WO2018203486A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2018203486A1
WO2018203486A1 PCT/JP2018/016303 JP2018016303W WO2018203486A1 WO 2018203486 A1 WO2018203486 A1 WO 2018203486A1 JP 2018016303 W JP2018016303 W JP 2018016303W WO 2018203486 A1 WO2018203486 A1 WO 2018203486A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission path
channel
channel group
power value
Prior art date
Application number
PCT/JP2018/016303
Other languages
English (en)
French (fr)
Inventor
悟 千田
一司 小舟
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2018203486A1 publication Critical patent/WO2018203486A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching

Definitions

  • the present invention relates to a communication device mounted on a vehicle and used as a part of an advanced traffic information system, and more particularly, a vehicle-to-vehicle communication system in which vehicles exchange information and a road on which information from an infrastructure is provided from a roadside device.
  • the present invention relates to a communication device used in an inter-vehicle communication system.
  • a communication device for V2X includes a communication circuit that generates a transmission signal for wireless communication, A transmission path for transmitting a transmission signal from the communication circuit to the antenna, a power amplifier provided in the transmission path, and an antenna for radiating the transmission signal to the outside are provided.
  • the 5.8 GHz band frequency is divided into multiple channels from Ch. 172 to 184 and used for wireless communication. In some of these channels, the maximum standard of transmission power is set very high, and in other channels, it is set low relative to that channel.
  • the frequency of the 5.8 GHz band is divided into a plurality of channels from Ch.172 to 184, of which Ch.174 to 180 is defined as +23 dBm or more, and the other channels are defined as 0 dBm or more. Yes.
  • the standard for out-of-band unwanted radiation is set very low.
  • the transmission circuit 921 for example, from the transmission circuit 921 to all channels including channels having different maximum transmission power standards, such as the wireless LAN data conversion circuit 900 shown in FIG.
  • the transmission signal is transmitted to the antenna 942 through one transmission path (923 to 925 to 935 to 939).
  • the conventional communication device is designed to increase the gain of the power amplifier in the communication device in order to comply with the maximum transmission power standard of each channel, the out-of-band unnecessary radiation is likely to increase. Sometimes exceeded.
  • the present invention has been made in view of such a state of the art, and can set the transmission power value of each channel having a different standard value, and can suppress the out-of-band unnecessary radiation below the standard value.
  • An object is to provide a communication device.
  • a communication device is a communication device that is provided with a first channel group and a second channel group in a predetermined frequency band having a plurality of channels and performs wireless communication with the outside.
  • a transmission circuit that generates a transmission signal for wireless communication, a transmission path having a first transmission path and a second transmission path disposed in parallel with each other for transmitting the transmission signal, and the transmission signal.
  • the transmission signal output from the communication circuit is constant regardless of the channel, and the transmission signal is transmitted in the first channel group. Is transmitted via the first transmission path when transmitting on the second channel, and is transmitted via the second transmission path when transmitting on the channel in the second channel group, and transmitted to the antenna.
  • Each of the transmission signals on the channels in the first channel group has a predetermined first power value, attenuates frequency components outside the passband of the first channel group, and is transmitted to the antenna.
  • the transmission path is configured such that each of the transmission signals in the channels in the second channel group has a second power value smaller than the first power value.
  • the transmission signal in the channel in the first channel group has a predetermined first power value and attenuates the frequency component outside the passband, and the signal in the channel in the second channel group is attenuated. Since the transmission path is configured so that the transmission signal has a second power value smaller than the first power value, it is possible to set the transmission power value of each channel having a different standard value, and to set the out-of-band unnecessary radiation to the standard value. The following can be suppressed.
  • a switch circuit that switches a connection state between the transmission path and the communication circuit and a connection state between the transmission path and the antenna
  • the first transmission path includes an amplifier and the first channel.
  • a band-pass filter having a pass band corresponding to the frequency of the group
  • the second transmission path includes an attenuator, and the switch circuit transmits on the channels in the first channel group.
  • the first transmission path is sometimes selected, and the transmission is switched to select the second transmission path when transmitting on the channels in the second channel group.
  • an amplifier and a bandpass filter are provided in the first transmission path, and an attenuator is provided in the second transmission path, so that the transmission power values of the respective channels having different standard values are set. It is possible to easily suppress the out-of-band unnecessary radiation of each channel in the first channel group to a standard value or less.
  • each channel in the first channel group is assigned to the center side of the frequency band, and each channel in the second channel group is assigned to the upper end side and / or the lower end side of the frequency band. It has the feature of being.
  • each channel in the first channel group having a large transmission power value is assigned to the center side of the predetermined frequency band, so that it is possible to suppress out-of-band unnecessary radiation below the standard value. Easy to do.
  • a DC voltage is superimposed on the transmission signal from the communication circuit, and the DC voltage has a predetermined voltage value when the channel is set in the first channel group. And having a second voltage value that is different from the first voltage value when setting a channel in the second channel group, and depending on a difference in voltage value of the DC voltage.
  • the first transmission path and the second transmission path are switched.
  • the first transmission path and the second transmission path are switched depending on the voltage value of the DC voltage superimposed on the transmission signal. No need for tracks.
  • the transmission path further includes a reception path arranged in parallel with the transmission path, and further includes a transmission / reception switch circuit for switching between the transmission path and the reception path.
  • the switch circuit selects the side of the transmission path when the power value on the line between the communication circuit and the transmission / reception switch circuit is equal to or higher than a predetermined power value, and the power value on the line is less than the predetermined power value In this case, the reception path is switched so as to select the receiving path side.
  • the transmission / reception switch circuit is switched depending on the power value in the line between the communication circuit and the transmission / reception switch circuit, the transmission path and the reception path can be easily switched.
  • the transmission signal on the channel in the first channel group has a predetermined first power value and attenuates the frequency component outside the passband, so that the transmission signal on the channel in the second channel group is Since the transmission path is configured to have a second power value smaller than the first power value, it is possible to set the transmission power value of each channel having a different standard value, and to suppress the out-of-band unnecessary radiation below the standard value. be able to.
  • a communication apparatus 100 is a communication apparatus that is mounted on a vehicle and used for an inter-vehicle communication system or a road-vehicle communication system of an advanced traffic information system.
  • the use of the communication apparatus of the present invention is not limited to the embodiments described below, and can be changed as appropriate.
  • FIG. 1 is a schematic diagram illustrating a relationship between the communication device 100 and the vehicle 90 in the embodiment of the present invention
  • FIG. 2 is a relationship between the first channel group CG1 and the second channel group CG2 output from the communication circuit 40. It is explanatory drawing which shows.
  • FIG. 3 is a block diagram illustrating a configuration of the communication device 100.
  • the communication device 100 is a communication device that performs wireless communication with the outside in a predetermined frequency band FRB having a plurality of channels. As shown in FIG. 1, the communication device 100 is mounted in a vehicle 90 and transmits wireless communication.
  • a communication circuit 40 that generates the signal TX0, an antenna 51 that transmits the transmission signal TX1 to the outside, and a communication module 55 that is connected between the communication circuit 40 and the antenna 51 are provided.
  • a first channel group CG1 and a second channel group CG2 are provided in the predetermined frequency band FRB.
  • the communication circuit 40 is installed at a center console in the vehicle 90, and the communication circuit 40 and the communication module 55 are connected by a cable 57.
  • the cable 57 is a shielded cable that can transmit a high-frequency signal.
  • a transmission signal output from the communication circuit 40 will be referred to as a transmission signal TX0
  • a transmission signal input to the antenna 51 and transmitted from the antenna 51 will be referred to as a transmission signal TX1.
  • the antenna 51 and the communication module 55 are attached in an antenna box 50 disposed on the vehicle 90 as shown in FIG.
  • a shark fin type or the like is used as the antenna box 50.
  • the antenna 51 is an antenna that can transmit and receive.
