WO2018203402A1 - User device and base station - Google Patents

User device and base station Download PDF

Info

Publication number
WO2018203402A1
WO2018203402A1 PCT/JP2017/017301 JP2017017301W WO2018203402A1 WO 2018203402 A1 WO2018203402 A1 WO 2018203402A1 JP 2017017301 W JP2017017301 W JP 2017017301W WO 2018203402 A1 WO2018203402 A1 WO 2018203402A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
base station
user apparatus
radio
user device
Prior art date
Application number
PCT/JP2017/017301
Other languages
French (fr)
Japanese (ja)
Inventor
真平 安川
聡 永田
尚人 大久保
ウリ アンダルマワンティ ハプサリ
高橋 秀明
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/017301 priority Critical patent/WO2018203402A1/en
Publication of WO2018203402A1 publication Critical patent/WO2018203402A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present invention relates to a wireless communication system.
  • New SID on Enhanced Support Vehicles is being developed to examine the feasibility of specific types of user equipment (User Equipment: UE) such as drones in the LTE network. Approved by Partnership Project), performance evaluation, potential problems, and improvement technologies when connecting unmanned aircraft in an existing LTE network are being studied.
  • UE User Equipment
  • Unmanned aerial vehicles such as drones are capable of flying at higher altitudes than base stations, and are expected to perform wireless communications within a line-of-sight environment of multiple cells. For this reason, wireless communication control different from existing user devices arranged on the ground is desired.
  • an object of the present invention is to provide a wireless communication control technique suitable for a specific type of user device.
  • an aspect of the present invention is a user device, which includes a parameter management unit that manages parameters related to the user device, and a transmission / reception unit that transmits and receives radio signals to and from the base station.
  • the parameter management unit has a type parameter indicating that the type of the user device is a specific type, and when the user device is in an idle state, the transmission / reception unit receives the received from the base station.
  • the present invention relates to a user apparatus that applies a radio parameter corresponding to a specific type.
  • FIG. 1 is a schematic diagram illustrating that a certain type of user equipment interferes with neighboring cells.
  • FIG. 2 is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a functional configuration of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating transmission of radio parameters for each UE type from a base station according to an embodiment of the present invention.
  • FIG. 6A is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention.
  • FIG. 6B is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention.
  • FIG. 7A is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention.
  • FIG. 7B is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention.
  • FIG. 8 is a sequence diagram illustrating a wireless communication process between a specific type of user apparatus and a base station according to an embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a hardware configuration of a user apparatus and a base station according to an embodiment of the present invention.
  • a specific type user apparatus that easily gives uplink interference to a neighboring cell and a base station that controls radio communication with the specific type user apparatus are disclosed.
  • Various embodiments will be described with reference to a non-terrestrial user equipment that is not located on the ground, such as a drone, but the present invention is not limited to this, and any one that is likely to cause uplink interference to neighboring cells. It is applicable to this type of user equipment.
  • a drone can fly at a higher altitude than a base station, and is assumed to perform wireless communication within a line-of-sight environment of multiple cells. Under such an assumption, for example, uplink transmission from a drone to a connected cell may cause uplink interference to a neighboring cell as shown in FIG. Therefore, transmission power control suitable for a specific type of user equipment that is likely to cause uplink interference in such adjacent cells is desired.
  • an uplink transmission power control method is provided when a specific type of user equipment is in an idle state (such as an RRC (Radio Resource Control) _IDLE state). That is, the user apparatus holds a type parameter indicating the type of the user apparatus, and when the base station broadcasts system information indicating a radio parameter for each user apparatus type, the user apparatus corresponds to the type indicated in the type parameter. Perform uplink transmission to the base station according to the radio parameters. Thereby, even when the base station cannot acquire the registration information of the user apparatus from the core network, such as when the user apparatus is in an idle state, uplink transmission is executed with a radio parameter suitable for the type of the user apparatus.
  • RRC Radio Resource Control
  • Uplink interference to neighboring cells due to uplink transmission from a non-terrestrial user apparatus can be avoided.
  • the user apparatus adaptively adjusts the type parameter, or applies a radio parameter suitable for the measured radio state, altitude, and the like. Thereby, transmission power control can be adaptively adjusted with respect to the user apparatus in flight and the user apparatus on the ground.
  • FIG. 2 is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 10 includes a user apparatus 100 and a base station 200.
  • the wireless communication system 10 may be any wireless communication system defined by 3GPP, such as an LTE system, an LTE-Advanced system, or an NR system, or may be any other wireless communication system. May be.
  • the user apparatus 100 is any information processing apparatus that can be communicably connected to the base station 200.
  • the user apparatus 100 may be a drone, an unmanned aircraft, a non-ground-arranged user apparatus, or a part thereof.
  • the user apparatus 100 is any type of user apparatus that is preferably subjected to wireless control different from that of a conventional ground-based user apparatus.
  • the base station 200 performs wireless communication with a number of user apparatuses including the user apparatus 100 under the control of an upper station (not shown) such as a core network.
  • an upper station such as a core network.
  • the base station 200 can be referred to as eNB (evolved NodeB), for example.
  • the base station 200 can be referred to as gNB, for example.
  • only one base station 200 is shown, but typically multiple base stations are arranged to cover the coverage area of the wireless communication system 10.
  • FIG. 3 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention.
  • the user apparatus 100 includes a parameter management unit 110 and a transmission / reception unit 120.
  • the parameter management unit 110 manages parameters related to the user device 100. Specifically, the parameter management unit 110 holds and updates various parameters that are set in advance or dynamically set for the user device 100.
  • the parameter management unit 110 may have a type parameter indicating the type of the user device 100.
  • the type parameter may be a parameter indicating whether the user device 100 is a conventional ground-type user device such as a smartphone or a tablet, or a non-ground-type user device such as a drone or an unmanned aircraft.
  • the type parameter Drone indicator is preset to “0”, and when the user device 100 is a non-ground-placement type user device, the type parameter Drone indicator is “1”. May be set in advance.
  • the user device 100 can determine whether the user device 100 is a ground-arranged user device or a non-ground-arranged user device by referring to the type parameter.
  • the type parameter described above is set to “0” or “1” and can be represented by one bit, but is not limited thereto, and may be represented by an arbitrary number of bits.
  • the type parameter may indicate authentication or license for communication under specific conditions.
  • the type parameter Drone indicator is set to 1 in advance indicates that the terminal is authenticated in advance to perform communication while flying.
  • the transmission / reception unit 120 transmits / receives a radio signal to / from the base station 200. Specifically, the transmission / reception unit 120 transmits / receives a downlink / uplink control signal and a downlink / uplink data signal to / from the base station 200 according to various radio parameters notified from the base station 200.
  • the transmission / reception unit 120 corresponds to the specific type received from the base station 200.
  • Apply radio parameters That is, when the user apparatus 100 is in the idle state and located in the base station 200, the transmission / reception unit 120 receives various system information related to the located cell that is periodically broadcast from the base station 200.
  • the base station 200 broadcasts system information for each type of the user equipment 100, and specifically, the radio parameters for the ground-arranged user apparatus and the radio parameters for the non-terrestrial-arranged user apparatus are obtained. Including system information.
  • the transmission / reception unit 120 transmits a wireless connection request to the base station 200 in accordance with the wireless parameters indicated in the received system information. Specifically, when the type parameter indicates that the user apparatus 100 is a terrestrial user apparatus, the transmission / reception unit 120 sends a radio connection request to the base station 200 according to the received radio parameter for the terrestrial user apparatus. Send. On the other hand, when the type parameter indicates that the user device 100 is a non-terrestrial user device, the transmission / reception unit 120 transmits a radio connection request to the base station 200 according to the received radio parameter for the non-terrestrial user device. To do.
  • the radio parameters for non-terrestrial user equipment are for terrestrial user equipment so that the user equipment 100 does not cause uplink interference in neighboring cells when performing uplink transmission in a line-of-sight environment.
  • the transmission power may be instructed to be lower than the radio parameter. That is, in the uplink transmission power parameter for non-terrestrial user equipment, lower transmission power is set than the uplink transmission power parameter for conventional terrestrial user equipment.
  • the radio parameter is applicable to UL / DL communication and is not limited to the frequency range where radio communication is performed or can be performed, and is also applied within the frequency range. May be.
  • FIG. 4 is a block diagram showing a functional configuration of a base station according to an embodiment of the present invention.
  • the base station 200 includes a system information management unit 210 and a communication control unit 220.
  • the system information management unit 210 transmits system information as well as system information indicating radio parameters for each type of user device. Specifically, the system information management unit 210 holds system information indicating radio parameters for ground-based user devices and radio parameters for non-ground-based user devices, and broadcasts the system information to the cell.
  • the system information management unit 210 may transmit system information indicating radio parameters for user devices whose type parameters are not set or held in addition to the radio parameters for each type of user device.
  • Uplink power control parameters and normal uplink power control parameters (Common UL) may be broadcast.
  • the communication control unit 220 controls wireless communication with the user device 100. For example, upon receiving a connection request from the idle user device 100, the communication control unit 220 establishes a wireless connection with the user device 100. Thereafter, the communication control unit 220 schedules radio resources for the user apparatus 100 and sets various radio parameters for controlling radio communication with the user apparatus 100.
  • the type parameter may be a position dependent parameter. That is, the type parameter may be variably set according to the geographical range represented by the latitude and longitude of the user device 100.
  • the parameter management unit 110 may set the Drone indicator to “1” in a predetermined geographical range, and set the Drone indicator to “0” in other geographical ranges. It may be good or unset.
  • the user equipment 100 that can function as a non-terrestrial user apparatus is located at a relatively high altitude and may cause uplink interference to neighboring cells. It is possible to apply wireless parameters for the device.
  • the type parameter may be a parameter depending on one or both of the position and the height. That is, the type parameter may be variably set according to one or both of the geographical range and the altitude of the user device 100. According to this embodiment, one or both of the variable setting of the Drone indicator according to the above-described geographical range and the variable setting of the Drone indicator according to the altitude are applied, so that the control of the Drone indicator with higher granularity is applied. Is possible.
  • the type parameter may be represented by an arbitrary number of bits.
  • the Drone indicator is set to a parameter value of “0” or “1”, but is not limited thereto, and may be represented by an arbitrary number of bits.
  • the Drone indicator may be set to “0”, “1”, or “2”.
  • the Drone indicator is set to “1” in one geographical range, “2” in a different geographical range, and the Drone indicator is set to “2” in other geographical ranges. It may be set to “0” or may not be set.
  • the altitude range is divided into three ranges of low altitude (altitude ⁇ Xm), medium altitude (Xm ⁇ altitude ⁇ Ym), and high altitude (Ym ⁇ altitude).
  • Drone indicator is set to “0” or not set, “1” and “2”.
  • the parameter management unit 110 may hold a Drone indicator preset to “0” or not set, “1” or “2” for each predetermined three-dimensional space range.
  • a parameter value represented by an arbitrary number of bits can be set for each spatial range, and control of the Drone indicator with higher granularity becomes possible.
  • the type parameter may be a parameter independent of position and / or altitude. That is, if the user device 100 is a drone, the fact itself is not position and / or altitude dependent. Therefore, the parameter management unit 110 may retain a fixed type parameter indicating that the user device 100 is a ground-based user device or a non-ground-based user device without depending on the position and / or altitude. Good.
  • the system information management unit 210 may further transmit system information indicating a flight availability parameter.
  • the flight propriety parameter may indicate flight feasibility, a flight feasible range, etc. in the cell.
  • the non-ground placement type user apparatus 100 determines that the flight is possible in the cell, and the received flight propriety parameter indicates that the flight is not possible.
  • the non-ground-arranged type user apparatus 100 can determine that flight is not possible in the cell. According to the present embodiment, it is possible to separately notify the user apparatus 100 whether or not the flight in the cell is possible.
  • the transmission / reception unit 120 may apply radio parameters applied in an idle state (such as RRC_IDLE state) even after transitioning to a connected state (such as an RRC_CONNECTED state). For example, the transmission / reception unit 120 may continue to apply the wireless parameter applied in the idle state (such as the RRC_IDLE state) until a new wireless parameter is instructed from the communication control unit 220 after the transition to the connection state.
  • the transmission / reception unit 120 shifts to the connected state while reducing the delay due to the time required for the inquiry.
  • the radio signal can be exchanged with the base station 200 immediately after.
  • the parameter management unit 110 holds various parameters such as radio parameters and / or authentication information that are effective in the coverage, and the parameters are notified and / or written by application and / or NAS (Non-Access Stratum) signaling. It may be written to the user apparatus 100 and / or a SIM (Subscriber Identity Module) card at the time of contract by the business operator. Various parameters may be different for each frequency.
  • NAS Non-Access Stratum
  • the wireless parameter may be a parameter used in a random access procedure. That is, when the user apparatus 100 in an idle state establishes a wireless connection with the base station 200, the transmission / reception unit 120 performs a wireless connection process on a RACH (Random Access Channel). The transmission / reception unit 120 executes a random access procedure by applying a radio parameter corresponding to the value of the type parameter managed by the parameter management unit 110 among the radio parameters for each type of user apparatus received from the base station 200. .
  • RACH Random Access Channel
  • the radio parameter may be a RACH power ramping parameter in which an initial received power target, a power step, and / or a maximum transmission power are defined.
  • the radio parameter may be a Message 3 transmission power parameter in which an open loop power control parameter (target reception power, path loss compensation factor, etc.), transmission power offset, and / or maximum transmission power are defined.
  • the radio parameter may specify RACH resources such as RACH time, frequency and / or sequence.
  • RACH resources such as RACH time, frequency and / or sequence.
  • the radio parameter may specify a RACH preamble format.
  • a preamble suitable for a non-ground-based user device The format may be set separately.
  • the preamble formats suitable for the ground-arranged type user apparatus and the non-ground-arranged type user apparatus are different, it is possible to set a preamble format suitable for each.
  • the radio parameter may specify whether or not the RACH can be transmitted. For example, at high altitudes where the level of interference is very high, the radio parameter may prohibit RACH transmission (such as temporarily). As described above, by prohibiting the user apparatus 100 located at a high altitude from RACH transmission, it is possible to protect the uplink transmission of a normal user apparatus.
  • the wireless parameter may be PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), and / or SRS (Sounding Reference Signal).
  • the radio parameter may specify a target reception power, a path loss compensation term, and / or a maximum transmission power in the open loop transmission power control of each channel of PUSCH, PUCCH, and / or SRS.
  • the set transmission power parameter can be applied as an initial value.
  • the wireless control process for the user device 100 in the idle state has been described.
  • the wireless control process for the user device 100 in the connected state after establishing the wireless connection will be described.
  • the radio control process for the user apparatus 100 in the connected state which will be described later, may be executed after the radio control process for the user apparatus 100 in the idle state described above is applied, or the user apparatus in the idle state described above.
  • the radio control process for 100 may be executed independently.
  • the transmission / reception unit 120 measures a radio state between the user apparatus 100 and the base station 200, and sets a radio parameter for each type of user apparatus received from the base station 200 according to the measured radio state. You may choose. Specifically, the transmission / reception unit 120 measures indicators such as RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) indicating path loss between the user apparatus 100 and the base station 200, and responds to the measurement result. Thus, the radio parameter for each type of user apparatus received from the base station 200 may be selected.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the transmitting / receiving unit 120 Wireless parameters for the placement type user equipment may be applied. Further, when the condition is satisfied or no longer satisfied, the transmission / reception unit 120 may report the measurement result to the base station 200 in the connected state. Further, at this time, the transmission / reception unit 120 may autonomously apply the radio parameters for the non-terrestrial deployment type user apparatus, or for the non-terrestrial configuration type user apparatus by higher layer signaling from the base station 200. Wireless parameters may be applied.
  • the transmission / reception unit 120 may report the measurement result to the base station 200 only once, or thereafter report the measurement result to the base station 200 a predetermined number of times and / or periodically. May be. Further, the transmission / reception unit 120 may stop reporting the measurement result based on the report stop instruction from the base station 200. According to the present embodiment, when the above condition is satisfied and uplink interference is likely to occur, the occurrence of uplink interference is reduced by applying the radio parameters for the non-terrestrial user device, and the user device 100 It becomes possible to minimize the degradation of the throughput.
  • the transmission / reception unit 120 may measure the altitude of the user apparatus 100 and select a radio parameter for each type of user apparatus received from the base station 200 according to the measured altitude. Specifically, only when the altitude of the user device 100 measured autonomously is equal to or greater than a predetermined threshold, the transmission / reception unit 120 may apply the radio parameters for the non-terrestrial user device. According to the present embodiment, when the user apparatus 100 is at an altitude equal to or higher than a predetermined threshold and uplink interference is likely to occur, the occurrence of uplink interference is suppressed by applying the radio parameters for the non-terrestrial user apparatus. It is possible to reduce the degradation of the throughput of the user apparatus 100 while minimizing it.
  • the various threshold values described above may be preset values, broadcast values, or values set by higher layer signaling.
  • Various threshold values may be set in advance from the viewpoint of ensuring operational flexibility while supporting the wireless control processing for the user device 100 in the idle state described above.
  • various parameters can be realized as flags that can be set to “0” or “1” (for example, the above-described Drone indicator), but the present invention is not limited to this. And may be set to multiple levels. For example, when parameters that can be set at a plurality of levels are used, radio parameters can be set according to position, altitude, and / or interference level. Similarly, the various threshold values described above may be set at a plurality of levels.
  • the specific parameter value managed by the parameter management unit 110 described above may be managed as rewritable capability information (UE category, UE capability, etc.), or when a plurality of parameter values are set.
  • the parameter management unit 110 may be set to the corresponding parameter value.
  • the user apparatus 100 connects to the base station 200, the user apparatus 100 reports capability information to the base station 200, so the base station 200 does not query the core network for registration information of the user apparatus 100, The type of the user device 100 can be recognized.
  • FIG. 8 is a sequence diagram illustrating a wireless communication process between a specific type of user apparatus and a base station according to an embodiment of the present invention.
  • the base station (gNB) 200 transmits system information indicating radio parameters for each type of user apparatus. Specifically, the base station 200 broadcasts in the system information radio parameters for terrestrial-arranged user apparatuses, radio parameters for non-terrestrial-arranged user apparatuses and / or radio parameters for ordinary user apparatuses.
  • the idle user apparatus 100 transmits a wireless connection request to the base station 200 according to the wireless parameter corresponding to the type of the user apparatus 100 from the received system information. That is, the user device 100 determines whether the user device 100 is a ground-arranged user device or a non-ground-arranged user device based on a preset type parameter.
  • the wireless connection request is transmitted to the base station 200 according to the wireless parameter for the terrestrial-arranged user apparatus, and the user apparatus 100 is a non-terrestrial user apparatus
  • the user apparatus 100 transmits the wireless connection request according to the wireless parameter for the non-terrestrial user apparatus Is transmitted to the base station 200.
  • the radio parameter may be, for example, a parameter used in a random access procedure.
  • a RACH power ramping parameter a Message 3 transmission power parameter, a parameter indicating a RACH radio resource, a RACH preamble format, and the like. Or a parameter indicating whether or not the RACH can be transmitted.
  • the radio parameter may be a transmission power parameter such as PUSCH, PUCCH and / or SRS.
  • step S103 a wireless connection is established between the user apparatus 100 and the base station 200, and the user apparatus 100 shifts to a connected state.
  • the user apparatus 100 may continue to use the radio parameter corresponding to the user apparatus type until the UE is individually set from the base station 200.
  • step S104 the base station 200 transmits control information including radio resources allocated for uplink transmission to the user apparatus 100.
  • the control information may include new radio parameters for the user apparatus 100.
  • step S105 the user apparatus 100 transmits an uplink radio signal according to the set radio parameter.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the user apparatus 100 and the base station 200 may function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 9 is a block diagram illustrating a hardware configuration of the user apparatus 100 and the base station 200 according to an embodiment of the present invention.
  • the above-described user apparatus 100 and base station 200 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the user apparatus 100 and the base station 200 may be configured to include one or a plurality of the apparatuses illustrated in the figure, or may be configured not to include some apparatuses.
  • Each function in the user apparatus 100 and the base station 200 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs an operation, and communication by the communication apparatus 1004 or memory This is realized by controlling data reading and / or writing in the storage 1003 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • each component described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the processing by each component of the user apparatus 100 and the base station 200 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for performing communication between computers via a wired and / or wireless network
  • a network controller for controlling network access
  • a network card for controlling communication between computers via a wired and / or wireless network
  • a communication module or the like.
  • each of the above-described components may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the user apparatus 100 and the base station 200 include hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). Hardware may be configured, and a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / example described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using other appropriate systems, and / or a next generation system extended based on these systems.
  • the specific operation performed by the base station 200 in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (for example, Obviously, this can be done by MME or S-GW, but not limited to these.
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • system and “network” used in this specification are used interchangeably.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates a plurality of cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can be divided into a base station subsystem (for example, an indoor small base station RRH: Remote).
  • a communication service can also be provided by Radio Head).
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be called in terms such as a fixed station (fixed station), a NodeB, an eNodeB (eNB), an access point (access point), a femto cell, and a small cell.
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “deciding”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
  • the radio frame may be composed of one or a plurality of frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may further be composed of one or more slots in the time domain. A slot may further be composed of one or more symbols (OFDM symbols, SC-FDMA symbols, etc.) in the time domain. Each of the radio frame, subframe, slot, and symbol represents a time unit for transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
  • radio resources frequency bandwidth, transmission power, etc. that can be used in each mobile station
  • TTI Transmission Time Interval
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included.
  • One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block
  • the number of carriers can be variously changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a wireless communication control method which is suitable for specific types of user device. One embodiment of the present invention is related to a user device which is provided with: a parameter management unit for managing parameters related to the user device; and a transmission/reception unit which transmits and receives wireless signals to and from a base station. The parameter management unit is provided with a type parameter which indicates that the user device is of a specific type. When the user device is in an idle state, the transmission/reception unit applies a wireless parameter which is received from the base station, and which corresponds to the specific type.

Description

ユーザ装置及び基地局User equipment and base station
 本発明は、無線通信システムに関する。 The present invention relates to a wireless communication system.
 現在、ドローンなどの無人航空機が様々な企業ユース及び個人ユースにおいて利用されてきている。今後、LTE(Long Term Evolution)ネットワーク、NR(New RAT)ネットワークなどの無線ネットワークを利用したドローンサービスの実現が想定される。 Currently, unmanned aerial vehicles such as drones have been used in various corporate and personal uses. In the future, it is anticipated that drone services using wireless networks such as LTE (Long Term Evolution) networks and NR (New RAT) networks will be realized.
 このような想定の下、LTEネットワークにおけるドローンなどの特定タイプのユーザ装置(User Equipment:UE)の実現性を検討すべく新たなスタディアイテム"New SID on Enhanced Support for Aerial Vehicles"が3GPP(Third Generation Partnership Project)において承認され、既存のLTEネットワークにおける無人航空機の接続時の性能評価、潜在的な問題点、改善技術などが検討されている。 Under these assumptions, a new study item "New SID on Enhanced Support Vehicles" is being developed to examine the feasibility of specific types of user equipment (User Equipment: UE) such as drones in the LTE network. Approved by Partnership Project), performance evaluation, potential problems, and improvement technologies when connecting unmanned aircraft in an existing LTE network are being studied.
 ドローンなどの無人航空機は基地局よりも高い高度での飛行が可能であり、複数のセルの見通し環境内で無線通信を行うことが想定される。このため、地上に配置される既存のユーザ装置と異なる無線通信制御が望まれる。 ) Unmanned aerial vehicles such as drones are capable of flying at higher altitudes than base stations, and are expected to perform wireless communications within a line-of-sight environment of multiple cells. For this reason, wireless communication control different from existing user devices arranged on the ground is desired.
 上述した問題点を鑑み、本発明の課題は、特定タイプのユーザ装置に適した無線通信制御手法を提供することである。 In view of the above-described problems, an object of the present invention is to provide a wireless communication control technique suitable for a specific type of user device.
 上記課題を解決するため、本発明の一態様は、ユーザ装置であって、当該ユーザ装置に関するパラメータを管理するパラメータ管理部と、基地局との間で無線信号を送受信する送受信部と、を有し、前記パラメータ管理部が、当該ユーザ装置の種別が特定の種別であることを示す種別パラメータを有し、当該ユーザ装置がアイドル状態にあるとき、前記送受信部は、前記基地局から受信した前記特定の種別に対応する無線パラメータを適用するユーザ装置に関する。 In order to solve the above-described problem, an aspect of the present invention is a user device, which includes a parameter management unit that manages parameters related to the user device, and a transmission / reception unit that transmits and receives radio signals to and from the base station. The parameter management unit has a type parameter indicating that the type of the user device is a specific type, and when the user device is in an idle state, the transmission / reception unit receives the received from the base station The present invention relates to a user apparatus that applies a radio parameter corresponding to a specific type.
 本発明によると、特定タイプのユーザ装置に適した無線通信制御手法を提供することができる。 According to the present invention, it is possible to provide a radio communication control technique suitable for a specific type of user device.
図1は、特定タイプのユーザ装置が隣接セルに干渉を与えることを示す概略図である。FIG. 1 is a schematic diagram illustrating that a certain type of user equipment interferes with neighboring cells. 図2は、本発明の一実施例による無線通信システムを示す概略図である。FIG. 2 is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention. 図3は、本発明の一実施例によるユーザ装置の機能構成を示すブロック図である。FIG. 3 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention. 図4は、本発明の一実施例による基地局の機能構成を示すブロック図である。FIG. 4 is a block diagram showing a functional configuration of a base station according to an embodiment of the present invention. 図5は、本発明の一実施例による基地局からのUEタイプ毎の無線パラメータの送信を示す概略図である。FIG. 5 is a schematic diagram illustrating transmission of radio parameters for each UE type from a base station according to an embodiment of the present invention. 図6Aは、本発明の一実施例によるUEタイプ毎の無線パラメータの適用例を示す概略図である。FIG. 6A is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention. 図6Bは、本発明の一実施例によるUEタイプ毎の無線パラメータの適用例を示す概略図である。FIG. 6B is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention. 図7Aは、本発明の一実施例によるUEタイプ毎の無線パラメータの適用例を示す概略図である。FIG. 7A is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention. 図7Bは、本発明の一実施例によるUEタイプ毎の無線パラメータの適用例を示す概略図である。FIG. 7B is a schematic diagram illustrating an application example of radio parameters for each UE type according to an embodiment of the present invention. 図8は、本発明の一実施例による特定タイプのユーザ装置と基地局との間の無線通信処理を示すシーケンス図である。FIG. 8 is a sequence diagram illustrating a wireless communication process between a specific type of user apparatus and a base station according to an embodiment of the present invention. 図9は、本発明の一実施例によるユーザ装置及び基地局のハードウェア構成を示すブロック図である。FIG. 9 is a block diagram illustrating a hardware configuration of a user apparatus and a base station according to an embodiment of the present invention.
 以下、図面に基づいて本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 以下の実施例では、隣接セルにアップリンク干渉を与えやすい特定タイプのユーザ装置及び当該特定タイプのユーザ装置との無線通信を制御する基地局が開示される。各種実施例が、ドローンなどの地上に配置されない非地上配置型ユーザ装置を参照して説明されるが、本発明はこれに限定されるものでなく、隣接セルにアップリンク干渉を与えやすい何れかのタイプのユーザ装置に適用可能である。 In the following embodiments, a specific type user apparatus that easily gives uplink interference to a neighboring cell and a base station that controls radio communication with the specific type user apparatus are disclosed. Various embodiments will be described with reference to a non-terrestrial user equipment that is not located on the ground, such as a drone, but the present invention is not limited to this, and any one that is likely to cause uplink interference to neighboring cells. It is applicable to this type of user equipment.
 一般に、ドローンは基地局よりも高い高度での飛行が可能であり、複数のセルの見通し環境内で無線通信を行うことが想定される。このような想定の下では、例えば、ドローンから接続先セルへのアップリンク送信は、図1に示されるように、隣接セルへのアップリンク干渉を生じさせるおそれがある。従って、このような隣接セルにアップリンク干渉を与えやすい特定タイプのユーザ装置に適した送信電力制御が所望される。 Generally, a drone can fly at a higher altitude than a base station, and is assumed to perform wireless communication within a line-of-sight environment of multiple cells. Under such an assumption, for example, uplink transmission from a drone to a connected cell may cause uplink interference to a neighboring cell as shown in FIG. Therefore, transmission power control suitable for a specific type of user equipment that is likely to cause uplink interference in such adjacent cells is desired.
 後述される実施例では、特定タイプのユーザ装置がアイドル状態(RRC(Radio Resource Control)_IDLE状態など)にあるときのアップリンク送信電力制御手法が提供される。すなわち、ユーザ装置は当該ユーザ装置の種別を示す種別パラメータを保持し、基地局がユーザ装置種別毎の無線パラメータを示すシステム情報をブロードキャストすると、ユーザ装置は、種別パラメータに示された種別に対応する無線パラメータに従って、基地局へのアップリンク送信を実行する。これにより、ユーザ装置がアイドル状態にあるときなど、基地局がユーザ装置の登録情報をコアネットワークから取得不可な時点でもあっても、ユーザ装置の種別に適した無線パラメータによってアップリンク送信が実行され、非地上配置型ユーザ装置からのアップリンク送信による隣接セルへのアップリンク干渉を回避することができる。また、ユーザ装置は、種別パラメータを適応的に調整したり、あるいは、測定した無線状態、高度などに適した無線パラメータを適用する。これにより、飛行中のユーザ装置と地上利用中のユーザ装置とに対して送信電力制御を適応的に調整することができる。 In an embodiment described later, an uplink transmission power control method is provided when a specific type of user equipment is in an idle state (such as an RRC (Radio Resource Control) _IDLE state). That is, the user apparatus holds a type parameter indicating the type of the user apparatus, and when the base station broadcasts system information indicating a radio parameter for each user apparatus type, the user apparatus corresponds to the type indicated in the type parameter. Perform uplink transmission to the base station according to the radio parameters. Thereby, even when the base station cannot acquire the registration information of the user apparatus from the core network, such as when the user apparatus is in an idle state, uplink transmission is executed with a radio parameter suitable for the type of the user apparatus. Uplink interference to neighboring cells due to uplink transmission from a non-terrestrial user apparatus can be avoided. Further, the user apparatus adaptively adjusts the type parameter, or applies a radio parameter suitable for the measured radio state, altitude, and the like. Thereby, transmission power control can be adaptively adjusted with respect to the user apparatus in flight and the user apparatus on the ground.
 まず、図2を参照して本発明の一実施例による無線通信システムを説明する。図2は、本発明の一実施例による無線通信システムを示す概略図である。 First, a radio communication system according to an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
 図2に示されるように、無線通信システム10は、ユーザ装置100及び基地局200を有する。無線通信システム10は、例えば、LTEシステム、LTE-Advancedシステム、NRシステムなどの3GPPによって規定された何れかの無線通信システムであってもよいし、あるいは、他の何れかの無線通信システムであってもよい。 2, the wireless communication system 10 includes a user apparatus 100 and a base station 200. The wireless communication system 10 may be any wireless communication system defined by 3GPP, such as an LTE system, an LTE-Advanced system, or an NR system, or may be any other wireless communication system. May be.
 ユーザ装置100は、基地局200と通信接続可能な何れかの情報処理装置であり、例えば、限定されることなく、ドローン、無人航空機、非地上配置型ユーザ装置又はその一部であってもよい。典型的には、ユーザ装置100は、従来の地上配置型ユーザ装置と異なる無線制御が行われることが好ましい何れかタイプのユーザ装置である。 The user apparatus 100 is any information processing apparatus that can be communicably connected to the base station 200. For example, the user apparatus 100 may be a drone, an unmanned aircraft, a non-ground-arranged user apparatus, or a part thereof. . Typically, the user apparatus 100 is any type of user apparatus that is preferably subjected to wireless control different from that of a conventional ground-based user apparatus.
 基地局200は、コアネットワークなどの上位局(図示せず)による制御の下、ユーザ装置100を含む多数のユーザ装置と無線通信を実行する。LTEシステム及びLTE-Advancedシステムでは、基地局200は、例えば、eNB(evolved NodeB)として参照され、NRシステムでは、基地局200は、例えば、gNBとして参照されうる。図示された実施例では、1つの基地局200しか示されていないが、典型的には、無線通信システム10のカバレッジ範囲をカバーするよう多数の基地局が配置される。 The base station 200 performs wireless communication with a number of user apparatuses including the user apparatus 100 under the control of an upper station (not shown) such as a core network. In the LTE system and the LTE-Advanced system, the base station 200 can be referred to as eNB (evolved NodeB), for example. In the NR system, the base station 200 can be referred to as gNB, for example. In the illustrated embodiment, only one base station 200 is shown, but typically multiple base stations are arranged to cover the coverage area of the wireless communication system 10.
 次に、図3を参照して、本発明の一実施例によるユーザ装置を説明する。図3は、本発明の一実施例によるユーザ装置の機能構成を示すブロック図である。 Next, a user apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention.
 図3に示されるように、ユーザ装置100は、パラメータ管理部110及び送受信部120を有する。 As shown in FIG. 3, the user apparatus 100 includes a parameter management unit 110 and a transmission / reception unit 120.
 パラメータ管理部110は、ユーザ装置100に関するパラメータを管理する。具体的には、パラメータ管理部110は、ユーザ装置100に関する予め設定された又は動的に設定された各種パラメータを保持及び更新する。 The parameter management unit 110 manages parameters related to the user device 100. Specifically, the parameter management unit 110 holds and updates various parameters that are set in advance or dynamically set for the user device 100.
 本実施例では、パラメータ管理部110は、ユーザ装置100の種別を示す種別パラメータを有してもよい。一例では、種別パラメータは、ユーザ装置100が従来のスマートフォン、タブレットなどの地上配置型ユーザ装置であるか、又はドローン、無人航空機などの非地上配置型ユーザ装置であるか示すパラメータであってもよい。例えば、ユーザ装置100が地上配置型ユーザ装置である場合、種別パラメータDrone indicatorは"0"に予め設定され、ユーザ装置100が非地上配置型ユーザ装置である場合、種別パラメータDrone indicatorは"1"に予め設定されてもよい。ユーザ装置100は、当該種別パラメータを参照して自らが地上配置型ユーザ装置又は非地上配置型ユーザ装置であるか判断することができる。なお、上述した種別パラメータは、"0"又は"1"に設定され、1ビットにより表すことが可能であるが、これに限定されることなく、任意数のビットにより表されてもよい。種別パラメータは、特定条件下での通信に対する認証や免許を示すものであってもよい。例えば、種別パラメータがDrone indicatorが1に予め設定されているとは、この端末が飛行しながら通信を行ってもよいと予め認証されていることを示す。 In this embodiment, the parameter management unit 110 may have a type parameter indicating the type of the user device 100. In one example, the type parameter may be a parameter indicating whether the user device 100 is a conventional ground-type user device such as a smartphone or a tablet, or a non-ground-type user device such as a drone or an unmanned aircraft. . For example, when the user device 100 is a ground-placement type user device, the type parameter Drone indicator is preset to “0”, and when the user device 100 is a non-ground-placement type user device, the type parameter Drone indicator is “1”. May be set in advance. The user device 100 can determine whether the user device 100 is a ground-arranged user device or a non-ground-arranged user device by referring to the type parameter. The type parameter described above is set to “0” or “1” and can be represented by one bit, but is not limited thereto, and may be represented by an arbitrary number of bits. The type parameter may indicate authentication or license for communication under specific conditions. For example, the type parameter Drone indicator is set to 1 in advance indicates that the terminal is authenticated in advance to perform communication while flying.
 送受信部120は、基地局200との間で無線信号を送受信する。具体的には、送受信部120は、基地局200から通知された各種無線パラメータに従って、ダウンリンク/アップリンク制御信号及びダウンリンク/アップリンクデータ信号を基地局200との間で送受信する。 The transmission / reception unit 120 transmits / receives a radio signal to / from the base station 200. Specifically, the transmission / reception unit 120 transmits / receives a downlink / uplink control signal and a downlink / uplink data signal to / from the base station 200 according to various radio parameters notified from the base station 200.
 本実施例では、ユーザ装置100が特定の種別であることを種別パラメータが示す場合、ユーザ装置100がアイドル状態にあるとき、送受信部120は、基地局200から受信した当該特定の種別に対応する無線パラメータを適用する。すなわち、ユーザ装置100がアイドル状態で基地局200に在圏しているとき、送受信部120は、基地局200から定期的にブロードキャストされる当該在圏セルに関する各種システム情報を受信する。本実施例では、基地局200は、ユーザ装置100の種別毎にシステム情報をブロードキャストし、具体的には、地上配置型ユーザ装置用の無線パラメータと非地上配置型ユーザ装置用の無線パラメータとを含むシステム情報とを送信する。 In this embodiment, when the type parameter indicates that the user apparatus 100 is a specific type, when the user apparatus 100 is in the idle state, the transmission / reception unit 120 corresponds to the specific type received from the base station 200. Apply radio parameters. That is, when the user apparatus 100 is in the idle state and located in the base station 200, the transmission / reception unit 120 receives various system information related to the located cell that is periodically broadcast from the base station 200. In the present embodiment, the base station 200 broadcasts system information for each type of the user equipment 100, and specifically, the radio parameters for the ground-arranged user apparatus and the radio parameters for the non-terrestrial-arranged user apparatus are obtained. Including system information.
 その後、ユーザ装置100が基地局200と無線接続を確立する際、送受信部120は、受信したシステム情報に示された無線パラメータに従って無線接続リクエストを基地局200に送信する。具体的には、当該ユーザ装置100が地上配置型ユーザ装置であることを種別パラメータが示す場合、送受信部120は、受信した地上配置型ユーザ装置用の無線パラメータに従って無線接続リクエストを基地局200に送信する。他方、当該ユーザ装置100が非地上配置型ユーザ装置であることを種別パラメータが示す場合、送受信部120は、受信した非地上配置型ユーザ装置用の無線パラメータに従って無線接続リクエストを基地局200に送信する。 Thereafter, when the user apparatus 100 establishes a wireless connection with the base station 200, the transmission / reception unit 120 transmits a wireless connection request to the base station 200 in accordance with the wireless parameters indicated in the received system information. Specifically, when the type parameter indicates that the user apparatus 100 is a terrestrial user apparatus, the transmission / reception unit 120 sends a radio connection request to the base station 200 according to the received radio parameter for the terrestrial user apparatus. Send. On the other hand, when the type parameter indicates that the user device 100 is a non-terrestrial user device, the transmission / reception unit 120 transmits a radio connection request to the base station 200 according to the received radio parameter for the non-terrestrial user device. To do.
 典型的には、非地上配置型ユーザ装置用の無線パラメータは、ユーザ装置100が見通し環境内においてアップリンク送信する際に、隣接セルにアップリンク干渉を生じさせないように、地上配置型ユーザ装置用の無線パラメータよりも低い送信電力を指示するものであってもよい。すなわち、非地上配置型ユーザ装置用のアップリンク送信電力パラメータでは、従来の地上配置型ユーザ装置用のアップリンク送信電力パラメータより低い送信電力が設定されている。これにより、ユーザ装置100がアイドル状態にあって、ユーザ装置100が非地上配置型ユーザ装置であることを基地局200が確認できない時点であっても、ユーザ装置100から送信される無線接続リクエストによる隣接セルへのアップリンク干渉を回避することができる。 Typically, the radio parameters for non-terrestrial user equipment are for terrestrial user equipment so that the user equipment 100 does not cause uplink interference in neighboring cells when performing uplink transmission in a line-of-sight environment. The transmission power may be instructed to be lower than the radio parameter. That is, in the uplink transmission power parameter for non-terrestrial user equipment, lower transmission power is set than the uplink transmission power parameter for conventional terrestrial user equipment. Thereby, even when the base station 200 cannot confirm that the user apparatus 100 is in an idle state and the user apparatus 100 is a non-terrestrial user apparatus, the wireless connection request transmitted from the user apparatus 100 Uplink interference to neighboring cells can be avoided.
 なお、Rel-12のLTE仕様とは異なり、当該無線パラメータは、UL・DL通信に適用可能であり、無線通信を実行する、又は実行しうる周波数の圏外に限らず、周波数圏内においても適用されてもよい。 Note that, unlike the Rel-12 LTE specification, the radio parameter is applicable to UL / DL communication and is not limited to the frequency range where radio communication is performed or can be performed, and is also applied within the frequency range. May be.
 次に、図4を参照して、本発明の一実施例による基地局を説明する。図4は、本発明の一実施例による基地局の機能構成を示すブロック図である。 Next, a base station according to an embodiment of the present invention will be described with reference to FIG. FIG. 4 is a block diagram showing a functional configuration of a base station according to an embodiment of the present invention.
 図4に示されるように、基地局200は、システム情報管理部210及び通信制御部220を有する。 As illustrated in FIG. 4, the base station 200 includes a system information management unit 210 and a communication control unit 220.
 システム情報管理部210は、システム情報を送信すると共に、ユーザ装置の種別毎の無線パラメータを示すシステム情報を送信する。具体的には、システム情報管理部210は、地上配置型ユーザ装置用の無線パラメータと非地上配置型ユーザ装置用の無線パラメータとを示すシステム情報を保持し、当該システム情報をセルにブロードキャストする。 The system information management unit 210 transmits system information as well as system information indicating radio parameters for each type of user device. Specifically, the system information management unit 210 holds system information indicating radio parameters for ground-based user devices and radio parameters for non-ground-based user devices, and broadcasts the system information to the cell.
 一実施例では、システム情報管理部210は、ユーザ装置の種別毎の無線パラメータに加えて、種別パラメータが未設定又は保持しないユーザ装置用の無線パラメータを示すシステム情報を送信してもよい。例えば、図5に示されるように、システム情報管理部210は、非地上配置型ユーザ装置(Drone indicator=1)用のアップリンク電力制御パラメータ、地上配置型ユーザ装置(Drone indicator=0)用のアップリンク電力制御パラメータ及び通常のアップリンク電力制御パラメータ(Common UL)をブロードキャストしてもよい。これらのアップリンク電力制御パラメータを受信すると、アイドル状態のユーザ装置100は、自らの種別パラメータDrone indicatorが"1"である場合には非地上配置型ユーザ装置(Drone indicator=1)用のアップリンク電力制御パラメータを適用し、種別パラメータDrone indicatorが"0"である場合には地上配置型ユーザ装置(Drone indicator=0)用のアップリンク電力制御パラメータを適用し、種別パラメータが未設定又は保持していない場合には通常のアップリンク送信電力パラメータを適用する。 In one embodiment, the system information management unit 210 may transmit system information indicating radio parameters for user devices whose type parameters are not set or held in addition to the radio parameters for each type of user device. For example, as illustrated in FIG. 5, the system information management unit 210 is configured for an uplink power control parameter for a non-terrestrial user device (Drone indicator = 1), and for a terrestrial user device (Drone indicator = 0). Uplink power control parameters and normal uplink power control parameters (Common UL) may be broadcast. Upon receiving these uplink power control parameters, the user device 100 in the idle state is an uplink for a non-terrestrial user device (Drone indicator = 1) when its type parameter Drone indicator is “1”. When the power control parameter is applied and the type parameter Drone indicator is “0”, the uplink power control parameter for the ground-arranged user equipment (Drone indicator = 0) is applied, and the type parameter is not set or held. If not, apply normal uplink transmit power parameters.
 通信制御部220は、ユーザ装置100との無線通信を制御する。例えば、アイドル状態のユーザ装置100から接続リクエストを受信すると、通信制御部220は、ユーザ装置100との無線接続を確立する。その後、通信制御部220は、ユーザ装置100に対して無線リソースをスケジューリングすると共に、ユーザ装置100との無線通信を制御するための各種無線パラメータを設定する。 The communication control unit 220 controls wireless communication with the user device 100. For example, upon receiving a connection request from the idle user device 100, the communication control unit 220 establishes a wireless connection with the user device 100. Thereafter, the communication control unit 220 schedules radio resources for the user apparatus 100 and sets various radio parameters for controlling radio communication with the user apparatus 100.
 一実施例では、種別パラメータは、位置に依存したパラメータであってもよい。すなわち、種別パラメータは、ユーザ装置100の緯度及び経度などにより表される地理的範囲に応じて可変的に設定されてもよい。例えば、図6Aに示されるように、パラメータ管理部110は、所定の地理的範囲ではDrone indicatorを"1"に設定し、それ以外の地理的範囲ではDrone indicatorを"0"に設定してもよいし、あるいは、未設定にしてもよい。この場合、送受信部120は、Drone indicator=1の地理的範囲では、Drone indicator=1用のアップリンク電力制御パラメータを適用し、Drone indicator=0又は未設定の地理的範囲では、Drone indicator=0用のアップリンク電力制御パラメータ又は通常のアップリンク電力制御パラメータを適用してもよい。本実施例は、ドローンとしてのユーザ装置100の利用が無線通信システム10において認証されているエリアが制限されている場合に好適であると考えられる。 In one embodiment, the type parameter may be a position dependent parameter. That is, the type parameter may be variably set according to the geographical range represented by the latitude and longitude of the user device 100. For example, as shown in FIG. 6A, the parameter management unit 110 may set the Drone indicator to “1” in a predetermined geographical range, and set the Drone indicator to “0” in other geographical ranges. It may be good or unset. In this case, the transmission / reception unit 120 applies the uplink power control parameter for Drone indicator = 1 in the geographical range of Drone indicator = 1, and Drone indicator = 0 in the geographical range of Drone indicator = 0 or not set. The normal uplink power control parameter or the normal uplink power control parameter may be applied. This embodiment is considered suitable when the area where the use of the user device 100 as a drone is authenticated in the wireless communication system 10 is limited.
 また、種別パラメータは、高さに依存したパラメータであってもよい。すなわち、種別パラメータは、ユーザ装置100の高度に応じて可変的に設定されてもよい。例えば、図6Bに示されるように、ユーザ装置100が所定の高度(Xmなど)以上にある場合、パラメータ管理部110は、Drone indicatorを"1"に設定し、ユーザ装置100が所定の高度未満にある場合、パラメータ管理部110は、Drone indicatorを"0"に設定するか、又は未設定としてもよい。この場合、送受信部120は、Drone indicator=1の高度範囲では、Drone indicator=1用のアップリンク電力制御パラメータを適用し、Drone indicator=0又は未設定の高度範囲では、Drone indicator=0用のアップリンク電力制御パラメータ又は通常のアップリンク電力制御パラメータを適用する。本実施例は、非地上配置型ユーザ装置として機能しうるユーザ装置100が、比較的高い高度にあり、隣接セルへのアップリンク干渉を生じさせるおそれがある場合に限って、非地上配置型ユーザ装置用の無線パラメータを適用させることが可能になる。 Also, the type parameter may be a parameter depending on the height. That is, the type parameter may be variably set according to the altitude of the user device 100. For example, as shown in FIG. 6B, when the user device 100 is at or above a predetermined altitude (Xm or the like), the parameter management unit 110 sets the Drone indicator to “1” and the user device 100 is less than the predetermined altitude. In this case, the parameter management unit 110 may set the Drone indicator to “0” or may not set it. In this case, the transmission / reception unit 120 applies the uplink power control parameter for Drone indicator = 1 in the altitude range of Drone indicator = 1, and for Drone indicator = 0 in Drone indicator = 0 or in the unset altitude range. Apply uplink power control parameters or normal uplink power control parameters. In this embodiment, the user equipment 100 that can function as a non-terrestrial user apparatus is located at a relatively high altitude and may cause uplink interference to neighboring cells. It is possible to apply wireless parameters for the device.
 また、一実施例では、種別パラメータは、位置及び高さの一方又は双方に依存したパラメータであってもよい。すなわち、種別パラメータは、ユーザ装置100の地理的範囲及び高度の一方又は双方に応じて可変的に設定されてもよい。本実施例によると、上述した地理的範囲に応じたDrone indicatorの可変的設定及び高度に応じたDrone indicatorの可変的設定の一方又は双方が適用されることにより、より粒度の高いDrone indicatorの制御が可能になる。 In one embodiment, the type parameter may be a parameter depending on one or both of the position and the height. That is, the type parameter may be variably set according to one or both of the geographical range and the altitude of the user device 100. According to this embodiment, one or both of the variable setting of the Drone indicator according to the above-described geographical range and the variable setting of the Drone indicator according to the altitude are applied, so that the control of the Drone indicator with higher granularity is applied. Is possible.
 また、種別パラメータは、任意数のビットにより表されてもよい。上述した実施例では、Drone indicatorは"0"又は"1"のパラメータ値に設定されたが、これに限定されず、任意数のビットにより表されてもよい。例えば、図7に示されるように、Drone indicatorは、"0"、"1"又は"2"に設定可能であってもよい。図7Aに示された例では、Drone indicatorは、ある地理的範囲では"1"に設定され、また、異なる地理的範囲では"2"に設定され、それ以外の地理的範囲では、Drone indicatorは"0"に設定されてもよいし、あるいは、未設定にされてもよい。この場合、送受信部120は、Drone indicator=1の地理的範囲では、Drone indicator=1用のアップリンク電力制御パラメータを適用し、Drone indicator=1の地理的範囲では、Drone indicator=2用のアップリンク電力制御パラメータを適用し、Drone indicator=0又は未設定の地理的範囲では、Drone indicator=0用のアップリンク電力制御パラメータ又は通常のアップリンク電力制御パラメータを適用する。また、図7Bに示された例では、高度範囲が低高度(高度<Xm)、中高度(Xm≦高度<Ym)及び高高度(Ym≦高度)の3つの範囲に分割され、それぞれに対してDrone indicatorが、"0"又は未設定、"1"及び"2"に設定される。このように、パラメータ管理部110は、所定の各3次元空間範囲に対して、"0"又は未設定、"1"又は"2"に予め設定されたDrone indicatorを保持してもよい。本実施例によると、各空間範囲に対して任意数のビットにより表されるパラメータ値が設定可能となり、より粒度の高いDrone indicatorの制御が可能になる。 Also, the type parameter may be represented by an arbitrary number of bits. In the above-described embodiment, the Drone indicator is set to a parameter value of “0” or “1”, but is not limited thereto, and may be represented by an arbitrary number of bits. For example, as shown in FIG. 7, the Drone indicator may be set to “0”, “1”, or “2”. In the example shown in FIG. 7A, the Drone indicator is set to “1” in one geographical range, “2” in a different geographical range, and the Drone indicator is set to “2” in other geographical ranges. It may be set to “0” or may not be set. In this case, the transmission / reception unit 120 applies the uplink power control parameter for Drone indicator = 1 in the geographical range of Drone indicator = 1, and increases for Drone indicator = 2 in the geographical range of Drone indicator = 1. The link power control parameter is applied, and the Drone indicator = 0 or the uplink power control parameter for the Drone indicator = 0 or the normal uplink power control parameter is applied in the unset geographical range. In the example shown in FIG. 7B, the altitude range is divided into three ranges of low altitude (altitude <Xm), medium altitude (Xm ≦ altitude <Ym), and high altitude (Ym ≦ altitude). Drone indicator is set to “0” or not set, “1” and “2”. As described above, the parameter management unit 110 may hold a Drone indicator preset to “0” or not set, “1” or “2” for each predetermined three-dimensional space range. According to the present embodiment, a parameter value represented by an arbitrary number of bits can be set for each spatial range, and control of the Drone indicator with higher granularity becomes possible.
 他の実施例では、種別パラメータは、位置及び/又は高度に依存しないパラメータであってもよい。すなわち、ユーザ装置100がドローンである場合、その事実自体は位置及び/又は高度に依存するものでない。従って、パラメータ管理部110は、位置及び/又は高度に依存することなく、ユーザ装置100が地上配置型ユーザ装置又は非地上配置型ユーザ装置であることを示す固定的な種別パラメータを保持してもよい。 In another embodiment, the type parameter may be a parameter independent of position and / or altitude. That is, if the user device 100 is a drone, the fact itself is not position and / or altitude dependent. Therefore, the parameter management unit 110 may retain a fixed type parameter indicating that the user device 100 is a ground-based user device or a non-ground-based user device without depending on the position and / or altitude. Good.
 また、他の実施例では、システム情報管理部210は更に、飛行可否パラメータを示すシステム情報を送信してもよい。例えば、飛行可否パラメータは、当該セルにおける飛行可否、飛行可能範囲などを示すものであってもよい。受信した飛行可否パラメータが飛行可能であることを示す場合、非地上配置型のユーザ装置100は、当該セルにおいて飛行可能であると判断し、受信した飛行可否パラメータが飛行不可であることを示す場合、非地上配置型のユーザ装置100は、当該セルにおいて飛行不可であると判断することができる。本実施例によると、当該セルにおける飛行可否がユーザ装置100に別途通知可能となる。 In another embodiment, the system information management unit 210 may further transmit system information indicating a flight availability parameter. For example, the flight propriety parameter may indicate flight feasibility, a flight feasible range, etc. in the cell. When the received flight propriety parameter indicates that the flight is possible, the non-ground placement type user apparatus 100 determines that the flight is possible in the cell, and the received flight propriety parameter indicates that the flight is not possible. The non-ground-arranged type user apparatus 100 can determine that flight is not possible in the cell. According to the present embodiment, it is possible to separately notify the user apparatus 100 whether or not the flight in the cell is possible.
 また、他の実施例では、送受信部120は、アイドル状態(RRC_IDLE状態など)において適用された無線パラメータを接続状態(RRC_CONNECTED状態など)への移行後も適用してもよい。例えば、接続状態への移行後に通信制御部220から新たな無線パラメータが指示されるまで、送受信部120は、アイドル状態(RRC_IDLE状態など)において適用された無線パラメータを適用し続けてもよい。本実施例によると、基地局200がコアネットワークにユーザ装置100の種別を照会するのに時間を要する場合、送受信部120は、当該照会に要する時間による遅延を削減しながら、接続状態への移行直後から無線信号を基地局200とやりとりすることが可能になる。 In another embodiment, the transmission / reception unit 120 may apply radio parameters applied in an idle state (such as RRC_IDLE state) even after transitioning to a connected state (such as an RRC_CONNECTED state). For example, the transmission / reception unit 120 may continue to apply the wireless parameter applied in the idle state (such as the RRC_IDLE state) until a new wireless parameter is instructed from the communication control unit 220 after the transition to the connection state. According to the present embodiment, when it takes time for the base station 200 to query the core network for the type of the user apparatus 100, the transmission / reception unit 120 shifts to the connected state while reducing the delay due to the time required for the inquiry. The radio signal can be exchanged with the base station 200 immediately after.
 なお、パラメータ管理部110は、カバレッジ内で有効な無線パラメータ及び/又は認証情報などの各種パラメータを保持し、当該パラメータは、アプリケーション及び/又はNAS(Non-Access Stratum)シグナリングによって通知及び/又は書き込みされてもよいし、事業者によって契約時にユーザ装置100及び/又はSIM(Subscriber Identity Module)カードに書き込まれてもよい。また、各種パラメータは、周波数毎に異なるものであってもよい。 The parameter management unit 110 holds various parameters such as radio parameters and / or authentication information that are effective in the coverage, and the parameters are notified and / or written by application and / or NAS (Non-Access Stratum) signaling. It may be written to the user apparatus 100 and / or a SIM (Subscriber Identity Module) card at the time of contract by the business operator. Various parameters may be different for each frequency.
 一実施例では、無線パラメータは、ランダムアクセス手順で用いられるパラメータであってもよい。すなわち、アイドル状態のユーザ装置100が基地局200との無線接続を確立する際、送受信部120は、RACH(Random Access Channel)において無線接続処理を実行する。送受信部120は、基地局200から受信したユーザ装置の種別毎の無線パラメータのうち、パラメータ管理部110によって管理されている種別パラメータの値に対応する無線パラメータを適用し、ランダムアクセス手順を実行する。 In one embodiment, the wireless parameter may be a parameter used in a random access procedure. That is, when the user apparatus 100 in an idle state establishes a wireless connection with the base station 200, the transmission / reception unit 120 performs a wireless connection process on a RACH (Random Access Channel). The transmission / reception unit 120 executes a random access procedure by applying a radio parameter corresponding to the value of the type parameter managed by the parameter management unit 110 among the radio parameters for each type of user apparatus received from the base station 200. .
 具体的には、無線パラメータは、初期受信電力ターゲット、電力ステップ及び/又は最大送信電力などが規定されたRACHのパワーランピング(power ramping)パラメータであってもよい。非地上配置型ユーザ装置用のパワーランピングパラメータを別途設定することによって、ドローンなどのユーザ装置100が過剰な電力でRACHを送信し、アップリンク干渉を生じさせることを回避することが可能になり、通常のユーザ装置のアップリンク送信を保護することができる。 Specifically, the radio parameter may be a RACH power ramping parameter in which an initial received power target, a power step, and / or a maximum transmission power are defined. By separately setting the power ramping parameters for the non-terrestrial user equipment, it becomes possible to avoid the user equipment 100 such as a drone transmitting RACH with excessive power and causing uplink interference, Normal user equipment uplink transmission can be protected.
 また、無線パラメータは、オープンループ電力制御パラメータ(ターゲット受信電力、パスロス補償ファクタなど)、送信電力オフセット及び/又は最大送信電力などが規定されたMessage 3送信電力パラメータであってもよい。非地上配置型ユーザ装置用のMessage 3送信電力パラメータを設定することによって、ドローンなどのユーザ装置100が過剰な電力でMessage 3を送信し、アップリンク干渉を生じさせることを回避することが可能になり、通常のユーザ装置のアップリンク送信を保護することができる。 Further, the radio parameter may be a Message 3 transmission power parameter in which an open loop power control parameter (target reception power, path loss compensation factor, etc.), transmission power offset, and / or maximum transmission power are defined. By setting the Message 3 transmission power parameter for non-terrestrial type user equipment, it is possible to avoid that the user equipment 100 such as drone transmits Message 3 with excessive power and causes uplink interference. Thus, it is possible to protect the normal user equipment uplink transmission.
 また、無線パラメータは、RACHの時間、周波数及び/又は系列などのRACHリソースを指定するものであってもよい。非地上配置型ユーザ装置用のRACHリソースパラメータを別途設定することによって、ドローン用に独立したRACHの時間、周波数及び/又は系列を適用することが可能になり、通常のユーザ装置のアップリンク送信を保護することができる。 Also, the radio parameter may specify RACH resources such as RACH time, frequency and / or sequence. By separately setting the RACH resource parameters for the non-terrestrial user equipment, it becomes possible to apply the time, frequency and / or sequence of independent RACH for the drone, and the normal user equipment uplink transmission can be performed. Can be protected.
 また、無線パラメータは、RACHのプリアンブルフォーマットを指定するものであってもよい。例えば、ドローンが孤立セルが存在するような僻地で運用され、遠方まで見通しで通信可能であり、実効的なカバレッジが地上配置型ユーザ装置よりも広い場合、非地上配置型ユーザ装置に適したプリアンブルフォーマットが別途設定されてもよい。地上配置型ユーザ装置と非地上配置型ユーザ装置とに好適なプリアンブルフォーマットが異なる場合、それぞれに適したプリアンブルフォーマットを設定することが可能になる。 Further, the radio parameter may specify a RACH preamble format. For example, if a drone is operated in a remote area where isolated cells exist, can communicate with a line-of-sight, and has a wider effective coverage than a ground-based user device, a preamble suitable for a non-ground-based user device The format may be set separately. When the preamble formats suitable for the ground-arranged type user apparatus and the non-ground-arranged type user apparatus are different, it is possible to set a preamble format suitable for each.
 また、無線パラメータは、RACHの送信可否を指定するものであってもよい。例えば、与干渉レベルが非常に高くなる高高度では、無線パラメータは、RACH送信を(一時的など)禁止するものであってもよい。このように、高高度にあるユーザ装置100にRACH送信を禁止させることによって、通常のユーザ装置のアップリンク送信を保護することができる。 Further, the radio parameter may specify whether or not the RACH can be transmitted. For example, at high altitudes where the level of interference is very high, the radio parameter may prohibit RACH transmission (such as temporarily). As described above, by prohibiting the user apparatus 100 located at a high altitude from RACH transmission, it is possible to protect the uplink transmission of a normal user apparatus.
 また、他の実施例では、無線パラメータは、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)及び/又はSRS(Sounding Reference Signal)などの送信電力パラメータであってもよい。例えば、無線パラメータは、PUSCH、PUCCH及び/又はSRSの各チャネルのオープンループ送信電力制御におけるターゲット受信電力、パスロス補償項及び/又は最大送信電力などを指定するものであってもよい。このように、非地上配置型ユーザ装置用のPUSCH、PUCCH及び/又はSRSの各チャネルの送信電力パラメータを別途設定することによって、無線接続確立後の接続状態(RRC_CONNECTED状態など)のユーザ装置100に対して、設定された送信電力パラメータが、初期値などとして適用可能になる。 In another embodiment, the wireless parameter may be PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), and / or SRS (Sounding Reference Signal). For example, the radio parameter may specify a target reception power, a path loss compensation term, and / or a maximum transmission power in the open loop transmission power control of each channel of PUSCH, PUCCH, and / or SRS. In this way, by separately setting the transmission power parameters of the PUSCH, PUCCH, and / or SRS channels for the non-terrestrial user device, the user apparatus 100 in the connection state (RRC_CONNECTED state or the like) after the wireless connection is established On the other hand, the set transmission power parameter can be applied as an initial value.
 なお、上述した実施例では、アイドル状態のユーザ装置100に対する無線制御処理を説明したが、以下の実施例では、無線接続確立後の接続状態のユーザ装置100に対する無線制御処理を説明する。なお、後述される接続状態のユーザ装置100に対する無線制御処理は、上述したアイドル状態のユーザ装置100に対する無線制御処理が適用された後に実行されてもよいし、あるいは、上述したアイドル状態のユーザ装置100に対する無線制御処理とは独立に実行されてもよい。 In the above-described embodiment, the wireless control process for the user device 100 in the idle state has been described. In the following embodiment, the wireless control process for the user device 100 in the connected state after establishing the wireless connection will be described. Note that the radio control process for the user apparatus 100 in the connected state, which will be described later, may be executed after the radio control process for the user apparatus 100 in the idle state described above is applied, or the user apparatus in the idle state described above. The radio control process for 100 may be executed independently.
 一実施例では、送受信部120は、ユーザ装置100と基地局200との間の無線状態を測定し、測定された無線状態に応じて基地局200から受信したユーザ装置の種別毎の無線パラメータを選択してもよい。具体的には、送受信部120は、ユーザ装置100と基地局200との間のパスロスを示すRSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)などの指標を測定し、測定結果に応じて基地局200から受信したユーザ装置の種別毎の無線パラメータを選択してもよい。例えば、在圏セルのRSRPが所定の閾値以上であって、在圏セルと隣接セル(同一周波数)とのRSRPの差分が所定の閾値以下である場合に限って、送受信部120は、非地上配置型ユーザ装置用の無線パラメータを適用してもよい。また、当該条件が充足された場合又は充足されなくなった場合、接続状態において送受信部120は、当該測定結果を基地局200に報告してもよい。また、このとき、送受信部120は、非地上配置型ユーザ装置用の無線パラメータを自律的に適用してもよいし、あるいは、基地局200からの上位レイヤシグナリングによって非地上配置型ユーザ装置用の無線パラメータを適用してもよい。また、上記条件が充足された場合、送受信部120は、測定結果を1回だけ基地局200に報告してもよいし、あるいは、その後に所定の回数及び/又は周期的に基地局200に報告してもよい。また、送受信部120は、基地局200からの報告停止指示に基づき、測定結果の報告を停止してもよい。本実施例によると、上記条件が充足され、アップリンク干渉が生じやすいとき、非地上配置型ユーザ装置用の無線パラメータを適用することによって、アップリンク干渉の発生を軽減すると共に、ユーザ装置100のスループットの劣化を最小限に抑えることが可能になる。 In one embodiment, the transmission / reception unit 120 measures a radio state between the user apparatus 100 and the base station 200, and sets a radio parameter for each type of user apparatus received from the base station 200 according to the measured radio state. You may choose. Specifically, the transmission / reception unit 120 measures indicators such as RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) indicating path loss between the user apparatus 100 and the base station 200, and responds to the measurement result. Thus, the radio parameter for each type of user apparatus received from the base station 200 may be selected. For example, only when the RSRP of the serving cell is equal to or greater than a predetermined threshold and the difference in RSRP between the serving cell and the neighboring cell (same frequency) is equal to or smaller than the predetermined threshold, the transmitting / receiving unit 120 Wireless parameters for the placement type user equipment may be applied. Further, when the condition is satisfied or no longer satisfied, the transmission / reception unit 120 may report the measurement result to the base station 200 in the connected state. Further, at this time, the transmission / reception unit 120 may autonomously apply the radio parameters for the non-terrestrial deployment type user apparatus, or for the non-terrestrial configuration type user apparatus by higher layer signaling from the base station 200. Wireless parameters may be applied. In addition, when the above conditions are satisfied, the transmission / reception unit 120 may report the measurement result to the base station 200 only once, or thereafter report the measurement result to the base station 200 a predetermined number of times and / or periodically. May be. Further, the transmission / reception unit 120 may stop reporting the measurement result based on the report stop instruction from the base station 200. According to the present embodiment, when the above condition is satisfied and uplink interference is likely to occur, the occurrence of uplink interference is reduced by applying the radio parameters for the non-terrestrial user device, and the user device 100 It becomes possible to minimize the degradation of the throughput.
 また、他の実施例では、送受信部120は、ユーザ装置100の高度を測定し、測定された高度に応じて基地局200から受信したユーザ装置の種別毎の無線パラメータを選択してもよい。具体的には、自律的に測定されたユーザ装置100の高度が所定の閾値以上の場合に限って、送受信部120は、非地上配置型ユーザ装置用の無線パラメータを適用してもよい。本実施例によると、ユーザ装置100が所定の閾値以上の高度にあって、アップリンク干渉が生じやすいとき、非地上配置型ユーザ装置用の無線パラメータを適用することによって、アップリンク干渉の発生を軽減すると共に、ユーザ装置100のスループットの劣化を最小限に抑えることが可能になる。 In another embodiment, the transmission / reception unit 120 may measure the altitude of the user apparatus 100 and select a radio parameter for each type of user apparatus received from the base station 200 according to the measured altitude. Specifically, only when the altitude of the user device 100 measured autonomously is equal to or greater than a predetermined threshold, the transmission / reception unit 120 may apply the radio parameters for the non-terrestrial user device. According to the present embodiment, when the user apparatus 100 is at an altitude equal to or higher than a predetermined threshold and uplink interference is likely to occur, the occurrence of uplink interference is suppressed by applying the radio parameters for the non-terrestrial user apparatus. It is possible to reduce the degradation of the throughput of the user apparatus 100 while minimizing it.
 ここで、上述した各種閾値は、予め設定された値であってもよいし、ブロードキャストされた値であってもよいし、上位レイヤシグナリングにより設定された値であってもよい。上述したアイドル状態のユーザ装置100に対する無線制御処理をサポートしつつ、運用の柔軟性を確保するという観点では、各種閾値は予め設定された値であってもよい。 Here, the various threshold values described above may be preset values, broadcast values, or values set by higher layer signaling. Various threshold values may be set in advance from the viewpoint of ensuring operational flexibility while supporting the wireless control processing for the user device 100 in the idle state described above.
 上述した実施例では、各種パラメータは、"0"又は"1"に設定可能なフラグとして実現可能であるが(例えば、上述したDrone indicatorなど)、これに限定されることなく、2ビット以上を用いて複数レベルに設定されてもよい。例えば、複数レベルに設定可能なパラメータが使用される場合、位置、高度及び/又は与干渉レベルなどに応じた無線パラメータを設定することができる。同様に、上述した各種閾値は、複数レベルに設定されてもよい。 In the above-described embodiment, various parameters can be realized as flags that can be set to “0” or “1” (for example, the above-described Drone indicator), but the present invention is not limited to this. And may be set to multiple levels. For example, when parameters that can be set at a plurality of levels are used, radio parameters can be set according to position, altitude, and / or interference level. Similarly, the various threshold values described above may be set at a plurality of levels.
 また、上述したパラメータ管理部110により管理される特定のパラメータ値は、書き換え可能な能力情報(UE category、UE capabilityなど)として管理されてもよいし、あるいは、複数のパラメータ値が設定される場合、パラメータ管理部110が、対応するパラメータ値に設定可能としてもよい。一般に、ユーザ装置100が基地局200に接続する際、ユーザ装置100は、能力情報を基地局200に報告するため、基地局200は、コアネットワークにユーザ装置100の登録情報を照会することなく、ユーザ装置100の種別を認識することが可能になる。 In addition, the specific parameter value managed by the parameter management unit 110 described above may be managed as rewritable capability information (UE category, UE capability, etc.), or when a plurality of parameter values are set. The parameter management unit 110 may be set to the corresponding parameter value. Generally, when the user apparatus 100 connects to the base station 200, the user apparatus 100 reports capability information to the base station 200, so the base station 200 does not query the core network for registration information of the user apparatus 100, The type of the user device 100 can be recognized.
 次に、図8を参照して、本発明の一実施例による特定タイプのユーザ装置と基地局との間の無線通信処理を説明する。図8は、本発明の一実施例による特定タイプのユーザ装置と基地局との間の無線通信処理を示すシーケンス図である。 Next, a wireless communication process between a specific type of user apparatus and a base station according to an embodiment of the present invention will be described with reference to FIG. FIG. 8 is a sequence diagram illustrating a wireless communication process between a specific type of user apparatus and a base station according to an embodiment of the present invention.
 図8に示されるように、ステップS101において、基地局(gNB)200は、ユーザ装置の種別毎の無線パラメータを示すシステム情報を送信する。具体的には、基地局200は、地上配置型ユーザ装置用の無線パラメータ、非地上配置型ユーザ装置用の無線パラメータ及び/又は通常のユーザ装置用の無線パラメータをシステム情報においてブロードキャストする。 As shown in FIG. 8, in step S101, the base station (gNB) 200 transmits system information indicating radio parameters for each type of user apparatus. Specifically, the base station 200 broadcasts in the system information radio parameters for terrestrial-arranged user apparatuses, radio parameters for non-terrestrial-arranged user apparatuses and / or radio parameters for ordinary user apparatuses.
 ステップS102において、アイドル状態のユーザ装置100が、受信したシステム情報から当該ユーザ装置100の種別に対応した無線パラメータに従って、無線接続リクエストを基地局200に送信する。すなわち、ユーザ装置100が、予め設定されている種別パラメータに基づき自らが地上配置型ユーザ装置又は非地上配置型ユーザ装置であるか判断し、地上配置型ユーザ装置である場合、ユーザ装置100は、地上配置型ユーザ装置用の無線パラメータに従って無線接続リクエストを基地局200に送信し、非地上配置型ユーザ装置である場合、ユーザ装置100は、非地上配置型ユーザ装置用の無線パラメータに従って無線接続リクエストを基地局200に送信する。当該無線パラメータは、例えば、ランダムアクセス手順に用いられるパラメータであってもよく、具体的には、RACHのパワーランピングパラメータ、Message 3送信電力パラメータ、RACHの無線リソースを示すパラメータ、RACHのプリアンブルフォーマットを示すパラメータ、RACHの送信可否を示すパラメータであってもよい。また、無線パラメータは、PUSCH、PUCCH及び/又はSRSなどの送信電力パラメータであってもよい。 In step S102, the idle user apparatus 100 transmits a wireless connection request to the base station 200 according to the wireless parameter corresponding to the type of the user apparatus 100 from the received system information. That is, the user device 100 determines whether the user device 100 is a ground-arranged user device or a non-ground-arranged user device based on a preset type parameter. When the wireless connection request is transmitted to the base station 200 according to the wireless parameter for the terrestrial-arranged user apparatus, and the user apparatus 100 is a non-terrestrial user apparatus, the user apparatus 100 transmits the wireless connection request according to the wireless parameter for the non-terrestrial user apparatus Is transmitted to the base station 200. The radio parameter may be, for example, a parameter used in a random access procedure. Specifically, a RACH power ramping parameter, a Message 3 transmission power parameter, a parameter indicating a RACH radio resource, a RACH preamble format, and the like. Or a parameter indicating whether or not the RACH can be transmitted. Further, the radio parameter may be a transmission power parameter such as PUSCH, PUCCH and / or SRS.
 ステップS103において、ユーザ装置100と基地局200との間で無線接続が確立され、ユーザ装置100は接続状態に移行する。例えば、無線接続の確立直後、ユーザ装置100は、基地局200からUE個別に設定されるまでユーザ装置タイプに対応する無線パラメータを使用し続けてもよい。 In step S103, a wireless connection is established between the user apparatus 100 and the base station 200, and the user apparatus 100 shifts to a connected state. For example, immediately after establishment of the radio connection, the user apparatus 100 may continue to use the radio parameter corresponding to the user apparatus type until the UE is individually set from the base station 200.
 ステップS104において、基地局200は、アップリンク送信のために割り当てられた無線リソースを含む制御情報をユーザ装置100に送信する。当該制御情報は、ユーザ装置100に対する新たな無線パラメータを含むものであってもよい。 In step S104, the base station 200 transmits control information including radio resources allocated for uplink transmission to the user apparatus 100. The control information may include new radio parameters for the user apparatus 100.
 ステップS105において、ユーザ装置100は、設定された無線パラメータに従ってアップリンク無線信号を送信する。 In step S105, the user apparatus 100 transmits an uplink radio signal according to the set radio parameter.
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。 Note that the block diagram used in the description of the above embodiment shows functional unit blocks. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
 例えば、本発明の一実施の形態におけるユーザ装置100及び基地局200は、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、本発明の一実施例によるユーザ装置100及び基地局200のハードウェア構成を示すブロック図である。上述のユーザ装置100及び基地局200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the user apparatus 100 and the base station 200 according to an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention. FIG. 9 is a block diagram illustrating a hardware configuration of the user apparatus 100 and the base station 200 according to an embodiment of the present invention. The above-described user apparatus 100 and base station 200 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. .
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置100及び基地局200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the user apparatus 100 and the base station 200 may be configured to include one or a plurality of the apparatuses illustrated in the figure, or may be configured not to include some apparatuses.
 ユーザ装置100及び基地局200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the user apparatus 100 and the base station 200 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs an operation, and communication by the communication apparatus 1004 or memory This is realized by controlling data reading and / or writing in the storage 1003 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の各構成要素は、プロセッサ1001で実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, each component described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ装置100及び基地局200の各構成要素による処理は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Further, the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the processing by each component of the user apparatus 100 and the base station 200 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks. . Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の各構成要素は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, each of the above-described components may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、ユーザ装置100及び基地局200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 In addition, the user apparatus 100 and the base station 200 include hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). Hardware may be configured, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 The notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods. For example, notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Also, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
 本明細書で説明した各態様/実施例は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / example described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using other appropriate systems, and / or a next generation system extended based on these systems.
 本明細書で説明した各態様/実施例の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts, and the like of each aspect / example described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本明細書において基地局200によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 The specific operation performed by the base station 200 in this specification may be performed by the upper node in some cases. In a network composed of one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (for example, Obviously, this can be done by MME or S-GW, but not limited to these. Although the case where there is one network node other than the base station in the above is illustrated, a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
 本明細書で説明した各態様/実施例は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / example described in this specification may be used alone, in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal. The signal may be a message. Further, the component carrier (CC) may be called a carrier frequency, a cell, or the like.
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。 The terms “system” and “network” used in this specification are used interchangeably.
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。 In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for the above parameters are not limited in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements (eg, TPC, etc.) can be identified by any suitable name, the various names assigned to these various channels and information elements are However, it is not limited.
 基地局は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates a plurality of cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can be divided into a base station subsystem (for example, an indoor small base station RRH: Remote). A communication service can also be provided by Radio Head). The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein. A base station may also be called in terms such as a fixed station (fixed station), a NodeB, an eNodeB (eNB), an access point (access point), a femto cell, and a small cell.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “deciding”. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 The terms “connected”, “coupled”, or any variation thereof, means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements. The coupling or connection between the elements may be physical, logical, or a combination thereof. As used herein, the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples By using electromagnetic energy, such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 “Means” in the configuration of each apparatus may be replaced with “unit”, “circuit”, “device”, and the like.
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 These terms are similar to the term “comprising” as long as “including”, “including”, and variations thereof, are used herein or in the claims. It is intended to be comprehensive. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDMシンボル、SC-FDMAシンボル等)で構成されてもよい。無線フレーム、サブフレーム、スロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅や送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。リソースブロック(RB)は、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースブロックの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。 The radio frame may be composed of one or a plurality of frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may further be composed of one or more slots in the time domain. A slot may further be composed of one or more symbols (OFDM symbols, SC-FDMA symbols, etc.) in the time domain. Each of the radio frame, subframe, slot, and symbol represents a time unit for transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station. The minimum time unit for scheduling may be called TTI (Transmission Time Interval). For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot may be called a TTI. A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. In the time domain of the resource block, one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included. One TTI and one subframe may each be composed of one or a plurality of resource blocks. The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block The number of carriers can be variously changed.
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the specific embodiment mentioned above, In the range of the summary of this invention described in the claim, various deformation | transformation・ Change is possible.
10 無線通信システム
100 ユーザ装置
110 パラメータ管理部
120 送受信部
200 基地局
210 システム情報管理部
220 通信制御部
DESCRIPTION OF SYMBOLS 10 Radio communication system 100 User apparatus 110 Parameter management part 120 Transmission / reception part 200 Base station 210 System information management part 220 Communication control part

Claims (8)

  1.  ユーザ装置であって、
     当該ユーザ装置に関するパラメータを管理するパラメータ管理部と、
     基地局との間で無線信号を送受信する送受信部と、
    を有し、
     前記パラメータ管理部が、当該ユーザ装置の種別が特定の種別であることを示す種別パラメータを有し、
     当該ユーザ装置がアイドル状態にあるとき、前記送受信部は、前記基地局から受信した前記特定の種別に対応する無線パラメータを適用するユーザ装置。
    A user device,
    A parameter management unit for managing parameters related to the user device;
    A transceiver for transmitting and receiving radio signals to and from the base station;
    Have
    The parameter management unit has a type parameter indicating that the type of the user device is a specific type;
    When the user apparatus is in an idle state, the transmission / reception unit applies a radio parameter corresponding to the specific type received from the base station.
  2.  前記無線パラメータは、ランダムアクセス手順に用いられるパラメータである、請求項1記載のユーザ装置。 The user apparatus according to claim 1, wherein the wireless parameter is a parameter used for a random access procedure.
  3.  前記種別パラメータは、位置及び高さの一方又は双方に依存したパラメータである、請求項1又は2記載のユーザ装置。 The user device according to claim 1 or 2, wherein the type parameter is a parameter depending on one or both of position and height.
  4.  前記送受信部は、当該ユーザ装置と前記基地局との間の無線状態を測定し、測定された無線状態に応じて前記基地局から受信したユーザ装置の種別毎の無線パラメータを選択する、請求項1乃至3何れか一項記載のユーザ装置。 The transmitter / receiver measures a wireless state between the user apparatus and the base station, and selects a wireless parameter for each type of user apparatus received from the base station according to the measured wireless state. The user device according to any one of 1 to 3.
  5.  前記送受信部は、当該ユーザ装置の高度を測定し、前記測定された高度に応じて前記基地局から受信したユーザ装置の種別毎の無線パラメータを選択する、請求項1乃至4何れか一項記載のユーザ装置。 The said transmission / reception part measures the altitude of the said user apparatus, and selects the radio | wireless parameter for every classification of the user apparatus received from the said base station according to the said measured altitude. User equipment.
  6.  基地局であって、
     システム情報を送信するシステム情報管理部と、
     ユーザ装置との無線通信を制御する通信制御部と、
    を有し、
     前記システム情報管理部は、ユーザ装置の種別毎の無線パラメータを示す前記システム情報を送信する基地局。
    A base station,
    A system information management unit for transmitting system information;
    A communication control unit for controlling wireless communication with the user device;
    Have
    The system information management unit is a base station that transmits the system information indicating radio parameters for each type of user apparatus.
  7.  前記無線パラメータは、ランダムアクセス手順に用いられるパラメータである、請求項6記載の基地局。 The base station according to claim 6, wherein the radio parameter is a parameter used for a random access procedure.
  8.  前記システム情報管理部は更に、飛行可否パラメータを示すシステム情報を送信する、請求項6又は7記載の基地局。 The base station according to claim 6 or 7, wherein the system information management unit further transmits system information indicating a flight availability parameter.
PCT/JP2017/017301 2017-05-02 2017-05-02 User device and base station WO2018203402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017301 WO2018203402A1 (en) 2017-05-02 2017-05-02 User device and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017301 WO2018203402A1 (en) 2017-05-02 2017-05-02 User device and base station

Publications (1)

Publication Number Publication Date
WO2018203402A1 true WO2018203402A1 (en) 2018-11-08

Family

ID=64016028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017301 WO2018203402A1 (en) 2017-05-02 2017-05-02 User device and base station

Country Status (1)

Country Link
WO (1) WO2018203402A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020523951A (en) * 2017-06-07 2020-08-06 イーサトロニクス,インコーポレーテッド Power control method for systems with varying altitude objects
JP2020535717A (en) * 2017-09-28 2020-12-03 京セラ株式会社 Preamble management for unmanned aerial vehicles
US20220232380A1 (en) * 2019-06-17 2022-07-21 Siemens Aktiengesellschaft Method for configuring a radio connection
US11419061B2 (en) 2018-02-15 2022-08-16 Telefonaktiebolaget LM Ericsson (Publ) Stockholn Altitude dependent uplink power control
US11553436B2 (en) 2018-04-05 2023-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Airborne status dependent uplink power control related task(s) for aerial UEs
WO2024070920A1 (en) * 2022-09-26 2024-04-04 京セラ株式会社 Communication control method
WO2024075663A1 (en) * 2022-10-05 2024-04-11 京セラ株式会社 Communication control method
WO2024075664A1 (en) * 2022-10-06 2024-04-11 京セラ株式会社 Communication control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170099A (en) * 2006-10-03 2012-09-06 Qualcomm Inc Random access signaling transmission for system access in wireless communication
JP2014506771A (en) * 2011-02-22 2014-03-17 サムスン エレクトロニクス カンパニー リミテッド Terminal and power control method for executing random access in the terminal
JP2015509340A (en) * 2012-01-31 2015-03-26 ▲ホア▼▲ウェイ▼技術有限公司 Transmission time interval selection method and user terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170099A (en) * 2006-10-03 2012-09-06 Qualcomm Inc Random access signaling transmission for system access in wireless communication
JP2014506771A (en) * 2011-02-22 2014-03-17 サムスン エレクトロニクス カンパニー リミテッド Terminal and power control method for executing random access in the terminal
JP2015509340A (en) * 2012-01-31 2015-03-26 ▲ホア▼▲ウェイ▼技術有限公司 Transmission time interval selection method and user terminal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Potential enhancements to LTE for aerial vehicles", 3GPP TSG-RAN WG1#88BIS R1-1704855, 25 March 2017 (2017-03-25), XP051251543, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/R1-1704855.zip> [retrieved on 20170612] *
NTT DOCOMO: "Initial views on potential problems and solutions for aerial vehicles", 3GPP TSG-RAN WG1#88BIS R1-1705699, 25 March 2017 (2017-03-25), XP051252118, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/R1-1705699.zip> [retrieved on 20170612] *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020523951A (en) * 2017-06-07 2020-08-06 イーサトロニクス,インコーポレーテッド Power control method for systems with varying altitude objects
JP2020535717A (en) * 2017-09-28 2020-12-03 京セラ株式会社 Preamble management for unmanned aerial vehicles
JP7037645B2 (en) 2017-09-28 2022-03-16 京セラ株式会社 Preamble management for unmanned aerial vehicles
US11508245B2 (en) 2017-09-28 2022-11-22 Kyocera Corporation Preamble management for unmanned aerial vehicles
US11798425B2 (en) 2017-09-28 2023-10-24 Kyocera Corporation Preamble management for unmanned aerial vehicles
US11419061B2 (en) 2018-02-15 2022-08-16 Telefonaktiebolaget LM Ericsson (Publ) Stockholn Altitude dependent uplink power control
US11553436B2 (en) 2018-04-05 2023-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Airborne status dependent uplink power control related task(s) for aerial UEs
US20220232380A1 (en) * 2019-06-17 2022-07-21 Siemens Aktiengesellschaft Method for configuring a radio connection
WO2024070920A1 (en) * 2022-09-26 2024-04-04 京セラ株式会社 Communication control method
WO2024075663A1 (en) * 2022-10-05 2024-04-11 京セラ株式会社 Communication control method
WO2024075664A1 (en) * 2022-10-06 2024-04-11 京セラ株式会社 Communication control method

Similar Documents

Publication Publication Date Title
WO2018203402A1 (en) User device and base station
US10952276B2 (en) Radio communication system
KR102301902B1 (en) user device
US11477729B2 (en) Cell selection or access method, a user terminal, a maintenance method, and a base station
WO2018128039A1 (en) User device and base station
EP3576472B1 (en) Resource allocation method and apparatus, network device, and storage medium
US11595883B2 (en) Wireless communication methods and corresponding base stations and user terminals
WO2018084118A1 (en) User device and base station
US20190223119A1 (en) User equipment and base station
JP6995846B2 (en) Terminals, communication methods, base station equipment, and wireless communication systems
US11115987B2 (en) Method and apparatus for controlling network devices providing network services for a plurality of over-the-air areas
WO2018084126A1 (en) User device and base station
WO2017188453A1 (en) User equipment, base station, and communication method
US20220124627A1 (en) Terminal and wireless communication method
WO2018142990A1 (en) Base station and user device
US20190281533A1 (en) Wireless terminal device and communications method
JP2019036873A (en) base station
JP7467478B2 (en) Terminal and communication method
JPWO2019064604A1 (en) Base station and user equipment
US20220287108A1 (en) Terminal and communication method
WO2020144785A1 (en) Terminal and communication method
WO2018128016A1 (en) Base station and user device
WO2018128038A1 (en) User device and base station
US11451289B2 (en) Wireless communication method and corresponding communication device
WO2017183245A1 (en) User equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP