WO2018203615A9 - Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst - Google Patents

Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst Download PDF

Info

Publication number
WO2018203615A9
WO2018203615A9 PCT/KR2018/004832 KR2018004832W WO2018203615A9 WO 2018203615 A9 WO2018203615 A9 WO 2018203615A9 KR 2018004832 W KR2018004832 W KR 2018004832W WO 2018203615 A9 WO2018203615 A9 WO 2018203615A9
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxidative dehydrogenation
dehydrogenation reaction
preparing
coprecipitation
Prior art date
Application number
PCT/KR2018/004832
Other languages
French (fr)
Korean (ko)
Other versions
WO2018203615A1 (en
Inventor
한상진
고동현
차경용
한준규
황선환
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180047836A external-priority patent/KR102173583B1/en
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to EP18795175.1A priority Critical patent/EP3453454B1/en
Priority to CN201880002461.9A priority patent/CN109311004B/en
Priority to US16/307,676 priority patent/US11247195B2/en
Priority to JP2018565339A priority patent/JP6790319B2/en
Publication of WO2018203615A1 publication Critical patent/WO2018203615A1/en
Publication of WO2018203615A9 publication Critical patent/WO2018203615A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury

Definitions

  • the present invention relates to a process for preparing a catalyst for oxidative dehydrogenation reaction and an oxidative dehydrogenation process using the catalyst, wherein an inert ⁇ -Fe 2 O 3
  • the present invention provides a catalyst for oxidative dehydrogenation reaction of high activity, which can be used in the production of butadiene to inhibit side reactions, improve the selectivity of butadiene, and provide oxidative dehydration A method for producing a catalyst for digestion reaction, and the like.
  • 1,3-butadiene is one of the main raw materials of synthetic rubber, and it is one of the major basic oils that prices fluctuate rapidly in connection with the supply and demand situation of the petrochemical industry.
  • Examples of the method for producing 1,3-butadiene include naphtha cracking, direct dehydrogenation of n-butene, and oxidative dehydrogenation of n-butene.
  • the oxidative dehydrogenation reaction of n-butene is a reaction in which butene reacts with oxygen to produce 1,3-butadiene and water in the presence of a metal oxide catalyst, and is advantageous thermodynamically because stable water is produced.
  • the reaction process is operated at a low temperature to obtain 1,3-butadiene with a high yield, while adding an oxidizing agent There is little generation of carbon deposits that shortens the catalyst life by poisoning the catalyst, and the removal thereof is easy, which is very suitable for the commercialization process.
  • ferritic catalysts commonly known as catalysts for oxidative dehydrogenation of butene are synthesized by coprecipitation.
  • Catalysts synthesized by coprecipitation have a crystal structure that is active for oxidative dehydrogenation and an inert Fe 2 O 3 crystal structures are known to coexist. Therefore, it is necessary to study a technique for producing a catalyst having an inactive Fe 2 O 3 crystal structure reduced or a catalyst having an excellent activity even if an inactive crystal structure exists at a certain level or higher.
  • the catalyst when the catalyst is synthesized by the coprecipitation method, since the production amount is small due to the technical and spatial restrictions, it is difficult to improve the productivity because the catalyst must be manufactured by repeating the same procedure several times in order to fill the target amount. It is preferable to synthesize the catalyst, but in this case, the content of the inactive crystal structure increases, resulting in a problem of poor activity and stability.
  • the present invention provides a method for preparing a catalyst having excellent oxidative dehydrogenation reaction activity even though an inactive Fe 2 O 3 crystal structure exists at a certain level, and furthermore, which is capable of reducing the Fe 2 O 3 crystal structure of iron oxides.
  • the present invention provides a method for producing a metal precursor solution, comprising: preparing a metal precursor aqueous solution by adding a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor to water; Adding the metal precursor aqueous solution and the basic aqueous solution to an aqueous solution adjusted to a pH of 6 or more or a coprecipitation tank prepared with water to coprecipitate iron and an A metal; And a step of firing the coprecipitated co-precipitate, wherein the step of supplying an inert gas or air to the coprecipitate is performed until the coprecipitation, the coprecipitation, or the coprecipitation after the coprecipitation.
  • the present invention also provides a method for producing a catalyst for an inactive dehydrogenation reaction.
  • the present invention when preparing a catalyst for oxidative dehydrogenation reaction by a coprecipitation method, an inert gas or air is introduced into a coprecipitation tank at a specific time point to improve the activity of the catalyst, It is possible to further improve the activity by reducing the Fe 2 O 3 crystal structure which is inactive in the catalyst.
  • the catalyst thus prepared is applied to the oxidative dehydrogenation reaction of butene to reduce the side reaction and improve the selectivity of butadiene The yield is improved and high-quality butadiene is provided at a high productivity.
  • Example 1 is XRD data showing the crystal structure of a zinc ferrite catalyst prepared according to Example 1 (air supply) and Comparative Example 1 (conventional synthesis method).
  • Example 2 shows the crystal structure of a zinc ferrite catalyst prepared according to Example 2 (feeding N 2 + lower aqueous solution of metal precursor), Example 3 (feeding air + lower aqueous solution of metal precursor) and Comparative Example 1 It is XRD data showing.
  • FIG. 3 is a graph showing the particle size distributions of the co-precipitation slurries prepared in Examples 1 to 3 and Comparative Example 1.
  • FIG. 3 is a graph showing the particle size distributions of the co-precipitation slurries prepared in Examples 1 to 3 and Comparative Example 1.
  • the present inventors confirmed that an inert Fe 2 O 3 crystal structure which affects the oxidative dehydrogenation reaction is observed when a ferrite catalyst is synthesized by coprecipitation, and when the inactive Fe 2 O 3 crystal structure has a certain level (N 2 ) gas or air was supplied to the coprecipitation solution at a specific time in the catalyst synthesis.
  • the method for producing the catalyst for oxidative dehydrogenation reaction comprises the steps of preparing a metal precursor aqueous solution by adding, for example, a trivalent iron (Fe) precursor and a divalent cation metal (A) precursor to water; Adding the metal precursor aqueous solution and the basic aqueous solution to an aqueous solution adjusted to pH 6 or higher or a coprecipitation tank prepared with water to coprecipitate iron and A metal; And firing said co-coprecipitate, wherein said co-coin; After coping; Or from co-deposition to co-deposition; And an inert gas or air is supplied to the coprecipitating tank.
  • a metal precursor aqueous solution by adding, for example, a trivalent iron (Fe) precursor and a divalent cation metal (A) precursor to water
  • Adding the metal precursor aqueous solution and the basic aqueous solution to an aqueous solution adjusted to pH 6 or higher or a coprecipitation tank prepared with water to cop
  • the process of supplying inert gas or air to the coprecipitation tank may be, for example, a process of supplying an inert gas or air into the coprecipitation tank while stirring the solution in the coprecipitation tank by using stirring means such as an impeller or the like, A process of supplying inert gas or air into the co-bath through the pipe, or a process of supplying a non-activated gas or air to the solution through a pipe, for example, by installing a Teflon pipe in a co- Further, the pipe and the pipe may have an inner diameter of 1/8 "to 1/2" or 1/6 "to 1/2", for example, and the position of the pipe and the pipe may be below the co- But it may be located at a lower end of the co-op tank, specifically, at a point within 1/2 of the distance from the bottom of the co-op tank to the water surface.
  • Examples of the trivalent iron (Fe) precursor and the divalent cation metal (A) precursor in the step of preparing the metal precursor aqueous solution include a nitrate, an ammonium salt, a sulfate or a chloride And the like.
  • the catalyst is selected from nitrate or chloride in consideration of the cost of producing the catalyst for mass production as it is cheap and easily available.
  • divalent cation metal (A) examples include copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn) ), Manganese (Mn) and cobalt (Co), and is preferably selected from among zinc (Zn) and manganese (Mn) exhibiting particularly high activity in the oxidative dehydrogenation reaction of butene And it may be most preferable to include zinc (Zn) in terms of yield and selectivity of butadiene.
  • the trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are mixed with water to prepare an aqueous solution.
  • the metal precursor is dissolved in water to be present in a liquid phase, Ion exchange is easy, and the desired coprecipitate can be easily produced.
  • the water may be, for example, distilled water.
  • a suitable mixing ratio of trivalent cationic iron (Fe) precursor and divalent cationic metal (A) precursor in the metal precursor aqueous solution is such that the trivalent cationic iron (Fe) precursor Is 1.5 to 10 moles, 1.5 to 4 moles or 1.5 to 2.5 moles, and within this range there is an effect of facilitating the formation of a crystal structure that is active in the oxidative dehydrogenation reaction and thus having an excellent catalytic activity.
  • the aqueous solution of the metal precursor may have a pH of 0 to 4, 1 to 3 or 1 to 2, for example, and the desired active ingredient is stably formed within this range.
  • a co-precipitation bath prepared with an aqueous solution or water adjusted to a pH of 6 or more is provided for coprecipitation of iron and A metal, and an aqueous solution of the metal precursor is added to the co- Cooperate.
  • the aqueous solution having the pH adjusted to 6 or more in the coprecipitation step may be at least one selected from an aqueous solution of sodium hydroxide and aqueous ammonia, and the pH of the coprecipitate may be adjusted to 6 or more, 6 to 10 or 7 To 8, it is possible to reduce the width of the initial pH change due to the input of the aqueous solution of the metal precursor, thereby stably forming a catalyst having a uniform composition.
  • a step of injecting an inert gas or air into the coprecipitation tank can be performed during the coprecipitation step.
  • oxygen and the metal precursor can be uniformly combined, the mixing effect is increased, and ultimately, the effect of improving the oxidative dehydrogenation activity can be provided.
  • the catalyst prepared according to the present invention is applied to an oxidative dehydrogenation reaction of butene, the conversion of butene, the selectivity of butadiene, the yield and the like are improved and the production of side reaction materials is reduced. It also has the advantage of exhibiting excellent reaction activity at relatively low hot spot temperatures.
  • a hot spot means a portion of the catalyst layer filled in the reactor with the highest temperature during the reaction.
  • inert gas or air may be supplied at a rate of 0.1 to 2 L / min or 0.5 to 1 L / min per 1 L of solution in a co-bath, for 1 to 300 minutes, 10 To 200 minutes, 30 to 100 minutes, or 40 to 90 minutes, and within this range, there is an advantage in favor of a small and uniform particle size distribution and active crystal structure of the catalyst.
  • the pH of the coprecipitation solution may preferably be maintained at 7 to 10, or 7 to 8, for example. Within this range, the activity and stability of the catalyst are excellent.
  • the metal precursor aqueous solution and the basic aqueous solution may be dripped together in the coprecipitation bath to precipitate iron and A metal.
  • the basic aqueous solution may be at least one selected from sodium hydroxide and ammonia water.
  • the drop refers to, for example, dropping two or more solutions to the same point or container, and the " same point " means that the solution being dropped falls within a range It includes the range within the point where it does not mix completely and maintains its properties.
  • the metal precursor aqueous solution in the co-precipitation step, may be supplied through the lower portion of the co-precipitation bath, and the basic aqueous solution may be co-precipitated with iron and the A metal by dropping in the coprecipitation bath.
  • the metal precursor aqueous solution is directly fed into the co-precipitation vessel separately from the basic aqueous solution, the uniformity of the crystal structure is increased by increasing the diffusion rate of the metal precursor into the solution provided in the co- A catalyst exhibiting activity can be provided.
  • the method of introducing the metal precursor aqueous solution into the co-precipitation bottom is not particularly limited in the case where the metal precursor aqueous solution is directly introduced below the water surface of the solution in the co-precipitation tank.
  • the metal precursor aqueous solution may be supplied through the pipe or the metal precursor aqueous solution may be supplied through the pipe provided at one end to the solution in the cooperating vessel so that the metal precursor solution is supplied through the pipe. Can be increased.
  • the co-precipitate is present in the co-precipitate in a slurry state, for example, the median size is 7 ⁇ or less, or 1 to 7 ⁇ , the mode size of the particle is 7 ⁇ or less 1 to 7 ⁇ .
  • the median size is 7 ⁇ or less, or 1 to 7 ⁇
  • the mode size of the particle is 7 ⁇ or less 1 to 7 ⁇ .
  • the median diameter and mode diameter of the slurry particles are measured by a Laser Particle Size Analyzer-960 manufactured by Horiba Co., and the refractive index required here is set based on Fe, which is present most in the slurry state.
  • the method of preparing the catalyst of the present invention it is possible to carry out a process of supplying an inert gas or air while stirring the coprecipitation solution after completion of the coprecipitation.
  • the catalyst thus prepared has an oxidative dehydrogenation reaction activity And it has an excellent effect, for example, when it is applied to the oxidative dehydrogenation reaction of butene, it enhances the conversion of butene, the selectivity of butadiene, and the effect of reducing the generation of side reactions. It also has the advantage of exhibiting excellent reaction activity at relatively low hot spot temperatures.
  • a step of supplying an inert gas or air into the co-precipitation tank during the step of coprecipitation by adding the metal precursor aqueous solution and the basic aqueous solution is performed, and after the coprecipitation is completed, And further adding an inert gas or air into the co-precipitation tank.
  • the oxidative dehydrogenation reaction activity of the catalyst can be further enhanced.
  • the catalyst production method of the present invention is characterized in that the metal precursor solution and the basic aqueous solution are continuously added to the coprecipitation solution through the step of adding the coprecipitation solution to the coprecipitation solution, And then an inert gas or air is fed into the co-precipitation tank.
  • the oxidative dehydrogenation reaction activity of the catalyst is improved.
  • the inert gas may be, for example, nitrogen (N 2 ).
  • the stirring and aging may be performed for 30 minutes to 3 hours or 30 minutes to 2 hours, respectively, but not limited thereto.
  • the drying and filtration are not particularly limited as long as they are commonly practiced in the art, and the filtration may include, for example, a vacuum filtration and, if necessary, filtration and washing.
  • the drying may be carried out using a conventional dryer, for example, drying at 60 to 100 ° C, 70 to 100 ° C, or 80 to 100 ° C for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours .
  • the firing may be carried out in a conventional firing furnace, for example, at 400 to 800 ° C, 500 to 800 ° C, or 550 to 750 ° C for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours, It is not limited.
  • the catalyst obtained through the calcination may include an AFe 2 O 4 crystal structure, and a specific example thereof may be a mixed phase including an AFe 2 O 4 crystal structure and an ⁇ -Fe 2 O 3 crystal structure.
  • the catalysts obtained according to one embodiment of the present invention include, for example, at least 93.7 wt%, at least 94.0 wt%, at least 94.5 wt%, at least 94.8 wt% or 94.8 to 96.0 wt% AFe 2 O 4 crystal structure; And 6.3 wt% or less, 6.0 wt% or less, 5.5 wt% or less, 5.2 wt% or less, or 4.0 to 5.2 wt% of the? -Fe 2 O 3 crystal structure.
  • the weight ratio of AFe 2 O 4 and ⁇ -Fe 2 O 3 was determined by AFe 2 O 4 peak (29theta: 30.5 °, 34.5-35.5 °, 42-43 °, 52.5-53.5 °, 56.5 To 57.5 °, 62 to 63 °) and the size of ⁇ -Fe 2 O 3 peak (2theta: 33 to 34 °).
  • the catalyst preparation method of the present invention comprises: 1) preparing a metal precursor aqueous solution by adding a trivalent iron (Fe) precursor and a divalent cation metal (A) precursor to water; 2) coprecipitating the metal precursor aqueous solution with an aqueous solution adjusted to a pH of 6 to 10 or a coprecipitation tank prepared with water, together with a basic aqueous solution to coprecipitate iron and metal A; And 3) stirring the coprecipitation solution having completed the coprecipitation; Or agitating and aging the mixed coprecipitate, followed by calcination of the co-precipitated coprecipitate, wherein the coprecipitating step and the step of introducing nitrogen or air into the cooperating vessel during the stirring are performed.
  • the catalytic method of the present invention comprises: 1) preparing a metal precursor aqueous solution by adding trivalent iron (Fe) precursor and divalent cation metal (A) precursor to water; 2) supplying the aqueous solution of the metal precursor through an aqueous solution having a pH adjusted to 6 to 10 or a lower part of a co-bathing vessel prepared with water, and dropping the basic aqueous solution in the co-treatment bath to coprecipitate iron and A metal; And 3) stirring the coprecipitation solution having completed the coprecipitation; Or agitating and aging the mixed coprecipitate, and then firing the coprecipitated coprecipitate, wherein the coprecipitation step and the step of feeding nitrogen or air into the cooperating vessel during the stirring are performed.
  • the catalyst according to the production method of the present invention may be characterized by satisfying the following formula (1).
  • T2 represents an amount of the ⁇ -Fe contained in 100 wt% of the total amount of the catalyst prepared according to the catalyst preparation method of the present invention including the step of supplying the metal precursor aqueous solution to the bottom of the co- 2 O 3
  • T1 is the content of the catalyst in 100 wt% of the catalyst prepared by spontaneously coprecipitation with the basic aqueous solution instead of supplying the aqueous solution of the metal precursor to the lower part of the co- ⁇ -Fe 2 O 3 and the content of crystal structure, ⁇ -Fe 2 O content of 3 crystal structure of the XRD diffraction patterns of the catalyst ⁇ -Fe 2 O 3 crystal structure peak: measured by the size (2theta 33 to 34 °) do.)
  • the value of T2 / T1 may be from 0 to 0.75, from 0 to 0.70, or from 0 to 0.68, and the activity of the catalyst is excellent within this range.
  • the yield and selectivity of butadiene And the like thereby providing high-quality butadiene at a high productivity and exhibiting high activity at a low hot spot temperature.
  • the oxidative dehydrogenation reaction catalyst prepared according to the present invention can be used for the reaction for forming butadiene from the oxidative dehydrogenation reaction of butene, and the oxidative dehydrogenation method of the present invention will be described below.
  • an oxidative dehydrogenation reaction is performed while passing a reaction mixture containing a C4 mixture containing normal butene and oxygen in a reactor filled with a catalyst for an oxidative dehydrogenation reaction according to the above-
  • the method comprising the steps of:
  • the oxidative dehydrogenation may be, for example, a process for preparing butadiene.
  • the butadiene producing method of the present invention comprises the steps of: i) charging a catalyst for an oxidative dehydrogenation reaction into a reactor; And ii) conducting an oxidative dehydrogenation reaction while continuously passing a reactant containing oxygen and a C4 mixture containing n-butene to the catalyst bed of the reactor packed with the catalyst.
  • the C4 mixture includes at least one n-butene selected from, for example, 2-butene, 1-butene, 1-butene, -3. ≪ / RTI >
  • the reactant may further include at least one selected from air, nitrogen, steam, and carbon dioxide.
  • the reactants may comprise a C4 mixture, oxygen, steam and nitrogen in a molar ratio of 1: 0.01 to 1.5: 1 to 15: 1 to 10 or 1: 0.5 to 1.2: 5 to 15: ,
  • the reaction heat is easily controlled within this range, and the yield of butadiene is excellent.
  • the oxidative dehydrogenation reaction can be performed at a reaction temperature of 250 to 430 ° C, 300 to 425 ° C, or 350 to 425 ° C, and the reaction efficiency is excellent without significantly increasing the energy cost within this range, Can be provided at a high productivity, and the catalyst activity and stability can be maintained at a high level.
  • the oxidative dehydrogenation is a space velocity of 50, based on the normal butene as an example to 2000h -1, from 50 to 1500 h -1, or 50 to 1000 h -1: can be carried out by (GHSV Gas Hourly Space Velocity), Within this range, the reaction efficiency is excellent and the conversion efficiency, selectivity and yield are excellent.
  • the aqueous solution of the metal precursor was dripped with ammonia water having a concentration of 9-10 wt%, and iron and zinc were coprecipitated and nitrogen was supplied. At this time, nitrogen was injected for 80-90 minutes in an amount of 1 L / min per 1 L of the distilled water. After completion of coprecipitation, a coprecipitation solution was stirred for 1 hour so that sufficient coprecipitation was achieved, wherein nitrogen was injected at an amount of 0.5 L / min per liter of the distilled water. After stopping the agitation, the coprecipitate was allowed to stand for one hour at room temperature so that all of the precipitate would sink.
  • the coprecipitation solution which had been stirred and aged, was filtered under reduced pressure using a vacuum filter to obtain a coprecipitate.
  • the co-precipitate was washed and dried at 90 DEG C for 24 hours, and the dried co-precipitate was placed in a calcination furnace at 650 DEG C for 5 hours
  • the zinc ferrite catalyst was prepared by heat treatment.
  • Example 2 The same procedure as in Example 1 was carried out except that all of the steps of feeding nitrogen into the co-bath in Example 1 were omitted.
  • Example 1 The following test analyzes were carried out using the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1 as follows.
  • Test Example 1 XRD analysis
  • the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1 was ZnFe 2 O 4 ⁇ -Fe 2 O 3 ratio of the crystal structure of the catalyst according to the crystal structure as ⁇ -Fe 2 O 3 in Example 1 to check the combination of the crystal structure merchant, this was confirmed to be significantly lower. From this, it was found that the nitrogen gas supply in the co-precipitation tank had a favorable effect on the crystal structure of the ferrite-based catalyst.
  • Butadiene was produced by the following oxidative dehydrogenation reaction using the zinc ferrite catalyst synthesized in Example 1 and Comparative Example 1. The results are shown in Table 2 as Examples 1a to 1c and Comparative Examples 1a to 1d Respectively.
  • the catalyst prepared in Example 1 or Comparative Example 1 was fixed to a metal tubular reactor having a diameter of 1.8 cm at a catalyst bed volume of 30 cc, and 40 wt% of cis-2-butene and 60 wt% of trans- - Butene mixture and oxygen were used and nitrogen and steam were introduced.
  • the reactant ratios were set to the molar ratio of oxygen / butene 1, steam / butene 8 and nitrogen / butene 1, and the steam was vaporized at 340 ° C vaporizer and introduced into the reactor together with the reactants.
  • the amount of butene mixture was controlled at 0.625 cc / min using a mass flow controller for liquids.
  • the oxygen and nitrogen were controlled using a mass flow controller for gas, and the feed rate was controlled using a liquid pump.
  • the gas hourly space velocity (GHSV) of the reactor was set to 66 h -1 and the reaction was carried out at normal pressure (pressure gauge 0) under the temperature conditions shown in Table 2 below.
  • the reaction product was analyzed by gas chromatography (GC), and the conversion of each butene in the mixture (BE_Conv.), 1,3-butadiene selectivity (S_BD), 1,3-butadiene yield (Y) S_COx), heavy component selectivity (S_heavy) and O 2 conversion rate (O 2 _Conv.)
  • GC gas chromatography
  • S_BD 1,3-butadiene selectivity
  • Y 1,3-butadiene yield
  • S_COx 1,3-butadiene yield
  • S_heavy heavy component selectivity
  • O 2 conversion rate O 2 _Conv.
  • Butadiene yield (%) (moles of produced 1,3-butadiene / moles of supplied butene) x 100
  • Comparative Example 1b 330 82.8 88.8 73.5 10.3 1.0 97.8 484.9
  • Comparative Example 1d 335 83.7 89.6 75.0 9.4 1.0 99.2 - Reaction conditions: GHSV 66 h -1 , oxygen: steam: nitrogen 1: 8: 1 (based on the number of moles of butene)
  • the catalysts of Example 1 and Comparative Example 1 exhibited the highest activity under oxygen-rich conditions, and the catalyst of Example 1 synthesized by performing the nitrogen supply process at a specific point of time was comparative Example 1 Butene conversion, butadiene selectivity and yield were increased, and the selectivity of COx as a side reaction was decreased.
  • the catalyst of Example 1 exhibited excellent reaction activity at a low hot spot temperature as compared with the catalyst of Comparative Example 1 in an oxidative dehydrogenation reaction. That is, it was found that the nitrogen introduction step performed in the synthesis of the zinc ferrite catalyst contributes both to the reduction of the inactive ⁇ -Fe 2 O 3 crystal structure and to the increase of the reaction activity.
  • a metal precursor aqueous solution was prepared under the same conditions as in Example 1 except that the aqueous solution was supplied through the lower part of the cooperating vessel and ammonia water was dropped to coprecipitate iron and zinc.
  • Example 2 was carried out in the same manner as in Example 2, except that air was supplied instead of nitrogen (N 2 ).
  • Example 3 Comparative Example 1 ZnFe 2 O 4 crystal structure (% by weight) 95.3 94.8 92.4 ⁇ -Fe 2 O 3 crystal structure (% by weight) 4.7 5.2 7.6
  • the zinc ferrite catalyst prepared in Examples 2 and 3 is a mixed phase of a ZnFe 2 O 4 crystal structure and an ⁇ -Fe 2 O 3 crystal structure, supplied through the bottom and the catalyst preparation, including the step of supplying in the ball chimjo nitrogen or oxygen (example 2 or 3) is not, in Comparative catalyst preparation inert crystals of example 1, the structure of ⁇ -Fe 2 O 3 crystal structure Of the total amount of water.
  • the results of the particle size analysis of the ferrite-based catalyst precursor slurry prepared in Examples 1 to 3 and Comparative Example 1 are shown in Table 4 and FIG.
  • the particle size distribution of the slurry was measured by Horiba's Laser Particle Size Analyzer-960, and the refractive index required was determined based on Fe as a main component in the slurry.
  • Example 2 Example 3 Comparative Example 1 Median size ( ⁇ ) 6.9 5.8 6.0 8.4 Mode size ( ⁇ ) 7.2 6.2 6.3 8.3
  • Butadiene was produced through an oxidative dehydrogenation reaction using the zinc ferrite catalyst synthesized according to Examples 2 and 3 under the same conditions and conditions as above, and the results are shown in the following Table 5 in Examples 2a to 2d and Example 3a to 3c, and Comparative Examples 1a to 1d are re-described for comparison.
  • the aqueous solution of the metal precursor is supplied through the lower part of the coprecipitator and the nitrogen or air injection process performed at a specific point of time not only reduces the inactive crystal structure of the zinc ferrite catalyst, And also contributes to an increase in the activity of the reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for preparing a catalyst for an oxidative dehydrogenation reaction and an oxidative dehydrogenation process using the same. More specifically, the present invention includes a process of supplying an inert gas or air at specific time when preparing a catalyst for an oxidative dehydrogenation reaction by co-precipitation, thereby reducing an inactive α-Fe2O3 crystal structure and improving the activity of the catalyst, and furthermore, the present invention applies the same to an oxidative dehydrogenation reaction of butene so as to suppress side reactions and improve the selectivity of butadiene, thereby providing a high productivity of butadiene.

Description

산화적 탈수소화 반응용 촉매의 제조방법 및 이 촉매를 이용한 산화적 탈수소화 방법METHOD FOR PREPARING CATALYST FOR OXIDATIVE DEHYDRATION REACTION AND METHOD OF OXIDANT DEHYDRATION USING THE CATALYST
〔출원(들)과의 상호 인용〕[Mutual quotation with application (s)]
본 출원은 2017년 05월 04일자 한국특허출원 제10-2017-0056741호 및 상기 특허를 우선권으로하여 2018년 04월 25일자로 재출원된 한국특허출원 제10-2018-0047836호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is based on Korean Patent Application No. 10-2017-0056741 filed on May 04, 2017, and Korean Patent Application No. 10-2018-0047836 re-filed on Apr. 25, 2018, The contents of which are incorporated herein by reference in their entirety.
본 발명은 산화적 탈수소화 반응용 촉매의 제조방법 및 상기 촉매를 이용한 산화적 탈수소화 방법에 관한 것으로, 비활성인 α-Fe2O3 결정구조를 감소시키고, 높은 활성의 산화적 탈수소화 반응용 촉매를 제공하며, 나아가 이를 부타디엔 제조시 활용하여 부반응을 억제하고, 부타디엔의 선택도를 향상시켜 부타디엔을 생산성 높게 제공할 수 있는 산화적 탈수소화 반응용 촉매의 제조방법 등에 관한 것이다. The present invention relates to a process for preparing a catalyst for oxidative dehydrogenation reaction and an oxidative dehydrogenation process using the catalyst, wherein an inert α-Fe 2 O 3 The present invention provides a catalyst for oxidative dehydrogenation reaction of high activity, which can be used in the production of butadiene to inhibit side reactions, improve the selectivity of butadiene, and provide oxidative dehydration A method for producing a catalyst for digestion reaction, and the like.
1,3-부타디엔은 합성고무의 대표적인 원재료로서 석유화학 산업의 수급상황과 연계되어 가격이 급격히 변동하는 주요 기초 유분 중 하나이다. 1,3-부타디엔을 제조하는 방법으로는 납사 크래킹, 노르말 부텐의 직접 탈수소화 반응, 노르말 부텐의 산화적 탈수소화 반응 등이 있다. 노르말 부텐의 산화적 탈수소화 반응은 금속산화물 촉매의 존재 하에 부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 안정한 물이 생성되므로 열역학적으로 매우 유리한 이점이 있다. 또한, 노르말 부텐의 산화적 탈수소화 반응은 직접 탈수소화 반응과 달리 발열 반응이므로, 낮은 온도에서 반응공정이 운전되어 에너지가 절감되면서도 높은 수율의 1,3-부타디엔을 얻을 수 있고, 산화제를 첨가함으로써 촉매를 피독시켜 촉매수명을 단축시키는 탄소 침적물의 생성이 적고, 이의 제거가 용이하여 상용화 공정으로 매우 적합한 이점이 있다. 1,3-butadiene is one of the main raw materials of synthetic rubber, and it is one of the major basic oils that prices fluctuate rapidly in connection with the supply and demand situation of the petrochemical industry. Examples of the method for producing 1,3-butadiene include naphtha cracking, direct dehydrogenation of n-butene, and oxidative dehydrogenation of n-butene. The oxidative dehydrogenation reaction of n-butene is a reaction in which butene reacts with oxygen to produce 1,3-butadiene and water in the presence of a metal oxide catalyst, and is advantageous thermodynamically because stable water is produced. Since the oxidative dehydrogenation reaction of n-butene is an exothermic reaction unlike the direct dehydrogenation reaction, the reaction process is operated at a low temperature to obtain 1,3-butadiene with a high yield, while adding an oxidizing agent There is little generation of carbon deposits that shortens the catalyst life by poisoning the catalyst, and the removal thereof is easy, which is very suitable for the commercialization process.
한편, 부텐의 산화적 탈수소화 반응용 촉매로 널리 알려진 페라이트 계열 촉매는 일반적으로 공침법에 의해 합성되는데, 공침법으로 합성된 촉매는 산화적 탈수소화 반응에 활성인 결정구조와 비활성인 Fe2O3 결정구조가 공존하는 것으로 알려져 있다. 따라서 촉매 합성 시 비활성인 Fe2O3 결정구조를 감소시키거나, 비활성인 결정구조가 일정 수준 이상 존재하더라도 활성이 우수한 촉매를 제조하는 기술에 대한 연구를 필요로 하였다. On the other hand, ferritic catalysts commonly known as catalysts for oxidative dehydrogenation of butene are synthesized by coprecipitation. Catalysts synthesized by coprecipitation have a crystal structure that is active for oxidative dehydrogenation and an inert Fe 2 O 3 crystal structures are known to coexist. Therefore, it is necessary to study a technique for producing a catalyst having an inactive Fe 2 O 3 crystal structure reduced or a catalyst having an excellent activity even if an inactive crystal structure exists at a certain level or higher.
또한, 공침법을 이용하여 촉매를 합성하는 경우 기술 및 공간적 제약으로 1회 생산량이 작아 목표량을 채우기 위해서는 동일 과정을 수차례 반복하여 촉매를 제조해야 하므로 생산성 향상에 어려움이 있으며, 이러한 문제로 농축하여 촉매를 합성하는 것이 바람직하나, 이 경우에는 비활성 결정구조의 함량이 증가하여 활성이나 안정성이 떨어지는 문제점을 야기하였다. In addition, when the catalyst is synthesized by the coprecipitation method, since the production amount is small due to the technical and spatial restrictions, it is difficult to improve the productivity because the catalyst must be manufactured by repeating the same procedure several times in order to fill the target amount. It is preferable to synthesize the catalyst, but in this case, the content of the inactive crystal structure increases, resulting in a problem of poor activity and stability.
〔선행기술문헌〕[Prior art document]
〔특허문헌〕[Patent Literature]
한국 등록특허 제10-0847206호Korean Patent No. 10-0847206
한국 등록특허 제10-1071230호Korean Patent No. 10-1071230
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 비활성인 Fe2O3 결정구조가 일정 수준 존재함에도 산화적 탈수소화 반응 활성이 우수한 촉매의 제조방법을 제공하고, 나아가 공침법을 이용하면서도 비활성인 Fe2O3 결정구조를 감소시킬 수 있는 산화적 탈수소화 반응용 촉매 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention provides a method for preparing a catalyst having excellent oxidative dehydrogenation reaction activity even though an inactive Fe 2 O 3 crystal structure exists at a certain level, and furthermore, Which is capable of reducing the Fe 2 O 3 crystal structure of iron oxides.
또한, 본 발명은 상기 산화적 탈수소화 반응용 촉매의 제조방법으로 제조된 촉매를 사용하여 부반응을 억제하고, 부타디엔의 수율이나 선택도 등을 크게 향상시킬 수 있는 산화적 탈수소화 방법을 제공하는 것을 목적으로 한다. It is another object of the present invention to provide an oxidative dehydrogenation method capable of suppressing side reactions by using a catalyst prepared by the above process for producing an oxidative dehydrogenation reaction and greatly improving the yield and selectivity of butadiene The purpose.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.These and other objects of the present invention can be achieved by the present invention described below.
상기의 목적을 달성하기 위하여, 본 발명은 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 상기 금속 전구체 수용액과 염기성 수용액을 pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조에 첨가하여 철과 A 금속을 공침시키는 단계; 및 상기 공침된 공침물을 소성하는 단계;를 포함하고, 상기 공침 시, 공침 후 또는 공침 시부터 공침 후까지 비활성 가스 또는 에어(air)를 상기 공침조에 공급하는 공정을 수행하는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매의 제조방법을 제공한다. In order to achieve the above object, the present invention provides a method for producing a metal precursor solution, comprising: preparing a metal precursor aqueous solution by adding a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor to water; Adding the metal precursor aqueous solution and the basic aqueous solution to an aqueous solution adjusted to a pH of 6 or more or a coprecipitation tank prepared with water to coprecipitate iron and an A metal; And a step of firing the coprecipitated co-precipitate, wherein the step of supplying an inert gas or air to the coprecipitate is performed until the coprecipitation, the coprecipitation, or the coprecipitation after the coprecipitation. The present invention also provides a method for producing a catalyst for an inactive dehydrogenation reaction.
또한, 본 발명은 상기 제조방법에 따른 산화적 탈수소화 반응용 촉매가 충진된 반응기에 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 산화적 탈수소화 방법을 제공한다.The present invention also includes an oxidative dehydrogenation reaction in which a C4 mixture containing n-butene and a reactant containing oxygen are passed through a reactor filled with a catalyst for an oxidative dehydrogenation reaction according to the above production method ≪ RTI ID = 0.0 > a < / RTI >
본 발명에 따르면 공침법으로 산화적 탈수소화 반응용 촉매를 제조할 시 특정 시점에서 비활성 가스 또는 공기를 공침조에 투입하는 공정을 수행하여 촉매의 활성을 향상시키고, 선택적으로 금속 전구체 수용액을 공침조 하부를 통해 공급하는 경우 촉매 내 비활성인 Fe2O3 결정구조를 감소시켜 활성을 더욱 향상시킬 수 있으며, 이렇게 제조된 촉매를 부텐의 산화적 탈수소화 반응에 적용하여 부반응을 감소시키고, 부타디엔의 선택성 및 수율을 향상시켜 고품질의 부타디엔을 생산성 높게 제공하는 효과가 있다. According to the present invention, when preparing a catalyst for oxidative dehydrogenation reaction by a coprecipitation method, an inert gas or air is introduced into a coprecipitation tank at a specific time point to improve the activity of the catalyst, It is possible to further improve the activity by reducing the Fe 2 O 3 crystal structure which is inactive in the catalyst. The catalyst thus prepared is applied to the oxidative dehydrogenation reaction of butene to reduce the side reaction and improve the selectivity of butadiene The yield is improved and high-quality butadiene is provided at a high productivity.
도 1은 실시예 1(Air 공급) 및 비교예 1(기존 합성법)에 따라 제조된 아연 페라이트 촉매의 결정구조를 찍은 XRD 데이터이다.1 is XRD data showing the crystal structure of a zinc ferrite catalyst prepared according to Example 1 (air supply) and Comparative Example 1 (conventional synthesis method).
도 2는 실시예 2(N2 공급 + 금속전구체 수용액 하부 투입), 실시예 3(Air 공급 + 금속전구체 수용액 하부 투입) 및 비교예 1(기존 합성법)에 따라 제조된 아연 페라이트 촉매의 결정구조를 보여주는 XRD 데이터이다.2 shows the crystal structure of a zinc ferrite catalyst prepared according to Example 2 (feeding N 2 + lower aqueous solution of metal precursor), Example 3 (feeding air + lower aqueous solution of metal precursor) and Comparative Example 1 It is XRD data showing.
도 3은 실시예 1 내지 3 및 비교예 1에서 제조된 공침물 슬러리의 입도 분포를 비교해서 보여주는 그래프이다.FIG. 3 is a graph showing the particle size distributions of the co-precipitation slurries prepared in Examples 1 to 3 and Comparative Example 1. FIG.
이하 본 기재의 산화적 탈수소화 반응용 촉매의 제조방법을 상세하게 설명한다. Hereinafter, the production method of the catalyst for oxidative dehydrogenation reaction of the present invention will be described in detail.
본 발명자들은 공침법을 이용하여 페라이트계 촉매를 합성하는 경우, 산화적 탈수소화 반응 활성에 영향을 미치는 비활성 Fe2O3 결정구조가 관찰되는 것을 확인하고, 비활성 Fe2O3 결정구조가 일정 수준 이상 존재하는 상태에서도 반응 활성을 증가시킬 수 있는 방안 및 비활성 결정구조 자체를 감소시킬 수 있는 방안을 모색하였으며, 촉매 합성 시 특정 시점에서 공침 용액에 질소(N2) 가스 또는 에어(air)를 공급하는 공정을 수행하고, 선택적으로 공침 단계에서 공침조 하부를 통해 금속 전구체 수용액을 공급하는 경우, 페라이트계 촉매 전구체에 해당하는 공침물의 분산 정도가 극대화 되고, 페라이트계 촉매의 결정 구조에 유리한 영향을 미쳐, 전술한 문제점이 해소되는 것을 확인하고, 이를 토대로 본 발명을 완성하였다. The present inventors confirmed that an inert Fe 2 O 3 crystal structure which affects the oxidative dehydrogenation reaction is observed when a ferrite catalyst is synthesized by coprecipitation, and when the inactive Fe 2 O 3 crystal structure has a certain level (N 2 ) gas or air was supplied to the coprecipitation solution at a specific time in the catalyst synthesis. The amount of nitrogen (N 2 ) , And when the aqueous solution of the metal precursor is selectively supplied through the lower part of the co-precipitation tank in the coprecipitation step, the degree of dispersion of the coprecipitate corresponding to the ferrite-based catalyst precursor is maximized and has a favorable effect on the crystal structure of the ferrite-based catalyst , It is confirmed that the above-mentioned problem is solved, and the present invention has been completed on the basis thereof.
본 기재의 산화적 탈수소화 반응용 촉매의 제조방법은, 일례로 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 상기 금속 전구체 수용액과 염기성 수용액을, pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조에 첨가하여 철과 A 금속을 공침시키는 단계; 및 상기 공침된 공침물을 소성하는 단계;를 포함하며, 상기 공침 시; 공침 후; 또는 공침 시부터 공침 후까지; 비활성 가스 또는 에어(air)를 상기 공침조에 공급하는 공정을 수행하는 것을 특징으로 한다. The method for producing the catalyst for oxidative dehydrogenation reaction according to the present invention comprises the steps of preparing a metal precursor aqueous solution by adding, for example, a trivalent iron (Fe) precursor and a divalent cation metal (A) precursor to water; Adding the metal precursor aqueous solution and the basic aqueous solution to an aqueous solution adjusted to pH 6 or higher or a coprecipitation tank prepared with water to coprecipitate iron and A metal; And firing said co-coprecipitate, wherein said co-coin; After coping; Or from co-deposition to co-deposition; And an inert gas or air is supplied to the coprecipitating tank.
상기 공침조에 비활성 가스 또는 에어를 공급하는 공정은 일례로 임펠러 등과 같은 교반수단을 이용하여 공침조 내 용액을 교반하면서 공침조 안으로 비활성 가스 또는 에어를 공급하는 공정이거나, 공침조 하부에 배관을 연결하여 이 배관을 통해 비활성 가스 또는 에어를 공침조 내로 공급하는 공정, 또는 관, 일례로 테플론 관을 공침조 내에 설치하고, 관을 통해 용액에 비활성 가스 또는 에어(air)를 공급하는 공정일 수 있다. 또한 상기 배관 및 관은 내경이 일례로 1/8" 내지 1/2" 또는 1/6" 내지 1/2"일 수 있고, 그 위치는 공침조 하부, 즉 공침조 내 용액의 수면 아래인 경우 특별히 제한되지 않으나, 일례로 공침조의 하단, 구체적으로는 공침조의 저면으로부터 수면까지의 거리 중 1/2 이내인 지점에 위치할 수 있다. The process of supplying inert gas or air to the coprecipitation tank may be, for example, a process of supplying an inert gas or air into the coprecipitation tank while stirring the solution in the coprecipitation tank by using stirring means such as an impeller or the like, A process of supplying inert gas or air into the co-bath through the pipe, or a process of supplying a non-activated gas or air to the solution through a pipe, for example, by installing a Teflon pipe in a co- Further, the pipe and the pipe may have an inner diameter of 1/8 "to 1/2" or 1/6 "to 1/2", for example, and the position of the pipe and the pipe may be below the co- But it may be located at a lower end of the co-op tank, specifically, at a point within 1/2 of the distance from the bottom of the co-op tank to the water surface.
이하, 상기 산화적 탈수소화 반응용 촉매의 제조방법을 각 단계별로 상술하기로 한다. Hereinafter, the method for preparing the catalyst for oxidative dehydrogenation will be described in detail.
상기 금속 전구체 수용액 제조 단계에서 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체는 일례로 질산염(nitrate), 암모늄염(ammonium salt), 황산염(sulfate) 또는 염화물(chloride)로 이루어지는 군으로부터 독립적으로 선택된 1종 이상일 수 있다. 바람직하게는 값이 싸고 쉽게 구입이 용이함에 따라 대량생산을 위한 촉매 제조 비용을 고려하여 질산염이나 염화물 중에서 선택될 수 있다. Examples of the trivalent iron (Fe) precursor and the divalent cation metal (A) precursor in the step of preparing the metal precursor aqueous solution include a nitrate, an ammonium salt, a sulfate or a chloride And the like. Preferably, the catalyst is selected from nitrate or chloride in consideration of the cost of producing the catalyst for mass production as it is cheap and easily available.
상기 2가 양이온 금속(A)은 일례로, 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 부텐의 산화적 탈수소화 반응에 특히 높은 활성을 나타내는 아연(Zn)이나 망간(Mn) 중에서 선택될 수 있고, 부타디엔의 수율이나 선택도 측면에서 아연(Zn)을 포함하는 것이 가장 바람직할 수 있다. Examples of the divalent cation metal (A) include copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn) ), Manganese (Mn) and cobalt (Co), and is preferably selected from among zinc (Zn) and manganese (Mn) exhibiting particularly high activity in the oxidative dehydrogenation reaction of butene And it may be most preferable to include zinc (Zn) in terms of yield and selectivity of butadiene.
상기 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체는 물에 혼합되어 수용액으로 제조되며, 이와 같이 금속 전구체가 물에 용해되어 액상으로 존재하는 경우, 철과 2가 양이온 금속의 이온교환이 용이하여 목적하는 공침물을 쉽게 제조할 수 있다. The trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are mixed with water to prepare an aqueous solution. When the metal precursor is dissolved in water to be present in a liquid phase, Ion exchange is easy, and the desired coprecipitate can be easily produced.
상기 물은 일례로 증류수일 수 있다. The water may be, for example, distilled water.
통상적으로 금속 전구체 수용액 내 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체의 적절한 혼합 비율은 상기 2가 양이온 금속(A) 전구체 1몰에 대해 상기 3가 양이온 철(Fe) 전구체가 1.5 내지 10몰, 1.5 내지 4몰 또는 1.5 내지 2.5몰인 것이며, 이 범위 내에서 산화적 탈수소화 반응에 활성인 결정구조의 형성이 용이하여 촉매 활성이 우수한 효과가 있다.Typically, a suitable mixing ratio of trivalent cationic iron (Fe) precursor and divalent cationic metal (A) precursor in the metal precursor aqueous solution is such that the trivalent cationic iron (Fe) precursor Is 1.5 to 10 moles, 1.5 to 4 moles or 1.5 to 2.5 moles, and within this range there is an effect of facilitating the formation of a crystal structure that is active in the oxidative dehydrogenation reaction and thus having an excellent catalytic activity.
또한, 상기 금속 전구체 수용액은 pH가 일례로 0 내지 4, 1 내지 3 또는 1 내지 2일 수 있고, 이 범위 내에서 목적하는 활성성분이 안정적으로 형성되는 효과가 있다. In addition, the aqueous solution of the metal precursor may have a pH of 0 to 4, 1 to 3 or 1 to 2, for example, and the desired active ingredient is stably formed within this range.
상기 금속 전구체 수용액이 준비된 후에는, 철 및 A 금속의 공침을 위해 pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조를 마련하고, 이 공침조에 상기 금속 전구체 수용액을 첨가하여 철과 A 금속을 공침시킨다.After the aqueous solution of the metal precursor is prepared, a co-precipitation bath prepared with an aqueous solution or water adjusted to a pH of 6 or more is provided for coprecipitation of iron and A metal, and an aqueous solution of the metal precursor is added to the co- Cooperate.
상기 공침시키는 단계에서 pH가 6 이상으로 조절된 수용액은 일례로 수산화나트륨 수용액 및 암모니아수 중에서 선택된 1종 이상일 수 있고, 상기 금속 전구체 수용액을 적가하기 이전에 공침조의 pH를 6 이상, 6 내지 10 또는 7 내지 8로 미리 조절하는 경우, 금속 전구체 수용액의 투입으로 인한 초반 pH 변화 폭을 줄여주어 균일한 조성의 촉매가 안정적으로 형성되도록 할 수 있다. The aqueous solution having the pH adjusted to 6 or more in the coprecipitation step may be at least one selected from an aqueous solution of sodium hydroxide and aqueous ammonia, and the pH of the coprecipitate may be adjusted to 6 or more, 6 to 10 or 7 To 8, it is possible to reduce the width of the initial pH change due to the input of the aqueous solution of the metal precursor, thereby stably forming a catalyst having a uniform composition.
본 기재의 촉매 제조방법은 일례로 상기 공침시키는 단계 중에 비활성 가스 또는 에어(air)를 공침조에 투입하는 공정을 행할 수 있으며, 이러한 공정을 수행함으로써 산소와 금속 전구체가 균일하게 결합할 수 있도록 하며 믹싱(mixing) 효과가 증대되고, 궁극적으로는 산화적 탈수소화 반응 활성을 향상시키는 효과를 제공할 수 있다. 일례로 본 기재에 따라 제조된 촉매를 부텐의 산화적 탈수소화 반응에 적용 시 부텐의 전환율, 부타디엔의 선택도, 수율 등을 향상시키며, 부반응 물질의 생성은 감소시키는 효과를 제공한다. 또한, 상대적으로 낮은 핫 스팟(hot spot) 온도에서 우수한 반응활성을 나타내는 이점이 있다. In the catalyst preparation method of the present invention, for example, a step of injecting an inert gas or air into the coprecipitation tank can be performed during the coprecipitation step. By performing such a process, oxygen and the metal precursor can be uniformly combined, the mixing effect is increased, and ultimately, the effect of improving the oxidative dehydrogenation activity can be provided. For example, when the catalyst prepared according to the present invention is applied to an oxidative dehydrogenation reaction of butene, the conversion of butene, the selectivity of butadiene, the yield and the like are improved and the production of side reaction materials is reduced. It also has the advantage of exhibiting excellent reaction activity at relatively low hot spot temperatures.
본 기재에서 핫 스팟(hot spot)은 반응기 내에 충진된 촉매층에서 반응 시 온도가 가장 높은 부분을 의미한다.In the present description, a hot spot means a portion of the catalyst layer filled in the reactor with the highest temperature during the reaction.
상기 비활성 가스 또는 에어의 공침조 투입 조건은 특별히 제한되지 않으나, 일례로 비활성 기체 또는 에어를 공침조 내 용액 1L 당 0.1 내지 2 L/min 또는 0.5 내지 1 L/min으로, 1 내지 300분, 10 내지 200분, 30 내지 100분 또는 40 내지 90분 동안 공급할 수 있고, 이 범위 내에서 촉매의 작고 균일한 입도 분포 및 활성 결정구조에 유리한 이점이 있다. For example, inert gas or air may be supplied at a rate of 0.1 to 2 L / min or 0.5 to 1 L / min per 1 L of solution in a co-bath, for 1 to 300 minutes, 10 To 200 minutes, 30 to 100 minutes, or 40 to 90 minutes, and within this range, there is an advantage in favor of a small and uniform particle size distribution and active crystal structure of the catalyst.
상기 공침시키는 단계에서 공침 용액은 pH가 일례로 7 내지 10, 또는 7 내지 8로 유지되는 것이 바람직할 수 있으며, 이 범위 내에서 촉매의 활성이나 안정성이 우수한 효과가 있다. 이에 공침시키는 단계에서는 pH를 7 내지 10으로 유지하기 위한 목적으로 염기성 수용액을 금속 전구체 수용액과 동시에 첨가하는 것이 바람직할 수 있다.In the coprecipitation step, the pH of the coprecipitation solution may preferably be maintained at 7 to 10, or 7 to 8, for example. Within this range, the activity and stability of the catalyst are excellent. In the co-precipitation step, it may be preferable to add a basic aqueous solution simultaneously with the metal precursor aqueous solution for the purpose of maintaining the pH at 7 to 10.
일례로 상기 공침시키는 단계에서, 공침조에 상기 금속 전구체 수용액과 염기성 수용액을 함께 점적하여 철과 A 금속을 공침시킬 수 있으며, 상기 염기성 수용액은 일례로 수산화나트륨 또는 암모니아수 중에서 선택된 1종 이상일 수 있다.For example, in the co-precipitation step, the metal precursor aqueous solution and the basic aqueous solution may be dripped together in the coprecipitation bath to precipitate iron and A metal. The basic aqueous solution may be at least one selected from sodium hydroxide and ammonia water.
본 기재에서 점적은 일례로 2종 또는 그 이상의 용액을 같은 지점 또는 용기 등에 드롭핑(dropping)하는 것을 의미하고, 상기 '같은 지점'은 드롭핑 되는 용액이 수면 위에서 튀기는 지점 이내 범위 또는 수면 아래에서 완전히 섞이지 않고 그 성질을 유지하는 지점 이내의 범위를 포함한다.In the present description, the drop refers to, for example, dropping two or more solutions to the same point or container, and the " same point " means that the solution being dropped falls within a range It includes the range within the point where it does not mix completely and maintains its properties.
다른 일례로 상기 공침시키는 단계에서, 금속 전구체 수용액은 공침조 하부를 통해 공급하고, 염기성 수용액은 공침조에 드롭핑하여 철과 A 금속을 공침시킬 수 있다. 이와 같이 금속 전구체 수용액을 염기성 수용액과는 별도로 공침조 내부로 직접 공급하는 경우, 공침조에 마련된 용액 내로 금속 전구체가 확산되는 속도를 증가시킴으로써 균일한 결정 구조를 형성시키고, 비활성인 결정구조가 감소되어 높은 활성을 나타내는 촉매를 제공할 수 있다. In another example, in the co-precipitation step, the metal precursor aqueous solution may be supplied through the lower portion of the co-precipitation bath, and the basic aqueous solution may be co-precipitated with iron and the A metal by dropping in the coprecipitation bath. When the metal precursor aqueous solution is directly fed into the co-precipitation vessel separately from the basic aqueous solution, the uniformity of the crystal structure is increased by increasing the diffusion rate of the metal precursor into the solution provided in the co- A catalyst exhibiting activity can be provided.
본 기재에서 금속 전구체 수용액의 공침조 하부 투입 방법은 금속 전구체 수용액이 공침조 내 용액의 수면을 통하지 않고 수면 아래로 직접 투입되는 방법인 경우 특별히 제한되지 않으며, 일례로 공침조 하부에 배관을 연결하여 이 배관을 통해 금속 전구체 수용액을 공급하거나, 공침조 내 용액에 한쪽 끝단이 잠기도록 설치된 관을 통해 금속 전구체 수용액을 공급할 수 있고, 이 경우 공침조 하부를 통해 금속 전구체 수용액을 공급함으로써 용액 내로 금속 전구체가 확산되는 속도를 증가시킬 수 있다. In the present invention, the method of introducing the metal precursor aqueous solution into the co-precipitation bottom is not particularly limited in the case where the metal precursor aqueous solution is directly introduced below the water surface of the solution in the co-precipitation tank. For example, The metal precursor aqueous solution may be supplied through the pipe or the metal precursor aqueous solution may be supplied through the pipe provided at one end to the solution in the cooperating vessel so that the metal precursor solution is supplied through the pipe. Can be increased.
상기 공침물은 공침조 내에서 슬러리 상태로 존재하고, 이러한 슬러리 입자는 일례로 메디안 지름(median size)이 7 ㎛ 이하 또는 1 내지 7 ㎛이고, 입자의 모드 지름(mode size)이 7 ㎛ 이하 또는 1 내지 7 ㎛일 수 있으며, 이 범위 내에서 기존 아연페라이트 촉매 대비 높은 수율의 부타디엔을 확보하는 효과가 있다.The co-precipitate is present in the co-precipitate in a slurry state, for example, the median size is 7 탆 or less, or 1 to 7 탆, the mode size of the particle is 7 탆 or less 1 to 7 탆. Within this range, there is an effect of securing a high yield of butadiene compared to a conventional zinc ferrite catalyst.
본 기재에서 슬러리 입자의 메디안 지름 및 모드 지름은 Horiba 사의 Laser Particle Size Analyzer-960으로 측정하며, 이때 필요한 굴절률은 slurry 상태에서 가장 많이 존재하는 Fe를 기준으로 설정한다.In the present invention, the median diameter and mode diameter of the slurry particles are measured by a Laser Particle Size Analyzer-960 manufactured by Horiba Co., and the refractive index required here is set based on Fe, which is present most in the slurry state.
상기 공침이 완료된 공침 용액으로부터 수득된 공침물을 소성하기에 앞서, 공침 용액을 교반; 숙성; 또는 교반 및 숙성;시키는 단계를 더 포함할 수 있고, 이 경우 충분한 공침이 이루어지도록 하는 효과를 제공한다.Stirring the coprecipitation solution prior to calcining the coprecipitate obtained from the coprecipitation solution having completed the coprecipitation; ferment; Or agitating and aging the mixture. In this case, the effect of ensuring sufficient coprecipitation is provided.
본 기재의 촉매 제조방법은 일례로, 상기 공침이 완료된 후 공침 용액을 교반하는 중에 비활성 가스 또는 에어(air)를 공급하는 공정을 행할 수 있으며, 이와 같이 제조된 촉매는 산화적 탈수소화 반응 활성이 더욱 우수한 효과가 있으며, 일례로 부텐의 산화적 탈수소화 반응에 적용 시 부텐의 전환율, 부타디엔의 선택도 등을 향상시키며, 부반응 물질의 생성은 감소시키는 효과를 제공한다. 또한, 상대적으로 낮은 핫 스팟(hot spot) 온도에서 우수한 반응활성을 나타내는 이점이 있다.As an example of the method of preparing the catalyst of the present invention, it is possible to carry out a process of supplying an inert gas or air while stirring the coprecipitation solution after completion of the coprecipitation. The catalyst thus prepared has an oxidative dehydrogenation reaction activity And it has an excellent effect, for example, when it is applied to the oxidative dehydrogenation reaction of butene, it enhances the conversion of butene, the selectivity of butadiene, and the effect of reducing the generation of side reactions. It also has the advantage of exhibiting excellent reaction activity at relatively low hot spot temperatures.
다른 일례로, 본 기재의 촉매 제조방법은 상기 금속 전구체 수용액과 염기성 수용액을 첨가하여 공침시키는 단계 중에 비활성 가스 또는 에어(air)를 공침조 내로 공급하는 공정을 수행하고, 공침이 완료된 후 공침 용액을 교반하며 추가적으로 비활성 가스 또는 에어(air)를 공침조 내로 공급하는 공정을 수행할 수 있으며, 이 경우 촉매의 산화적 탈수소화 반응 활성이 더욱 향상되는 효과를 제공할 수 있다.As another example, in the catalyst production method of the present invention, a step of supplying an inert gas or air into the co-precipitation tank during the step of coprecipitation by adding the metal precursor aqueous solution and the basic aqueous solution is performed, and after the coprecipitation is completed, And further adding an inert gas or air into the co-precipitation tank. In this case, the oxidative dehydrogenation reaction activity of the catalyst can be further enhanced.
또 다른 일례로, 본 기재의 촉매 제조방법은 상기 금속 전구체 수용액과 염기성 수용액을 공침조 내에 첨가하여 공침시키는 단계부터 상기 공침이 완료된 후 공침 용액을 교반하는 단계에 걸쳐 연속적으로, 즉 공침 시부터 공침 후까지 비활성 가스 또는 에어(air)를 공침조 내로 공급하는 공정을 수행할 수 있으며, 이 경우 촉매의 산화적 탈수소화 반응 활성이 향상되는 효과가 있다. As another example, the catalyst production method of the present invention is characterized in that the metal precursor solution and the basic aqueous solution are continuously added to the coprecipitation solution through the step of adding the coprecipitation solution to the coprecipitation solution, And then an inert gas or air is fed into the co-precipitation tank. In this case, the oxidative dehydrogenation reaction activity of the catalyst is improved.
상기 비활성 기체는 일례로 질소(N2)일 수 있다. The inert gas may be, for example, nitrogen (N 2 ).
상기 교반 및 숙성은 일례로 각각 30분 내지 3시간 또는 30분 내지 2시간 동안 실시될 수 있으나, 이에 한정되는 것은 아님을 명시한다. The stirring and aging may be performed for 30 minutes to 3 hours or 30 minutes to 2 hours, respectively, but not limited thereto.
상기 공침 용액을 건조; 여과; 또는 건조 및 여과;시켜 공침물을 수득할 수 있으며, 이를 소성하여 AFe2O4 결정구조를 포함하는 촉매를 수득할 수 있다.Drying the coprecipitation solution; percolation; Or dried and filtered; and was possible to obtain a coprecipitate, it is possible by sintering them to obtain a catalyst containing AFe 2 O 4 crystal structure.
상기 건조 및 여과는 각각 당업에서 통상적으로 실시되고 있는 방법이라면 특별히 제한되지 않고, 상기 여과는 일례로 감압 여과일 수 있으며, 필요에 따라 여과 후 세척하는 공정을 더 포함할 수 있다. The drying and filtration are not particularly limited as long as they are commonly practiced in the art, and the filtration may include, for example, a vacuum filtration and, if necessary, filtration and washing.
상기 건조는 통상의 건조기를 사용하여 수행될 수 있고, 일례로 60 내지 100 ℃, 70 내지 100 ℃, 혹은 80 내지 100 ℃에서 12 내지 20시간, 14 내지 20시간, 혹은 14 내지 18시간 동안 건조될 수 있다.The drying may be carried out using a conventional dryer, for example, drying at 60 to 100 ° C, 70 to 100 ° C, or 80 to 100 ° C for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours .
상기 소성은 통상의 소성로를 사용할 수 있고, 일례로 400 내지 800 ℃, 500 내지 800 ℃, 혹은 550 내지 750 ℃에서 1 내지 10 시간, 3 내지 8시간, 혹은 5 내지 7시간 동안 수행할 수 있으나 이에 제한되는 것은 아님을 명시한다. The firing may be carried out in a conventional firing furnace, for example, at 400 to 800 ° C, 500 to 800 ° C, or 550 to 750 ° C for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours, It is not limited.
상기 소성을 통해 수득되는 촉매는 AFe2O4 결정구조를 포함할 수 있고, 구체적인 일례로 AFe2O4 결정구조 및 α-Fe2O3 결정구조를 포함하는 혼합상일 수 있다.The catalyst obtained through the calcination may include an AFe 2 O 4 crystal structure, and a specific example thereof may be a mixed phase including an AFe 2 O 4 crystal structure and an α-Fe 2 O 3 crystal structure.
본 발명의 일실시예에 따라 수득되는 촉매는 일례로 AFe2O4 결정구조 93.7 중량% 이상, 94.0 중량% 이상, 94.5 중량% 이상, 94.8 중량% 이상 또는 94.8 내지 96.0 중량%; 및 α-Fe2O3 결정구조 6.3 중량% 이하, 6.0 중량% 이하, 5.5 중량% 이하, 5.2 중량% 이하, 또는 4.0 내지 5.2 중량%를 포함할 수 있다. The catalysts obtained according to one embodiment of the present invention include, for example, at least 93.7 wt%, at least 94.0 wt%, at least 94.5 wt%, at least 94.8 wt% or 94.8 to 96.0 wt% AFe 2 O 4 crystal structure; And 6.3 wt% or less, 6.0 wt% or less, 5.5 wt% or less, 5.2 wt% or less, or 4.0 to 5.2 wt% of the? -Fe 2 O 3 crystal structure.
본 기재에서 AFe2O4와 α-Fe2O3의 중량비는 XRD 회절분석의 AFe2O4 피크(2theta: 29.5 내지 30.5°, 34.5 내지 35.5°, 42 내지 43°, 52.5 내지 53.5°, 56.5 내지 57.5°, 62 내지 63°)와 α-Fe2O3 피크(2theta: 33 내지 34°)의 크기로부터 측정할 수 있다. In the present specification, the weight ratio of AFe 2 O 4 and α-Fe 2 O 3 was determined by AFe 2 O 4 peak (29theta: 30.5 °, 34.5-35.5 °, 42-43 °, 52.5-53.5 °, 56.5 To 57.5 °, 62 to 63 °) and the size of α-Fe 2 O 3 peak (2theta: 33 to 34 °).
또한, XRD 회절분석에서 각각의 피크가 존재하는 면에 의한 회절 피크로서 AFe2O4는 (220), (311), (222), (400), (422), (511), (440) 위치에 존재하고, α-Fe2O3는 (104) 위치에 존재한다. In the XRD diffraction analysis, AFe 2 O 4 as (220), (311), (222), (400), (422), (511), (440) And? -Fe 2 O 3 is present at the (104) position.
보다 구체적인 일례로, 본 기재의 촉매 제조방법은 1) 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 2) 상기 금속 전구체 수용액을 pH가 6 내지 10으로 조절된 수용액 또는 물이 준비된 공침조에 염기성 수용액과 함께 점적하여 철과 A 금속을 공침시키는 단계; 및 3) 상기 공침이 완료된 공침 용액을 교반; 또는 교반 및 숙성;시킨 후, 공침된 공침물을 소성하는 단계;를 포함하되, 상기 공침시키는 단계 및 상기 교반 시 질소 또는 에어를 공침조 내로 투입하는 공정을 수행하는 것을 특징으로 할 수 있다.More specifically, the catalyst preparation method of the present invention comprises: 1) preparing a metal precursor aqueous solution by adding a trivalent iron (Fe) precursor and a divalent cation metal (A) precursor to water; 2) coprecipitating the metal precursor aqueous solution with an aqueous solution adjusted to a pH of 6 to 10 or a coprecipitation tank prepared with water, together with a basic aqueous solution to coprecipitate iron and metal A; And 3) stirring the coprecipitation solution having completed the coprecipitation; Or agitating and aging the mixed coprecipitate, followed by calcination of the co-precipitated coprecipitate, wherein the coprecipitating step and the step of introducing nitrogen or air into the cooperating vessel during the stirring are performed.
구체적인 다른 일례로, 본 기재의 촉매 방법은 1) 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 2) 상기 금속 전구체 수용액을, pH가 6 내지 10으로 조절된 수용액 또는 물이 준비된 공침조 하부를 통해 공급하고, 염기성 수용액은 상기 공침조에 드롭핑하여 철과 A 금속을 공침시키는 단계; 및 3) 상기 공침이 완료된 공침 용액을 교반; 또는 교반 및 숙성;시킨 후, 공침된 공침물을 소성하는 단계;를 포함하되, 상기 공침시키는 단계 및 상기 교반 시 질소 또는 에어를 공침조 내로 공급하는 공정을 수행하는 것을 특징으로 할 수 있다.In another specific example, the catalytic method of the present invention comprises: 1) preparing a metal precursor aqueous solution by adding trivalent iron (Fe) precursor and divalent cation metal (A) precursor to water; 2) supplying the aqueous solution of the metal precursor through an aqueous solution having a pH adjusted to 6 to 10 or a lower part of a co-bathing vessel prepared with water, and dropping the basic aqueous solution in the co-treatment bath to coprecipitate iron and A metal; And 3) stirring the coprecipitation solution having completed the coprecipitation; Or agitating and aging the mixed coprecipitate, and then firing the coprecipitated coprecipitate, wherein the coprecipitation step and the step of feeding nitrogen or air into the cooperating vessel during the stirring are performed.
또한, 상기 본 기재의 제조방법에 따른 촉매는 일례로 하기 수학식 1을 만족하는 것을 특징으로 할 수 있다. In addition, the catalyst according to the production method of the present invention may be characterized by satisfying the following formula (1).
[수학식 1][Equation 1]
0 ≤ T2/T1 ≤ 0.800? T2 / T1? 0.80
(상기 수학식 1에서, T2는 금속 전구체 수용액을 공침조 하부로 공급하고, 비활성 가스 또는 에어 투입 공정을 포함하는 본 기재의 촉매 제조방법에 따라 제조된 촉매 총 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이고, T1은 상기 촉매 제조방법에서 금속 전구체 수용액을 공침조 하부로 공급하는 대신 염기성 수용액과 점적하여 공침시키고, 비활성 가스 또는 에어 투입 공정을 생략하여 제조된 촉매 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이며, α-Fe2O3 결정구조의 함량은 촉매의 XRD 회절분석의 α-Fe2O3 결정구조 피크(2theta: 33 내지 34°)의 크기로부터 측정된다.)(Wherein, in the above formula (1), T2 represents an amount of the α-Fe contained in 100 wt% of the total amount of the catalyst prepared according to the catalyst preparation method of the present invention including the step of supplying the metal precursor aqueous solution to the bottom of the co- 2 O 3 T1 is the content of the catalyst in 100 wt% of the catalyst prepared by spontaneously coprecipitation with the basic aqueous solution instead of supplying the aqueous solution of the metal precursor to the lower part of the co- α-Fe 2 O 3 and the content of crystal structure, α-Fe 2 O content of 3 crystal structure of the XRD diffraction patterns of the catalyst α-Fe 2 O 3 crystal structure peak: measured by the size (2theta 33 to 34 °) do.)
보다 바람직하게 상기 T2/T1는 0 내지 0.75, 0 내지 0.70 또는 0 내지 0.68일 수 있으며, 이 범위 내에서 촉매의 활성이 우수하고, 이를 산화적 탈수소화 반응에 적용할 시 부타디엔의 수율이나 선택도 등이 개선되어 고품질의 부타디엔을 생산성 높게 제공하고, 낮은 핫 스팟(hot spot) 온도에서 높은 활성을 나타내는 효과가 있다. More preferably, the value of T2 / T1 may be from 0 to 0.75, from 0 to 0.70, or from 0 to 0.68, and the activity of the catalyst is excellent within this range. When this is applied to an oxidative dehydrogenation reaction, the yield and selectivity of butadiene And the like, thereby providing high-quality butadiene at a high productivity and exhibiting high activity at a low hot spot temperature.
본 기재에 따라 제조된 산화적 탈수소화 반응용 촉매는 부텐의 산화적 탈수소화 반응으로부터 부타디엔을 형성하는 반응에 이용될 수 있으며, 이하 본 기재의 산화적 탈수소화 방법을 설명하기로 한다. The oxidative dehydrogenation reaction catalyst prepared according to the present invention can be used for the reaction for forming butadiene from the oxidative dehydrogenation reaction of butene, and the oxidative dehydrogenation method of the present invention will be described below.
본 기재의 산화적 탈수소화 방법은 일례로 상기 제조방법에 따른 산화적 탈수소화 반응용 촉매가 충진된 반응기에 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 할 수 있다. In the oxidative dehydrogenation method of the present invention, for example, an oxidative dehydrogenation reaction is performed while passing a reaction mixture containing a C4 mixture containing normal butene and oxygen in a reactor filled with a catalyst for an oxidative dehydrogenation reaction according to the above- The method comprising the steps of:
상기 산화적 탈수소화 방법은 일례로 부타디엔의 제조방법일 수 있다.The oxidative dehydrogenation may be, for example, a process for preparing butadiene.
구체적인 일례로, 본 기재의 부타디엔 제조방법은 i) 산화적 탈수소화 반응용 촉매를 반응기에 충진시키는 단계; 및 ii) 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 상기 촉매가 충진된 반응기의 촉매층에 연속적으로 통과시키면서 산화적 탈수소화 반응을 수행하는 단계;를 포함할 수 있다.As a specific example, the butadiene producing method of the present invention comprises the steps of: i) charging a catalyst for an oxidative dehydrogenation reaction into a reactor; And ii) conducting an oxidative dehydrogenation reaction while continuously passing a reactant containing oxygen and a C4 mixture containing n-butene to the catalyst bed of the reactor packed with the catalyst.
상기 C4 혼합물은 일례로 2-부텐(trans-2-Butene, cis-2-Butene), 1-부텐(1-Butene) 중에서 선택된 1종 이상의 노르말 부텐을 포함하며, 선택적으로 노르말 부탄이나 C4 라피네이트-3을 더 포함할 수 있다.The C4 mixture includes at least one n-butene selected from, for example, 2-butene, 1-butene, 1-butene, -3. ≪ / RTI >
상기 반응물은 공기, 질소, 스팀 및 이산화탄소 중에서 선택된 1종 이상을 더 포함할 수 있다. The reactant may further include at least one selected from air, nitrogen, steam, and carbon dioxide.
구체적인 일례로, 상기 반응물은 C4 혼합물, 산소, 스팀 및 질소를 1:0.01~1.5:1~15:1~10 또는 1:0.5~1.2:5~15:1~10의 몰비로 포함할 수 있으며, 이 범위 내에서 반응열의 제어가 용이하고, 부타디엔의 수율이 우수한 효과가 있다.As a specific example, the reactants may comprise a C4 mixture, oxygen, steam and nitrogen in a molar ratio of 1: 0.01 to 1.5: 1 to 15: 1 to 10 or 1: 0.5 to 1.2: 5 to 15: , The reaction heat is easily controlled within this range, and the yield of butadiene is excellent.
상기 산화적 탈수소화 반응은 일례로 250 내지 430℃, 300 내지 425℃ 또는 350 내지 425℃의 반응온도에서 수행할 수 있으며, 이 범위 내에서 에너지 비용을 크게 증가시키지 않으면서 반응효율이 우수하여 부타디엔을 생산성 높게 제공할 수 있으면서도, 촉매 활성 및 안정성이 높게 유지될 수 있다. The oxidative dehydrogenation reaction can be performed at a reaction temperature of 250 to 430 ° C, 300 to 425 ° C, or 350 to 425 ° C, and the reaction efficiency is excellent without significantly increasing the energy cost within this range, Can be provided at a high productivity, and the catalyst activity and stability can be maintained at a high level.
상기 산화적 탈수소화 반응은 일례로 노르말 부텐을 기준으로 50 내지 2000h-1, 50 내지 1500 h-1 또는 50 내지 1000 h-1의 공간속도(GHSV: Gas Hourly Space Velocity)로 수행할 수 있으며, 이 범위 내에서 반응효율이 우수하여 전환율, 선택도, 수율 등이 우수한 효과가 있다. The oxidative dehydrogenation is a space velocity of 50, based on the normal butene as an example to 2000h -1, from 50 to 1500 h -1, or 50 to 1000 h -1: can be carried out by (GHSV Gas Hourly Space Velocity), Within this range, the reaction efficiency is excellent and the conversion efficiency, selectivity and yield are excellent.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such variations and modifications are intended to be within the scope of the appended claims.
[실시예][Example]
실시예 1Example 1
염화아연(ZnCl2) 0.122 몰 및 염화제이철(FeCl36H2O) 0.243 몰을 물 12.778몰에 용해시켜 금속 전구체 수용액을 제조하였다. 이때, 상기 금속 전구체 수용액 내에 포함된 금속 성분들의 몰비는 Fe:Zn = 2:1이었다. 0.122 mol of zinc chloride (ZnCl 2 ) and 0.243 mol of ferric chloride (FeCl 3 6H 2 O) were dissolved in 12.778 mol of water to prepare a metal precursor aqueous solution. At this time, the molar ratio of the metal components contained in the metal precursor aqueous solution was Fe: Zn = 2: 1.
다음으로 증류수가 준비된 공침조에 상기 금속 전구체 수용액을 농도 9-10 중량%의 암모니아수와 함께 점적하여 철과 아연을 공침시키며 질소를 공급하는 공정을 수행하였다. 이때 질소는 상기 증류수 1L당 1L/min의 양으로 80-90분 동안 주입되었다. 공침이 완료된 후, 충분한 공침이 이루어지도록 공침 용액을 1시간 동안 교반하는 공정을 수행하였으며, 이때 질소는 상기 증류수 1L 당 0.5L/min의 양으로 주입되었다. 이후 교반을 멈춘 뒤 침전물이 모두 가라앉도록 상온에서 1시간 동안 방치하여 공침물을 숙성시켰다. Next, in the coprecipitation tank prepared with distilled water, the aqueous solution of the metal precursor was dripped with ammonia water having a concentration of 9-10 wt%, and iron and zinc were coprecipitated and nitrogen was supplied. At this time, nitrogen was injected for 80-90 minutes in an amount of 1 L / min per 1 L of the distilled water. After completion of coprecipitation, a coprecipitation solution was stirred for 1 hour so that sufficient coprecipitation was achieved, wherein nitrogen was injected at an amount of 0.5 L / min per liter of the distilled water. After stopping the agitation, the coprecipitate was allowed to stand for one hour at room temperature so that all of the precipitate would sink.
교반 및 숙성이 완료된 공침 용액을 감압 여과기를 사용하여 감압 여과하여 공침물을 수득하였고, 이를 세척한 다음 90℃에서 24 시간 동안 건조시킨 뒤, 건조된 공침물을 소성로에 넣어 650℃에서 5시간 동안 열처리하여 아연 페라이트 촉매를 제조하였다. The coprecipitation solution, which had been stirred and aged, was filtered under reduced pressure using a vacuum filter to obtain a coprecipitate. The co-precipitate was washed and dried at 90 DEG C for 24 hours, and the dried co-precipitate was placed in a calcination furnace at 650 DEG C for 5 hours The zinc ferrite catalyst was prepared by heat treatment.
비교예 1Comparative Example 1
상기 실시예 1에서 공침조 내로 질소를 공급하는 공정을 모두 생략하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The same procedure as in Example 1 was carried out except that all of the steps of feeding nitrogen into the co-bath in Example 1 were omitted.
[시험예][Test Example]
상기 실시예 1 및 비교예 1에서 제조된 아연 페라이트 촉매를 사용하여 다음과 같은 시험분석을 수행하였다. The following test analyzes were carried out using the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1 as follows.
시험예 1: XRD 분석Test Example 1: XRD analysis
상기 실시예 1 및 비교예 1에서 제조된 촉매의 결정구조 및 비율을 확인하기 위해 XRD 분석을 실시하였으며, XRD 분석 결과를 도 1 및 하기 표 1에 나타내었다. XRD analysis was performed to confirm the crystal structure and the ratio of the catalyst prepared in Example 1 and Comparative Example 1, and XRD analysis results are shown in FIG. 1 and Table 1 below.
구분division 실시예 1Example 1 비교예 1Comparative Example 1
ZnFe2O4 결정구조(중량%)ZnFe 2 O 4 crystal structure (% by weight) 96.096.0 92.492.4
α-Fe2O3 결정구조(중량%)α-Fe 2 O 3 crystal structure (% by weight) 4.04.0 7.67.6
도 1 및 표 1을 참조하면, 실시예 1과 비교예 1에서 제조된 아연 페라이트 촉매는 ZnFe2O4 결정구조와 α-Fe2O3 결정구조의 혼합상인 것을 확인할 수 있으며, 실시예 1에 따른 촉매의 α-Fe2O3 결정구조 비율이 상당히 낮아진 것을 확인하였다. 이로부터 공침조 내 질소 가스 공급은 페라이트계 촉매의 결정 구조에 유리한 영향을 미치는 것을 알 수 있었다.Referring to FIG. 1 and Table 1, the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1 was ZnFe 2 O 4 Α-Fe 2 O 3 ratio of the crystal structure of the catalyst according to the crystal structure as α-Fe 2 O 3 in Example 1 to check the combination of the crystal structure merchant, this was confirmed to be significantly lower. From this, it was found that the nitrogen gas supply in the co-precipitation tank had a favorable effect on the crystal structure of the ferrite-based catalyst.
시험예 2: 산화적 탈수소화 반응Test Example 2: Oxidative dehydrogenation reaction
상기 실시예 1 및 비교예 1에서 합성된 아연 페라이트 촉매를 사용하여 하기 산화적 탈수소화 반응을 거쳐 부타디엔을 생성하였으며, 그 결과를 하기 표 2에 각각 실시예 1a 내지 1c 및 비교예 1a 내지 1d로 나타내었다. Butadiene was produced by the following oxidative dehydrogenation reaction using the zinc ferrite catalyst synthesized in Example 1 and Comparative Example 1. The results are shown in Table 2 as Examples 1a to 1c and Comparative Examples 1a to 1d Respectively.
반응기로서 지름 1.8 cm의 금속 관형 반응기에 실시예 1 혹은 비교예 1에서 제조된 촉매를 촉매층 부피 30cc로 고정하고, 반응물로 시스-2-부텐 40 중량%, 트랜스-2-부텐 60 중량%의 2-부텐 혼합물과 산소를 사용하였고 질소와 스팀을 유입시켰다. 상기 반응물 비는 산소/부텐 1, 스팀/부텐 8 및 질소/부텐 1의 몰비로 셋팅하였고, 스팀은 물을 340 ℃의 기화기에서 기화시켜 반응물과 함께 반응기에 유입시켰다.As a reactor, the catalyst prepared in Example 1 or Comparative Example 1 was fixed to a metal tubular reactor having a diameter of 1.8 cm at a catalyst bed volume of 30 cc, and 40 wt% of cis-2-butene and 60 wt% of trans- - Butene mixture and oxygen were used and nitrogen and steam were introduced. The reactant ratios were set to the molar ratio of oxygen / butene 1, steam / butene 8 and nitrogen / butene 1, and the steam was vaporized at 340 ° C vaporizer and introduced into the reactor together with the reactants.
부텐 혼합물의 양은 액체용 질량유속조절기를 사용하여 0.625 cc/min으로 제어하였고, 산소 및 질소는 기체용 질량유속조절기를 사용하여 제어하였으며, 스팀의 양은 액체 펌프를 이용해 주입 속도를 제어하였다. 상기 반응기의 기상 공간속도(GHSV, gas hourly space velocity)는 66h-1로 설정하고 상압(압력 게이지 0)에서, 하기 표 2에 기재된 온도 조건하에서 반응시켰다. The amount of butene mixture was controlled at 0.625 cc / min using a mass flow controller for liquids. The oxygen and nitrogen were controlled using a mass flow controller for gas, and the feed rate was controlled using a liquid pump. The gas hourly space velocity (GHSV) of the reactor was set to 66 h -1 and the reaction was carried out at normal pressure (pressure gauge 0) under the temperature conditions shown in Table 2 below.
반응 후 생성물을 가스 크로마토그래피(GC)로 분석하였고, 혼합물 내 각 부텐의 전환율(BE_Conv.), 1,3-부타디엔 선택도(S_BD), 1,3-부타디엔 수율(Y), COx 선택도(S_COx), 헤비(heavy) 성분 선택도(S_heavy) 및 O2의 전환율(O2_Conv.)을 하기 수학식 2 내지 4에 따라 계산하였으며, 핫 스팟 온도는 열전대(Thermo-Couple; TC)를 이송장치에 연결한 뒤, 반응기 상단부터 하단까지 등속으로 이동시키며 주사(scan)하여 측정하였다. The reaction product was analyzed by gas chromatography (GC), and the conversion of each butene in the mixture (BE_Conv.), 1,3-butadiene selectivity (S_BD), 1,3-butadiene yield (Y) S_COx), heavy component selectivity (S_heavy) and O 2 conversion rate (O 2 _Conv.) Were calculated according to the following equations (2) to (4), and the hot spot temperature was calculated by transferring a thermo-couple After connecting to the apparatus, it was scanned by moving it from the top to the bottom of the reactor at a constant speed.
[수학식 2]&Quot; (2) "
전환율(%) = (반응한 부텐 또는 산소의 몰수/공급된 부텐 또는 산소의 몰수)×100Conversion rate (%) = (number of moles of butene or oxygen reacted / mole of supplied butene or oxygen) x 100
[수학식 3]&Quot; (3) "
선택도(%) = (생성된 1,3-부타디엔 또는 COx 또는 헤비 성분의 몰수/반응한 부텐의 몰수)×100Selectivity (%) = (number of moles of produced 1,3-butadiene or COx or heavy component / mole of reacted butene) x 100
[수학식 4]&Quot; (4) "
부타디엔 수율(%) = (생성된 1,3-부타디엔의 몰수/공급된 부텐의 몰수)×100Butadiene yield (%) = (moles of produced 1,3-butadiene / moles of supplied butene) x 100
구분division 반응온도(℃)Reaction temperature (캜) BE_Conv.(%)BE_Conv. (%) S_BD(%)S_BD (%) Y(%)Y (%) S_COx(%)S_COx (%) S_heavy(%)S_heavy (%) O2_Conv. (%)O 2 _Conv. (%) 핫스팟 온도(℃)Hotspot temperature (℃)
실시예1aExample 1a 330330 83.283.2 89.589.5 74.474.4 9.59.5 1.01.0 96.496.4 475475
실시예1bExample 1b 334334 85.485.4 89.789.7 76.676.6 9.29.2 1.11.1 99.099.0 --
실시예1cExample 1c 335335 85.585.5 89.289.2 76.376.3 9.99.9 1.01.0 99.699.6 476476
비교예1aComparative Example 1a 325325 79.779.7 88.588.5 70.670.6 10.510.5 1.01.0 95.395.3 478478
비교예1bComparative Example 1b 330330 82.882.8 88.888.8 73.573.5 10.310.3 1.01.0 97.897.8 484.9484.9
비교예1cComparative Example 1c 334334 84.184.1 88.588.5 74.474.4 10.510.5 1.01.0 99.999.9 485.8485.8
비교예1dComparative Example 1d 335335 83.783.7 89.689.6 75.075.0 9.49.4 1.01.0 99.299.2 --
반응조건: GHSV 66h-1, 산소:스팀:질소 = 1:8:1(부텐의 몰수를 기준으로 함)Reaction conditions: GHSV 66 h -1 , oxygen: steam: nitrogen = 1: 8: 1 (based on the number of moles of butene)
상기 표 2를 참조하면, 실시예 1 및 비교예 1 모두 산소를 많이 소모하는 조건에서 가장 높은 활성을 나타내며, 특정 시점에 질소 공급 공정을 수행하여 합성된 실시예 1의 촉매는 그렇지 않은 비교예 1의 촉매 대비 부텐의 전환율과 부타디엔 선택도 및 수율이 증가하고, 부반응 물질인 COx 선택도가 감소하는 것을 확인할 수 있었다. 또한, 실시예 1의 촉매는 산화적 탈수소화 반응 시 비교예 1의 촉매 대비 낮은 핫 스팟 온도에서 우수한 반응 활성을 나타내는 것을 확인하였다. 즉, 아연 페라이트 촉매 합성 시 수행한 질소 투입 공정은 비활성인 α-Fe2O3 결정구조의 감소 및 반응 활성 증대에 모두 기여하는 것을 알 수 있었다.Referring to Table 2, the catalysts of Example 1 and Comparative Example 1 exhibited the highest activity under oxygen-rich conditions, and the catalyst of Example 1 synthesized by performing the nitrogen supply process at a specific point of time was comparative Example 1 Butene conversion, butadiene selectivity and yield were increased, and the selectivity of COx as a side reaction was decreased. In addition, it was confirmed that the catalyst of Example 1 exhibited excellent reaction activity at a low hot spot temperature as compared with the catalyst of Comparative Example 1 in an oxidative dehydrogenation reaction. That is, it was found that the nitrogen introduction step performed in the synthesis of the zinc ferrite catalyst contributes both to the reduction of the inactive α-Fe 2 O 3 crystal structure and to the increase of the reaction activity.
실시예 2Example 2
상기 실시예 1과 동일한 조건으로 금속 전구체 수용액을 제조하되, 이를 공침조 하부를 통해 공급하고, 암모니아수는 드롭핑하여 철과 아연을 공침시키는 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다. A metal precursor aqueous solution was prepared under the same conditions as in Example 1 except that the aqueous solution was supplied through the lower part of the cooperating vessel and ammonia water was dropped to coprecipitate iron and zinc.
실시예 3Example 3
상기 실시예 2에서 질소(N2) 대신에 에어(air)를 공급한 것을 제외하고는 실시예 2와 동일한 방법으로 실시하였다. Example 2 was carried out in the same manner as in Example 2, except that air was supplied instead of nitrogen (N 2 ).
시험예 3: XRD 분석Test Example 3: XRD analysis
상기 실시예 1 내지 3에서 제조된 촉매의 결정구조 및 그 비율을 확인하기 위해 XRD 분석을 실시하였으며, XRD 분석 결과를 상기 비교예 1의 XRD 분석결과와 함께 도 2 및 하기 표 3에 나타내었다.XRD analysis was performed to confirm the crystal structure and the ratio of the catalysts prepared in Examples 1 to 3, and the results of XRD analysis are shown in FIG. 2 and Table 3 together with the XRD analysis results of Comparative Example 1.
구분division 실시예 2Example 2 실시예3Example 3 비교예 1Comparative Example 1
ZnFe2O4 결정구조(중량%)ZnFe 2 O 4 crystal structure (% by weight) 95.395.3 94.894.8 92.492.4
α-Fe2O3 결정구조(중량%)α-Fe 2 O 3 crystal structure (% by weight) 4.74.7 5.25.2 7.67.6
도 2 및 표 3을 참조하면, 실시예 2 및 3에서 제조된 아연 페라이트 촉매는 ZnFe2O4 결정구조와 α-Fe2O3 결정구조의 혼합상인 것을 확인할 수 있으며, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 질소 또는 산소를 공침조 내에 공급하는 공정을 포함하여 제조된 촉매(실시예 2 또는 3)는 그렇지 않은 비교예 1의 촉매 대비 비활성 결정구조인 α-Fe2O3 결정 구조가 감소하는 것을 확인할 수 있었다. 즉, 공침법을 통한 아연 페라이트 촉매 합성 시, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 질소 가스 또는 에어 공급 공정을 수행하는 경우, 아연 페라이트 촉매의 결정구조에 유리한 영향을 주는 것을 알 수 있었다. Referring to FIGS. 2 and 3, it can be seen that the zinc ferrite catalyst prepared in Examples 2 and 3 is a mixed phase of a ZnFe 2 O 4 crystal structure and an α-Fe 2 O 3 crystal structure, supplied through the bottom and the catalyst preparation, including the step of supplying in the ball chimjo nitrogen or oxygen (example 2 or 3) is not, in Comparative catalyst preparation inert crystals of example 1, the structure of α-Fe 2 O 3 crystal structure Of the total amount of water. That is, it was found that when the aqueous solution of the metal precursor was supplied through the lower part of the co-precipitation tank and the nitrogen gas or air supply process was performed during the synthesis of the zinc ferrite catalyst by coprecipitation, the crystal structure of the zinc ferrite catalyst was favorably affected .
시험예 4: 입도 분석Test Example 4: Particle size analysis
상기 실시예 1 내지 3 및 비교예 1에서 제조된 페라이트계 촉매 전구체 슬러리의 입도분석 결과를 하기 표 4 및 도 3에 나타내었다. 여기에서 슬러리의 입도분석은 Horiba 사의 Laser Particle Size Analyzer-960으로 측정하였으며, 이때 필요한 굴절률은 슬러리에서 주성분인 Fe를 기준으로 설정하였다.The results of the particle size analysis of the ferrite-based catalyst precursor slurry prepared in Examples 1 to 3 and Comparative Example 1 are shown in Table 4 and FIG. The particle size distribution of the slurry was measured by Horiba's Laser Particle Size Analyzer-960, and the refractive index required was determined based on Fe as a main component in the slurry.
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1
Median size(㎛)Median size (탆) 6.96.9 5.85.8 6.06.0 8.48.4
Mode size(㎛)Mode size (탆) 7.27.2 6.26.2 6.36.3 8.38.3
* Median size: 중간에 분포하는 입자 지름 * Mode size: 가장 많이 분포하는 입자 지름* Median size: Medium particle size * Mode size: Most widely distributed particle size
상기 표 4 및 도 3에 나타낸 바와 같이, 실시예 1 내지 3은 비교예 1 대비 슬러리 입자가 상대적으로 작고 균일한 입도를 가짐을 확인할 수 있었고, 또한 실시예 2와 3은 실시예 1 대비 슬러리 입자가 상대적으로 작고 균일한 입도를 가짐을 확인할 수 있었다. 이러한 결과로부터 질소 투입은 촉매 전구체가 작고 균일한 입도를 갖는데 효과적이고, 또한 공기 투입과 금속 전구체 수용액의 투입 위치 변경은 더욱 작고 균일한 입도를 갖는데 효과적인 것을 확인할 수 있었다.As shown in Table 4 and FIG. 3, it can be seen from Examples 1 to 3 that the slurry particles as compared with Comparative Example 1 are relatively small and have a uniform particle size, and Examples 2 and 3 show that the slurry particles Was relatively small and had a uniform particle size. From these results, it was confirmed that the introduction of nitrogen is effective to have a small and uniform particle size of the catalyst precursor, and that the introduction of air and the introduction of the aqueous solution of the metal precursor are effective to have a smaller and uniform particle size.
시험예 5: 산화적 탈수소화 반응Test Example 5: Oxidative dehydrogenation reaction
상기와 동일한 방법 및 조건으로 실시예 2 및 3에 따라 합성된 아연 페라이트 촉매를 사용하여 산화적 탈수소화 반응을 거쳐 부타디엔을 생성하였으며, 그 결과를 하기 표 5에 각각 실시예 2a 내지 2d 및 실시예 3a 내지 3c로 나타내었고, 비교를 위해 비교예 1a 내지 1d를 재기재하였다.Butadiene was produced through an oxidative dehydrogenation reaction using the zinc ferrite catalyst synthesized according to Examples 2 and 3 under the same conditions and conditions as above, and the results are shown in the following Table 5 in Examples 2a to 2d and Example 3a to 3c, and Comparative Examples 1a to 1d are re-described for comparison.
구분division 반응온도(℃)Reaction temperature (캜) BE_Conv.(%)BE_Conv. (%) S_BD(%)S_BD (%) Y(%)Y (%) S_COx(%)S_COx (%) S_heavy(%)S_heavy (%) O2_Conv. (%)O 2 _Conv. (%) 핫스팟 온도(℃)Hotspot temperature (℃)
실시예2aExample 2a 340340 86.786.7 89.489.4 77.577.5 9.69.6 1.01.0 99.899.8 --
실시예2bExample 2b 330330 86.286.2 89.589.5 77.177.1 9.49.4 1.11.1 97.697.6 474.2474.2
실시예2cExample 2c 335335 86.586.5 89.389.3 77.277.2 9.69.6 1.11.1 99.899.8 486.9486.9
실시예2dExample 2d 325325 81.181.1 90.090.0 73.073.0 9.09.0 1.01.0 94.494.4 468.2468.2
실시예3aExample 3a 330330 85.585.5 89.289.2 76.376.3 9.89.8 1.01.0 99.599.5 --
실시예3bExample 3b 334334 86.686.6 89.589.5 77.577.5 9.49.4 1.11.1 97.797.7 476.0476.0
실시예3cExample 3c 339339 87.187.1 89.489.4 77.977.9 9.69.6 1.01.0 99.999.9 478.8478.8
비교예1aComparative Example 1a 325325 79.779.7 88.588.5 70.670.6 10.510.5 1.01.0 95.395.3 478478
비교예1bComparative Example 1b 330330 82.882.8 88.888.8 73.573.5 10.310.3 1.01.0 97.897.8 484.9484.9
비교예1cComparative Example 1c 334334 84.184.1 88.588.5 74.474.4 10.510.5 1.01.0 99.999.9 485.8485.8
비교예1dComparative Example 1d 335335 83.783.7 89.689.6 75.075.0 9.49.4 1.01.0 99.299.2 --
반응조건: GHSV 66h-1, 산소:스팀:질소 = 1:8:1(부텐의 몰수를 기준으로 함)Reaction conditions: GHSV 66 h -1 , oxygen: steam: nitrogen = 1: 8: 1 (based on the number of moles of butene)
상기 표 5를 참조하면, 실시예 2, 3 및 비교예 1에 따른 촉매를 사용한 산화적 탈수소화 반응 모두 산소를 많이 소모하는 조건에서 높은 활성을 나타내는 것을 확인할 수 있었고, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 특정 시점에서 질소 또는 에어를 공급하여 제조된 아연 페라이트 촉매(실시예 2 및 3)는 그렇지 않은 비교예 1의 촉매를 사용하여 반응하는 경우와 비교하여 부텐의 전환율과 부타디엔 선택도 및 수율이 높은 반면에 부반응 물질인 COx 선택도는 낮은 것을 확인할 수 있다. 또한, 본 발명에 따른 실시예 2 및 3의 아연 페라이트 촉매를 사용하는 경우에는 비교예 1 대비 낮은 핫 스팟 온도에서도 반응 활성이 우수한 것을 확인할 수 있었다. Referring to Table 5, it was confirmed that both of the oxidative dehydrogenation reactions using the catalysts of Examples 2 and 3 and Comparative Example 1 exhibited high activity under oxygen consumption conditions, and the aqueous solution of the metal precursor And the zinc ferrite catalyst prepared by supplying nitrogen or air at a specific time point (Examples 2 and 3) exhibited a higher conversion ratio of butene and a higher butadiene selectivity than the catalyst of Comparative Example 1 And the selectivity of COx, which is a side reaction substance, is low. In addition, when the zinc ferrite catalyst of Examples 2 and 3 according to the present invention was used, it was confirmed that the reaction activity was excellent even at a low hot spot temperature as compared with Comparative Example 1. [
즉, 공침법을 통한 아연 페라이트 촉매 합성 시, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 특정 시점에서 수행한 질소 또는 에어 투입 공정은 아연 페라이트 촉매의 비활성 결정구조를 감소시키는 것은 물론, 촉매의 반응활성 증대에도 기여하는 것을 알 수 있었다. That is, during the synthesis of the zinc ferrite catalyst by the coprecipitation method, the aqueous solution of the metal precursor is supplied through the lower part of the coprecipitator and the nitrogen or air injection process performed at a specific point of time not only reduces the inactive crystal structure of the zinc ferrite catalyst, And also contributes to an increase in the activity of the reaction.

Claims (14)

  1. 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 상기 금속 전구체 수용액과 염기성 수용액을 pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조에 첨가하여 철과 A 금속을 공침시키는 단계; 및 상기 공침된 공침물을 소성하는 단계;를 포함하고,Adding a trivalent iron (Fe) precursor and a divalent cation metal (A) precursor to water to produce an aqueous metal precursor solution; Adding the metal precursor aqueous solution and the basic aqueous solution to an aqueous solution adjusted to a pH of 6 or more or a coprecipitation tank prepared with water to coprecipitate iron and an A metal; And firing the copreciped co-precipitate,
    상기 공침 시; 공침 후; 또는 상기 공침 시부터 공침 후까지; 비활성 가스 또는 에어(air)를 상기 공침조에 공급하는 공정을 수행하는 것을 특징으로 하는 Upon coprecipitation; After coping; Or from the coping to the coping after the coping; An inert gas or air is supplied to the coprecipitation tank
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  2. 제 1항에 있어서, The method according to claim 1,
    상기 공침시키는 단계에서, 상기 금속 전구체 수용액은 상기 공침조 하부를 통해 공급되는 것을 특징으로 하는 In the co-precipitation step, the aqueous solution of the metal precursor is supplied through the lower part of the co-
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  3. 제 1항에 있어서,The method according to claim 1,
    상기 공침이 완료된 공침 용액을 교반; 숙성; 또는 교반 및 숙성;시키는 단계를 더 포함하는 것을 특징으로 하는Stirring the coprecipitation solution having completed the coprecipitation; ferment; Or agitating and aging the mixture.
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  4. 제 3항에 있어서,The method of claim 3,
    상기 교반 중에 공침 용액에 질소(N2) 가스를 투입하는 공정을 수행하는 것을 특징으로 하는 And introducing nitrogen (N 2 ) gas into the coprecipitation solution during the stirring.
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  5. 제 1항에 있어서,The method according to claim 1,
    상기 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체는 독립적으로 질산염(nitrate), 암모늄염(ammonium salt), 황산염(sulfate) 또는 염화물(chloride)로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 하는 The trivalent iron (Fe) precursor and the divalent cation metal (A) precursor are independently at least one selected from the group consisting of nitrate, ammonium salt, sulfate and chloride. Featured
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  6. 제 1항에 있어서, The method according to claim 1,
    상기 2가 양이온 금속(A)은 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 The divalent cation metal (A) may be at least one selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn) (Mn) and cobalt (Co).
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  7. 제 1항에 있어서,The method according to claim 1,
    상기 공침시키는 단계에서 공침 용액의 pH는 7 내지 10으로 유지되는 것을 특징으로 하는 Wherein the pH of the coprecipitation solution in the co-precipitation step is maintained at 7 to 10
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  8. 제 1항에 있어서, The method according to claim 1,
    상기 촉매는 AFe2O4 결정구조를 포함하는 것을 특징으로 하는 The catalyst comprising the AFe 2 O 4 crystal structure
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  9. 제 1항에 있어서, The method according to claim 1,
    상기 촉매는 AFe2O4 결정구조 및 α-Fe2O3 결정구조를 포함하는 혼합상인 것을 특징으로 하는 Wherein the catalyst is a mixed phase comprising an AFe 2 O 4 crystal structure and an α-Fe 2 O 3 crystal structure
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  10. 제 1항에 있어서, The method according to claim 1,
    상기 공침물은 상기 공침 용액을 건조; 여과; 또는 건조 및 여과;시켜 수득되는 것을 특징으로 하는 The coprecipitates the coprecipitation solution; percolation; Or < RTI ID = 0.0 > drying and filtration < / RTI >
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
  11. 제 1항에 있어서, The method according to claim 1,
    상기 촉매는 하기 수학식 1을 만족하는 것을 특징으로 하는 Characterized in that the catalyst satisfies the following formula (1)
    산화적 탈수소화 반응용 촉매의 제조방법.A method for preparing a catalyst for an oxidative dehydrogenation reaction.
    [수학식 1][Equation 1]
    0 ≤ T2/T1 ≤ 0.800? T2 / T1? 0.80
    (상기 수학식 1에서, T2는 제 2항에 따른 방법으로 제조된 촉매 총 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이고, T1은 상기 제 1항의 제조방법 중 비활성 가스 또는 에어 공급 공정을 생략하고 제조된 촉매 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이며, α-Fe2O3 결정구조의 함량은 촉매의 XRD 회절분석의 α-Fe2O3 결정구조 피크(2theta: 33 내지 34°)의 크기로부터 측정된다.)(In the formula 1, wherein T2 is a second catalyst that contains a total of 100% by weight, produced by the method according to the α-Fe 2 O 3 The content of the crystal structure, T1 is the amount of the claim 1 method in an inert gas or air supply step the skip is a contained within the catalyst 100% by weight of manufacturing α-Fe 2 O 3 crystal structure, α-Fe 2 O 3 The crystal structure content is measured from the size of the α-Fe 2 O 3 crystal structure peak (2theta: 33 to 34 °) of the XRD diffraction analysis of the catalyst.
  12. 제 1항 내지 제 11항 중 어느 한 항의 제조방법으로 제조된 산화적 탈수소화 반응용 촉매가 충진된 반응기에 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 An oxidative dehydrogenation reaction is carried out by passing a C4 mixture containing n-butene and a reactant containing oxygen into a reactor filled with a catalyst for an oxidative dehydrogenation reaction produced by the process of any one of claims 1 to 11 ≪ RTI ID = 0.0 >
    산화적 탈수소화 방법.Oxidative dehydrogenation.
  13. 제 12항에 있어서,13. The method of claim 12,
    상기 반응물은 공기, 질소, 스팀 및 이산화탄소 중에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 Wherein the reactant further comprises at least one selected from air, nitrogen, steam and carbon dioxide
    산화적 탈수소화 방법.Oxidative dehydrogenation.
  14. 제 12항에 있어서, 13. The method of claim 12,
    상기 산화적 탈수소화 반응은 250 내지 430℃의 반응온도 및 50 내지 2000h-1(부텐 기준)의 기체공간속도(GHSV: Gas Hourly Space Velocity)에서 수행하는 것을 특징으로 하는Wherein the oxidative dehydrogenation reaction is carried out at a reaction temperature of 250 to 430 ° C. and a gas hourly space velocity (GHSV) of 50 to 2000 h -1 (butene)
    산화적 탈수소화 방법.Oxidative dehydrogenation.
PCT/KR2018/004832 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst WO2018203615A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18795175.1A EP3453454B1 (en) 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst
CN201880002461.9A CN109311004B (en) 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation and method for oxidative dehydrogenation using catalyst
US16/307,676 US11247195B2 (en) 2017-05-04 2018-04-26 Method of preparing catalyst for oxidative dehydrogenation and method of performing oxidative dehydrogenation using catalyst
JP2018565339A JP6790319B2 (en) 2017-05-04 2018-04-26 A method for producing a catalyst for an oxidative dehydrogenation reaction and a method for oxidative dehydrogenation using the catalyst.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170056741 2017-05-04
KR10-2017-0056741 2017-05-04
KR1020180047836A KR102173583B1 (en) 2017-05-04 2018-04-25 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using the same catalyst
KR10-2018-0047836 2018-04-25

Publications (2)

Publication Number Publication Date
WO2018203615A1 WO2018203615A1 (en) 2018-11-08
WO2018203615A9 true WO2018203615A9 (en) 2019-02-28

Family

ID=64016077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004832 WO2018203615A1 (en) 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst

Country Status (1)

Country Link
WO (1) WO2018203615A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0714401A2 (en) * 2006-07-17 2013-02-26 Basf Se process for hydrogenating unsaturated hydrocarbons over catalysts containing copper and zinc
KR100847206B1 (en) 2007-05-10 2008-07-17 에스케이에너지 주식회사 Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR100950373B1 (en) * 2007-10-02 2010-03-29 에스케이에너지 주식회사 Method of Preparing Zinc Ferrite Catalysts using Buffer Solution and Method of Preparing 1,3-Butadiene Using Said Catalysts
KR101086731B1 (en) * 2008-10-17 2011-11-25 금호석유화학 주식회사 THE COMPLEX OXIDE CATALYST OF Bi/Mo/Fe FOR THE OXIDATIVE DEHYDROGENATION OF 1-BUTENE TO 1,3-BUTADIENE AND PROCESS THEREOF
KR101071230B1 (en) * 2009-10-01 2011-10-10 서울대학교산학협력단 Sulfated zinc ferrite catalyst, preparation method therof and production method of 1,3-butadiene using said catalyst
KR20170056741A (en) 2015-11-13 2017-05-24 심동복 Instant food cooking apparatus containing the cleaning function of the steam nozzle
KR102084768B1 (en) 2016-11-01 2020-03-04 주식회사 엘지화학 Method of producing unsaturated aldehyde and unsaturated caboxylic acid

Also Published As

Publication number Publication date
WO2018203615A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2017213360A1 (en) Oxidative dehydrogenation reaction catalyst and preparation method therefor
EP2595749A2 (en) Mixed manganese ferrite coated catalyst, method of preparing the same, and method of preparing 1,3-butadiene using the same
WO2017150830A1 (en) Ferrite-based catalyst composite, method for preparing same, and method for preparing butadiene
WO2010067945A1 (en) Methanol synthesis method using synthesis gas generated by a mixed reforming of natural gas and carbon dioxide
WO2015190754A1 (en) Method for manufacturing multi-component composite metal oxide catalyst
WO2019132392A1 (en) Method for manufacturing zinc ferrite catalyst and zinc ferrite catalyst manufactured thereby
KR20180115227A (en) Catalyst for oxidative dehydrogenation reaction, method for preparing thereof and oxidative dehydrogenation method using the same catalyst
US20130090509A1 (en) Single-Step Precipitation Method of Producing Magnesia-zirconia Complex Carrier for Catalyst for Oxidative Dehydrogenation of n-Butane, Magnesium Orthovanadate Catalyst Supported on Magnesia-zirconia Complex Carrier, and Method of Producing n-Butene and 1,3-Butadiene Using Said Catalyst
WO2018203615A9 (en) Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst
WO2017164492A1 (en) Catalyst for oxidative dehydrogenation reaction, and preparation method therefor
WO2018080025A1 (en) Method for preparing butadiene with excellent catalyst reproducibility
WO2014119870A1 (en) Fischer-tropsch synthesis catalyst comprising coo phase particles and method for preparing liquid hydrocarbon from natural gas using same
WO2018190642A2 (en) Catalyst system for oxidative dehydrogenation reaction, reactor for oxidative dehydrogenation comprising same, and oxidative dehydrogenation method
WO2018139776A1 (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
WO2019160259A1 (en) Catalyst loading method and method for preparation of butadiene by using same
KR101973614B1 (en) Method of preparing catalyst for oxidative dehydrogenation
WO2017160071A1 (en) Method for preparing catalyst for oxidative dehydrogenation
WO2019199042A1 (en) Method for producing metal complex catalyst, and metal complex catalyst produced by same
WO2021060681A1 (en) Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby
KR20180122942A (en) Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using the same catalyst
WO2018190641A1 (en) Catalyst for oxidative dehydrogenation reaction, method for producing same, and oxidative dehydrogenation method using same
WO2014182026A1 (en) Oxidation catalyst for preparing butadiene and method for preparing same
WO2019177285A1 (en) Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
KR20220065676A (en) Catalyst using metal-organic framework and method for producing same
WO2021137532A1 (en) Method for producing catalyst for oxidative dehydrogenation reaction, catalyst for oxidative dehydrogenation reaction, and method for producing butadiene using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565339

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018795175

Country of ref document: EP

Effective date: 20181205

NENP Non-entry into the national phase

Ref country code: DE