  • a plurality of channels are arranged in each of the first channel group CG1 and the second channel group CG2 in the frequency band FRB, and each channel in the first channel group CG1 and the second channel group CG2 is arranged.
  • the power value of the transmission signal TX0 in the channel is a constant power value PW0 regardless of the channel.
  • Each channel (CH-A, CH-B, CH-C, CH-D) of the first channel group CG1 is assigned to the center side of the frequency band FRB, and each channel (CH in the second channel group CG2) -E, CH-F, CH-G) are allocated to the upper end side and the lower end side of the frequency band FRB.
  • each channel in the second channel group CG2 is assigned to the upper end side and the lower end side of the frequency band FRB, but is assigned only to either the upper end side or the lower end side of the frequency band FRB. May be.
  • a signal generation circuit 41 is provided in the communication circuit 40, and the transmission signal TX ⁇ b> 0 described above is generated by the signal generation circuit 41.
  • the transmission signal TX0 is transmitted to the communication module 55 via the cable 57.
  • a transmission path 10 to which the transmission signal TX0 is input and a reception path 20 arranged in parallel to the transmission path 10 are provided.
  • a transmission / reception switch circuit 35 for switching between the transmission path 10 and the reception path 20 is provided.
  • the transmission / reception switch circuit 35 includes a communication circuit side transmission / reception switch circuit unit 35 a having one end connected to the communication circuit 40 side, and an antenna side transmission / reception switch circuit unit 35 b having one end connected to the antenna 51.
  • the reception path 20 is connected to the reception (RX) side of each of the communication circuit side transmission / reception switch circuit unit 35a and the antenna side transmission / reception switch circuit unit 35b.
  • the reception path 20 is provided with a reception amplifier (low noise amplifier) 20a for amplifying the reception signal RX0 received by the antenna 51.
  • a transmission path 10 is connected between a terminal on the transmission (TX) side of the communication circuit side transmission / reception switch circuit unit 35a and a terminal on the transmission (TX) side of the antenna side transmission / reception switch circuit unit 35b.
  • the transmission path 10 has a first transmission path 11 and a second transmission path 12 arranged in parallel with each other.
  • the transmission path 10 is for switching the connection state between the transmission path 10 and the communication circuit 40 and the connection state between the transmission path 10 and the antenna 51, that is, for switching between the first transmission path 11 and the second transmission path 12.
  • the switch circuit 30 is provided.
  • the switch circuit 30 has an input end connected to a transmission (TX) side terminal of the communication circuit side transmission / reception switch circuit section 35a, and an output end transmitted from the antenna side transmission / reception switch circuit section 35b ( Antenna side switch circuit unit 30b connected to a terminal on the (TX) side.
  • the first transmission path 11 is connected between one output terminal of the communication circuit side switch circuit unit 30a and one input terminal of the antenna side switch circuit unit 30b, and the other of the communication circuit side switch circuit unit 30a.
  • the second transmission path 12 is connected between the output terminal and the other input terminal of the antenna-side switch circuit unit 30b.
  • the first transmission path 11 is provided for transmitting each channel of the first channel group CG1 allocated to the center side in the frequency band FRB shown in FIG. 2, and the second transmission path 12 is In the frequency band FRB, each channel of the second channel group CG2 assigned to the upper end side and the lower end side is provided for transmission.
  • the switch circuit 30 selects the first transmission path 11 when transmitting on the channel in the first channel group CG1, and selects the second transmission path 12 when transmitting on the channel within the second channel group CG2. Can be switched.
  • the first transmission path 11 includes an amplifier (power amplifier) 11a for amplifying the transmission signal TX0 having the power value PW0 of each channel of the first channel group CG1 to a predetermined power value (PW1), and an amplifier 11a.
  • a band pass filter 11b having a pass band corresponding to the frequency of the first channel group CG1 connected in series.
  • each channel of the first channel group CG1 assigned to the center side of the frequency band FRB becomes a pass band, and the channels of the second channel group CG2 assigned to the upper end side and the lower end side of the frequency band FRB.
  • the pass band and the attenuation band of the band-pass filter 11b are set so that at least a part of the band-pass filter 11b becomes an attenuation band, and the pass band of the band-pass filter 11b is narrower than the frequency band FRB.
  • the second transmission path 12 includes an attenuator 12a for attenuating the transmission signal TX0 of each channel of the second channel group CG2 to a predetermined power value (PW2).
  • a DC voltage output circuit 65 is connected to the input end of the communication module 55 to which the communication circuit 40 is connected.
  • a switch control circuit 33 for controlling the switch circuit 30 is connected to the end of the DC voltage output circuit 65. Is connected.
  • a DC voltage DCV is superimposed on the transmission signal TX0 from the communication circuit 40 described above, and the DC voltage DCV is input to the DC voltage output circuit 65. The configuration and operation of the switch control circuit 33 will be described later.
  • a coupler 61 is connected between the input end of the communication module 55 to which the communication circuit 40 is connected and the communication circuit side transmission / reception switch circuit unit 35a of the transmission / reception switch circuit 35.
  • a transmission / reception switch control circuit 37 for controlling the detector 63 and the transmission / reception switch circuit 35 is connected. The configuration and operation of the transmission / reception switch control circuit 37 will be described later.
  • FIG. 4 is an explanatory diagram showing the relationship between the first channel group CG1 and the second channel group CG2 in the antenna 51. As shown in FIG.
  • the transmission signals TX1 on the channels in the first channel group CG1 transmitted from the transmission path 10 to the antenna 51 each have a predetermined first power value PW1 and the antenna.
  • the transmission path 10 is configured such that the transmission signals TX1 on the channels in the second channel group CG2 transmitted to 51 each have the second power value PW2.
  • the second power value PW2 is set smaller than the first power value PW1.
  • the output power of each of the plurality of channels (CH-A, CH-B, CH-C, CH-D) is set to the first power value PW1 on the first transmission path 11, and the plurality of channels (CH-- E, CH-F, CH-G) is set to a second power value PW2 smaller than the first power value PW1 on the second transmission path 12.
  • the communication apparatus 100 first switches the transmission / reception switch circuit 35 to the transmission side (TX side) when transmitting the transmission signal TX0 as shown in FIG. Thereafter, during transmission on a channel in the first channel group CG1, the switch circuit 30 is switched to select the first transmission path 11 in the transmission path 10. Further, at the time of transmission on a channel in the second channel group CG2, the switch circuit 30 is switched to select the second transmission path 12 in the transmission path 10. A method for switching the transmission / reception switch circuit 35 and the switch circuit 30 will be described later.
  • the power values of the channels in the first channel group CG1 and the second channel group CG2 are set.
  • a transmission signal TX0 (power value PW0) on the channel CH-A in the first channel group CG1 is Amplified by an amplifier 11a which is a power amplifier.
  • the power gain of the amplifier 11a is set so that the power value PW0 is the first power value PW1.
  • the power value becomes a predetermined first power value PW1 as shown in FIG.
  • the CH-A transmission signal TX1 is transmitted from the antenna 51 after the frequency component outside the passband is attenuated by the band-pass filter 11b.
  • the transmission signal TX0 (power value PW0) on the channel CH-E in the second channel group CG2, for example. Is attenuated by the attenuator 12a.
  • the attenuation amount of the attenuator 12a is set so that the power value PW0 is the second power value PW2.
  • the power value becomes a second power value PW2 smaller than the first power value PW1, as shown in FIG.
  • the CH-E transmission signal TX 1 is transmitted from the antenna 51.
  • the transmission signal TX1 in the channel in the first channel group CG1 has the predetermined first power value PW1, attenuates the frequency component outside the pass band, and the channel in the second channel group CG2 is the first.
  • the transmission path 10 can be configured to have a second power value PW2 that is smaller than the power value PW1.
  • FIG. 5 is a block diagram illustrating a switching method of the switch circuit 30 with respect to the transmission path 10.
  • switching of the transmission / reception switch circuit 35 is controlled by a control signal CNT2 from the transmission / reception switch control circuit 37.
  • the coupler 61 is connected between the input end of the communication module 55 to which the communication circuit 40 is connected and the communication circuit side transmission / reception switch circuit unit 35 a of the transmission / reception switch circuit 35.
  • the detector 63 and the transmission / reception switch control circuit 37 are connected to the end of the circuit.
  • a comparator 37 a is built in the transmission / reception switch control circuit 37.
  • the coupler 61 branches the power on the line between the communication circuit 40 and the transmission / reception switch circuit 35, that is, the power input to the coupler 61.
  • the branched power is detected by the detector 63, and the power value on the line is detected based on the detection result.
  • the power value detected by the detector 63 is input to the comparator 37a in the transmission / reception switch control circuit 37 in the form of a DC voltage.
  • the transmission / reception switch circuit 35 selects the transmission path 10 side when the power value on the line between the communication circuit 40 and the transmission / reception switch circuit 35 is equal to or higher than a predetermined power value, and the power value on the line is a predetermined power. When the value is less than the value, the reception path 20 side is switched to be selected.
  • the channel group to which the output channel belongs is the first channel group CG1 or the second channel.
  • the power value of the transmission signal TX0 is a constant power value PW0 (see FIG. 2). That is, the power value on the line between the communication circuit 40 and the transmission / reception switch circuit 35 is the power value PW0.
  • the comparator 37a in the transmission / reception switch control circuit 37 outputs a high level (Hi) control signal CNT2 if the DC voltage input from the detector 63 to the comparator 37a is equal to or greater than a predetermined value. If it is less than the predetermined value, the control signal CNT2 at the low level (Low) is set to be output.
  • Hi high level
  • the control signal CNT2 at the low level (Low) is set to be output.
  • the communication circuit side transmission / reception switch circuit unit 35a and the antenna side transmission / reception switch circuit unit 35b of the transmission / reception switch circuit 35 if the input control signal CNT2 is at a high level (Hi), it is switched to the transmission path 10 side and input. If the control signal CNT2 is low level (Low), it is set to switch to the receiving path 20 side.
  • the transmission signal TX0 is transmitted from the communication circuit 40 to the communication module 55
  • the high-level (Hi) control signal CNT2 is output from the comparator 37a of the transmission / reception switch control circuit 37. Switch to the path 10 side. As a result, the transmission signal TX0 from the communication circuit 40 transmitted to the communication module 55 is transmitted to the transmission path 10.
  • the transmission signal TX0 is not transmitted from the communication circuit 40 to the communication module 55 and the reception signal RX0 is input from the antenna 51
  • the power value of the reception signal RX0 is very small.
  • the DC voltage branched and output from the detector 63 is less than a predetermined value. Therefore, the low-level (Low) control signal CNT2 is output from the comparator 37a of the transmission / reception switch control circuit 37, so that the transmission / reception switch circuit 35 is switched to the reception path 20 side.
  • the reception signal RX0 from the antenna 51 is transmitted to the reception path 20.
  • the low level (Low) control signal CNT2 is also input to the reception amplifier (low noise amplifier) 20a on the reception path 20, power is supplied to the reception amplifier 20a, and the reception amplifier 20a enters an operating state.
  • the reception signal RX0 is amplified to a predetermined level by the reception amplifier 20a and transmitted to the communication circuit 40 via the cable 57.
  • the DC voltage DCV is superimposed on the transmission signal TX 0 from the communication circuit 40, and the DC voltage DCV is input to the DC voltage output circuit 65.
  • the DC voltage DCV has a first voltage value V1 having a predetermined voltage value or a second voltage value V2 that is different from the first voltage value V1.
  • the first voltage value V1 is set higher than the second voltage value V2.
  • the first voltage value V1 is set to 6V
  • the second voltage value V2 is set to 4V.
  • a regulator 67 is connected to the DC voltage output circuit 65 as shown in FIG.
  • the regulator 67 includes a first regulator 67a and a second regulator 67b.
  • the first regulator 67a receives the DC voltage DCV from the DC voltage output circuit 65, and converts the DC voltage DCV into an output voltage DChi having a predetermined voltage value.
  • the output voltage DChi is set to 5 V, for example. Therefore, when the DC voltage DCV is the first voltage value V1 (for example, 6V), the output voltage DChi (for example, 5V) is output from the first regulator 67a. On the contrary, when the DC voltage DCV input to the first regulator 67a is the second voltage value V2 (for example, 4V), the output voltage DChi is not output from the first regulator 67a.
  • the output voltage DChi (for example, 5 V) from the first regulator 67a is supplied to the amplifier 11a as a power supply voltage when the first transmission path 11 of the transmission path 10 is selected.
  • the second regulator 67b receives the DC voltage DCV from the DC voltage output circuit 65, and converts the DC voltage DCV into an output voltage DClow having a voltage value lower than the output voltage DChi described above.
  • the output voltage DClow is set to, for example, 3.3V. Therefore, whether the DC voltage DCV input to the first regulator 67a is the first voltage value V1 (for example, 6V) or the second voltage value V2 (for example, 4V), the output voltage from the second regulator 67b.
  • DClow for example, 3.3 V
  • the output voltage DClow (for example, 3.3 V) from the second regulator 67b is supplied as a power supply voltage to the reception amplifier 20a when the reception path 20 is selected, and excludes the amplifier 11a on the first transmission path 11. It is supplied to each circuit such as the switch circuit 30 and the transmission / reception switch circuit 35.
  • the switching of the switch circuit 30 is controlled by a control signal CNT1 from the switch control circuit 33.
  • the switch control circuit 33 is connected to the DC voltage output circuit 65.
  • the switch control circuit 33 includes a comparator 33a. The control path from the comparator 33a is connected to the switch circuit 30, that is, the communication circuit side switch circuit unit 30a and the antenna side switch circuit unit 30b.
  • the difference in the voltage value of the DC voltage DCV superimposed on the transmission signal TX0 from the communication circuit 40, that is, the voltage value of the DC voltage DCV is the first voltage value V1 or the second voltage value V2.
  • the first voltage value V1 is set higher than the second voltage value V2.
  • the DC voltage DCV is input to the comparator 33 a in the switch control circuit 33 through the DC voltage output circuit 65.
  • the DC voltage DCV is set to be the first voltage value V1 when the channel is set in the first channel group CG1, and is set to be the second voltage value V2 when the channel is set in the second channel group CG2.
  • the comparator 33a in the switch control circuit 33 if the DC voltage DCV input to the comparator 33a is the first voltage value V1, a high level (Hi) control signal CNT1 is output, and the DC voltage DCV is the second voltage DCV.
  • the control signal CNT1 at a low level (Low) is set to be output.
  • the communication circuit side switch circuit unit 30a and the antenna side switch circuit unit 30b of the switch circuit 30 if the input control signal CNT1 is at a high level (Hi), it is switched to the first transmission path 11 side and input. If the control signal CNT1 is at a low level (Low), it is set to switch to the second transmission path 12 side.
  • the control signal CNT1 of the high level (Hi) is output from the comparator 33a of the switch control circuit 33, so that the switch circuit 30 is switched to the first transmission path 11 side.
  • the transmission signal TX0 from the communication circuit 40 transmitted to the communication module 55 is transmitted to the first transmission path 11 of the transmission path 10.
  • the output voltage DChi (for example, 5 V) from the first regulator 67a is not supplied to the amplifier 11a on the first transmission path 11.
  • a control line such as a cable for switching the transmission path 10 is used. Do not need.
  • the transmission / reception switch circuit 35 is switched depending on the power value in the line between the communication circuit 40 and the transmission / reception switch circuit 35, the transmission path 10 and the reception path 20 can be easily switched.
  • the transmission signal TX1 in the channel in the first channel group CG1 has a predetermined first power value PW1, attenuates the frequency component outside the pass band, and transmits in the channel in the second channel group CG2. Since the transmission path 10 is configured so that the signal TX1 has the second power value PW2 smaller than the first power value PW1, the transmission power value of each channel having different standard values can be set, and unnecessary out-of-band radiation Can be kept below the standard value.
  • the transmission power value of each channel having different standard values is set.
  • each channel in the first channel group CG1 having a large transmission power value is assigned to the center side of the predetermined frequency band FRB, it is possible to more easily suppress out-of-band unnecessary radiation to a standard value or less.
  • first transmission path 11 and the second transmission path 12 are switched depending on the voltage value of the DC voltage DCV superimposed on the transmission signal TX0, a control line such as a cable for switching the transmission path 10 is necessary. And not.
  • the transmission / reception switch circuit 35 is switched depending on the power value in the line between the communication circuit 40 and the transmission / reception switch circuit 35, the transmission path 10 and the reception path 20 can be easily switched.
  • the transmission signal on the channel in the first channel group has a predetermined first power value and attenuates the frequency component outside the passband, Since the transmission path is configured so that the transmission signal on the channel has a second power value smaller than the first power value, it is possible to set the transmission power value of each channel with a different standard value, and to perform unnecessary out-of-band radiation. Can be kept below the standard value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

【課題】規格値の異なる各チャンネルの送信電力値をそれぞれ設定することができると共に、帯域外不要輻射を規格値以下に抑えることができる通信装置を提供する。 【解決手段】送信信号TX0を伝送するための、第1送信経路11と第2送信経路12とを有する送信経路10と、送信信号TX1を外部に送信するアンテナ51と、を備え、送信信号TX0の電力値は、チャンネルによらず一定であって、第1チャンネル群内のチャンネルでの送信時に第1送信経路11を介して伝送すると共に、第2チャンネル群内のチャンネルでの送信時に第2送信経路12を介して伝送し、第1チャンネル群内のチャンネルでの送信信号TX1がそれぞれ、所定の第1電力値を有すると共に、第1チャンネル群の通過帯域外の周波数成分を減衰させ、第2チャンネル群内のチャンネルでの送信信号TX1がそれぞれ、第1電力値より小さな第2電力値を有するように、送信経路10を構成した。

Description

通信装置
 本発明は、車両に搭載されて高度交通情報システムの一部として使用される通信装置に関し、特に車両同士が情報をやり取りする車車間通信システムや、インフラからの情報が路側機から提供される路車間通信システムに使用される通信装置に関する。
 現在、各国で高度交通情報システム(ITS)の車車間通信システム及び路車間通信システム(以下、V2Xと略称)が検討されており、欧州や北米ではIEEE802.11pに基づいた仕様で検討されている。V2X用の通信装置は、無線通信用の送信信号を生成する通信回路と、
送信信号を通信回路からアンテナに伝送する送信経路と、送信経路に設けられた電力増幅器と、送信信号を外部に放射するアンテナと、を備えている。
 V2Xの仕様では、5.8GHz帯の周波数をCh.172~184までの複数のチャンネルに分割して無線通信に使用するようになっている。そのうちのいくつかのチャンネルでは送信電力の最大規格が非常に高く設定されており、その他のチャンネルでは、そのチャンネルに対して低く設定されている。例えば、欧州規格では、5.8GHz帯の周波数をCh.172~184までの複数のチャンネルに分割しており、そのうちのCh.174~180が+23dBm以上、その他のチャンネルが0dBm以上と規定されている。また、帯域外不要輻射の規格は非常に低く設定されている。
 上記のような仕様に対して、従来の通信装置では、例えば、図6に示す無線LANデータ変換回路900のように、最大送信電力規格の異なるチャンネルを含む全てのチャンネルに対し、送信回路921から1つの伝送経路(923~925~935~939)を介してアンテナ942に送信信号を伝送するような構成となっていた。
特開2006-287460号公報
 しかしながら、従来の通信装置で各チャンネルの送信電力の最大規格に対応するため通信装置内の電力増幅器の利得を高くしようとすると、帯域外不要輻射も高くなり易く、そのために帯域外不要輻射の規格を超えてしまうことがあった。
 本発明はこのような従来技術の実情に鑑みてなされたもので、規格値の異なる各チャンネルの送信電力値をそれぞれ設定することができると共に、帯域外不要輻射を規格値以下に抑えることができる通信装置を提供することを目的とする。
 上記課題を解決するために本発明の通信装置は、複数のチャンネルを有した所定の周波数帯域で、第1チャンネル群及び第2チャンネル群が設けられ、外部との無線通信を行う通信装置であって、無線通信用の送信信号を生成する通信回路と、前記送信信号を伝送するための、互いに並列に配設された第1送信経路と第2送信経路とを有する送信経路と、前記送信信号を外部に送信するアンテナと、を備え、前記通信回路から出力される前記送信信号の電力値は、前記チャンネルによらず一定であって、前記送信信号を伝送する際、前記第1チャンネル群内のチャンネルでの送信時に前記第1送信経路を介して伝送すると共に、前記第2チャンネル群内のチャンネルでの送信時に前記第2送信経路を介して伝送し、前記アンテナに伝送される前記第1チャンネル群内の前記チャンネルでの前記送信信号がそれぞれ、所定の第1電力値を有すると共に、前記第1チャンネル群の通過帯域外の周波数成分を減衰させ、前記アンテナに伝送される前記第2チャンネル群内の前記チャンネルでの前記送信信号がそれぞれ、前記第1電力値より小さな第2電力値を有するように、前記送信経路を構成した、という特徴を有する。
 このように構成された通信装置では、第1チャンネル群内のチャンネルでの送信信号が所定の第1電力値を持つと共に通過帯域外の周波数成分を減衰させ、第2チャンネル群内のチャンネルでの送信信号が第1電力値より小さな第2電力値を持つように送信経路を構成したので、規格値の異なる各チャンネルの送信電力値をそれぞれ設定することができると共に、帯域外不要輻射を規格値以下に抑えることができる。
 また、上記の構成において、前記送信経路と前記通信回路との接続状態及び前記送信経路と前記アンテナとの接続状態を切り替えるスイッチ回路、を備え、前記第1送信経路は、増幅器と前記第1チャンネル群の周波数に対応した通過帯域を有するバンドパスフィルタとを備えていると共に、前記第2送信経路は、減衰器を備えており、前記スイッチ回路は、前記第1チャンネル群内のチャンネルでの送信時に前記第1送信経路を選択し、前記第2チャンネル群内のチャンネルでの送信時に前記第2送信経路を選択するように切り替えられる、という特徴を有する。
 このように構成された通信装置では、第1送信経路に増幅器とバンドパスフィルタとを備え、第2送信経路に減衰器を備えているので、規格値の異なる各チャンネルの送信電力値をそれぞれ設定すること、及び第1チャンネル群内の各チャンネルの帯域外不要輻射を規格値以下に抑えることが容易に可能となる。
 また、上記の構成において、前記第1チャンネル群内の各チャンネルが前記周波数帯域の中央側に割り当てられており、第2チャンネル群内の各チャンネルが前記周波数帯域の上端側及び又は下端側に割り当てられている、という特徴を有する。
 このように構成された通信装置では、送信電力値の大きな第1チャンネル群内の各チャンネルを所定の周波数帯域の中央側に割り当てているので、帯域外不要輻射を規格値以下に抑えることがより容易に可能となる。
 また、上記の構成において、前記通信回路からの前記送信信号には直流電圧が重畳されていて、前記直流電圧は、前記第1チャンネル群内のチャンネル設定時に前記直流電圧が所定の電圧値の第1電圧値を有していると共に、前記第2チャンネル群内のチャンネル設定時に前記第1電圧値とは電圧値が異なる第2電圧値を有していて、前記直流電圧の電圧値の違いによって前記第1送信経路と前記第2送信経路とを切り替える、という特徴を有する。
 このように構成された通信装置では、送信信号に重畳された直流電圧の電圧値の違いによって第1送信経路と第2送信経路とを切り替えるので、送信経路の切り替えのためのケーブル等の制御用線路を必要としない。
 また、上記の構成において、前記送信経路に並列に配設された受信経路を更に有していると共に、前記送信経路と前記受信経路とを切り替えるための送受信スイッチ回路を有しており、前記送受信スイッチ回路は、前記通信回路と前記送受信スイッチ回路との間の線路における電力値が所定の電力値以上であるときに前記送信経路の側を選択し、前記線路における電力値が所定の電力値未満であるときに前記受信経路の側を選択するように切り替えられる、という特徴を有する。
 このように構成された通信装置では、通信回路と送受信スイッチ回路との間の線路における電力値によって送受信スイッチ回路を切り替えるので、送信経路と受信経路とを容易に切り替えることが可能となる。
 本発明の通信装置では、第1チャンネル群内のチャンネルでの送信信号が所定の第1電力値を持つと共に通過帯域外の周波数成分を減衰させ、第2チャンネル群内のチャンネルでの送信信号が第1電力値より小さな第2電力値を持つように送信経路を構成したので、規格値の異なる各チャンネルの送信電力値をそれぞれ設定することができると共に、帯域外不要輻射を規格値以下に抑えることができる。
本発明の実施形態における通信装置と車両との関係を示す模式図である。 通信回路から出力される第1チャンネル群及び第2チャンネル群の関係を示す説明図である。 通信装置の構成を示すブロック図である。 アンテナにおける第1チャンネル群及び第2チャンネル群の関係を示す説明図である。 送信経路の切り替え方法を示すブロック図である。 従来例に係る通信装置を示す模式図である。
 [実施形態]
 以下、本発明について、図面を参照しながら説明する。本発明の実施形態である通信装置100は、車両に搭載されて高度交通情報システムの車車間通信システム又は路車間通信システムに使用される通信装置である。本発明の通信装置の用途については、以下説明する実施形態に限定されるものではなく適宜変更が可能である。
 最初に、図1乃至図3を参照して、通信装置100の構成について説明する。図1は、本発明の実施形態における通信装置100と車両90との関係を示す模式図であり、図2は、通信回路40から出力される第1チャンネル群CG1及び第2チャンネル群CG2の関係を示す説明図である。また、図3は、通信装置100の構成を示すブロック図である。
 通信装置100は複数のチャンネルを有した所定の周波数帯域FRBで外部との無線通信を行う通信装置であって、図1に示すように、車両90内に搭載されており、無線通信用の送信信号TX0を生成する通信回路40と、送信信号TX1を外部に送信するアンテナ51と、通信回路40とアンテナ51との間に接続された通信モジュール55と、を備えている。上記所定の周波数帯域FRBには、第1チャンネル群CG1及び第2チャンネル群CG2が設けられている。
 通信回路40は、車両90内のセンターコンソールに設置されており、通信回路40と通信モジュール55とは、ケーブル57によって接続されている。ケーブル57は、高周波信号を伝送可能なシールドケーブルである。尚、今後共、通信回路40から出力される送信信号を送信信号TX0と称し、アンテナ51に入力され、アンテナ51から送信される送信信号を送信信号TX1と称する。
 アンテナ51及び通信モジュール55は、図1に示すように、車両90上に配設されたアンテナボックス50内に取り付けられている。アンテナボックス50としては、例えばシャークフィンタイプ等が用いられる。尚、アンテナ51は、送受信可能なアンテナとなっている。
 図2に示すように、周波数帯域FRB内の第1チャンネル群CG1及び第2チャンネル群CG2それぞれには、複数のチャンネルが配置されていて、第1チャンネル群CG1及び第2チャンネル群CG2内における各チャンネルでの送信信号TX0の電力値は、チャンネルによらず一定の電力値PW0となっている。
 第1チャンネル群CG1の各チャンネル(CH-A,CH-B、CH-C,CH-D)は、周波数帯域FRBの中央側に割り当てられており、第2チャンネル群CG2内の各チャンネル(CH-E,CH-F、CH-G)は、周波数帯域FRBの上端側及び下端側に割り当てられている。尚、通信装置100では、第2チャンネル群CG2内の各チャンネルが周波数帯域FRBの上端側及び下端側に割り当てられているが、周波数帯域FRBの上端側又は下端側のどちらかだけに割り当てられていても良い。
 通信回路40内には、図3に示すように、信号生成回路41が設けられており、前述した送信信号TX0が信号生成回路41で生成される。送信信号TX0は、ケーブル57を介して通信モジュール55に伝送される。
 ケーブル57によって通信回路40に接続されている通信モジュール55内には、送信信号TX0が入力される送信経路10と当該送信経路10に並列に配設された受信経路20とが設けられていると共に、送信経路10と受信経路20とを切り替えるための送受信スイッチ回路35が設けられている。
 送受信スイッチ回路35は、一端が通信回路40側に接続された通信回路側送受信スイッチ回路部35aと、一端がアンテナ51に接続されたアンテナ側送受信スイッチ回路部35bと、から成る。
 通信回路側送受信スイッチ回路部35aとアンテナ側送受信スイッチ回路部35bそれぞれの受信(RX)側には受信経路20が接続されている。受信経路20には、アンテナ51で受信した受信信号RX0を増幅するための受信増幅器(ローノイズアンプ)20aが設けられている。
 通信回路側送受信スイッチ回路部35aの送信(TX)側の端子とアンテナ側送受信スイッチ回路部35bの送信(TX)側の端子の間には、送信経路10が接続されている。送信経路10は、互いに並列に配設された第1送信経路11と第2送信経路12とを有している。
 送信経路10には、送信経路10と通信回路40との接続状態及び送信経路10とアンテナ51との接続状態を切り替えるための、即ち、第1送信経路11と第2送信経路12とを切り替えるためのスイッチ回路30が設けられている。
 スイッチ回路30は、入力端が通信回路側送受信スイッチ回路部35aの送信(TX)側の端子に接続された通信回路側スイッチ回路部30aと、出力端がアンテナ側送受信スイッチ回路部35bの送信(TX)側の端子に接続されたアンテナ側スイッチ回路部30bと、から成る。
 通信回路側スイッチ回路部30aの一方の出力用端子とアンテナ側スイッチ回路部30bの一方の入力用端子の間には第1送信経路11が接続されており、通信回路側スイッチ回路部30aの他方の出力用端子とアンテナ側スイッチ回路部30bの他方の入力用端子の間には第2送信経路12が接続されている。
 第1送信経路11は、図2に示した周波数帯域FRBのうちの、中央側に割り当てられている第1チャンネル群CG1の各チャンネルを伝送するために設けられており、第2送信経路12は、周波数帯域FRBのうちの、上端側及び下端側に割り当てられている第2チャンネル群CG2の各チャンネルを伝送するために設けられている。
 従って、スイッチ回路30は、第1チャンネル群CG1内のチャンネルでの送信時に第1送信経路11を選択し、第2チャンネル群CG2内のチャンネルでの送信時に第2送信経路12を選択するように切り替えられる。
 第1送信経路11は、第1チャンネル群CG1の各チャンネルの、電力値PW0を有する送信信号TX0を所定の電力値(PW1)に電力増幅するための増幅器(パワーアンプ)11aと、増幅器11aに直列接続されている、第1チャンネル群CG1の周波数に対応した通過帯域を有するバンドパスフィルタ11bと、を備えている。尚、本実施形態では、周波数帯域FRBの中央側に割り当てられた第1チャンネル群CG1の各チャンネルが通過帯域となり、周波数帯域FRBの上端側及び下端側に割り当てられた第2チャンネル群CG2のチャンネルの少なくとも一部が減衰域となるように、バンドパスフィルタ11bの通過帯域と減衰域と設定されており、バンドパスフィルタ11bの通過帯域は周波数帯域FRBよりも狭くなっている。バンドパスフィルタ11bの通過帯域と減衰域とをこのように設定することにより、第1チャンネル群CG1のチャンネルでのアンテナ51に伝送される送信信号TX1の周波数帯域FRB外の減衰量を大きくすることができる。
 また、第2送信経路12は、第2チャンネル群CG2の各チャンネルの送信信号TX0を所定の電力値(PW2)に減衰するための減衰器12aを備えている。
 通信回路40が接続されている通信モジュール55の入力端には、DC電圧出力回路65が接続されており、DC電圧出力回路65の先には、スイッチ回路30を制御するためのスイッチ制御回路33が接続されている。上述した通信回路40からの送信信号TX0には直流電圧DCVが重畳されていて、その直流電圧DCVがDC電圧出力回路65に入力される。尚、スイッチ制御回路33の構成及びその動作については、後に説明する。
 通信回路40が接続されている通信モジュール55の入力端と、送受信スイッチ回路35の通信回路側送受信スイッチ回路部35aとの間には、カプラ61が接続されており、カプラ61の先には、検波器63及び送受信スイッチ回路35を制御するための送受信スイッチ制御回路37が接続されている。尚、送受信スイッチ制御回路37の構成及びその動作については、後に説明する。
 次に、図2乃至図4を参照して、通信装置100の動作について説明する。図4は、アンテナ51における第1チャンネル群CG1及び第2チャンネル群CG2の関係を示す説明図である。
 通信装置100では、図4に示すように、送信経路10からアンテナ51に伝送される第1チャンネル群CG1内のチャンネルでの送信信号TX1が、それぞれ所定の第1電力値PW1を有すると共に、アンテナ51に伝送される第2チャンネル群CG2内のチャンネルでの送信信号TX1がそれぞれ第2電力値PW2を有するように、送信経路10を構成している。ここで、第2電力値PW2は、第1電力値PW1より小さく設定されている。
 即ち、複数のチャンネル(CH-A,CH-B,CH-C,CH-D)それぞれの出力パワーを、第1送信経路11上で第1電力値PW1に設定し、複数のチャンネル(CH-E,CH-F,CH-G)それぞれの出力パワーを、第2送信経路12上で第1電力値PW1より小さな第2電力値PW2に設定する。
 上記設定のために、通信装置100では、まず、図3に示すように、送信信号TX0を伝送する際、送受信スイッチ回路35を送信側(TX側)に切り換える。その後、第1チャンネル群CG1内のチャンネルでの送信時には、スイッチ回路30を切り替えて、送信経路10内の第1送信経路11を選択する。また、第2チャンネル群CG2内のチャンネルでの送信時には、スイッチ回路30を切り替えて、送信経路10内の第2送信経路12を選択する。尚、送受信スイッチ回路35及びスイッチ回路30の切り替え方法については、後に説明する。
 次に、第1チャンネル群CG1内及び第2チャンネル群CG2内のチャンネルそれぞれの電力値を設定する。前述したように、図2に示した、通信回路40から出力される第1チャンネル群CG1及び第2チャンネル群CG2、それぞれのチャンネル群内における各チャンネルでの送信信号TX0の送信電力は、全て一定の電力値PW0に設定されている。
 第1チャンネル群CG1内のチャンネルでの送信時には、第1送信経路11が選択されているので、第1チャンネル群CG1内の、例えばチャンネルCH-Aでの送信信号TX0(電力値PW0)は、電力増幅器である増幅器11aによって増幅される。増幅器11aの電力利得は、電力値PW0を第1電力値PW1とするように設定されている。その結果、その電力値は、図4に示すように、所定の第1電力値PW1となる。その後、CH-Aの送信信号TX1は、バンドパスフィルタ11bによって通過帯域外の周波数成分が減衰され、アンテナ51から送信される。
 一方、第2チャンネル群CG2内のチャンネルでの送信時には、第2送信経路12が選択されているので、第2チャンネル群CG2内の、例えばチャンネルCH-Eでの送信信号TX0(電力値PW0)は、減衰器12aによって減衰される。減衰器12aの減衰量は、電力値PW0を第2電力値PW2とするように設定されている。その結果、その電力値は、図4に示すように、第1電力値PW1より小さな第2電力値PW2となる。その後、CH-Eの送信信号TX1は、アンテナ51から送信される。
 このようにして、第1チャンネル群CG1内のチャンネルでの送信信号TX1が所定の第1電力値PW1を持つと共に通過帯域外の周波数成分を減衰させ、第2チャンネル群CG2内のチャンネルが第1電力値PW1より小さな第2電力値PW2を持つように送信経路10を構成することができる。その結果、規格値の異なる各チャンネルの送信電力値をそれぞれ設定することができると共に、帯域外不要輻射を規格値以下に抑えることができる。
 次に、図3及び図5を参照して、通信装置100における、送受信スイッチ回路35及びスイッチ回路30の切り替え方法について説明する。図5は、送信経路10に対するスイッチ回路30の切り替え方法を示すブロック図である。
 最初に、送受信スイッチ回路35の切り替え方法について説明する。図3に示すように、送受信スイッチ回路35の切換えは、送受信スイッチ制御回路37からの制御信号CNT2によって制御される。
 前述したように、通信回路40が接続されている通信モジュール55の入力端と、送受信スイッチ回路35の通信回路側送受信スイッチ回路部35aとの間には、カプラ61が接続されており、カプラ61の先には、検波器63及び送受信スイッチ制御回路37が接続されている。送受信スイッチ制御回路37内には、コンパレータ37aが内蔵されている。
 カプラ61は、通信回路40と送受信スイッチ回路35との間の線路上の電力、即ちカプラ61に入力された電力を分岐する。その分岐された電力は、検波器63によって検波され、その検波結果により当該線路上における電力値が検出される。検波器63によって検出された電力値は、直流電圧の形で送受信スイッチ制御回路37内のコンパレータ37aに入力される。
 送受信スイッチ回路35は、通信回路40と送受信スイッチ回路35との間の線路における電力値が所定の電力値以上であるときに送信経路10の側を選択し、当該線路における電力値が所定の電力値未満であるときに受信経路20の側を選択するように切り替えられる。
 通信回路40から送信信号TX0が通信モジュール55に伝送されているとき、通信モジュール55の入力端においては、前述したように、出力されるチャンネルの属するチャンネル群が第1チャンネル群CG1か第2チャンネル群CG2かによらず、送信信号TX0の電力値は、一定の電力値PW0(図2参照)である。即ち、通信回路40と送受信スイッチ回路35との間の線路における電力値は、電力値PW0である。
 送受信スイッチ制御回路37内のコンパレータ37aにおいては、検波器63から当該コンパレータ37aに入力される直流電圧が所定値以上であれば、ハイレベル(Hi)の制御信号CNT2が出力され、その直流電圧が所定値未満であれば、ローレベル(Low)の制御信号CNT2が出力されるように設定されている。ここで、通信回路40から送信信号TX0が通信モジュール55に伝送されているときには、送信信号TX0の有する電力値PW0によって、この直流電圧が所定値以上となっている。
 また、送受信スイッチ回路35の通信回路側送受信スイッチ回路部35a及びアンテナ側送受信スイッチ回路部35bにおいては、入力される制御信号CNT2がハイレベル(Hi)であれば送信経路10側に切り替わり、入力される制御信号CNT2がローレベル(Low)であれば受信経路20の側に切り替わるように設定されている。
 従って、通信回路40から送信信号TX0が通信モジュール55に伝送されていれば、送受信スイッチ制御回路37のコンパレータ37aからハイレベル(Hi)の制御信号CNT2が出力されるので、送受信スイッチ回路35は送信経路10側に切り替わる。その結果、通信モジュール55に伝送された通信回路40からの送信信号TX0は、送信経路10に伝送される。
 一方、通信回路40から送信信号TX0が通信モジュール55に伝送されておらず、アンテナ51から受信信号RX0が入力されている場合は、受信信号RX0の有する電力値が非常に小さいため、カプラ61によって分岐されて検波器63から出力される直流電圧は所定値未満となる。そのため、送受信スイッチ制御回路37のコンパレータ37aからローレベル(Low)の制御信号CNT2が出力されるので、送受信スイッチ回路35は受信経路20の側に切り替わる。
 従って、アンテナ51からの受信信号RX0は受信経路20に伝送される。このとき、受信経路20上の受信増幅器(ローノイズアンプ)20aにもローレベル(Low)の制御信号CNT2が入力されており、受信増幅器20aに電源が供給され、受信増幅器20aが動作状態となる。受信信号RX0は、受信増幅器20aによって所定のレベルに増幅されて、ケーブル57を介して通信回路40に伝送される。
 次に、通信装置100内の各回路への電源電圧の供給方法、及びスイッチ回路30の切り替え方法について説明する。
 図3に示すように、通信回路40からの送信信号TX0には直流電圧DCVが重畳されていて、その直流電圧DCVがDC電圧出力回路65に入力される。
 この直流電圧DCVは、図5に示すように、所定の電圧値の第1電圧値V1又は第1電圧値V1とは電圧値が異なる第2電圧値V2を有している。第1電圧値V1は、第2電圧値V2よりも高く設定されている。例えば、第1電圧値V1が6Vであり、第2電圧値V2が4Vであるように設定されている。
 DC電圧出力回路65には、図5に示すように、レギュレータ67が接続されている。レギュレータ67は、第1レギュレータ67a及び第2レギュレータ67bから成る。
 第1レギュレータ67a(REG1)は、DC電圧出力回路65から直流電圧DCVが入力され、直流電圧DCVを所定の電圧値である出力電圧DChiに変換する。出力電圧DChiは、例えば、5Vに設定されている。従って、直流電圧DCVが第1電圧値V1(例えば6V)であった場合には、第1レギュレータ67aから出力電圧DChi(例えば5V)が出力される。逆に、第1レギュレータ67aに入力される直流電圧DCVが第2電圧値V2(例えば4V)であった場合、第1レギュレータ67aから出力電圧DChiは、出力されない。
 第1レギュレータ67aからの出力電圧DChi(例えば5V)は、送信経路10の第1送信経路11が選択されたときに、電源電圧として増幅器11aに供給される。
 第2レギュレータ67b(REG2)は、DC電圧出力回路65から直流電圧DCVが入力され、直流電圧DCVを、上述した出力電圧DChiより低い電圧値である出力電圧DClowに変換する。出力電圧DClowは、例えば、3.3Vに設定されている。従って、第1レギュレータ67aに入力される直流電圧DCVが、第1電圧値V1(例えば6V)であっても、第2電圧値V2(例えば4V)であっても、第2レギュレータ67bから出力電圧DClow(例えば3.3V)が出力される。
 第2レギュレータ67bからの出力電圧DClow(例えば3.3V)は、受信経路20が選択されたときの受信増幅器20aに電源電圧として供給されると共に、第1送信経路11上の増幅器11aを除く、スイッチ回路30や送受信スイッチ回路35等の各回路に供給される。
 スイッチ回路30の切換えは、スイッチ制御回路33からの制御信号CNT1によって制御される。DC電圧出力回路65には、図5に示すように、スイッチ制御回路33が接続されている。スイッチ制御回路33は、コンパレータ33aから成る。コンパレータ33aからの制御経路は、スイッチ回路30、即ち通信回路側スイッチ回路部30a及びアンテナ側スイッチ回路部30bに接続されている。
 通信装置100では、通信回路40からの送信信号TX0に重畳されている直流電圧DCVの電圧値の違い、即ち、直流電圧DCVの電圧値が第1電圧値V1であるか、第2電圧値V2であるかによって、第1送信経路11と第2送信経路12とを切り替えるように構成されている。前述したように、第1電圧値V1は、第2電圧値V2よりも高く設定されている。
 直流電圧DCVは、DC電圧出力回路65を介してスイッチ制御回路33内のコンパレータ33aに入力される。この直流電圧DCVは、第1チャンネル群CG1内のチャンネル設定時に第1電圧値V1であると共に、第2チャンネル群CG2内のチャンネル設定時に第2電圧値V2であるように設定されている。
 スイッチ制御回路33内のコンパレータ33aにおいては、当該コンパレータ33aに入力される直流電圧DCVが第1電圧値V1であれば、ハイレベル(Hi)の制御信号CNT1が出力され、直流電圧DCVが第2電圧値V2であれば、ローレベル(Low)の制御信号CNT1が出力されるように設定されている。
 また、スイッチ回路30の通信回路側スイッチ回路部30a及びアンテナ側スイッチ回路部30bにおいては、入力される制御信号CNT1がハイレベル(Hi)であれば第1送信経路11側に切り替わり、入力される制御信号CNT1がローレベル(Low)であれば第2送信経路12側に切り替わるように設定されている。
 従って、第1チャンネル群CG1内のチャンネル設定時には、スイッチ制御回路33のコンパレータ33aからハイレベル(Hi)の制御信号CNT1が出力されるので、スイッチ回路30は第1送信経路11側に切り替わる。その結果、通信モジュール55に伝送された通信回路40からの送信信号TX0は、送信経路10の第1送信経路11に伝送される。
 一方、第2チャンネル群CG2内のチャンネル設定時には、スイッチ制御回路33のコンパレータ33aからローレベル(Low)の制御信号CNT1が出力されるので、スイッチ回路30は第2送信経路12側に切り替わる。従って、通信モジュール55に伝送された通信回路40からの送信信号TX0は、送信経路10の第2送信経路12に伝送される。
 尚、このとき、第1送信経路11上の増幅器11aには、第1レギュレータ67aからの出力電圧DChi(例えば5V)が供給されない。
 このように、送信信号TX0に重畳された直流電圧DCVの電圧値の違いによって第1送信経路11と第2送信経路12とを切り替えるので、送信経路10の切り替えのためのケーブル等の制御用線路を必要としない。
 また、通信回路40と送受信スイッチ回路35との間の線路における電力値によって送受信スイッチ回路35を切り替えるので、送信経路10と受信経路20とを容易に切り替えることが可能となる。
 以下、本実施形態としたことによる効果について説明する。
 通信装置100では、第1チャンネル群CG1内のチャンネルでの送信信号TX1が所定の第1電力値PW1を持つと共に通過帯域外の周波数成分を減衰させ、第2チャンネル群CG2内のチャンネルでの送信信号TX1が第1電力値PW1より小さな第2電力値PW2を持つように送信経路10を構成したので、規格値の異なる各チャンネルの送信電力値をそれぞれ設定することができると共に、帯域外不要輻射を規格値以下に抑えることができる。
 また、第1送信経路11に増幅器11aとバンドパスフィルタ11bとを備え、第2送信経路12に減衰器12aを備えているので、規格値の異なる各チャンネルの送信電力値をそれぞれ設定すること、及び第1チャンネル群CG1内の各チャンネルの帯域外不要輻射を規格値以下に抑えることが容易に可能となる。
 また、送信電力値の大きな第1チャンネル群CG1内の各チャンネルを所定の周波数帯域FRBの中央側に割り当てているので、帯域外不要輻射を規格値以下に抑えることがより容易に可能となる。
 また、送信信号TX0に重畳された直流電圧DCVの電圧値の違いによって第1送信経路11と第2送信経路12とを切り替えるので、送信経路10の切り替えのためのケーブル等の制御用線路を必要としない。
 また、通信回路40と送受信スイッチ回路35との間の線路における電力値によって送受信スイッチ回路35を切り替えるので、送信経路10と受信経路20とを容易に切り替えることが可能となる。
 以上説明したように、本発明の通信装置では、第1チャンネル群内のチャンネルでの送信信号が所定の第1電力値を持つと共に通過帯域外の周波数成分を減衰させ、第2チャンネル群内のチャンネルでの送信信号が第1電力値より小さな第2電力値を持つように送信経路を構成したので、規格値の異なる各チャンネルの送信電力値をそれぞれ設定することができると共に、帯域外不要輻射を規格値以下に抑えることができる。
 本発明は上記の実施形態に限定されるものではなく、要旨を逸脱しない範囲で種々変更して実施することが可能である。
 10    送信経路
 11    第1送信経路
 11a   増幅器(パワーアンプ)
 11b   バンドパスフィルタ
 12    第2送信経路
 12a   減衰器
 20    受信経路
 20a   受信増幅器(ローノイズアンプ)
 30    スイッチ回路
 33    スイッチ制御回路
 35    送受信スイッチ回路
 37    送受信スイッチ制御回路
 40    通信回路
 51    アンテナ
 55    通信モジュール
 57    ケーブル
 61    カプラ
 63    検波器
 65    DC電圧出力回路
 90    車両
 100   通信装置
 FRB   周波数帯域
 TX0   送信信号
 TX1   送信信号
 RX0   受信信号
 CG1   第1チャンネル群
 CG2   第2チャンネル群
 PW0   電力値
 PW1   第1電力値
 PW2   第2電力値
 DCV   直流電圧
 DChi  出力電圧
 DClow 出力電圧
 V1    第1電圧値
 V2    第2電圧値
 CNT1  制御信号
 CNT2  制御信号

Claims (5)

  1.  複数のチャンネルを有した所定の周波数帯域で、第1チャンネル群及び第2チャンネル群が設けられ、外部との無線通信を行う通信装置であって、
     無線通信用の送信信号を生成する通信回路と、前記送信信号を伝送するための、互いに並列に配設された第1送信経路と第2送信経路とを有する送信経路と、前記送信信号を外部に送信するアンテナと、を備え、
     前記通信回路から出力される前記送信信号の電力値は、前記チャンネルによらず一定であって、
     前記送信信号を伝送する際、前記第1チャンネル群内のチャンネルでの送信時に前記第1送信経路を介して伝送すると共に、前記第2チャンネル群内のチャンネルでの送信時に前記第2送信経路を介して伝送し、
     前記アンテナに伝送される前記第1チャンネル群内の前記チャンネルでの前記送信信号がそれぞれ、所定の第1電力値を有すると共に、前記第1チャンネル群の通過帯域外の周波数成分を減衰させ、前記アンテナに伝送される前記第2チャンネル群内の前記チャンネルでの前記送信信号がそれぞれ、前記第1電力値より小さな第2電力値を有するように、前記送信経路を構成した、
    ことを特徴とする通信装置。
  2.  前記送信経路と前記通信回路との接続状態及び前記送信経路と前記アンテナとの接続状態を切り替えるスイッチ回路、を備え、
     前記第1送信経路は、増幅器と前記第1チャンネル群の周波数に対応した通過帯域を有するバンドパスフィルタとを備えていると共に、前記第2送信経路は、減衰器を備えており、
     前記スイッチ回路は、前記第1チャンネル群内のチャンネルでの送信時に前記第1送信経路を選択し、前記第2チャンネル群内のチャンネルでの送信時に前記第2送信経路を選択するように切り替えられる、
    ことを特徴とする請求項1に記載の通信装置。
  3.  前記第1チャンネル群内の各チャンネルが前記周波数帯域の中央側に割り当てられており、第2チャンネル群内の各チャンネルが前記周波数帯域の上端側及び又は下端側に割り当てられている、
    ことを特徴とする請求項1又は請求項2に記載の通信装置。
  4.  前記通信回路からの前記送信信号には直流電圧が重畳されていて、
     前記直流電圧は、前記第1チャンネル群内のチャンネル設定時に前記直流電圧が所定の電圧値の第1電圧値を有していると共に、前記第2チャンネル群内のチャンネル設定時に前記第1電圧値とは電圧値が異なる第2電圧値を有していて、
     前記直流電圧の電圧値の違いによって前記第1送信経路と前記第2送信経路とを切り替える、
    ことを特徴とする請求項1乃至請求項3のいずれかに記載の通信装置。
  5.  前記送信経路に並列に配設された受信経路を更に有していると共に、前記送信経路と前記受信経路とを切り替えるための送受信スイッチ回路を有しており、
     前記送受信スイッチ回路は、前記通信回路と前記送受信スイッチ回路との間の線路における電力値が所定の電力値以上であるときに前記送信経路の側を選択し、前記線路における電力値が所定の電力値未満であるときに前記受信経路の側を選択するように切り替えられる、
    ことを特徴とする請求項1乃至請求項4のいずれかに記載の通信装置。
PCT/JP2018/016303 2017-05-01 2018-04-20 通信装置 WO2018203486A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-090986 2017-05-01
JP2017090986 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018203486A1 true WO2018203486A1 (ja) 2018-11-08

Family

ID=64016079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016303 WO2018203486A1 (ja) 2017-05-01 2018-04-20 通信装置

Country Status (1)

Country Link
WO (1) WO2018203486A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059849A (ja) * 1998-07-01 2000-02-25 Nokia Mobile Phones Ltd 無線システム及びデ―タ送信方法
JP2004153310A (ja) * 2002-10-28 2004-05-27 Toshiba Corp 無線通信装置
JP2012527186A (ja) * 2009-05-12 2012-11-01 クゥアルコム・インコーポレイテッド マルチモードマルチバンド電力増幅器モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059849A (ja) * 1998-07-01 2000-02-25 Nokia Mobile Phones Ltd 無線システム及びデ―タ送信方法
JP2004153310A (ja) * 2002-10-28 2004-05-27 Toshiba Corp 無線通信装置
JP2012527186A (ja) * 2009-05-12 2012-11-01 クゥアルコム・インコーポレイテッド マルチモードマルチバンド電力増幅器モジュール

Similar Documents

Publication Publication Date Title
EP1091508B1 (en) Repeating installation using telephone and dedicated line
US10291381B2 (en) Co-time, co-frequency full-duplex terminal and system
US9503149B1 (en) Electronic device and control method thereof
US10595287B2 (en) Frequency-division duplexing in a time-division duplexing mode for a telecommunications system
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
US10735095B1 (en) Distributed antenna system for massive MIMO signals with one fiber optic cable
KR20080052241A (ko) 시분할 이중화 방식의 rf 중계 장치 및 그 방법
KR20130049175A (ko) 하나 이상의 1차 주파수 대역들에 송수신된 전자기 신호를 송수신하는 방법 및 장치
CN114401017A (zh) 电路装置及方法
WO2018203486A1 (ja) 通信装置
EP2595434A1 (en) Method for reducing the energy consumption in a wireless communication terminal and communication terminal implementing said method
KR20160043800A (ko) 분산 안테나 시스템의 헤드엔드 장치 및 그 신호 처리 방법
EP2733976A1 (en) System, device, and method for transmitting multi-input-multi-output signals
CN111294086A (zh) 一种通信系统的增益控制方法及通信系统
KR100375318B1 (ko) 주파수 변환 방식을 이용한 인-빌딩용 이동통신 중계 시스템
WO2020153277A1 (ja) 無線通信装置、通信制御方法及び無線通信システム
CN113950167A (zh) 一种大功率5g专网终端
KR100362778B1 (ko) 멀티 드롭 광전송 장치
KR20100008290A (ko) 시분할 다중접속 방식을 이용한 안테나 분리형 무선 시스템
JP2003309512A (ja) 無線通信端末
JP2015089081A (ja) 無線通信システム、無線機、アンテナ側装置
US11881885B2 (en) Antenna device for transmitting high-frequency signals from or to a motor vehicle, and motor vehicle comprising an antenna device
KR102676161B1 (ko) 로컬 발진 제어 방법 및 시스템, 신호 송수신 방법 및 터미널
JP2803436B2 (ja) 移動通信システムの無線基地局装置
CN213990663U (zh) 一种远距离图传模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP