheme in case of SR only transmission.
  • the sequence resource corresponding to the SR only may be a resource reserved in an SR transmission period.
  • the sequence may correspond to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
  • N sequences in a PUCCH resource may correspond to N HARQ-ACK states in the case of HARQ-ACK only transmission. Accordingly, the terminal may select and transmit a sequence corresponding to the HARQ-ACK state to be reported.
  • a sequence corresponding to each UCI state It can be defined as follows.
  • the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
  • Two sequences in an SR transmission (short) PUCCH resource may correspond to ⁇ Positive SR, ACK ⁇ and ⁇ Positive SR, NACK ⁇ , respectively.
  • an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k
  • the two sequences have a Cyclic shift value corresponding to k, (k + L / 2) mod L in terms of a cyclic shift index. Can be heard.
  • sequence corresponding to ⁇ Positive SR, NACK ⁇ may be a sequence corresponding to SR only.
  • Two sequences in a HARQ-ACK transmission (short) PUCCH resource may correspond to ⁇ Negative SR, ACK ⁇ and ⁇ Negative SR, NACK ⁇ , respectively.
  • the sequence corresponding to ⁇ Positive SR, N / N ⁇ may be a sequence corresponding to SR only.
  • sequences in a HARQ-ACK transmission (short) PUCCH resource are respectively ⁇ Negative SR, A / A ⁇ , ⁇ Negative SR, A / N ⁇ , ⁇ Negative SR, N / A ⁇ , ⁇ Negative SR, N / N ⁇ .
  • Two sequences in SR transmission (short) PUCCH resource are two Cyclic shift values with equal spacing (in terms of cyclic shift index) for a particular (Low PAPR / CM) sequence in (same) PRB It may be a sequence to which one of the applied.
  • Cyclic shift values corresponding to the two sequences are k, in terms of the Cyclic shift index. Cyclic shift values corresponding to (k + L / 2) mod L may be used.
  • SR transmission (short) One of the two sequences in the PUCCH resource is used as a resource for indicating whether the SR in the On / Off keying method in the case of SR only transmission, the sequence resource corresponding to the SR only May be a resource reserved in an SR transmission period.
  • the sequence may correspond to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
  • N sequences in a PUCCH resource correspond to N HARQ-ACK states when HARQ-ACK only transmission, and the UE selects a sequence corresponding to a HARQ-ACK state to be reported. Can be sent.
  • a sequence corresponding to each UCI state It can be defined as follows.
  • the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
  • Two sequences in an SR transmission (short) PUCCH resource may correspond to ⁇ Positive SR, ACK ⁇ and ⁇ Positive SR, NACK ⁇ , respectively.
  • an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k
  • the two sequences have a Cyclic shift value corresponding to k, (k + L / 2) mod L in terms of a cyclic shift index. Can be heard.
  • sequence corresponding to ⁇ Positive SR, NACK ⁇ may be a sequence corresponding to SR only.
  • Two sequences in a HARQ-ACK transmission (short) PUCCH resource may correspond to ⁇ Negative SR, ACK ⁇ and ⁇ Negative SR, NACK ⁇ , respectively.
  • Two sequences in an SR transmission (short) PUCCH resource may correspond to ⁇ Positive SR, A / A ⁇ , ⁇ Positive SR, A / N or N / A or N / N ⁇ , respectively.
  • one of the two sequences may correspond to a case in which a positive SR and an ACK / NACK bundling result (based on a logical AND operation) for 2 bits HARQ-ACK are NACK.
  • the sequence corresponding to ⁇ Positive SR, A / N or N / A or N / N ⁇ may be a sequence corresponding to SR only.
  • sequences in a HARQ-ACK transmission (short) PUCCH resource are respectively ⁇ Negative SR, A / A ⁇ , ⁇ Negative SR, A / N ⁇ , ⁇ Negative SR, N / A ⁇ , ⁇ Negative SR, N / N ⁇ .
  • Opt. 3 A method of allocating one sequence to SR transmission (short) PUCCH resources and allocating (2N-1) sequences to HARQ-ACK transmission (short) PUCCH resources
  • One sequence in an SR transmission (short) PUCCH resource may be a cyclic shift value corresponding to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
  • SR transmission (short) One sequence in a PUCCH resource is used as a resource for indicating whether the SR is SR by On / Off keying method in case of SR only transmission, and a sequence resource corresponding to the SR only is an SR transmission period.
  • the resource may be reserved at.
  • N sequences of the (2N-1) sequences in the PUCCH resource correspond to N HARQ-ACK states when HARQ-ACK only transmission, and the UE actually reports
  • a sequence corresponding to the HARQ-ACK state may be selected and transmitted.
  • the sequence corresponding to each UCI state It can be defined as follows.
  • the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
  • One sequence in an SR transmission (short) PUCCH resource may correspond to ⁇ Positive SR, NACK ⁇ .
  • Three sequences in the HARQ-ACK transmission (short) PUCCH resource may correspond to ⁇ Positive SR, ACK ⁇ , ⁇ Negative SR, ACK ⁇ , and ⁇ Negative SR, NACK ⁇ , respectively.
  • One sequence in the SR short PUCCH resource may correspond to ⁇ Positive SR, N / N ⁇ .
  • the seven sequences in the HARQ-ACK transmission (short) PUCCH resource are ⁇ Positive SR, A / A ⁇ , ⁇ Positive SR, A / N ⁇ , ⁇ Positive SR, N / A ⁇ , ⁇ Negative SR, A / A, respectively.
  • Opt. 4 Method of allocating one sequence to SR transmission (short) PUCCH resources and allocating 2N sequences to HARQ-ACK transmission (short) PUCCH resources
  • One sequence in an SR transmission (short) PUCCH resource may be a cyclic shift value corresponding to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
  • One sequence in a PUCCH resource is used as a resource for indicating whether the SR is in an on / off keying method in case of SR only transmission, and a sequence resource corresponding to the SR only is an SR transmission period.
  • the resource may be reserved at.
  • N sequences of the 2N sequences in the PUCCH resource correspond to N HARQ-ACK states when HARQ-ACK only transmission, and the UE actually reports the HARQ-ACK state
  • a sequence corresponding to may be transmitted.
  • the sequence corresponding to each UCI state It can be defined as follows.
  • the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
  • Two specific sequences in the HARQ-ACK transmission (short) PUCCH resource may correspond to ⁇ Positive SR, ACK ⁇ and ⁇ Positive SR, NACK ⁇ .
  • the remaining two sequences except for the two sequences in the HARQ-ACK transmission (short) PUCCH resource may correspond to ⁇ Negative SR, ACK ⁇ and ⁇ Negative SR, NACK ⁇ , respectively.
  • the two sequences may be two sequences for HARQ-ACK only.
  • 4 specific sequences in the HARQ-ACK transmission (short) PUCCH resource are ⁇ Positive SR, A / A ⁇ , ⁇ Positive SR, A / N ⁇ , ⁇ Positive SR, N / A ⁇ , ⁇ Positive SR, N / N ⁇ .
  • the remaining four sequences except for the four sequences in the HARQ-ACK transmission (short) PUCCH resource are ⁇ Negative SR, A / A ⁇ , ⁇ Negative SR, A / N ⁇ , ⁇ Negative SR, N / A ⁇ , It may correspond to ⁇ Negative SR, N / N ⁇ .
  • the four sequences may be two sequences for HARQ-ACK only.
  • a / A, A / N, N / A, and N / N represent ACK / ACK, ACK / NACK, NACK / ACK, and NACK / NACK, respectively.
  • the sequence corresponding to the (short) PUCCH resource or the UCI state for the SR and the HARQ-ACK may be transmitted over one or two OFDM symbols.
  • UCI information may be repeatedly transmitted even though the actual transmission sequence between two symbols depends on a specific base sequence hopping or cyclic shift hopping.
  • the corresponding relationship between the UCI state and the N sequences may be It can be changed (by specific rules) on a slot and / or symbol basis.
  • HARQ-ACK transmission (short) PUCCH resources include more than four sequence resources
  • two or more PRB resources with sequence resources may be configured.
  • each N sequence in each PRB is equal (in terms of cyclic shift index) to a specific (Low PAPR / CM) sequence. It may be a sequence to which one of the N Cyclic shift values having an interval is applied.
  • the cyclic shift value may refer to a form in which a specific cyclic shift value of the low PAPR sequence is applied.
  • the UE may select and transmit one (joint) UCI state of the SR and the HARQ-ACK from a plurality of sequences.
  • the SR PUCCH resource may include at least sequence resources for SR only transmission.
  • HARQ-ACK transmission (short) PUCCH resources should be valid even if there is no SR request
  • HARQ-ACK transmission (short) PUCCH resources may include at least the Negative SR + sequence resources for a specific HARQ-ACK state have.
  • the sequence resources to express the positive SR + specific HARQ-ACK state among the (joint) UCI states for the SR and HARQ-ACK are any PUCCH among SR short PUCCH resources and HARQ-ACK short PUCCH resources.
  • the first method includes the SR transmission (short) PUCCH resource (Opt. 1, Opt. 2)
  • the second method to include the HARQ-ACK transmission (short) PUCCH resource An alternative (Opt. 3, Opt. 4) may be considered.
  • the UE can transmit a (joint) UCI state of the SR and HARQ-ACK.
  • the SR short PUCCH and the HARQ-ACK short PUCCH resource may support (joint) UCI state transmission for the SR and the HARQ-ACK as follows.
  • SR only may be represented by an on / off keying scheme for a (single) PUCCH resource or a (single) sequence set to a higher layer.
  • ACK / NACK bundling (eg, logical AND operation) may be applied to HARQ-ACK (with positive SR).
  • UCI states may be expressed as follows.
  • the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
  • Two sequences in an SR transmission (short) PUCCH resource may correspond to ⁇ Positive SR, ACK ⁇ and ⁇ Positive SR, NACK ⁇ , respectively.
  • an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k
  • the two sequences may be equal to k in the PRB (k + L / 2) mod L in terms of a cyclic shift index. It may be corresponding Cyclic shift values. (Where L is the maximum number of cyclic shifts in the PRB)
  • sequence corresponding to ⁇ Positive SR, NACK ⁇ may be a sequence corresponding to SR only.
  • the sequence corresponding to ⁇ Positive SR, N / N ⁇ may be a sequence corresponding to SR only.
  • Two sequences in an SR transmission (short) PUCCH resource may correspond to ⁇ Positive SR, ACK ⁇ and ⁇ Positive SR, NACK ⁇ , respectively.
  • an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k
  • the two sequences may be equal to k in the PRB (k + L / 2) mod L in terms of a cyclic shift index. It may be corresponding Cyclic shift values. (Where L is the maximum number of cyclic shifts in the PRB)
  • sequence corresponding to ⁇ Positive SR, NACK ⁇ may be a sequence corresponding to SR only.
  • Two sequences in a HARQ-ACK transmission (short) PUCCH resource may correspond to ⁇ Negative SR, ACK ⁇ and ⁇ Negative SR, NACK ⁇ , respectively.
  • Two sequences in an SR transmission (short) PUCCH resource may correspond to ⁇ Positive SR, A / A ⁇ , ⁇ Positive SR, A / N or N / A or N / N ⁇ , respectively.
  • one of the above sequences may correspond to a case in which a positive SR and an ACK / NACK bundling result (based on a logical AND operation) for 2 bits HARQ-ACK are NACK.
  • sequence corresponding to ⁇ Positive SR, A / N or N / A or N / N ⁇ may be a sequence corresponding to SR only.
  • sequences in a HARQ-ACK transmission (short) PUCCH resource are respectively ⁇ Negative SR, A / A ⁇ , ⁇ Negative SR, A / N ⁇ , ⁇ Negative SR, N / A ⁇ , ⁇ Negative SR, N / N ⁇ .
  • each UCI state of HARQ-ACK only (for the same ACK / NACK information) and HARQ-ACK (with negative SR) may be regarded as the same UCI state.
  • SR only may be represented by an on / off keying scheme for (single) PUCCH resource or (single) sequence set as a higher layer.
  • HARQ-ACK Transmission (short) Transmission support for UCI states corresponding to HARQ-ACK only, HARQ-ACK (with positive SR), and HARQ-ACK (with negative SR) for each PUCCH resource
  • each UCI state of HARQ-ACK only (for the same ACK / NACK information) and HARQ-ACK (with negative SR) may be regarded as the same UCI state.
  • SR only may be represented by an on / off keying scheme for (single) PUCCH resource or (single) sequence set as a higher layer.
  • each UCI state of HARQ-ACK only (for the same ACK / NACK information) and HARQ-ACK (with negative SR) may be regarded as the same UCI state.
  • the (short) PUCCH resource may be configured in one of the following ways.
  • C-2 set for each PUCCH resource set (for HARQ-ACK transmission) set to UE
  • the transmission resource corresponding to All NACK may be set identically or independently to the SR only transmission resource.
  • the HARQ-ACK transmission PUCCH resource may be a Long PUCCH (eg, PUCCH having a length of 4 symbols or more) for HARQ-ACK (up to 2 bits).
  • the HARQ-ACK transmission PUCCH resource (or resource set) and the SR transmission (short) PUCCH resource may be configured through higher layer signals and / or DCI, and may be configured independently of each other.
  • the UE sets one or more HARQ-ACK transmission PUCCH resource sets (via higher layer signals), includes one or more PUCCH resources in each HARQ-ACK transmission PUCCH resource, and each HARQ-ACK transmission PUCCH. It is assumed that a PUCCH format in a resource may be different.
  • HARQ-ACK transmission one set per PUCCH resource set
  • HARQ-ACK transmission one set per PUCCH resource
  • Opt. 2-1 Utilize a resource corresponding to ‘All NACK’ of positive SR + HARQ-ACK transmission resources as ‘All NACK’ as SR only transmission resource (shared)
  • Opt. It may be combined with 1-1 and may require additional information on which HARQ-ACK transmission PUCCH resource set is used for SR only for the Positive SR + All NACK transmission resource set in the resource set.
  • Opt. 2-2 Utilizes resources set independently of Positive SR + HARQ-ACK transmission resources as SR only transmission resources
  • the thirteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • UCI states eg S 0 , S 1 ,..., S N-1
  • the base station may set an initial cyclic shift index (ie, ⁇ 0, 1, ..., L-1 ⁇ ) as the HARQ-ACK transmission (short) PUCCH resource.
  • the UE may perform cyclic shift to UCI state mapping from a gentle shift by one of the following methods.
  • L eg, 12
  • L means the total number of cyclic shifts in the PRB.
  • the N UCI states are represented by N Cyclic shift indexes in the PRB and the base station indicates the initial cyclic shift index to the user equipment
  • the UCI state indicated by the user equipment (linearly) starts from the initial cyclic shift index. It may correspond to the increasing cyclic shift index sequentially.
  • the UCI state may additionally correspond to a value to which a modulo operation for L is applied.
  • the UCI state obtains (linearly) increasing cyclic shift indexes from the initial cyclic shift index and then the cyclic shift index.
  • the values may be sequentially corresponded to the rearranged values in ascending or descending order.
  • the 14th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE may express the SR related information as X bits (where X ⁇ 1) and add the X bits to the UCI payload to transmit the HARQ-ACK transmission (short) PUCCH resource.
  • the SR related information may include one or more of the following information.
  • the terminal may transmit the SR related information as one of the following.
  • Send an X-bit (s) SR either (a) send a bitmap whether the SR is positive or negative for each process (b), or (b) give the highest priority among SRs with a positive SR. Only positive SR information for the owned SR (process) can be sent. (At this time, (b) may be regarded as a negative SR for other SRs (process) except for the SR (process)).
  • SR process # 1, SR process # 2, and SR process # 3 have a priority of # 1> # 2> # 3.
  • SR process # 1 is negative SR
  • SR process # 2 is positive SR
  • the terminal may perform one of the following operations.
  • a / N may mean HARQ-ACK.
  • the 1-bit SR may be SR information (eg, positive SR or negative SR) for the SR process having the highest priority among a plurality of (eg, X) SR processes.
  • SR information eg, positive SR or negative SR
  • the bundling method may be a spatial domain A / N bundling.
  • the terminal may immediately perform the operation according to Opt 3 or, if the maximum coding rate is exceeded even though the above-described Opt 1/2 is applied, the terminal may perform the operation according to Opt 3 as a second step. .
  • the X bits which are the SR related information, may be related to a (short) PUCCH resource set selection process for HARQ-ACK transmission.
  • the UE selects one of the (plural) PUCCH resource sets based on the UCI payload size, and then the base station indicates a specific PUCCH resource to be actually transmitted in the selected PUCCH resource set using DCI. can do.
  • the terminal may select the PUCCH resource set in one of the following manner.
  • Opt. 1 Select based on (total) UCI payload size for HARQ-ACK and SR related information
  • the UCI payload size for the UCI type is the (total) UCI payload size. Can be reflected in.
  • the base station may set the PUCCH resource set for the UCI payload size range to the terminal (via a higher layer signal).
  • All operations of the aforementioned 15 th SR transmission method may be extended even when the UE simultaneously transmits the CSI and the SR.
  • the UE may report the X bits information for the SR.
  • HARQ-ACK transmission (short) may be transmitted on a PUCCH resource.
  • the UE may add the X bits information to the HARQ-ACK payload size and then transmit the coded bits for the summed UCI payload as a HARQ-ACK transmission (short) PUCCH resource.
  • the SR-related X bits may include information on not only whether the SR is requested, but also about which SR process (or service) the corresponding SR is.
  • the 15 th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the PUCCH for transmitting the uplink control information (UCI), such as HARQ-ACK or CSI for the PDSCH scheduled by DL assignment in the present invention according to the payload size and transmission duration (number of PUCCH transmission symbols) of the UCI Therefore, it is assumed that PUCCH format is divided as follows.
  • Consists of only UCI signal without DM-RS may be a structure in which a UE transmits a specific UCI state by selecting / transmitting one of a plurality of specific sequences.
  • DM-RS and UCI are configured / mapped in different symbols in the form of TDM, and UCI multiplies a specific sequence by a modulation (eg QPSK) symbol.
  • CS / OCC is applied to both UCI and DM-RS to support multiplexing between multiple UEs (within the same RB)
  • Supported UCI payload size K bits or more (more than)
  • DM-RS and UCI may be configured / mapped in the same symbol in FDM form, and the terminal may transmit a scheme by applying only IFFT (Inverse Fast Fourier Transform) without coded UCI bits without DFT (Discrete Fourier Transform).
  • IFFT Inverse Fast Fourier Transform
  • DFT Discrete Fourier Transform
  • DM-RS and UCI are configured / mapped in different symbols in the form of TDM, and the terminal transmits by applying DFT to coded UCI bits.
  • UCC is applied to UCI in front of DFT and CS (or IFDM mapping) is applied to DM-RS to support multiplexing between multiple UEs.
  • DMRS and UCI can be configured / mapped in different symbols in the form of TDM
  • the terminal may be a structure that is transmitted without multiplexing between the UE by applying the DFT to the coded UCI bits
  • an SR refers to a physical layer signal for which a terminal requests UL scheduling from a base station.
  • a positive SR means a case where there is a UL scheduling request of the terminal
  • a negative SR means a case where there is no UL scheduling request of the terminal.
  • the terminal is SR as follows. And HARQ-ACK may be simultaneously transmitted.
  • the SR PUCCH may be set for each SR process.
  • UE sets a separate PUCCH format 0 resource (other than SR PUCCH and / or A / N PUCCH) and transmits to the corresponding resource.
  • the separate resource may be set for each SR process.
  • -Opt. 3 Set a separate PUCCH format 1 resource (other than SR PUCCH and / or A / N PUCCH) and send it to the resource.
  • the separate resource may be set for each SR process.
  • SR PUCCH may be set for each SR process.
  • a / N PUCCH PUCCH format 2 or 3 or 4
  • HARQ-ACK only or negative SR + HARQ-ACK is transmitted in A / N PUCCH.
  • the SR PUCCH may be set for each SR process.
  • one of the options may be selectively applied according to a service type corresponding to the SR.
  • the transmission type or PUCCH format for the PUCCH resources may vary in format 0 (sequence selection), format 1 (sequence modulation), format 2/3/4 (encoding / modulation), etc. as assumed in the present invention.
  • SR PUCCH PUCCH format of the PUCCH resource
  • a / N PUCCH PUCCH format of the PUCCH resource
  • the UE may be efficient for the UE to transmit a positive SR + HARQ-ACK to the SR PUCCH (eg, resource selection).
  • the UE may be positive SR + HARQ since the PUCCH format may contain many UCI payloads. It may be more efficient to send the -ACK on the A / N PUCCH.
  • the SR PUCCH is transmitted than the A / N PUCCH. If the length is long, the UE transmits a positive SR + HARQ-ACK to the SR PUCCH, otherwise the UE (per SR process) has the same PUCCH format as the PUCCH format of the A / N PUCCH resource (SR PUCCH and / or A / N). In addition to the PUCCH, it may be preferable to set a separate PUCCH resource (addition) and transmit a positive SR + HARQ-ACK to the resource in view of UL coverage.
  • the UE may support simultaneous SR and HARQ-ACK transmission as follows.
  • the SR PUCCH may be set for each SR process.
  • -Opt. 1 Method of transmitting to SR PUCCH according to service type corresponding to SR or to long PUCCH (per SR process) or separately set long PUCCH (particularly to SR PUCCH and / or A / N PUCCH).
  • the UE may transmit an SR PUCCH having a high low latency request (eg, URLLC SR) and an SR having a low low latency request (eg, eMBB SR) as a long PUCCH.
  • SR PUCCH having a high low latency request eg, URLLC SR
  • SR having a low low latency request eg, eMBB SR
  • -Opt. 2 A method of transmitting to SR PUCCH or A / N PUCCH according to a service type corresponding to SR.
  • the UE may transmit an SR PUCCH having a high low latency request (eg, URLLC SR) and an SR having a low Low Latency request (eg, eMBB SR) to the A / N PUCCH.
  • a high low latency request eg, URLLC SR
  • SR having a low Low Latency request eg, eMBB SR
  • the above configurations may be extended even when the terminal simultaneously transmits the CSI and the SR.
  • HARQ-ACK may support simultaneous transmission.
  • the PUCCH resource may be a PUCCH format 0 resource derived by applying a CS (cyclic shift) offset (or PRB offset) to the A / N PUCCH resource.
  • the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
  • the PUCCH resource may be a PUCCH format 1 resource derived by applying CS offset (or orthogonal cover code (OCC) offset or PRB offset) to A / N PUCCH resource.
  • the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource) and may further transmit HARQ-ACK according to a sequence modulation scheme to the corresponding resource.
  • the PUCCH resource may be a PUCCH format 0 resource set as an SR PUCCH resource (or derived by applying a CS offset (or PRB offset) to an SR PUCCH resource).
  • the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
  • -Opt. 4 Omit HARQ-ACK transmission and transmit SR information to SR PUCCH resource
  • HARQ-ACK information is transmitted to the A / N PUCCH resources, SR information is transmitted using the CS offset (or phase difference) information between the DM-RS symbol (s) in the A / N PUCCH.
  • the phase difference between the DM-RS symbols in the A / N PUCCH may be a form of multiplying a modulation (eg, differential phase shift keying) symbol for SR information according to a differential encoding scheme.
  • a / N PUCCH PUCCH format 2 or 3 or 4
  • the SR information may include information on whether an SR exists and on which SR process (or configuration) an SR exists.
  • the PUCCH resource may be a PUCCH format 0 resource derived by applying a CS offset (or PRB offset) to the A / N PUCCH resource.
  • the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
  • the PUCCH resource may be a PUCCH format 1 resource set as an SR PUCCH resource (or derived by applying a CS offset (or OCC offset or PRB offset) to the SR PUCCH resource).
  • the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource) and may further transmit HARQ-ACK according to a sequence modulation scheme to the corresponding resource.
  • -Opt. 4 Omit HARQ-ACK transmission and transmit SR information to SR PUCCH resource
  • the PUCCH resource transmitting positive SR + HARQ-ACK information to an SR PUCCH resource (or a PUCCH resource implied by the SR PUCCH resource).
  • the PUCCH resource may be a PUCCH format 0 resource set as an SR PUCCH resource (or derived by applying a CS offset (or PRB offset) to an SR PUCCH resource).
  • the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
  • the SR information may include information on whether an SR exists and on which SR process (or configuration) an SR exists.
  • the terminal may transmit the SR only to the SR PUCCH, and may transmit HARQ-ACK only or negative SR + HARQ-ACK to the A / N PUCCH.
  • the sequence selection method may refer to a method in which the UE expresses the UCI state by selecting and transmitting one of a plurality of specific sequences.
  • the sequence modulation scheme may refer to a scheme in which the UE expresses the UCI state in the form of multiplying a specific sequence by a modulation (for example, QPSK) symbol.
  • a modulation for example, QPSK
  • an SR process may refer to resource configuration in a time / frequency / code domain for transmitting a scheduling request (SR) for a specific service.
  • the plurality of SR processes may mean SR information for different services.
  • deriving another PUCCH resource by applying CS offset / OCC offset / PRB offset to a specific PUCCH resource the rest is the same for the specific PUCCH resource, only the CS index / OCC index / PRB index constant offset As much as the difference can mean that the PUCCH resources are derived.
  • the base station sets a plurality of PUCCH resource sets (terminal specific) (as a higher layer signal) to the terminal, and the terminal sets one PUCCH resource set (utilized for UCI transmission) among the plurality of PUCCH resource sets according to the UCI payload size.
  • SR information may be excluded from the UCI payload for selecting the PUCCH resource set.
  • the UE may perform PUCCH resource set selection based on the total UCI payload size for HARQ-ACK and CSI.
  • the UE additionally based on a specific indicator (eg, ACK / NACK resource indication field) in the DCI (and information implied from the DCI (eg, CCE (Control Channel Element) index, PDCCH candidate index, etc.)).
  • a specific PUCCH resource in the selected PUCCH resource set can be selected.
  • the A / N PUCCH resource is PUCCH format 0 (or format 1)
  • a positive SR + HARQ-ACK (up to 2 bits) transmission is a PUCCH resource (of the same PUCCH format) implied from the A / N PUCCH resource.
  • the UE In case that the transmitting operation is supported, if the SR information is included in the UCI payload which is a reference when the PUCCH resource set is selected, the UE has no choice but to determine positive SR + 2 bits HARQ-ACK as a UCI payload of 3 bits or more. Accordingly, the UE selects only a PUCCH resource set configured of PUCCH format 2/3/4, and transmits a positive SR + 2 bits HARQ-ACK to PUCCH format 0 (or format 1) implied from A / N PUCCH resources. There will be no.
  • the UE when the UE selects a PUCCH resource set, if only 2 bits HARQ-ACK exists, the UE excludes SR information from the PUCCH resource set selection process (ie, selects a PUCCH resource set corresponding to 2 bits), otherwise The terminal may select the PUCCH resource set based on the UCI payload size including all HARQ-ACK, SR, and CSI.
  • SR-PUCCH can be set (for a specific SR process).
  • the terminal sets one sequence among the M sequences and transmits it by OOK (on / off keying) method, and in case of HARQ-ACK + positive SR, the terminal is 2N out of M.
  • the UCI state can be expressed by using a sequence of sequences using a sequence selection method (ie, transmitting a specific UCI state by selecting / transmitting one of K sequences).
  • the terminal may additionally support the following operation.
  • ⁇ A> A scheme for changing the sequence representing the SR only state in the SR-PUCCH by slot and / or symbol unit (according to a specific pattern) (that is, ⁇ +, DTX ⁇ -to-Sequence mapping unit by slot and / or symbol unit). (Depending on a specific pattern), for example) (eg randomization).
  • '+' means positive SR.
  • X may be a value promised in advance between the base station and the terminal or a value set by the base station as a higher layer signal (eg, RRC signaling).
  • Frequency resource hopping according to the slot and / or symbol is applied only to (short) PUCCH resources that are semi-statically configured (via higher layer signals such as RRC signaling), and the DCI and DCI (such as RRC signaling) May not be applied to (short) PUCCH resources that can be dynamically indicated.
  • the sixteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the terminal may simultaneously support SR and HARQ-ACK transmission in one or more of the following ways. Can be.
  • a plurality of PUCCH resources corresponding to the plurality of SR processes (or configurations) are derived from an A / N PUCCH resource according to an implicit rule, and the UE corresponds to a single SR process (or configuration) (A / N PUCCH resources Scheme for transmitting positive SR + HARQ-ACK information to PUCCH resources
  • the UE may select and transmit one of a plurality of PUCCH resources to express a positive SR for a specific SR process (or SR configuration), and may further transmit HARQ-ACK on the corresponding resource.
  • the implicit rule may mean a method of deriving a plurality of PUCCH resources corresponding to a plurality of SR processes (or configurations) by applying CS offset / OCC offset / PRB offset to A / N PUCCH resources.
  • the UE may select and transmit a specific SR PUCCH resource to express a positive SR for a corresponding SR process (or SR configuration), and may further transmit HARQ-ACK on the corresponding resource.
  • the operation may be applied only when the SR PUCCH resource has a specific PUCCH format (for example, PUCCH format 1).
  • Opt. 3 configuring multi-bits SR information for the plurality of SR processes (or configurations) and including multi-bits SR information in the UCI payload when transmitting HARQ-ACK to transmit multi-bits SR + HARQ-ACK information to A / N PUCCH resources measures
  • the multi-bits SR includes information on whether a positive / negative SR and which SR process (or configuration) exist and / or all or some of the plurality of SR processes (or configurations);
  • the configuration may include positive / negative SR information for each SR process (or configuration).
  • the base station determines (at the same time) that at least one SR process (or configuration) is a positive SR or that all the plurality of SR processes (or configurations) are negative SRs to the UE through (terminal specific) higher layer signal (eg, RRC signaling). It may be configured to report the recognition information, or to report the multi-bits SR information for a plurality of SR processes (or configurations).
  • terminal specific higher layer signal
  • the base station sets a plurality of PUCCH resource sets (terminal specific) (as a higher layer signal) to the terminal, and the terminal uses one PUCCH resource set (utilized for UCI transmission) among the plurality of PUCCH resource sets according to the UCI payload size.
  • the multi-bit SR information (when the base station sets up the multi-bit SR transmission) may be included in the UCI payload for selecting the PUCCH resource set.
  • the PUCCH resources indicated for HARQ-ACK (only) transmission are called A / N PUCCH resources, and the PUCCH resources indicated for SR (only) transmission are called SR PUCCH resources.
  • SR PUCCH, A / N PUCCH means resources set for SR only, HARQ-ACK only transmission, respectively, the terminal transmits SR only to SR PUCCH, HARQ-ACK only or negative SR + HARQ-ACK can be transmitted on the A / N PUCCH.
  • an SR process may refer to resource configuration in a time / frequency / code domain for transmitting a scheduling request (SR) for a specific service.
  • the plurality of SR processes may mean SR information for different services.
  • the terminal derives another PUCCH resource by applying CS offset / OCC offset / PRB offset to a specific PUCCH resource.
  • the other PUCCH resources are the same for the specific PUCCH resource, and only the CS index / OCC index / PRB index differs by a predetermined offset. I can mean to derive the PUCCH resource.
  • the UE when the UE performs simultaneous SR and HARQ-ACK transmission, if the PUCCH resource configured for SR only is PUCCH format 0, the UE is a positive SR + HARQ-ACK as a PUCCH resource derived from A / N PUCCH resource If the information is transmitted and the PUCCH resource configured for SR only is PUCCH format 1, the UE may transmit positive SR + HARQ-ACK information to the SR PUCCH resource.
  • the terminal When the base station configures a plurality of SR processes (or configurations) for the terminal, the terminal further includes not only positive SR information but also information on which SR process (or configuration) is the SR process (or configuration) that is the positive SR. Reporting to may be a way to reduce the UL scheduling delay of the base station. For example, if the UE reports only positive / negative SR information to the base station (if it is a positive SR) and does not provide additional information on which SR process is a positive SR, the base station again sends a buffer status report (BSR) after the SR transmission. Only after receiving the service will the service type corresponding to the corresponding positive SR be known. Accordingly, UL scheduling delay may be caused.
  • BSR buffer status report
  • the terminal according to the present invention may further inform which SR process (or configuration) the positive SR information is together with the positive / negative SR information.
  • the terminal when the terminal transmits the positive SR + HARQ-ACK information to the PUCCH resources derived from the A / N PUCCH resources, the terminal applies a plurality of CS offset / OCC offset / PRB offset to the A / N PUCCH, etc.
  • a plurality of PUCCH resources corresponding to the number of SR processes (or configurations) may be derived, and positive SR + HARQ-ACK information may be transmitted to a specific PUCCH resource among the plurality of PUCCH resources.
  • SR PUCCH resources for each SR process (or configuration) corresponding to a plurality of SR processes (or configurations) may be preset. Accordingly, the terminal may transmit positive SR + HARQ-ACK information to a specific PUCCH resource among the plurality of PUCCH resources.
  • the UE expresses a positive SR for a specific SR process (or configuration) by selecting a specific single PUCCH resource among a plurality of PUCCH resources (corresponding to a plurality of SR processes (or configurations)) and uses HARQ as the selected resource.
  • -ACK can be additionally transmitted.
  • the terminal may include information on whether a positive / negative SR and which SR process (or configuration) exist for the plurality of SR processes.
  • multi-bits SR information including positive / negative SR information per SR process (or configuration) for all or some SR processes (configurations) by adding to the UCI payload to the multi-bits SR + HARQ -ACK may be transmitted to the A / N PUCCH resource.
  • the seventeenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE UCI multiplexing may be performed to the base station (as a single PUCCH resource).
  • the PUCCH resource configured for UCI type (only) (hereinafter UCI A) transmission having the highest priority among the UCI types is named PUCCH A
  • the UE is UCI multiplexed for a specific UCI type (s) set S.
  • the PUCCH resource selected under the assumption that s is performed is named PUCCH B.
  • S may include all UCI type (s)
  • PUCCH B may be a PUCCH resource in the case of assuming UCI multiplexing for all UCI type (s).
  • the UE For the UCI type (s) in the set S, the UE is before a specific time corresponding to the (minimum) UL timing (or UE processing time) for the corresponding UCI type (or PUCCH) based on the PUCCH A transmission time point and the Perform UCI multiplexing on the UCI type (or PUCCH) indicated by UL transmission before the point in time (included in set S), and exclude the UCI type not included in UCI multiplex (except in set S).
  • the UE when the PUCCH B is changed, the UE repeatedly applies the aforementioned 18 th SR transmission method to the changed set S and PUCCH B.
  • the UE transmits the UCI multiplexing information for the UCI type (s) in the set S to the PUCCH B.
  • the UE For the UCI type (s) in the set S, the UE is before a specific time corresponding to the (minimum) UL timing (or UE processing time) for the corresponding UCI type (or PUCCH) based on the PUCCH B transmission time point and the Perform UCI multiplexing (included in set S) for UCI types (or PUCCHs) indicated by UL transmissions earlier than the time point, and exclude UCI types that are not in UCI multiplex (except in set S).
  • the UE when the PUCCH B is changed, the UE repeatedly applies the aforementioned 18 th SR transmission method to the changed set S and PUCCH B.
  • the UE transmits the UCI multiplexing information for the UCI type (s) in the set S to the PUCCH B.
  • the terminal may perform the discovery process while sequentially excluding the UCI type based on the priority between UCI type (s).
  • the terminal may apply (2-1) of the above-described 18 th SR transmission method based on the new S and the PUCCH B.
  • SR PUCCH, A / N PUCCH, and CSI PUCCH mean resources configured for SR only, HARQ-ACK only, and CSI only transmission, respectively.
  • the priority between the UCI types is HARQ-ACK> CSI> SR, or the PUCCH transmission time corresponding to each UCI type gets higher priority or corresponds to each UCI type. It is assumed that a later UL transmission indication time can have a higher priority.
  • the PUCCH B resource may be determined depending only on the combination of UCI multiplexing target UCI type (s) in a state in which UL timing information is excluded.
  • the UE assumes priority with A / N PUCCH> SR PUCCH (or HARQ-ACK> SR) and operates as follows. Can be.
  • the UE When a positive SR occurs within a certain time interval corresponding to UL timing (or UE processing time) based on A / N PUCCH transmission timing (minimum), the UE omits SR transmission and transmits only HARQ-ACK information.
  • a / N PUCCH transmission time criterion (minimum)
  • the UE transmits UCI multiplexing information between the SR and the HARQ-ACK.
  • the method of the UE transmitting the information in which the SR and the HARQ-ACK are UCI multiplexed may follow the aforementioned 16 th SR transmission method.
  • the UE is instructed so that a plurality of PUCCH transmissions for a plurality of UCI types are overlapped for at least some symbols, and the UE can transmit UCI multiplexing some or all UCI information for the plurality of UCI types. If there is, transmission of the highest priority UCI type (UCI A) among the plurality of UCI types is always guaranteed and UCI multiplexing on UCI types that are ready in terms of UL timing (or UE processing time) is possible. Can be supported.
  • UCI A highest priority UCI type
  • the UE may operate as follows in each case.
  • at least one PUCCH in Case 1 and Case 2 may be a PUCCH for HARQ-ACK transmission.
  • -UCI piggybacked UCI (eg HARQ-ACK) configured to be transmitted on PUCCH by PUSCH
  • the UE may perform rate matching or puncturing on the PUCCH or the PUSCH with respect to some symbols overlapping between the PUCCHs or between the PUSCH and the PUCCH.
  • the UE UCI multiplexing may be performed as follows to transmit to a base station (as a single PUCCH resource).
  • SR PUCCH, A / N PUCCH, and CSI PUCCH mean PUCCH resources configured and / or indicated for SR (only), HARQ-ACK (only), and CSI (only) transmission, respectively.
  • PF0, PF1, PF2, PF3, and PF4 mean PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4, respectively.
  • PF X / Y means PF X or PF Y.
  • the meaning that a positive SR has occurred may mean that the UE has generated UL data to be transmitted or has determined to request UL scheduling.
  • Case 1 A / N PUCCH and SR PUCCH overlap
  • a / N PUCCH is PF2 / 3/4 and SR PUCCH is PF0 / 1
  • UCI including HARQ-ACK bit (s) and explicit SR bit (s) is transmitted to A / N PUCCH
  • the explicit SR bit (s) may include the following information on the basis of the A / N PUCCH transmission (start) time T.
  • the explicit SR bit (s) indicates positive SR information.
  • the explicit SR bit (s) indicates negative SR information.
  • the explicit SR bit (s) indicates negative SR information.
  • a / N PUCCH is PF0 and SR PUCCH is PF0
  • the UE transmits HARQ-ACK information to the PF0 resource (obtained from A / N PUCCH).
  • the PF0 resource is applied to the A / N PUCCH resource (eg, PF0 resource) by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset. It may be a PF0 resource obtained.
  • PRB physical resource block
  • CS cyclic shift index offset
  • OCC orthogonal cover code
  • the UE If a positive SR occurs after TT 0 , the UE skips the SR transmission and transmits HARQ-ACK (only) to the A / N PUCCH
  • the UE transmits HARQ-ACK (only) information to A / N PUCCH
  • a / N PUCCH is PF0 and SR PUCCH is PF1
  • Opt. 1 T based on A / N PUCCH transmission (start)
  • the UE transmits HARQ-ACK information to the PF0 resource (obtained from A / N PUCCH).
  • the PF0 resource is applied to the A / N PUCCH resource (eg, PF0 resource) by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset. It may be a PF0 resource obtained.
  • PRB physical resource block
  • CS cyclic shift index offset
  • OCC orthogonal cover code
  • the UE If a positive SR occurs after TT 0 , the UE skips the SR transmission and transmits HARQ-ACK (only) to the A / N PUCCH
  • the UE transmits HARQ-ACK (only) information to A / N PUCCH
  • the UE transmits HARQ-ACK information to the A / N PUCCH.
  • HARQ-ACK information may be transmitted by multiplying a specific QPSK modulation symbol by (all or in part) UCI sequence (s) in the SR PUCCH.
  • the UE omits SR transmission and transmits HARQ-ACK (only) to A / N PUCCH.
  • -Opt. 1 Omit SR transmission and transmit HARQ-ACK (only) to A / N PUCCH
  • the PF1 resource may be configured by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset to an A / N PUCCH resource (eg, PF1 resource). It can be the PF1 resource obtained.
  • PRB physical resource block
  • CS cyclic shift
  • OCC orthogonal cover code
  • HARQ-ACK information is transmitted to the A / N PUCCH
  • SR information is represented by a method of changing a specific UCI sequence or DM-RS sequence in the A / N PUCCH or a method of multiplying the DM-RS by DPSK modulation symbols .
  • the method of changing the UCI sequence or the DM-RS sequence by the terminal may be a method of changing the base sequence or the CS (cyclic shift).
  • the UE transmits HARQ-ACK (only) information to A / N PUCCH
  • -Opt. 1 Omit SR transmission and transmit HARQ-ACK (only) to A / N PUCCH
  • the PF1 resource may be configured by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset to an A / N PUCCH resource (eg, PF1 resource). It can be the PF1 resource obtained.
  • PRB physical resource block
  • CS cyclic shift
  • OCC orthogonal cover code
  • HARQ-ACK information is transmitted to the A / N PUCCH
  • SR information is represented by a method of changing a specific UCI sequence or DM-RS sequence in the A / N PUCCH or a method of multiplying the DM-RS by DPSK modulation symbols .
  • the method of changing the UCI sequence or the DM-RS sequence by the terminal may be a method of changing the base sequence or the CS (cyclic shift).
  • -Opt. 4 Send HARQ-ACK information to SR PUCCH.
  • the HARQ-ACK information may be transmitted by multiplying a specific QPSK modulation symbol by the UCI sequence in the SR PUCCH.
  • the Opt. The operation of 4 is applied only when the SR PUCCH is later than or equal to the transmission time of the A / N PUCCH (or when the SR PUCCH transmission interval is included in the A / N PUCCH transmission interval). Otherwise, the UE omits SR transmission and HARQ-ACK (only) information may be transmitted through A / N PUCCH.
  • the UE omits SR transmission and transmits HARQ-ACK (only) to A / N PUCCH.
  • the UE transmits HARQ-ACK (only) information to the A / N PUCCH.
  • Opt. 2 based on the T at the time of the SR PUCCH transmission (start)
  • the UE transmits HARQ-ACK information to the A / N PUCCH.
  • the UE transmits HARQ-ACK information to the SR PUCCH.
  • the UCI sequence in the SR PUCCH transmitting HARQ-ACK information may be transmitted by multiplying a specific QPSK modulation symbol.
  • the UE when the (transmission) end time of the SR PUCCH is delayed by a predetermined time T d after the (transmission) end time of the A / N PUCCH, the UE omits SR transmission and transmits HARQ-ACK (only) to the A / N PUCCH.
  • the predetermined time T d may be a predetermined value or a value set by the base station.
  • the UE omits SR transmission and transmits HARQ-ACK (only) to A / N PUCCH
  • a / N PUCCH is PF0 / 1 and CSI PUCCH is PF2 / 3/4
  • -UE omits CSI transmission and transmits HARQ-ACK (only) to A / N PUCCH
  • a / N PUCCH is PF2 / 3/4 and CSI PUCCH is PF2 / 3/4
  • the UE transmits UCI including HARQ-ACK bit (s) and CSI bit (s) to A / N PUCCH.
  • the (time axis) CSI reference resource for the CSI is T 1 -T 0. It may be the fastest DL slot present at and before the T 2 -T CQI point.
  • (valid) DL slot refers to a slot configured as a DL slot (to a terminal) and / or a slot not included in a measurement gap (eg, a measurement gap) and / or a DL bandwidth part (BWP) where CSI reporting is performed. It may mean a slot included in the same DL BWP.
  • T CQI may be a value previously set between the base station and the terminal or a value set by the base station to the terminal.
  • the UE may perform UCI multiplexing as follows.
  • the UE transmits the UCI including the HARQ-ACK bit (s) and the CSI bit (s) to the CSI PUCCH.
  • the UE transmits the UCI including the HARQ-ACK bit (s) and the CSI bit (s) to the CSI PUCCH.
  • a (single) CSI PUCCH resource for transmitting the HARQ-ACK bit (s) and the CSI bit (s) may be selected.
  • the UE omits CSI transmission and transmits HARQ-ACK (only) to A / N PUCCH.
  • Case 3 A / N PUCCH, CSI PUCCH, and SR PUCCH overlap
  • UE can transmit UCI including HARQ-ACK bit (s), CSI bit (s), and explicit SR bit (s) to A / N PUCCH.
  • UCI including HARQ-ACK bit (s), CSI bit (s), and explicit SR bit (s) to A / N PUCCH.
  • the (time axis) CSI reference resource for the CSI is T 1 -T. It may be the fastest DL slot existing at and before the 0 time point and present at and before the T 2 -T CQI time point.
  • (valid) DL slot refers to a slot configured as a DL slot (to a terminal) and / or a slot not included in a measurement gap (eg, a measurement gap) and / or a DL bandwidth part (BWP) where CSI reporting is performed. It may mean a slot included in the same DL BWP.
  • T CQI may be a value previously set between the base station and the terminal or a value set by the base station to the terminal.
  • the explicit SR bit (s) may include the following information on the basis of the A / N PUCCH transmission (start) time T1.
  • the explicit SR bit (s) indicates positive SR information.
  • the explicit SR bit (s) indicates negative SR information.
  • the explicit SR bit (s) indicates negative SR information.
  • the UE may perform UCI multiplexing as follows.
  • the UE transmits a HARQ-ACK bit (s), a CSI bit (s), and a UCI including an explicit SR bit (s) to the CSI PUCCH.
  • a (single) CSI PUCCH resource for transmitting the HARQ-ACK bit (s) and the CSI bit (s) may be selected.
  • the UE follows the UCI multiplexing rule between HARQ-ACK and SR after omitting CSI transmission (or follow the operation of Case 1 described above).
  • the time axis unit for T and / or T 0 may be a slot and / or an OFDM symbol, in particular T 0 corresponds to (minimum) UL timing or UE processing time for HARQ-ACK transmission. It may be time or time corresponding to (minimum) UL timing or UE processing time required when the UE changes PUCCH resources and transmits the same.
  • the T 0 value may be determined in a predetermined manner (depending on UE capability, etc.) or may be a value set by a base station.
  • a / N PUCCH when not otherwise specified in the above description may be a PUCCH resource for transmitting HARQ-ACK information on the PDSCH scheduled based on DL assignment (or DL scheduling DCI).
  • the UE may arbitrarily transmit only HARQ-ACK only to A / N PUCCH (depending on the implementation of the terminal) or UCI multiplexes HACK-ACK and SR to a promised PUCCH resource.
  • the eighteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the base station transmits a PUCCH transmission period (in OFDM symbol units) to PUCCH resources (hereinafter SR PUCCH) for transmitting a scheduling request (SR) to a terminal (via (terminal specific) higher layer signal (eg, RRC signaling)) and / or
  • SR PUCCH scheduling request
  • SR scheduling request
  • a terminal via (terminal specific) higher layer signal (eg, RRC signaling)
  • the user equipment (OFDM symbol unit) for SR transmission
  • the (relative) PUCCH transmission start (OFDM) index in the PUCCH transmission period can be derived and applied as follows.
  • N 0 , N period , N offset , and N duration are the (relative) PUCCH transmission start (OFDM) symbols (OFDM symbol index) in the PUCCH transmission period (in OFDM symbol units) (set for SR transmission), respectively.
  • A) means a PUCCH transmission period, a (SR) PUCCH transmission start (OFDM) symbol in a slot, and a PUCCH transmission length (in OFDM symbol units).
  • a slot means a basic scheduling unit composed of a plurality of (contiguous) OFDM symbols.
  • one slot may include 14 OFDM symbols.
  • the terminal may expect that the base station does not set the SR transmission period PUCCH transmission period shorter than the PUCCH transmission length for the PUCCH resources (that is, N period ⁇ N duration ).
  • the (SR) PUCCH transmission start (OFDM) symbol in a slot is a transmission start (OFDM) symbol of a PUCCH resource set to the UE by the base station and And / or a separate time axis offset (eg SR offset) value.
  • the (relative) PUCCH transmission start (OFDM) symbol in the PUCCH transmission period (in OFDM symbol units) for SR PUCCH is an (OFDM) symbol in Local indexing defined within the PUCCH transmission period. It can mean (index).
  • two The first symbol of the SR PUCCH having a symbol length may be transmitted as an OFDM symbol (index) 13 in a k-th slot
  • the second symbol may be transmitted as an OFDM symbol (index) 0 in a (k + 1) th slot.
  • an operation of transmitting an SR over two slots by the terminal may be undesirable because the base station should guarantee UL transmission for at least two slots, thereby limiting scheduling flexibility of the base station.
  • the nineteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE When the HARQ-ACK transmission PUCCH resources (hereinafter referred to as A / N PUCCH) and the SR transmission PUCCH resources (hereinafter referred to as SR PUCCH) to be transmitted by the UE are overlapped in whole or in part on the time axis, the UE is based on the priority between HARQ-ACK and the SR. UCI transmission can be performed together.
  • a / N PUCCH HARQ-ACK transmission PUCCH resources
  • SR PUCCH SR transmission PUCCH resources
  • -UE skips (or stops) A / N transmission and transmits SR to SR PUCCH
  • the UE UCI multiplexes the corresponding A / N and the SR as a single PUCCH resource
  • the UE transmits only A / N for a specific single (eg, PCell (Primary Cell)) PDSCH and UCI multiplexes the SR as a single PUCCH resource.
  • a specific single eg, PCell (Primary Cell)
  • T MUX means a transmission time of a PUCCH resource for transmitting the UCI multiplexing result for A / N and SR
  • T 1 may be one of the following.
  • the T MUX -T 1 may mean a time point at which UE starts encoding for HARQ-ACK.
  • Opt. 1 (minimum) PDSCH-to-HARQ-ACK timing set to the UE (such as higher layer signal)
  • Opt. 3 (minimum) PDSCH-to-HARQ-ACK timing (or UE processing time) according to UE capability (or implementation)
  • the UE may perform UCI multiplexing (between HARQ-ACK and SR) according to the PUCCH Format.
  • a / N transmission with N PUCCH (Positive SR is expressed as CS increase)
  • the UE transmits an A / N modulation symbol to the SR PUCCH (Positive SR is represented by SR PUCCH selection / transmission).
  • the operation may be applied only when the start symbol of the SR PUCCH is equal to or later than the start symbol of the A / N PUCCH.
  • the terminal may determine the priority between the SR and the HARQ-ACK as follows.
  • base station establishes a priority relationship with higher layer signals
  • the SR may have a higher priority than the HARQ-ACK, and in other cases, the HARQ-ACK may have a higher priority than the SR.
  • the PDSCH-to-HARQ-ACK timing may be one of the following.
  • SR PUCCH and A / N PUCCH may refer to PUCCH resources configured and / or indicated for SR (only) and HARQ-ACK (only) transmission, respectively.
  • PF 0, PF 1, PF 2, PF 3, PF 4 means PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, PUCCH format 4, respectively, PF X / Y May mean PF X or PF Y.
  • PDSCH-to-HARQ-ACK timing may mean a time from the PDSCH end time to the HARQ-ACK transmission time.
  • the fact that a positive SR has occurred may mean that the UE has generated UL data to be transmitted or has determined to request UL scheduling.
  • a positive SR may occur after the UE starts encoding for HARQ-ACK or starts transmitting PUCCH for HARQ-ACK. In this case, it may be necessary to consider how the terminal will process the SR.
  • the UE If the HARQ-ACK has priority over the SR, the UE multiplexes the SR and the HARQ-ACK when the positive SR occurs before the HARQ-ACK encoding, and transmits the information to a single PUCCH resource. Delay in one cycle and can perform only HARQ-ACK transmission.
  • SR transmission requiring low latency in order to support services such as URLLC, and the SR transmission may have a higher priority than HARQ-ACK. have.
  • the terminal If the SR has a priority over the HARQ-ACK as described above, if the positive SR occurs before the HARQ-ACK encoding, the terminal multiplexes the SR and HARQ-ACK to transmit a single PUCCH resource, otherwise, HARQ- ACK transmission may be omitted or stopped and only SR transmission may be performed.
  • the HARQ-ACK encoding start time of the UE may be entirely dependent on the UE implementation, or may be promised to a time before (minimum) PDSCH-to-HARQ-ACK timing compared to the PUCCH resource transmission start time to transmit the UCI multiplexing result.
  • the following options may be considered as a method for adjusting the priority between the HARQ-ACK and the SR.
  • Opt. 1 relative priority is set to a higher layer signal (eg RRC signaling)
  • Opt. 3 Relative priority determined by relationship between PDSCH-to-HARQ-ACK timing and SR period
  • the UE may consider that the SR has a higher priority than the HARQ-ACK if the SR period is less than or equal to a specific value. On the contrary, if the SR period is greater than the specific value, the UE may determine that the HARQ-ACK has a higher priority than the SR. .
  • the UE may consider that the SR has a higher priority than the HARQ-ACK if the SR period is smaller than the minimum PDSCH-to-HARQ-ACK timing set to it, otherwise the HARQ-ACK has a higher priority than the SR. We can judge that it is high.
  • FIG. 12 is a diagram briefly illustrating an SR transmission method of a terminal when an SR has a higher priority than an HARQ-ACK according to the present invention.
  • the SR period is shorter than (min) PDSCH-to-HARQ-ACK timing, indicating a case in which the SR has a higher priority.
  • the UE may omit HARQ-ACK transmission and transmit only the SR.
  • the UE may stop the HARQ-ACK transmission and perform the SR transmission.
  • FIG. 13 and 14 illustrate a method for transmitting an SR of a terminal when HARQ-ACK has a higher priority than an SR according to the present invention.
  • the SR period is longer than the (min) PDSCH-to-HARQ-ACK timing, indicating a case in which the HARQ-ACK has a higher priority.
  • the UE transmits the HARQ-ACK and the SR to UCI multiplexes and transmits them as a single PUCCH resource. Otherwise, the UE may delay the SR transmission in the next cycle and transmit only the HARQ-ACK. have.
  • the reason why the reference point of the SR period is set to (min) PDSCH-to-HARQ-ACK timing is because the corresponding value corresponds to the end time of the bundling window to be referred for HARQ-ACK multiplexing of the UE. . That is, the base station may expect to start encoding for HARQ-ACK after the UE detects at least the PDSCHs in the bundling window.
  • a single PUCCH resource for UCI multiplexing and transmitting HARQ-ACK and SR may be defined as follows according to the PUCCH Format of the PUCCH resource for each HARQ-ACK and SR.
  • a / N PUCCH is PF 2/3/4 and SR PUCCH is PF 0/1
  • UE transmits A / N and SR to A / N PUCCH after appending SR bit (s) to UCI.
  • the UE transmits an A / N modulation symbol to the SR PUCCH (Positive SR is represented by SR PUCCH selection / transmission).
  • the UE may omit the SR transmission and transmit only the A / N to the A / N PUCCH.
  • both the AN PUCCH and the SR PUCCH are PF 1
  • the UE does not reduce the UE processing time for HARQ-ACK encoding and the SR PUCCH corresponds to the AN PUCCH.
  • the above operation can be performed only when the same or the same starting symbol is used. Otherwise, the terminal may omit the SR or HARQ-ACK transmission according to the priority.
  • a / N PUCCH transmission PUCCH resources
  • SR PUCCH SR transmission PUCCH resources
  • a / N PUCCH is PF 2/3/4
  • SR PUCCH may be PF 0/1.
  • the UE may express the SR information as an explicit bit (s) and then transmit coded modulated symbols obtained by encoding and modulating the SR bit (s) through punctured REs in the A / N PUCCH. . (I.e. piggyback the SR to some specific REs in the A / N PUCCH)
  • the modulation order for the SR bit (s) may be the same as A / N.
  • the number of coded modulated symbols (per layer) for the SR may be changed according to the UCI payload size for the SR and Beta-offset, which is a design variable for the SR.
  • the SR transmission REs mapped to RE based on puncturing for the A / N PUCCH have a subset (eg, subset) of (UCI) REs in the A / N PUCCH on OFDM symbols in which A / N and SR overlap. May be limited.
  • the number of coded modulation symbols (per layer) for the SR may include a coding rate for A / N (or UCI payload size for A / N, Cyclic Redundancy Check (CRC) bits size for A / N, And number of transmission REs in A / N PUCCH for A / N) or maximum coding rate for A / N PUCCH, design variable beta-offset (for SR), modulation order (for SR) and (for SR) It can be calculated based on the UCI payload size.
  • CRC Cyclic Redundancy Check
  • the coding rate for A / N (or the maximum coding rate for A / N PUCCH) is ,
  • the design variable beta-offset set for the SR Modulation order for SR , UCI payload size for SR , CRC bits size for SR ,
  • the number of Coded modulated symbols (per layers) for the SR Can be calculated as follows.
  • UB SR means the upper limit of the number of coded modulation symbols (per layer) for the SR.
  • the UB SR may be the number of (UCI) REs in the A / N PUCCH on OFDM symbols in which A / N and SR overlap.
  • the UE is HARQ-ACK (hereinafter, A / N).
  • UCI transmission may be performed as follows based on the priority between the SR and the SR.
  • a / N PUCCH is PF 2/3/4 and SR PUCCH is FP 0/1
  • -UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
  • the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, it is regarded as a negative SR.
  • UE omits A / N transmission and transmits only SR PUCCH
  • -Opt. 3 transmit A / N to A / N PUCCH, expressing (part or all) SR as explicit bit (s) to transmit coded modulation symbols for SR through some RE punctured in A / N PUCCH
  • a / N PUCCH is PF 0/1 and SR PUCCH is PF 0/1 (except when A / N PUCCH is PF 1 and SR PUCCH is PF 1)
  • the UE transmits A / N as a resource that increases the CS of the A / N PUCCH, and if a negative SR, the UE transmits A / N as an A / N PUCCH resource.
  • the CS increase may be applied to A / N PUCCH resources on full (OFDM) symbols or on overlapping SR (OFDM) symbols.
  • the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
  • UE omits A / N transmission and transmits only SR PUCCH
  • UE transmits A / N to A / N PUCCH, but transmits (part or all) SR by changing CS (or sequence) on overlapped (OFDM) symbols
  • the UE transmits A / N to SR PUCCH resources. If a negative SR, the UE transmits A / N to A / N PUCCH resources.
  • the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
  • UE omits A / N transmission and transmits only SR PUCCH
  • UE transmits A / N to A / N PUCCH, but transmits (part or all) SR by changing CS (or sequence) on overlapped (OFDM) symbols
  • the priority between the A / N and the SR may be determined by a combination of one or more of the following priority rules or may be set by the base station through a higher layer signal and / or a DCI.
  • the relative priority between A / N and SR is determined by PUCCH length, SR period, and (minimum) UL timing for A / N (e.g. PDSCH-to-HARQ-ACK timing).
  • PUCCH length e.g. PDSCH-to-HARQ-ACK timing
  • UCI 2 has priority over UCI 1 only when UCI 2 is Short PUCCH and the period (or (minimum) UL timing) is shorter.
  • UCI corresponding to A / N among UCI 1 and UCI 2 has higher priority.
  • a / N PUCCH is PF 3/4 and SR PUCCH is PF 1
  • -UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
  • the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, the UE regards this as a negative SR.
  • a / N PUCCH is PF 3/4 and SR PUCCH is PF 0
  • UE omits A / N transmission and transmits only SR PUCCH
  • UE transmits A / N to A / N PUCCH, expressing (part or all) SR as Explicit bit (s), Coded modulation symbols for SR to some RE punctured in A / N PUCCH send
  • -UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
  • the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, the UE regards this as a negative SR.
  • a / N PUCCH is PF 1 and SR PUCCH is PF 1
  • the UE transmits A / N to SR PUCCH resources. If a negative SR, the UE transmits A / N to A / N PUCCH resources.
  • the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
  • a / N PUCCH is PF 1 and SR PUCCH is PF 0
  • UE omits A / N transmission and transmits only SR PUCCH
  • UE transmits A / N to A / N PUCCH, but transmits (part or all) SR by changing CS (or sequence) on overlapped (OFDM) symbols
  • the UE transmits A / N as a resource that increases the CS of the A / N PUCCH, and if a negative SR, the UE transmits A / N as an A / N PUCCH resource.
  • the CS increase may be applied to the A / N PUCCH resource on the entire (OFDM) symbols or the overlapping (OFDM) symbols with the SR.
  • the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
  • a / N PUCCH is PF 2 and SR PUCCH is PF 0/1
  • -UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
  • the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, the UE regards this as a negative SR.
  • a / N PUCCH is PF 0 and SR PUCCH is PF 0/1
  • the UE transmits A / N as a resource that increases the CS of the A / N PUCCH, and if a negative SR, the UE transmits A / N as an A / N PUCCH resource.
  • the CS increase may be applied to A / N PUCCH resources on full (OFDM) symbols or on overlapping SR (OFDM) symbols.
  • the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
  • the (minimum) PDSCH-to-HARQ-ACK timing may mean a minimum value of PDSCH-to-HARQ-ACK timing set or promised in the corresponding A / N PUCCH.
  • the 20th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
  • the UE is UCI multiplexing HARQ-ACK and CSI.
  • Transmission on the PUCCH and the CSI reference resource can be determined as follows.
  • the (time axis) CSI reference resource for the CSI exists at a point before T A / N -T 1 (or at that point in time), while the fastest DL exists at a point before (or at that point in time) T CSI -T CQI. It may be a slot.
  • the (time axis) CSI reference resource for the CSI exists at a time point before (or at) the point before T CSI -T 1 , and is the fastest DL slot at a time point (or at the point) before the T CSI -T CQI. Can be.
  • T A / N means A / N PUCCH transmission time point
  • T 1 may be one of the following.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are a method for transmitting and receiving a scheduling request between a terminal and a base station in a wireless communication system and a device for supporting the same.

Description

무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치Method for transmitting / receiving scheduling request between a terminal and a base station in a wireless communication system and an apparatus supporting the same
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치에 대한 것이다.The following description relates to a wireless communication system, and a method for transmitting and receiving a scheduling request between a terminal and a base station in a wireless communication system and an apparatus supporting the same.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.In addition, as more communication devices require larger communication capacities, there is a need for improved mobile broadband communication as compared to conventional radio access technology (RAT). Massive Machine Type Communications (MTC), which connects multiple devices and objects to provide various services anytime, anywhere, is also being considered in next-generation communications. In addition, a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
이와 같이 향상된 모바일 브로드밴드 통신, 매시프 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.The introduction of the next generation of RAT considering the improved mobile broadband communication, Massif MTC, and Ultra-Reliable and Low Latency Communication (URLLC) is being discussed.
본 발명의 목적은 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치들을 제공하는 것이다.An object of the present invention is to provide a method for transmitting and receiving a scheduling request between a terminal and a base station in a wireless communication system and apparatuses supporting the same.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.Technical objects to be achieved in the present invention are not limited to the above-mentioned matters, and other technical problems not mentioned above are provided to those skilled in the art from the embodiments of the present invention to be described below. May be considered.
본 발명은 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청 송수신 방법 및 이를 지원하는 장치들을 제공한다. The present invention provides a method for transmitting and receiving a scheduling request between a terminal and a base station in a wireless communication system and apparatuses supporting the same.
본 발명의 일 양태로서, 무선 통신 시스템에서 단말이 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 방법에 있어서, 상기 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송;하는 것을 포함하는, 스케줄링 요청 전송 방법을 제안한다.In one aspect of the present invention, a method for transmitting a scheduling request (SR) by a terminal to a base station in a wireless communication system, the first configuration information for one or more first uplink resources for the SR transmission from the base station Receiving second configuration information on a second uplink resource for transmitting uplink control information (UCI); And a bit indicating SR information for N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain. And transmitting information in the second uplink resource together with the UCI.
여기서, 상기 제1 설정 정보는 상위 계층 시그널링을 통해 수신될 수 있다.Here, the first configuration information may be received through higher layer signaling.
또한, 상기 제2 설정 정보는 하향링크 제어 정보 (downlink control information; DCI)를 통해 수신될 수 있다.In addition, the second configuration information may be received through downlink control information (DCI).
여기서, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정 중 하나의 SR 설정에 대한 정보 및 상기 하나의 SR 설정에 대응하는 포지티브 (positive) SR 정보를 나타낼 수 있다.Here, the bit information indicating the SR information for the N SR configuration may indicate information about one SR configuration among the N SR configuration and positive SR information corresponding to the one SR configuration. .
또는, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정들 각각에 대응하는 SR 정보들이 포지티브 (positive) SR 인지 또는 네거티브 (negative) SR 인지 여부를 지시하는 복수 개의 비트들로 구성될 수 있다.Alternatively, the bit information indicating the SR information for the N SR settings may include a plurality of bits indicating whether the SR information corresponding to each of the N SR settings is a positive SR or a negative SR. It may consist of bits.
이때, 상기 복수 개의 비트들 각각은, 대응하는 SR 정보가 포지티브 SR인 경우 1의 값을 가지고, 대응하는 SR 정보가 네거티브 SR인 경우 0의 값을 가질 수 있다.In this case, each of the plurality of bits may have a value of 1 when the corresponding SR information is a positive SR and a value of 0 when the corresponding SR information is a negative SR.
또한, 상기 복수 개의 비트들은, 상기 N 개의 SR 설정들의 식별 정보에 기반한 순서로 구성될 수 있다.In addition, the plurality of bits may be configured in an order based on identification information of the N SR settings.
상기 구성에 있어, 상기 N 개의 제1 상향링크 자원 및 상기 제2 상향링크 자원은 시간 영역에서 전체 또는 일부 중첩될 수 있다.In the above configuration, the N first uplink resources and the second uplink resource may overlap all or part of the time domain.
이때, 상기 제2 상향링크 자원은, 상기 UCI를 전송하는 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH) 자원에 대응할 수 있다.In this case, the second uplink resource may correspond to a physical uplink control channel (PUCCH) resource for transmitting the UCI.
또한, 상기 비트 정보는, 상기 UCI와 결합되어 생성된 코딩된 비트 (coded bits) 포맷으로 상기 제2 상향링크 자원에서 전송될 수 있다.In addition, the bit information may be transmitted in the second uplink resource in a coded bits format generated in combination with the UCI.
상기 구성에 있어, 상기 UCI는, 채널 상태 정보 (channel state information; CSI) 또는, HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 포함할 수 있다.In the above configuration, the UCI may include channel state information (CSI) or Hybrid Automatic Repeat Request Acknowledge (HARQ-ACK) information.
본 발명의 다른 양태로서, 무선 통신 시스템에서 기지국이 단말로부터 스케줄링 요청 (scheduling request; SR)을 수신하는 방법에 있어서, 상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신;하는 것을 포함하는, 스케줄링 요청 수신 방법을 제안한다.In another aspect of the present invention, a method for receiving a scheduling request (SR) from a terminal by a base station in a wireless communication system, the first configuration information for one or more first uplink resources for SR transmission to the terminal; Transmitting second configuration information for a second uplink resource for transmitting uplink control information (UCI); And a bit indicating SR information for N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain. And receiving information in the second uplink resource together with the UCI.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 단말에 있어서, 수신부; 송신부; 및 상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 상기 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송;하도록 구성되는, 단말을 제안한다.In another aspect of the present invention, a terminal for transmitting a scheduling request (SR) to a base station in a wireless communication system, the terminal comprising: a receiving unit; A transmitter; And a processor operatively connected to the receiver and the transmitter, the processor comprising: first configuration information and uplink control information for one or more first uplink resources for SR transmission from the base station; Receiving second configuration information for a second uplink resource transmitting UCI); And a bit indicating SR information for N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain. The terminal is configured to transmit information in the second uplink resource together with the UCI.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 단말로부터 스케줄링 요청 (scheduling request; SR)을 수신하는 기지국에 있어서, 수신부; 송신부; 및 상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신;하도록 구성되는, 기지국을 제안한다.In another aspect of the present invention, a base station for receiving a scheduling request (SR) from a terminal in a wireless communication system, comprising: a receiving unit; A transmitter; And a processor operating in connection with the receiver and the transmitter, wherein the processor comprises: first configuration information and uplink control information for one or more first uplink resources for SR transmission to the terminal; Transmitting second configuration information for a second uplink resource transmitting UCI); And a bit indicating SR information for N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain. And a base station configured to receive information in the second uplink resource together with the UCI.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 단말이 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 방법에 있어서, SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정; 및 상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송함으로써 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행;하는 것을 포함하는, 스케줄링 요청 전송 방법을 제안한다.In another aspect of the present invention, a method for transmitting a scheduling request (SR) by a terminal to a base station in a wireless communication system, the method comprising: a first physical uplink control channel (PUCCH) for transmitting SR information; Determine a second PUCCH format for transmitting the format and HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) information; And a first PUCCH format consisting of one or two symbols and corresponding to a PUCCH format supporting uplink control information (UCI) of up to two bits in size, wherein the second PUCCH format is four or more symbols. It corresponds to a PUCCH format that supports a UCI of up to 2 bits in size, and when the SR information is a positive SR, the SR information by transmitting only the HARQ-ACK information using the second PUCCH format And the simultaneous transmission of the HARQ-ACK information; proposes a scheduling request transmission method comprising a.
여기서, 상기 SR 정보를 전송하는 제1 상향링크 자원과 상기 HARQ-ACK 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송이 수행될 수 있다.Here, when the first uplink resource for transmitting the SR information and the second uplink resource for transmitting the HARQ-ACK information overlap in a time domain, simultaneous transmission of the SR information and the HARQ-ACK information may be performed. Can be.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 단말에 있어서, 수신부; 송신부; 및 상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정; 및 상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송함으로써 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행;하도록 구성되는, 단말을 제안한다.In another aspect of the present invention, a terminal for transmitting a scheduling request (SR) to a base station in a wireless communication system, the terminal comprising: a receiving unit; A transmitter; And a processor operatively connected to the receiver and the transmitter, wherein the processor comprises: a first physical uplink control channel (PUCCH) format and a HARQ-ACK (Hybrid Automatic Repeat request) for transmitting SR information; Determine a second PUCCH format for transmitting Acknowledge information; And a first PUCCH format consisting of one or two symbols and corresponding to a PUCCH format supporting uplink control information (UCI) of up to two bits in size, wherein the second PUCCH format is four or more symbols. It corresponds to a PUCCH format that supports a UCI of up to 2 bits in size, and when the SR information is a positive SR, the SR information by transmitting only the HARQ-ACK information using the second PUCCH format And to perform simultaneous transmission of the HARQ-ACK information.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The above-described aspects of the present invention are merely some of the preferred embodiments of the present invention, and various embodiments reflecting the technical features of the present invention will be described in detail by those skilled in the art. Based on the description, it can be derived and understood.
본 발명의 실시 예들에 따르면 다음과 같은 효과가 있다.According to embodiments of the present invention has the following effects.
본 발명에 따르면, 복수 개의 스케줄링 요청 정보를 전송하는 제1 상향링크 자원과 확인 응답 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 단말은 상기 복수 개의 스케줄링 요청 정보에 대응하는 비트 정보를 상기 확인 응답 정보와 함께 상기 제2 상향링크 자원에서 전송할 수 있다.According to the present invention, when a first uplink resource for transmitting a plurality of scheduling request information and a second uplink resource for transmitting acknowledgment information overlap in a time domain, a terminal corresponds to a bit corresponding to the plurality of scheduling request information. Information may be transmitted in the second uplink resource together with the acknowledgment information.
이에 따라, 단말은 상황에 따라 상기 복수 개의 스케줄링 요청 정보를 적응적으로 전송할 수 있다. Accordingly, the terminal may adaptively transmit the plurality of scheduling request information according to a situation.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects obtained in the embodiments of the present invention are not limited to the above-mentioned effects, and other effects not mentioned above are commonly known in the art to which the present invention pertains from the description of the embodiments of the present invention. Can be clearly derived and understood by those who have In other words, unintended effects of practicing the present invention may also be derived by those skilled in the art from the embodiments of the present invention.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are provided to facilitate understanding of the present invention, and provide embodiments of the present invention together with the detailed description. However, the technical features of the present invention are not limited to the specific drawings, and the features disclosed in the drawings may be combined with each other to constitute a new embodiment. Reference numerals in each drawing refer to structural elements.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.1 is a diagram illustrating a physical channel and a signal transmission method using the same.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다.2 is a diagram illustrating an example of a structure of a radio frame.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.3 is a diagram illustrating a resource grid for a downlink slot.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.4 is a diagram illustrating an example of a structure of an uplink subframe.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.5 is a diagram illustrating an example of a structure of a downlink subframe.
도 6은 본 발명에 적용 가능한 자립적 서브프레임 구조 (Self-contained subframe structure)를 나타낸 도면이다.FIG. 6 is a diagram illustrating a self-contained subframe structure applicable to the present invention.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.7 and 8 illustrate exemplary connection schemes of a TXRU and an antenna element.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
도 11은 본 발명의 일 예에 따른 제3 SR 전송 방법을 간단히 나타낸 도면이다.11 is a diagram illustrating a third SR transmission method according to an embodiment of the present invention.
도 12는 본 발명에 따라 SR이 HARQ-ACK 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.12 is a diagram briefly illustrating an SR transmission method of a terminal when an SR has a higher priority than an HARQ-ACK according to the present invention.
도 13 및 도 14는 본 발명에 따라 HARQ-ACK이 SR 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.13 and 14 illustrate a method for transmitting an SR of a terminal when HARQ-ACK has a higher priority than an SR according to the present invention.
도 15는 본 발명에 따라 단말이 스케줄링 요청을 전송하는 방법을 나타낸 흐름도이다.15 is a flowchart illustrating a method for transmitting a scheduling request by a terminal according to the present invention.
도 16은 제안하는 실시 예들이 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다.16 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiments can be implemented.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some of the components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps which may obscure the gist of the present invention are not described, and procedures or steps that can be understood by those skilled in the art are not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising" (or including) a component, this means that it may further include other components, except to exclude other components unless specifically stated otherwise. do. In addition, the terms "... unit", "... group", "module", etc. described in the specification mean a unit for processing at least one function or operation, which is hardware or software or a combination of hardware and software. It can be implemented as. Also, "a or an", "one", "the", and the like are used differently in the context of describing the present invention (particularly in the context of the following claims). Unless otherwise indicated or clearly contradicted by context, it may be used in the sense including both the singular and the plural.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.In the present specification, embodiments of the present invention have been described based on data transmission / reception relations between a base station and a mobile station. Here, the base station is meant as a terminal node of a network that directly communicates with a mobile station. The specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.That is, various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. In this case, the 'base station' is replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.Further, in embodiments of the present invention, a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.Also, the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service, and the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system In particular, embodiments of the present invention include 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents Can be supported by That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present invention are provided to help the understanding of the present invention, and the use of the specific terms may be changed into other forms without departing from the technical spirit of the present invention. .
예를 들어, 전송기회구간(TxOP: Transmission Opportunity Period)라는 용어는 전송구간, 전송 버스트(Tx burst)또는 RRP(Reserved Resource Period)라는 용어와 동일한 의미로 사용될 수 있다. 또한, LBT(Listen Before Talk) 과정은 채널 상태가 유휴인지 여부를 판단하기 위한 캐리어 센싱 과정, CCA(Clear Channel Assessment), 채널 접속 과정(CAP: Channel Access Procedure)과 동일한 목적으로 수행될 수 있다.For example, the term Transmission Opportunity Period (TxOP) may be used in the same meaning as the term transmission period, transmission burst (Tx burst) or RRP (Reserved Resource Period). Also, the LBT process may be performed for the same purpose as a carrier sensing process, a clear channel assessment (CCA), and a channel access procedure (CAP) for determining whether a channel state is idle.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템에 대해서 설명한다.Hereinafter, a 3GPP NR system as well as a 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be applied to various radio access systems.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. The LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.In order to clarify the description of the technical features of the present invention, embodiments of the present invention are described not only for the 3GPP LTE / LTE-A system but also for the 3GPP NR system, but may also be applied to the IEEE 802.16e / m system.
1. 3GPP1.3GPP LTELTE /Of LTELTE _A 시스템_A system
1.1 물리 채널들 및 이를 이용한 신호 송수신 방법1.1 Physical Channels and Signal Transmission / Reception Method Using the Same
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.In a wireless access system, a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL). The information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.When the power is turned off again or a new cell enters the cell, the initial cell search operation such as synchronizing with the base station is performed in step S11. To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.Thereafter, the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.On the other hand, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.Subsequently, the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station. To this end, the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14). In case of contention-based random access, the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure. A transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.The control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK (HARQ-ACK / NACK), Scheduling Request (SR), Channel Quality Indication (CQI), Precoding Matrix Indication (PMI), and Rank Indication (RI) information. .
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.In the LTE system, UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
1.2. 자원 구조1.2. Resource structure
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.2 shows a structure of a radio frame used in embodiments of the present invention.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.2 (a) shows a frame structure type 1. The type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.One radio frame is T f = 307200 * T s It has a length of 10 ms, T slot = 15360 * T s = 0.5 ms, and has an equal length of 20 slots indexed from 0 to 19. One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes. The time taken to transmit one subframe is called a transmission time interval (TTI). Here, T s represents a sampling time and is represented by T s = 1 / (15 kHz x 2048) = 3.2552 x 10 -8 (about 33 ns). The slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period. A resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.In a full-duplex FDD system, 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain. On the other hand, in the case of a half-duplex FDD system, the terminal cannot transmit and receive at the same time.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.The structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i +1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 2 (b) shows a frame structure type 2. Type 2 frame structure is applied to the TDD system. One radio frame is T f = 307200 * T s = having a length of 10ms and is composed of 153600 * T s = 2 two half-frames (half-frame) having a 5ms length. Each half frame consists of five subframes having a length of 30720 * T s = 1 ms. The i th subframe consists of two slots having a length of T slot = 15360 * T s = 0.5 ms corresponding to 2 i and 2 i +1 . Here, T s represents a sampling time and is represented by T s = 1 / (15 kHz x 2048) = 3.2552 x 10 -8 (about 33 ns).
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. The type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). Here, the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal. UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. The guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
다음 표 1은 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
Figure PCTKR2018005149-appb-T000001
Figure PCTKR2018005149-appb-T000001
또한, LTE Rel-13 시스템에서는 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)가 하기 표와 같이 X (추가적인 SC-FDMA 심볼 개수, 상위 계층 파라미터 srs-UpPtsAdd 에 의해 제공되며, 상기 파라미터가 설정되지 않으면 X는 0과 같음)를 고려하여 설정되는 구성이 새로이 추가되었고, LTE Rel-14 시스템에서는 Special subframe configuration #10이 새로이 추가되었다. 여기서, UE는 하향링크 에서의 일반 CP를 위한 special subframeconfigurations {3, 4, 7, 8} 및 하향링크에서의 확장된 CP를 위한 special subframeconfigurations {2, 3, 5, 6}에 대해 2개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. 추가적으로, 상기 UE는 하향링크 에서의 일반 CP를 위한 special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} 및 하향링크에서의 확장된 CP를 위한 special subframeconfigurations {1, 2, 3, 5, 6}에 대해 4개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. (The UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations {3, 4, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {2, 3, 5, 6} for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {1, 2, 3, 5, 6} for extended cyclic prefix in downlink.)In addition, in the LTE Rel-13 system, the configuration of a special frame (the length of DwPTS / GP / UpPTS) is provided by X (the number of additional SC-FDMA symbols and the upper layer parameter srs-UpPtsAdd) as shown in the following table. Otherwise, X is equal to 0), and a new configuration is added, and Special subframe configuration # 10 is newly added in the LTE Rel-14 system. Here, the UE adds two additional UpPTSs for special subframeconfigurations {3, 4, 7, 8} for general CP in downlink and special subframeconfigurations {2, 3, 5, 6} for extended CP in downlink. You may not expect SC-FDMA symbols to be set. In addition, the UE has special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} for general CP in downlink and special subframeconfigurations {1, 2, 3, 5 for extended CP in downlink May not expect four additional UpPTS SC-FDMA symbols to be set. (The UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations {3, 4, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {2, 3, 5, 6} for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {1, 2, 3, 5, 6} for extended cyclic prefix in downlink.)
Figure PCTKR2018005149-appb-T000002
Figure PCTKR2018005149-appb-T000002
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.Referring to FIG. 3, one downlink slot includes a plurality of OFDM symbols in the time domain. Here, one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다.Each element on the resource grid is a resource element, and one resource block includes 12 × 7 resource elements. The number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.Referring to FIG. 4, an uplink subframe may be divided into a control region and a data region in the frequency domain. The control region is allocated a PUCCH carrying uplink control information. In the data area, a PUSCH carrying user data is allocated. In order to maintain a single carrier characteristic, one UE does not simultaneously transmit a PUCCH and a PUSCH. The PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots. The RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
도 5를 참조하면, 서브 프레임내의 첫 번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.Referring to FIG. 5, up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. )to be. One example of a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe. The PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ). Control information transmitted through the PDCCH is called downlink control information (DCI). The downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
2. 새로운 무선 접속 기술 (New Radio Access Technology) 시스템2. New Radio Access Technology System
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술 (radio access technology, RAT)에 비해 향상된 단말 광대역 (mobile broadband) 통신에 대한 필요성이 대두되었다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 (massive) MTC (Machine Type Communications) 역시 필요하게 되었다. 뿐만 아니라 신뢰성 (reliability) 및 지연 (latency) 에 민감한 서비스/UE 를 고려한 통신 시스템의 디자인이 제시되었다. As more communication devices demand greater communication capacity, there is a need for improved mobile broadband communication as compared to conventional radio access technology (RAT). There is also a need for Massive Machine Type Communications (MTC), which connects multiple devices and objects to provide various services anytime, anywhere. In addition, a design of a communication system considering a service / UE that is sensitive to reliability and latency has been presented.
이와 같이 향상된 단말 광대역 통신 (enhanced mobile broadband communication), 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 새로운 무선 접속 기술로써 새로운 무선 접속 기술 시스템이 제안되었다. 이하, 본 발명에서는 편의상 해당 기술을 New RAT 또는 NR (New Radio)이라 명명한다.A new wireless access technology system has been proposed as a new wireless access technology that considers such enhanced mobile broadband communication, massive MTC, and ultra-reliable and low latency communication (URLLC). Hereinafter, in the present invention, the technology is referred to as New RAT or NR (New Radio) for convenience.
2.1.2.1. 뉴머롤로지들Numerology ( ( NumeriologiesNumeriologies ))
본 발명이 적용 가능한 NR 시스템에서는 하기 표와 같은 다양한 OFDM 뉴머롤로지를 지원한다. 이때, 반송파 대역폭 부분 (carrier bandwidth part)별 μ 및 순환 전치 (Cyclic prefix) 정보는 하향링크 (DL) 또는 상향링크 (UL) 별로 각각 시그널링될 수 있다. 일 예로, 하향링크 반송파 대역폭 부분 (downlink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 DL-BWP-mu 및 DL-MWP-cp를 통해 시그널링될 수 있다. 다른 예로, 상향링크 반송파 대역폭 부분 (uplink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 UL-BWP-mu 및 UL-MWP-cp를 통해 시그널링될 수 있다The NR system to which the present invention is applicable supports various OFDM neurology as shown in the following table. In this case, μ and cyclic prefix information for each carrier bandwidth part may be signaled for each downlink (DL) or uplink (UL). For example, μ and cyclic prefix information for a downlink carrier bandwidth part may be signaled through higher layer signaling DL-BWP-mu and DL-MWP-cp. As another example, μ and cyclic prefix information for an uplink carrier bandwidth part may be signaled through higher layer signaling UL-BWP-mu and UL-MWP-cp.
Figure PCTKR2018005149-appb-T000003
Figure PCTKR2018005149-appb-T000003
2.2. 프레임 구조2.2. Frame structure
하향링크 및 상향링크 전송은 10ms 길이의 프레임으로 구성된다. 상기 프레임은 1ms 길이의 서브프레임이 10개 모여 구성될 수 있다. 이때, 각 서브프레임 별 연속하는 OFDM 심볼의 개수는
Figure PCTKR2018005149-appb-I000001
이다.
Downlink and uplink transmission consists of a frame of 10ms long. The frame may be composed of 10 subframes of length 1ms. In this case, the number of consecutive OFDM symbols for each subframe is
Figure PCTKR2018005149-appb-I000001
to be.
각 프레임은 2개의 동일한 크기를 갖는 하프-프레임(half frame)으로 구성될 수 있다. 이때, 각 하프-프레임은 각각 서브프레임 0 - 4 및 서브프레임 5- 9 로 구성될 수 있다.Each frame may consist of two equally sized half frames. In this case, each half-frame may be configured of subframes 0-4 and subframes 5-9, respectively.
부반송파 간격(subcarrier spacing) μ 에 대해, 슬롯은 하나의 서브프레임 내 오름차순으로
Figure PCTKR2018005149-appb-I000002
와 같이 넘버링되고, 하나의 프레임 내 오름차순으로
Figure PCTKR2018005149-appb-I000003
와 같이 넘버링될 수 있다. 이때, 하나의 슬롯내 연속하는 OFDM 심볼 개수 (
Figure PCTKR2018005149-appb-I000004
)는 순환 전치에 따라 하기 표와 같이 결정될 수 있다. 하나의 서브프레임 내 시작 슬롯 (
Figure PCTKR2018005149-appb-I000005
)은 동일한 서브프레임 내 시작 OFDM 심볼 (
Figure PCTKR2018005149-appb-I000006
) 과 시간 차원에서 정렬되어 있다 (aligned). 하기 표 4는 일반 순환 전치 (normal cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타내고, 표 5는 확장된 순환 전치 (extended cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타낸다.
For subcarrier spacing μ, slots are in ascending order within one subframe.
Figure PCTKR2018005149-appb-I000002
Numbered as in ascending order within a frame
Figure PCTKR2018005149-appb-I000003
It may be numbered as follows. In this case, the number of consecutive OFDM symbols in one slot (
Figure PCTKR2018005149-appb-I000004
) Can be determined according to the circulation translocation as shown in the table below. Start slot in one subframe (
Figure PCTKR2018005149-appb-I000005
) Is the starting OFDM symbol () in the same subframe
Figure PCTKR2018005149-appb-I000006
) And time dimension. Table 4 shows the number of OFDM symbols per slot / frame / subframe for a normal cyclic prefix, and Table 5 shows slots / frame / for extended cyclic prefix. This indicates the number of OFDM symbols per subframe.
Figure PCTKR2018005149-appb-T000004
Figure PCTKR2018005149-appb-T000004
Figure PCTKR2018005149-appb-T000005
Figure PCTKR2018005149-appb-T000005
본 발명이 적용 가능한 NR 시스템에서는 상기와 같은 슬롯 구조로써 자립적 슬롯 구조 (Self-contained slot structure)가 적용될 수 있다.In the NR system to which the present invention is applicable, a self-contained slot structure may be applied as the slot structure as described above.
도 6은 본 발명에 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.6 is a diagram illustrating a self-contained slot structure applicable to the present invention.
도 6에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.In FIG. 6, a hatched area (eg, symbol index = 0) represents a downlink control area, and a black area (eg, symbol index = 13) represents an uplink control area. The other area (eg, symbol index = 1 to 12) may be used for downlink data transmission or may be used for uplink data transmission.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.According to this structure, the base station and the UE may sequentially perform DL transmission and UL transmission in one slot, and may transmit and receive DL data and transmit and receive UL ACK / NACK for the DL data in the one slot. As a result, this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 또는 수신모드에서 송신모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.In this independent slot structure, a time gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode. To this end, some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set to a guard period (GP).
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 발명에 따른 자립적 슬롯 구조는 도 6과 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다. In the above detailed description, the case in which the independent slot structure includes both the DL control region and the UL control region is described. However, the control regions may be selectively included in the independent slot structure. In other words, the independent slot structure according to the present invention may include not only a case in which both the DL control region and the UL control region are included as shown in FIG. 6, but also a case in which only the DL control region or the UL control region is included.
일 예로, 슬롯은 다양한 슬롯 포맷을 가질 수 있다. 이때, 각 슬롯의 OFDM 심볼은 하향링크 ('D'로 표기함), 플렉시블('X'로 표기함), 상향링크 ('U'로 표기함)로 분류될 수 있다. For example, a slot may have various slot formats. In this case, the OFDM symbol of each slot may be classified into downlink (denoted 'D'), flexible (denoted 'X'), and uplink (denoted 'U').
따라서, 하향링크 슬롯에서 UE는 하향링크 전송이 'D' 및 'X' 심볼들에서만 발생한다고 가정할 수 있다. 이와 유사하게, 상향링크 슬롯에서 UE는 상향링크 전송이 'U' 및 'X' 심볼에서만 발생한다고 가정할 수 있다. Therefore, in the downlink slot, the UE may assume that downlink transmission occurs only in 'D' and 'X' symbols. Similarly, in the uplink slot, the UE may assume that uplink transmission occurs only in the 'U' and 'X' symbols.
2.3. 아날로그 2.3. analog 빔포밍Beamforming (Analog  (Analog beamformingbeamforming ))
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.In millimeter wave (mmW), the short wavelength allows the installation of multiple antenna elements in the same area. That is, since the wavelength is 1 cm in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimension array at 0.5 lambda intervals on a 5 * 5 cm panel. Accordingly, in millimeter wave (mmW), a plurality of antenna elements may be used to increase beamforming (BF) gain to increase coverage or to increase throughput.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다. In this case, each antenna element may include a TXRU (Transceiver Unit) to enable transmission power and phase adjustment for each antenna element. Through this, each antenna element may perform independent beamforming for each frequency resource.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.However, in order to install TXRU in all 100 antenna elements, there is a problem in terms of cost effectiveness. Therefore, a method of mapping a plurality of antenna elements to a single TXRU and adjusting a beam direction with an analog phase shifter is considered. This analog beamforming method has a disadvantage in that frequency selective beamforming is difficult because only one beam direction can be made in the entire band.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.As a solution to this problem, a hybrid BF having B TXRUs having a smaller number than Q antenna elements may be considered as an intermediate form between digital beamforming and analog beamforming. In this case, although there are differences depending on the connection scheme of the B TXRU and the Q antenna elements, the direction of the beam that can be transmitted at the same time may be limited to B or less.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다. 7 and 8 illustrate exemplary connection schemes of a TXRU and an antenna element. Here, the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna element.
도 7은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 7의 경우, 안테나 요소는 하나의 TXRU에만 연결된다. FIG. 7 is a diagram illustrating how a TXRU is connected to a sub-array. In the case of FIG. 7, the antenna element is connected to only one TXRU.
반면, 도 8은 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 8의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 8에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.8 shows how TXRU is connected to all antenna elements. In the case of FIG. 8, the antenna element is connected to all TXRUs. At this time, the antenna element requires a separate adder as shown in FIG. 8 to be connected to all TXRUs.
도 7 및 도 8에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.In Figures 7 and 8, W represents the phase vector multiplied by an analog phase shifter. In other words, W is a main parameter that determines the direction of analog beamforming. Here, the mapping between the CSI-RS antenna port and the TXRUs may be 1: 1 or 1: 1-to-many.
도 7의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.According to the configuration of FIG. 7, the beamforming focusing is difficult, but there is an advantage that the entire antenna configuration can be configured at a low cost.
도 8의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.According to the configuration of FIG. 8, there is an advantage in that focusing of the beamforming is easy. However, since the TXRU is connected to all antenna elements, the overall cost increases.
본 발명이 적용 가능한 NR 시스템에서 복수의 안테나가 사용되는 경우, 디지털 빔포밍 (Digital beamforming) 및 아날로그 빔포밍 (Analog beamforming)을 결합한 하이브리드 빔포밍 (Hybrid beamforming) 기법이 적용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF (Radio Frequency) 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다. 그리고, 하이브리드 빔포밍에서 베이스밴드 (Baseband) 단과 RF 단은 각각 프리코딩 (또는 콤바이닝)을 수행한다. 이로 인해 RF 체인 수와 D/A (Digital-to-Analog) (또는 A/D (Analog-to-Digital) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다. When a plurality of antennas are used in an NR system to which the present invention is applicable, a hybrid beamforming technique combining digital beamforming and analog beamforming may be applied. At this time, analog beamforming (or RF (Radio Frequency) beamforming) refers to an operation of performing precoding (or combining) in the RF stage. In the hybrid beamforming, the baseband stage and the RF stage respectively perform precoding (or combining). This reduces the number of RF chains and the number of digital-to-analog (D / A) (or analog-to-digital) converters while providing near-digital beamforming performance.
설명의 편의상, 상기 하이브리드 빔포밍 구조는 N개 송수신단 (Transceiver unit, TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 이때, 송신단에서 전송할 L개 데이터 계층 (Data layer)에 대한 디지털 빔포밍은 N * L (N by L) 행렬로 표현될 수 있다. 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 상기 변환된 신호에 대해 M * N (M by N) 행렬로 표현되는 아날로그 빔포밍이 적용된다.For convenience of description, the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas. In this case, the digital beamforming for the L data layers to be transmitted by the transmitter may be represented by an N * L (N by L) matrix. Thereafter, the converted N digital signals are converted into analog signals through TXRU, and analog beamforming is applied to the converted signals represented by an M * N (M by N) matrix.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 이때, 상기 도 9에서 디지털 빔의 개수는 L개이며, 아날로그 빔의 개수는 N개이다. 9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention. In this case, the number of digital beams is L and the number of analog beams is N in FIG. 9.
추가적으로, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방법을 고려하고 있다. 더 나아가, 도9와 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 발명에 따른 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.In addition, in the NR system to which the present invention is applicable, the base station is designed to change the analog beamforming in units of symbols and considers a method for supporting more efficient beamforming for a terminal located in a specific region. Furthermore, when defining specific N TXRU and M RF antennas as one antenna panel as shown in FIG. 9, in the NR system according to the present invention, a plurality of antenna panels to which hybrid beamforming independent of each other can be applied are defined. It is also considered to adopt.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에 따라, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 특정 서브프레임 (SF) 내에서 심볼 별로 상이한 아날로그 빔을 적용하여 (적어도 동기 신호, 시스템 정보, 페이징 (Paging) 등) 신호를 전송함으로써 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 (Beam sweeping) 동작이 고려되고 있다.When the base station utilizes a plurality of analog beams as described above, the analog beams advantageous for signal reception may be different for each terminal. Accordingly, in the NR system to which the present invention is applicable, the base station transmits a signal (at least a synchronization signal, system information, paging, etc.) by applying a different analog beam for each symbol in a specific subframe (SF) so that all terminals can receive the signal. Beam sweeping operations are being contemplated that allow for receiving opportunities.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
도 10에 있어, 본 발명이 적용 가능한 NR 시스템의 시스템 정보가 브로드캐스팅 (Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다.In FIG. 10, a physical resource (or physical channel) through which system information of an NR system to which the present invention is applicable is transmitted in a broadcasting manner is referred to as a physical broadcast channel (xPBCH). In this case, analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously.
또한, 도 10에 도시된 바와 같이, 본 발명이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위한 구성으로써 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)의 도입이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.In addition, as shown in FIG. 10, in the NR system to which the present invention is applicable, a configuration for measuring channels for analog beams is applied to transmit a reference signal (Reference signal, The introduction of beam reference signals (Beam RS, BRS), which is RS, is under discussion. The BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam. At this time, unlike the BRS, the synchronization signal or the xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive well.
3. 제안하는 3. offered 실시예Example
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 발명에서 제안하는 구성에 대해 보다 상세히 설명한다. Hereinafter, the configuration proposed by the present invention will be described in more detail based on the technical spirit as described above.
특히, 본 발명에서는 단말이 UL 데이터 스케줄링을 요청하는 SR (scheduling request)를 기지국으로 전송하는 방법에 대해 상세히 설명한다.In particular, the present invention will be described in detail with respect to a method for transmitting a SR (scheduling request) requesting UL data scheduling to the base station.
무선 통신 시스템에서 기지국(또는 네트워크)은 DL 데이터 전송뿐만 아니라 단말의 UL 데이터 전송을 제어한다. 단말은 UL 데이터 전송을 위해 기지국 (또는 네트워크)으로부터 UL 데이터 전송 목적의 물리 채널인 PUSCH (physical uplink shared channel)를 할당 받는다. 이어, 기지국(또는 네트워크)은 UL grant로 명명되는 DCI (downlink control information)를 통해 단말에게 특정 PUSCH를 통한 UL 데이터 전송을 스케줄링 (scheduling) 할 수 있다. In a wireless communication system, a base station (or network) controls not only DL data transmission but also UL data transmission of a terminal. The terminal is allocated a physical uplink shared channel (PUSCH), which is a physical channel for UL data transmission, from a base station (or network) for UL data transmission. Subsequently, the base station (or network) may schedule UL data transmission through a specific PUSCH to the UE through downlink control information (DCI) called UL grant.
이때, 기지국 (또는 네트워크는 단말이 전송하고자 하는 UL 데이터 (또는 UL 트래픽 (traffic))의 존재 여부를 알 수 없다. 따라서 단말이 먼저 기지국에게 UL 데이터 스케줄링을 요청하는 방안이 지원될 필요가 있다.In this case, the base station (or the network may not know whether there is UL data (or UL traffic) to be transmitted by the terminal.) Therefore, a method of requesting UL data scheduling by the terminal first needs to be supported.
이를 위한 방법으로써, 단말은 UL 데이터 트래픽 등을 포함하는 UL 스케줄링 요청 메시지 (이하 SR (scheduling request))를 기지국 (또는 네트워크)에게 전달할 수 있다. 일 예로, 단말은 상기 SR을 UCI (uplink control information) 전송 목적의 물리 채널인 PUCCH로 전송할 수 있다. 상기 SR을 포함한 PUCCH는 기지국 (또는 네트워크)이 상위 계층 신호로 설정한 시간 자원 및 주파수 자원에서 전송될 수 있다.As a method for this, the terminal may transmit a UL scheduling request message (hereinafter, referred to as SR (scheduling request)) including UL data traffic to a base station (or network). For example, the UE may transmit the SR on PUCCH, which is a physical channel for uplink control information (UCI) transmission purpose. The PUCCH including the SR may be transmitted in a time resource and a frequency resource set by the base station (or network) as a higher layer signal.
한편, 본 발명이 적용 가능한 NR 시스템은 단일 물리 시스템에서 복수의 논리 네트워크를 지원할 수 있고, 다양한 요구 조건을 갖는 서비스 (예: eMBB (enhanced Mobile BroadBand), mMTC (massive Machine Type Communication), URLLC (Ultra Reliable and Low Latency Communication) 등)를 지원하도록 설계될 수 있다.Meanwhile, the NR system to which the present invention is applicable may support a plurality of logical networks in a single physical system, and have various requirements (eg, enhanced Mobile BroadBand (eMBB), massive machine type communication (MMTC), and URLLC (Ultra)). Reliable and Low Latency Communication).
일 예로, UCI 전송 목적의 물리 채널인 PUCCH는 비교적 많은 OFDM 심볼들 (예: 4 심볼 이상)로 구성되어 넓은 UL 커버리지를 지원하는 PUCCH (이하 Long PUCCH)와 비교적 적은 OFDM 심볼들 (예: 1개 또는 2개 심볼)로 구성되어 낮은 지연 (Low latency) 전송을 지원하는 PUCCH (이하 Short PUCCH)로 구성될 수 있다.For example, a PUCCH, which is a physical channel for UCI transmission, is composed of a relatively large number of OFDM symbols (for example, 4 symbols or more), and supports PUCCH (hereinafter, referred to as Long PUCCH) and relatively few OFDM symbols (for example, 1 unit) to support a wide UL coverage. Or two symbols) may be configured as a PUCCH (hereinafter referred to as Short PUCCH) to support low latency transmission.
상기 Short PUCCH는 하나 이상의 전송 구조를 가질 수 있다. 일 예로, Short PUCCH로 전송될 UCI (uplink control information)의 정보량이 적은 경우 (예: 1 또는 2 bits), 기지국은 단말에게 복수의 시퀀스 (sequence)들로 구성된 시퀀스 집합을 Short PUCCH 자원으로 할당하고, 단말은 상기 Short PUCCH 자원으로 할당된 시퀀스들 중 전송할 UCI 정보에 대응되는 특정 시퀀스를 선택하여 전송할 수 있다. 이때, 상기 시퀀스는 Low PAPR (peak power to average power ratio) 특성을 만족하도록 설계될 수 있다. 이하에서는 설명의 편의상 상기와 같은 시퀀스 기반 Short PUCCH 구조를 SEQ-PUCCH로 명명한다. The Short PUCCH may have one or more transmission structures. For example, when the amount of information of the uplink control information (UCI) to be transmitted in the short PUCCH is small (for example, 1 or 2 bits), the base station allocates a sequence set composed of a plurality of sequences to the terminal as a short PUCCH resource. The UE may select and transmit a specific sequence corresponding to the UCI information to be transmitted among the sequences allocated as the Short PUCCH resource. In this case, the sequence may be designed to satisfy a low peak power to average power ratio (PAPR) characteristic. Hereinafter, for convenience of description, such a sequence-based Short PUCCH structure will be referred to as SEQ-PUCCH.
한편, 상기 Short PUCCH로 전송될 UCI의 정보량이 많은 경우 (예: 3 bits 이상), 기지국은 단말에게 UCI 전송을 위한 RE(Resource Element)들과 RS (reference signal) 전송을 위한 RE들로 구성된 Short PUCCH 자원을 할당할 수 있다. 이때, 상기 RS 전송 RE와 UCI 전송 RE는 심볼 별로 FDM (Frequency Division Multiplexing) 방식에 따라 구분될 수 있다. 이에, 단말은 UCI에 대한 Coded bits를 생성한 후 상기 Coded bits에 대한 변조 심볼 (modulated symbol)들을 상기 UCI 전송을 위한 RE들을 통해 전송할 수 있다. 이하에서는 설명의 편의 상 상기와 같이 RS와 UCI 간 (심볼 별) FDM 방식이 적용된 Short PUCCH 구조를 FDM-PUCCH로 명명한다.On the other hand, if there is a large amount of information of the UCI to be transmitted in the Short PUCCH (for example, 3 bits or more), the base station is composed of a short (RE) for transmitting the UCI to the UE and a RE for transmitting a reference signal (RS) PUCCH resources can be allocated. In this case, the RS transmission RE and the UCI transmission RE may be classified according to a frequency division multiplexing (FDM) scheme for each symbol. Accordingly, the terminal may generate coded bits for UCI and then transmit modulation symbols for the coded bits through REs for transmitting the UCI. Hereinafter, for convenience of description, the short PUCCH structure to which the FDM scheme between RSs and UCIs (per symbol) is applied as FDM-PUCCH as described above.
이하 본 발명에서는 상기와 같은 Short PUCCH와 Long PUCCH를 이용한 단말의 SR 전송 방법에 대해 상세히 설명한다. 이하 설명에서는 본 발명에 따른 동작을 NR 시스템에서의 단말 및 기지국의 동작으로 구체화하여 설명하나, 본 발명에서 제안하는 방안들은 일반적인 무선 통신 시스템에도 동일하게 적용될 수 있다.Hereinafter, the SR transmission method of the UE using the Short PUCCH and Long PUCCH as described above will be described in detail. In the following description, the operation according to the present invention will be described in detail with operations of a terminal and a base station in an NR system. However, the methods proposed in the present invention can be equally applied to a general wireless communication system.
이하, 본 발명에서 DM-RS (demodulation reference signal)은 데이터 복조 용 참조 신호를 의미하고, SRS (sounding reference signal)은 UL 채널 측정 용 참조 신호를 의미하며, ACK/NACK은 데이터 디코딩 결과에 대한 확인 응답 정보를 의미하고, CSI (channel state information)은 채널 측정 결과에 대한 피드백 (feedback) 정보를 의미한다. 또한, 특정 시퀀스에 대한 CS (cyclic shift) 자원은 해당 시퀀스에 대해 시간 축 (또는 주파수 축)으로 Cyclic time shift (또는 Cyclic frequency shift)가 적용된 자원을 의미하고, 루트 인덱스 (Root index)는 시퀀스 생성 시 사용되는 시드 (Seed) 값을 의미한다.Hereinafter, in the present invention, a DM-RS (demodulation reference signal) refers to a data demodulation reference signal, a SRS (sounding reference signal) refers to a reference signal for UL channel measurement, ACK / NACK is a confirmation of the data decoding result Response information, and CSI (channel state information) means feedback information on the channel measurement results. In addition, a CS (cyclic shift) resource for a specific sequence means a resource to which a Cyclic time shift (or Cyclic frequency shift) is applied on a time axis (or frequency axis) for the sequence, and a root index is a sequence generation. It means the seed value used at the time.
또한, 본 발명에서 PRB (Physical Resource Blok)는 주파수 축 자원 할당 단위를 의미할 수 있다.In addition, in the present invention, a physical resource block (PRB) may mean a frequency axis resource allocation unit.
3.1 제1 SR 전송 방법3.1 First SR Transmission Method
기지국은 단말에게 SR 전송을 위한 (잠재적인) 시간 자원 (또는 Slot 집합)을 다음 중 하나 이상의 방법으로 설정할 수 있다.The base station may set a (potential) time resource (or slot set) for SR transmission to the terminal in one or more of the following ways.
(1) 사전에 약속된 방식으로 설정(1) set in the manner promised in advance
(2) 방송 채널 (Broadcast channel) 또는 시스템 정보를 통해 설정(2) Set via broadcast channel or system information
(3) (단말 특정한) 상위 계층 신호를 통해 설정(3) set via (terminal specific) upper layer signals
이에 대응하여, 단말은 상기 SR 전송을 위한 (잠재적인) 시간 자원 (또는 Slot 집합)에서 다음 중 하나 이상의 방법으로 실제 SR 전송 여부를 결정할 수 있다.Correspondingly, the terminal may determine whether to actually transmit the SR in one or more of the following methods (potential) time resource (or slot set) for the SR transmission.
1) 별도의 확인 과정 없이 SR 전송1) Send SR without confirmation
이때, 단말은 사전에 약속된 방식 또는 방송 채널 또는 시스템 정보를 통해 설정된 시간 자원 (또는 Slot)에 대해서만 상기 동작을 수행할 수 있음 In this case, the terminal may perform the operation only for a time resource (or slot) set through a predetermined method or a broadcast channel or system information.
2) 시간 자원 (또는 Slot) 내 그룹 공통 (Group-common) PDCCH로 SR 전송이 허용된 경우에만 SR 전송2) SR transmission only if SR transmission is allowed through Group-common PDCCH in time resource (or slot)
이때, 단말은 (단말 특정한) 상위 계층 신호를 통해 설정된 시간 자원 (또는 Slot)에 대해서만 상기 동작을 수행할 수 있음In this case, the terminal may perform the operation only for a time resource (or slot) set through a (terminal specific) higher layer signal.
여기서, 상기 그룹 공통 PDCCH는 복수의 단말 그룹을 대상으로 하는 DL 제어 정보의 물리적 전송 채널을 의미한다.Here, the group common PDCCH means a physical transport channel of DL control information for a plurality of UE groups.
상기와 같은 자원 할당 및 이에 기반한 신호 전송 방법은 (Periodic) SRS 전송에 대해서도 동일하게 적용될 수 있다.The resource allocation and the signal transmission method based on the same may be equally applied to (Periodic) SRS transmission.
보다 구체적으로, 본 발명에 따른 NR 시스템은 시간 축에서 정의된 슬롯 단위의 DL 또는 UL 데이터 전송을 지원할 수 있다. 이때, NR 시스템에서는 데이터 트래픽 (traffic)에 따른 유연한 스케줄링을 지원하기 위해 DL 데이터만 전송될 수 있는 슬롯 (이하 Fixed DL slot) 또는 UL 데이터만 전송할 수 있는 슬롯 (이하 Fixed UL slot)의 사용을 최소화하는 방안이 적용될 수 있다. More specifically, the NR system according to the present invention may support DL or UL data transmission in a slot unit defined in the time axis. In this case, the NR system minimizes the use of a slot capable of transmitting only DL data (hereinafter, fixed DL slot) or a slot capable of transmitting only UL data (hereinafter, fixed UL slot) to support flexible scheduling according to data traffic. May be applied.
이에, 만약 Fixed UL slot들에 한정하여 (주기적인) SR 전송이 허용되는 경우, 단말에 있어 SR을 전송할 수 있는 시간 자원은 상대적으로 작아지고 SR 전송 주기는 길어지게 된다. 이와 같은 동작은 단말의 지연 (Latency) 관점에서 바람직하지 않을 수 있다. Therefore, if (periodical) SR transmission is allowed only in fixed UL slots, the time resource for transmitting the SR in the UE is relatively small and the SR transmission period becomes long. Such an operation may be undesirable in terms of latency of the terminal.
상기와 같은 문제를 해결하기 위해, Fixed UL slot 이외에 DL/UL 데이터 전송 목적으로 유연하게 전환될 수 있는 슬롯 (이하 Flexible DL/UL slot)이 SR 전송에 지원될 수 있다.In order to solve the above problem, in addition to the fixed UL slot, a slot that can be flexibly switched for DL / UL data transmission purposes (hereinafter, a flexible DL / UL slot) may be supported for SR transmission.
다만, 기지국이 잠재적으로 SR 전송이 가능한 슬롯 집합을 단말에게 설정하는 경우, 단말은 (상기 잠재적인 SR 전송 Slot 집합 내) Fixed UL slot이 아닌 Flexible DL/UL slot에 대해 SR 전송이 허용되는지 여부를 확신할 수 없다. However, when the base station configures the terminal to potentially set the SR transmission slot, the terminal determines whether the SR transmission is allowed for the flexible DL / UL slot other than the fixed UL slot (in the potential SR transmission slot set). I can't be sure.
이에, 기지국은 잠재적인 SR 전송 Slot 집합 내 특정 Slot에 대해 실제 SR 전송이 허용되는 지 여부를 그룹 공통 PDCCH를 통해 단말에게 지시할 수 있다. 일 예로, 기지국은 그룹 공통 PDCCH를 통해 잠재적인 SR 전송 Slot 내 특정 Slot 구조를 지시하고, 이에 대응하여 단말은 지시된 Slot 구조가 (SR 전송이 가능한) UL control 전송 영역을 포함하는 구조라면 해당 Slot에서 SR 전송이 가능하다고 판단할 수 있다.Accordingly, the base station may indicate to the terminal through the group common PDCCH whether the actual SR transmission is allowed for a particular slot in the potential set of SR transmission slots. For example, the base station indicates a specific slot structure in the potential SR transmission slot through the group common PDCCH, and correspondingly, if the terminal indicates that the indicated slot structure includes a UL control transmission region (capable of transmitting SR), the corresponding slot It may be determined that SR transmission is possible at.
상기 제1 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The first SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.2. 제2 SR 전송 방법3.2. Second SR Transmission Method
기지국은 단말에게 M개 상태(State)를 갖는 SR에 대한 전송 자원으로써 M개 시퀀스 집합을 다음 중 하나 이상의 방법으로 설정할 수 있다.The base station may set the M sequence set as one or more of the following as a transmission resource for the SR having M states to the terminal.
(1) (M개 시퀀스가 할당된) SEQ-PUCCH(1) SEQ-PUCCH (M sequences assigned)
- 여기서, 상기 SEQ-PUCCH를 구성하는 시퀀스들은 시간 자원/주파수 자원/CS (Cyclic Shift) 자원/루트 인덱스 관점에서 구분될 수 있음Here, the sequences constituting the SEQ-PUCCH may be distinguished from a time resource / frequency resource / CS (Cyclic Shift) resource / root index.
(2) M개 SRS (들)을 할당(2) assign M SRS (s)
- 여기서, 상기 SRS (들)은 시간 자원/주파수 자원/CS 자원/루트 인덱스 관점에서 구분될 수 있음Here, the SRS (s) can be distinguished in terms of time resource / frequency resource / CS resource / root index.
이에 대응하여, 단말은 SR에 대한 M개 상태들 중 단말이 요청하고자 하는 상태에 대응하는 시퀀스를 선택하여 SR를 전송할 수 있다.Correspondingly, the terminal may transmit a SR by selecting a sequence corresponding to a state that the terminal wants to request among M states for the SR.
여기서, 상기 M개 상태는 Negative SR (즉, 단말이 UL 스케줄링을 요청하지 않는 상태)를 포함하지 않을 수 있다. 다시 말해, 단말은 UL 스케줄링을 요청하지 않음을 기지국에게 SR을 전달하지 않음으로써 표현할 수 있다.Here, the M states may not include a negative SR (that is, a state in which the UE does not request UL scheduling). In other words, the UE may express that it does not request the UL scheduling by not transmitting the SR to the base station.
보다 구체적으로, SR은 단말이 UL 데이터 스케줄링을 요청하는 상태 (이하 Positive SR)와 UL 데이터 스케줄링을 요청하지 않는 상태 (Negative SR)을 포함할 수 있다. 이때, Negative SR은 단말이 아무런 UL 신호를 전송하지 않음으로써 표현될 수 있다. 이에, SR은 정보 관점에서 Positive SR이라는 1개 상태를 가질 수 있다. More specifically, the SR may include a state in which the UE requests UL data scheduling (hereinafter, referred to as a positive SR) and a state in which the UE does not request UL data scheduling (Negative SR). In this case, the negative SR may be represented by the terminal not transmitting any UL signal. Accordingly, the SR may have one state of positive SR from an information point of view.
본 발명의 실시예에 따른 NR 시스템에서 단말은 상기 Positive SR을 전달할 UL 신호로 1개 시퀀스가 할당된 SEQ-PUCCH를 활용할 수 있다. In the NR system according to an embodiment of the present invention, the terminal may utilize the SEQ-PUCCH to which one sequence is allocated as a UL signal for transmitting the positive SR.
상기 특징을 보다 일반적으로 설명하면, 본 발명에 따른 NR 시스템에서 단말은 M개 상태를 갖는 SR 전송을 위해 M개 시퀀스가 할당된 SEQ-PUCCH를 활용할 수 있다.In more general description of the above features, in the NR system according to the present invention, the UE may utilize SEQ-PUCCH to which M sequences are allocated for SR transmission having M states.
한편, 단말이 SR을 전송하면, 기지국은 해당 단말에 대한 UL 데이터 스케줄링을 하기 위해 UL 채널 측정을 수행할 필요가 있다. 일 예로, 상기 UL 채널 측정의 한 방안으로 기지국은 단말에게 UL 채널 측정용 RS인 SRS (sound reference signal)을 전송하도록 지시할 수 있다. On the other hand, when the terminal transmits the SR, the base station needs to perform the UL channel measurement in order to perform UL data scheduling for the terminal. As an example of the UL channel measurement, the base station may instruct the terminal to transmit a SRS (sound reference signal), which is a UL channel measurement RS.
이때, 단말이 SR 전송 과정과 SRS 전송 과정을 2 단계로 (구분하여) 진행하는 동작은 지연 (Latency) 측면에서 바람직하지 않을 수 있다. 이러한 관점에 따를 때, 단말의 SR 전송 과정과 SRS 전송 과정은 하나의 과정으로 결합될 수 있다. 즉, 단말은 SR을 기지국에게 전달하는 UL 신호로써 SRS 자원을 활용할 수 있다. In this case, an operation in which the UE performs the SR transmission process and the SRS transmission process in two steps may be undesirable in terms of latency. According to this aspect, the SR transmission process and the SRS transmission process of the UE may be combined into one process. That is, the terminal may utilize the SRS resource as a UL signal for transmitting the SR to the base station.
일 예로, SR 이 M개 상태를 가질 때, 기지국은 상기 M개 상태에 대응되는 M개 SRS 자원을 할당할 수 있다. 단말이 SR의 특정 상태를 기지국에게 전달할 때, 상기 단말은 상기 특정 상태에 대응되는 SRS 자원을 전송함으로써 기지국에게 SR 정보를 전달할 수 있다. For example, when the SR has M states, the base station may allocate M SRS resources corresponding to the M states. When the terminal transmits a specific state of the SR to the base station, the terminal may transmit the SR information to the base station by transmitting the SRS resources corresponding to the specific state.
상기와 같이 단말이 SR 전송 자원으로 SRS 자원을 활용할 경우, 단말은 SR 전송과 동시에 UL 채널 추정용 RS를 전송하여 지연을 줄일 수 있다는 장점이 있다.As described above, when the terminal utilizes the SRS resource as the SR transmission resource, the terminal can reduce the delay by transmitting the UL channel estimation RS simultaneously with the SR transmission.
이때, SR의 상태에 따라 SRS 자원의 (주파수 축) 자원량이 차등적으로 할당될 수 있다. 일 예로, SR 정보의 각 상태들이 UL 트래픽의 크기를 나타내는 경우, UL 트래픽의 크기가 클수록 SRS 자원이 주파수 축에서 많은 자원을 갖도록 설정될 수 있다.At this time, the (frequency axis) resource amount of the SRS resource may be differentially allocated according to the state of the SR. For example, when the states of the SR information indicate the size of the UL traffic, the larger the size of the UL traffic, the SRS resource may be configured to have more resources on the frequency axis.
추가적으로, 본 발명에 따른 단말은 UL 스케줄링을 요청하는 SR (예: Data-SR)과 빔 재련 (Beam refinement)을 요청하는 SR (예: Beam-SR)을 전송할 수 있다. 이 경우, 상기 Data-SR과 Beam-SR은 각각에 대해 독립적으로 설정된 SR 전송 자원을 통해 전송되거나 Data-SR과 Beam-SR의 조인트 코딩 (Joint coding) 결과가 단일 SR 전송 자원을 통해 전송될 수 있다.In addition, the terminal according to the present invention may transmit an SR (eg, Data-SR) requesting UL scheduling and an SR (eg, Beam-SR) requesting beam refinement. In this case, the Data-SR and the Beam-SR may be transmitted through SR transmission resources set independently for each, or a joint coding result of the Data-SR and the Beam-SR may be transmitted through a single SR transmission resource. have.
일 예로, Data-SR과 Beam-SR이 각각 Positive SR과 Negative SR일 수 있는 경우, 단말은 하기 표와 같이 조인트 코딩된 결과를 3개 상태 (및 대응되는 3개 시퀀스)를 갖는 SEQ-PUCCH를 이용하여 전송할 수 있다. 단, Data-SR과 Beam-SR 둘 다 Negative SR인 경우, 상기 단말은 어떠한 신호도 전송하지 않을 수 있다.For example, when the Data-SR and the Beam-SR may be the Positive SR and the Negative SR, respectively, the UE may perform a SEQ-PUCCH having three states (and corresponding three sequences) with the joint coded result as shown in the following table. Can be used for transmission. However, if both Data-SR and Beam-SR are negative SRs, the terminal may not transmit any signal.
Figure PCTKR2018005149-appb-T000006
Figure PCTKR2018005149-appb-T000006
상기와 같은 동작은 서로 다른 서비스에 대한 SR에 대해서도 적용될 수 있다. 일 예로, eMBB 데이터에 대한 SR (예: eMBB-SR)과 URLLC 데이터에 대한 SR (예: URLLC-SR)은 각각에 대해 각각 독립적으로 설정된 SR 전송 자원으로 전송되거나 eMBB-SR과 URLLC-SR의 조인트 결과가 단일 SR 전송 자원으로 전송될 수 있다. 이때, eMBB-SR과 URLLC-SR이 각각 Positive SR과 Negative SR일 수 있는 경우, 표 6과 유사하게 조인트 코딩된 결과는 3개 상태 (및 대응되는 3개 시퀀스)를 갖는 SEQ-PUCCH로 전송될 수 있다. 이 경우에도 eMBB-SR과 URLLC-SR 둘 다 Negative SR인 경우, 단말은 아무 신호도 전송하지 않을 수 있다.The above operation may also be applied to SRs for different services. For example, an SR for eMBB data (e.g., eMBB-SR) and an SR for URLLC data (e.g., URLLC-SR) are transmitted to SR transmission resources set independently for each, or the eMBB-SR and URLLC-SR The joint result may be sent in a single SR transmission resource. In this case, when the eMBB-SR and the URLLC-SR may be the Positive SR and the Negative SR, respectively, similarly to Table 6, the joint coded result may be transmitted in the SEQ-PUCCH having three states (and corresponding three sequences). Can be. Even in this case, when both the eMBB-SR and the URLLC-SR are negative SRs, the UE may not transmit any signal.
상기 제2 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The second SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.3. 제3 SR 전송 방법3.3. Third SR Transmission Method
UCI (예: ACK/NACK 그리고/또는 CSI)에 대한 PUCCH 전송이 예정된 슬롯 내에 단말이 추가적으로 SR 전송을 수행하고자 하는 경우, 상기 단말은 다음과 같이 SR 그리고/또는 UCI를 전송할 수 있다.When a UE additionally intends to perform SR transmission in a slot in which PUCCH transmission is scheduled for UCI (eg, ACK / NACK and / or CSI), the UE may transmit SR and / or UCI as follows.
(1) SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되지 않는 경우 (예: TDM (Time Division Multiplexing) 된 경우)(1) When the SR transmission resource and the UCI transmission resource do not overlap on the time axis (for example, when time division multiplexing)
- Option 1: SR과 UCI는 각각의 전송 자원을 이용하여 전송됨 (Method 1)Option 1: SR and UCI are transmitted using each transmission resource (Method 1)
- Option 2: SR과 UCI가 결합하여 UCI 전송 자원으로 전송됨Option 2: SR and UCI are combined and transmitted as UCI transmission resource
단, 상기 동작은 SR 전송 자원과 UCI 전송 자원이 시간 축에서 인접하고, 상기 두 전송 자원 간 전송 전력 (power) 차이가 일정 크기 이상인 경우에 적용될 수 있다. 일 예로, SR 전송 자원이 시퀀스이고, UCI 전송 자원이 상기 SR 전송 자원에 시간 축에서 연접하여 전송되는 FDM PUCCH인 경우에 적용될 수 있다.However, the operation may be applied when the SR transmission resource and the UCI transmission resource are adjacent on the time axis, and the transmission power difference between the two transmission resources is greater than or equal to a predetermined size. For example, the SR transmission resource may be a sequence, and the UCI transmission resource may be applied to the FDM PUCCH transmitted by being contiguous with the SR transmission resource on a time axis.
(2) SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되는 경우 (예: FDM (Frequency Division Multiplexing) 또는 CDM (Code Division Multiplexing)된 경우)(2) When SR transmission resource and UCI transmission resource overlap on the time axis (for example, when frequency division multiplexing (FDM) or code division multiplexing (CDM))
- Option 1: SR과 UCI는 각각의 전송 자원을 이용하여 전송됨 (Method 2)Option 1: SR and UCI are transmitted using each transmission resource (Method 2)
단, SR 전송 자원과 UCI 전송 자원이 모두 시퀀스 자원인 경우, 상기 SR 시퀀스와 UCI 시퀀스에 적용되는 CS (cyclic shift)/루트 인덱스 (Root index)는 상이하게 설정될 수 있다. 일 예로, SR 시퀀스와 UCI 시퀀스에 적용되는 CS (cyclic shift)/루트 인덱스 값들은 서로 일정 갭을 갖도록 설정될 수 있다.However, when both the SR transmission resource and the UCI transmission resource are sequence resources, the CS (cyclic shift) / root index applied to the SR sequence and the UCI sequence may be set differently. For example, cyclic shift (CS) / root index values applied to an SR sequence and a UCI sequence may be set to have a predetermined gap with each other.
- Option 2: SR과 UCI가 결합하여 UCI 전송 자원으로 전송됨Option 2: SR and UCI are combined and transmitted as UCI transmission resource
단, 상기 동작은 단말이 SR과 UCI를 각각의 전송 자원으로 전송하기 위해 (사전에 설정된) 최대 전송 전력을 넘는 경우에 적용될 수 있다.However, the operation may be applied when the terminal exceeds the maximum transmission power (preset) to transmit the SR and the UCI to each transmission resource.
또한, UCI 전송 자원이 DM-RS를 갖는 PUCCH 자원인 경우, SR 정보는 PUCCH DM-RS와 CDM 방식으로 다중화되는 시퀀스로 표현될 수 있다.In addition, when the UCI transmission resource is a PUCCH resource having a DM-RS, the SR information may be expressed as a sequence multiplexed with the PUCCH DM-RS and the CDM scheme.
상기 구성들에 있어, 상기 UCI 전송 자원은 대응하는 슬롯이 (잠재적인) SR 전송 슬롯 또는 상기 (잠재적인) SR 전송 슬롯이 아닌지 여부에 따라 서로 상이한 PUCCH 전송 구조로 설정될 수 있다. 일 예로, 대응하는 슬롯이 (잠재적인) SR 전송 슬롯인 경우 UCI 전송 자원은 FDM-PUCCH으로 설정되고, SR 전송 슬롯이 아닌 경우 UCI 전송 자원은 SEQ-PUCCH으로 설정될 수 있다.In the above configurations, the UCI transmission resources may be set to different PUCCH transmission structures depending on whether the corresponding slot is not a (potential) SR transmission slot or the (potential) SR transmission slot. As an example, when the corresponding slot is a (potential) SR transmission slot, the UCI transmission resource may be set to FDM-PUCCH, and when the corresponding slot is not an SR transmission slot, the UCI transmission resource may be set to SEQ-PUCCH.
상기 Method 1/2은 SRS과 UCI가 동일 슬롯 내 전송되는 경우 (SR이 SRS로 대체되어) 적용되거나 또는 SR과 SRS가 동일 슬롯 내 전송되는 경우에 (UCI가 SRS로 대체되어) 적용될 수 있다. Method 1/2 may be applied when SRS and UCI are transmitted in the same slot (SR is replaced by SRS) or when SR and SRS are transmitted in the same slot (UCI is replaced by SRS).
도 11은 본 발명의 일 예에 따른 제3 SR 전송 방법을 간단히 나타낸 도면이다.11 is a diagram illustrating a third SR transmission method according to an embodiment of the present invention.
보다 구체적으로, 종래 LTE 시스템에서는 SR과 UCI (예: ACK/NACK, CSI (Channel State Information))이 동일 서브프레임에서 전송될 경우, 상기 SR과 UCI는 결합되어 단일 PUCCH 자원으로 전송되었다. More specifically, in the conventional LTE system, when SR and UCI (eg, ACK / NACK, CSI (Channel State Information)) are transmitted in the same subframe, the SR and UCI are combined and transmitted as a single PUCCH resource.
다만, 본 발명이 적용 가능한 NR 시스템에서는 SR 전송 자원과 UCI 전송 자원이 하나의 슬롯 내 TDM 방식으로 다중화되어 전송될 수 있다. 이에, SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되지 않는 경우, 상기 SR 및 UCI는 각각에 대해 할당된 전송 자원으로 전송되는 것이 기본 동작일 수 있다. However, in the NR system to which the present invention is applicable, the SR transmission resource and the UCI transmission resource may be multiplexed and transmitted by using a TDM scheme in one slot. Accordingly, when the SR transmission resource and the UCI transmission resource do not overlap on the time axis, the SR and the UCI may be transmitted to the transmission resources allocated to the respective basic operations.
그러나 SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되지 않더라도 서로 인접한 심볼에서 전송되고, 두 전송 자원 간 전송 전력 차이가 큰 경우, 단말은 SR과 UCI 를 결합하여 단일 전송 자원 (예: short PUCCH)로 전송할 수 있다. However, even though the SR transmission resource and the UCI transmission resource are not overlapped on the time axis, they are transmitted in adjacent symbols. When the transmission power difference between the two transmission resources is large, the UE combines the SR and the UCI to combine a single transmission resource (eg, short PUCCH) Can be sent to.
일 예로, 단말이 인접한 2개 OFDM 심볼에 대해 첫 번째 심볼에서 (Low PAPR (peak power to average power ratio) 특성을 만족하는) SEQ-PUCCH로 SR을 전송하고, 두 번째 심볼에서 ACK/NACK을 FDM-PUCCH로 전송하는 경우를 가정한다. SEQ-PUCCH와 비교할 때, FDM-PUCCH은 높은 PAPR을 가지게 되며, PA (power amplifier)의 비선형성 (non-linearity)으로 인한 왜곡을 피하기 위해 전송 전력에 대한 백-오프 (Back-off)가 적용될 수 있다. 이때, SR 전송 심볼과 ACK/NACK 전송 심볼 간 전송 전력 차이가 발생할 수 있고, 전송 전력이 즉각적으로 변화하지 않고 느리게 변화하는 전력 전이 (Power transient) 구간에 따른 신호 왜곡이 유발될 수 있다. For example, the UE transmits an SR to the SEQ-PUCCH (satisfying the low PAPR (peak power to average power ratio) characteristic) in the first symbol for two adjacent OFDM symbols, FDM ACK / NACK in the second symbol Assume a case of transmitting on PUCCH. Compared to SEQ-PUCCH, the FDM-PUCCH will have a high PAPR and back-off on transmit power will be applied to avoid distortion due to non-linearity of the power amplifier (PA). Can be. In this case, a difference in transmission power between the SR transmission symbol and the ACK / NACK transmission symbol may occur, and signal distortion may occur due to a slowly changing power transient period instead of immediately changing the transmission power.
상기와 같은 문제를 해결하기 위한 방안으로써, 서로 인접하여 전송되는 SR 전송 자원과 UCI 전송 자원 간 전송 전력 차이가 일정 크기 이상인 경우, 단말은 SR 정보를 UCI 전송 자원 (PUCCH)에 포함시켜 전송할 수 있다. 예를 들어, 상기 예시에서 단말은 SR과 ACK/NACK을 결합한 정보를 두 번째 심볼 내 ACK/NACK 전송 목적으로 할당된 FDM-PUCCH로 전송할 수 있다.As a solution to the above problem, when the transmission power difference between the SR transmission resources and the UCI transmission resources transmitted adjacent to each other is a predetermined size or more, the UE may include the SR information in the UCI transmission resources (PUCCH) and transmit. . For example, in the above example, the UE may transmit information combining the SR and the ACK / NACK to the FDM-PUCCH allocated for the purpose of transmitting the ACK / NACK in the second symbol.
SR 전송 자원과 UCI (예: ACK/NACK, CSI) 전송 자원이 시간 축에서 중첩되는 경우에도 각 전송 자원에 할당된 전송 전력의 합이 단말의 최대 전송 전력을 초과하는 경우 (이하 Power limited case)가 아니라면, 단말은 SR과 UCI를 각각의 전송 자원으로 전송할 수 있다. Even if the SR transmission resource and the UCI (eg ACK / NACK, CSI) transmission resources overlap on the time axis, the sum of the transmission powers allocated to each transmission resource exceeds the maximum transmission power of the terminal (hereinafter, referred to as a power limited case). If not, the terminal may transmit the SR and the UCI to each transmission resource.
만약 SR 전송 자원과 UCI (예: ACK/NACK, CSI) 전송 자원이 시간 축에서 중첩되고 Power limited case라면, 단말은 SR과 UCI를 결합하여 UCI 전송 자원으로 전송할 수 있다. 이때, UCI 전송 자원이 DM-RS를 갖는 PUCCH 구조이면, SR 정보는 상기 PUCCH 내 DM-RS과 CDM이 지원되는 특정 시퀀스로 표현될 수 있다. 이 경우, 단말은 PUCCH DM-RS와 CDM이 지원되는 시퀀스 M개 중 1개를 선택하여 동일 시간/주파수 자원으로 전송함으로써 M개 상태를 갖는 SR 정보를 전달할 수 있다.If the SR transmission resource and the UCI (eg, ACK / NACK, CSI) transmission resources overlap on the time axis and are a power limited case, the UE may combine the SR and the UCI to transmit the UCI transmission resources. In this case, if the UCI transmission resource is a PUCCH structure having a DM-RS, SR information may be represented by a specific sequence supported by the DM-RS and the CDM in the PUCCH. In this case, the UE may transmit SR information having M states by selecting one of the M sequences supported by the PUCCH DM-RS and the CDM and transmitting the same through time / frequency resources.
앞서 상술한 제3 SR 전송 방법을 보다 일반적으로 확장하면, 단말은 UCI (예: SR, CSI, ACK/NACK)를 복수의 서브셋 (Subset)으로 분할하여 상기 복수의 서브셋(들)을 (동일 Slot 내) 상이한/동일한 심볼 상의 복수 PUCCH를 통해 전송할 수 있다.When the third SR transmission method described above is more generally extended, the UE divides the UCI (eg, SR, CSI, ACK / NACK) into a plurality of subsets and divides the plurality of subset (s) into the same slot. M) can be transmitted on multiple PUCCHs on different / same symbols.
추가적으로, 단말은 SR과 UCI가 동시 스케줄링 된 슬롯에서 아래 중 하나의 방법을 적용할 수 있다.In addition, the UE may apply one of the following methods in a slot in which SR and UCI are simultaneously scheduled.
- 방법 1: (UCI 전송 목적) PUCCH 자원을 (SR state에 대응하여) 복수 개 설정하고, SR state에 따라 특정 PUCCH 자원으로 UCI 전송Method 1: (for UCI transmission) configure a plurality of PUCCH resources (corresponding to SR state), and transmit UCI to specific PUCCH resources according to SR state
- 방법 2: SR과 UCI를 (TDM/FDM/CDM 방식으로 구분되는) 서로 다른 PUCCH 자원으로 전송Method 2: transmit SR and UCI to different PUCCH resources (divided by TDM / FDM / CDM)
- 방법 3: SR과 UCI를 결합하여 단일 PUCCH 자원으로 전송 (단, PUCCH format이 SR only 또는 UCI only인 경우와 다를 수 있음)Method 3: Combine SR and UCI and transmit as a single PUCCH resource (However, the PUCCH format may be different from SR only or UCI only)
또한, DCI (내 ARI (ACK/NACK resource indicator))를 통해 UCI 전송 PUCCH 자원이 지시될 때, DCI (내 ARI (ACK/NACK resource indicator))가 지시하는 PUCCH 자원이 SR 전송 목적으로 할당된 PUCCH 자원과 서로 다른 심볼이면 단말은 앞서 상술한 방법 2를 수행하고 서로 같은 심볼이면 앞서 상술한 방법 1을 수행할 수 있다.In addition, when the UCI transmission PUCCH resource is indicated through the DCI (My ACK / NACK resource indicator), the PUCCH resource indicated by the DCI (My ACK / NACK resource indicator) is allocated for the purpose of SR transmission. If the symbol is different from the resource, the terminal may perform the aforementioned method 2 and if the symbols are the same, the terminal may perform the aforementioned method 1.
상기 제3 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The third SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.4. 제4 SR 전송 방법3.4. Fourth SR Transmission Method
SR과 UCI가 하나의 PUCCH 자원으로 전송되고 상기 PUCCH 자원이 DM-RS를 포함할 때, 상기 PUCCH DM-RS에 대한 후보 (또는 DM-RS 자원)는 N개 설정될 수 있다. 이때, 단말은 상기 N개 RS 후보 (또는 DM-RS 자원)들 중 1개 선택하여 전송하는 방식을 이용하여 (N-1)개 상태를 갖는 SR 정보 또는 Negative SR을 표현할 수 있다.When SR and UCI are transmitted as one PUCCH resource and the PUCCH resource includes a DM-RS, N candidates (or DM-RS resources) for the PUCCH DM-RS may be configured. In this case, the UE may express the SR information or the Negative SR having the (N-1) states by using a method of selecting and transmitting one of the N RS candidates (or DM-RS resources).
여기서, 상기 Negative SR은 단말이 UL 데이터 스케줄링을 요청하지 않는 상태를 의미한다.Here, the negative SR means a state in which the UE does not request UL data scheduling.
또한, 상기 복수의 DM-RS에 대한 후보 (또는 DM-RS 자원)들은 CS (cyclic shift)/OCC (orthogonal cover code) 관점에서 구분될 수 있다.In addition, candidates (or DM-RS resources) for the plurality of DM-RSs may be distinguished in terms of cyclic shift (CS) / orthogonal cover code (OCC).
보다 구체적으로, DM-RS가 CAZAC (Constant Amplitude Zero Autocorrelation) 시퀀스로 설계된 단일 FDM-PUCCH를 통해 SR과 UCI가 전송되는 경우, 상기 UCI에 대한 코딩된 비트 (Coded bits)는 FDM-PUCCH의 UCI 전송을 위한 RE들로 전송될 수 있다. 이때, (N-1)개 State를 갖는 SR 정보 또는 Negative SR은 PUCCH DM-RS가 지원하는 N개 CS (cyclic shift) 자원 (또는 OCC 자원) 중 1개를 선택하는 방식으로 전송될 수 있다. More specifically, when SR and UCI are transmitted through a single FDM-PUCCH in which DM-RS is designed as a Constant Amplitude Zero Autocorrelation (CAZAC) sequence, the coded bits for the UCI are UCI transmissions of the FDM-PUCCH. May be sent to REs for. In this case, the SR information or the Negative SR having (N-1) states may be transmitted by selecting one of N CS (cyclic shift) resources (or OCC resources) supported by the PUCCH DM-RS.
보다 일반적으로, FDM-PUCCH 내 DM-RS에 대한 RS 후보들이 설정되는 경우, 단말은 상기 RS 후보들에 대한 RS 선택을 통해 SR 정보를 표현할 수 있다.More generally, when RS candidates for DM-RS in the FDM-PUCCH are configured, the UE may express SR information through RS selection for the RS candidates.
상기 제4 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The fourth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.5. 제5 SR 전송 방법3.5. Fifth SR Transmission Method
단말이 전송 전력 (power)이 상이한 복수의 PUCCH를 시간 축에서 인접하여 전송하는 경우, 상기 단말은 다음 중 하나와 같이 상기 복수의 PUCCH를 전송할 수 있다.When the terminal transmits a plurality of PUCCHs having different transmit powers adjacent to each other on the time axis, the terminal may transmit the plurality of PUCCHs as follows.
(1) 복수 PUCCH들에 대해 (단일) 전송 전력으로 전송(1) transmit with (single) transmit power for multiple PUCCHs
- 상기 (단일) 전송 전력은 우선 순위가 높은 PUCCH의 전송 전력 또는 복수 PUCCH의 전송 전력들 중 최대 (또는 최소) 값일 수 있음 The (single) transmit power may be a maximum (or minimum) value of transmit power of a PUCCH having a higher priority or transmit powers of a plurality of PUCCHs.
(2) 복수 PUCCH들에 대해 각각의 전송 전력으로 전송하되, PUCCH 별로 전력 전이 (Power transient) 구간을 차등적으로 설정(2) Transmit a plurality of PUCCHs with respective transmit powers, but differentially set a power transient section for each PUCCH
- UCI에 대한 우선 순위가 낮거나 또는 UCI 페이로드 크기가 작을수록 전력 전이 구간이 크게 설정될 수 있음-The lower the priority for UCI or the smaller UCI payload size, the larger the power transition interval can be set.
보다 구체적으로, 단말이 (동일 Slot 내) 전송 전력이 크게 상이한 복수의 PUCCH를 시간 축에서 인접하여 전송하는 경우, 전력 전이 (Power transient) 구간에 의해 신호가 왜곡되는 현상이 발생할 수 있다. 상기 전력 전이 구간에 따른 신호 왜곡을 완화하기 위해 (동일 Slot 내) 시간 축에서 인접하여 전송되는 복수 PUCCH들에 대해 동일 전송 전력이 적용될 수 있다. More specifically, when the UE transmits a plurality of PUCCHs having greatly different transmit powers (in the same slot) adjacently on the time axis, a signal may be distorted due to a power transient period. The same transmission power may be applied to a plurality of PUCCHs transmitted adjacent to each other on the time axis (in the same slot) to mitigate signal distortion according to the power transition period.
이때, 상기 복수 PUCCH들에 대해 동일하게 적용할 전송 전력은 상기 복수 PUCCH들 중 UCI에 대한 우선 순위가 가장 높은 PUCCH에 할당된 전송 전력이거나 또는 상기 복수 PUCCH들에 대해 할당된 전송 전력들의 최대 값 (또는 최소 값)일 수 있다. 또는 단말은 상기 복수 PUCCH들을 각각 할당된 전송 전력으로 전송하되, PUCCH별로 차등적으로 전송 전력 차이로 인해 발생하는 전력 전이 구간을 적용할 수 있다. 일 예로, UCI에 대한 우선 순위가 낮은 PUCCH가 전력 전이 구간을 더 길게 갖도록 설정될 수 있다.In this case, the transmission power to be applied equally to the plurality of PUCCHs is the transmission power allocated to the PUCCH having the highest priority for UCI among the plurality of PUCCHs or the maximum value of the transmission powers allocated to the plurality of PUCCHs ( Or minimum value). Alternatively, the terminal may transmit the plurality of PUCCHs at the allocated transmission power, respectively, and may apply a power transition interval generated due to a difference in transmission power for each PUCCH. For example, the PUCCH having a lower priority for UCI may be set to have a longer power transition period.
상기 제5 SR 전송 방법은 Short PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우뿐만 아니라 Long PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우 및 Long PUCCH와 Long PUCCH가 (시간 축에서 인접하게) TDM된 경우에 대해서도 적용될 수 있다. 추가적으로, Short PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우, 두 채널 간 전송 전력 차이가 일정 이상이면 단말은 두 PUCCH 중 UCI 우선 순위가 낮은 Short PUCCH를 포기 (Drop) 하거나 각 Short PUCCH로 전송될 예정이었던 UCI를 결합하여 결합된 UCI를 상기 두 Short PUCCH 중 하나의 Short PUCCH (또는 제 3의 PUCCH)로 전송할 수 있다. 특히 Long PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우, 상기 단말은 Short PUCCH의 전송 전력을 Long PUCCH의 전송 전력과 동일하도록 맞출 수 있다. 또는, 상기 경우에 Short PUCCH의 우선 순위가 높다면 상기 단말은 Long PUCCH의 전송 전력을 Short PUCCH의 전송 전력과 동일하게 맞출 수 있다.The fifth SR transmission method includes not only a case where Short PUCCH and Short PUCCH are TDM (adjacent in the time axis) but also when Long PUCCH and Short PUCCH are TDM (adjacent in the time axis) and Long PUCCH and Long PUCCH (time). This may also apply to the case of TDM) (adjacent to the axis). Additionally, when the Short PUCCH and the Short PUCCH are TDM (adjacent in the time axis), if the transmission power difference between the two channels is greater than or equal to a certain level, the UE gives up (Drop) the Short PUCCH having a low UCI priority among the two PUCCHs or each Short PUCCH. The combined UCI may be transmitted to one Short PUCCH (or a third PUCCH) of the two Short PUCCHs by combining the UCI to be transmitted. In particular, when the Long PUCCH and the Short PUCCH are TDM (adjacent in the time axis), the UE may adjust the transmit power of the Short PUCCH to be equal to the transmit power of the Long PUCCH. Or, in this case, if the priority of the Short PUCCH is high, the UE may match the transmission power of the Long PUCCH with the transmission power of the Short PUCCH.
앞서 상술한 제5 SR 전송 방법을 보다 일반화하면, PUSCH/PUCCH 또는 PUCCH/PUCCH가 서로 (시간 축에서 인접하게) TDM된 상황에서 단말은 다음 중 하나의 동작을 수행할 수 있다.If the above-mentioned fifth SR transmission method is more generalized, the UE may perform one of the following operations in a situation where the PUSCH / PUCCH or the PUCCH / PUCCH are TDM (adjacent in the time axis) to each other.
1) Opt 1: 작은 전력으로 설정된 채널의 전력을 큰 전력을 가진 채널의 전력으로 맞춤1) Opt 1: The power of the channel set to the small power is adjusted to the power of the channel with the large power
2) Opt 2: 짧은 채널의 전력을 긴 채널의 전력으로 맞추거나, 또는 긴 채널 쪽에 전력 전이 구간 (power transient period)을 구성함 (단, power transient period가 구성되는 채널은 심볼 내 power가 일정하지 않을 수 있고, power transient period를 구성하지 않는 채널은 심볼 내 power가 일정하게 유지된다.)2) Opt 2: Set the power of short channel to the power of long channel, or configure power transient period on the long channel side. Channels that do not form a power transient period, the power in the symbol remains constant.)
3) Opt 3: 우선순위 (priority)가 낮은 채널의 전력을 우선순위가 높은 채널의 전력으로 맞추거나, 또는 우선순위가 낮은 채널 쪽에 전력 전이 구간을 구성3) Opt 3: Set the power of the channel with the lower priority to the power of the channel with the higher priority, or configure the power transition section on the channel with the lower priority.
추가적으로 단말이 2-symbol PUCCH를 전송할 때, 2개 심볼 간 주파수 호핑이 적용되거나 2개 심볼 간 전력 차이가 클 수 있다. 이 경우, 전력 전이 구간에 따른 성능 저하를 피하기 위해 단말은 아래의 동작을 수행할 수 있다.In addition, when the UE transmits a 2-symbol PUCCH, frequency hopping between two symbols may be applied or a power difference between the two symbols may be large. In this case, the UE may perform the following operation in order to avoid performance degradation due to the power transition period.
- 2-symbol PUCCH를 구성하는 2개의 1-symbol PUCCH 간 시간 갭 (Time gap)을 설정-Set time gap between two 1-symbol PUCCH constituting 2-symbol PUCCH
> 여기서, 상기 시간 갭은 심볼 단위로 설정될 수 있다. 일 예로, 상기 시간 갭은 1 심볼로 설정될 수 있다.Here, the time gap may be set in symbol units. For example, the time gap may be set to one symbol.
> 또한, 상기 시간 갭을 설정하는 동작은 2-symbol PUCCH가 전송되는 주파수 대역 (frequency band) 또는 2-symbol PUCCH에 적용된 SCS (subcarrier spacing)에 따라 선택적으로 적용될 수 있다.In addition, the operation of setting the time gap may be selectively applied according to a frequency band in which 2-symbol PUCCH is transmitted or a subcarrier spacing (SCS) applied to 2-symbol PUCCH.
추가적으로, 2개의 1-symbol PUCCH (또는 SRS)가 TDM되어 전송될 때, 1-symbol PUCCH (또는 SRS) on/off으로 발생하는 전력 전이 구간에 따른 성능 저하를 피하기 위해 단말은 아래의 동작을 수행할 수 있다.In addition, when two 1-symbol PUCCHs (or SRSs) are transmitted by TDM, the UE performs the following operations to avoid performance degradation due to a power transition period that occurs with 1-symbol PUCCH (or SRS) on / off. can do.
- 2개의 1-symbol PUCCH (또는 SRS) 간 시간 갭을 설정Set time gap between two 1-symbol PUCCHs (or SRSs)
> 여기서, 상기 시간 갭은 심볼 단위로 설정될 수 있다. 일 예로, 상기 시간 갭은 1 심볼로 설정될 수 있다.Here, the time gap may be set in symbol units. For example, the time gap may be set to one symbol.
> 또한, 상기 시간 갭을 설정하는 동작은 1-symbol PUCCH가 전송되는 주파수 대역 (frequency band) 또는 1-symbol PUCCH에 적용된 SCS (subcarrier spacing)에 따라 선택적으로 적용될 수 있다.In addition, the operation of setting the time gap may be selectively applied according to a frequency band in which 1-symbol PUCCH is transmitted or a subcarrier spacing (SCS) applied to 1-symbol PUCCH.
추가적으로, 2개의 (short) PUCCH가 (시간 축에서 인접하게) TDM된 상황에서 단말은 아래 중 하나의 옵션을 적용할 수 있다.In addition, in a situation where two (short) PUCCHs are TDM (adjacent in the time axis), the UE may apply one of the following options.
이때, 상기 단말이 제1 옵션 수행 시 조인트 코딩 이후의 코딩 레이트가 일정 수준 이상이면 상기 단말은 제2 내지 제4 옵션 중 하나를 적용할 수 있다.In this case, when the terminal performs the first option, if the coding rate after the joint coding is a predetermined level or more, the terminal may apply one of the second to fourth options.
- 제2 옵션: 2개 (short) PUCCH 모두에 대해 power transient period 설정Second option: set power transient period for both (short) PUCCHs
- 제3 옵션: 우선 순위가 낮은 (short) PUCCH에 대해 power transient period 설정-Third option: set a power transient period for a short PUCCH
- 제4 옵션: 2개 (short) PUCCH간 동일 power 설정 (power transient period 설정하지 않음)4th option: same power setting between two (short) PUCCHs (no power transient period)
- 제5 옵션: 2개 (short) PUCCH 중 하나 이상의 (short) PUCCH 전송 생략 (즉, (short) PUCCH drop)Fifth option: omit one or more short PUCCH transmissions of two short PUCCHs (ie, short PUCCH drop)
상기 제5 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The fifth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.6. 제6 SR 전송 방법3.6. Sixth SR Transmission Method
SEQ-PUCCH에 할당된 시퀀스 집합 SA 내 (동일 시간 자원 및 주파수 자원을 갖고) CS 자원으로 구분되는 임의의 시퀀스 집합 SB에 포함된 M개 시퀀스들은 CS index의 오름차순 (또는 내림차순)으로 (연속된) M개 그레이 코드 (Gray code)가 대응할 수 있다.The M sequences included in any sequence set S B divided into CS resources (with the same time resource and frequency resource) in the sequence set S A assigned to SEQ-PUCCH are (continuous) in ascending (or descending) order of the CS index. M gray codes can correspond to each other.
여기서, 상기 SEQ-PUCCH를 위한 시퀀스 집합 내 시퀀스들은 서로 상이한 시간 자원, 주파수 자원, 길이, CS 자원, 루트 인덱스 중 하나를 가질 수 있다.Here, the sequences in the sequence set for the SEQ-PUCCH may have one of different time resources, frequency resources, lengths, CS resources, and root indices.
보다 구체적으로, 시간 자원 T1 및 주파수 자원 F1을 갖고 각각 CS index 0, 3, 6으로 구분되는 지원되는 SEQ1, SEQ2, SEQ3와 상기 (시간 자원 T1 및 주파수 자원 F1과 구분되는) 시간 자원 T2 및 주파수 자원 F2을 갖는 SEQ4가 SEQ-PUCCH에 할당될 수 있다. 이때, 동일 시간 및 주파수 자원 내 CS 자원으로 구분되는 시퀀스들 간에는 각 시퀀스가 표현하는 UCI 비트들 간 해밍 거리 (Hamming distance)가 작도록 설정될 수 있다. 2 비트들에 대한 그레이 코드는 00, 01, 11, 10으로 주어지는 바, 상기 그레이 코드는 아래와 같이 SEQ-PUCCH 내 각 시퀀스에 대응할 수 있다.More specifically, supported SEQ1, SEQ2, SEQ3 having time resource T1 and frequency resource F1 and separated by CS index 0, 3, 6, respectively, and time resource T2 and frequency (different from time resource T1 and frequency resource F1) SEQ4 with resource F2 may be allocated to SEQ-PUCCH. In this case, a Hamming distance between UCI bits represented by each sequence may be set between sequences divided by CS resources in the same time and frequency resources. The gray code for 2 bits is given by 00, 01, 11, and 10. The gray code may correspond to each sequence in SEQ-PUCCH as follows.
Figure PCTKR2018005149-appb-T000007
Figure PCTKR2018005149-appb-T000007
보다 구체적으로, SEQ-PUCCH에 대해 복수 시퀀스들이 할당될 때, 상기 복수 시퀀스들에 대해 동일 시간 및 주파수 자원 상에서 (CS 자원이 구분되는) 시퀀스들에 대해 CS 인덱스의 오름차순 (또는 내림차순)으로 연속된 인덱스가 할당되는 조건 하에서 인덱스가 적용될 수 있다. 이후, N 비트 UCI에 대한 k번째 그레이 코드는 상기 SEQ-PUCCH 내 k번째 인덱스를 갖는 시퀀스로 전송될 수 있다.More specifically, when plural sequences are allocated for SEQ-PUCCH, the sequential order is ascending (or descending) of the CS index for sequences (where CS resources are separated) on the same time and frequency resource for the plural sequences. The index can be applied under the condition that the index is allocated. Thereafter, the kth gray code for the N bit UCI may be transmitted in a sequence having the kth index in the SEQ-PUCCH.
특히 SEQ-PUCCH가 복수 시간 자원으로 전송될 때, 시간 자원 별로 사용되는 시퀀스 집합의 CS 자원이 다르다면 (예: CS hopping) CS 자원 상 인접한 시퀀스 간에는 (연속적인) Gray code가 대응되도록 시간 자원 별로 Gray code와 시퀀스 간 매핑이 다르게 설정될 수 있다. In particular, when the SEQ-PUCCH is transmitted as a multi-time resource, if the CS resource of the sequence set used for each time resource is different (e.g., CS hopping), (contiguous) Gray code is corresponded between adjacent sequences on the CS resource by time resource. The mapping between gray code and sequence can be set differently.
상기 시간 자원 별 Gray code와 시퀀스 간 매핑 원리는 앞서 상술한 제6 SR 전송 방법이 적용될 수 있다.The above-described sixth SR transmission method may be applied to the mapping principle between the gray code and the sequence for each time resource.
상기 제6 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The sixth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.7. 제7 SR 전송 방법3.7. Seventh SR Transmission Method
단말은 SR과 ACK/NACK이 결합된 정보를 다음 중 하나의 방법으로 (단일) SEQ-PUCCH로 전송할 수 있다.The UE may transmit the information in which the SR and the ACK / NACK are combined through (single) SEQ-PUCCH in one of the following ways.
- ACK/NACK에 대해 번들링을 적용한 뒤 SR과 Bundled ACK/NACK에 대한 정보를 (단일) SEQ-PUCCH로 전송After bundling is applied to ACK / NACK, information on SR and Bundled ACK / NACK is transmitted in (single) SEQ-PUCCH.
- 시퀀스 자원 간 거리가 Negative/Positive SR간에 가장 크도록 (예: 다른 심볼상의 시퀀스로) 할당하고, ACK/NACK은 Gray coding을 고려하여 (예: CS 간격에 따라) 할당하여 전송-Allocate so that the distance between sequence resources is the largest between negative / positive SRs (e.g., sequences on different symbols), and ACK / NACK is allocated by considering gray coding (e.g. according to CS intervals).
보다 구체적으로, SR이 Positive SR (UL scheduling을 요청하는 상태)과 Negative SR (UL scheduling을 요청하지 않는 상태)으로 구분되고, ACK/NACK의 페이로드 크기가 2 bits일 때, SR과 ACK/NACK을 결합한 정보는 전체 8개 상태로 표현될 수 있다. 즉, {Positive SR, 00}, {Positive SR, 01}, {Positive SR, 10}, {Positive SR, 11}, {Negative SR, 00}, {Negative SR, 01}, {Negative SR, 10}, {Negative SR, 11}로 표현될 수 있다. More specifically, when an SR is divided into a positive SR (a state requesting UL scheduling) and a negative SR (a state not requesting UL scheduling), and the payload size of the ACK / NACK is 2 bits, the SR and the ACK / NACK The combined information can be expressed in eight states. That is, {Positive SR, 00}, {Positive SR, 01}, {Positive SR, 10}, {Positive SR, 11}, {Negative SR, 00}, {Negative SR, 01}, {Negative SR, 10} , {Negative SR, 11}.
그러나 SEQ-PUCCH가 주로 1 bit 또는 2 bits을 대상으로 하는 바, 8개 시퀀스를 갖도록 할당하기 위해서는 1bit 또는 2bits를 대상으로는 SEQ-PUCCH 구조와 일관되는 구조를 유지하기 어려울 수 있다. (예: 주파수 자원 길이 등이 달라질 수 있음) 상기 경우, ACK/NACK에 대한 번들링을 적용함으로써 SEQ-PUCCH로 전송할 전체 상태의 수를 감소시킬 수 있다.However, since the SEQ-PUCCH mainly targets 1 bit or 2 bits, in order to allocate 8 sequences, it may be difficult to maintain a structure consistent with the structure of the SEQ-PUCCH for 1 bit or 2 bits. In this case, by applying bundling for ACK / NACK, it is possible to reduce the total number of states to be transmitted in the SEQ-PUCCH.
일 예로, 앞서 상술한 8 개 상태는 {Positive SR, 0 (bundled ACK/NACK of 00 or 01 or 10)}, {Positive SR, 1 (bundled ACK/NACK of 11)}, {Negative SR, 00}, {Negative SR, 01}, {Negative SR, 10}, {Negative SR, 11}과 같이 6개 상태로 축소되거나, {Positive SR, 0 (bundled ACK/NACK of 00 or 01 or 10)}, {Positive SR, 1 (bundled ACK/NACK of 11)}, {Negative SR, 0 (bundled ACK/NACK of 00 or 01 or 10)}, {Negative SR, 1 (bundled ACK/NACK of 11)}와 같이 4개 상태로 축소될 수 있다.For example, the above-described eight states may be {Positive SR, 0 (bundled ACK / NACK of 00 or 01 or 10)}, {Positive SR, 1 (bundled ACK / NACK of 11)}, {Negative SR, 00} , {Negative SR, 01}, {Negative SR, 10}, {Negative SR, 11}, reduced to six states, or {Positive SR, 0 (bundled ACK / NACK of 00 or 01 or 10)}, { Positive SR, 1 (bundled ACK / NACK of 11)}, {Negative SR, 0 (bundled ACK / NACK of 00 or 01 or 10)}, {Negative SR, 1 (bundled ACK / NACK of 11)} Can be reduced to the dog state.
또는 8개 시퀀스를 활용하는 경우, Positive SR을 의미하는 시퀀스 자원들과 Negative SR을 의미하는 시퀀스 자원들 간에는 직교 성이 가장 잘 보장되도록 시퀀스 자원이 할당될 수 있다. 일 예로, SEQ-PUCCH 내 전체 8개 시퀀스가 존재하고, 상기 8개 시퀀스는 2개 심볼에 대해 심볼 별로 CS 자원으로 구분되는 4개 시퀀스들로 구성되는 경우를 가정한다. 이때, 상기 2개 심볼 중 첫 번째 심볼에서는 Positive SR + ACK/NACK 정보만이 표현되고 두 번째 심볼에서는 Negative SR + ACK/NACK 정보만이 표현되도록 시퀀스가 할당될 수 있다.Alternatively, when 8 sequences are used, sequence resources may be allocated to ensure orthogonality best between sequence resources meaning positive SRs and sequence resources meaning negative SRs. For example, it is assumed that there are eight sequences in SEQ-PUCCH, and the eight sequences are composed of four sequences divided into CS resources for each symbol for two symbols. In this case, a sequence may be allocated such that only positive SR + ACK / NACK information is represented in the first symbol of the two symbols and only Negative SR + ACK / NACK information is represented in the second symbol.
추가적으로, (Frequency domain 및 Code domain에서 구분되는) M개 시퀀스 (sequence) 자원을 활용하여, 단말은 SR 상태 (예: N1개)와 HARQ-ACK 상태 (예: N2개)에 대한 (전체 또는 일부) 조합들 (예: N1*N2개) 중에서 특정 단일 조합을 아래 중 하나의 방식으로 전송할 수 있다.In addition, by using M sequence resources (divided in the frequency domain and the code domain), the UE may determine the total (for all N) for the SR state (eg N 1 ) and the HARQ-ACK state (eg N 2 ). Or some) combinations (eg, N 1 * N 2 ) may transmit a particular single combination in one of the following ways.
(1) 방식 #1: 특정 단일 시퀀스 전송(1) Method # 1: send a specific single sequence
- SR 상태와 HARQ-ACK 상태에 대한 최대 MC1개 조합을 표현 가능-Up to 1 M C combination can be represented for SR state and HARQ-ACK state.
(2) 방식 #2: (상기 M개 시퀀스 중) 특정 L개 시퀀스 전송(2) Method # 2: transmission of specific L sequences (of M sequences)
- 주어진 L 값에 대해, SR 상태와 HARQ-ACK 상태에 대한 최대 MCL개 조합을 표현 가능For a given L value, maximum M C L combinations for SR state and HARQ-ACK state can be represented
여기서, 상기 Frequency domain 및 Code domain에서 시퀀스가 구분된다는 의미는 시퀀스 간 할당된 주파수 축 자원 그리고/또는 CS (cyclic shift) 또는 OCC (orthogonal cover code)가 구분됨을 의미한다.In this case, the fact that the sequence is divided in the frequency domain and the code domain means that frequency axis resources allocated between the sequences and / or CS (cyclic shift) or OCC (orthogonal cover code) are distinguished.
또한, 특정 SR과 HARQ-ACK 조합에 대해 단말은 어떠한 시퀀스도 전송하지 않을 수 있다. (즉, DTX로 표현)In addition, the UE may not transmit any sequence for a specific SR and HARQ-ACK combination. (Ie expressed in DTX)
또한, 단말은 4개 시퀀스 (예: Seq. 1, Seq. 2, Seq. 3, Seq. 4)를 활용하여 SR 상태 (예: Positive SR or Negative SR)과 2 bits HARQ-ACK 상태 (예: {ACK, ACK}, {ACK, NACK}, {NACK, ACK}, {NACK, NACK})에 대한 8개 조합 중 특정 조합을 아래 방식과 같이 (전체 4개 시퀀스 자원 중) 단일 또는 복수 시퀀스들을 전송하여 표현할 수 있다. (즉, M=4)In addition, the terminal utilizes four sequences (eg, Seq. 1, Seq. 2, Seq. 3, Seq. 4) to the SR state (eg Positive SR or Negative SR) and the 2-bit HARQ-ACK state (eg {ACK, ACK}, {ACK, NACK}, {NACK, ACK}, {NACK, NACK}). A specific combination of the eight combinations of one or more sequences (of all four sequence resources) Can be transmitted and expressed. (Ie M = 4)
1) Positive SR + {ACK, ACK}1) Positive SR + {ACK, ACK}
- Seq. 1 전송-Seq. 1 transfer
2) Positive SR + {NACK, NACK} (또는 Positive SR only)2) Positive SR + {NACK, NACK} (or Positive SR only)
- Seq. 2 전송-Seq. 2 transmission
3) Negative SR + {ACK, ACK}3) Negative SR + {ACK, ACK}
- Seq. 3 전송-Seq. 3 transmission
4) Negative SR + {NACK, NACK}4) Negative SR + {NACK, NACK}
- Seq. 4 전송 (단, Negative SR only이면 아무 신호도 전송하지 않음)-Seq. 4 transmissions (no signal if negative SR only)
5) Positive SR + {ACK, NACK} 또는 Positive SR + {NACK, ACK} 또는 Negative SR + {ACK, NACK} 또는 Negative SR + {NACK, ACK}5) Positive SR + {ACK, NACK} or Positive SR + {NACK, ACK} or Negative SR + {ACK, NACK} or Negative SR + {NACK, ACK}
5-1) 복수 시퀀스에 대한 동시 전송이 가능한 경우5-1) Simultaneous Transmission for Multiple Sequences
- 각 (SR과 HARQ-ACK) 조합에 대해 4개 시퀀스 중 시퀀스 쌍 (= 2개 시퀀스)을 뽑는 경우의 수 (예: Seq. 1 + Seq. 2 또는 Seq. 1 + Seq. 3 또는 Seq. 1 + Seq. 4 또는 Seq. 2+ Seq. 3 또는 Seq. 2+ Seq. 4 또는 Seq. 3 + Seq. 4) 중 특정 (단일) 시퀀스 쌍을 할당 및 전송The number of cases in which a sequence pair (= 2 sequences) of 4 sequences is drawn for each (SR and HARQ-ACK) combination (e.g. Seq. 1 + Seq. 2 or Seq. 1 + Seq. 3 or Seq. 1 + Seq. 4 or Seq. 2+ Seq. 3 or Seq. 2+ Seq. 4 or Seq. 3 + Seq. 4) Assign and transmit a specific (single) sequence pair
- 여기서, 단말은 서로 다른 SR과 HARQ-ACK 조합에 대해 서로 다른 시퀀스 쌍을 할당 및 전송Here, the UE allocates and transmits different sequence pairs for different SR and HARQ-ACK combinations.
5-2) 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)5-2) Only transmission for a single sequence is possible (eg power limited case)
- Positive SR이고 {ACK, NACK} (또는 {NACK, ACK})이면 Seq. 2 전송If it is a positive SR and {ACK, NACK} (or {NACK, ACK}), Seq. 2 transmission
- Negative SR이고 {ACK, NACK} (또는 {NACK, ACK})이면 Seq. 4 전송If the Negative SR and {ACK, NACK} (or {NACK, ACK}). 4 transmission
Positive or Negative SR + 2 bit HARQ-ACK를 표현하기 위해 M=4개 시퀀스 (Seq. 1, Seq. 2, Seq. 3, Seq. 4)만 활용하는 경우, 단말은 하기와 같이 시퀀스를 전송할 수 있다. 이때, 하기 표에 있어, 'O'는 해당 시퀀스 전송을 의미한다.When only M = 4 sequences (Seq. 1, Seq. 2, Seq. 3, Seq. 4) are used to express a positive or negative SR + 2 bit HARQ-ACK, the terminal may transmit the sequence as follows. have. In this case, in the following table, 'O' means transmission of the sequence.
[1] Case 1: 복수 시퀀스에 대한 동시 전송이 가능한 경우[1] Case 1: Simultaneous Transmission for Multiple Sequences
Figure PCTKR2018005149-appb-T000008
Figure PCTKR2018005149-appb-T000008
[2] Case 2: 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)[2] Case 2: Only transmission for a single sequence is possible (eg power limited case)
Figure PCTKR2018005149-appb-T000009
Figure PCTKR2018005149-appb-T000009
또는, 기지국이 단말에게 Case 1 또는 Case 2에 따라 시퀀스(들)을 전송하도록 설정할 수 있다. Or, the base station may be set to transmit the sequence (s) according to Case 1 or Case 2 to the terminal.
상기 예시에서 Negative SR이고 DTX인 경우에는 단말은 어떠한 신호도 전송하지 않을 수 있다. In the example, in case of Negative SR and DTX, the UE may not transmit any signal.
단, 상기 예시에서 Positive SR (only)인 경우, 이를 표현하기 위해 단말은 Positive SR + {NACK, NACK}과 동일한 시퀀스(예: Seq. 2)를 전송할 수 있다.However, in the above example, in case of Positive SR (only), the UE may transmit the same sequence (eg Seq. 2) as Positive SR + {NACK, NACK}.
또한, 상기 예시에서 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다.In addition, in the above example, the base station may determine a combination of the SR and the HARQ-ACK based on the detected sequence (s) as follows.
1] Seq. 1만 검출 시: Positive SR + {ACK, ACK}으로 판단1] Seq. When only 1 is detected: judged as Positive SR + {ACK, ACK}
2] Seq. 2만 검출 시: Positive SR + {NACK, NACK}으로 판단2] Seq. 2 only detection: Positive SR + {NACK, NACK}
3] Seq. 3만 검출 시: Negative SR + {ACK, ACK}으로 판단3] Seq. 3 only: Negative SR + {ACK, ACK}
4] Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단4] Seq. 4 only: Negative SR + {NACK, NACK}
5] Seq. 1 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단5] Seq. 1 + Seq. 2 detection: Positive SR + {ACK, NACK}
6] Seq. 2 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단6] Seq. 2 + Seq. 3 On detection: Positive SR + judged as {NACK, ACK}
7] Seq. 1 + Seq. 4 검출 시: Negative SR + {ACK, NACK}으로 판단7] Seq. 1 + Seq. 4 Detection: Negative SR + judged as {ACK, NACK}
8] Seq. 3 + Seq. 4 검출 시: Negative SR + {NACK, ACK}으로 판단8] Seq. 3 + Seq. 4 On detection: determined as negative SR + {NACK, ACK}
앞서 상술한 예시에서 Seq. 1과 Seq. 3이 심볼 A에서 전송되고, Seq. 2와 Seq. 4가 심볼 B (≠ 심볼 A)로 TDM되어 전송되는 경우, 단말은 항상 Case 1으로 동작할 수 있다. 즉, 동시 전송하는 시퀀스들이 TDM되어 있는 경우, Power limited인 경우가 발생하지 않으므로 단말은 항상 동시 전송하는 동작을 수행할 수 있다.In the foregoing example, Seq. 1 and Seq. 3 is transmitted in symbol A, and Seq. 2 and Seq. When 4 is transmitted by TDM in symbol B (≠ symbol A), the UE can always operate in Case 1. That is, when simultaneous transmission sequences are TDM, since the case of power limited does not occur, the terminal may always perform simultaneous transmission.
상기 구성을 보다 일반화하면, Seq. 1과 Seq. 3가 심볼 A에서 전송되고 Seq. 2, Seq. 4가 심볼 B (≠ 심볼 A)로 TDM되어 전송되는 경우, 단말은 SR과 HARQ-ACK에 대한 특정 조합을 시퀀스를 전송하는 다음 8가지 경우들 중 하나를 이용하여 표현할 수 있다.More generalizing the above configuration, Seq. 1 and Seq. 3 is transmitted in symbol A and Seq. 2, Seq. When 4 is transmitted by TDM in symbol B (≠ symbol A), the UE may express a specific combination of SR and HARQ-ACK using one of the following eight cases of transmitting a sequence.
<1> Seq. 1<1> Seq. One
<2> Seq. 2<2> Seq. 2
<3> Seq. 3<3> Seq. 3
<4> Seq. 4<4> Seq. 4
<5> Seq. 1 + Seq. 2<5> Seq. 1 + Seq. 2
<6> Seq. 1 + Seq. 4<6> Seq. 1 + Seq. 4
<7> Seq. 3 + Seq. 2<7> Seq. 3 + Seq. 2
<8> Seq. 3 + Seq. 4<8> Seq. 3 + Seq. 4
이때, 상기 8개 시퀀스 전송 조합은 SR과 2 bits HARQ-ACK에 대한 전체 8개 조합 즉, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, Negative SR + {NACK, ACK}, Negative SR + {NACK, NACK}, Positive SR + {ACK, ACK}, Positive SR + {ACK, NACK}, Positive SR + {NACK, ACK}, Positive SR + {NACK, NACK})으로 일대일 대응될 수 있다.In this case, the eight sequence transmission combinations include a total of eight combinations of SR and 2 bits HARQ-ACK, that is, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, and Negative SR + {NACK, ACK}. , Negative SR + {NACK, NACK}, Positive SR + {ACK, ACK}, Positive SR + {ACK, NACK}, Positive SR + {NACK, ACK}, Positive SR + {NACK, NACK}) Can be.
구체적인 일 예로, 상기 8개 시퀀스 전송 조합은 앞서 상술한 Case 1에 대응되는 표와 같이 일대일 대응될 수 있다.As a specific example, the eight sequence transmission combinations may correspond one-to-one as shown in the table corresponding to Case 1 described above.
또는, Seq. 1이 심볼 A에서 전송되고 Seq. 2, Seq. 3, Seq. 4가 심볼 B (≠ 심볼 A)로 TDM되어 전송되는 경우, 단말은 SR과 HARQ-ACK에 대한 특정 조합을 시퀀스를 전송하는 다음 7가지 경우들 중 하나를 이용하여 표현할 수 있다.Or Seq. 1 is transmitted in symbol A and Seq. 2, Seq. 3, Seq. When 4 is transmitted by TDM in symbol B (≠ symbol A), the UE may express a specific combination of SR and HARQ-ACK using one of the following seven cases of transmitting a sequence.
1> Seq. 11> Seq. One
2> Seq. 22> Seq. 2
3> Seq. 33> Seq. 3
4> Seq. 44> Seq. 4
5> Seq. 1 + Seq. 25> Seq. 1 + Seq. 2
6> Seq. 1 + Seq. 36> Seq. 1 + Seq. 3
7> Seq. 1 + Seq. 47> Seq. 1 + Seq. 4
이때, 상기 7개 시퀀스 전송 조합은 SR과 2 bits HARQ-ACK에 대한 전체 조합 중 Negative SR + {NACK, NACK}인 경우를 제외한 7개 조합 즉, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, Negative SR + {NACK, ACK}, Positive SR + {ACK, ACK}, Positive SR + {ACK, NACK}, Positive SR + {NACK, ACK}, Positive SR + {NACK, NACK}에 일대일 대응될 수 있다.In this case, the seven sequence transmission combinations are seven combinations except Negative SR + {NACK, NACK} among all combinations of SR and 2 bits HARQ-ACK, that is, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, Negative SR + {NACK, ACK}, Positive SR + {ACK, ACK}, Positive SR + {ACK, NACK}, Positive SR + {NACK, ACK}, Positive SR + {NACK, NACK} Can correspond one to one.
또는, 상기 7개 시퀀스 전송 조합 중 6개 시퀀스 전송 조합은 2 bits HARQ-ACK에 대한 다음 6개 조합 즉, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, Negative SR + {NACK, ACK}, Negative SR + {NACK, NACK}, Positive SR + All ACK (i.e., {ACK, ACK})}, Positive SR + Bundled NACK (i.e., {NACK, ACK}, {ACK, NACK})에 일대일 대응될 수 있다. 이때, 상기 7개 시퀀스 전송 조합 중 나머지 1개 시퀀스 전송 조합은 복수 시퀀스를 전송하는 전송 조합 (예: Seq. 1 + Seq. 2, Seq. 1 + Seq. 3, Seq. 1 + Seq. 4) 중 하나에 대응할 수 있다.Alternatively, the six sequence transmission combinations of the seven sequence transmission combinations may include the following six combinations of 2 bits HARQ-ACK, that is, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, and Negative SR + { NACK, ACK}, Negative SR + {NACK, NACK}, Positive SR + All ACK (ie, {ACK, ACK})}, Positive SR + Bundled NACK (ie, {NACK, ACK}, {ACK, NACK}) Can correspond one to one. In this case, one of the seven sequence transmission combinations is a transmission combination that transmits a plurality of sequences (for example, Seq. 1 + Seq. 2, Seq. 1 + Seq. 3, Seq. 1 + Seq. 4). It can correspond to either.
일 예로, 단말은 하기 표와 같이 SR과 2 bits HARQ-ACK 조합 별 시퀀스 전송을 수행할 수 있다.As an example, the terminal may perform sequence transmission for each SR and 2 bits HARQ-ACK combination as shown in the following table.
Figure PCTKR2018005149-appb-T000010
Figure PCTKR2018005149-appb-T000010
또 다른 예시로, 단말은 6개 시퀀스 (예: Seq. 1, Seq. 2, Seq. 3, Seq. 4, Seq. 5, Seq. 6)를 활용하여 SR 상태 (예: Positive SR or Negative SR)과 2 bits HARQ-ACK 상태 (예: {ACK, ACK}, {ACK, NACK}, {NACK, ACK}, {NACK, NACK})에 대한 8개 조합 중 특정 조합을 아래 방식과 같이 (전체 6개 시퀀스 자원 중) 단일 또는 복수 시퀀스들을 전송하여 표현할 수 있다. (즉, M=6)As another example, the UE may use six sequences (eg, Seq. 1, Seq. 2, Seq. 3, Seq. 4, Seq. 5, Seq. 6) to perform an SR state (eg, Positive SR or Negative SR). ) And 8 bits for 2 bits HARQ-ACK status (e.g. {ACK, ACK}, {ACK, NACK}, {NACK, ACK}, {NACK, NACK}). Single or multiple sequences of six sequence resources may be transmitted and expressed. (Ie M = 6)
(A) Negative SR + {ACK, ACK}(A) Negative SR + {ACK, ACK}
- Seq. 1 전송-Seq. 1 transfer
(B) Negative SR + {ACK, NACK}(B) Negative SR + {ACK, NACK}
- Seq. 2 전송-Seq. 2 transmission
(C) Negative SR + {NACK, ACK}(C) Negative SR + {NACK, ACK}
- Seq. 3 전송-Seq. 3 transmission
(D) Negative SR + {NACK, NACK}(D) Negative SR + {NACK, NACK}
- Seq. 4 전송 (단, Negative SR only이면 아무 신호도 전송하지 않음)-Seq. 4 transmissions (no signal if negative SR only)
(E) Positive SR only(E) Positive SR only
- Seq. 5 전송-Seq. 5 transmission
(F) Positive SR + {ACK, ACK}(F) Positive SR + {ACK, ACK}
- Seq. 6 전송-Seq. 6 transmission
(G) Positive SR + {ACK, NACK} 또는 Positive SR + {NACK, ACK} 또는 Positive SR + {NACK, NACK}(G) Positive SR + {ACK, NACK} or Positive SR + {NACK, ACK} or Positive SR + {NACK, NACK}
(G-1) 복수 시퀀스에 대한 동시 전송이 가능한 경우(G-1) When simultaneous transmission for multiple sequences is possible
- 각 (SR과 HARQ-ACK) 조합에 대해 6개 시퀀스 중 시퀀스 쌍 (= 2개 시퀀스)을 뽑는 경우의 수 (예: Seq. 1 + Seq. 2 또는 Seq. 1 + Seq. 3 또는 Seq. 1 + Seq. 4 또는 Seq. 1 + Seq. 5 또는 Seq. 1 + Seq. 6 또는 Seq. 2+ Seq. 3 또는 Seq. 2+ Seq. 4 또는 Seq. 2+ Seq. 5 또는 Seq. 2+ Seq. 6 또는 Seq. 3 + Seq. 4 또는 Seq. 3 + Seq. 5 또는 Seq. 3 + Seq. 6) 중 특정 (단일) 시퀀스 쌍을 할당 및 전송The number of cases in which a sequence pair (= 2 sequences) of 6 sequences is drawn for each (SR and HARQ-ACK) combination (eg Seq. 1 + Seq. 2 or Seq. 1 + Seq. 3 or Seq. 1 + Seq. 4 or Seq. 1 + Seq. 5 or Seq. 1 + Seq. 6 or Seq. 2+ Seq. 3 or Seq. 2+ Seq. 4 or Seq. 2+ Seq. 5 or Seq. 2+ Assign and transmit a specific (single) sequence pair, either Seq. 6 or Seq. 3 + Seq. 4 or Seq. 3 + Seq. 5 or Seq. 3 + Seq.
- 여기서, 서로 다른 SR과 HARQ-ACK 조합에 대해 단말은 서로 다른 시퀀스 쌍을 할당 및 전송Here, the UE allocates and transmits different sequence pairs for different SR and HARQ-ACK combinations.
(G-2) 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)(G-2) Only transmission for a single sequence is possible (e.g. power limited case)
- Positive SR이고 {ACK, NACK} (또는 {NACK, ACK} 또는 {NACK, NACK})이면 Seq. 5 전송Seq if it is a positive SR and {ACK, NACK} (or {NACK, ACK} or {NACK, NACK}). 5 transmission
Positive or Negative SR + 2 bit HARQ-ACK를 표현하기 위해 M=6개 시퀀스 (Seq. 1, Seq. 2, Seq. 3, Seq. 4, Seq. 5, Seq. 6)만 활용하는 경우, 단말은 하기와 같이 시퀀스를 전송할 수 있다. 이때, 하기 표에 있어, 'O'는 해당 시퀀스 전송을 의미한다.In case of using only M = 6 sequences (Seq. 1, Seq. 2, Seq. 3, Seq. 4, Seq. 5, Seq. 6) to express positive or negative SR + 2 bit HARQ-ACK, Can transmit the sequence as follows. In this case, in the following table, 'O' means transmission of the sequence.
A) Case 3: 복수 시퀀스에 대한 동시 전송이 가능한 경우A) Case 3: When simultaneous transmission for multiple sequences is possible
Figure PCTKR2018005149-appb-T000011
Figure PCTKR2018005149-appb-T000011
B) Case 4: 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)B) Case 4: Only transmission for a single sequence (eg power limited case)
Figure PCTKR2018005149-appb-T000012
Figure PCTKR2018005149-appb-T000012
또는, 기지국이 단말에게 Case 3 또는 Case 4에 따라 시퀀스(들)을 전송하도록 설정할 수 있다. Alternatively, the base station may set to transmit the sequence (s) according to Case 3 or Case 4 to the terminal.
상기 예시에서 Negative SR이고 DTX인 경우, 단말은 어떠한 신호도 전송하지 않을 수 있다. In the above example, in case of Negative SR and DTX, the terminal may not transmit any signal.
또한, 상기 예시에서 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다.In addition, in the above example, the base station may determine a combination of the SR and the HARQ-ACK based on the detected sequence (s) as follows.
[A] Seq. 1만 검출 시: Negative SR + {ACK, ACK}으로 판단[A] Seq. When only 1 is detected: determined as negative SR + {ACK, ACK}
[B] Seq. 2만 검출 시: Negative SR + {ACK, NACK}으로 판단[B] Seq. 20,000 detection: determined as negative SR + {ACK, NACK}
[C] Seq. 3만 검출 시: Negative SR + {NACK, ACK}으로 판단[C] Seq. 3 only: Negative SR + {NACK, ACK}
[D] Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단[D] Seq. 4 only: Negative SR + {NACK, NACK}
[E] Seq. 5만 검출 시: Positive SR + bundled NACK (또는 DTX)으로 판단[E] Seq. 50,000 detection: judged as Positive SR + bundled NACK (or DTX)
[F] Seq. 6만 검출 시: Positive SR + {ACK, ACK}으로 판단[F] Seq. 6 only detection: Positive SR + {ACK, ACK}
[G] Seq. 5 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단[G] Seq. 5 + Seq. 2 detection: Positive SR + {ACK, NACK}
[H] Seq. 5 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단[H] Seq. 5 + Seq. 3 On detection: Positive SR + judged as {NACK, ACK}
[I] Seq. 5 + Seq. 4 검출 시: Positive SR + {NACK, NACK}으로 판단[I] Seq. 5 + Seq. 4 On detection: Positive SR + {NACK, NACK}
추가적으로, 단말은 Positive SR + {NACK, NACK}과 Positive SR + DTX (즉, Positive SR only)에 대한 시퀀스 전송을 하기 표 13 또는 표 14와 같이 변형할 수 있다.In addition, the terminal may modify the sequence transmission for Positive SR + {NACK, NACK} and Positive SR + DTX (ie, Positive SR only) as shown in Table 13 or Table 14 below.
Figure PCTKR2018005149-appb-T000013
Figure PCTKR2018005149-appb-T000013
Figure PCTKR2018005149-appb-T000014
Figure PCTKR2018005149-appb-T000014
표 13에 따를 때, 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다. According to Table 13, the base station may determine the combination of the SR and the HARQ-ACK as follows based on the detected sequence (s).
A] Seq. 1만 검출 시: Negative SR + {ACK, ACK}으로 판단A] Seq. When only 1 is detected: determined as negative SR + {ACK, ACK}
B] Seq. 2만 검출 시: Negative SR + {ACK, NACK}으로 판단B] Seq. 20,000 detection: determined as negative SR + {ACK, NACK}
C] Seq. 3만 검출 시: Negative SR + {NACK, ACK}으로 판단C] Seq. 3 only: Negative SR + {NACK, ACK}
D] Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단D] Seq. 4 only: Negative SR + {NACK, NACK}
E] Seq. 5만 검출 시: Positive SR + {NACK, NACK} (또는 DTX)으로 판단E] Seq. 50,000 detection: positive SR + {NACK, NACK} (or DTX)
F] Seq. 6만 검출 시: Positive SR + {ACK, ACK}으로 판단F] Seq. 6 only detection: Positive SR + {ACK, ACK}
G] Seq. 5 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단G] Seq. 5 + Seq. 2 detection: Positive SR + {ACK, NACK}
H] Seq. 5 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단H] Seq. 5 + Seq. 3 On detection: Positive SR + judged as {NACK, ACK}
또는, 표 14에 따를 때, 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다. Or, according to Table 14, the base station can determine the combination of the SR and the HARQ-ACK as follows based on the detected sequence (s).
<A> Seq. 1만 검출 시: Negative SR + {ACK, ACK}으로 판단<A> Seq. When only 1 is detected: determined as negative SR + {ACK, ACK}
<B> Seq. 2만 검출 시: Negative SR + {ACK, NACK}으로 판단<B> Seq. 20,000 detection: determined as negative SR + {ACK, NACK}
<C> Seq. 3만 검출 시: Negative SR + {NACK, ACK}으로 판단<C> Seq. 3 only: Negative SR + {NACK, ACK}
<D> Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단<D> Seq. 4 only: Negative SR + {NACK, NACK}
<E> Seq. 5만 검출 시: Positive SR + bundled NACK (또는 DTX)으로 판단<E> Seq. 50,000 detection: judged as Positive SR + bundled NACK (or DTX)
<F> Seq. 6만 검출 시: Positive SR + {ACK, ACK}으로 판단<F> Seq. 6 only detection: Positive SR + {ACK, ACK}
<G> Seq. 5 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단<G> Seq. 5 + Seq. 2 detection: Positive SR + {ACK, NACK}
<H> Seq. 5 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단<H> Seq. 5 + Seq. 3 On detection: Positive SR + judged as {NACK, ACK}
<I> Seq. 5 + Seq. 4 검출 시: Positive SR + {NACK, NACK} (또는 DTX)으로 판단<I> Seq. 5 + Seq. 4 On detection: determined as Positive SR + {NACK, NACK} (or DTX)
또한, 단말이 1 bit HARQ-ACK과 SR을 전송하는 경우, 아래와 같은 시퀀스 할당을 고려할 수 있다.In addition, when the terminal transmits 1 bit HARQ-ACK and SR, the following sequence allocation may be considered.
구체적으로, 단말이 (Positive or Negative) SR + 2 bit HARQ-ACK에 대해 M=2개 시퀀스 (예: Seq. 1, Seq. 2)만 활용하는 경우, 상기 단말은 다음과 같이 동작할 수 있다.Specifically, when the terminal utilizes only M = 2 sequences (for example, Seq. 1 and Seq. 2) for (Positive or Negative) SR + 2 bit HARQ-ACK, the terminal may operate as follows. .
A> Case 1: 복수 시퀀스에 대한 동시 전송이 가능한 경우A> Case 1: When simultaneous transmission for multiple sequences is possible
이 경우, 단말은 하기 표들 중 하나와 같이 동작할 수 있다.In this case, the terminal may operate as one of the following tables.
Figure PCTKR2018005149-appb-T000015
Figure PCTKR2018005149-appb-T000015
Figure PCTKR2018005149-appb-T000016
Figure PCTKR2018005149-appb-T000016
Figure PCTKR2018005149-appb-T000017
Figure PCTKR2018005149-appb-T000017
상기 예시에 있어, 단말은 항상 복수 시퀀스를 전송할 수 있다고 가정하며, Positive SR (only)인 경우 단말은 Positive SR + NACK인 경우와 동일한 시퀀스 (즉, Seq. 2)를 전송하고, Negative SR + NACK인 경우 상기 단말은 어떠한 신호도 전송하지 않을 수 있다.In the above example, it is assumed that the UE can always transmit a plurality of sequences, and in case of Positive SR (only), the UE transmits the same sequence as that of Positive SR + NACK (ie, Seq. 2), and Negative SR + NACK. When the terminal may not transmit any signal.
또한, 단말이 2개 심볼에 대해 심볼 별로 (N개 시퀀스 중 하나를 선택하여 전송하는) (2-symbol) SEQ-PUCCH 전송 구조에서 SR (예: positive SR, negative SR)과 2 bits HARQ-ACK 정보를 결합하여 전송하는 경우, 상기 단말은 2개 심볼에 대해 전송하는 전체 N*N개 시퀀스 쌍 중 8개 쌍을 활용하여 SR과 2 bits HARQ-ACK에 대한 8개 조합을 표현할 수 있다.In addition, the terminal (SR) (for example, positive SR, negative SR) and 2 bits HARQ-ACK in the (2-symbol) SEQ-PUCCH transmission structure for each symbol (selecting and transmitting one of N sequences) per symbol for two symbols When the combined information is transmitted, the UE can express 8 combinations of SR and 2 bits HARQ-ACK by using 8 pairs of the total N * N sequence pairs transmitted for 2 symbols.
추가적으로, 단말은 M-bits UCI (예: HARQ-ACK)에 대해 2M개 시퀀스 중 하나를 선택하여 전송함으로써 상기 M-bits UCI의 특정 상태를 표현하는 PUCCH (이하 SEQ-PUCCH) 구조를 활용할 수 있다. 이때, 상기 M-bits UCI 전송을 위해 사용될 수 있는 2M개 시퀀스가 동일 주파수 자원 (예: PRBs)을 가지고 서로 간 (CS (cyclic shift) domain에서) 동일 간격을 갖는 2M개의 CS (cyclic shift) 값들로 구분되는 경우, PUCCH 자원은 주파수 자원 인덱스 (예: PRB index)와 해당 주파수 자원 내 CS 시작 값으로 표현될 수 있다. 이때, 단말은 나머지 2M-1개 CS 값에 기초하여 상기 CS 시작 값과 상기 CS간 간격을 유추할 수 있다. 상기 CS 간 간격은 UCI 페이로드 크기에 따라 결정되거나 또는 기지국이 상위 계층 신호를 통해 설정한 값에 기초하여 결정될 수 있다. In addition, the UE may utilize a PUCCH (hereinafter SEQ-PUCCH) structure representing a specific state of the M-bits UCI by selecting and transmitting one of 2 M sequences for M-bits UCI (eg, HARQ-ACK). have. In this case, the M-bits UCI 2 that may be used for transmitting the M sequence has the same frequency resource: 2 with (e.g., PRBs) cross each other (CS (from the cyclic shift) domain) having the same interval the M CS (cyclic shift ), PUCCH resources may be represented by a frequency resource index (for example, a PRB index) and a CS start value in the corresponding frequency resource. In this case, the terminal may infer the interval between the CS start value and the CS based on the remaining 2 M -1 CS values. The interval between CSs may be determined according to the UCI payload size or based on a value set by the base station through a higher layer signal.
또한 기지국은 복수의 PUCCH 자원을 단말에게 설정하고, 이후 DCI로 상기 복수 개의 PUCCH 자원들 중 UCI 전송에 활용할 특정 PUCCH 자원을 선택하여 지시할 수 있다.In addition, the base station may set a plurality of PUCCH resources to the terminal, and then select and indicate a specific PUCCH resource to be used for UCI transmission among the plurality of PUCCH resources by DCI.
추가적으로, SR only 전송인 경우 단말은 Positive SR 또는 Negative SR인지 여부에 따라 다음과 같이 동작할 수 있다. 구체적으로, 상기 단말은 Positive SR only이면 특정 단일 시퀀스를 전송하고, Negative SR only이면 해당 시퀀스를 전송하지 않을 수 있다 (즉, 특정 시퀀스 기반 On/Off keying). 또한, N bits HARQ-ACK only 전송인 경우 단말은 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 선택하여 전송할 수 있다 (즉, 시퀀스 선택 기반 PUCCH). 이때, SR에 대한 전송과 HARQ-ACK에 대한 전송이 동일 시간 자원에 발생하는 경우, 단말은 다음과 같이 동작할 수 있다.Additionally, in case of SR only transmission, the UE may operate as follows according to whether it is a positive SR or a negative SR. Specifically, the UE may transmit a specific single sequence if Positive SR only, and may not transmit the corresponding sequence if Negative SR only (that is, specific sequence based on / off keying). In addition, in case of N bits HARQ-ACK only transmission, the UE may select and transmit a specific sequence (corresponding to HARQ-ACK state) among 2 N sequences (ie, sequence selection based PUCCH). In this case, when the transmission for the SR and the transmission for the HARQ-ACK occurs in the same time resource, the terminal may operate as follows.
A. Positive SR인 경우, SR only 전송에 대응하는 동작 수행A. In case of Positive SR, perform action corresponding to SR only transmission
- 즉, SR 전송 목적으로 할당된 특정 단일 시퀀스만 전송That is, only a specific single sequence allocated for the purpose of SR transmission is transmitted.
- 단, 상기 경우 기지국은 HARQ-ACK에 대해 DTX 또는 All NACK으로 간주할 수 있다.In this case, however, the base station may regard the HARQ-ACK as DTX or All NACK.
B. Negative SR인 경우, HARQ-ACK only 전송에 대응하는 동작 수행B. In case of Negative SR, perform operation corresponding to transmission of HARQ-ACK only
- 즉, HARQ-ACK 전송 목적으로 할당된 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 전송That is, a specific sequence (corresponding to HARQ-ACK state) is transmitted among 2 N sequences allocated for HARQ-ACK transmission purposes.
다만, 만약 SR에 대한 전송과 HARQ-ACK에 대한 전송이 동일 시간 자원에 발생하고, 단말이 Power limited case가 아니어서 2개 시퀀스를 동시 전송할 수 있는 경우, 상기 단말은 다음과 같이 동작할 수 있다.However, if the transmission for the SR and the transmission for the HARQ-ACK occurs in the same time resource, and the terminal is not a power limited case can transmit two sequences at the same time, the terminal may operate as follows. .
C. Positive SR인 경우, SR only 전송에 대응하는 동작 수행C. In case of Positive SR, perform operation corresponding to SR only transmission
- SR 전송 목적으로 할당된 특정 단일 시퀀스 전송-Transmission of a specific single sequence allocated for the purpose of SR transmission
- 추가로, HARQ-ACK 전송 목적으로 할당된 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 전송In addition, transmit a specific sequence (corresponding to the HARQ-ACK state) of 2 N sequences allocated for HARQ-ACK transmission purposes.
D. Negative SR인 경우, HARQ-ACK only 전송에 대응하는 동작 수행D. In case of negative SR, perform operation corresponding to transmission of HARQ-ACK only
- 즉, HARQ-ACK 전송 목적으로 할당된 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 전송That is, a specific sequence (corresponding to HARQ-ACK state) is transmitted among 2 N sequences allocated for HARQ-ACK transmission purposes.
상기 제7 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The seventh SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.8. 제8 SR 전송 방법3.8. Eighth SR Transmission Method
이하 설명에 있어, SR (scheduling request)은 단말이 기지국에게 UL 전송 자원 요청 (또는 UL 전송 데이터)에 대한 유무를 전달하는 물리 계층 신호를 의미하며, Positive SR은 UL 전송 자원 요청 (또는 UL 전송 데이터)이 있음을 의미하고, Negative SR은 UL 전송 자원 요청 (또는 UL 전송 데이터)이 없음을 의미한다고 가정한다.In the following description, a scheduling request (SR) refers to a physical layer signal through which a UE transmits a presence or absence of a UL transmission resource request (or UL transmission data) to a base station, and a positive SR refers to a UL transmission resource request (or UL transmission data). Negative SR is assumed to mean that there is no UL transmission resource request (or UL transmission data).
이때, 서비스 타입 A에 대한 SR을 전송하는 (short) PUCCH 자원과 서비스 타입 B (≠ 서비스 타입 A)에 대한 데이터를 전송하는 PUSCH 자원이 시간 축에서 중첩되는 경우, 단말은 아래 중 하나 이상의 방식을 적용할 수 있다.In this case, when a (short) PUCCH resource for transmitting an SR for a service type A and a PUSCH resource for transmitting data for a service type B (≠ service type A) overlap each other on a time axis, the terminal may perform one or more of the following schemes. Applicable
(1) PUSCH로 할당 받은 (시간 및 주파수) 자원 내 SR 정보 (예: Positive SR 또는 Negative SR 여부)를 UCI 피기백 형태로 전송함(1) Sends SR information (eg, positive SR or negative SR) in resources (time and frequency) allocated by PUSCH in the form of UCI piggyback
- 여기서, SR에 대한 UCI 피기백 수행 시, 단말은 PUSCH 내 일부 UL 데이터에 대한 펑쳐링 (또는 레이트-매칭)을 적용한 뒤 (1 bit) SR에 대한 (encoded) UCI bits를 (기지국과 단말 간 약속된 RE mapping pattern에 따라) PUSCH 내 특정 RE들로 전송할 수 있다.In this case, when performing UCI piggyback on the SR, the UE applies puncturing (or rate-matching) on some UL data in the PUSCH, and then (1 bit) transmits (encoded) UCI bits for the SR (between the base station and the UE). In accordance with the promised RE mapping pattern), it may transmit to specific REs in the PUSCH.
(2) PUCCH 자원에 PUSCH 내 심볼들에 대해 Puncturing을 수행하고, 상기 심볼들 상에서 SR 정보 (예: Positive SR 또는 Negative SR 여부)를 PUCCH로 전송(2) Puncturing the symbols in the PUSCH to the PUCCH resource and transmitting SR information (eg, Positive SR or Negative SR) to the PUCCH on the symbols
- 여기서, SR 정보를 전송하는 PUCCH 자원은 특정 시퀀스에 대한 On/Off keying 형태일 수 있다.Here, the PUCCH resource for transmitting the SR information may be in the form of on / off keying for a specific sequence.
(3) PUSCH DM-RS 시퀀스를 스위칭하여 SR 정보 (예: Positive SR 또는 Negative SR 여부)를 전송하는 방안(3) Method of Transmitting SR Information (eg, Positive SR or Negative SR) by Switching PUSCH DM-RS Sequence
- 여기서, SR 정보에 따라 시퀀스가 스위칭되는 PUSCH DM-RS는 SR 전송 목적으로 할당된 PUCCH 자원과 가장 인접한 PUSCH DM-RS (또는 SR 전송 목적으로 할당된 PUCCH 자원 이후의 가장 빠른 PUSCH DM-RS)일 수 있다.Here, the PUSCH DM-RS whose sequence is switched according to the SR information is the PUSCH DM-RS nearest to the PUCCH resource allocated for the SR transmission purpose (or the fastest PUSCH DM-RS after the PUCCH resource allocated for the SR transmission purpose). Can be.
- 또한, PUSCH DM-RS 시퀀스를 스위칭한다고 함은 DM-RS에 대한 스크램블링 또는 순환 시프트 (Cyclic shift) 값을 Switching하는 것을 의미할 수 있다.In addition, switching the PUSCH DM-RS sequence may mean switching a scrambling or cyclic shift value for the DM-RS.
(4) PUSCH 전송을 생략하고 (즉, PUSCH drop), SR 전송을 위한 (short) PUCCH 자원만 전송(4) Omit PUSCH transmission (ie, PUSCH drop) and transmit only (short) PUCCH resources for SR transmission
상기 구성에 있어, 상기 (short) PUCCH 자원은 1개 또는 2개 OFDM 심볼들에 대응되는 전송 구간을 가질 수 있다.In the above configuration, the (short) PUCCH resource may have a transmission interval corresponding to one or two OFDM symbols.
또한, 상기 구성은 SR을 전송하는 (short) PUCCH 자원과 (SR 이외의) UCI (예: HARQ-ACK 또는 CSI)를 전송하는 DM-RS 기반 (long) PUCCH 자원 간에도 동일하게 적용될 수 있다. 다시 말해서, 상기 구성에 있어 ‘PUSCH’는 ‘DM-RS 기반 (long) PUCCH’로, ‘PUSCH DM-RS’는 ‘PUCCH DM-RS’로 치환될 수 있다.In addition, the configuration may be equally applied between a (short) PUCCH resource for transmitting an SR and a DM-RS based (long) PUCCH resource for transmitting a UCI (eg, HARQ-ACK or CSI). In other words, in the above configuration, 'PUSCH' may be replaced with 'DM-RS based (long) PUCCH' and 'PUSCH DM-RS' may be replaced with 'PUCCH DM-RS'.
또한, 상기 SR을 전송하는 (short) PUCCH와 UL 데이터를 전송하는 (long) PUSCH 간 주파수 자원이 다르고 단말이 FDM된 PUCCH와 PUSCH를 동시 전송할 수 있는 경우, 상기 단말은 상기 (short) PUCCH와 (long) PUSCH를 동시 전송할 수 있다.In addition, when the frequency resource between the (short) PUCCH for transmitting the SR and the (long) PUSCH for transmitting UL data is different, and the UE can transmit the FDM PUCCH and the PUSCH simultaneously, the UE may be connected to the (short) PUCCH and ( long) PUSCH can be transmitted simultaneously.
보다 구체적인 예로, SR이 1개 심볼 내 시퀀스 선택 (Sequence selection) 기반의 PUCCH 자원 (예: SEQ-PUCCH, 복수 시퀀스 중 하나를 선택 및 전송하여 UCI를 표현하는 PUCCH 자원)으로 전송되고, 상기 SR에 대한 전송 주기가 1개 OFDM 심볼로 설정된 경우, 슬롯 내 다른 PUSCH 전송과 SR 전송이 충돌하는 경우가 발생할 수 있다. 이 경우, SR과 PUSCH가 동일 서비스 타입에 대한 전송이라면 단말은 이미 PUSCH를 전송하고 있는 상태이므로 물리 계층 (또는 PHY layer)에서 별도로 SR을 전송하지 않고 PUSCH를 통해 MAC 계층 (또는 MAC layer) 또는 상위 계층 정보로 BSR (buffer state report) 또는 UL 스케줄링 요청을 전송할 수 있다. More specifically, the SR is transmitted as a PUCCH resource based on a sequence selection in one symbol (eg, SEQ-PUCCH, a PUCCH resource representing UCI by selecting and transmitting one of a plurality of sequences) and transmitting to the SR. When the transmission period is set to one OFDM symbol, a case may occur in which a SR transmission collides with another PUSCH transmission in a slot. In this case, if the SR and the PUSCH are transmissions for the same service type, the UE is already transmitting the PUSCH, and thus the MAC layer (or MAC layer) or higher layer is transmitted through the PUSCH without transmitting the SR separately in the physical layer (or PHY layer). A buffer state report (BSR) or UL scheduling request may be transmitted as layer information.
반면, SR과 PUSCH가 서로 다른 서비스 타입인 경우, 서비스 타입 별로 요구되는 전송 신뢰성에 대한 요구치 (Requirement)가 다를 수 있다. 이에, SR과 PUSCH는 각각 물리 계층 신호로 전송되는 것이 바람직할 수 있다. On the other hand, when the SR and the PUSCH are different service types, a requirement for transmission reliability required for each service type may be different. Accordingly, it may be preferable that the SR and the PUSCH are transmitted as physical layer signals, respectively.
따라서 본 발명에서는 서비스 타입이 서로 다른 SR과 PUSCH가 전송될 때, PUSCH 내 일부 RE 또는 일부 심볼들에 대해 펑쳐링 (또는 Rate-matching)을 수행한 뒤 해당 자원으로 SR 정보를 담은 UCI RE들 또는 PUCCH 자원을 전송하는 방법 또는 PUSCH DM-RS의 시퀀스를 SR 정보에 따라 변경함으로써 PUSCH DM-RS에 SR 정보를 실어 보내는 방법을 제안한다.Therefore, in the present invention, when the SR and the PUSCH having different service types are transmitted, after performing puncturing (or rate-matching) on some REs or some symbols in the PUSCH, UCI REs containing SR information as corresponding resources or A method of transmitting a PUCCH resource or a method of transmitting SR information to a PUSCH DM-RS by changing a sequence of a PUSCH DM-RS according to SR information is proposed.
상기 제8 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The eighth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.9. 제9 SR 전송 방법3.9. 9th SR Transmission Method
SR 전송을 위한 (short) PUCCH 자원과 특정 UCI (예: HARQ-ACK 또는 CSI) 전송을 위한 (Sequence modulation 기반의) (long) PUCCH 자원이 시간 축에서 중첩되는 경우, 단말은 아래 중 하나 이상의 방식을 적용할 수 있다.When (short) PUCCH resources for SR transmission and (long) PUCCH resources (based on Sequence Modulation) for transmission of a specific UCI (eg, HARQ-ACK or CSI) overlap in the time axis, the UE may perform one or more of the following schemes. Can be applied.
(1) (Sequence modulation 기반) (long) PUCCH 자원 내 특정 심볼(들)에서 전송되는 시퀀스(들)을 스위칭하여 SR 정보 (에; Positive SR 또는 Negative SR 여부)를 전송(1) (sequence modulation based) (long) Transmit SR information (either; Positive SR or Negative SR) by switching sequence (s) transmitted in specific symbol (s) in PUCCH resource
- 여기서, 상기 (long) PUCCH 자원 내 특정 심볼(들)은 SR 전송을 위한 (shot) PUCCH 자원의 (시간 축) 전송 자원에 대응되는 심볼들일 수 있다.Here, specific symbol (s) in the (long) PUCCH resource may be symbols corresponding to (time axis) transmission resource of (shot) PUCCH resource for SR transmission.
- 또한, 상기 (long) PUCCH 자원 내 특정 심볼(들) 내 시퀀스(들)을 스위칭하는 경우, 해당 시퀀스에 대한 스크램블링 또는 순환 시프트 (Cyclic shift) 값을 스위칭하는 것일 수 있다.In addition, when switching the sequence (s) in a specific symbol (s) in the (long) PUCCH resource, it may be to switch the scrambling or cyclic shift (Cyclic shift) value for the sequence.
(2) (Sequence modulation 기반) (long) PUCCH 전송을 생략하고 (즉, PUCCH drop), SR 전송을 위한 (short) PUCCH 자원만 전송(2) (Sequence modulation based) (long) PUCCH transmission is omitted (i.e. PUCCH drop), only (short) PUCCH resources for SR transmission
- 여기서, 상기 (short) PUCCH 자원은 1개 또는 2개 OFDM 심볼들에 대응되는 전송 구간을 가질 수 있다.Here, the (short) PUCCH resource may have a transmission period corresponding to one or two OFDM symbols.
- 또한, 상기 Sequence modulation 기반의 (long) PUCCH 자원은 복수 심볼 (예: 4개 이상)에서 각 심볼 별로 UCI에 대한 변조된 심볼 (Modulated symbol)과 시퀀스가 곱해진 형태로 전송되는 PUCCH 자원을 의미한다.In addition, the sequence modulation-based (long) PUCCH resource means a PUCCH resource transmitted in a form in which a modulated symbol for a UCI and a sequence are multiplied for each symbol in a plurality of symbols (for example, four or more). do.
- 또한, 상기 SR을 전송하는 (short) PUCCH와 특정 UCI를 전송하는 (long) PUCCH 간 주파수 자원이 다르고, 단말이 FDM된 (short) PUCCH와 (long) PUCCH를 동시 전송할 수 있는 경우, 상기 단말은 상기 (short) PUCCH와 (long) PUCCH를 동시 전송할 수 있다.In addition, if the frequency resource between the (short) PUCCH for transmitting the SR and the (long) PUCCH for transmitting a specific UCI is different, and the UE can transmit the FDM (short) PUCCH and (long) PUCCH at the same time, the UE May simultaneously transmit the (short) PUCCH and the (long) PUCCH.
보다 구체적으로, 단말은 일정 개수 이상의 복수 심볼들에 대해 심볼 별로 특정 시퀀스와 UCI에 대한 변조된 심볼 (예: BPSK (Binary Phase Shift Keying) 또는 QPSK (Quadrature Phase Shift Keying)에 대한 변조 심볼)이 곱해진 신호를 전송하는 시퀀스 변조 (Sequence modulation) 기반 (long) PUCCH를 지원할 수 있다. More specifically, the UE multiplies a predetermined sequence and a modulated symbol for a UCI (eg, a modulation symbol for a binary phase shift keying (BPSK) or a quadrature phase shift keying (QPSK)) for each symbol for a plurality of symbols or more. It is possible to support a sequence modulation (long) PUCCH for transmitting the softened signal.
한편, SR이 1개 심볼 내 Sequence selection 기반의 PUCCH 자원 (예: SEQ-PUCCH, 복수 시퀀스 중 하나를 선택 및 전송하여 UCI를 표현하는 PUCCH 자원)으로 전송되고, 상기 SR에 대한 전송 주기가 1개 OFDM 심볼로 설정된 경우, 상기 SR을 전송하는 PUCCH 자원은 상기 (SR 이외의) UCI를 전송하는 Sequence modulation 기반 (long) PUCCH 내 특정 전송 심볼(들)에서 중첩될 수 있다. 이때, 단말은 상기 특정 전송 심볼(들)에 대응되는 Sequence modulation 기반 (long) PUCCH의 시퀀스(들)을 스위칭하여 해당 심볼(들)에서 SR 정보가 전달되었음을 표현할 수 있다. Meanwhile, the SR is transmitted as a PUCCH resource based on a sequence selection in one symbol (for example, SEQ-PUCCH, a PUCCH resource representing UCI by selecting and transmitting one of a plurality of sequences) and transmitting a single transmission period for the SR. When configured as an OFDM symbol, the PUCCH resources for transmitting the SR may overlap in specific transmission symbol (s) in a sequence modulation based (long) PUCCH for transmitting the UCI (other than SR). In this case, the UE may express that SR information is transmitted in the symbol (s) by switching the sequence (s) of the sequence modulation based (long) PUCCH corresponding to the specific transmission symbol (s).
특히 시퀀스가 Low PAPR을 충족하는 경우, 단말이 SR과 (long) PUCCH를 동시 전송하지 않음으로써 Low PAPR 특성을 유지한 채 이미 Sequence modulation 기반 (long) PUCCH 자원으로 할당된 주파수 자원 내에서 SR 정보를 더 보낼 수 있는 장점이 있다. In particular, if the sequence satisfies Low PAPR, the UE does not transmit SR and (long) PUCCH at the same time so that the SR information is allocated within a frequency resource that is already allocated as a sequence modulation based (long) PUCCH resource while maintaining the Low PAPR characteristic. There is an advantage to send more.
보다 구체적으로 기지국은 상기 동작을 위해 Sequence modulation 기반 (long) PUCCH에 대해 2개 이상의 Cyclic shift offset 값 (예: CS offset 0, CS offset 1)을 설정해 주고, Sequence modulation 기반 (long) PUCCH 내 특정 심볼에서 SR 전송 여부를 지시함으로써 단말이 상이한 CS offset 을 적용하도록 할 수 있다. 일 예로, 기지국이 Sequence modulation 기반 (long) PUCCH 내 특정 심볼에서 SR 전송을 지시한 경우, 단말은 해당 심볼 내 시퀀스에 대해 CS offset 1을 적용하고, 상기 기지국이 Sequence modulation 기반 (long) PUCCH 내 특정 심볼에서 SR 전송을 지시하지 않은 경우, 상기 단말은 해당 심볼 내 시퀀스에 대해 CS offset 0을 적용할 수 있다.More specifically, the base station sets two or more cyclic shift offset values (eg, CS offset 0, CS offset 1) for the sequence modulation based (long) PUCCH for the operation, and the specific symbols in the sequence modulation based (long) PUCCH By indicating whether to transmit the SR in the UE can be applied to different CS offset. For example, when the base station instructs SR transmission in a specific symbol in the sequence modulation based (long) PUCCH, the terminal applies CS offset 1 to the sequence in the symbol, the base station is specified in the sequence modulation based (long) PUCCH If the symbol does not indicate SR transmission, the terminal may apply CS offset 0 to the sequence in the symbol.
상기 제9 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The ninth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.10. 제10 SR 전송 방법3.10. Tenth SR Transmission Method
2개 (OFDM) 심볼에 대해 각 심볼 별로 N개 HARQ-ACK 상태가 N개 시퀀스에 일대일 대응되고 단말은 HARQ-ACK 상태에 대응되는 시퀀스를 선택하여 전송한다고 가정한다. 이때, 첫 번째 심볼 그리고/또는 두 번째 심볼 내 N개 HARQ-ACK state과 시퀀스 간 일대일 대응 방식을 바꿈으로써 하기와 같이 SR 정보가 표현될 수 있다.It is assumed that N HARQ-ACK states correspond to N sequences one to one for each symbol for two (OFDM) symbols, and the UE selects and transmits a sequence corresponding to the HARQ-ACK state. In this case, SR information may be expressed as follows by changing a one-to-one correspondence between N HARQ-ACK states and a sequence in the first symbol and / or the second symbol.
일 예로, 1 bit HARQ-ACK이 2개 (OFDM) 심볼에 대해 시퀀스 선택 방식으로 전송되는 경우, 하기 표와 같이 각 심볼 별로 2개 HARQ-ACK 상태(ACK, NACK)에 대한 2개 시퀀스가 일대일 대응될 수 있다. 이때, 아래 Seq. 1, Seq. 2, Seq. 3. Seq. 4는 모두 서로 다르거나 또는 일부는 동일한 시퀀스일 수 있다.For example, when a 1 bit HARQ-ACK is transmitted in a sequence selection scheme for two (OFDM) symbols, two sequences for two HARQ-ACK states (ACK and NACK) are one-to-one for each symbol as shown in the following table. Can correspond. At this time, Seq. 1, Seq. 2, Seq. 3. Seq. Four may be all different or some may be the same sequence.
Figure PCTKR2018005149-appb-T000018
Figure PCTKR2018005149-appb-T000018
특히, 본 발명에 따라 단말이 SR + 1 bit HARQ-ACK 정보를 나타내고자 하는 경우, 단말은 첫 번째 그리고/또는 두 번째 심볼에서 HARQ-ACK 상태와 시퀀스 간 일대일 대응 방식을 바꿈으로써 SR 정보를 표현할 수 있다. 하기 표는 이에 대한 예시를 나타낸다. 이때, p-SR과 n-SR은 각각 positive SR과 negative SR을 의미한다.In particular, when the UE wants to indicate SR + 1 bit HARQ-ACK information, the UE may express SR information by changing a HARQ-ACK state and a one-to-one correspondence between sequences in the first and / or second symbols. Can be. The table below shows an example for this. In this case, p-SR and n-SR mean positive SR and negative SR, respectively.
Figure PCTKR2018005149-appb-T000019
Figure PCTKR2018005149-appb-T000019
Figure PCTKR2018005149-appb-T000020
Figure PCTKR2018005149-appb-T000020
다른 예로, 본 발명에 따라 단말이 2 bit HARQ-ACK을 2개 (OFDM) 심볼에 대해 시퀀스 선택 방식으로 전송할 경우, 상기 단말은 하기 표와 같이 각 심볼 별로 4개 HARQ-ACK State (ACK/ACK, ACK/NACK, NACK/ACK, NACK/NACK)에 대한 4개 시퀀스를 일대일 대응 시킬 수 있다. 이때, 아래 Seq. 1, Seq. 2, …. Seq. 8는 모두 서로 다르거나 또는 일부는 동일한 시퀀스일 수 있다.As another example, when the terminal transmits a 2-bit HARQ-ACK in a sequence selection scheme for two (OFDM) symbols according to the present invention, the terminal is four HARQ-ACK State (ACK / ACK) for each symbol as shown in the following table , 4 sequences for ACK / NACK, NACK / ACK, and NACK / NACK can be corresponded one-to-one. At this time, Seq. 1, Seq. 2, … . Seq. 8 may be all different or some may be the same sequence.
Figure PCTKR2018005149-appb-T000021
Figure PCTKR2018005149-appb-T000021
또한, 본 발명에 따라 단말이 SR + 2 bit HARQ-ACK 정보를 나타내고자 하는 경우, 상기 단말은 첫 번째 그리고/또는 두 번째 심볼에서 HARQ-ACK 상태와 시퀀스 간 일대일 대응 방식을 바꿈으로써 SR 정보를 표현할 수 있다. 하기 표는 이에 대한 예시를 나타낸다. 이때, p-SR과 n-SR은 각각 positive SR과 negative SR을 의미한다.In addition, according to the present invention, if the UE wants to indicate SR + 2 bit HARQ-ACK information, the UE changes SR information by changing a HARQ-ACK state and a one-to-one correspondence between sequences in the first and / or second symbols. I can express it. The table below shows an example for this. In this case, p-SR and n-SR mean positive SR and negative SR, respectively.
Figure PCTKR2018005149-appb-T000022
Figure PCTKR2018005149-appb-T000022
Figure PCTKR2018005149-appb-T000023
Figure PCTKR2018005149-appb-T000023
상기 구성들을 보다 일반적으로 설명하면, N개 HARQ-ACK 상태를 표현하기 위해 첫 번째 심볼과 두 번째 심볼에서 전송되는 시퀀스 쌍 N개가 (Seq. X1, Seq. Y1), (Seq. X2, Seq. Y2), … , (Seq. XN, Seq. YN)와 같이 설정된 경우, 단말은 시퀀스 집합 {Seq. X1, Seq. X2, …, Seq. XN}과 시퀀스 집합 {Seq. Y1, Seq. Y2, …, Seq. YN} 간 가능한 N2개의 시퀀스 쌍 중 N개 시퀀스 쌍을 이용하여 HARQ-ACK + positive SR을 표현하고 다른 N개 시퀀스 쌍을 이용하여 HARQ-ACK + negative SR을 표현할 수 있다.In more general description of the above configurations, N sequence pairs transmitted in the first symbol and the second symbol are represented by (Seq. X 1 , Seq. Y 1 ), (Seq. X 2 ) to represent N HARQ-ACK states. , Seq. Y 2 ),. , (Seq. X N , Seq. Y N ), the terminal is a sequence set {Seq. X 1 , Seq. X 2 ,.. , Seq. X N } and the sequence set {Seq. Y 1 , Seq. Y 2 ,.. , Seq. Y N } HARN-ACK + positive SR may be expressed using N sequence pairs among N 2 sequence pairs possible, and HARQ-ACK + negative SR may be expressed using other N sequence pairs.
상기 제10 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The tenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.11 제11 SR 전송 방법3.11 Eleventh SR Transmission Method
단말이 SR과 2 bits HARQ-ACK에 대한 UCI state를 복수 개의 시퀀스 중 하나를 선택하여 전송하는 방식으로 표현할 때, 기지국은 상기 SR과 2 bits HARQ-ACK에 대한 UCI state들 중 일부를 하나의 상태로 번들링할지 여부에 대해 단말에게 설정할 수 있다.When the UE expresses the UCI state for the SR and the 2 bits HARQ-ACK in a manner of selecting and transmitting one of a plurality of sequences, the base station expresses some of the UCI states for the SR and the 2 bits HARQ-ACK as one state. Whether or not to bundle may be set to the terminal.
여기서, 기지국은 (RRC signaling 등의) 상위 계층 신호 그리고/또는 DCI (downlink control information)를 통해 상기 번들링 여부를 설정할 수 있다.Here, the base station may set whether to bundle the same through higher layer signals (such as RRC signaling) and / or downlink control information (DCI).
또한, 상기 번들링 지시 여부에 따라 단말이 SR과 2 bits HARQ-ACK을 표현하기 위해 가정하는 시퀀스 수는 달라질 수 있다.In addition, the number of sequences assumed by the UE to express the SR and the 2 bits HARQ-ACK may vary according to the bundling instruction.
보다 구체적으로, 단말이 SR과 2 bits HARQ-ACK에 대한 UCI state를 별도의 번들링 과정 없이 시퀀스 선택 방식으로 표현하는 경우, 상기 단말은 하기 표와 같이 전체 8개 UCI state에 따른 8개 시퀀스를 필요로 할 수 있다.More specifically, when the terminal expresses the UCI state for the SR and 2 bits HARQ-ACK in a sequence selection method without a separate bundling process, the terminal needs eight sequences according to the eight UCI states as shown in the following table You can do
Figure PCTKR2018005149-appb-T000024
Figure PCTKR2018005149-appb-T000024
다만, 상기 표와 같이 단말이 8개 시퀀스를 사용할 경우, 필요한 시퀀스 자원이 지나치게 많을 수 있다. 이에, 단말이 일부 상태들을 번들링하여 하나의 시퀀스로 표현하는 방식이 고려될 수 있다.However, when the terminal uses eight sequences as shown in the above table, the required sequence resources may be too large. Accordingly, a method of bundling some states and expressing them in one sequence may be considered.
일 예로, 2 bits HARQ-ACK에 대한 공간 번들링 (Spatial bundling) 관점에서 단말은 동일한 HARQ-ACK 정보를 갖는 상태들을 번들링하여 하기 표와 같이 하나의 시퀀스로 표현할 수 있다.For example, in view of spatial bundling for 2 bits HARQ-ACK, the UE may bundle states having the same HARQ-ACK information and express them in one sequence as shown in the following table.
Figure PCTKR2018005149-appb-T000025
Figure PCTKR2018005149-appb-T000025
이때, 단말이 항상 표 24와 같이 동작하게 되면 자원 낭비가 심할 수 있고, 상기 단말이 항상 표 25와 같이 동작하게 되면 HARQ-ACK 정보에 대한 해상도 (Resolution)가 떨어질 수 있다. 이에, 기지국이 PUCCH 자원 상태에 따라 앞서 상술한 두 가지 모드 중 하나의 모드를 준-정적으로 설정하거나 또는 동적으로 설정해줄 수 있다.In this case, if the UE always operates as shown in Table 24, resource waste may be severe, and if the UE always operates as shown in Table 25, resolution for HARQ-ACK information may be reduced. Accordingly, the base station may semi-statically or dynamically set one of the above two modes according to the PUCCH resource state.
일 예로, 기지국은 RRC signaling 그리고/또는 DCI를 통해 단말에게 SR과 2 bits HARQ-ACK에 대한 UCI 상태들 중 일부를 하나의 상태로 번들링할지 여부를 설정해 줄 수 있다.For example, the base station may configure whether to bundle some of the UCI states for the SR and the 2-bit HARQ-ACK to one terminal through RRC signaling and / or DCI.
상기 제11 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The eleventh SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.12. 제12 SR 전송 방법3.12. 12th SR Transmission Method
기지국은 상위 계층 신호를 통해 단말에게 (HARQ-ACK 전송을 위한) PUCCH 자원 집합을 설정하고, DCI 그리고/또는 Implicit mapping 방식에 따라 상기 집합 내에서 적용할 PUCCH 자원을 지시할 수 있다. 이때, 상기 기지국은 상기 (HARQ-ACK 전송을 위한) PUCCH 자원 집합은 SR이 전송되는 (mini-) Slot과 SR이 전송되지 않는 (mini-) Slot에 대해 독립적으로 설정할 수 있다.The base station may set a PUCCH resource set (for HARQ-ACK transmission) to the terminal through a higher layer signal, and indicate a PUCCH resource to be applied in the set according to DCI and / or implicit mapping scheme. In this case, the base station may set the PUCCH resource set (for HARQ-ACK transmission) independently for a (mini-) slot to which the SR is transmitted and a (mini-) slot to which the SR is not transmitted.
구체적인 일 예로, SR이 전송되도록 설정된 Slot에서는 HARQ-ACK 전송을 위한 PUCCH 자원과 SR 전송을 위한 PUCCH 자원이 공존하기 때문에 기지국이 HARQ-ACK 전송을 위한 PUCCH 자원 집합을 설정함에 있어 제약을 받을 수 있다. As a specific example, in a slot configured for transmission of an SR, since a PUCCH resource for HARQ-ACK transmission and a PUCCH resource for SR transmission coexist, the base station may be restricted in setting a PUCCH resource set for HARQ-ACK transmission. .
반면, SR이 전송되지 않는 Slot에서는 HARQ-ACK 전송을 위한 PUCCH 자원의 후보 군이 보다 많을 수 있고, 이에 따라 기지국이 PUCCH 자원 집합을 설정함에 있어서 보다 자유로울 수 있다. On the other hand, in the slot where the SR is not transmitted, there may be more candidate groups of PUCCH resources for HARQ-ACK transmission, and thus, the base station may be more free in setting up a PUCCH resource set.
일 예로, 후자의 경우 기지국은 PUCCH 자원 집합이 주파수 축에서 보다 넓은 대역에 분산되도록 설정하여 주파수 다이버시티 (Frequency diversity)를 얻기에 용이하도록 할 수 있다. 따라서 바람직하게 기지국은 SR이 전송되는 (mini-) Slot과 SR이 전송되지 않는 (mini-) Slot에 대해 HARQ-ACK 전송을 위한 PUCCH 자원 집합을 독립적으로 설정해 줄 수 있다.For example, in the latter case, the base station may set the PUCCH resource set to be distributed in a wider band on the frequency axis so as to easily obtain frequency diversity. Therefore, preferably, the base station may independently set a PUCCH resource set for HARQ-ACK transmission for a (mini-) slot in which an SR is transmitted and a (mini-) slot in which an SR is not transmitted.
상기 제12 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The 12th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.13. 제13 SR 전송 방법3.13. The thirteenth SR transmission method
기지국으로부터 SR 전송 (short) PUCCH 자원과 log2(N) bit(s) (단, N=2 또는 4) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 단말은 SR과 HARQ-ACK에 대한 UCI 상태를 표현하기 위해 복수 개의 시퀀스 중 하나를 선택하여 전송할 수 있다. 이때, 기지국은 하기와 같이 상기 SR 전송 (short) PUCCH와 HARQ-ACK 전송 (short) PUCCH 자원을 설정할 수 있다.SR transmission from the base station (short) PUCCH resources and log 2 (N) bit (s) (where N = 2 or 4) HARQ-ACK transmission (short) PUCCH resources (some) signal transmission to have a time axis resource overlapping (partly) In this case, the UE may select and transmit one of a plurality of sequences to express the UCI status for the SR and the HARQ-ACK. At this time, the base station may configure the SR short PUCCH and HARQ-ACK short PUCCH resources as follows.
(1) Opt. 1: SR 전송 (short) PUCCH 자원으로 4개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 N개 시퀀스를 할당하는 방안(1) Opt. 1: Method for allocating four sequences as SR PUCCH resources and allocating N sequences as HARQ-ACK PUCCH resources
(1-1) SR 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 (동일) PRB 내 특정 (Low PAPR/CM (Peak-to-Average Power Ratio / Cubic Metric)) 시퀀스에 대해 (Cyclic shift index 관점에서) 균등한 간격을 갖는 4개의 Cyclic shift 값들 중 하나가 적용된 시퀀스일 수 있다.(1-1) Four sequences in SR transmission (short) PUCCH resources are each (same) Cyclic shift index view for a specific (Low PAPR / CM (Peak-to-Average Power Ratio / Cubic Metric)) sequence In this case, it may be a sequence to which one of four Cyclic shift values having equal intervals is applied.
구체적인 예로, PRB 내 L개의 Cyclic shift가 존재하고 SR 전송 (short) PUCCH 자원에 할당된 초기 순환 시프트 인덱스 (Initial cyclic shift index)가 k일 때, 상기 4개 시퀀스에 대응되는 Cyclic shift 값들은 Cyclic shift index의 관점에서 k, (k+L/4) mod L, (k+2L/4) mod L, (k+3L/4) mod L에 대응되는 Cyclic shift 값들로 설정될 수 있다.As a specific example, when there are L Cyclic shifts in the PRB and an Initial Cyclic Shift Index allocated to SR PUCCH resources is k, Cyclic shift values corresponding to the four sequences are Cyclic shifts. In terms of index, it may be set to cyclic shift values corresponding to k, (k + L / 4) mod L, (k + 2L / 4) mod L, and (k + 3L / 4) mod L.
(1-2) SR 전송 (short) PUCCH 자원 내 상기 4개 중 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용될 수 있다. 이때, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.(1-2) SR transmission (short) One of the four sequences in the PUCCH resource may be used as a resource indicating whether the SR is in an on / off keying scheme in case of SR only transmission. In this case, the sequence resource corresponding to the SR only may be a resource reserved in an SR transmission period.
구체적인 예로, 상기 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응할 수 있다.As a specific example, the sequence may correspond to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
(1-3) HARQ-ACK 전송 (short) PUCCH 자원 내 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응할 수 있다. 이에, 단말은 보고할 HARQ-ACK 상태에 대응되는 시퀀스를 선택하여 전송할 수 있다.(1-3) HARQ-ACK Transmission (short) N sequences in a PUCCH resource may correspond to N HARQ-ACK states in the case of HARQ-ACK only transmission. Accordingly, the terminal may select and transmit a sequence corresponding to the HARQ-ACK state to be reported.
(1-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.(1-4) When signal transmission is instructed to have a time axis resource in which SR transmission (short) PUCCH resources and HARQ-ACK transmission (short) PUCCH resources (partly) overlap from a base station, a sequence corresponding to each UCI state It can be defined as follows. In this case, the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
(1-2-1) N=2인 경우(1-2-1) When N = 2
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.Two sequences in an SR transmission (short) PUCCH resource may correspond to {Positive SR, ACK} and {Positive SR, NACK}, respectively.
- 구체적인 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다.   As a specific example, when an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k, the two sequences have a Cyclic shift value corresponding to k, (k + L / 2) mod L in terms of a cyclic shift index. Can be heard.
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.   In addition, the sequence corresponding to {Positive SR, NACK} may be a sequence corresponding to SR only.
- HARQ-ACK 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.Two sequences in a HARQ-ACK transmission (short) PUCCH resource may correspond to {Negative SR, ACK} and {Negative SR, NACK}, respectively.
(1-2-2) N=4인 경우(1-2-2) When N = 4
- SR 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Positive SR, N/N}에 대응할 수 있다.Four sequences in the SR transmission (short) PUCCH resource are respectively assigned to {Positive SR, A / A}, {Positive SR, A / N}, {Positive SR, N / A}, and {Positive SR, N / N}. It can respond.
- 구체적인 예로, {Positive SR, N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.   -As a specific example, the sequence corresponding to {Positive SR, N / N} may be a sequence corresponding to SR only.
- HARQ-ACK 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.4 sequences in a HARQ-ACK transmission (short) PUCCH resource are respectively {Negative SR, A / A}, {Negative SR, A / N}, {Negative SR, N / A}, {Negative SR, N / N }.
(2) Opt. 2: SR 전송 (short) PUCCH 자원으로 2개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 N개 시퀀스를 할당하는 방안(2) Opt. 2: Method for allocating two sequences as SR PUCCH resources and allocating N sequences as HARQ-ACK PUCCH resources
(2-1) SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 (동일) PRB 내 특정 (Low PAPR/CM) 시퀀스에 대해 (Cyclic shift index 관점에서) 균등한 간격을 갖는 2개의 Cyclic shift 값들 중 하나가 적용된 시퀀스일 수 있다.(2-1) Two sequences in SR transmission (short) PUCCH resource are two Cyclic shift values with equal spacing (in terms of cyclic shift index) for a particular (Low PAPR / CM) sequence in (same) PRB It may be a sequence to which one of the applied.
구체적인 예로, PRB 내 L개의 Cyclic shift가 존재하고 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스에 대응되는 Cyclic shift 값들은 Cyclic shift index의 관점에서 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다.As a specific example, when there are L Cyclic shifts in the PRB and the Initial Cyclic Shift Index allocated to the SR PUCCH resource is k, the Cyclic shift values corresponding to the two sequences are k, in terms of the Cyclic shift index. Cyclic shift values corresponding to (k + L / 2) mod L may be used.
(2-2) SR 전송 (short) PUCCH 자원 내 상기 2개 중 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용되며, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.(2-2) SR transmission (short) One of the two sequences in the PUCCH resource is used as a resource for indicating whether the SR in the On / Off keying method in the case of SR only transmission, the sequence resource corresponding to the SR only May be a resource reserved in an SR transmission period.
구체적인 예로, 상기 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응할 수 있다.As a specific example, the sequence may correspond to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
(2-3) HARQ-ACK 전송 (short) PUCCH 자원 내 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응하고, 단말은 보고할 HARQ-ACK state에 대응되는 시퀀스를 선택하여 전송할 수 있다.(2-3) HARQ-ACK Transmission (short) N sequences in a PUCCH resource correspond to N HARQ-ACK states when HARQ-ACK only transmission, and the UE selects a sequence corresponding to a HARQ-ACK state to be reported. Can be sent.
(2-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.(2-4) When signal transmission is instructed to have a time axis resource in which SR transmission (short) PUCCH resources and HARQ-ACK transmission (short) PUCCH resources overlap (partly) from a base station, a sequence corresponding to each UCI state It can be defined as follows. In this case, the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
(2-4-1) N=2인 경우(2-4-1) When N = 2
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.Two sequences in an SR transmission (short) PUCCH resource may correspond to {Positive SR, ACK} and {Positive SR, NACK}, respectively.
- 구체적인 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다.   As a specific example, when an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k, the two sequences have a Cyclic shift value corresponding to k, (k + L / 2) mod L in terms of a cyclic shift index. Can be heard.
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.   In addition, the sequence corresponding to {Positive SR, NACK} may be a sequence corresponding to SR only.
- HARQ-ACK 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.Two sequences in a HARQ-ACK transmission (short) PUCCH resource may correspond to {Negative SR, ACK} and {Negative SR, NACK}, respectively.
(2-4-2) N=4인 경우(2-4-2) When N = 4
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N or N/A or N/N}에 대응할 수 있다.Two sequences in an SR transmission (short) PUCCH resource may correspond to {Positive SR, A / A}, {Positive SR, A / N or N / A or N / N}, respectively.
- 구체적인 예로, 상기 2개 시퀀스 중 하나의 시퀀스는 Positive SR이고 2 bits HARQ-ACK에 대한 (Logical AND 연산 기반) ACK/NACK bundling 결과가 NACK인 경우에 대응할 수 있다. 또한, {Positive SR, A/N or N/A or N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.   As a specific example, one of the two sequences may correspond to a case in which a positive SR and an ACK / NACK bundling result (based on a logical AND operation) for 2 bits HARQ-ACK are NACK. In addition, the sequence corresponding to {Positive SR, A / N or N / A or N / N} may be a sequence corresponding to SR only.
- HARQ-ACK 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.4 sequences in a HARQ-ACK transmission (short) PUCCH resource are respectively {Negative SR, A / A}, {Negative SR, A / N}, {Negative SR, N / A}, {Negative SR, N / N }.
(3) Opt. 3: SR 전송 (short) PUCCH 자원으로 1개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 (2N-1)개 시퀀스를 할당하는 방안(3) Opt. 3: A method of allocating one sequence to SR transmission (short) PUCCH resources and allocating (2N-1) sequences to HARQ-ACK transmission (short) PUCCH resources
(3-1) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응되는 Cyclic shift 값일 수 있다.(3-1) One sequence in an SR transmission (short) PUCCH resource may be a cyclic shift value corresponding to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
(3-2) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용되며, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.(3-2) SR transmission (short) One sequence in a PUCCH resource is used as a resource for indicating whether the SR is SR by On / Off keying method in case of SR only transmission, and a sequence resource corresponding to the SR only is an SR transmission period. The resource may be reserved at.
(3-3) HARQ-ACK 전송 (short) PUCCH 자원 내 상기 (2N-1)개 시퀀스 중 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응하고, 단말은 실제 보고할 HARQ-ACK 상태에 대응하는 시퀀스를 선택하여 전송할 수 있다.(3-3) HARQ-ACK Transmission (short) N sequences of the (2N-1) sequences in the PUCCH resource correspond to N HARQ-ACK states when HARQ-ACK only transmission, and the UE actually reports A sequence corresponding to the HARQ-ACK state may be selected and transmitted.
(3-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.(3-4) When signal transmission is instructed to have a time axis resource where (short) the SR transmission (short) PUCCH resource and the HARQ-ACK transmission (short) PUCCH resource overlap (partly) from the base station, the sequence corresponding to each UCI state It can be defined as follows. In this case, the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
(3-4-1) N=2인 경우(3-4-1) When N = 2
- SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 {Positive SR, NACK}에 대응할 수 있다.One sequence in an SR transmission (short) PUCCH resource may correspond to {Positive SR, NACK}.
- HARQ-ACK 전송 (short) PUCCH 자원 내 3개 시퀀스는 각각 {Positive SR, ACK}, {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.Three sequences in the HARQ-ACK transmission (short) PUCCH resource may correspond to {Positive SR, ACK}, {Negative SR, ACK}, and {Negative SR, NACK}, respectively.
(3-4-2) N=4인 경우(3-4-2) When N = 4
- SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 {Positive SR, N/N}에 대응할 수 있다.One sequence in the SR short PUCCH resource may correspond to {Positive SR, N / N}.
- HARQ-ACK 전송 (short) PUCCH 자원 내 7개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.The seven sequences in the HARQ-ACK transmission (short) PUCCH resource are {Positive SR, A / A}, {Positive SR, A / N}, {Positive SR, N / A}, {Negative SR, A / A, respectively. }, {Negative SR, A / N}, {Negative SR, N / A}, and {Negative SR, N / N}.
(4) Opt. 4: SR 전송 (short) PUCCH 자원으로 1개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 2N개 시퀀스를 할당하는 방안(4) Opt. 4: Method of allocating one sequence to SR transmission (short) PUCCH resources and allocating 2N sequences to HARQ-ACK transmission (short) PUCCH resources
(4-1) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응되는 Cyclic shift 값일 수 있다.(4-1) One sequence in an SR transmission (short) PUCCH resource may be a cyclic shift value corresponding to an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource.
(4-2) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용되며, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.(4-2) SR transmission (short) One sequence in a PUCCH resource is used as a resource for indicating whether the SR is in an on / off keying method in case of SR only transmission, and a sequence resource corresponding to the SR only is an SR transmission period. The resource may be reserved at.
(4-3) HARQ-ACK 전송 (short) PUCCH 자원 내 상기 2N개 시퀀스 중 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응하고, 단말은 실제 보고할 HARQ-ACK 상태에 대응되는 시퀀스를 전송할 수 있다.(4-3) HARQ-ACK transmission (short) N sequences of the 2N sequences in the PUCCH resource correspond to N HARQ-ACK states when HARQ-ACK only transmission, and the UE actually reports the HARQ-ACK state A sequence corresponding to may be transmitted.
(4-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.(4-4) When signal transmission is instructed to have a time axis resource where (short) the SR transmission (short) PUCCH resource and the HARQ-ACK transmission (short) PUCCH resource overlap (partly) from the base station, the sequence corresponding to each UCI state It can be defined as follows. In this case, the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
(4-4-1) N=2인 경우(4-4-1) When N = 2
- HARQ-ACK 전송 (short) PUCCH 자원 내 특정 2개 시퀀스는 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.Two specific sequences in the HARQ-ACK transmission (short) PUCCH resource may correspond to {Positive SR, ACK} and {Positive SR, NACK}.
- HARQ-ACK 전송 (short) PUCCH 자원 내 상기 2개 시퀀스를 제외한 나머지 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다. 이때, 상기 2개 시퀀스는 HARQ-ACK only를 위한 2개 시퀀스일 수 있다.The remaining two sequences except for the two sequences in the HARQ-ACK transmission (short) PUCCH resource may correspond to {Negative SR, ACK} and {Negative SR, NACK}, respectively. In this case, the two sequences may be two sequences for HARQ-ACK only.
(4-4-2) N=4인 경우(4-4-2) When N = 4
- HARQ-ACK 전송 (short) PUCCH 자원 내 특정 4개 시퀀스는 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Positive SR, N/N}에 대응할 수 있다.4 specific sequences in the HARQ-ACK transmission (short) PUCCH resource are {Positive SR, A / A}, {Positive SR, A / N}, {Positive SR, N / A}, {Positive SR, N / N }.
- HARQ-ACK 전송 (short) PUCCH 자원 내 상기 4개 시퀀스를 제외한 나머지 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다. 이때, 상기 4개 시퀀스는 HARQ-ACK only를 위한 2개 시퀀스일 수 있다.The remaining four sequences except for the four sequences in the HARQ-ACK transmission (short) PUCCH resource are {Negative SR, A / A}, {Negative SR, A / N}, {Negative SR, N / A}, It may correspond to {Negative SR, N / N}. In this case, the four sequences may be two sequences for HARQ-ACK only.
앞서 상술한 설명에서, A/A, A/N, N/A, N/N은 각각 ACK/ACK, ACK/NACK, NACK/ACK, NACK/NACK을 나타낸다.In the foregoing description, A / A, A / N, N / A, and N / N represent ACK / ACK, ACK / NACK, NACK / ACK, and NACK / NACK, respectively.
상술한 구성에 있어, 상기 (short) PUCCH 자원 또는 SR과 HARQ-ACK에 대한 UCI 상태에 대응되는 시퀀스는 1개 또는 2개 OFDM 심볼에 걸쳐 전송될 수 있다. 두 심볼 간 실제 전송되는 시퀀스는 특정 기본 시퀀스 호핑 (base sequence hopping) 또는 순환 시프트 호핑 (cyclic shift hopping)에 따라 달라지더라도 UCI 정보는 반복되어 전송될 수 있다.In the above configuration, the sequence corresponding to the (short) PUCCH resource or the UCI state for the SR and the HARQ-ACK may be transmitted over one or two OFDM symbols. UCI information may be repeatedly transmitted even though the actual transmission sequence between two symbols depends on a specific base sequence hopping or cyclic shift hopping.
또한, SR 전송 (short) PUCCH 자원 내 N개 시퀀스가 할당되고, 상기 시퀀스가 경우에 따라 SR only 또는 Positive SR + 특정 HARQ-ACK 상태가 지시되는 경우, 상기 UCI 상태와 N개 시퀀스 간의 대응 관계는 Slot 그리고/또는 심볼 단위로 (특정 규칙에 따라) 변경될 수 있다.In addition, when N sequences in an SR transmission (short) PUCCH resource are allocated, and the sequence indicates an SR only or Positive SR + specific HARQ-ACK state in some cases, the corresponding relationship between the UCI state and the N sequences may be It can be changed (by specific rules) on a slot and / or symbol basis.
또한, HARQ-ACK 전송 (short) PUCCH 자원이 4개를 넘는 시퀀스 자원을 포함하는 경우, 시퀀스 자원이 존재하는 PRB 자원은 2개 이상 구성될 수 있다. 특히 2N개 시퀀스 자원이 있는 경우, 2개 PRB의 각 PRB 당 N개 시퀀스 자원을 포함하고, 각 PRB 내 N개 시퀀스는 각각 특정 (Low PAPR/CM) 시퀀스에 (Cyclic shift index 관점에서) 균등한 간격을 갖는 N개의 Cyclic shift 값들 중 하나가 적용된 시퀀스일 수 있다.In addition, when HARQ-ACK transmission (short) PUCCH resources include more than four sequence resources, two or more PRB resources with sequence resources may be configured. In particular, if there are 2N sequence resources, it includes N sequence resources for each PRB of two PRBs, and each N sequence in each PRB is equal (in terms of cyclic shift index) to a specific (Low PAPR / CM) sequence. It may be a sequence to which one of the N Cyclic shift values having an interval is applied.
또한, 상기에서 Cyclic shift 값은 Low PAPR 시퀀스의 특정 Cyclic shift 값이 적용된 형태를 의미할 수 있다.In addition, the cyclic shift value may refer to a form in which a specific cyclic shift value of the low PAPR sequence is applied.
보다 구체적으로, 기지국으로부터 SR 전송 (short) PUCCH 자원과 1 또는 2 bit(s) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 단일 반송파 특성 (Single carrier property) (또는 Low PAPR/CM 특성)을 충족하기 위해 단말은 SR과 HARQ-ACK에 대한 (joint) UCI 상태를 복수 시퀀스 중 하나를 선택하여 전송할 수 있다. More specifically, when signal transmission is indicated so that the SR transmission (short) PUCCH resources and 1 or 2 bit (s) HARQ-ACK transmission (short) PUCCH resources have (partly) overlapping time axis resources, a single carrier, In order to satisfy the characteristic (Single carrier property) (or Low PAPR / CM characteristic), the UE may select and transmit one (joint) UCI state of the SR and the HARQ-ACK from a plurality of sequences.
바람직하게, 상기 SR 전송 (short) PUCCH 자원은 적어도 SR only 전송을 위한 시퀀스 자원을 포함할 수 있다. 또한, HARQ-ACK 전송 (short) PUCCH 자원은 SR 요청이 없는 경우에도 유효해야 하는 바, HARQ-ACK 전송 (short) PUCCH 자원은 적어도 Negative SR + 특정 HARQ-ACK 상태에 대한 시퀀스 자원들을 포함할 수 있다. Preferably, the SR PUCCH resource may include at least sequence resources for SR only transmission. In addition, HARQ-ACK transmission (short) PUCCH resources should be valid even if there is no SR request, HARQ-ACK transmission (short) PUCCH resources may include at least the Negative SR + sequence resources for a specific HARQ-ACK state have.
이때, 상기 SR과 HARQ-ACK에 대한 (joint) UCI state들 중 Positive SR + 특정 HARQ-ACK state을 표현할 시퀀스 자원들은 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원 중 어떤 PUCCH 자원 내 포함되도록 설정하는지에 대한 문제가 있을 수 있다. 이를 해결하기 위한 2가지 방법으로써, 첫 번째 방법인 SR 전송 (short) PUCCH 자원에 포함시키는 방안 (Opt. 1, Opt. 2), 두 번째 방법인 HARQ-ACK 전송 (short) PUCCH 자원에 포함시키는 방안 (Opt. 3, Opt. 4)이 고려될 수 있다.In this case, the sequence resources to express the positive SR + specific HARQ-ACK state among the (joint) UCI states for the SR and HARQ-ACK are any PUCCH among SR short PUCCH resources and HARQ-ACK short PUCCH resources. There may be a problem with setting up to be included in a resource. As two methods to solve this problem, the first method includes the SR transmission (short) PUCCH resource (Opt. 1, Opt. 2), the second method to include the HARQ-ACK transmission (short) PUCCH resource An alternative (Opt. 3, Opt. 4) may be considered.
앞서 상술한 제13 SR 전송 방법을 보다 일반적으로 정리하면 다음과 같다.The above-mentioned thirteenth SR transmission method is more generally summarized as follows.
기지국으로부터 SR 전송 (short) PUCCH 자원과 log2(N) bit(s) (단, N=2 or 4) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시되면, 단말은 SR과 HARQ-ACK의 (joint) UCI state를 전송할 수 있다. 이때, 상기 SR 전송 (short) PUCCH와 상기 HARQ-ACK 전송 (short) PUCCH 자원은 각각 다음과 같이 SR과 HARQ-ACK에 대한 (joint) UCI state 전송을 지원할 수 있다.SR transmission from the base station (short) PUCCH resources and log 2 (N) bit (s) (where N = 2 or 4) HARQ-ACK transmission (short) PUCCH resources (some) signal transmission to have a time axis resource overlapping (partly) If this is indicated, the UE can transmit a (joint) UCI state of the SR and HARQ-ACK. In this case, the SR short PUCCH and the HARQ-ACK short PUCCH resource may support (joint) UCI state transmission for the SR and the HARQ-ACK as follows.
<1> Opt. A<1> Opt. A
<1-1> SR 전송 (short) PUCCH 자원으로 SR only, HARQ-ACK (with positive SR)에 대응하는 UCI state들에 대한 전송 지원<1-1> SR transmission (short) Transmission support for UCI states corresponding to SR only and HARQ-ACK (with positive SR) as PUCCH resources
<1-1-1> SR only는 상위 계층으로 설정 받은 (단일) PUCCH 자원 또는 (단일) 시퀀스에 대한 On/Off keying 방식으로 표현될 수 있다.<1-1-1> SR only may be represented by an on / off keying scheme for a (single) PUCCH resource or a (single) sequence set to a higher layer.
<1-1-2> SR only와 All NACK (with positive SR)은 동일 UCI state로 간주될 수 있다.<1-1-2> SR only and All NACK (with positive SR) may be regarded as the same UCI state.
<1-1-3> HARQ-ACK (with positive SR)에 대해 ACK/NACK bundling (예: logical AND 연산)이 적용될 수 있다.<1-1-3> ACK / NACK bundling (eg, logical AND operation) may be applied to HARQ-ACK (with positive SR).
<1-1-4> SR 전송 (short) PUCCH 자원이 Sequence selection 방식인 경우, 다음과 같이 UCI state들이 표현될 수 있다. 이때, 단말은 해당 UCI state를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.<1-1-4> When the SR transmission (short) PUCCH resource is a sequence selection scheme, UCI states may be expressed as follows. In this case, the terminal may transmit a corresponding sequence to represent the corresponding UCI state.
<1-1-4-1> Opt. A-1: SR 전송 (short) PUCCH 자원을 4개 시퀀스로 구성<1-1-4-1> Opt. A-1: SR Transmission (short) PUCCH Resource Composed of 4 Sequences
<1-1-4-1-1> N=2인 경우<1-1-4-1-1> When N = 2
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.Two sequences in an SR transmission (short) PUCCH resource may correspond to {Positive SR, ACK} and {Positive SR, NACK}, respectively.
- 일 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 (동일) PRB 내 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다. (단, L은 PRB 내 최대 cyclic shift 개수)For example, when an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k, the two sequences may be equal to k in the PRB (k + L / 2) mod L in terms of a cyclic shift index. It may be corresponding Cyclic shift values. (Where L is the maximum number of cyclic shifts in the PRB)
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.In addition, the sequence corresponding to {Positive SR, NACK} may be a sequence corresponding to SR only.
<1-1-4-1-2> N=4인 경우<1-1-4-1-2> When N = 4
- SR 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Positive SR, N/N}에 대응할 수 있다.Four sequences in the SR transmission (short) PUCCH resource are respectively assigned to {Positive SR, A / A}, {Positive SR, A / N}, {Positive SR, N / A}, and {Positive SR, N / N}. It can respond.
- 일 예로, {Positive SR, N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.For example, the sequence corresponding to {Positive SR, N / N} may be a sequence corresponding to SR only.
<1-1-4-2> Opt. A-2: SR 전송 (short) PUCCH 자원을 2개 시퀀스로 구성<1-1-4-2> Opt. A-2: SR Transmission (short) PUCCH Resource Composed of Two Sequences
<1-1-4-2-1> N=2인 경우<1-1-4-2-1> When N = 2
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.Two sequences in an SR transmission (short) PUCCH resource may correspond to {Positive SR, ACK} and {Positive SR, NACK}, respectively.
- 일 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 (동일) PRB 내 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다. (단, L은 PRB 내 최대 cyclic shift 개수)For example, when an initial cyclic shift index allocated to an SR transmission (short) PUCCH resource is k, the two sequences may be equal to k in the PRB (k + L / 2) mod L in terms of a cyclic shift index. It may be corresponding Cyclic shift values. (Where L is the maximum number of cyclic shifts in the PRB)
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.In addition, the sequence corresponding to {Positive SR, NACK} may be a sequence corresponding to SR only.
- HARQ-ACK 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.Two sequences in a HARQ-ACK transmission (short) PUCCH resource may correspond to {Negative SR, ACK} and {Negative SR, NACK}, respectively.
<1-1-4-2-2> N=4인 경우<1-1-4-2-2> When N = 4
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N or N/A or N/N}에 대응할 수 있다.Two sequences in an SR transmission (short) PUCCH resource may correspond to {Positive SR, A / A}, {Positive SR, A / N or N / A or N / N}, respectively.
- 일 예로, 상기 중 하나의 시퀀스는 Positive SR이고 2 bits HARQ-ACK에 대한 (Logical AND 연산 기반) ACK/NACK bundling 결과가 NACK인 경우에 대응할 수 있다.For example, one of the above sequences may correspond to a case in which a positive SR and an ACK / NACK bundling result (based on a logical AND operation) for 2 bits HARQ-ACK are NACK.
- 일 예로, {Positive SR, A/N or N/A or N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.For example, the sequence corresponding to {Positive SR, A / N or N / A or N / N} may be a sequence corresponding to SR only.
- HARQ-ACK 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.4 sequences in a HARQ-ACK transmission (short) PUCCH resource are respectively {Negative SR, A / A}, {Negative SR, A / N}, {Negative SR, N / A}, {Negative SR, N / N }.
<1-2> HARQ-ACK 전송 (short) PUCCH 자원 별로 HARQ-ACK only, HARQ-ACK (with negative SR)에 대응되는 UCI state들에 대한 전송 지원<1-2> HARQ-ACK Transmission (short) Transmission support for UCI states corresponding to HARQ-ACK only and HARQ-ACK (with negative SR) per PUCCH resource
- 여기서, (동일 ACK/NACK 정보에 대한) HARQ-ACK only와 HARQ-ACK (with negative SR)의 각 UCI state들은 동일 UCI state로 간주될 수 있다.Here, each UCI state of HARQ-ACK only (for the same ACK / NACK information) and HARQ-ACK (with negative SR) may be regarded as the same UCI state.
<2> Opt. B<2> Opt. B
<2-1> SR 전송 (short) PUCCH 자원으로 SR only에 대응되는 UCI state들에 대한 전송 지원<2-1> SR transmission (short) Transmission support for UCI states corresponding to SR only as a PUCCH resource
- 여기서, SR only는 상위 계층으로 설정 받은 (단일) PUCCH 자원 또는 (단일) 시퀀스에 대한 On/Off keying 방식으로 표현될 수 있다.Here, SR only may be represented by an on / off keying scheme for (single) PUCCH resource or (single) sequence set as a higher layer.
<2-2> HARQ-ACK 전송 (short) PUCCH 자원 별로 HARQ-ACK only, HARQ-ACK (with positive SR), HARQ-ACK (with negative SR)에 대응되는 UCI state들에 대한 전송 지원<2-2> HARQ-ACK Transmission (short) Transmission support for UCI states corresponding to HARQ-ACK only, HARQ-ACK (with positive SR), and HARQ-ACK (with negative SR) for each PUCCH resource
- 여기서, (동일 ACK/NACK 정보에 대한) HARQ-ACK only와 HARQ-ACK (with negative SR)의 각 UCI state들은 동일 UCI state로 간주될 수 있다.Here, each UCI state of HARQ-ACK only (for the same ACK / NACK information) and HARQ-ACK (with negative SR) may be regarded as the same UCI state.
<3> Opt. C<3> Opt. C
<3-1> SR 전송 (short) PUCCH 자원으로 SR only에 대응되는 UCI state들에 대한 전송 지원<3-1> SR transmission (short) Transmission support for UCI states corresponding to SR only as PUCCH resources
- 여기서, SR only는 상위 계층으로 설정 받은 (단일) PUCCH 자원 또는 (단일) 시퀀스에 대한 On/Off keying 방식으로 표현될 수 있다.Here, SR only may be represented by an on / off keying scheme for (single) PUCCH resource or (single) sequence set as a higher layer.
<3-2> HARQ-ACK 전송 (short) PUCCH 자원 별로 HARQ-ACK only, HARQ-ACK (with negative SR)에 대응되는 UCI state들에 대한 전송 지원<3-2> HARQ-ACK Transmission (short) Transmission support for UCI states corresponding to HARQ-ACK only and HARQ-ACK (with negative SR) per PUCCH resource
- 여기서, (동일 ACK/NACK 정보에 대한) HARQ-ACK only와 HARQ-ACK (with negative SR)의 각 UCI state들은 동일 UCI state로 간주될 수 있다.Here, each UCI state of HARQ-ACK only (for the same ACK / NACK information) and HARQ-ACK (with negative SR) may be regarded as the same UCI state.
<3-3> (SR/HARQ-ACK PUCCH 자원과) 별도로 설정되는 (특정) (short) PUCCH 자원으로 HARQ-ACK (with positive SR)에 대응되는 UCI state들에 대한 전송 지원<3-3> Support for transmission of UCI states corresponding to HARQ-ACK (with positive SR) as a (short) PUCCH resource separately configured (with SR / HARQ-ACK PUCCH resource)
- 여기서, 상기 (특정) (short) PUCCH 자원은 아래 중 하나의 방법으로 설정될 수 있다.In this case, the (short) PUCCH resource may be configured in one of the following ways.
- Opt. C-1: 단말 별로 단일 자원을 설정-Opt. C-1: Single resource setting per terminal
- Opt. C-2: 단말에게 설정된 (HARQ-ACK 전송 용) PUCCH 자원 집합 별로 설정-Opt. C-2: set for each PUCCH resource set (for HARQ-ACK transmission) set to UE
- Opt. C-3: 단말에게 설정된 PUCCH format 별로 설정-Opt. C-3: setting for each PUCCH format set in the terminal
- Opt. C-4: 단말에게 설정된 (HARQ-ACK 전송 용) PUCCH 자원 별로 설정-Opt. C-4: set for each PUCCH resource (for HARQ-ACK transmission) set to UE
상기 구성에 있어, All NACK (with positive SR)에 대응되는 전송 자원은 SR only 전송 자원과 동일하거나 또는 독립적으로 설정될 수 있다.In the above configuration, the transmission resource corresponding to All NACK (with positive SR) may be set identically or independently to the SR only transmission resource.
또한, HARQ-ACK 전송 PUCCH 자원은 HARQ-ACK (up to 2 bits)에 대한 Long PUCCH (예: 4 심볼 이상의 길이는 갖는 PUCCH) 자원일 수 있다.In addition, the HARQ-ACK transmission PUCCH resource may be a Long PUCCH (eg, PUCCH having a length of 4 symbols or more) for HARQ-ACK (up to 2 bits).
앞서 상술한 제13 SR 전송 방법에서 HARQ-ACK 전송 PUCCH 자원 (또는 자원 집합)과 SR 전송 (short) PUCCH 자원은 상위 계층 신호 그리고/또는 DCI를 통해 설정될 수 있으며, 서로 독립적으로 설정될 수 있다.In the above-described thirteenth SR transmission method, the HARQ-ACK transmission PUCCH resource (or resource set) and the SR transmission (short) PUCCH resource may be configured through higher layer signals and / or DCI, and may be configured independently of each other. .
상기 제13 SR 전송 방법에 대한 추가 동작으로써 다음의 사항들이 고려될 수 있다. 이때, 단말에게 (하나 이상의) HARQ-ACK 전송 PUCCH 자원 집합이 (상위 계층 신호를 통해) 설정되고, 각 HARQ-ACK 전송 PUCCH 자원 내 (하나 이상의) PUCCH 자원들이 포함되고, 각 HARQ-ACK 전송 PUCCH 자원 내 PUCCH 전송 형태 (PUCCH Format)이 서로 다를 수 있는 경우를 가정한다.The following may be considered as an additional operation for the thirteenth SR transmission method. In this case, the UE sets one or more HARQ-ACK transmission PUCCH resource sets (via higher layer signals), includes one or more PUCCH resources in each HARQ-ACK transmission PUCCH resource, and each HARQ-ACK transmission PUCCH. It is assumed that a PUCCH format in a resource may be different.
1) 이슈 1: 상기 경우에서 Positive SR + HARQ-ACK 전송자원 설정 방안1) Issue 1: Positive SR + HARQ-ACK Transmission Resource Setting Method
- Opt. 1-0: 단말 별로 하나씩 설정-Opt. 1-0: one for each terminal
- Opt. 1-1: HARQ-ACK 전송 PUCCH 자원 집합 별로 하나씩 설정-Opt. 1-1: HARQ-ACK transmission one set per PUCCH resource set
- Opt. 1-2: PUCCH Format 별로 하나씩 설정-Opt. 1-2: Set one by PUCCH Format
- Opt. 1-3: HARQ-ACK 전송 PUCCH 자원 별로 하나씩 설정-Opt. 1-3: HARQ-ACK transmission one set per PUCCH resource
- Opt. 1-4: SR 전송 PUCCH 자원 (또는 SR process 또는 SR procedure) 별로 하나씩 설정-Opt. 1-4: One for each SR transmission PUCCH resource (or SR process or SR procedure)
2) 이슈 2: 상기 경우에서 Positive SR + HARQ-ACK 전송 자원과 SR only 전송 자원 간의 관계2) Issue 2: Relationship between Positive SR + HARQ-ACK Transmission Resource and SR Only Transmission Resource in the Case
2-1) Opt. 2-1: Positive SR + HARQ-ACK 전송 자원 중 ACK/NACK state가 ‘All NACK’에 대응되는 자원을 SR only 전송 자원으로 활용 (공유)2-1) Opt. 2-1: Utilize a resource corresponding to ‘All NACK’ of positive SR + HARQ-ACK transmission resources as ‘All NACK’ as SR only transmission resource (shared)
- 상기 Opt. 1-0과 결합될 수 있다.Opt. May be combined with 1-0.
- 상기 Opt. 1-1과 결합될 수 있으며, 어떤 HARQ-ACK 전송 PUCCH 자원 집합에 설정된 Positive SR + All NACK 전송 자원이 SR only로 활용되는 지에 대한 추가 정보가 필요할 수 있다.Opt. It may be combined with 1-1 and may require additional information on which HARQ-ACK transmission PUCCH resource set is used for SR only for the Positive SR + All NACK transmission resource set in the resource set.
- 상기 Opt. 1-2과 결합될 수 있으며, 어떤 PUCCH Format에 설정된 Positive SR + All NACK 전송 자원이 SR only로 활용되는 지에 대한 추가 정보가 필요할 수 있다.Opt. It may be combined with 1-2 and may need additional information on which PUCCH format positive SR + All NACK transmission resource is used as SR only.
- 상기 Opt. 1-3과 결합될 수 있으며, 어떤 HARQ-ACK 전송 PUCCH 자원에 설정된 Positive SR + All NACK 전송 자원이 SR only로 활용되는 지에 대한 추가 정보가 필요할 수 있다.Opt. It may be combined with 1-3 and may need additional information on which HARQ-ACK transmission PUCCH resource positive SR + All NACK transmission resource is used as SR only.
- 상기 Opt. 1-4와 결합될 수 있다.Opt. May be combined with 1-4.
2-2) Opt. 2-2: Positive SR + HARQ-ACK 전송자원과 별도의 독립적으로 설정된 자원을 SR only 전송 자원으로 활용2-2) Opt. 2-2: Utilizes resources set independently of Positive SR + HARQ-ACK transmission resources as SR only transmission resources
상기 제13 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The thirteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.14. 제14 SR 전송 방법3.14. Fourteenth SR Transmission Method
단말이 HARQ-ACK (with or without SR)에 대한 N (예: N=2 or 4)개의 UCI state (예: S0, S1, …, SN-1)를 PRB 내 N개의 Cyclic shift index들 중 하나를 선택하여 전송함으로써 표현할 때, 기지국은 상기 HARQ-ACK 전송 (short) PUCCH 자원으로 Initial cyclic shift index (즉, ∈ {0, 1, …, L-1})를 설정할 수 있다. 이 경우, 단말은 다음 중 하나의 방법으로 순한 시프트로부터 UCI 상태 매핑 (Cyclic shift to UCI state mapping)을 수행할 수 있다.The UE selects N (eg N = 2 or 4) UCI states (eg S 0 , S 1 ,…, S N-1 ) for HARQ-ACK (with or without SR) in N Cyclic shift indexes in the PRB. When selecting and transmitting one of these, the base station may set an initial cyclic shift index (ie, {0, 1, ..., L-1}) as the HARQ-ACK transmission (short) PUCCH resource. In this case, the UE may perform cyclic shift to UCI state mapping from a gentle shift by one of the following methods.
(1) Opt. 1: k=0, 1, …, N-1에 대해 UCI state Sk를 Cyclic shift index (q+k*L/N) mod L에 대응시키는 방안(1) Opt. 1: k = 0, 1,... , UCI state S k for N-1 corresponds to Cyclic shift index (q + k * L / N) mod L
(2) Opt. 2: k=0, 1, …, N-1에 대해 각각 Cyclic shift index (q+k*L/N) mod L를 구하고, 상기 N개 Cyclic shift index 값들을 오름차순 (또는 내림차순)으로 정렬한 결과가 CS0, CS1, …, CSN-1일 때, k=0, 1, …, N-1에 대해 UCI state Sk를 CSk에 대응시키는 방안(2) Opt. 2: k = 0, 1,... , N-1 to obtain the Cyclic shift index (q + k * L / N) mod L, and the N Cyclic shift index values in ascending (or descending) order is CS 0 , CS 1 ,. , When CS N-1 , k = 0, 1,... To map UCI state S k to CS k for N-1
여기서, 상기 L (예: 12)은 PRB 내 전체 Cyclic shift 개수를 의미한다.Here, L (eg, 12) means the total number of cyclic shifts in the PRB.
보다 구체적으로, N개 UCI 상태가 PRB 내 N개 Cyclic shift index로 표현되고 기지국이 단말에게 Initial cyclic shift index를 지시한 경우, 단말이 표시하는 UCI state는 상기 Initial cyclic shift index부터 (선형적으로) 증가하는 Cyclic shift index에 순차적으로 대응할 수 있다. More specifically, when the N UCI states are represented by N Cyclic shift indexes in the PRB and the base station indicates the initial cyclic shift index to the user equipment, the UCI state indicated by the user equipment (linearly) starts from the initial cyclic shift index. It may correspond to the increasing cyclic shift index sequentially.
이때, Initial cyclic shift index에 증가분을 더한 값이 PRB 내 전체 Cyclic shift 개수 L을 넘는 경우, 상기 UCI state는 추가적으로 L에 대한 modulo 연산이 적용된 값에 대응할 수 있다. In this case, when the value obtained by adding an increment to the initial cyclic shift index exceeds the total number of cyclic shifts L in the PRB, the UCI state may additionally correspond to a value to which a modulo operation for L is applied.
또는, Initial cyclic shift index에 증가분을 더한 값이 PRB 내 전체 Cyclic shift 개수 L을 넘는 경우, 상기 UCI state는 상기 Initial cyclic shift index부터 (선형적으로) 증가하는 Cyclic shift index들을 구한 뒤 상기 Cyclic shift index 값들을 다시 오름차순 또는 내림차순으로 재정렬한 값에 순차적으로 대응할 수 있다.Alternatively, when the incremental value added to the initial cyclic shift index exceeds the total number of cyclic shifts L in the PRB, the UCI state obtains (linearly) increasing cyclic shift indexes from the initial cyclic shift index and then the cyclic shift index. The values may be sequentially corresponded to the rearranged values in ascending or descending order.
상기 제 14 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The 14th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.15. 제15 SR 전송 방법3.15. 15th SR Transmission Method
기지국으로부터 단말이 SR 전송 (short) PUCCH 자원과 log2(N) bit(s) (예: N > 4) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 상기 단말은 SR 관련 정보를 X bits (단, X≥1)으로 표현하고 상기 X bits을 UCI payload에 추가하여 HARQ-ACK 전송 (short) PUCCH 자원으로 전송할 수 있다.Signal transmission so that the UE has an SR transmission (short) PUCCH resource and log 2 (N) bit (s) (eg N> 4) HARQ-ACK transmission (short) PUCCH resources (partly) overlapping time axis resources In this case, the UE may express the SR related information as X bits (where X≥1) and add the X bits to the UCI payload to transmit the HARQ-ACK transmission (short) PUCCH resource.
이때, 상기 SR 관련 정보는 아래 중 하나 이상의 정보를 포함할 수 있다.In this case, the SR related information may include one or more of the following information.
(1) Positive SR 또는 Negative SR 여부(1) Whether positive SR or negative SR
(2) (대응되는) SR process index (즉, 어떤 SR process에 대응되는 SR인지에 대한 정보)(2) SR process index (corresponding) (ie information on which SR process corresponds to SR)
이때, 단말은 상기 SR 관련 정보를 아래 중 하나와 같이 전송할 수 있다.In this case, the terminal may transmit the SR related information as one of the following.
1) 1-bit SR만 보내되, 가장 높은 우선 순위의 SR (process)에 대한 positive/negative SR 여부를 지시1) Only 1-bit SR is sent, indicating whether it is a positive / negative SR for the highest priority SR (process)
2) X-bit(s) SR을 보내되, (a) SR (process)별 positive/negative SR 여부를 bitmap으로 보내거나, (b) positive SR를 갖는 SR (process)들 중 가장 높은 우선 순위를 갖는 SR (process)에 대한 positive SR 정보만 보낼 수 있다. (이때, (b)에서 상기 SR (process)를 제외한 다른 SR (process)에 대해서는 negative SR로 간주될 수 있다).2) Send an X-bit (s) SR, either (a) send a bitmap whether the SR is positive or negative for each process (b), or (b) give the highest priority among SRs with a positive SR. Only positive SR information for the owned SR (process) can be sent. (At this time, (b) may be regarded as a negative SR for other SRs (process) except for the SR (process)).
- 보다 구체적으로, SR process #1, SR process #2, SR process #3이 #1 > #2 > #3의 우선 순위를 가지고 SR process #1은 negative SR, SR process #2는 positive SR, SR process #3은 positive SR인 경우, (a)를 따르면 단말은 3-bits SR로 ‘011’을 전송하고, (b)를 따르면 상기 단말은 3-bits SR로 ‘010’을 전송할 수 있다.More specifically, SR process # 1, SR process # 2, and SR process # 3 have a priority of # 1> # 2> # 3. SR process # 1 is negative SR, SR process # 2 is positive SR, SR When process # 3 is a positive SR, according to (a), the terminal may transmit '011' to the 3-bits SR, and according to (b), the terminal may transmit '010' to the 3-bits SR.
상기 구성에 있어, 상기 SR 관련 정보인 X bits을 UCI payload size로 추가할 경우, HARQ-ACK 전송 (short) PUCCH 자원에 설정된 최대 코딩 레이트 (max coding rate)를 초과할 수 있다. 이때, 단말은 아래 중 하나의 동작을 수행할 수 있다. 아래 설명에 있어, A/N은 HARQ-ACK을 의미할 수 있다.In the above configuration, when the X bits, which are the SR related information, are added as the UCI payload size, the maximum coding rate set for the HARQ-ACK short PUCCH resource may be exceeded. In this case, the terminal may perform one of the following operations. In the following description, A / N may mean HARQ-ACK.
<1> Opt 1: SR 1-bit + A/N bits<1> Opt 1: SR 1-bit + A / N bits
여기서, 상기 1-bit SR은 복수 개 (예: X개) SR process 중 우선순위가 가장 높은 SR process에 대한 SR 정보 (예: positive SR or negative SR)일 수 있다.Here, the 1-bit SR may be SR information (eg, positive SR or negative SR) for the SR process having the highest priority among a plurality of (eg, X) SR processes.
<2> Opt 2: SR X-bit + bundled A/N bits<2> Opt 2: SR X-bit + bundled A / N bits
여기서, 상기 bundling 방식은 공간 도메인 (spatial domain) A/N bundling일 수 있다.In this case, the bundling method may be a spatial domain A / N bundling.
<3> Opt 3: SR 1-bit + bundled A/N bits<3> Opt 3: SR 1-bit + bundled A / N bits
여기서, 단말은 상기 Opt 3에 따른 동작을 바로 수행하거나, 앞서 상술한 Opt 1/2를 적용하였음에도 최대 코딩 레이트가 초과된 경우, 이에 대한 2번째 단계로서 상기 Opt 3에 따른 동작을 수행할 수도 있다.In this case, the terminal may immediately perform the operation according to Opt 3 or, if the maximum coding rate is exceeded even though the above-described Opt 1/2 is applied, the terminal may perform the operation according to Opt 3 as a second step. .
<4> Opt. 4: 모든 SR 전송을 생략하고 A/N만 전송<4> Opt. 4: Skip all SR transfers and send only A / N
<5> Opt. 5: SR 1-bit (or X bits) + (partial) A/N bits (즉, 일부 A/N bits를 생략)<5> Opt. 5: SR 1-bit (or X bits) + (partial) A / N bits (i.e. omit some A / N bits)
여기서, 상기 SR 관련 정보인 X bits는 HARQ-ACK 전송에 대한 (short) PUCCH 자원 집합 선택 과정에 연관될 수 있다.Here, the X bits, which are the SR related information, may be related to a (short) PUCCH resource set selection process for HARQ-ACK transmission.
구체적인 예로, (HARQ-ACK 전송 시) 단말은 UCI 페이로드 크기를 토대로 (복수의) PUCCH 자원 집합 중 하나를 선택하고, 이후 기지국은 DCI를 이용하여 선택된 PUCCH 자원 집합 내 실제 전송할 특정 PUCCH 자원을 지시할 수 있다. 이때, 단말이 SR 관련 정보를 HARQ-ACK과 함께 전송하는 경우, 단말은 상기 PUCCH 자원 집합을 아래 중 하나의 방식으로 선택할 수 있다.As a specific example, (at HARQ-ACK transmission), the UE selects one of the (plural) PUCCH resource sets based on the UCI payload size, and then the base station indicates a specific PUCCH resource to be actually transmitted in the selected PUCCH resource set using DCI. can do. In this case, when the terminal transmits the SR-related information with the HARQ-ACK, the terminal may select the PUCCH resource set in one of the following manner.
1> Opt. 1: HARQ-ACK과 SR 관련 정보에 대한 (total) UCI payload size 기준으로 선택1> Opt. 1: Select based on (total) UCI payload size for HARQ-ACK and SR related information
- 여기서, (HARQ-ACK과 SR 이외의) 다른 UCI type이 (상기 HARQ-ACK 전송 (short) PUCCH 자원으로) 같이 전송될 경우, 상기 UCI type에 대한 UCI payload size가 상기 (total) UCI payload size에 반영될 수 있다.Here, when another UCI type (other than HARQ-ACK and SR) is transmitted together (as the HARQ-ACK transmission (short) PUCCH resource), the UCI payload size for the UCI type is the (total) UCI payload size. Can be reflected in.
2> Opt. 2: HARQ-ACK에 대한 UCI payload size 기준으로 선택2> Opt. 2: Select based on UCI payload size for HARQ-ACK
3> 상기 예시들에 있어, 기지국은 (상위 계층 신호를 통해) 단말에게 UCI payload size 범위 별로 PUCCH 자원 집합을 설정할 수 있다.3> In the above examples, the base station may set the PUCCH resource set for the UCI payload size range to the terminal (via a higher layer signal).
앞서 상술한 제15 SR 전송 방법의 모든 동작은 단말이 CSI와 SR을 동시 전송하는 경우에도 확장 적용될 수 있다.All operations of the aforementioned 15 th SR transmission method may be extended even when the UE simultaneously transmits the CSI and the SR.
보다 구체적으로, SR 전송 (short) PUCCH 자원과 (2 bits 초과 HARQ-ACK에 대한) HARQ-ACK 전송 (short) PUCCH 자원과 시간 축에서 충돌한 경우, 단말은 상기 SR에 대한 X bits 정보를 상기 HARQ-ACK 전송 (short) PUCCH 자원으로 전송할 수 있다. 이때, 단말은 상기 X bits 정보를 HARQ-ACK payload size에 더한 뒤 상기 합산된 UCI payload에 대한 Coded bits를 HARQ-ACK 전송 (short) PUCCH 자원으로 전송할 수 있다. More specifically, in case of collision with an SR transmission PUCCH resource (for 2 HARQ-ACK greater than HARQ-ACK) and a HARQ-ACK transmission (short) PUCCH resource on a time axis, the UE may report the X bits information for the SR. HARQ-ACK transmission (short) may be transmitted on a PUCCH resource. In this case, the UE may add the X bits information to the HARQ-ACK payload size and then transmit the coded bits for the summed UCI payload as a HARQ-ACK transmission (short) PUCCH resource.
이 경우, 상기 SR 관련 X bits는 SR 요청 여부뿐만 아니라 해당 SR이 어떤 SR process (또는 서비스)에 대한 SR인지에 대한 정보도 포함할 수 있다.In this case, the SR-related X bits may include information on not only whether the SR is requested, but also about which SR process (or service) the corresponding SR is.
상기 제15 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The 15 th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.16. 제16 SR 전송 방법3.16. 16th SR Transmission Method
이하 본 발명에 있어, 단말이 DL assignment로 스케줄링 받은 PDSCH에 대한 HARQ-ACK 또는 CSI와 같은 UCI (Uplink control information)를 전송하는 PUCCH는 해당 UCI의 payload size와 전송 지속시간(PUCCH 전송 심볼 수)에 따라서 아래와 같이 PUCCH의 format이 구분된다고 가정한다.In the present invention, the PUCCH for transmitting the uplink control information (UCI), such as HARQ-ACK or CSI for the PDSCH scheduled by DL assignment in the present invention according to the payload size and transmission duration (number of PUCCH transmission symbols) of the UCI Therefore, it is assumed that PUCCH format is divided as follows.
(1) PUCCH format 0(1) PUCCH format 0
- 지원 가능한 UCI payload 사이즈: 최대 (up to) K bits (예: K = 2)Supported UCI payload size: up to K bits (e.g. K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼들 (예: X = 2)-Number of OFDM symbols constituting a single PUCCH: 1 ~ X symbols (eg X = 2)
- 전송 구조: DM-RS없이 UCI 신호만으로 구성되며, 단말이 특정 sequence 복수 개 중 하나를 선택/전송함으로써 특정 UCI state를 전송하는 구조일 수 있음 -Transmission structure: Consists of only UCI signal without DM-RS, and may be a structure in which a UE transmits a specific UCI state by selecting / transmitting one of a plurality of specific sequences.
(2) PUCCH format 1(2) PUCCH format 1
- 지원 가능한 UCI payload 사이즈: 최대 K bits Supported UCI payload size: up to K bits
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼들 (예: Y = 4, Z = 14)-Number of OFDM symbols constituting a single PUCCH: Y ~ Z symbols (eg Y = 4, Z = 14)
- 전송 구조: DM-RS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되고, UCI는 특정 sequence에 변조 (예: QPSK) 심볼을 곱해주는 형태임. UCI와 DM-RS에 모두 CS/OCC가 적용되어 (동일 RB내에서) 복수 UE간 다중화가 지원 가능함-Transmission structure: DM-RS and UCI are configured / mapped in different symbols in the form of TDM, and UCI multiplies a specific sequence by a modulation (eg QPSK) symbol. CS / OCC is applied to both UCI and DM-RS to support multiplexing between multiple UEs (within the same RB)
(3) PUCCH format 2(3) PUCCH format 2
- 지원 가능한 UCI payload 사이즈: K bits 이상 (more than)Supported UCI payload size: K bits or more (more than)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼들 -Number of OFDM symbols constituting a single PUCCH: 1 ~ X symbols
- 전송 구조: DM-RS와 UCI가 동일 심볼 내에서 FDM 형태로 구성/매핑되며, 단말이 coded UCI bits에 DFT(Discrete Fourier Transform) 없이 IFFT (Inverse Fast Fourier Transform) 만을 적용하여 전송하는 구조일 수 있음-Transmission structure: DM-RS and UCI may be configured / mapped in the same symbol in FDM form, and the terminal may transmit a scheme by applying only IFFT (Inverse Fast Fourier Transform) without coded UCI bits without DFT (Discrete Fourier Transform). has exist
(4) PUCCH format 3(4) PUCCH format 3
- 지원 가능한 UCI payload 사이즈: K bits 이상-Supported UCI payload size: K bits or more
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼들 -Number of OFDM symbols constituting a single PUCCH: Y ~ Z symbols
- 전송 구조: DM-RS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되고, 단말이 coded UCI bits에 DFT를 적용하여 전송하는 형태임. UCI에는 DFT 전단에서 OCC가 적용되고 DM-RS에는 CS (또는 IFDM 매핑)가 적용되어 복수 UE간 다중화가 지원 가능함Transmission structure: DM-RS and UCI are configured / mapped in different symbols in the form of TDM, and the terminal transmits by applying DFT to coded UCI bits. UCC is applied to UCI in front of DFT and CS (or IFDM mapping) is applied to DM-RS to support multiplexing between multiple UEs.
(5) PUCCH format 4(5) PUCCH format 4
- 지원 가능한 UCI payload 사이즈: K bits 이상-Supported UCI payload size: K bits or more
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼들 -Number of OFDM symbols constituting a single PUCCH: Y ~ Z symbols
- 전송 구조: DMRS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되며, 단말이 coded UCI bits에 DFT를 적용하여 UE간 다중화 없이 전송되는 구조일 수 있음-Transmission structure: DMRS and UCI can be configured / mapped in different symbols in the form of TDM, the terminal may be a structure that is transmitted without multiplexing between the UE by applying the DFT to the coded UCI bits
이하 설명에 있어, SR은 단말이 기지국에게 UL 스케줄링을 요청하는 물리 계층 신호를 의미한다. 특히, positive SR은 상기 단말의 UL 스케줄링 요청이 있는 경우를, negative SR은 상기 단말의 UL 스케줄링 요청이 없는 경우를 의미한다.In the following description, an SR refers to a physical layer signal for which a terminal requests UL scheduling from a base station. In particular, a positive SR means a case where there is a UL scheduling request of the terminal, and a negative SR means a case where there is no UL scheduling request of the terminal.
단말에게 SR (only) 전송을 위한 PUCCH 자원 (이하 SR PUCCH)과 HARQ-ACK (only) 전송을 위한 PUCCH 자원 (이하 A/N PUCCH)에 대해 설정된 PUCCH format 조합에 따라, 상기 단말은 아래와 같이 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.According to the PUCCH format combination for the PUCCH resource (hereinafter SR SRCC) for SR (only) transmission and the PUCCH resource (hereinafter A / N PUCCH) for HARQ-ACK (only) transmission, the terminal is SR as follows. And HARQ-ACK may be simultaneously transmitted.
<1> A/N PUCCH = PUCCH format 0<1> A / N PUCCH = PUCCH format 0
<1-1> SR PUCCH = PUCCH format 0<1-1> SR PUCCH = PUCCH format 0
- SR only 또는 positive SR + HARQ-ACK은 SR PUCCH로 전송. 이때, SR PUCCH는 SR process 별로 설정될 수 있다.-SR only or positive SR + HARQ-ACK is transmitted to SR PUCCH. In this case, the SR PUCCH may be set for each SR process.
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송-HARQ-ACK only or negative SR + HARQ-ACK transmitted by A / N PUCCH
<1-2> SR PUCCH = PUCCH format 1<1-2> SR PUCCH = PUCCH format 1
- SR only는 SR PUCCH로 전송-SR only is sent to SR PUCCH
- positive SR + HARQ-ACK은 아래 중 하나의 방법으로 전송-Positive SR + HARQ-ACK is transmitted in one of the following ways
- Opt. 1: SR 전송을 생략하고, HARQ-ACK only를 A/N PUCCH로 전송  -Opt. 1: Omit SR transmission and transmit HARQ-ACK only to A / N PUCCH
- Opt. 2: SR PUCCH로 전송  -Opt. 2: send to SR PUCCH
- Opt. 3: 단말이 (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도의 PUCCH format 0 자원을 설정하고, 해당 자원으로 전송. 여기서, 상기 별도의 자원은 SR process 별로 설정될 수 있다.  -Opt. 3: UE sets a separate PUCCH format 0 resource (other than SR PUCCH and / or A / N PUCCH) and transmits to the corresponding resource. Here, the separate resource may be set for each SR process.
<1-3> HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송<1-3> HARQ-ACK only or negative SR + HARQ-ACK transmitted by A / N PUCCH
<2> A/N PUCCH = PUCCH format 1<2> A / N PUCCH = PUCCH format 1
<2-1> SR PUCCH = PUCCH format 0<2-1> SR PUCCH = PUCCH format 0
- SR only는 SR PUCCH로 전송-SR only is sent to SR PUCCH
- positive SR + HARQ-ACK은 아래 중 하나의 방법으로 전송-Positive SR + HARQ-ACK is transmitted in one of the following ways
- Opt. 1: SR 전송을 생략하고, HARQ-ACK only를 A/N PUCCH로 전송  -Opt. 1: Omit SR transmission and transmit HARQ-ACK only to A / N PUCCH
- Opt. 2: SR PUCCH로 전송  -Opt. 2: send to SR PUCCH
- Opt. 3: (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도의 PUCCH format 1 자원을 설정하고, 해당 자원으로 전송. 여기서, 상기 별도의 자원은 SR process 별로 설정될 수 있다.  -Opt. 3: Set a separate PUCCH format 1 resource (other than SR PUCCH and / or A / N PUCCH) and send it to the resource. Here, the separate resource may be set for each SR process.
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송-HARQ-ACK only or negative SR + HARQ-ACK transmitted by A / N PUCCH
<2-2> SR PUCCH = PUCCH format 1<2-2> SR PUCCH = PUCCH format 1
- SR only 또는 positive SR + HARQ-ACK은 SR PUCCH로 전송. 여기서, SR PUCCH는 SR process 별로 설정될 수 있다.-SR only or positive SR + HARQ-ACK is transmitted to SR PUCCH. Here, the SR PUCCH may be set for each SR process.
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송-HARQ-ACK only or negative SR + HARQ-ACK transmitted by A / N PUCCH
<3> A/N PUCCH = PUCCH format 2 or 3 or 4<3> A / N PUCCH = PUCCH format 2 or 3 or 4
<3-1> SR PUCCH = PUCCH format 0<3-1> SR PUCCH = PUCCH format 0
- SR only는 SR PUCCH로 전송-SR only is sent to SR PUCCH
- positive SR + HARQ-ACK은 UCI payload에 추가하여 A/N PUCCH로 전송Positive SR + HARQ-ACK sent to A / N PUCCH in addition to UCI payload
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송-HARQ-ACK only or negative SR + HARQ-ACK transmitted by A / N PUCCH
<3-2> SR PUCCH = PUCCH format 1<3-2> SR PUCCH = PUCCH format 1
- SR only는 SR PUCCH로 전송-SR only is sent to SR PUCCH
- positive SR + HARQ-ACK은 UCI payload에 추가하여 A/N PUCCH로 전송Positive SR + HARQ-ACK sent to A / N PUCCH in addition to UCI payload
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송. 여기서, SR PUCCH는 SR process 별로 설정될 수 있다.HARQ-ACK only or negative SR + HARQ-ACK is transmitted in A / N PUCCH. Here, the SR PUCCH may be set for each SR process.
상기 구성들에 있어, SR에 대응되는 서비스 종류에 따라 상기 옵션들 중 하나가 선택적으로 적용될 수 있다.In the above configurations, one of the options may be selectively applied according to a service type corresponding to the SR.
보다 구체적으로, PUCCH 자원에 대한 전송 형태 또는 PUCCH format이 본 발명에서 가정한 것과 같이 format 0 (sequence selection), format 1 (sequence modulation), format 2/3/4 (encoding/modulation) 등으로 다양할 때, SR 전송을 위한 PUCCH 자원 (이하 SR PUCCH)의 PUCCH format과 HARQ-ACK 전송을 위한 PUCCH 자원 (이하 A/N PUCCH)의 PUCCH format이 어떤 조합을 이루는지에 따라 SR과 HARQ-ACK 동시 전송에 대한 효율적인 방법이 달라질 수 있다. More specifically, the transmission type or PUCCH format for the PUCCH resources may vary in format 0 (sequence selection), format 1 (sequence modulation), format 2/3/4 (encoding / modulation), etc. as assumed in the present invention. When the PUCCH format of the PUCCH resource (hereinafter referred to as SR PUCCH) for SR transmission and the PUCCH format of the PUCCH resource (hereinafter referred to as A / N PUCCH) for HARQ-ACK transmission are used for simultaneous SR and HARQ-ACK transmission. Efficient methods for this may vary.
일 예로, SR PUCCH와 A/N PUCCH 간 PUCCH format이 동일한 경우, 단말이 positive SR + HARQ-ACK을 SR PUCCH로 전송하는 것이 효율적일 수 있다 (예: resource selection). 반면, SR PUCCH와 A/N PUCCH 간 PUCCH format이 서로 다르고 A/N PUCCH가 PUCCH format 2/3/4 중 하나인 경우, 상기 PUCCH format이 많은 UCI payload를 담을 수 있으므로 상기 단말이 positive SR + HARQ-ACK을 A/N PUCCH로 전송하는 것이 보다 효율적일 수 있다. For example, when the PUCCH format is identical between the SR PUCCH and the A / N PUCCH, it may be efficient for the UE to transmit a positive SR + HARQ-ACK to the SR PUCCH (eg, resource selection). On the other hand, if the PUCCH format between SR PUCCH and A / N PUCCH is different and A / N PUCCH is one of PUCCH format 2/3/4, the UE may be positive SR + HARQ since the PUCCH format may contain many UCI payloads. It may be more efficient to send the -ACK on the A / N PUCCH.
또는, SR PUCCH와 A/N PUCCH 간 PUCCH format이 (지원되는) 최대 UCI payload size 관점에서 동일하되 전송되는 (PUCCH 자원의 시간 축) 길이 관점에서 서로 다른 경우, SR PUCCH가 A/N PUCCH 보다 전송 길이가 길면 단말은 positive SR + HARQ-ACK을 SR PUCCH로 전송하고, 그렇지 않으면 단말은 (SR process 별로) A/N PUCCH 자원의 PUCCH format과 동일한 PUCCH format을 갖는 (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도의 PUCCH 자원을 (추가) 설정하여 상기 자원으로 positive SR + HARQ-ACK을 전송하는 것이 UL 커버리지 등의 관점에서 바람직할 수 있다.Or, if the PUCCH format between the SR PUCCH and the A / N PUCCH is the same in terms of (supported) maximum UCI payload size but different in terms of the length of the transmitted (time axis of the PUCCH resource), the SR PUCCH is transmitted than the A / N PUCCH. If the length is long, the UE transmits a positive SR + HARQ-ACK to the SR PUCCH, otherwise the UE (per SR process) has the same PUCCH format as the PUCCH format of the A / N PUCCH resource (SR PUCCH and / or A / N). In addition to the PUCCH, it may be preferable to set a separate PUCCH resource (addition) and transmit a positive SR + HARQ-ACK to the resource in view of UL coverage.
추가적으로, SR PUCCH 자원이 short PUCCH이고 A/N PUCCH 자원이 long PUCCH일 때, 단말은 아래와 같이 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.In addition, when the SR PUCCH resource is a short PUCCH and the A / N PUCCH resource is a long PUCCH, the UE may support simultaneous SR and HARQ-ACK transmission as follows.
[1] SR only은 SR PUCCH로 전송[1] SR only is sent on SR PUCCH
- 여기서, SR PUCCH는 SR process 별로 설정될 수 있다.Here, the SR PUCCH may be set for each SR process.
[2] positive SR + HARQ-ACK은 아래 중 하나의 방법으로 전송[2] positive SR + HARQ-ACK is transmitted by one of the following methods
- Opt. 1: SR에 대응되는 서비스 종류에 따라 SR PUCCH로 전송하거나 또는 (SR process 별로) (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도로 설정된 long PUCCH로 전송하는 방안. 일 예로, 단말은 Low Latency 요구가 높은 SR (예: URLLC SR)을 SR PUCCH, Low Latency 요구가 높지 않은 SR (예: eMBB SR)을 long PUCCH로 전송할 수 있다.-Opt. 1: Method of transmitting to SR PUCCH according to service type corresponding to SR or to long PUCCH (per SR process) or separately set long PUCCH (particularly to SR PUCCH and / or A / N PUCCH). For example, the UE may transmit an SR PUCCH having a high low latency request (eg, URLLC SR) and an SR having a low low latency request (eg, eMBB SR) as a long PUCCH.
- Opt. 2: SR에 대응되는 서비스 종류에 따라 SR PUCCH로 전송하거나 또는 A/N PUCCH로 전송하는 방안. 일 예로, 단말은 Low Latency 요구가 높은 SR (예: URLLC SR)을 SR PUCCH, Low Latency 요구가 높지 않은 SR (예: eMBB SR)을 A/N PUCCH로 전송할 수 있다.-Opt. 2: A method of transmitting to SR PUCCH or A / N PUCCH according to a service type corresponding to SR. For example, the UE may transmit an SR PUCCH having a high low latency request (eg, URLLC SR) and an SR having a low Low Latency request (eg, eMBB SR) to the A / N PUCCH.
[3] HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송[3] HARQ-ACK only or negative SR + HARQ-ACK is transmitted through A / N PUCCH
상기 구성들은 단말이 CSI와 SR을 동시 전송하는 경우에도 확장 적용될 수 있다.The above configurations may be extended even when the terminal simultaneously transmits the CSI and the SR.
추가적으로, SR (only) 전송을 위한 PUCCH 자원 (이하 SR PUCCH)과 HARQ-ACK (only) 전송을 위한 PUCCH 자원 (이하 A/N PUCCH)에 대해 설정된 PUCCH format 조합에 따라, 단말은 아래와 같이 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.In addition, according to the PUCCH format combination configured for PUCCH resources (hereinafter, SR PUCCH) for SR (only) transmission and PUCCH resources (hereinafter, A / N PUCCH) for HARQ-ACK (only) transmission, the UE is as follows. HARQ-ACK may support simultaneous transmission.
(A) SR PUCCH = PUCCH format 0(A) SR PUCCH = PUCCH format 0
(A-1) A/N PUCCH = PUCCH format 0(A-1) A / N PUCCH = PUCCH format 0
- Opt. 1: A/N PUCCH 자원으로부터 암시되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 A/N PUCCH 자원에 CS (cyclic shift) offset (또는 PRB offset)을 적용하여 도출된 PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.-Opt. 1: Transmit positive SR + HARQ-ACK information from the A / N PUCCH resource to the implicit PUCCH resource. Here, the PUCCH resource (transmitting positive SR + HARQ-ACK) may be a PUCCH format 0 resource derived by applying a CS (cyclic shift) offset (or PRB offset) to the A / N PUCCH resource. Accordingly, the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
(A-2) A/N PUCCH = PUCCH format 1(A-2) A / N PUCCH = PUCCH format 1
- Opt. 1: A/N PUCCH 자원으로부터 암시되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 A/N PUCCH 자원에 CS offset (또는 OCC (orthogonal cover code) offset 또는 PRB offset)을 적용하여 도출된 PUCCH format 1 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 변조 방식에 따라 HARQ-ACK을 전송할 수 있다.-Opt. 1: Transmit positive SR + HARQ-ACK information from the A / N PUCCH resource to the implicit PUCCH resource. Here, the PUCCH resource (transmitting positive SR + HARQ-ACK) may be a PUCCH format 1 resource derived by applying CS offset (or orthogonal cover code (OCC) offset or PRB offset) to A / N PUCCH resource. . Accordingly, the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource) and may further transmit HARQ-ACK according to a sequence modulation scheme to the corresponding resource.
- Opt. 2: SR PUCCH 자원 (또는 SR PUCCH 자원으로부터 암시되는 PUCCH 자원)으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 SR PUCCH 자원으로 설정된 (또는 SR PUCCH 자원에 CS offset (또는 PRB offset)을 적용하여 도출된) PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.-Opt. 2: Transmit positive SR + HARQ-ACK information to SR PUCCH resource (or PUCCH resource implied from SR PUCCH resource). Here, the PUCCH resource (transmitting positive SR + HARQ-ACK) may be a PUCCH format 0 resource set as an SR PUCCH resource (or derived by applying a CS offset (or PRB offset) to an SR PUCCH resource). Accordingly, the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
- Opt. 3: SR 전송을 생략하고, HARQ-ACK 정보를 A/N PUCCH 자원으로 전송-Opt. 3: Omit SR transmission and transmit HARQ-ACK information to A / N PUCCH resource
- Opt. 4: HARQ-ACK 전송을 생략하고, SR 정보를 SR PUCCH 자원으로 전송-Opt. 4: Omit HARQ-ACK transmission and transmit SR information to SR PUCCH resource
- Opt. 5: HARQ-ACK 정보는 A/N PUCCH 자원으로 전송하고, SR 정보는 A/N PUCCH 내 DM-RS 심볼(들) 간 CS offset (또는 위상 차이) 정보를 활용하여 전송. 여기서, 상기 A/N PUCCH 내 DM-RS 심볼 간 위상 차이는 차등 인코딩 (Differential encoding) 방식에 따라 SR 정보에 대한 변조 (예: DPSK (Differential Phase Shift Keying)) 심볼을 곱해주는 형태일 수 있다. -Opt. 5: HARQ-ACK information is transmitted to the A / N PUCCH resources, SR information is transmitted using the CS offset (or phase difference) information between the DM-RS symbol (s) in the A / N PUCCH. Here, the phase difference between the DM-RS symbols in the A / N PUCCH may be a form of multiplying a modulation (eg, differential phase shift keying) symbol for SR information according to a differential encoding scheme.
(A-3) A/N PUCCH = PUCCH format 2 or 3 or 4(A-3) A / N PUCCH = PUCCH format 2 or 3 or 4
- Opt. 1: SR 정보를 explicit bit(s)로 표현하여 UCI payload에 포함시킨 후, A/N PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 상기 SR 정보는 SR 존재 여부 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보를 포함할 수 있다.-Opt. 1: After indicating SR information in explicit bit (s) to include in UCI payload, transmit positive SR + HARQ-ACK information to A / N PUCCH resource. In this case, when the base station configures a plurality of SR processes (or configurations) for the UE, the SR information may include information on whether an SR exists and on which SR process (or configuration) an SR exists.
(B) SR PUCCH = PUCCH format 1(B) SR PUCCH = PUCCH format 1
(B-1) A/N PUCCH = PUCCH format 0(B-1) A / N PUCCH = PUCCH format 0
- Opt. 1: A/N PUCCH 자원으로부터 암시되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 A/N PUCCH 자원에 CS offset (또는 PRB offset)을 적용하여 도출된 PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.-Opt. 1: Transmit positive SR + HARQ-ACK information from the A / N PUCCH resource to the implicit PUCCH resource. Here, the PUCCH resource (transmitting positive SR + HARQ-ACK) may be a PUCCH format 0 resource derived by applying a CS offset (or PRB offset) to the A / N PUCCH resource. Accordingly, the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
- Opt. 2: SR PUCCH 자원 (또는 SR PUCCH 자원으로부터 암시되는 PUCCH 자원)으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 SR PUCCH 자원으로 설정된 (또는 SR PUCCH 자원에 CS offset (또는 OCC offset 또는 PRB offset)을 적용하여 도출된) PUCCH format 1 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 변조 방식에 따라 HARQ-ACK을 전송할 수 있다.-Opt. 2: Transmit positive SR + HARQ-ACK information to SR PUCCH resource (or PUCCH resource implied from SR PUCCH resource). Here, the PUCCH resource (transmitting positive SR + HARQ-ACK) may be a PUCCH format 1 resource set as an SR PUCCH resource (or derived by applying a CS offset (or OCC offset or PRB offset) to the SR PUCCH resource). have. Accordingly, the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource) and may further transmit HARQ-ACK according to a sequence modulation scheme to the corresponding resource.
- Opt. 3: SR 전송을 생략하고, HARQ-ACK 정보를 A/N PUCCH 자원으로 전송-Opt. 3: Omit SR transmission and transmit HARQ-ACK information to A / N PUCCH resource
- Opt. 4: HARQ-ACK 전송을 생략하고, SR 정보를 SR PUCCH 자원으로 전송-Opt. 4: Omit HARQ-ACK transmission and transmit SR information to SR PUCCH resource
(B-2) A/N PUCCH = PUCCH format 1(B-2) A / N PUCCH = PUCCH format 1
- Opt. 1: SR PUCCH 자원 (또는 SR PUCCH 자원으로부터 암시되는 PUCCH 자원)으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 SR PUCCH 자원으로 설정된 (또는 SR PUCCH 자원에 CS offset (또는 PRB offset)을 적용하여 도출된) PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.-Opt. 1: transmit positive SR + HARQ-ACK information to an SR PUCCH resource (or a PUCCH resource implied by the SR PUCCH resource). Here, the PUCCH resource (transmitting positive SR + HARQ-ACK) may be a PUCCH format 0 resource set as an SR PUCCH resource (or derived by applying a CS offset (or PRB offset) to an SR PUCCH resource). Accordingly, the UE may express a positive SR by selecting and transmitting a corresponding resource (not an A / N PUCCH resource), and may further transmit HARQ-ACK according to a sequence selection method to the corresponding resource.
(B-3) A/N PUCCH = PUCCH format 2 or 3 or 4(B-3) A / N PUCCH = PUCCH format 2 or 3 or 4
- Opt. 1: SR 정보를 explicit bit(s)로 표현하여 UCI payload에 포함시킨 후, A/N PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 상기 SR 정보는 SR 존재 여부 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보를 포함할 수 있다.-Opt. 1: After indicating SR information in explicit bit (s) to include in UCI payload, transmit positive SR + HARQ-ACK information to A / N PUCCH resource. In this case, when the base station configures a plurality of SR processes (or configurations) for the UE, the SR information may include information on whether an SR exists and on which SR process (or configuration) an SR exists.
상기 구성들에 있어, 단말은 SR only를 SR PUCCH로 전송하고, HARQ-ACK only 또는 negative SR + HARQ-ACK를 A/N PUCCH로 전송할 수 있다.In the above configurations, the terminal may transmit the SR only to the SR PUCCH, and may transmit HARQ-ACK only or negative SR + HARQ-ACK to the A / N PUCCH.
또한, 본 발명에 있어, 시퀀스 선택 방식은 단말이 특정 sequence 복수 개 중 하나를 선택 및 전송함으로써 UCI state를 표현하는 방식을 의미할 수 있다.In addition, in the present invention, the sequence selection method may refer to a method in which the UE expresses the UCI state by selecting and transmitting one of a plurality of specific sequences.
또한, 본 발명에 있어, 시퀀스 변조 방식은 단말이 특정 sequence에 변조 (예: QPSK) 심볼을 곱해주는 형태로 UCI state를 표현하는 방식을 의미할 수 있다.In addition, in the present invention, the sequence modulation scheme may refer to a scheme in which the UE expresses the UCI state in the form of multiplying a specific sequence by a modulation (for example, QPSK) symbol.
또한, 본 발명에 있어, SR process (또는 configuration)은 (특정 서비스에 대한) SR (scheduling request) 전송을 위한 시간/주파수/코드 영역 (time/frequency/code domain)에서의 자원 설정을 의미할 수 있으며, 복수 개의 SR process (또는 configuration)은 각각 서로 다른 서비스에 대한 SR 정보를 의미할 수 있다.In addition, in the present invention, an SR process (or configuration) may refer to resource configuration in a time / frequency / code domain for transmitting a scheduling request (SR) for a specific service. The plurality of SR processes (or configurations) may mean SR information for different services.
또한, 본 발명에 있어, 특정 PUCCH 자원에 CS offset/OCC offset/PRB offset을 적용하여 다른 PUCCH 자원을 도출함은 상기 특정 PUCCH 자원에 대해 나머지는 동일하고 CS index/OCC index/PRB index만 일정 offset만큼 차이가 나는 PUCCH 자원을 도출함을 의미할 수 있다.In addition, in the present invention, deriving another PUCCH resource by applying CS offset / OCC offset / PRB offset to a specific PUCCH resource, the rest is the same for the specific PUCCH resource, only the CS index / OCC index / PRB index constant offset As much as the difference can mean that the PUCCH resources are derived.
추가적으로, 기지국이 단말에게 복수의 PUCCH resource set을 (단말 특정한) (상위 계층 신호로) 설정하고, 단말이 UCI payload size에 따라 상기 복수의 PUCCH resource set 중 (UCI 전송에 활용할) 하나의 PUCCH resource set을 선택하는 경우, 상기 PUCCH resource set을 선택하는 UCI payload에서 SR 정보는 제외될 수 있다. 일 예로, 단말은 HARQ-ACK과 CSI에 대한 total UCI payload size를 기준으로 PUCCH resource set 선택을 수행할 수 있다. Additionally, the base station sets a plurality of PUCCH resource sets (terminal specific) (as a higher layer signal) to the terminal, and the terminal sets one PUCCH resource set (utilized for UCI transmission) among the plurality of PUCCH resource sets according to the UCI payload size. When selecting, SR information may be excluded from the UCI payload for selecting the PUCCH resource set. As an example, the UE may perform PUCCH resource set selection based on the total UCI payload size for HARQ-ACK and CSI.
이때, 단말은 추가로 수신한 DCI 내 특정 지시자 (예: ACK/NACK resource indication field) (그리고 상기 DCI로부터 암시되는 정보들 (예: CCE (Control Channel Element) index, PDCCH candidate index 등))을 기반으로 상기 선택된 PUCCH resource set 내 특정 PUCCH resource를 선택할 수 있다. 일 예로, A/N PUCCH 자원이 PUCCH format 0 (또는 format 1)이고, positive SR + HARQ-ACK (up to 2 bits) 전송이 A/N PUCCH 자원으로부터 암시되는 (동일 PUCCH format의) PUCCH 자원으로 전송하는 동작이 지원되는 경우, SR 정보가 PUCCH resource set 선택 시 기준이 되는 UCI payload에 포함되면 단말은 positive SR + 2 bits HARQ-ACK을 3 bits 이상의 UCI payload로 판단할 수 밖에 없다. 이에 따라, 상기 단말은 PUCCH format 2/3/4로 구성된 PUCCH resource set만을 선택하게 되어 positive SR + 2 bits HARQ-ACK을 A/N PUCCH 자원으로부터 암시된 PUCCH format 0 (또는 format 1)로 전송할 수 없게 된다.At this time, the UE additionally based on a specific indicator (eg, ACK / NACK resource indication field) in the DCI (and information implied from the DCI (eg, CCE (Control Channel Element) index, PDCCH candidate index, etc.)). As a specific PUCCH resource in the selected PUCCH resource set can be selected. For example, the A / N PUCCH resource is PUCCH format 0 (or format 1), and a positive SR + HARQ-ACK (up to 2 bits) transmission is a PUCCH resource (of the same PUCCH format) implied from the A / N PUCCH resource. In case that the transmitting operation is supported, if the SR information is included in the UCI payload which is a reference when the PUCCH resource set is selected, the UE has no choice but to determine positive SR + 2 bits HARQ-ACK as a UCI payload of 3 bits or more. Accordingly, the UE selects only a PUCCH resource set configured of PUCCH format 2/3/4, and transmits a positive SR + 2 bits HARQ-ACK to PUCCH format 0 (or format 1) implied from A / N PUCCH resources. There will be no.
또는 단말이 PUCCH resource set을 선택할 때, 2 bits HARQ-ACK만 존재하면 상기 단말은 SR 정보를 PUCCH resource set 선택 과정에서 배제하고 (즉, 2 bits에 대응되는 PUCCH resource set을 선택), 그 밖의 경우 상기 단말은 HARQ-ACK, SR, CSI를 모두 포함하는 UCI payload size를 토대로 PUCCH resource set을 선택할 수도 있다.Alternatively, when the UE selects a PUCCH resource set, if only 2 bits HARQ-ACK exists, the UE excludes SR information from the PUCCH resource set selection process (ie, selects a PUCCH resource set corresponding to 2 bits), otherwise The terminal may select the PUCCH resource set based on the UCI payload size including all HARQ-ACK, SR, and CSI.
추가적으로, N (= 1 or 2) bits HARQ-ACK과 SR 동시 전송을 지원하기 위해, 기지국은 단말에게 M (= 2 or 4)개 시퀀스들로 구성된 format 0 구조의 (단일) (short) PUCCH 자원 (이하 SR-PUCCH)을 (특정 SR process에 대해) 설정할 수 있다. 이때, SR only의 경우 상기 단말은 상기 M개 시퀀스들 중 하나의 시퀀스를 설정하여 OOK (on/off keying) 방식으로 전송하고, HARQ-ACK + positive SR의 경우 상기 단말은 상기 M개 중 2N개 시퀀스를 활용하여 시퀀스 선택 (sequence selection) 방식 (즉, K개 sequence들 중 하나를 선택/전송함으로써 특정 UCI state를 전송하는 방식)으로 UCI state를 표현할 수 있다. 이때, 상기 단말은 추가적으로 아래 동작을 지원할 수 있다.In addition, in order to support simultaneous transmission of N (= 1 or 2) bits HARQ-ACK and the SR, the base station transmits (short) PUCCH resources of a format 0 structure composed of M (= 2 or 4) sequences to the UE. (Hereinafter SR-PUCCH) can be set (for a specific SR process). In this case, in case of SR only, the terminal sets one sequence among the M sequences and transmits it by OOK (on / off keying) method, and in case of HARQ-ACK + positive SR, the terminal is 2N out of M. The UCI state can be expressed by using a sequence of sequences using a sequence selection method (ie, transmitting a specific UCI state by selecting / transmitting one of K sequences). In this case, the terminal may additionally support the following operation.
<A> SR-PUCCH 내 SR only state를 표현할 시퀀스를 Slot 그리고/또는 심볼 단위로 (특정 패턴에 따라) 변경하는 방안 (즉, {+, DTX}-to-Sequence mapping을 Slot 그리고/또는 Symbol 단위로 (특정 패턴에 따라) 변경하는 방안) (예: randomization). 여기서, ‘+’는 positive SR을 의미한다.<A> A scheme for changing the sequence representing the SR only state in the SR-PUCCH by slot and / or symbol unit (according to a specific pattern) (that is, {+, DTX} -to-Sequence mapping unit by slot and / or symbol unit). (Depending on a specific pattern), for example) (eg randomization). Here, '+' means positive SR.
<B> SR-PUCCH의 주파수 자원이 Slot 그리고/또는 심볼 단위로 (특정 패턴에 따라) Hopping하도록 설정하는 방안 (예: randomization)<B> Scheme of configuring frequency resource of SR-PUCCH to hopping by slot and / or symbol unit (according to specific pattern) (eg randomization)
- 상기 (short) PUCCH의 주파수 자원은 특정 주파수 자원 Granularity (예: X (= 8 or 16) PRB)를 기준으로 Hopping될 수 있다. 일 예로, 기준 주파수 자원에 추가로 Slot 그리고/또는 심볼 단위 별로 변경되는 X (= 8 or 16) PRB 배수만큼의 주파수 오프셋이 적용될 수 있다. 이때, 상기 X는 기지국과 단말 간 사전에 약속된 값이거나 또는 기지국이 상위 계층 신호 (예: RRC signaling)으로 설정한 값일 수 있다.The frequency resource of the (short) PUCCH may be hopping based on a specific frequency resource Granularity (eg, X (= 8 or 16) PRB). For example, in addition to the reference frequency resource, a frequency offset of an X (= 8 or 16) PRB multiple that is changed per slot and / or symbol unit may be applied. In this case, X may be a value promised in advance between the base station and the terminal or a value set by the base station as a higher layer signal (eg, RRC signaling).
- 상기 Slot 그리고/또는 심볼에 따른 주파수 자원 Hopping은 (RRC signaling 등의 상위 계층 신호를 통해) 준-정적으로 설정되는 (short) PUCCH 자원에만 적용되고, (RRC signaling 등의 상위 계층 신호와 DCI를 통해) 동적으로 지시될 수 있는 (short) PUCCH 자원에는 적용되지 않을 수 있다.Frequency resource hopping according to the slot and / or symbol is applied only to (short) PUCCH resources that are semi-statically configured (via higher layer signals such as RRC signaling), and the DCI and DCI (such as RRC signaling) May not be applied to (short) PUCCH resources that can be dynamically indicated.
상기 제16 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The sixteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.17. 제17 SR 전송 방법3.17. 17th SR Transmission Method
기지국이 단말에게 (동일 시점에 SR 전송이 발생할 수 있는) 복수 개의 SR (scheduling request) 프로세스 (또는 configuration)를 설정했을 때, 상기 단말은 아래 중 하나 이상의 방법으로 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.When the base station configures a plurality of scheduling request (SR) processes (or configurations) (which may cause SR transmission at the same time), the terminal may simultaneously support SR and HARQ-ACK transmission in one or more of the following ways. Can be.
(1) Opt. 1: A/N PUCCH 자원으로부터 암묵적인 규칙에 따라 상기 복수 개의 SR process (또는 configuration)에 대응되는 복수 개의 PUCCH 자원을 도출하고, 단말이 단일 SR process (또는 configuration)에 대응되는 (A/N PUCCH 자원으로부터 도출된) PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하는 방안(1) Opt. 1: A plurality of PUCCH resources corresponding to the plurality of SR processes (or configurations) are derived from an A / N PUCCH resource according to an implicit rule, and the UE corresponds to a single SR process (or configuration) (A / N PUCCH resources Scheme for transmitting positive SR + HARQ-ACK information to PUCCH resources
단말은 복수 개의 PUCCH 자원들 중 하나를 선택하여 전송함으로써 특정 SR process (또는 SR configuration)에 대한 positive SR을 표현하고, 추가로 해당 자원에서 HARQ-ACK을 전송할 수 있다.The UE may select and transmit one of a plurality of PUCCH resources to express a positive SR for a specific SR process (or SR configuration), and may further transmit HARQ-ACK on the corresponding resource.
이때, 암묵적인 규칙이라 함은 A/N PUCCH 자원에 CS offset/OCC offset/PRB offset을 적용하여 복수 개의 SR process (또는 configuration)에 대응되는 복수 개의 PUCCH 자원을 도출하는 방식을 의미할 수 있다.In this case, the implicit rule may mean a method of deriving a plurality of PUCCH resources corresponding to a plurality of SR processes (or configurations) by applying CS offset / OCC offset / PRB offset to A / N PUCCH resources.
(2) Opt. 2: 기지국이 상기 복수 개의 SR process (또는 configuration)에 대해 SR process (configuration) 별로 SR PUCCH를 설정하고, 단말이 단일 SR process (또는 configuration)에 대응되는 SR PUCCH 자원으로 positive SR + HARQ-ACK을 전송하는 방안(2) Opt. 2: BS sets SR PUCCH for each SR process (or configuration) for the plurality of SR processes (or configurations), and UE performs positive SR + HARQ-ACK with SR PUCCH resources corresponding to a single SR process (or configuration) Transmission method
단말은 특정 SR PUCCH 자원을 선택하여 전송함으로써 대응되는 SR process (또는 SR configuration)에 대한 positive SR을 표현하고, 추가로 해당 자원에서 HARQ-ACK을 전송할 수 있다.The UE may select and transmit a specific SR PUCCH resource to express a positive SR for a corresponding SR process (or SR configuration), and may further transmit HARQ-ACK on the corresponding resource.
이때, 상기 동작은 SR PUCCH 자원이 특정 PUCCH format (예: PUCCH format 1)인 경우에만 적용될 수 있다.In this case, the operation may be applied only when the SR PUCCH resource has a specific PUCCH format (for example, PUCCH format 1).
(3) Opt. 3: 상기 복수 개의 SR process (또는 configuration)에 대해 multi-bits SR 정보를 구성하고, HARQ-ACK 전송 시 UCI payload로 포함시켜 A/N PUCCH 자원으로 multi-bits SR + HARQ-ACK 정보를 전송하는 방안(3) Opt. 3: configuring multi-bits SR information for the plurality of SR processes (or configurations) and including multi-bits SR information in the UCI payload when transmitting HARQ-ACK to transmit multi-bits SR + HARQ-ACK information to A / N PUCCH resources measures
- 상기 multi-bits SR은 positive/negative SR 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보를 포함하거나 그리고/또는 복수 개의 SR process (또는 configuration)들 중 전체 또는 일부 SR process (configuration)들에 대한 SR process (또는 configuration)별 positive/negative SR 정보를 포함할 수 있다.The multi-bits SR includes information on whether a positive / negative SR and which SR process (or configuration) exist and / or all or some of the plurality of SR processes (or configurations); The configuration may include positive / negative SR information for each SR process (or configuration).
- 기지국은 (단말 특정한) 상위 계층 신호 (예: RRC signaling)를 통해 단말에게 (동일 시점에) 적어도 하나 SR process (또는 configuration)이 positive SR인지 또는 모든 복수 개의 SR process (또는 configuration)들이 negative SR인지의 정보를 보고하도록 설정하거나, 또는 복수 개의 SR process (또는 configuration)에 대한 상기 multi-bits SR 정보를 보고하도록 설정할 수 있다.The base station determines (at the same time) that at least one SR process (or configuration) is a positive SR or that all the plurality of SR processes (or configurations) are negative SRs to the UE through (terminal specific) higher layer signal (eg, RRC signaling). It may be configured to report the recognition information, or to report the multi-bits SR information for a plurality of SR processes (or configurations).
- 기지국이 단말에게 복수의 PUCCH resource set을 (단말 특정한) (상위 계층 신호로) 설정하고, 단말이 UCI payload size에 따라 상기 복수의 PUCCH resource set 중 (UCI 전송에 활용할) 하나의 PUCCH resource set을 선택하는 경우, (기지국이 multi-bit SR 전송을 설정한 경우) multi-bit SR 정보는 상기 PUCCH resource set을 선택하는 UCI payload에 포함될 수 있다.The base station sets a plurality of PUCCH resource sets (terminal specific) (as a higher layer signal) to the terminal, and the terminal uses one PUCCH resource set (utilized for UCI transmission) among the plurality of PUCCH resource sets according to the UCI payload size. In case of selection, the multi-bit SR information (when the base station sets up the multi-bit SR transmission) may be included in the UCI payload for selecting the PUCCH resource set.
본 발명에 있어, HARQ-ACK (only) 전송을 위해 지시된 PUCCH 자원은 A/N PUCCH 자원, SR (only) 전송을 위해 지시된 PUCCH 자원은 SR PUCCH 자원으로 명명한다.In the present invention, the PUCCH resources indicated for HARQ-ACK (only) transmission are called A / N PUCCH resources, and the PUCCH resources indicated for SR (only) transmission are called SR PUCCH resources.
또한, 본 발명에 있어, SR PUCCH, A/N PUCCH는 각각 SR only, HARQ-ACK only 전송을 위해 설정된 자원을 의미하며, 단말은 SR only를 SR PUCCH로 전송하고, HARQ-ACK only 또는 negative SR + HARQ-ACK를 A/N PUCCH로 전송할 수 있다.In addition, in the present invention, SR PUCCH, A / N PUCCH means resources set for SR only, HARQ-ACK only transmission, respectively, the terminal transmits SR only to SR PUCCH, HARQ-ACK only or negative SR + HARQ-ACK can be transmitted on the A / N PUCCH.
또한, 본 발명에 있어, SR process (또는 configuration)은 (특정 서비스에 대한) SR (scheduling request) 전송을 위한 시간/주파수/코드 영역 (time/frequency/code domain)에서의 자원 설정을 의미할 수 있으며, 복수 개의 SR process (또는 configuration)은 각각 서로 다른 서비스에 대한 SR 정보를 의미할 수 있다.In addition, in the present invention, an SR process (or configuration) may refer to resource configuration in a time / frequency / code domain for transmitting a scheduling request (SR) for a specific service. The plurality of SR processes (or configurations) may mean SR information for different services.
또한, 단말이 특정 PUCCH 자원에 CS offset/OCC offset/PRB offset을 적용하여 다른 PUCCH 자원을 도출함은 상기 특정 PUCCH 자원에 대해 나머지는 동일하고 CS index/OCC index/PRB index만 일정 offset만큼 차이가 나는 PUCCH 자원을 도출함을 의미할 수 있다.In addition, the terminal derives another PUCCH resource by applying CS offset / OCC offset / PRB offset to a specific PUCCH resource. The other PUCCH resources are the same for the specific PUCCH resource, and only the CS index / OCC index / PRB index differs by a predetermined offset. I can mean to derive the PUCCH resource.
보다 구체적으로, 단말이 SR과 HARQ-ACK 동시 전송을 수행하는 경우, SR only를 위해 설정된 PUCCH 자원이 PUCCH format 0이면 상기 단말은 A/N PUCCH 자원으로부터 도출되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하고, SR only를 위해 설정된 PUCCH 자원이 PUCCH format 1이면 상기 단말은 SR PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송할 수 있다. More specifically, when the UE performs simultaneous SR and HARQ-ACK transmission, if the PUCCH resource configured for SR only is PUCCH format 0, the UE is a positive SR + HARQ-ACK as a PUCCH resource derived from A / N PUCCH resource If the information is transmitted and the PUCCH resource configured for SR only is PUCCH format 1, the UE may transmit positive SR + HARQ-ACK information to the SR PUCCH resource.
기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 단말은 positive SR 정보뿐만 아니라 상기 positive SR인 SR process (또는 configuration)가 어떤 SR process (또는 configuration)인지에 대한 정보를 추가로 기지국에게 보고하는 것이 기지국의 UL 스케줄링 지연을 줄이는 방향일 수 있다. 일 예로, 단말이 positive/negative SR 정보만 기지국에게 보고하고 (positive SR 인 경우) 어떤 SR process에 대한 positive SR인지에 대한 추가 정보를 알려주지 않을 경우, 기지국은 SR 전송 이후 다시 BSR (buffer status report)를 받은 이후에야 해당 positive SR에 대응하는 서비스 타입 (service type)을 알 수 있다. 이에 따라, UL 스케줄링 지연이 유발될 수 있다. When the base station configures a plurality of SR processes (or configurations) for the terminal, the terminal further includes not only positive SR information but also information on which SR process (or configuration) is the SR process (or configuration) that is the positive SR. Reporting to may be a way to reduce the UL scheduling delay of the base station. For example, if the UE reports only positive / negative SR information to the base station (if it is a positive SR) and does not provide additional information on which SR process is a positive SR, the base station again sends a buffer status report (BSR) after the SR transmission. Only after receiving the service will the service type corresponding to the corresponding positive SR be known. Accordingly, UL scheduling delay may be caused.
따라서 본 발명에 따른 단말은 positive/negative SR 정보와 함께 상기 positive SR 정보가 어떤 SR process (또는 configuration)에 대한 정보인지를 추가로 알려줄 수 있다.Accordingly, the terminal according to the present invention may further inform which SR process (or configuration) the positive SR information is together with the positive / negative SR information.
구체적으로, 단말이 A/N PUCCH 자원으로부터 도출되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하는 경우, 상기 단말은 상기 A/N PUCCH에 CS offset/OCC offset/PRB offset 등을 적용하여 복수 개의 SR process (또는 configuration)들에 대응되는 복수 개의 PUCCH 자원을 도출하고, 상기 복수 개의 PUCCH 자원들 중 특정 한 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송할 수 있다. Specifically, when the terminal transmits the positive SR + HARQ-ACK information to the PUCCH resources derived from the A / N PUCCH resources, the terminal applies a plurality of CS offset / OCC offset / PRB offset to the A / N PUCCH, etc. A plurality of PUCCH resources corresponding to the number of SR processes (or configurations) may be derived, and positive SR + HARQ-ACK information may be transmitted to a specific PUCCH resource among the plurality of PUCCH resources.
또는 상기 단말이 SR PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하는 경우, 복수 개의 SR process (또는 configuration)들에 대응되는 각 SR process (또는 configuration) 별 SR PUCCH 자원이 미리 설정될 수 있다. 이에, 상기 단말은 상기 복수 개의 PUCCH 자원들 중 특정 한 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송할 수 있다. 이때, 단말은 (복수 개의 SR process (또는 configuration)에 대응되는) 복수 개의 PUCCH 자원들 중 특정 단일 PUCCH 자원을 선택함으로써 특정 SR process (또는 configuration)에 대한 positive SR을 표현하고, 상기 선택된 자원으로 HARQ-ACK을 추가적으로 전송할 수 있다. Alternatively, when the terminal transmits positive SR + HARQ-ACK information as SR PUCCH resources, SR PUCCH resources for each SR process (or configuration) corresponding to a plurality of SR processes (or configurations) may be preset. Accordingly, the terminal may transmit positive SR + HARQ-ACK information to a specific PUCCH resource among the plurality of PUCCH resources. In this case, the UE expresses a positive SR for a specific SR process (or configuration) by selecting a specific single PUCCH resource among a plurality of PUCCH resources (corresponding to a plurality of SR processes (or configurations)) and uses HARQ as the selected resource. -ACK can be additionally transmitted.
또 다른 방법으로, 기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 단말은 positive/negative SR 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보 또는 복수 개의 SR process (또는 configuration)들 중 전체 또는 일부 SR process (configuration)들에 대한 SR process (또는 configuration)별 positive/negative SR 정보를 포함하는 multi-bits SR 정보를 UCI payload에 추가하여 상기 multi-bits SR + HARQ-ACK을 A/N PUCCH 자원으로 전송할 수 있다.As another method, when the base station configures a plurality of SR processes (or configurations) for the terminal, the terminal may include information on whether a positive / negative SR and which SR process (or configuration) exist for the plurality of SR processes. (Or configuration) multi-bits SR information including positive / negative SR information per SR process (or configuration) for all or some SR processes (configurations) by adding to the UCI payload to the multi-bits SR + HARQ -ACK may be transmitted to the A / N PUCCH resource.
상기 제17 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The seventeenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.18. 제18 SR 전송 방법3.18. 18th SR Transmission Method
단말이 전송할 서로 다른 UCI 타입에 대한 PUCCH(들) (예: A/N PUCCH, SR PUCCH, CSI PUCCH)이 시간 축에서 일부 심볼들에 대해서만 중첩되었을 때 (예: partial overlapping), 단말은 아래와 같이 UCI 다중화를 수행하여 (단일 PUCCH 자원으로) 기지국에게 전송할 수 있다.When the PUCCH (s) (eg A / N PUCCH, SR PUCCH, CSI PUCCH) for different UCI types to be transmitted by the UE overlap only for some symbols on the time axis (eg partial overlapping), the UE UCI multiplexing may be performed to the base station (as a single PUCCH resource).
본 발명에 있어, UCI 타입들 중 최우선 순위를 갖는 UCI 타입 (only) (이하 UCI A) 전송을 위해 설정된 PUCCH 자원은 PUCCH A로 명명하며, 단말이 특정 UCI 타입(들) 집합 S에 대한 UCI 다중화를 수행한다는 가정 하에 선택되는 PUCCH 자원을 PUCCH B로 명명한다. 이때, 초기 상태에서 S는 모든 UCI 타입(들)을 포함할 수 있으며, PUCCH B는 모든 UCI 타입(들)에 대한 UCI 다중화를 가정한 경우의 PUCCH 자원일 수 있다.In the present invention, the PUCCH resource configured for UCI type (only) (hereinafter UCI A) transmission having the highest priority among the UCI types is named PUCCH A, and the UE is UCI multiplexed for a specific UCI type (s) set S. The PUCCH resource selected under the assumption that s is performed is named PUCCH B. In this case, in the initial state, S may include all UCI type (s), and PUCCH B may be a PUCCH resource in the case of assuming UCI multiplexing for all UCI type (s).
(1) PUCCH A = PUCCH B인 경우(1) When PUCCH A = PUCCH B
- 집합 S 내 UCI 타입(들)에 대해서, 단말은 PUCCH A 전송 시점을 기준으로 해당 UCI 타입 (또는 PUCCH)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점 전에 UL 전송이 지시된 UCI 타입 (또는 PUCCH)에 대한 UCI 다중화를 수행하고 (집합 S에 포함), 그렇지 않은 UCI 타입은 UCI 다중화에서 배제하는 방안 (집합 S에서 제외)For the UCI type (s) in the set S, the UE is before a specific time corresponding to the (minimum) UL timing (or UE processing time) for the corresponding UCI type (or PUCCH) based on the PUCCH A transmission time point and the Perform UCI multiplexing on the UCI type (or PUCCH) indicated by UL transmission before the point in time (included in set S), and exclude the UCI type not included in UCI multiplex (except in set S).
일 예로, PUCCH B가 변경되는 경우, 단말은 변경된 집합 S 및 PUCCH B에 대해 앞서 상술한 제18 SR 전송 방법을 반복 적용For example, when the PUCCH B is changed, the UE repeatedly applies the aforementioned 18 th SR transmission method to the changed set S and PUCCH B.
다른 예로, PUCCH B가 변경되지 않는 경우, 단말은 PUCCH B로 집합 S 내 UCI 타입(들)에 대한 UCI 다중화 정보를 전송As another example, when the PUCCH B is not changed, the UE transmits the UCI multiplexing information for the UCI type (s) in the set S to the PUCCH B.
(2) PUCCH A ≠ PUCCH B인 경우(2) When PUCCH A ≠ PUCCH B
(2-1) PUCCH B 전송 시점을 기준으로 UCI A (또는 PUCCH A)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점보다 과거에 UCI A (또는 PUCCH A)에 대한 UL 전송이 지시된 경우, (2-1) A time before a specific time corresponding to (minimum) UL timing (or UE processing time) for UCI A (or PUCCH A) on the basis of PUCCH B transmission time point and UCI A (or PUCCH in the past than the time point) If the UL transmission for A) is indicated,
- 집합 S 내 UCI type(들)에 대해, 단말은 PUCCH B 전송 시점을 기준으로 해당 UCI 타입 (또는 PUCCH)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점 보다 과거에 UL 전송이 지시된 UCI 타입 (또는 PUCCH)에 대한 UCI 다중화를 수행하고 (집합 S에 포함), 그렇지 않은 UCI type은 UCI 다중화에서 배제하는 방안 (집합 S에서 제외)For the UCI type (s) in the set S, the UE is before a specific time corresponding to the (minimum) UL timing (or UE processing time) for the corresponding UCI type (or PUCCH) based on the PUCCH B transmission time point and the Perform UCI multiplexing (included in set S) for UCI types (or PUCCHs) indicated by UL transmissions earlier than the time point, and exclude UCI types that are not in UCI multiplex (except in set S).
일 예로, PUCCH B가 변경되는 경우, 단말은 변경된 집합 S 및 PUCCH B에 대해 앞서 상술한 제18 SR 전송 방법을 반복 적용For example, when the PUCCH B is changed, the UE repeatedly applies the aforementioned 18 th SR transmission method to the changed set S and PUCCH B.
다른 예로, PUCCH B가 변경되지 않는 경우, 단말은 PUCCH B로 집합 S 내 UCI type(들)에 대한 UCI 다중화 정보를 전송As another example, when the PUCCH B is not changed, the UE transmits the UCI multiplexing information for the UCI type (s) in the set S to the PUCCH B.
(2-2) PUCCH B 전송 시점을 기준으로 UCI A (또는 PUCCH A)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 이후에 UCI A (또는 PUCCH A)에 대한 UL 전송이 지시된 경우, 단말은 아래 조건을 충족하는 새로운 S 및 새로운 PUCCH B를 탐색할 수 있다.(2-2) UCI A (or PUCCH A) after a specific time corresponding to (minimum) UL timing (or UE processing time) for UCI A (or PUCCH A) on the basis of PUCCH B transmission time If UL transmission is indicated, the UE can search for a new S and a new PUCCH B that satisfy the following conditions.
- 조건: PUCCH B 전송 시점을 기준으로 UCI A (또는 PUCCH A)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점보다 과거에 UCI A (또는 PUCCH A)에 대한 UL 전송이 지시됨  Condition: A time before a specific time corresponding to (minimum) UL timing (or UE processing time) for UCI A (or PUCCH A) on the basis of PUCCH B transmission time point and UCI A (or PUCCH A) in the past than the time point UL transmission directed to
- 여기서, 상기 조건을 충족하는 가장 최소의 UCI multiplexing 대상 UCI 타입(들) 집합 S는 UCI A only이고, 이때의 PUCCH B = PUCCH A일 수 있다.  Here, the smallest UCI multiplexing target UCI type (s) set S that satisfies the above condition may be UCI A only, and PUCCH B = PUCCH A at this time.
- 단말은 UCI 타입(들) 간 우선 순위에 기반하여 차례로 UCI 타입을 제외하면서 상기 탐색 과정을 수행할 수 있다.  The terminal may perform the discovery process while sequentially excluding the UCI type based on the priority between UCI type (s).
이때, 상기 단말은 상기 새로운 S 및 PUCCH B를 토대로 앞서 상술한 제18 SR 전송 방법의 (2-1)를 적용할 수 있다.In this case, the terminal may apply (2-1) of the above-described 18 th SR transmission method based on the new S and the PUCCH B.
본 발명에 있어, SR PUCCH, A/N PUCCH, CSI PUCCH는 각각 SR only, HARQ-ACK only, CSI only 전송을 위해 설정된 자원을 의미한다.In the present invention, SR PUCCH, A / N PUCCH, and CSI PUCCH mean resources configured for SR only, HARQ-ACK only, and CSI only transmission, respectively.
또한, 본 발명에 있어, UCI 타입들 간 우선 순위는 HARQ-ACK > CSI > SR이거나, 또는 각 UCI 타입에 대응되는 PUCCH 전송 시점이 빠를수록 높은 우선 순위를 가지거나, 또는 각 UCI 타입에 대응되는 UL 전송 지시 시점이 늦을수록 높은 우선 순위를 가질 수 있다고 가정한다.In addition, in the present invention, the priority between the UCI types is HARQ-ACK> CSI> SR, or the PUCCH transmission time corresponding to each UCI type gets higher priority or corresponds to each UCI type. It is assumed that a later UL transmission indication time can have a higher priority.
또한, PUCCH B 자원 결정 시, 상기 PUCCH B 자원은 UL timing 정보를 배제한 상태에서 UCI multiplexing 대상 UCI type(들) 조합에만 의존하여 결정될 수 있다.In addition, when determining the PUCCH B resource, the PUCCH B resource may be determined depending only on the combination of UCI multiplexing target UCI type (s) in a state in which UL timing information is excluded.
구체적인 예로, SR PUCCH와 A/N PUCCH가 시간 축에서 일부 심볼들에 대해서만 중첩되는 경우, 단말은 A/N PUCCH > SR PUCCH (또는 HARQ-ACK > SR)로 우선 순위를 가정하고 아래와 같이 동작할 수 있다.As a specific example, when the SR PUCCH and the A / N PUCCH overlap only for some symbols on the time axis, the UE assumes priority with A / N PUCCH> SR PUCCH (or HARQ-ACK> SR) and operates as follows. Can be.
1) A/N PUCCH 전송 시점 기준 (최소) UL timing (또는 UE processing time)에 대응되는 과거 일정 시간 구간 이내에 positive SR이 발생한 경우, 단말은 SR 전송을 생략하고 HARQ-ACK 정보만 전송1) When a positive SR occurs within a certain time interval corresponding to UL timing (or UE processing time) based on A / N PUCCH transmission timing (minimum), the UE omits SR transmission and transmits only HARQ-ACK information.
2) A/N PUCCH 전송 시점 기준 (최소) UL timing (또는 UE processing time)에 대응되는 과거 일정 시간 구간 이내에 positive SR이 발생한 경우, 단말은 SR과 HARQ-ACK을 UCI multiplexing한 정보를 전송. 여기서, 단말이 SR과 HARQ-ACK이 UCI multiplexing된 정보 (예: positive SR + HARQ-ACK)를 전송하는 방식은 앞서 상술한 제16 SR 전송 방법을 따를 수 있다.2) A / N PUCCH transmission time criterion (minimum) When a positive SR occurs within a certain time interval corresponding to UL timing (or UE processing time), the UE transmits UCI multiplexing information between the SR and the HARQ-ACK. Here, the method of the UE transmitting the information in which the SR and the HARQ-ACK are UCI multiplexed (for example, positive SR + HARQ-ACK) may follow the aforementioned 16 th SR transmission method.
이와 같은 방법에 따르면, 단말에게 복수의 UCI type들에 대한 복수의 PUCCH 전송이 적어도 일부 심볼들에 대해서 중첩되도록 지시되고 단말이 상기 복수 UCI type들에 대한 일부 또는 전체 UCI 정보를 UCI multiplexing하여 전송할 수 있는 경우, 상기 복수 UCI type들 중 가장 우선 순위가 높은 UCI type (UCI A)에 대한 전송은 항상 보장되면서 UL timing (또는 UE processing time) 관점에서 준비가 된 UCI type들에 대한 UCI 다중화가 가능한 많이 지원될 수 있다.According to this method, the UE is instructed so that a plurality of PUCCH transmissions for a plurality of UCI types are overlapped for at least some symbols, and the UE can transmit UCI multiplexing some or all UCI information for the plurality of UCI types. If there is, transmission of the highest priority UCI type (UCI A) among the plurality of UCI types is always guaranteed and UCI multiplexing on UCI types that are ready in terms of UL timing (or UE processing time) is possible. Can be supported.
추가적으로, (Case 1) 상이한 시작 심볼 그리고/또는 전송 구간(duration)을 갖는 다수의 PUCCH들이 일부 시간 자원에서 부분적으로 중첩되는 경우와 (Case 2) 상이한 시작 심볼 그리고/또는 전송 구간(duration)을 갖는 PUCCH와 PUSCH가 일부 시간 자원에서 부분적으로 중첩되는 경우, 각 Case 별로 단말은 아래와 같이 동작할 수 있다. 이때, 상기 Case 1과 Case 2에서 적어도 하나의 PUCCH는 HARQ-ACK 전송을 위한 PUCCH일 수 있다.Additionally, (Case 1) where multiple PUCCHs with different start symbols and / or transmission durations partially overlap in some time resources and (Case 2) having different start symbols and / or transmission durations When the PUCCH and the PUSCH partially overlap in some time resources, the UE may operate as follows in each case. In this case, at least one PUCCH in Case 1 and Case 2 may be a PUCCH for HARQ-ACK transmission.
<1> Case 1<1> Case 1
<1-1> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분한 경우<1-1> When UE processing time (or UL timing) for HARQ-ACK transmission is sufficient
- 상기 복수 PUCCH 자원으로 전송되도록 설정된 복수의 UCI를 (상기 복수 PUCCH들 중) (복수 UCI들에 대한 UCI type의 조합에 따라) 약속된 방식에 의해 선택된 단일 PUCCH 자원으로 (UCI multiplexing하여) 전송-Transmitting a plurality of UCIs configured to be transmitted to the plurality of PUCCH resources (of the plurality of PUCCHs) to a single PUCCH resource (by UCI multiplexing) selected by a promised scheme (according to a combination of UCI types for a plurality of UCIs).
<1-2> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분하지 않은 경우<1-2> Insufficient UE processing time (or UL timing) for HARQ-ACK transmission
- 복수 PUCCH 자원 중 우선 순위가 높은 단일 PUCCH만 전송하고, 나머지 PUCCH들은 전송 생략-Transmit only a single high priority PUCCH among multiple PUCCH resources and omit the remaining PUCCHs
<2> Case 2<2> Case 2
<2-1> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분한 경우<2-1> When UE processing time (or UL timing) for HARQ-ACK transmission is sufficient
- PUCCH로 전송되도록 설정된 UCI (예: HARQ-ACK)를 PUSCH로 UCI piggyback하여 전송-UCI piggybacked UCI (eg HARQ-ACK) configured to be transmitted on PUCCH by PUSCH
<2-2> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분하지 않은 경우<2-2> Insufficient UE processing time (or UL timing) for HARQ-ACK transmission
- PUSCH 전송을 생략하고 PUCCH를 전송Omit PUSCH transmission and transmit PUCCH
또는, 단말은 PUCCH들간 또는 PUSCH와 PUCCH 간 중첩되는 일부 심볼들에 대해서 PUCCH 또는 PUSCH에 대한 레이트 매칭 또는 펑쳐링을 수행할 수도 있다.Alternatively, the UE may perform rate matching or puncturing on the PUCCH or the PUSCH with respect to some symbols overlapping between the PUCCHs or between the PUSCH and the PUCCH.
추가적으로, 단말이 전송할 서로 다른 UCI 타입에 대한 PUCCH(들) (예: A/N PUCCH, SR PUCCH, CSI PUCCH)이 시간 축에서 일부 심볼들에 대해서만 중첩되었을 때 (예: partial overlapping), 단말은 아래와 같이 UCI multiplexing을 수행하여 (단일 PUCCH 자원으로) 기지국에게 전송할 수 있다.Additionally, when the PUCCH (s) (eg A / N PUCCH, SR PUCCH, CSI PUCCH) for different UCI types to be transmitted by the UE overlap only for some symbols on the time axis (eg partial overlapping), the UE UCI multiplexing may be performed as follows to transmit to a base station (as a single PUCCH resource).
본 발명에 있어, SR PUCCH, A/N PUCCH, CSI PUCCH는 각각 SR (only), HARQ-ACK (only), CSI (only) 전송을 위해 설정 그리고/또는 지시된 PUCCH 자원을 의미한다.In the present invention, SR PUCCH, A / N PUCCH, and CSI PUCCH mean PUCCH resources configured and / or indicated for SR (only), HARQ-ACK (only), and CSI (only) transmission, respectively.
또한, 본 발명에 있어, PF0, PF1, PF2, PF3, PF4는 각각 PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, PUCCH format 4를 의미한다.In the present invention, PF0, PF1, PF2, PF3, and PF4 mean PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4, respectively.
또한, 본 발명에 있어, PF X/Y는 PF X 또는 PF Y를 의미한다.In addition, in the present invention, PF X / Y means PF X or PF Y.
또한, 본 발명에 있어, positive SR이 발생했다는 의미는 단말이 전송할 UL 데이터가 발생했음을 의미하거나 또는 UL 스케줄링을 요청하기로 판단한 경우를 의미할 수 있다.In addition, in the present invention, the meaning that a positive SR has occurred may mean that the UE has generated UL data to be transmitted or has determined to request UL scheduling.
1> Case 1: A/N PUCCH와 SR PUCCH가 중첩된 경우1> Case 1: A / N PUCCH and SR PUCCH overlap
1-1> A/N PUCCH는 PF2/3/4이고, SR PUCCH는 PF0/1인 경우1-1> A / N PUCCH is PF2 / 3/4 and SR PUCCH is PF0 / 1
- HARQ-ACK bit(s)과 explicit SR bit(s)를 포함하는 UCI를 A/N PUCCH로 전송UCI including HARQ-ACK bit (s) and explicit SR bit (s) is transmitted to A / N PUCCH
- 이때, 상기 explicit SR bit(s)는 A/N PUCCH 전송 (시작) 시점 T를 기준으로 아래의 정보를 포함할 수 있다.At this time, the explicit SR bit (s) may include the following information on the basis of the A / N PUCCH transmission (start) time T.
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 상기 explicit SR bit(s)는 positive SR 정보를 지시If a positive SR occurs before and after TT 0 , the explicit SR bit (s) indicates positive SR information.
- T-T0 시점 이후 (T 시점 전까지) positive SR이 발생한 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시If a positive SR occurs after TT 0 (before T), the explicit SR bit (s) indicates negative SR information.
- T 시점 전까지 positive SR이 발생하지 않은 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시  If no positive SR occurs before time T, the explicit SR bit (s) indicates negative SR information.
1-2> A/N PUCCH는 PF0이고, SR PUCCH는 PF0인 경우1-2> A / N PUCCH is PF0 and SR PUCCH is PF0
- A/N PUCCH 전송 (시작) 시점 T 기준-T based on A / N PUCCH transmission (start)
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 단말은 HARQ-ACK 정보를 (A/N PUCCH로부터 얻어진) PF0 자원으로 전송. 여기서, 상기 PF0 자원은 A/N PUCCH 자원 (예: PF0 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF0 자원일 수 있다.If a positive SR occurs before and after TT 0 , the UE transmits HARQ-ACK information to the PF0 resource (obtained from A / N PUCCH). Here, the PF0 resource is applied to the A / N PUCCH resource (eg, PF0 resource) by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset. It may be a PF0 resource obtained.
- T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송-If a positive SR occurs after TT 0 , the UE skips the SR transmission and transmits HARQ-ACK (only) to the A / N PUCCH
- T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송  If no positive SR occurs before time T, the UE transmits HARQ-ACK (only) information to A / N PUCCH
1-3> A/N PUCCH는 PF0이고, SR PUCCH는 PF1인 경우1-3> A / N PUCCH is PF0 and SR PUCCH is PF1
1-3-1> Opt. 1: A/N PUCCH 전송 (시작) 시점 T 기준1-3-1> Opt. 1: T based on A / N PUCCH transmission (start)
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 단말은 HARQ-ACK 정보를 (A/N PUCCH로부터 얻어진) PF0 자원으로 전송. 여기서, 상기 PF0 자원은 A/N PUCCH 자원 (예: PF0 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF0 자원일 수 있다.If a positive SR occurs before and after TT 0 , the UE transmits HARQ-ACK information to the PF0 resource (obtained from A / N PUCCH). Here, the PF0 resource is applied to the A / N PUCCH resource (eg, PF0 resource) by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset. It may be a PF0 resource obtained.
- T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송-If a positive SR occurs after TT 0 , the UE skips the SR transmission and transmits HARQ-ACK (only) to the A / N PUCCH
- T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송If no positive SR occurs before time T, the UE transmits HARQ-ACK (only) information to A / N PUCCH
1-3-2> Opt. 2: SR PUCCH 전송 (시작) 시점 T 기준1-3-2> Opt. 2: T based on SR PUCCH transmission (start)
- T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우If HARQ-ACK transmission is indicated before and at TT 0
- HARQ-ACK + negative SR (또는 HARQ-ACK only)인 경우, 단말은 HARQ-ACK 정보를 A/N PUCCH로 전송   In case of HARQ-ACK + negative SR (or HARQ-ACK only), the UE transmits HARQ-ACK information to the A / N PUCCH.
- HARQ-ACK + positive SR인 경우, 단말은 HARQ-ACK 정보를 SR PUCCH로 전송. 여기서, HARQ-ACK 정보는 SR PUCCH 내 (전체 또는 일부) UCI 시퀀스(들)에 특정 QPSK 변조 심볼을 곱하여 전송될 수 있다.   If HARQ-ACK + positive SR, the UE transmits HARQ-ACK information to the SR PUCCH. Here, HARQ-ACK information may be transmitted by multiplying a specific QPSK modulation symbol by (all or in part) UCI sequence (s) in the SR PUCCH.
- T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송If HARQ-ACK transmission is indicated after TT 0 , the UE omits SR transmission and transmits HARQ-ACK (only) to A / N PUCCH.
1-4> A/N PUCCH는 PF1이고, SR PUCCH는 PF0인 경우, A/N PUCCH 전송 (시작) 시점 T 기준으로,1-4> When A / N PUCCH is PF1 and SR PUCCH is PF0, A / N PUCCH transmission (start) based on time T,
1-4-1> T-T0 시점 및 그 이전에 positive SR이 발생한 경우,1-4-1> If positive SR occurred at or before TT 0 ,
- Opt. 1: SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송-Opt. 1: Omit SR transmission and transmit HARQ-ACK (only) to A / N PUCCH
- Opt. 2: HARQ-ACK 정보를 PF1 자원으로 전송. 여기서, 상기 PF1 자원은 A/N PUCCH 자원 (예: PF1 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF1 자원일 수 있다.-Opt. 2: Send HARQ-ACK information to PF1 resource. In this case, the PF1 resource may be configured by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset to an A / N PUCCH resource (eg, PF1 resource). It can be the PF1 resource obtained.
- Opt. 3: HARQ-ACK 정보를 A/N PUCCH로 전송하되, SR 정보는 A/N PUCCH 내 특정 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식 또는 DM-RS에 DPSK 변조 심볼을 곱하여 전송하는 방식으로 표현됨. 여기서, 단말이 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식은 Base sequence를 바꾸거나 또는 CS (cyclic shift)를 변경하는 방식일 수 있다.-Opt. 3: HARQ-ACK information is transmitted to the A / N PUCCH, SR information is represented by a method of changing a specific UCI sequence or DM-RS sequence in the A / N PUCCH or a method of multiplying the DM-RS by DPSK modulation symbols . Here, the method of changing the UCI sequence or the DM-RS sequence by the terminal may be a method of changing the base sequence or the CS (cyclic shift).
1-4-2> T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송1-4-2> If a positive SR occurs after TT 0 , the UE omits SR transmission and transmits HARQ-ACK (only) to A / N PUCCH.
1-4-3> T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송1-4-3> If no positive SR occurs before time T, the UE transmits HARQ-ACK (only) information to A / N PUCCH
1-5> A/N PUCCH는 PF1이고, SR PUCCH는 PF1인 경우, 1-5> When A / N PUCCH is PF1 and SR PUCCH is PF1,
1-5-1> A/N PUCCH 전송 (시작) 시점 T 기준으로,1-5-1> A / N PUCCH transmission (start) At time T,
1-5-1-1> T-T0 시점 및 그 이전에 positive SR이 발생한 경우,1-5-1-1> If a positive SR occurred at or before TT 0 ,
- Opt. 1: SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송-Opt. 1: Omit SR transmission and transmit HARQ-ACK (only) to A / N PUCCH
- Opt. 2: HARQ-ACK 정보를 PF1 자원으로 전송. 여기서, 상기 PF1 자원은 A/N PUCCH 자원 (예: PF1 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF1 자원일 수 있다.-Opt. 2: Send HARQ-ACK information to PF1 resource. In this case, the PF1 resource may be configured by applying a physical resource block (PRB) index offset and / or a CS (cyclic shift) index offset and / or an orthogonal cover code (OCC) index offset to an A / N PUCCH resource (eg, PF1 resource). It can be the PF1 resource obtained.
- Opt. 3: HARQ-ACK 정보를 A/N PUCCH로 전송하되, SR 정보는 A/N PUCCH 내 특정 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식 또는 DM-RS에 DPSK 변조 심볼을 곱하여 전송하는 방식으로 표현됨. 여기서, 단말이 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식은 Base sequence를 바꾸거나 또는 CS (cyclic shift)를 변경하는 방식일 수 있다.-Opt. 3: HARQ-ACK information is transmitted to the A / N PUCCH, SR information is represented by a method of changing a specific UCI sequence or DM-RS sequence in the A / N PUCCH or a method of multiplying the DM-RS by DPSK modulation symbols . Here, the method of changing the UCI sequence or the DM-RS sequence by the terminal may be a method of changing the base sequence or the CS (cyclic shift).
- Opt. 4: HARQ-ACK 정보를 SR PUCCH로 전송. 이때, HARQ-ACK 정보가 전송되는 SR PUCCH 내 UCI 시퀀스에 특정 QPSK 변조 심볼을 곱하여 전송될 수 있다. 또한, 상기 Opt. 4의 동작은 SR PUCCH가 A/N PUCCH보다 전송 시점이 늦거나 같은 경우 (또는 SR PUCCH 전송 구간이 A/N PUCCH 전송 구간 내에 포함되는 경우)에만 적용되고, 그렇지 않은 경우 단말은 SR 전송 생략 및 HARQ-ACK (only) 정보를 A/N PUCCH로 전송할 수 있다.-Opt. 4: Send HARQ-ACK information to SR PUCCH. In this case, the HARQ-ACK information may be transmitted by multiplying a specific QPSK modulation symbol by the UCI sequence in the SR PUCCH. In addition, the Opt. The operation of 4 is applied only when the SR PUCCH is later than or equal to the transmission time of the A / N PUCCH (or when the SR PUCCH transmission interval is included in the A / N PUCCH transmission interval). Otherwise, the UE omits SR transmission and HARQ-ACK (only) information may be transmitted through A / N PUCCH.
1-5-1-2> T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송1-5-1-2> If a positive SR occurs after TT 0 , the UE omits SR transmission and transmits HARQ-ACK (only) to A / N PUCCH.
1-5-1-3> T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송1-5-1-3> If a positive SR has not occurred before the time point T, the UE transmits HARQ-ACK (only) information to the A / N PUCCH.
1-5-2> Opt. 2: SR PUCCH 전송 (시작) 시점 T 기준으로,1-5-2> Opt. 2: based on the T at the time of the SR PUCCH transmission (start)
1-5-2-1> T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우,1-5-2-1> When HARQ-ACK transmission is indicated at or before TT 0 ,
1-5-2-1-1> HARQ-ACK + negative SR (또는 HARQ-ACK only)인 경우, 단말은 HARQ-ACK 정보를 A/N PUCCH로 전송1-5-2-1-1> In case of HARQ-ACK + negative SR (or HARQ-ACK only), the UE transmits HARQ-ACK information to the A / N PUCCH.
1-5-2-1-2> HARQ-ACK + positive SR인 경우, 단말은 HARQ-ACK 정보를 SR PUCCH로 전송. 여기서, HARQ-ACK 정보를 전송하는 SR PUCCH 내 (전체 또는 일부) UCI 시퀀스에 특정 QPSK 변조 심볼을 곱하여 전송될 수 있다.1-5-2-1-2> In case of HARQ-ACK + positive SR, the UE transmits HARQ-ACK information to the SR PUCCH. Here, the UCI sequence in the SR PUCCH transmitting HARQ-ACK information may be transmitted by multiplying a specific QPSK modulation symbol.
추가적으로, SR PUCCH의 (전송) 종료 시점이 A/N PUCCH의 (전송) 종료 시점보다 일정 시간 Td만큼 늦는 경우, 단말은 SR 전송을 생략하고 HARQ-ACK (only)를 A/N PUCCH로 전송할 수 있다. 이때, 상기 일정 시간 Td는 사전에 약속된 값 또는 기지국에 의해 설정된 값일 수 있다.In addition, when the (transmission) end time of the SR PUCCH is delayed by a predetermined time T d after the (transmission) end time of the A / N PUCCH, the UE omits SR transmission and transmits HARQ-ACK (only) to the A / N PUCCH. Can be. In this case, the predetermined time T d may be a predetermined value or a value set by the base station.
1-5-2-2> T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송1-5-2-2> If HARQ-ACK transmission is instructed after the TT 0 time point, the UE omits SR transmission and transmits HARQ-ACK (only) to A / N PUCCH
2> Case 2: A/N PUCCH과 CSI PUCCH가 중첩된 경우2> Case 2: A / N PUCCH and CSI PUCCH overlap
2-1> A/N PUCCH는 PF0/1이고, CSI PUCCH는 PF2/3/4인 경우2-1> A / N PUCCH is PF0 / 1 and CSI PUCCH is PF2 / 3/4
- 단말은 CSI 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송-UE omits CSI transmission and transmits HARQ-ACK (only) to A / N PUCCH
2-2> A/N PUCCH는 PF2/3/4이고, CSI PUCCH는 PF2/3/4인 경우2-2> A / N PUCCH is PF2 / 3/4 and CSI PUCCH is PF2 / 3/4
- 단말은 HARQ-ACK bit(s)과 CSI bit(s)를 포함하는 UCI를 A/N PUCCH로 전송. 여기서, A/N PUCCH에 대한 전송 (시작) 시점을 T1, CSI PUCCH에 대한 전송 (시작) 시점을 T2라고 할 때, 상기 CSI에 대한 (시간 축) CSI reference resource는 T1-T0 시점 및 그 이전에 존재하면서 T2-TCQI 시점 및 그 이전에 존재하는 가장 빠른 (valid) DL slot일 수 있다. 또한, (valid) DL slot이라고 함은 (단말에게) DL slot으로 설정된 slot 그리고/또는 측정 갭 (예: measurement gap)에 포함되지 않는 slot 그리고/또는 CSI reporting이 수행되는 DL BWP (bandwidth part)와 동일 DL BWP에 포함되는 slot을 의미할 수 있다. 또한, TCQI는 기지국과 단말 간 사전에 약속된 값 또는 기지국이 단말에게 설정한 값일 수 있다.UE transmits UCI including HARQ-ACK bit (s) and CSI bit (s) to A / N PUCCH. Here, when the transmission (start) time point for the A / N PUCCH is T 1 and the transmission (start time) time point for the CSI PUCCH is T 2 , the (time axis) CSI reference resource for the CSI is T 1 -T 0. It may be the fastest DL slot present at and before the T 2 -T CQI point. Also, (valid) DL slot refers to a slot configured as a DL slot (to a terminal) and / or a slot not included in a measurement gap (eg, a measurement gap) and / or a DL bandwidth part (BWP) where CSI reporting is performed. It may mean a slot included in the same DL BWP. In addition, T CQI may be a value previously set between the base station and the terminal or a value set by the base station to the terminal.
- A/N PUCCH가 SPS (semi-persistent scheduling) PDSCH에 대한 HARQ-ACK 정보를 싣는 경우, 단말은 다음과 같이 UCI 다중화를 수행할 수 있다.When the A / N PUCCH carries HARQ-ACK information on the semi-persistent scheduling (SPS) PDSCH, the UE may perform UCI multiplexing as follows.
- CSI PUCCH 전송 시점 T 기준으로,  On the basis of the transmission time T of the CSI PUCCH,
- T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우, 단말은 HARQ-ACK bit(s)과 CSI bit(s)를 포함하는 UCI를 CSI PUCCH로 전송. 이때, 복수의 CSI PUCCH 자원(들)이 존재하는 경우, 상기 HARQ-ACK bit(s)과 CSI bit(s)를 전송할 (단일) CSI PUCCH 자원이 선택될 수 있다.If HARQ-ACK transmission is indicated before and at TT 0 , the UE transmits the UCI including the HARQ-ACK bit (s) and the CSI bit (s) to the CSI PUCCH. In this case, when there are a plurality of CSI PUCCH resource (s), a (single) CSI PUCCH resource for transmitting the HARQ-ACK bit (s) and the CSI bit (s) may be selected.
- T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 CSI 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송If HARQ-ACK transmission is indicated after TT 0 , the UE omits CSI transmission and transmits HARQ-ACK (only) to A / N PUCCH.
3> Case 3: A/N PUCCH, CSI PUCCH, 그리고 SR PUCCH가 중첩된 경우3> Case 3: A / N PUCCH, CSI PUCCH, and SR PUCCH overlap
3-1> A/N PUCCH는 PF0/1인 경우, 단말은 CSI 전송 생략 및 HARQ-ACK과 SR에 대해 설정/지시된 (PUCCH format 관점에서의) PUCCH 자원 조합에 따라 앞서 상술한 Case 1 내 동작을 따름3-1> In case the A / N PUCCH is PF0 / 1, the UE skips CSI transmission and sets the PUCCH resource combination (from the PUCCH format perspective) set / instructed for HARQ-ACK and SR. Follow the action
3-2> A/N PUCCH는 PF2/3/4이고, CSI PUCCH는 PF2/3/4인 경우, 3-2> When A / N PUCCH is PF2 / 3/4 and CSI PUCCH is PF2 / 3/4,
3-2-1> 단말은 HARQ-ACK bit(s), CSI bit(s), 그리고 explicit SR bit(s)를 포함하는 UCI를 A/N PUCCH로 전송할 수 있다.3-2-1> UE can transmit UCI including HARQ-ACK bit (s), CSI bit (s), and explicit SR bit (s) to A / N PUCCH.
- 이때, A/N PUCCH에 대한 전송 (시작) 시점을 T1, CSI PUCCH에 대한 전송 (시작) 시점을 T2라고 할 때, 상기 CSI에 대한 (시간 축) CSI reference resource는 T1-T0 시점 및 그 이전에 존재하면서 T2-TCQI 시점 및 그 이전에 존재하는 가장 빠른 (valid) DL slot일 수 있다. 여기서, (valid) DL slot이라고 함은 (단말에게) DL slot으로 설정된 slot 그리고/또는 측정 갭 (예: measurement gap)에 포함되지 않는 slot 그리고/또는 CSI reporting이 수행되는 DL BWP (bandwidth part)와 동일 DL BWP에 포함되는 slot을 의미할 수 있다. 또한, TCQI는 기지국과 단말 간 사전에 약속된 값 또는 기지국이 단말에게 설정한 값일 수 있다.In this case, when the transmission (starting) time point for the A / N PUCCH is T 1 and the transmission (starting) time point for the CSI PUCCH is T 2 , the (time axis) CSI reference resource for the CSI is T 1 -T. It may be the fastest DL slot existing at and before the 0 time point and present at and before the T 2 -T CQI time point. Here, (valid) DL slot refers to a slot configured as a DL slot (to a terminal) and / or a slot not included in a measurement gap (eg, a measurement gap) and / or a DL bandwidth part (BWP) where CSI reporting is performed. It may mean a slot included in the same DL BWP. In addition, T CQI may be a value previously set between the base station and the terminal or a value set by the base station to the terminal.
- 또한, 상기 explicit SR bit(s)는 A/N PUCCH 전송 (시작) 시점 T1를 기준으로 아래의 정보를 포함할 수 있다.In addition, the explicit SR bit (s) may include the following information on the basis of the A / N PUCCH transmission (start) time T1.
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 상기 explicit SR bit(s)는 positive SR 정보를 지시If a positive SR occurs before and after TT 0 , the explicit SR bit (s) indicates positive SR information.
- T-T0 시점 이후 (T 시점 전까지) positive SR이 발생한 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시If a positive SR occurs after TT 0 (before T), the explicit SR bit (s) indicates negative SR information.
- T 시점 전까지 positive SR이 발생하지 않은 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시  If no positive SR occurs before time T, the explicit SR bit (s) indicates negative SR information.
3-2-2> A/N PUCCH가 SPS PDSCH에 대한 HARQ-ACK 정보를 포함하는 경우, 단말은 다음과 같이 UCI 다중화를 수행할 수 있다. 3-2-2> When the A / N PUCCH includes HARQ-ACK information for the SPS PDSCH, the UE may perform UCI multiplexing as follows.
CSI PUCCH 전송 시점 T 를 기준으로,Based on the CSI PUCCH transmission time T,
- T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우, 단말은 HARQ-ACK bit(s)과 CSI bit(s)를 그리고 explicit SR bit(s)를 포함하는 UCI를 CSI PUCCH로 전송. 이때, 복수의 CSI PUCCH 자원(들)이 존재하는 경우, 상기 HARQ-ACK bit(s)과 CSI bit(s)를 전송할 (단일) CSI PUCCH 자원이 선택될 수 있다.If HARQ-ACK transmission is indicated before and at TT 0 , the UE transmits a HARQ-ACK bit (s), a CSI bit (s), and a UCI including an explicit SR bit (s) to the CSI PUCCH. In this case, when there are a plurality of CSI PUCCH resource (s), a (single) CSI PUCCH resource for transmitting the HARQ-ACK bit (s) and the CSI bit (s) may be selected.
- T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 CSI 전송 생략 후 HARQ-ACK과 SR간의 UCI 다중화 규칙을 따름 (또는 앞서 상술한 Case 1의 동작을 따름)If HARQ-ACK transmission is indicated after TT 0 , the UE follows the UCI multiplexing rule between HARQ-ACK and SR after omitting CSI transmission (or follow the operation of Case 1 described above).
상기 구성들에 있어, T 그리고/또는 T0에 대한 시간 축 단위는 slot 그리고/또는 OFDM symbol일 수 있으며, 특히 T0는 HARQ-ACK 전송을 위한 (최소) UL timing 또는 UE processing time에 대응되는 시간 또는 단말이 PUCCH 자원을 변경하여 전송할 때 필요한 (최소) UL timing 또는 UE processing time에 대응되는 시간일 수 있다. 상기 T0 값은 (UE capability 등에 따라) 사전에 약속된 방식으로 결정되거나 또는 기지국에 의해 설정된 값일 수 있다.In the above configurations, the time axis unit for T and / or T 0 may be a slot and / or an OFDM symbol, in particular T 0 corresponds to (minimum) UL timing or UE processing time for HARQ-ACK transmission. It may be time or time corresponding to (minimum) UL timing or UE processing time required when the UE changes PUCCH resources and transmits the same. The T 0 value may be determined in a predetermined manner (depending on UE capability, etc.) or may be a value set by a base station.
또한, 앞서 상술한 설명에서 별도로 명시되지 않은 경우의 A/N PUCCH는 DL assignment (또는 DL scheduling DCI) 기반으로 스케줄링 받은 PDSCH에 대한 HARQ-ACK 정보를 전송하는 PUCCH 자원일 수 있다.In addition, A / N PUCCH when not otherwise specified in the above description may be a PUCCH resource for transmitting HARQ-ACK information on the PDSCH scheduled based on DL assignment (or DL scheduling DCI).
또한, 상기 Case 1에서 단말은 (단말의 구현에 따라) 임의로 HARQ-ACK only만 A/N PUCCH로 전송하거나 또는 HACK-ACK과 SR을 UCI 다중화하여 약속된 PUCCH 자원으로 전송할 수 있다.In addition, in Case 1, the UE may arbitrarily transmit only HARQ-ACK only to A / N PUCCH (depending on the implementation of the terminal) or UCI multiplexes HACK-ACK and SR to a promised PUCCH resource.
상기 제18 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The eighteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.19. 제19 SR 전송 방법3.19. 19th SR Transmission Method
기지국이 단말에게 ((단말 특정한) 상위 계층 신호 (예: RRC signaling)를 통해) SR (scheduling request) 전송을 위한 PUCCH 자원 (이하 SR PUCCH)에 대한 (OFDM 심볼 단위의) PUCCH 전송 주기 그리고/또는 슬롯 (slot) 내 (SR) PUCCH 전송 시작 (OFDM) 심볼 (index) 그리고/또는 (OFDM 심볼 단위의) PUCCH 전송 길이 등을 설정할 수 있을 때, 단말은 상기 (SR 전송을 위한) (OFDM 심볼 단위의) PUCCH 전송 주기 내 (상대적인) PUCCH 전송 시작 (OFDM) 심볼 (index)을 아래와 같이 도출 및 적용할 수 있다.The base station transmits a PUCCH transmission period (in OFDM symbol units) to PUCCH resources (hereinafter SR PUCCH) for transmitting a scheduling request (SR) to a terminal (via (terminal specific) higher layer signal (eg, RRC signaling)) and / or When it is possible to set (SR) PUCCH transmission start (OFDM) symbol and / or PUCCH transmission length (in OFDM symbol), etc., in a slot, the user equipment (OFDM symbol unit) (for SR transmission) can be configured. I) The (relative) PUCCH transmission start (OFDM) index in the PUCCH transmission period can be derived and applied as follows.
Figure PCTKR2018005149-appb-M000001
Figure PCTKR2018005149-appb-M000001
여기서, N0, Nperiod, Noffset, Nduration은 각각 (SR 전송을 위해 설정된) (OFDM 심볼 단위의) PUCCH 전송 주기 내 (상대적인) PUCCH 전송 시작 (OFDM) 심볼 (index), (OFDM 심볼 단위의) PUCCH 전송 주기, 슬롯 (slot) 내 (SR) PUCCH 전송 시작 (OFDM) 심볼 (index), 그리고 (OFDM 심볼 단위의) PUCCH 전송 길이를 의미한다.Where N 0 , N period , N offset , and N duration are the (relative) PUCCH transmission start (OFDM) symbols (OFDM symbol index) in the PUCCH transmission period (in OFDM symbol units) (set for SR transmission), respectively. A) means a PUCCH transmission period, a (SR) PUCCH transmission start (OFDM) symbol in a slot, and a PUCCH transmission length (in OFDM symbol units).
또한, 슬롯 (slot)은 복수의 (연속된) OFDM 심볼들로 구성된 기본 스케줄링 단위를 의미하며, 일 예로 하나의 슬롯은 14개 OFDM 심볼들로 구성될 수 있다.In addition, a slot means a basic scheduling unit composed of a plurality of (contiguous) OFDM symbols. For example, one slot may include 14 OFDM symbols.
본 발명에 있어, 단말은 기지국이 SR 전송을 PUCCH 자원에 대해 PUCCH 전송 길이보다 짧은 PUCCH 전송 주기를 설정하지 않는다고 기대할 수 있다 (즉, Nperiod ≥ Nduration).In the present invention, the terminal may expect that the base station does not set the SR transmission period PUCCH transmission period shorter than the PUCCH transmission length for the PUCCH resources (that is, N period ≥ N duration ).
본 발명에 있어, (SR 전송을 위해 설정된) 슬롯 (slot) 내 (SR) PUCCH 전송 시작 (OFDM) 심볼 (index)는 기지국이 단말에게 설정한 PUCCH 자원의 전송 시작 (OFDM) 심볼 (index) 그리고/또는 별도의 시간 축 오프셋 (예: SR offset) 값에 의해 결정될 수 있다.In the present invention, the (SR) PUCCH transmission start (OFDM) symbol in a slot (configured for SR transmission) is a transmission start (OFDM) symbol of a PUCCH resource set to the UE by the base station and And / or a separate time axis offset (eg SR offset) value.
또한, 본 발명에 있어, SR PUCCH에 대한 (OFDM 심볼 단위의) PUCCH 전송 주기 내 (상대적인) PUCCH 전송 시작 (OFDM) 심볼 (index)은 PUCCH 전송 주기 내에서 정의되는 Local indexing에서의 (OFDM) 심볼 (index)를 의미할 수 있다.Also, in the present invention, the (relative) PUCCH transmission start (OFDM) symbol in the PUCCH transmission period (in OFDM symbol units) for SR PUCCH is an (OFDM) symbol in Local indexing defined within the PUCCH transmission period. It can mean (index).
보다 구체적으로, 본 발명의 실시 예에 따른 NR 시스템에서 14개의 (연속한) OFDM 심볼이 하나의 슬롯 (slot)을 구성하고, 상기 슬롯 내 OFDM 심볼 Index는 0, 1, 2, …, 13으로 설정될 수 있다. 이때, 기지국은 단말에 대해 SR 전송을 위한 PUCCH 전송 주기를 7개 OFDM 심볼 (Nperiod=7)로, PUCCH 전송 길이를 2개 OFDM 심볼 (Nduration=2)로, 그리고 슬롯 (slot) 내 PUCCH 전송 시작 심볼 (index) (Noffset=6)을 6으로 설정할 수 있다. More specifically, in the NR system according to the embodiment of the present invention, 14 (contiguous) OFDM symbols constitute one slot, and the OFDM symbol Index in the slot is 0, 1, 2,... , 13 may be set. In this case, the base station transmits PUCCH transmission period for SR transmission to the UE with 7 OFDM symbols (N period = 7), PUCCH transmission length with 2 OFDM symbols (N duration = 2), and PUCCH in slots. The transmission start symbol (N offset = 6) may be set to 6.
만약 단말이 상기 PUCCH 전송 주기 내 (SR 전송을 위한) PUCCH 시작 심볼 (index) (N0)를 단순히 전송 주기에 대한 Modulo 연산으로 결정될 경우 (예: N0 = 6 mod 7 = 6), 2개 심볼 길이를 갖는 SR PUCCH의 첫 번째 심볼은 k번째 슬롯 내 OFDM 심볼 (index) 13으로, 두 번째 심볼은 (k+1)번째 슬롯 내 OFDM 심볼 (index) 0으로 전송될 수 있다. 상기와 같이 단말이 SR을 2개 슬롯에 걸쳐 전송하는 동작은 기지국이 적어도 2개 슬롯에 대한 UL 전송을 보장해야 하는 바, 기지국의 스케줄링 유연성을 제한하여 바람직하지 않은 동작일 수 있다. If the UE determines the PUCCH start symbol (for N 0 ) in the PUCCH transmission period (N 0 ) by simply modulo operation for the transmission period (eg N 0 = 6 mod 7 = 6), two The first symbol of the SR PUCCH having a symbol length may be transmitted as an OFDM symbol (index) 13 in a k-th slot, and the second symbol may be transmitted as an OFDM symbol (index) 0 in a (k + 1) th slot. As described above, an operation of transmitting an SR over two slots by the terminal may be undesirable because the base station should guarantee UL transmission for at least two slots, thereby limiting scheduling flexibility of the base station.
따라서, 본 발명에서는 PUCCH 전송 주기 내 (SR 전송을 위한) PUCCH 시작 심볼 (index) (N0)을 구할 때, PUCCH 전송 주기에서 PUCCH 전송 길이를 뺀 값에 대해 Modulo 연산을 적용하며 (예: N0 = 6 mod (7-2) = 5), SR 전송이 단일 슬롯 내에 한정되도록 하는 방안을 제안한다.Therefore, in the present invention, when obtaining a PUCCH start symbol (for N transmission) (N 0 ) in a PUCCH transmission period, a Modulo operation is applied to a value obtained by subtracting a PUCCH transmission length from a PUCCH transmission period (eg, N 0 = 6 mod (7-2) = 5), we propose a scheme for SR transmission to be limited to a single slot.
상기 제19 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The nineteenth SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.20. 제20 SR 전송 방법3.20. 20th SR Transmission Method
단말이 전송할 HARQ-ACK 전송 PUCCH 자원 (이하 A/N PUCCH)과 SR 전송 PUCCH 자원 (이하 SR PUCCH)이 시간 축에서 전체 또는 일부 중첩되었을 때, 단말은 HARQ-ACK과 SR 간의 우선 순위를 토대로 아래와 같이 UCI 전송을 수행할 수 있다.When the HARQ-ACK transmission PUCCH resources (hereinafter referred to as A / N PUCCH) and the SR transmission PUCCH resources (hereinafter referred to as SR PUCCH) to be transmitted by the UE are overlapped in whole or in part on the time axis, the UE is based on the priority between HARQ-ACK and the SR. UCI transmission can be performed together.
(1) SR이 HARQ-ACK 보다 우선 순위가 높은 경우(1) SR has higher priority than HARQ-ACK
(1-1) Positive SR이 TMUX - T1 이전 시점 (또는 해당 시점)에 발생한 경우, 단말은 A/N과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송(1-1) If a positive SR occurs before (or a corresponding point in time) T MUX -T 1 , the UE transmits U / I multiplexed A / N and SR as a single PUCCH resource.
(1-2) Positive SR이 TMUX - T1 이후 시점에 발생한 경우(1-2) Positive SR occurs after T MUX -T 1
- 단말은 A/N 전송을 생략 (또는 중단)하고, SR을 SR PUCCH로 전송-UE skips (or stops) A / N transmission and transmits SR to SR PUCCH
- 또는, X bits (예: X=2) 이하의 A/N인 경우, 단말은 해당 A/N과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송Or, if A / N is less than or equal to X bits (for example, X = 2), the UE UCI multiplexes the corresponding A / N and the SR as a single PUCCH resource
- 또는, X bits (예: X=2) 초과의 A/N인 경우, 단말은 특정 단일 (예: PCell (Primary Cell)) PDSCH에 대한 A/N만을 SR과 UCI 다중화하여 단일 PUCCH 자원으로 전송Or, in case of A / N exceeding X bits (eg, X = 2), the UE transmits only A / N for a specific single (eg, PCell (Primary Cell)) PDSCH and UCI multiplexes the SR as a single PUCCH resource.
(2) HARQ-ACK이 SR 보다 우선 순위가 높은 경우(2) HARQ-ACK has higher priority than SR
(2-1) Positive SR이 TMUX - T1 이전 시점 (또는 해당 시점)에 발생한 경우, 단말은 A/N과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송(2-1) If a positive SR occurs before (or a corresponding point in time) T MUX -T 1 , the UE transmits U / N multiplexing of A / N and SR as a single PUCCH resource.
(2-2) Positive SR이 TMUX - T1 이후 시점에 발생한 경우, 단말은 SR 전송을 생략 (또는 중단)하고, A/N만 A/N PUCCH로 전송(2-2) If a positive SR occurs after T MUX -T 1 , the UE skips (or stops) SR transmission and transmits only A / N to A / N PUCCH.
본 발명에 있어, TMUX는 A/N과 SR에 대한 UCI multiplexing 결과를 전송하는 PUCCH 자원의 전송 시점을 의미하며, T1은 아래 중 하나일 수 있다. 또는 상기 TMUX - T1는 단말이 HARQ-ACK에 대한 Encoding을 시작하는 시점을 의미할 수 있다.In the present invention, T MUX means a transmission time of a PUCCH resource for transmitting the UCI multiplexing result for A / N and SR, T 1 may be one of the following. Alternatively, the T MUX -T 1 may mean a time point at which UE starts encoding for HARQ-ACK.
1) Opt. 1: 단말에게 (상위 계층 신호 등으로) 설정된 (최소) PDSCH-to-HARQ-ACK timing1) Opt. 1: (minimum) PDSCH-to-HARQ-ACK timing set to the UE (such as higher layer signal)
2) Opt. 2: 단말이 마지막으로 수신한 (HARQ-ACK 전송 대상) PDSCH에 대해 설정/지시된 PDSCH-to-HARQ-ACK timing2) Opt. 2: PDSCH-to-HARQ-ACK timing set / instructed for the last PDSCH (target HARQ-ACK transmission) received by the UE
3) Opt. 3: 단말 역량(또는 구현)에 따른 (최소) PDSCH-to-HARQ-ACK timing (또는 UE processing time)3) Opt. 3: (minimum) PDSCH-to-HARQ-ACK timing (or UE processing time) according to UE capability (or implementation)
상기 구성에 있어, PUCCH Format에 따라 단말은 아래와 같이 (HARQ-ACK과 SR 간) UCI 다중화를 수행할 수 있다.In the above configuration, the UE may perform UCI multiplexing (between HARQ-ACK and SR) according to the PUCCH Format.
<1> A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 PF 0/1인 경우, 단말은 SR bit(s)를 UCI에 Appending한 후 A/N PUCCH로 A/N과 SR 전송<1> When A / N PUCCH is PF 2/3/4 and SR PUCCH is PF 0/1, UE transmits A / N and SR to A / N PUCCH after Appending SR bit (s) to UCI
<2> A/N PUCCH가 PF 0/1이고, SR PUCCH가 PF 0/1인 경우 (둘 다 PF 1인 경우 제외), 단말은 CS가 X (예: X=1) 만큼 증가된 A/N PUCCH로 A/N 전송 (Positive SR은 CS 증가로 표현)<2> If the A / N PUCCH is PF 0/1 and the SR PUCCH is PF 0/1 (both are PF 1), the UE may increase the CS by X (eg, X = 1). A / N transmission with N PUCCH (Positive SR is expressed as CS increase)
<3> A/N PUCCH가 PF 1이고, SR PUCCH가 PF 1인 경우, 단말은 SR PUCCH로 A/N의 변조 심볼을 전송 (Positive SR은 SR PUCCH 선택/전송으로 표현). 이때, 상기 동작은 SR PUCCH의 시작 심볼이 A/N PUCCH의 시작 심볼과 같거나 늦는 경우에만 적용될 수 있다.<3> When the A / N PUCCH is PF 1 and the SR PUCCH is PF 1, the UE transmits an A / N modulation symbol to the SR PUCCH (Positive SR is represented by SR PUCCH selection / transmission). In this case, the operation may be applied only when the start symbol of the SR PUCCH is equal to or later than the start symbol of the A / N PUCCH.
또한, 상기 구성에 있어, 단말은 SR과 HARQ-ACK 간의 우선 순위를 다음과 같이 판단할 수 있다.In addition, in the above configuration, the terminal may determine the priority between the SR and the HARQ-ACK as follows.
1> 기지국이 상위 계층 신호로 우선 순위 관계를 설정1> base station establishes a priority relationship with higher layer signals
2> SR 주기의 절대값 기준으로 판단. 일 예로, SR 주기가 일정 값 이하이면 SR이 HARQ-ACK보다 높은 우선 순위를 가지고, 그 외의 경우, HARQ-ACK이 SR보다 높은 우선 순위를 가질 수 있다.2> Determined based on the absolute value of the SR cycle. For example, if the SR period is less than or equal to a predetermined value, the SR may have a higher priority than the HARQ-ACK, and in other cases, the HARQ-ACK may have a higher priority than the SR.
3> 단말에게 설정된 PDSCH-to-HARQ-ACK timing과 SR 주기 간 대소 관계로 판단. 일 예로, PDSCH-to-HARQ-ACK timing이 SR 주기보다 큰 경우, SR이 HARQ-ACK보다 높은 우선 순위를 가지고, 그 외의 경우, HARQ-ACK이 SR보다 높은 우선 순위를 가질 수 있다. 이때, 상기 PDSCH-to-HARQ-ACK timing은 아래 중 하나일 수 있다.3> Determined by the magnitude relationship between the PDSCH-to-HARQ-ACK timing configured to the UE and the SR period. For example, when the PDSCH-to-HARQ-ACK timing is greater than the SR period, the SR may have a higher priority than the HARQ-ACK, and in other cases, the HARQ-ACK may have a higher priority than the SR. In this case, the PDSCH-to-HARQ-ACK timing may be one of the following.
- Opt. 1: 단말에게 설정된 (최소) PDSCH-to-HARQ-ACK timing-Opt. 1: (minimum) PDSCH-to-HARQ-ACK timing configured to UE
- Opt. 2: 단말이 마지막으로 수신한 (HARQ-ACK 전송 대상) PDSCH에 대한 PDSCH-to-HARQ-ACK timing-Opt. 2: PDSCH-to-HARQ-ACK timing for the PDSCH (target HARQ-ACK transmission) last received by the terminal
- Opt. 3: 단말 역량(또는 구현)에 따른 (최소) PDSCH-to-HARQ-ACK timing-Opt. 3: (minimum) PDSCH-to-HARQ-ACK timing according to terminal capability (or implementation)
본 발명에 있어, SR PUCCH, A/N PUCCH는 각각 SR (only), HARQ-ACK (only) 전송을 위해 설정 그리고/또는 지시된 PUCCH 자원을 의미할 수 있다.In the present invention, SR PUCCH and A / N PUCCH may refer to PUCCH resources configured and / or indicated for SR (only) and HARQ-ACK (only) transmission, respectively.
또한, 본 발명에 있어, PF 0, PF 1, PF 2, PF 3, PF 4는 각각 PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, PUCCH format 4를 의미하며, PF X/Y는 PF X 또는 PF Y를 의미할 수 있다.In addition, in the present invention, PF 0, PF 1, PF 2, PF 3, PF 4 means PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, PUCCH format 4, respectively, PF X / Y May mean PF X or PF Y.
또한, 본 발명에 있어, PDSCH-to-HARQ-ACK timing는 PDSCH 종료 시점부터 HARQ-ACK 전송 시점까지의 시간을 의미할 수 있다.In addition, in the present invention, PDSCH-to-HARQ-ACK timing may mean a time from the PDSCH end time to the HARQ-ACK transmission time.
또한, 본 발명에 있어, Positive SR이 발생했다는 의미는 단말이 전송할 UL 데이터가 발생함을 의미하거나 또는 UL 스케줄링을 요청하기로 판단한 경우를 의미할 수 있다.In addition, in the present invention, the fact that a positive SR has occurred may mean that the UE has generated UL data to be transmitted or has determined to request UL scheduling.
보다 구체적으로, HARQ-ACK과 SR 간의 UCI 다중화에 있어서, 단말이 HARQ-ACK에 대한 인코딩을 시작한 이후 또는 HARQ-ACK에 대한 PUCCH 전송을 시작한 이후에 positive SR이 발생할 수 있다. 이때, 단말이 상기 SR을 어떻게 처리할 것인지에 대한 고려가 필요할 수 있다.More specifically, in UCI multiplexing between HARQ-ACK and SR, a positive SR may occur after the UE starts encoding for HARQ-ACK or starts transmitting PUCCH for HARQ-ACK. In this case, it may be necessary to consider how the terminal will process the SR.
만약 HARQ-ACK이 SR 보다 우선 순위를 갖는 경우, 단말은 Positive SR이 HARQ-ACK encoding 이전에 발생하면 SR과 HARQ-ACK을 다중화 (multiplexing)하여 단일 PUCCH 자원으로 전송하고, 그렇지 않으면 SR 전송을 다음 번 주기로 지연시키고 HARQ-ACK 전송만 수행할 수 있다. If the HARQ-ACK has priority over the SR, the UE multiplexes the SR and the HARQ-ACK when the positive SR occurs before the HARQ-ACK encoding, and transmits the information to a single PUCCH resource. Delay in one cycle and can perform only HARQ-ACK transmission.
그러나 본 발명의 실시 예에 따른 NR 시스템에서는 URLLC 등의 서비스를 지원할 목적으로 낮은 지연 (Low latency)을 요구하는 SR 전송이 존재할 수 있으며, 상기 SR 전송은 HARQ-ACK에 비해 높은 우선 순위를 가질 수 있다. However, in the NR system according to an embodiment of the present invention, there may exist SR transmission requiring low latency in order to support services such as URLLC, and the SR transmission may have a higher priority than HARQ-ACK. have.
상기와 같이 SR이 HARQ-ACK 보다 우선 순위를 갖는 경우, 단말은 Positive SR이 HARQ-ACK encoding 이전에 발생하면 SR과 HARQ-ACK을 다중화 (multiplexing)하여 단일 PUCCH 자원으로 전송하고, 그렇지 않으면 HARQ-ACK 전송을 생략 또는 중단하고 SR 전송만 수행할 수 있다. If the SR has a priority over the HARQ-ACK as described above, if the positive SR occurs before the HARQ-ACK encoding, the terminal multiplexes the SR and HARQ-ACK to transmit a single PUCCH resource, otherwise, HARQ- ACK transmission may be omitted or stopped and only SR transmission may be performed.
이때, 상기 단말의 HARQ-ACK encoding 시작 시점은 단말 구현에 전적으로 의존하거나 또는 상기 UCI multiplexing 결과를 전송할 PUCCH 자원 전송 시작 시점 대비 (최소) PDSCH-to-HARQ-ACK timing 이전 시점으로 약속될 수 있다. 이때, HARQ-ACK과 SR 간의 우선 순위는 기지국이 조절할 수 있도록 하는 것이 바람직할 수 있다. 일 예로, 기지국이 HARQ-ACK과 SR 간의 우선 순위를 조절하는 방법으로 아래와 같은 Option들을 고려될 수 있다.In this case, the HARQ-ACK encoding start time of the UE may be entirely dependent on the UE implementation, or may be promised to a time before (minimum) PDSCH-to-HARQ-ACK timing compared to the PUCCH resource transmission start time to transmit the UCI multiplexing result. In this case, it may be desirable for the base station to adjust the priority between the HARQ-ACK and the SR. For example, the following options may be considered as a method for adjusting the priority between the HARQ-ACK and the SR.
[1] Opt. 1: 상대적인 우선 순위가 상위 계층 신호 (예: RRC signaling) 로 설정됨[1] Opt. 1: relative priority is set to a higher layer signal (eg RRC signaling)
[2] Opt. 2: 상대적인 우선 순위가 SR 주기의 절대 값에 따라 설정됨[2] Opt. 2: relative priority is set according to the absolute value of the SR period
[3] Opt. 3: 상대적인 우선 순위가 PDSCH-to-HARQ-ACK timing과 SR 주기 간 관계로 판단[3] Opt. 3: Relative priority determined by relationship between PDSCH-to-HARQ-ACK timing and SR period
일 예로, Opt. 2의 경우, 단말은 SR 주기가 특정 값 이하이면 SR이 HARQ-ACK 보다 우선 순위가 높다고 간주할 수 있고, 반대로 SR 주기가 특정 값보다 크면 HARQ-ACK이 SR 보다 우선 순위가 높다고 판단할 수 있다. For example, Opt. In case 2, the UE may consider that the SR has a higher priority than the HARQ-ACK if the SR period is less than or equal to a specific value. On the contrary, if the SR period is greater than the specific value, the UE may determine that the HARQ-ACK has a higher priority than the SR. .
다른 예로, Opt. 3의 경우, 단말은 SR 주기가 자신에게 설정된 최소 PDSCH-to-HARQ-ACK timing보다 작으면 SR이 HARQ-ACK 보다 우선 순위가 높다고 간주할 수 있고, 그렇지 않으면 HARQ-ACK이 SR 보다 우선 순위가 높다고 판단할 수 있다. In another example, Opt. In case 3, the UE may consider that the SR has a higher priority than the HARQ-ACK if the SR period is smaller than the minimum PDSCH-to-HARQ-ACK timing set to it, otherwise the HARQ-ACK has a higher priority than the SR. We can judge that it is high.
도 12는 본 발명에 따라 SR이 HARQ-ACK 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.12 is a diagram briefly illustrating an SR transmission method of a terminal when an SR has a higher priority than an HARQ-ACK according to the present invention.
도 12는 앞서 상술한 Opt. 3과 같이 HARQ-ACK과 SR 간 우선 순위를 결정할 때, SR 주기가 (min) PDSCH-to-HARQ-ACK timing 보다 짧아 SR이 더 높은 우선 순위를 갖는 경우를 나타낸다. 12 is the Opt. When determining the priority between the HARQ-ACK and the SR as shown in FIG. 3, the SR period is shorter than (min) PDSCH-to-HARQ-ACK timing, indicating a case in which the SR has a higher priority.
따라서, Positive SR이 발생하면, 단말은 HARQ-ACK 전송을 생략하고 SR만 전송할 수 있다. 다만, 단말이 HARQ-ACK 전송 중에 Positive SR이 발생한 경우, 상기 단말은 HARQ-ACK 전송을 중단하고 SR 전송을 수행할 수 있다. Therefore, when a positive SR occurs, the UE may omit HARQ-ACK transmission and transmit only the SR. However, when a positive SR occurs during the HARQ-ACK transmission, the UE may stop the HARQ-ACK transmission and perform the SR transmission.
도 13 및 도 14는 본 발명에 따라 HARQ-ACK이 SR 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.13 and 14 illustrate a method for transmitting an SR of a terminal when HARQ-ACK has a higher priority than an SR according to the present invention.
도 13 및 도 14는 Opt. 3과 같이 HARQ-ACK과 SR 간 우선 순위를 결정할 때, SR 주기가 (min) PDSCH-to-HARQ-ACK timing 보다 길어서 HARQ-ACK이 더 높은 우선 순위를 갖는 경우를 나타낸다. 상기 경우, 단말은 HARQ-ACK encoding을 시작하기 이전에 Positive SR이 발생하면 HARQ-ACK과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송하고, 그렇지 않으면 SR 전송을 다음 주기로 지연시키고 HARQ-ACK만 전송할 수 있다. 13 and 14 show Opt. When determining the priority between the HARQ-ACK and the SR as shown in FIG. 3, the SR period is longer than the (min) PDSCH-to-HARQ-ACK timing, indicating a case in which the HARQ-ACK has a higher priority. In this case, if the positive SR occurs before the HARQ-ACK encoding starts, the UE transmits the HARQ-ACK and the SR to UCI multiplexes and transmits them as a single PUCCH resource. Otherwise, the UE may delay the SR transmission in the next cycle and transmit only the HARQ-ACK. have.
상기 구성들에 있어, SR 주기의 기준점을 (min) PDSCH-to-HARQ-ACK timing으로 설정하는 이유는 해당 값이 단말의 HARQ-ACK multiplexing을 위해 참조할 번들링 윈도우의 종료 시점에 대응하기 때문이다. 즉, 기지국은 단말이 적어도 상기 번들링 윈도우 내 PDSCH들을 다 검출해 본 다음에 HARQ-ACK에 대한 인코딩을 시작할 것으로 기대할 수 있다.In the above configurations, the reason why the reference point of the SR period is set to (min) PDSCH-to-HARQ-ACK timing is because the corresponding value corresponds to the end time of the bundling window to be referred for HARQ-ACK multiplexing of the UE. . That is, the base station may expect to start encoding for HARQ-ACK after the UE detects at least the PDSCHs in the bundling window.
추가적으로, HARQ-ACK과 SR을 UCI multiplexing하여 전송하는 단일 PUCCH 자원은 HARQ-ACK과 SR 각각에 대한 PUCCH 자원의 PUCCH Format에 따라 다음과 같이 정의될 수 있다.Additionally, a single PUCCH resource for UCI multiplexing and transmitting HARQ-ACK and SR may be defined as follows according to the PUCCH Format of the PUCCH resource for each HARQ-ACK and SR.
1] A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 PF 0/1인 경우, 단말은 SR bit(s)를 UCI에 Appending한 후 A/N PUCCH로 A/N과 SR 전송1] When A / N PUCCH is PF 2/3/4 and SR PUCCH is PF 0/1, UE transmits A / N and SR to A / N PUCCH after appending SR bit (s) to UCI.
2] A/N PUCCH가 PF 0/1이고, SR PUCCH가 PF 0/1인 경우 (둘 다 PF 1인 경우 제외), 단말은 CS가 X (예: X=1) 만큼 증가된 A/N PUCCH로 A/N 전송 (Positive SR은 CS 증가로 표현)2] If the A / N PUCCH is PF 0/1 and the SR PUCCH is PF 0/1 (both are PF 1), the UE has A / N where CS is increased by X (eg X = 1). A / N transmission with PUCCH (Positive SR is expressed as CS increase)
3] A/N PUCCH가 PF 1이고, SR PUCCH가 PF 1인 경우, 단말은 SR PUCCH로 A/N의 변조 심볼을 전송 (Positive SR은 SR PUCCH 선택/전송으로 표현). 여기서, 상기 SR PUCCH의 Starting symbol이 A/N PUCCH의 Starting symbol 보다 빠른 경우, 단말은 SR 전송을 생략하고, A/N만 A/N PUCCH로 전송할 수 있다.3] When the A / N PUCCH is PF 1 and the SR PUCCH is PF 1, the UE transmits an A / N modulation symbol to the SR PUCCH (Positive SR is represented by SR PUCCH selection / transmission). In this case, when the Starting symbol of the SR PUCCH is earlier than the Starting symbol of the A / N PUCCH, the UE may omit the SR transmission and transmit only the A / N to the A / N PUCCH.
이때, 상기 AN PUCCH 및 SR PUCCH 가 모두 PF 1인 경우, HARQ-ACK 정보가 SR PUCCH로 전송될 때 HARQ-ACK encoding을 위한 UE processing time이 줄어들지 않도록 하기 위한 방안으로써 단말은 SR PUCCH가 AN PUCCH와 동일한 또는 같은 Starting symbol을 갖는 경우에만 상기 동작을 수행할 수 있다. 그렇지 않은 경우, 우선 순위에 따라 단말은 SR 또는 HARQ-ACK 전송을 생략할 수 있다.In this case, when both the AN PUCCH and the SR PUCCH are PF 1, when the HARQ-ACK information is transmitted to the SR PUCCH, the UE does not reduce the UE processing time for HARQ-ACK encoding and the SR PUCCH corresponds to the AN PUCCH. The above operation can be performed only when the same or the same starting symbol is used. Otherwise, the terminal may omit the SR or HARQ-ACK transmission according to the priority.
추가적으로, 단말이 전송할 HARQ-ACK (이하 A/N) 전송 PUCCH 자원 (이하 A/N PUCCH)과 SR 전송 PUCCH 자원 (이하 SR PUCCH)이 시간 축에서 전체 또는 일부 중첩되는 경우, A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 PF 0/1일 수 있다. 이때, 단말은 SR 정보를 Explicit bit(s)으로 표현한 후 상기 SR bit(s)를 인코딩 및 변조한 코딩된 변조 심볼 (Coded modulated symbol)들을 A/N PUCCH 내 펑쳐링된 RE들을 통해 전송할 수 있다. (즉, SR을 A/N PUCCH 내 특정 일부 RE들로 Piggyback하여 전송)In addition, when HARQ-ACK (hereinafter, A / N) transmission PUCCH resources (hereinafter, A / N PUCCH) and SR transmission PUCCH resources (hereinafter, SR PUCCH) to be transmitted by the UE are overlapped in whole or in part on the time axis, A / N PUCCH is PF 2/3/4, SR PUCCH may be PF 0/1. In this case, the UE may express the SR information as an explicit bit (s) and then transmit coded modulated symbols obtained by encoding and modulating the SR bit (s) through punctured REs in the A / N PUCCH. . (I.e. piggyback the SR to some specific REs in the A / N PUCCH)
여기서, SR bit(s)에 대한 변조 차수 (Modulation order)는 A/N과 동일할 수 있다.Here, the modulation order for the SR bit (s) may be the same as A / N.
또한, 상기 SR에 대한 (레이어 별) 코딩된 변조 심볼 (Coded modulated symbol (per layer)) 개수는 SR에 대한 UCI 페이로드 크기와 SR에 대한 설계 변수인 Beta-offset에 따라 변경될 수 있다.Also, the number of coded modulated symbols (per layer) for the SR may be changed according to the UCI payload size for the SR and Beta-offset, which is a design variable for the SR.
또한, 상기 A/N PUCCH에 대한 펑쳐링 기반으로 RE 매핑되는 SR 전송 RE들은 A/N과 SR이 중첩된 OFDM 심볼들 상의 A/N PUCCH 내 (UCI) RE들의 부분 집합(예: subset)이 되도록 제한될 수 있다.In addition, the SR transmission REs mapped to RE based on puncturing for the A / N PUCCH have a subset (eg, subset) of (UCI) REs in the A / N PUCCH on OFDM symbols in which A / N and SR overlap. May be limited.
보다 구체적으로, SR에 대한 상기 (레이어 별) 코딩된 변조 심볼 개수는 A/N에 대한 코딩 레이트 (또는 A/N에 대한 UCI payload size, A/N에 대한 CRC (Cyclic Redundancy Check) bits 크기, 그리고 A/N에 대한 A/N PUCCH 내 전송 RE 수) 또는 A/N PUCCH에 대한 최대 코딩 레이트, (SR에 대한) 설계 변수 beta-offset, (SR에 대한) 변조 차수 그리고 (SR에 대한) UCI 페이로드 크기에 기반하여 계산될 수 있다. More specifically, the number of coded modulation symbols (per layer) for the SR may include a coding rate for A / N (or UCI payload size for A / N, Cyclic Redundancy Check (CRC) bits size for A / N, And number of transmission REs in A / N PUCCH for A / N) or maximum coding rate for A / N PUCCH, design variable beta-offset (for SR), modulation order (for SR) and (for SR) It can be calculated based on the UCI payload size.
일 예로, A/N에 대한 Coding rate (또는 A/N PUCCH에 대한 최대 Coding rate)이
Figure PCTKR2018005149-appb-I000007
, SR에 대해 설정된 설계 변수 beta-offset은
Figure PCTKR2018005149-appb-I000008
, SR에 대한 Modulation order는
Figure PCTKR2018005149-appb-I000009
, SR에 대한 UCI payload size가
Figure PCTKR2018005149-appb-I000010
, SR에 대한 CRC bits 크기가
Figure PCTKR2018005149-appb-I000011
일 때, SR에 대한 Coded modulated symbol (per layer) 수
Figure PCTKR2018005149-appb-I000012
은 하기와 같이 계산될 수 있다.
For example, the coding rate for A / N (or the maximum coding rate for A / N PUCCH) is
Figure PCTKR2018005149-appb-I000007
, The design variable beta-offset set for the SR
Figure PCTKR2018005149-appb-I000008
, Modulation order for SR
Figure PCTKR2018005149-appb-I000009
, UCI payload size for SR
Figure PCTKR2018005149-appb-I000010
, CRC bits size for SR
Figure PCTKR2018005149-appb-I000011
, The number of Coded modulated symbols (per layers) for the SR
Figure PCTKR2018005149-appb-I000012
Can be calculated as follows.
Figure PCTKR2018005149-appb-M000002
Figure PCTKR2018005149-appb-M000002
여기서, UBSR 는 SR에 대한 Coded modulation symbol (per layer) 수의 상한 값을 의미한다. 일 예로, 상기 UBSR은 A/N과 SR이 중첩된 OFDM 심볼들 상의 A/N PUCCH 내 (UCI) RE 수일 수 있다.Here, UB SR means the upper limit of the number of coded modulation symbols (per layer) for the SR. For example, the UB SR may be the number of (UCI) REs in the A / N PUCCH on OFDM symbols in which A / N and SR overlap.
추가적으로, 단말이 전송할 HARQ-ACK 전송 PUCCH 자원 (이하 A/N PUCCH)과 SR 전송 PUCCH 자원 (이하 SR PUCCH)이 시간 축에서 전체 또는 일부 중첩되었을 때, 단말은 HARQ-ACK (이하 A/N)과 SR 간의 우선 순위를 토대로 아래와 같이 UCI 전송을 수행할 수 있다.In addition, when the HARQ-ACK transmission PUCCH resources (hereinafter, A / N PUCCH) and the SR transmission PUCCH resources (hereinafter, SR PUCCH) to be transmitted by the UE are overlapped in whole or in part on the time axis, the UE is HARQ-ACK (hereinafter, A / N). UCI transmission may be performed as follows based on the priority between the SR and the SR.
(A) A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 FP 0/1인 경우(A) A / N PUCCH is PF 2/3/4 and SR PUCCH is FP 0/1
(A-1) A/N이 SR보다 우선 순위가 높은 경우 (또는 A/N PUCCH와 SR PUCCH의 Starting symbol이 동일한 경우)(A-1) When A / N has higher priority than SR (or when Starting symbols of A / N PUCCH and SR PUCCH are the same)
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송-UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
- 단말은 A/N PUCCH로 전송할 UCI 인코딩 시작 이전까지 UL 데이터의 도착 (UL data arrival)이 없다고 판단한 경우, 이를 negative SR로 간주If the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, it is regarded as a negative SR.
(A-2) SR이 A/N보다 우선 순위가 높은 경우(A-2) SR has higher priority than A / N
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송-Opt. 1: UE omits A / N transmission and transmits only SR PUCCH
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송-Opt. 2: UE punctures A / N PUCCH REs on superimposed (OFDM) symbols and transmits (part or all) SR PUCCH in corresponding (OFDM) symbols
- Opt. 3: A/N을 A/N PUCCH로 전송하되, (일부 또는 전체) SR을 Explicit bit(s)로 표현하여 SR에 대한 코딩된 변조 심볼들을 A/N PUCCH 내 펑쳐링된 일부 RE들을 통해 전송-Opt. 3: transmit A / N to A / N PUCCH, expressing (part or all) SR as explicit bit (s) to transmit coded modulation symbols for SR through some RE punctured in A / N PUCCH
(B) A/N PUCCH가 PF 0/1이고, SR PUCCH가 PF 0/1인 경우 (A/N PUCCH가 PF 1이고 SR PUCCH가 PF 1인 경우 제외)(B) A / N PUCCH is PF 0/1 and SR PUCCH is PF 0/1 (except when A / N PUCCH is PF 1 and SR PUCCH is PF 1)
(B-1) A/N이 SR보다 우선 순위가 높은 경우 (또는 A/N PUCCH와 SR PUCCH의 Starting symbol이 동일한 경우)(B-1) When A / N has higher priority than SR (or when Starting symbols of A / N PUCCH and SR PUCCH are the same)
- Positive SR이면 단말은 A/N을 A/N PUCCH의 CS를 증가시킨 자원으로 전송, Negative SR이면 상기 단말은 A/N을 A/N PUCCH 자원으로 전송. 여기서, 상기 CS 증가는 전체 (OFDM) 심볼들 또는 SR과 중첩된 (OFDM) 심볼들 상의 A/N PUCCH 자원에 대해 적용될 수 있다.If it is a positive SR, the UE transmits A / N as a resource that increases the CS of the A / N PUCCH, and if a negative SR, the UE transmits A / N as an A / N PUCCH resource. Here, the CS increase may be applied to A / N PUCCH resources on full (OFDM) symbols or on overlapping SR (OFDM) symbols.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현) If the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
(B-2) SR이 A/N보다 우선 순위가 높은 경우(B-2) SR has higher priority than A / N
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송-Opt. 1: UE omits A / N transmission and transmits only SR PUCCH
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송-Opt. 2: UE punctures A / N PUCCH REs on superimposed (OFDM) symbols and transmits (part or all) SR PUCCH in corresponding (OFDM) symbols
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, 중첩된 (OFDM) 심볼들 상의 CS (또는 시퀀스)를 변경하여 (일부 또는 전체) SR 전송-Opt. 3: UE transmits A / N to A / N PUCCH, but transmits (part or all) SR by changing CS (or sequence) on overlapped (OFDM) symbols
(C) A/N PUCCH가 F1이고 SR PUCCH가 F1인 경우(C) A / N PUCCH is F1 and SR PUCCH is F1
(C-1) A/N이 SR보다 우선 순위가 높은 경우 (또는 A/N PUCCH와 SR PUCCH의 Starting symbol이 동일한 경우)(C-1) When A / N has higher priority than SR (or when Starting symbols of A / N PUCCH and SR PUCCH are the same)
- Positive SR이면 단말은 A/N을 SR PUCCH 자원으로 전송, Negative SR이면 단말은 A/N을 A/N PUCCH 자원으로 전송 -If it is a positive SR, the UE transmits A / N to SR PUCCH resources. If a negative SR, the UE transmits A / N to A / N PUCCH resources.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현) If the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
(C-2) SR이 A/N보다 우선 순위가 높은 경우(C-2) SR has higher priority than A / N
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송-Opt. 1: UE omits A / N transmission and transmits only SR PUCCH
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송-Opt. 2: UE punctures A / N PUCCH REs on superimposed (OFDM) symbols and transmits (part or all) SR PUCCH in corresponding (OFDM) symbols
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, 중첩된 (OFDM) 심볼들 상의 CS (또는 시퀀스)를 변경하여 (일부 또는 전체) SR 전송-Opt. 3: UE transmits A / N to A / N PUCCH, but transmits (part or all) SR by changing CS (or sequence) on overlapped (OFDM) symbols
상기 구성들에 있어, A/N과 SR 간의 우선 순위는 아래 중 하나 이상의 우선 순위 규칙의 조합에 의해 결정되거나 또는 기지국이 상위 계층 신호 그리고/또는 DCI를 통해 설정할 수 있다.In the above configurations, the priority between the A / N and the SR may be determined by a combination of one or more of the following priority rules or may be set by the base station through a higher layer signal and / or a DCI.
A) Opt. 1: PUCCH duration이 더 짧은 PUCCH가 더 높은 우선 순위를 가짐A) Opt. 1: PUCCH with shorter PUCCH duration has higher priority
B) Opt. 2: 주기 또는 UL timing (예: PDSCH-to-HARQ-ACK timing)이 더 작은 PUCCH가 우선 순위를 가짐B) Opt. 2: PUCCH with smaller period or UL timing (eg PDSCH-to-HARQ-ACK timing) has priority
C) Opt. 3: Starting symbol이 더 빠른 PUCCH가 더 높은 우선 순위를 가짐.C) Opt. 3: PUCCH with a faster starting symbol has a higher priority.
추가적으로, 이하 설명에서는 A/N과 SR 간 상대적인 우선 순위는 PUCCH 길이 (duration), SR 주기 및 A/N에 대한 (최소) UL timing (예: PDSCH-to-HARQ-ACK timing)에 의해 결정된다고 가정한다. 구체적으로, UCI 1이 Long PUCCH인 경우, UCI 2가 Short PUCCH이면서 주기 (또는 (최소) UL timing)가 더 짧은 경우에만 UCI 2가 UCI 1 대비 우선 순위를 가진다고 가정한다. 그 밖의 경우, UCI 1과 UCI 2 중 A/N에 대응되는 UCI가 더 우선 순위를 가진다고 가정한다.Additionally, in the following description, the relative priority between A / N and SR is determined by PUCCH length, SR period, and (minimum) UL timing for A / N (e.g. PDSCH-to-HARQ-ACK timing). Assume Specifically, when UCI 1 is Long PUCCH, it is assumed that UCI 2 has priority over UCI 1 only when UCI 2 is Short PUCCH and the period (or (minimum) UL timing) is shorter. In other cases, it is assumed that UCI corresponding to A / N among UCI 1 and UCI 2 has higher priority.
<A> A/N PUCCH가 PF 3/4이고, SR PUCCH가 PF 1인 경우<A> A / N PUCCH is PF 3/4 and SR PUCCH is PF 1
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송-UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
- 단말이 A/N PUCCH로 전송할 UCI encoding 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 negative SR로 간주If the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, the UE regards this as a negative SR.
<B> A/N PUCCH가 PF 3/4이고, SR PUCCH가 PF 0인 경우<B> A / N PUCCH is PF 3/4 and SR PUCCH is PF 0
<B-1> SR periodicity < (최소) PDSCH-to-HARQ-ACK timing인 경우<B-1> SR periodicity <(minimum) for PDSCH-to-HARQ-ACK timing
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송-Opt. 1: UE omits A / N transmission and transmits only SR PUCCH
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송-Opt. 2: UE punctures A / N PUCCH REs on superimposed (OFDM) symbols and transmits (part or all) SR PUCCH in corresponding (OFDM) symbols
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, (일부 또는 전체) SR을 Explicit bit(s)로 표현하여 SR에 대한 Coded modulation symbol들을 A/N PUCCH 내 펑쳐링된 일부 RE들로 전송-Opt. 3: UE transmits A / N to A / N PUCCH, expressing (part or all) SR as Explicit bit (s), Coded modulation symbols for SR to some RE punctured in A / N PUCCH send
<B-2> SR periodicity ≥ (최소) PDSCH-to-HARQ-ACK timing인 경우<B-2> SR periodicity ≥ (minimum) PDSCH-to-HARQ-ACK timing
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송-UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
- 단말이 A/N PUCCH로 전송할 UCI encoding 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 negative SR로 간주If the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, the UE regards this as a negative SR.
<C> A/N PUCCH가 PF 1이고, SR PUCCH가 PF 1인 경우<C> A / N PUCCH is PF 1 and SR PUCCH is PF 1
- Positive SR이면 단말은 A/N을 SR PUCCH 자원으로 전송, Negative SR이면 단말은 A/N을 A/N PUCCH 자원으로 전송 -If it is a positive SR, the UE transmits A / N to SR PUCCH resources. If a negative SR, the UE transmits A / N to A / N PUCCH resources.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현) If the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
<D> A/N PUCCH가 PF 1이고, SR PUCCH가 PF 0인 경우<D> A / N PUCCH is PF 1 and SR PUCCH is PF 0
<D-1> SR periodicity < (최소) PDSCH-to-HARQ-ACK timing인 경우<D-1> SR periodicity <(minimum) for PDSCH-to-HARQ-ACK timing
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송-Opt. 1: UE omits A / N transmission and transmits only SR PUCCH
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송-Opt. 2: UE punctures A / N PUCCH REs on superimposed (OFDM) symbols and transmits (part or all) SR PUCCH in corresponding (OFDM) symbols
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, 중첩된 (OFDM) 심볼들 상의 CS (또는 시퀀스)를 변경하여 (일부 또는 전체) SR 전송-Opt. 3: UE transmits A / N to A / N PUCCH, but transmits (part or all) SR by changing CS (or sequence) on overlapped (OFDM) symbols
<D-2> SR periodicity ≥ (최소) PDSCH-to-HARQ-ACK timing인 경우<D-2> SR periodicity ≥ (minimum) PDSCH-to-HARQ-ACK timing
- Positive SR이면 단말은 A/N을 A/N PUCCH의 CS를 증가시킨 자원으로 전송, Negative SR이면 상기 단말은 A/N을 A/N PUCCH 자원으로 전송. 여기서 상기 CS 증가는 전체 (OFDM) 심볼들 또는 SR과 중첩된 (OFDM) 심볼들 상의 A/N PUCCH 자원에 대해 적용될 수 있다.If it is a positive SR, the UE transmits A / N as a resource that increases the CS of the A / N PUCCH, and if a negative SR, the UE transmits A / N as an A / N PUCCH resource. In this case, the CS increase may be applied to the A / N PUCCH resource on the entire (OFDM) symbols or the overlapping (OFDM) symbols with the SR.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현)If the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
<E> A/N PUCCH가 PF 2이고, SR PUCCH가 PF 0/1인 경우<E> A / N PUCCH is PF 2 and SR PUCCH is PF 0/1
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송-UE transmits UCI payload configured by adding SR bit (s) to A / N via A / N PUCCH
- 단말이 A/N PUCCH로 전송할 UCI encoding 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 negative SR로 간주If the UE determines that there is no UL data arrival before the start of UCI encoding to be transmitted through A / N PUCCH, the UE regards this as a negative SR.
<F> A/N PUCCH가 PF 0이고, SR PUCCH가 PF 0/1인 경우<F> A / N PUCCH is PF 0 and SR PUCCH is PF 0/1
- Positive SR이면 단말은 A/N을 A/N PUCCH의 CS를 증가시킨 자원으로 전송, Negative SR이면 상기 단말은 A/N을 A/N PUCCH 자원으로 전송. 여기서, 상기 CS 증가는 전체 (OFDM) 심볼들 또는 SR과 중첩된 (OFDM) 심볼들 상의 A/N PUCCH 자원에 대해 적용될 수 있다.If it is a positive SR, the UE transmits A / N as a resource that increases the CS of the A / N PUCCH, and if a negative SR, the UE transmits A / N as an A / N PUCCH resource. Here, the CS increase may be applied to A / N PUCCH resources on full (OFDM) symbols or on overlapping SR (OFDM) symbols.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현)If the UE determines that there is no UL data arrival until the start of the modulation (or subcarrier mapping) for the A / N PUCCH, the UE regards this as a Negative SR (or Negative SR determination is the UE implementation).
상기 구성에 있어, (최소) PDSCH-to-HARQ-ACK timing은 해당 A/N PUCCH에 설정된 또는 약속된 PDSCH-to-HARQ-ACK timing 중 최소 값을 의미할 수 있다.In the above configuration, the (minimum) PDSCH-to-HARQ-ACK timing may mean a minimum value of PDSCH-to-HARQ-ACK timing set or promised in the corresponding A / N PUCCH.
상기 제20 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The 20th SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
3.21. 제21 SR 전송 방법3.21. 21st SR Transmission Method
단말이 전송할 HARQ-ACK 전송 PUCCH 자원 (이하 A/N PUCCH)와 CSI 전송 PUCCH 자원 (이하 CSI PUCCH)가 시간 축에서 전체 또는 일부 중첩되었을 때, 상기 단말은 HARQ-ACK과 CSI를 UCI multiplexing하여 단일 PUCCH로 전송하고 CSI 참조 자원 (reference resource)을 아래와 같이 결정할 수 있다.When the HARQ-ACK transmission PUCCH resources (hereinafter referred to as A / N PUCCH) and the CSI transmission PUCCH resources (hereinafter referred to as CSI PUCCH) to be transmitted by the UE are overlapped in whole or in part on the time axis, the UE is UCI multiplexing HARQ-ACK and CSI. Transmission on the PUCCH and the CSI reference resource can be determined as follows.
(1) 상기 단일 PUCCH가 A/N PUCCH인 경우(1) when the single PUCCH is A / N PUCCH
상기 CSI에 대한 (시간 축) CSI reference resource는 TA/N-T1 이전 시점 (또는 해당 시점)에 존재하면서, TCSI-TCQI 이전 시점 (또는 해당 시점) 존재하는 가장 빠른 (valid) DL slot일 수 있다.The (time axis) CSI reference resource for the CSI exists at a point before T A / N -T 1 (or at that point in time), while the fastest DL exists at a point before (or at that point in time) T CSI -T CQI. It may be a slot.
(2) 상기 단일 PUCCH가 CSI PUCCH인 경우(2) When the single PUCCH is CSI PUCCH
상기 CSI에 대한 (시간 축) CSI reference resource는 TCSI-T1 이전 시점 (또는 해당 시점)에 존재하면서, TCSI-TCQI 이전 시점 (또는 해당 시점)에 존재하는 가장 빠른 (valid) DL slot일 수 있다.The (time axis) CSI reference resource for the CSI exists at a time point before (or at) the point before T CSI -T 1 , and is the fastest DL slot at a time point (or at the point) before the T CSI -T CQI. Can be.
여기서, TA/N은 A/N PUCCH 전송 시점을 의미하며, T1은 아래 중 하나일 수 있다.Here, T A / N means A / N PUCCH transmission time point, T 1 may be one of the following.
- Opt. 1: 단말에게 설정된 (최소) PDSCH-to-HARQ-ACK timing-Opt. 1: (minimum) PDSCH-to-HARQ-ACK timing configured to UE
- Opt. 2: 단말이 마지막으로 수신한 (HARQ-ACK 전송 대상) PDSCH에 대한 PDSCH-to-HARQ-ACK timing-Opt. 2: PDSCH-to-HARQ-ACK timing for the PDSCH (target HARQ-ACK transmission) last received by the terminal
- Opt. 3: 단말 역량(또는 구현)에 따른 (최소) PDSCH-to-HARQ-ACK timing-Opt. 3: (minimum) PDSCH-to-HARQ-ACK timing according to terminal capability (or implementation)
여기서, TCSI는 CSI PUCCH 전송 시점을 의미하며, TCQI는 기지국과 단말 간 사전에 약속된 값 또는 기지국이 단말에게 설정한 값일 수 있다.Here, T CSI means a CSI PUCCH transmission time, and T CQI may be a value promised in advance between the base station and the terminal or a value set by the base station to the terminal.
또한, 상기 CSI reference resource는 CSI 계산의 참조가 되는 시간 자원을 의미하며, (valid) DL slot이라고 함은 (단말에게) DL slot으로 설정된 slot 그리고/또는 측정 갭 (e.g., measurement gap)에 포함되지 않는 slot 그리고/또는 CSI reporting이 수행되는 DL BWP (bandwidth part)와 동일 DL BWP에 포함되는 slot을 의미할 수 있다.In addition, the CSI reference resource refers to a time resource that is a reference of the CSI calculation, and (valid) DL slot is not included in the slot and / or measurement gap (eg, measurement gap) set as a DL slot (to the terminal). The slot may indicate a slot included in the same DL BWP as the DL bandwidth part (DL BWP) where the slot and / or the CSI reporting is performed.
또한, 상기 PDSCH-to-HARQ-ACK timing는 PDSCH 종료 시점부터 HARQ-ACK 전송 시점까지의 시간을 의미할 수 있다.In addition, the PDSCH-to-HARQ-ACK timing may mean a time from the PDSCH end time to the HARQ-ACK transmission time.
보다 구체적으로, HARQ-ACK에 대응되는 PDSCH가 DL assignment 기반의 PDSCH인 경우, HARQ-ACK/SR과 CSI는 AN PUCCH로 전송될 수 있다. 따라서 단말이 HARQ-ACK/SR과 CSI에 대해 전송할 PUCCH 자원들이 시간 축에서 중첩되는 경우, 단말은 항상 HARQ-ACK/SR과 CSI를 UCI multiplexing하여 단일 PUCCH 자원으로 전송하되, HARQ-ACK을 위한 UE processing time을 보장하도록 상기 CSI 계산을 위한 CSI reference resource만 변경할 수 있다.In more detail, when the PDSCH corresponding to the HARQ-ACK is a PDSCH based on DL assignment, the HARQ-ACK / SR and the CSI may be transmitted through the AN PUCCH. Therefore, when PUCCH resources to be transmitted for HARQ-ACK / SR and CSI overlap in the time axis, the UE always transmits a single PUCCH resource by UCI multiplexing HARQ-ACK / SR and CSI, but for a UE for HARQ-ACK Only the CSI reference resource for the CSI calculation may be changed to ensure the processing time.
일 예로, CSI only 전송을 가정할 때의 CSI reference resource가 HARQ-ACK encoding 시작 시점보다 늦은 경우를 가정한다. 이때, 단말이 CSI 계산 이후 HARQ-ACK과 CSI를 조인트 인코딩 하고자 하는 경우, 상기 단말이 HARQ-ACK 인코딩만 수행할 때의 시점보다 늦게 Encoding을 수행하게 되어서 PUCCH 전송 시점까지의 UE processing time이 보장되지 않을 수 있다. As an example, it is assumed that the CSI reference resource when assuming CSI only transmission is later than the start time of HARQ-ACK encoding. In this case, when the UE intends to jointly encode the HARQ-ACK and the CSI after the CSI calculation, the UE performs encoding later than the time when the UE performs only HARQ-ACK encoding, so that the UE processing time until the PUCCH transmission time is not guaranteed. You may not.
따라서 본 발명에서는 (HARQ-ACK/SR 전송을 위한) PUCCH와 CSI PUCCH가 시간 축에서 중첩된 경우, 단말이 HARQ-ACK/SR과 CSI를 항상 UCI 다중화하여 단일 PUCCH로 전송하되, CSI reference resource가 상기 multiplexed UCI를 전송할 PUCCH 자원 대비 (min) PDSCH-to-HARQ-ACK timing 이전에 존재하도록 변경하는 방안을 제안한다.Therefore, in the present invention, when PUCCH and CSI PUCCH (for HARQ-ACK / SR transmission) overlap on the time axis, the UE always transmits HARQ-ACK / SR and CSI by UCI multiplexing as a single PUCCH, but CSI reference resource The present invention proposes a method of changing the multiplexed UCI so that it exists before the PDSCH-to-HARQ-ACK timing compared to the PUCCH resource to be transmitted.
보다 구체적으로, 본 발명의 실시 예에 따른 NR 시스템에서 CSI reference resource는 하기 표와 같이 정의될 수 있다.More specifically, in the NR system according to an embodiment of the present invention, the CSI reference resource may be defined as shown in the following table.
Figure PCTKR2018005149-appb-T000026
Figure PCTKR2018005149-appb-T000026
여기서, nCQI_ref는 (min) PDSCH-to-HARQ-ACK timing 보다 크도록 설정될 수 있다. 이를 통해, CSI 계산(calculation)이 HARQ-ACK을 위한 UE processing time에 영향을 주지 않도록 할 수 있다. 단, 이 경우 n은 CSI가 전송되는 Slot을 의미할 수 있다.Here, n CQI_ref may be set to be greater than (min) PDSCH-to-HARQ-ACK timing. Through this, it is possible to prevent the CSI calculation from affecting the UE processing time for HARQ-ACK. In this case, however, n may mean a slot for transmitting CSI.
상기 제21 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.The 21st SR transmission method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
도 15는 본 발명에 따라 단말이 스케줄링 요청을 전송하는 방법을 나타낸 흐름도이다.15 is a flowchart illustrating a method for transmitting a scheduling request by a terminal according to the present invention.
먼저, 단말은 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보를 수신한다 (S1510). 이때, 상기 제1 설정 정보는 상위 계층 시그널링을 통해 수신될 수 있다.First, the terminal receives first configuration information on one or more first uplink resources for SR transmission from the base station (S1510). In this case, the first configuration information may be received through higher layer signaling.
이어, 단말은 상기 기지국으로부터 UCI 를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신한다 (S1520). 이때, 상기 제2 설정 정보는 하향링크 제어 정보 (downlink control information; DCI)를 통해 수신될 수 있다.Subsequently, the terminal receives second configuration information on the second uplink resource for transmitting the UCI from the base station (S1520). In this case, the second configuration information may be received through downlink control information (DCI).
N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 단말은 N 개의 SR 설정(또는 SR process)에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송한다 (S1530).When N first uplink resources and the second uplink resource for N transmissions (N is a natural number greater than 1) overlap in the time domain, the UE is configured to N SR configuration (or SR process). Bit information indicating the SR information is transmitted in the second uplink resource together with the UCI (S1530).
여기서, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정 중 하나의 SR 설정에 대한 정보 및 상기 하나의 SR 설정에 대응하는 포지티브 (positive) SR 정보를 나타낼 수 있다.Here, the bit information indicating the SR information for the N SR configuration may indicate information about one SR configuration among the N SR configuration and positive SR information corresponding to the one SR configuration. .
또는, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정들 각각에 대응하는 SR 정보들이 포지티브 (positive) SR 인지 또는 네거티브 (negative) SR 인지 여부를 지시하는 복수 개의 비트들로 구성될 수 있다.Alternatively, the bit information indicating the SR information for the N SR settings may include a plurality of bits indicating whether the SR information corresponding to each of the N SR settings is a positive SR or a negative SR. It may consist of bits.
일 예로, 상기 복수 개의 비트들 각각은, 대응하는 SR 정보가 포지티브 SR인 경우 1의 값을 가지고, 대응하는 SR 정보가 네거티브 SR인 경우 0의 값을 가지도록 설정될 수 있다.For example, each of the plurality of bits may be set to have a value of 1 when the corresponding SR information is a positive SR and a value of 0 when the corresponding SR information is a negative SR.
또한, 상기 복수 개의 비트들은, 상기 N 개의 SR 설정들의 식별 정보에 기반한 순서로 구성될 수 있다. 일 예로, 상기 복수 개의 비트들은 대응하는 SR 정보의 SR 프로세스 (또는 SR 설정) 인덱스 번호 순서로 구성될 수 있다.In addition, the plurality of bits may be configured in an order based on identification information of the N SR settings. For example, the plurality of bits may be configured in an SR process (or SR configuration) index number order of corresponding SR information.
본 발명에 있어, 상기 제1 상향링크 자원 및 상기 제2 상향링크 자원은 시간 영역에서 전체 또는 일부 중첩될 수 있다.In the present invention, the first uplink resource and the second uplink resource may overlap all or part of the time domain.
또한, 본 발명에 있어, 상기 제2 상향링크 자원은 상기 확인 응답 정보를 전송하는 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH) 자원에 대응할 수 있다.Also, in the present invention, the second uplink resource may correspond to a physical uplink control channel (PUCCH) resource for transmitting the acknowledgment information.
상기 구성에 있어, UCI는 CSI 또는 HARQ-ACK 정보 중 하나 이상을 포함할 수 있다.In the above configuration, the UCI may include one or more of CSI or HARQ-ACK information.
이때, 단말은 다양한 방법을 통해 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 확인 응답 정보와 함께 상기 제2 상향링크 자원에서 전송할 수 있다. 일 예로, 상기 단말은 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보와 상기 UCI 를 결합한 UCI 페이로드를 생성하고, 상기 UCI 페이로드에 대한 코딩된 비트 포맷을 생성하여 상기 제2 상향링크 자원에서 전송할 수 있다. 이를 통해, 상기 단말은 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI 와 함께 상기 제2 상향링크 자원에서 전송할 수 있다.In this case, the terminal may transmit bit information indicating the SR information for the N SR configuration together with the acknowledgment information in the second uplink resource through various methods. For example, the terminal generates a UCI payload combining the UCI and bit information indicating SR information for N SR configuration, and generates a coded bit format for the UCI payload to generate the second uplink resource. Can be sent from. In this manner, the terminal may transmit bit information indicating SR information for N SR configurations together with the UCI in the second uplink resource.
이에, 대응하여, 기지국은 상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보를 전송하고, 확인 응답 정보를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송한다.In response, the base station transmits first configuration information for one or more first uplink resources for SR transmission to the terminal and transmits second configuration information for a second uplink resource for transmitting acknowledgment information. do.
이때, N 개의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 기지국은 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신한다.In this case, when N first uplink resources for the N SR transmissions and the second uplink resource overlap in the time domain, the base station transmits bit information indicating SR information for N SR configuration with the UCI. Together with the second uplink resource.
추가적으로, 본 발명에 따른 단말은 하기와 같이 SR을 전송할 수 있다.In addition, the terminal according to the present invention can transmit the SR as follows.
먼저, SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정한다. 이때, SR 정보 및 HARQ-ACK 정보를 전송하는 제1/제2 PUCCH 포맷은 기지국의 설정 정보 및/또는 전송하는 UCI 페이로드 등에 따라 결정될 수 있다.First, a first physical uplink control channel (PUCCH) format for transmitting SR information and a second PUCCH format for transmitting HARQ-ACK (Hybrid Automatic Repeat Request Acknowledge) information are determined. In this case, the first / second PUCCH format for transmitting the SR information and the HARQ-ACK information may be determined according to the configuration information of the base station and / or the UCI payload to be transmitted.
상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 단말은 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송할 수 있다. The first PUCCH format is composed of one or two symbols and corresponds to a PUCCH format supporting uplink control information (UCI) of up to 2 bits in size, and the second PUCCH format includes four or more symbols. It is configured and corresponds to a PUCCH format that supports UCI having a maximum size of 2 bits, and when the SR information is a positive SR, the terminal may transmit only the HARQ-ACK information using the second PUCCH format. .
이를 통해, 상기 단말은 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행할 수 있다. In this way, the terminal may perform simultaneous transmission of the SR information and the HARQ-ACK information.
보다 구체적으로, 상기와 같은 단말의 단말은 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송은 상기 SR 정보를 전송하는 제1 상향링크 자원과 상기 HARQ-ACK 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우에 한해 수행될 수 있다.More specifically, the terminal of the terminal such that the simultaneous transmission of the SR information and the HARQ-ACK information is the first uplink resource for transmitting the SR information and the second uplink resource for transmitting the HARQ-ACK information It can only be performed when overlapping in the time domain.
따라서, 앞서 상술한 바와 같이, SR 정보를 전송하는 제1 상향링크 자원과 HARQ-ACK 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 단말과의 약속을 통해, 기지국은 상기 단말로부터 HARQ-ACK 정보를 전송하기 위한 PUCCH 포맷으로 상기 HARQ-ACK 정보만 수신되면 단말이 의도한 SR 정보는 포지티브 SR임을 암시적으로 인지할 수 있다.Therefore, as described above, when the first uplink resource for transmitting the SR information and the second uplink resource for transmitting the HARQ-ACK information overlap in the time domain, the base station is determined by the appointment with the terminal. If only the HARQ-ACK information is received in a PUCCH format for transmitting HARQ-ACK information from the terminal, the terminal may intentionally recognize that the SR information is a positive SR.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.It is obvious that examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention. In addition, although the above-described proposed schemes may be independently implemented, some proposed schemes may be implemented in a combination (or merge) form. Information on whether the proposed methods are applied (or information on the rules of the proposed methods) may be defined so that the base station informs the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
4. 장치 구성4. Device Configuration
도 16은 제안하는 실시 예가 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다. 도 16에 도시된 단말 및 기지국은 앞서 설명한 단말과 기지국 간 스케줄링 요청 (SR) 송수신 방법의 실시 예들을 구현하기 위해 동작한다.16 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiment can be implemented. The terminal and the base station illustrated in FIG. 16 operate to implement embodiments of the method for transmitting and receiving a scheduling request (SR) between the terminal and the base station.
단말(UE: User Equipment, 1)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB 또는 gNB, 100)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다. A UE (UE) 1 may operate as a transmitting end in uplink and a receiving end in downlink. In addition, the base station eNB or gNB 100 may operate as a receiver in uplink and as a transmitter in downlink.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 10, 110) 및 수신기(Receiver: 20, 120)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(30, 130) 등을 포함할 수 있다.That is, the terminal and the base station may include transmitters 10 and 110 and receivers 20 and 120, respectively, to control transmission and reception of information, data and / or messages. Alternatively, the antenna may include antennas 30 and 130 for transmitting and receiving messages.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시 예들을 수행하기 위한 프로세서(Processor: 40, 140)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(50, 150)를 각각 포함할 수 있다.In addition, the terminal and the base station may each include a processor (Processor 40, 140) for performing the above-described embodiments of the present invention and a memory (50, 150) that can temporarily or continuously store the processing of the processor, respectively. Can be.
이와 같이 구성된 단말(1)은 수신기(20)를 통해 상기 기지국(100)으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 UCI를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신한다. 이어, N (N은 1보다 큰 자연수)개의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 단말(1)은 송신기(10)를 통해 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI 와 함께 상기 제2 상향링크 자원에서 전송한다.The terminal 1 configured as described above includes a first configuration information for one or more first uplink resources for SR transmission and a second uplink resource for transmitting UCI from the base station 100 through the receiver 20. 2 Receive setting information. Subsequently, when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap with each other in the time domain, the UE 1 transmits through the transmitter 10. Bit information indicating SR information for the N SR configuration is transmitted in the second uplink resource together with the UCI.
이에 대응하여, 기지국(100)은 송신기(110)를 통해 상기 단말(1)로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 UCI를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송한다. 이어, N (N은 1보다 큰 자연수)개의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 기지국(100)은 수신기(120)를 통해 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI 와 함께 상기 제2 상향링크 자원에서 수신한다.In response, the base station 100 transmits the first configuration information for the one or more first uplink resources for the SR transmission and the second uplink resource for transmitting the UCI to the terminal 1 through the transmitter 110. The second setting information is transmitted. Subsequently, when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap with each other in the time domain, the base station 100 transmits through the receiver 120. Bit information indicating SR information for the N SR configuration is received in the second uplink resource together with the UCI.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 16의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.The transmitter and the receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Packet scheduling and / or channel multiplexing may be performed. In addition, the terminal and base station of FIG. 16 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.Meanwhile, in the present invention, the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS. A Mobile Broadband System phone, a hand-held PC, a notebook PC, a smart phone, or a Multi Mode-Multi Band (MM-MB) terminal may be used.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.Here, a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal. have. In addition, a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
본 발명의 실시 예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시 예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.Embodiments of the invention may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.In the case of a hardware implementation, a method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors and the like can be implemented.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(50, 150)에 저장되어 프로세서(40, 140)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above. For example, software code may be stored in memory units 50 and 150 and driven by processors 40 and 140. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.The invention can be embodied in other specific forms without departing from the technical idea and essential features of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention. In addition, the claims may be incorporated into claims that do not have an explicit citation relationship in the claims, or may be incorporated into new claims by amendment after filing.
본 발명의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 발명의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다. Embodiments of the present invention can be applied to various wireless access systems. Examples of various radio access systems include 3rd Generation Partnership Project (3GPP) or 3GPP2 systems. Embodiments of the present invention can be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.

Claims (17)

  1. 무선 통신 시스템에서 단말이 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 방법에 있어서,In the method for transmitting a scheduling request (SR) to the base station in a wireless communication system,
    상기 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신; 및Receiving first configuration information on at least one first uplink resource for SR transmission and second configuration information on a second uplink resource for transmitting uplink control information (UCI) from the base station; And
    N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송;하는 것을 포함하는, 스케줄링 요청 전송 방법.Bit information indicating SR information on N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain Transmitting, along with the UCI, in the second uplink resource.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1 설정 정보는 상위 계층 시그널링을 통해 수신되는, 스케줄링 요청 전송 방법.And the first configuration information is received via higher layer signaling.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제2 설정 정보는 하향링크 제어 정보 (downlink control information; DCI)를 통해 수신되는, 스케줄링 요청 전송 방법.The second configuration information is received via downlink control information (DCI).
  4. 제 1항에 있어서,The method of claim 1,
    상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는,Bit information indicating the SR information for the N SR settings,
    상기 N 개의 SR 설정 중 하나의 SR 설정에 대한 정보 및 상기 하나의 SR 설정에 대응하는 포지티브 (positive) SR 정보를 나타내는, 스케줄링 요청 전송 방법.And information about one SR configuration among the N SR configurations and positive SR information corresponding to the one SR configuration.
  5. 제 1항에 있어서,The method of claim 1,
    상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는,Bit information indicating the SR information for the N SR settings,
    상기 N 개의 SR 설정들 각각에 대응하는 SR 정보들이 포지티브 (positive) SR 인지 또는 네거티브 (negative) SR 인지 여부를 지시하는 복수 개의 비트들로 구성되는, 스케줄링 요청 전송 방법.And a plurality of bits indicating whether SR information corresponding to each of the N SR configurations is a positive SR or a negative SR.
  6. 제 5항에 있어서,The method of claim 5,
    상기 복수 개의 비트들 각각은,Each of the plurality of bits,
    대응하는 SR 정보가 포지티브 SR인 경우 1의 값을 가지고,If the corresponding SR information is a positive SR, it has a value of 1.
    대응하는 SR 정보가 네거티브 SR인 경우 0의 값을 가지는, 스케줄링 요청 전송 방법.If the corresponding SR information is a negative SR, has a value of zero.
  7. 제 5항에 있어서,The method of claim 5,
    상기 복수 개의 비트들은,The plurality of bits,
    상기 N 개의 SR 설정들의 식별 정보에 기반한 순서로 구성되는, 스케줄링 요청 전송 방법.And configured in an order based on identification information of the N SR settings.
  8. 제 1항에 있어서,The method of claim 1,
    상기 N 개의 제1 상향링크 자원 및 상기 제2 상향링크 자원은,The N first uplink resources and the second uplink resource,
    시간 영역에서 전체 또는 일부 중첩되는, 스케줄링 요청 전송 방법.Method of transmitting a scheduling request, in whole or in part, in the time domain.
  9. 제 1항에 있어서,The method of claim 1,
    상기 제2 상향링크 자원은,The second uplink resource is,
    상기 UCI를 전송하는 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH) 자원에 대응하는, 스케줄링 요청 전송 방법.And corresponding to a physical uplink control channel (PUCCH) resource for transmitting the UCI.
  10. 제 1항에 있어서,The method of claim 1,
    상기 비트 정보는,The bit information is,
    상기 UCI와 결합되어 생성된 코딩된 비트 (coded bits) 포맷으로 상기 제2 상향링크 자원에서 전송되는, 스케줄링 요청 전송 방법.And transmitting in the second uplink resource in a coded bits format generated in conjunction with the UCI.
  11. 제 1항에 있어서,The method of claim 1,
    상기 UCI는,The UCI,
    채널 상태 정보 (channel state information; CSI) 또는,Channel state information (CSI) or
    HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 포함하는, 스케줄링 요청 전송 방법.A method for transmitting a scheduling request including HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) information.
  12. 무선 통신 시스템에서 기지국이 단말로부터 스케줄링 요청 (scheduling request; SR)을 수신하는 방법에 있어서,In the method for receiving a scheduling request (SR) from the terminal in a wireless communication system,
    상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송; 및Transmitting first configuration information of at least one first uplink resource for SR transmission and second configuration information of a second uplink resource transmitting uplink control information (UCI) to the terminal; And
    N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신;하는 것을 포함하는, 스케줄링 요청 수신 방법.Bit information indicating SR information on N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain Receiving in the second uplink resource together with the UCI.
  13. 무선 통신 시스템에서 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 단말에 있어서,A terminal for transmitting a scheduling request (SR) to a base station in a wireless communication system,
    수신부;Receiving unit;
    송신부; 및A transmitter; And
    상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되,A processor operating in connection with the receiver and the transmitter,
    상기 프로세서는,The processor,
    상기 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신; 및Receiving first configuration information on at least one first uplink resource for SR transmission and second configuration information on a second uplink resource for transmitting uplink control information (UCI) from the base station; And
    N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송;하도록 구성되는, 단말.Bit information indicating SR information on N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain And transmit in the second uplink resource together with the UCI.
  14. 무선 통신 시스템에서 단말로부터 스케줄링 요청 (scheduling request; SR)을 수신하는 기지국에 있어서,A base station for receiving a scheduling request (SR) from a terminal in a wireless communication system,
    수신부; Receiving unit;
    송신부; 및A transmitter; And
    상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되,A processor operating in connection with the receiver and the transmitter,
    상기 프로세서는,The processor,
    상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송; 및Transmitting first configuration information of at least one first uplink resource for SR transmission and second configuration information of a second uplink resource transmitting uplink control information (UCI) to the terminal; And
    N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신;하도록 구성되는, 기지국. Bit information indicating SR information on N SR configuration when N first uplink resources and the second uplink resource for N (N is a natural number greater than 1) overlap in the time domain And receive at the second uplink resource together with the UCI.
  15. 무선 통신 시스템에서 단말이 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 방법에 있어서,In the method for transmitting a scheduling request (SR) to the base station in a wireless communication system,
    SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정; 및Determining a first physical uplink control channel (PUCCH) format for transmitting SR information and a second PUCCH format for transmitting Hybrid Automatic Repeat Request Acknowledge (HARQ-ACK) information; And
    상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송함으로써 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행;하는 것을 포함하는, 스케줄링 요청 전송 방법.The first PUCCH format is composed of one or two symbols and corresponds to a PUCCH format supporting uplink control information (UCI) of up to 2 bits in size, and the second PUCCH format includes four or more symbols. Configured to correspond to a PUCCH format supporting up to 2 bits of UCI, and when the SR information is a positive SR, by transmitting only the HARQ-ACK information using the second PUCCH format, And performing simultaneous transmission of the HARQ-ACK information.
  16. 제 15항에 있어서,The method of claim 15,
    상기 SR 정보를 전송하는 제1 상향링크 자원과 상기 HARQ-ACK 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송이 수행되는, 스케줄링 요청 전송 방법.When the first uplink resource for transmitting the SR information and the second uplink resource for transmitting the HARQ-ACK information overlap in the time domain, simultaneous transmission of the SR information and the HARQ-ACK information is performed. How to send a request.
  17. 무선 통신 시스템에서 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 단말에 있어서,A terminal for transmitting a scheduling request (SR) to a base station in a wireless communication system,
    수신부;Receiving unit;
    송신부; 및A transmitter; And
    상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되,A processor operating in connection with the receiver and the transmitter,
    상기 프로세서는,The processor,
    SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정; 및Determining a first physical uplink control channel (PUCCH) format for transmitting SR information and a second PUCCH format for transmitting Hybrid Automatic Repeat Request Acknowledge (HARQ-ACK) information; And
    상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송함으로써 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행;하도록 구성되는, 단말.The first PUCCH format is composed of one or two symbols and corresponds to a PUCCH format supporting uplink control information (UCI) of up to 2 bits in size, and the second PUCCH format includes four or more symbols. Configured to correspond to a PUCCH format supporting up to 2 bits of UCI, and when the SR information is a positive SR, by transmitting only the HARQ-ACK information using the second PUCCH format, And perform simultaneous transmission of the HARQ-ACK information.
PCT/KR2018/005149 2017-05-03 2018-05-03 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same WO2018203686A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202310140700.XA CN116318567A (en) 2017-05-03 2018-05-03 Method for transmitting and receiving uplink signal, user equipment and base station
CN201880017517.8A CN110431905B (en) 2017-05-03 2018-05-03 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and apparatus supporting the same
EP23156194.5A EP4203590A1 (en) 2017-05-03 2018-05-03 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same
EP18794894.8A EP3471489B1 (en) 2017-05-03 2018-05-03 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same
JP2019535359A JP6845330B2 (en) 2017-05-03 2018-05-03 A method for sending and receiving scheduling requests between terminals and base stations in wireless communication systems and devices that support them.
US16/248,653 US10568124B2 (en) 2017-05-03 2019-01-15 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same
US16/658,731 US11032838B2 (en) 2017-05-03 2019-10-21 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same

Applications Claiming Priority (30)

Application Number Priority Date Filing Date Title
US201762501060P 2017-05-03 2017-05-03
US62/501,060 2017-05-03
US201762543946P 2017-08-10 2017-08-10
US62/543,946 2017-08-10
US201762547891P 2017-08-21 2017-08-21
US62/547,891 2017-08-21
US201762549367P 2017-08-23 2017-08-23
US62/549,367 2017-08-23
US201762555689P 2017-09-08 2017-09-08
US62/555,689 2017-09-08
US201762566341P 2017-09-30 2017-09-30
US62/566,341 2017-09-30
US201762586917P 2017-11-16 2017-11-16
US62/586,917 2017-11-16
US201762587519P 2017-11-17 2017-11-17
US62/587,519 2017-11-17
US201762590633P 2017-11-26 2017-11-26
US62/590,633 2017-11-26
US201862616461P 2018-01-12 2018-01-12
US62/616,461 2018-01-12
US201862620394P 2018-01-22 2018-01-22
US62/620,394 2018-01-22
US201862620982P 2018-01-23 2018-01-23
US62/620,982 2018-01-23
US201862630308P 2018-02-14 2018-02-14
US62/630,308 2018-02-14
US201862635476P 2018-02-26 2018-02-26
US62/635,476 2018-02-26
KR10-2018-0051192 2018-05-03
KR1020180051192A KR102004271B1 (en) 2017-05-03 2018-05-03 Method and device for transmitting and receiving scheduling request between a user equipment and base station in a wireless communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/248,653 Continuation US10568124B2 (en) 2017-05-03 2019-01-15 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same

Publications (1)

Publication Number Publication Date
WO2018203686A1 true WO2018203686A1 (en) 2018-11-08

Family

ID=64016203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005149 WO2018203686A1 (en) 2017-05-03 2018-05-03 Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same

Country Status (1)

Country Link
WO (1) WO2018203686A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263448A (en) * 2018-12-29 2020-06-09 维沃移动通信有限公司 Method and device for information transmission
CN111315030A (en) * 2018-12-12 2020-06-19 中国信息通信研究院 Low-delay uplink scheduling request transmission method, terminal equipment and network equipment
CN111492710A (en) * 2018-11-27 2020-08-04 联发科技股份有限公司 Multiple Physical Uplink Control Channel (PUCCH) resources for Uplink Control Information (UCI) reporting
CN111756488A (en) * 2019-03-26 2020-10-09 株式会社Kt Method and apparatus for transmitting and receiving sidelink HARQ feedback information
CN111865510A (en) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 HARQ-ACK transmission method, user equipment and network side equipment
WO2020221167A1 (en) * 2019-04-30 2020-11-05 维沃移动通信有限公司 Data processing method and user equipment
WO2021008335A1 (en) * 2019-07-12 2021-01-21 华为技术有限公司 Communication method and communication apparatus
WO2021109469A1 (en) 2020-05-15 2021-06-10 Zte Corporation Mapping schemes for uplink control transmissions in wireless communication systems
CN113287277A (en) * 2019-01-09 2021-08-20 Idac控股公司 Method, apparatus and system for enhanced control signaling for ultra-reliable transmissions
WO2022217174A1 (en) * 2021-04-06 2022-10-13 Qualcomm Incorporated Cyclic shift mapping for multiplexed messages with different priorities
CN115396062A (en) * 2019-06-14 2022-11-25 华为技术有限公司 Method and device for transmitting response information
CN115396081A (en) * 2022-08-22 2022-11-25 中国电信股份有限公司 Signal transmission method, signal transmission device, storage medium and electronic equipment
US11956814B2 (en) 2021-04-06 2024-04-09 Qualcomm Incorporated Cyclic shift mapping for multiplexed messages with different priorities

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048522A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation System and method of handling uplink transmission collision for enhanced coverage mode ues

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048522A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation System and method of handling uplink transmission collision for enhanced coverage mode ues

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Scheduling Request Design for NR", R1-1700370, 3GPP TSG RAN WG1 NR AD-HOC MEETING, 10 January 2017 (2017-01-10), Spokane, USA, XP051202848 *
INTEL CORPORATION: "Scheduling Request Design for NR", R1-1704760, 3GPP TSG RAN WG1 MEETING #88BIS, 25 March 2017 (2017-03-25), Spokane, USA, XP051242897 *
INTEL CORPORATION: "UCI Contents and UL Control Channel Formats", R1-1609536, 3GPP TSG RAN WG1 MEETING #86BIS, 1 October 2016 (2016-10-01), Lisbon, Portugal, XP051149575 *
LG ELECTRONICS: "Design of Short NR-PUCCH Format", R1-1704907, 3GPP TSG RAN WG1 MEETING #88BIS, 25 March 2017 (2017-03-25), Spokane, USA, XP051243042 *
See also references of EP3471489A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492710A (en) * 2018-11-27 2020-08-04 联发科技股份有限公司 Multiple Physical Uplink Control Channel (PUCCH) resources for Uplink Control Information (UCI) reporting
CN111315030A (en) * 2018-12-12 2020-06-19 中国信息通信研究院 Low-delay uplink scheduling request transmission method, terminal equipment and network equipment
CN111263448A (en) * 2018-12-29 2020-06-09 维沃移动通信有限公司 Method and device for information transmission
CN111263448B (en) * 2018-12-29 2024-03-22 维沃移动通信有限公司 Method and device for information transmission
CN113287277A (en) * 2019-01-09 2021-08-20 Idac控股公司 Method, apparatus and system for enhanced control signaling for ultra-reliable transmissions
CN111756488A (en) * 2019-03-26 2020-10-09 株式会社Kt Method and apparatus for transmitting and receiving sidelink HARQ feedback information
CN111756488B (en) * 2019-03-26 2023-07-25 株式会社Kt Method and apparatus for transmitting and receiving side-link HARQ feedback information
CN111865510A (en) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 HARQ-ACK transmission method, user equipment and network side equipment
US11539493B2 (en) 2019-04-30 2022-12-27 Datang Mobile Communications Equipment Co., Ltd. HARQ-ACK transmission method, user equipment, and network side device
WO2020221167A1 (en) * 2019-04-30 2020-11-05 维沃移动通信有限公司 Data processing method and user equipment
CN115396062A (en) * 2019-06-14 2022-11-25 华为技术有限公司 Method and device for transmitting response information
WO2021008335A1 (en) * 2019-07-12 2021-01-21 华为技术有限公司 Communication method and communication apparatus
WO2021109469A1 (en) 2020-05-15 2021-06-10 Zte Corporation Mapping schemes for uplink control transmissions in wireless communication systems
EP4082228A4 (en) * 2020-05-15 2023-03-08 ZTE Corporation Mapping schemes for uplink control transmissions in wireless communication systems
WO2022217174A1 (en) * 2021-04-06 2022-10-13 Qualcomm Incorporated Cyclic shift mapping for multiplexed messages with different priorities
US11956814B2 (en) 2021-04-06 2024-04-09 Qualcomm Incorporated Cyclic shift mapping for multiplexed messages with different priorities
CN115396081A (en) * 2022-08-22 2022-11-25 中国电信股份有限公司 Signal transmission method, signal transmission device, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
WO2018203686A1 (en) Method for transmitting and receiving scheduling request between terminal and base station in wireless communication system and device for supporting same
WO2018128493A1 (en) Method for transmitting or receiving uplink signal between terminal and base station in wireless communication system, and device supporting same
WO2018143740A1 (en) Method for terminal transmitting uplink control information in wireless communication system and apparatus supporting same
WO2018084661A1 (en) Method for transmitting and receiving physical uplink control channel between terminal and base station in wireless communication system and apparatus for supporting same
WO2018174546A1 (en) Method for transmitting and receiving physical uplink control channel between terminal and base station in wireless communication system, and apparatus for supporting said method
WO2021054726A1 (en) Method and apparatus for repeating uplink transmission for network cooperative communication
WO2018203682A1 (en) Method by which terminal and base station transmit/receive signal in wireless communication system, and device for supporting same
WO2018169347A1 (en) Operation method of terminal and base station in wireless communication system, and device supporting same
WO2021034120A1 (en) Method and apparatus for indicating beam failure recovery operation of terminal in wireless communication system
WO2019194660A1 (en) Method and device for transmitting/receiving wireless signal in wireless communication system
WO2018231016A1 (en) Method for transreceiving synchronization signal block and apparatus for same
WO2019160354A1 (en) Method for transmitting and receiving uplink signal between terminal and base station in wireless communication system for supporting unlicensed band, and apparatus for supporting same
WO2018212628A1 (en) Method for performing uplink transmission in wireless communication system, and apparatus therefor
WO2018128399A1 (en) Method for transmitting reference signal and device therefor in wireless communication system
WO2021172942A1 (en) Method and apparatus for supporting beam indication channel
WO2018203617A1 (en) Method for receiving synchronization signal, and apparatus therefor
WO2018231010A1 (en) Method for transreceiving downlink channel and apparatus for same
WO2018203616A1 (en) Method for receiving synchronization signal, and device therefor
WO2019212224A1 (en) Method for transmitting and receiving channel state information between terminal and base station in wireless communication system and apparatus supporting same
WO2018052275A1 (en) Method and apparatus for transmitting initial access signals in wireless communication systems
WO2015163645A1 (en) Method and terminal for transmitting sounding reference signal in wireless communication system
WO2017023146A1 (en) Apparatus and method for transmitting uplink control information through a physical uplink control channel
WO2018030783A1 (en) Method and device for channel transmission in wireless cellular communication system
WO2017217799A1 (en) Method for transmitting and receiving physical uplink control channel in wireless communication system, and device for supporting same
WO2018182248A1 (en) Method for terminal to receive phase tracking reference signal in wireless communication system, and device supporting same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018794894

Country of ref document: EP

Effective date: 20190114

ENP Entry into the national phase

Ref document number: 2019535359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE