WO2018202156A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2018202156A1
WO2018202156A1 PCT/CN2018/085696 CN2018085696W WO2018202156A1 WO 2018202156 A1 WO2018202156 A1 WO 2018202156A1 CN 2018085696 W CN2018085696 W CN 2018085696W WO 2018202156 A1 WO2018202156 A1 WO 2018202156A1
Authority
WO
WIPO (PCT)
Prior art keywords
system frame
pbch
bit
bits
frame number
Prior art date
Application number
PCT/CN2018/085696
Other languages
English (en)
French (fr)
Inventor
黄煌
高宽栋
颜矛
向高
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22207846.1A priority Critical patent/EP4207888A1/en
Priority to EP18795259.3A priority patent/EP3518591B1/en
Priority to RU2019139244A priority patent/RU2776677C2/ru
Priority to JP2019560762A priority patent/JP6903390B2/ja
Priority to KR1020197035362A priority patent/KR102308291B1/ko
Priority to AU2018261988A priority patent/AU2018261988C1/en
Priority to MX2019013209A priority patent/MX2019013209A/es
Priority to BR112019023172-2A priority patent/BR112019023172B1/pt
Publication of WO2018202156A1 publication Critical patent/WO2018202156A1/zh
Priority to US16/532,708 priority patent/US11115904B2/en
Priority to US17/458,538 priority patent/US11711751B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods and communication devices in the field of communications. Background technique
  • a user equipment In a long term evolution (LTE) communication system, a user equipment (UE) needs to obtain system information (SI) of the network equipment before accessing a network equipment to know how the network equipment is configured. , in order to work properly within the network device.
  • SI system information
  • a network device sends a master information block (MIB) to all UEs within the coverage of the network device through a physical broadcast channel (PBCH).
  • the MIB information contains up to 8 bits of the system frame number (SFN) of 10 bits, which is used for time alignment between the UE and the network device.
  • SFN system frame number
  • the transmission time interval (T r ansmi s s i on time interval, TTI) of the PBCH is 40 ms
  • the period of the PBCH is 10 ms.
  • the base station repeatedly transmits PBCH 4 times in the TTI of each PBCH.
  • a synchronous signal includes: a primary synchronous signal (PSS) and a secondary synchronous signal (SSS), which are combined with the PBCH.
  • PSS primary synchronous signal
  • SSS secondary synchronous signal
  • - Forming a sync signal SS block, at least one SS block constitutes an SS segment (burst), and at least one SS burst constitutes an SS burst set (set).
  • the SS burst set has a plurality of different periods.
  • the period of the SS burst set can be 5 ms, 10 ms, 20 ms, 40 ms, 80 ms or 160 ms.
  • the present application provides a communication method and communication apparatus capable of transmitting an SFN through a PBCH for different periods of SS burst sets.
  • the application provides a communication method, the method comprising:
  • the first processing block is processed by the first processing mode to obtain a first transport block, where the first processing mode is used to indicate a part of the system frame number of the wireless system frame where the first PBCH is located,
  • the first MIB includes the first A remaining bit of the system frame number of the wireless system frame in which the PBCH is located, except for the bit on the partial bit; in the wireless system frame in which the first PBCH is located, the first transport block is transmitted through the first PBCH.
  • the first processing mode is used to indicate a part of the system frame number of the wireless system frame where the first PBCH is located, and the first processing mode is used to implicitly indicate the wireless system where the first PBCH is located.
  • the partial bit of the system frame number of the frame may be used as the partial bit of the system frame number of the wireless system frame in which the first PBCH is located, which is not limited in this embodiment.
  • the present application provides a communication method and communication device capable of passing through different periods of SS burs t set
  • the PBCH transmits the SFN.
  • the first PBCH is sent in a first transmission time interval TTI, and the period of the first SS burs t set in the first TTI is the first one of the multiple cycles.
  • the method further includes: determining a system frame number of a radio system frame in which the second PBCH to be transmitted in the second TTI is located, the second PBCH being included in the second SS burs t set, and the second SS burs t set.
  • the second period of the plurality of periods is the processing of the second MIB to obtain the second transport block, where the first processing mode is used to indicate the frame of the wireless system where the second PBCH is located.
  • the second MIB includes a remaining bit of the system frame number of the wireless system frame in which the second PBCH is located, except for the bit on the partial bit; the wireless system frame where the second PBCH is located
  • the second transport block is transmitted through the second PBCH.
  • the first processing mode is further used to indicate a bit on a partial bit in a system frame number of the radio frame where the first PBCH is located.
  • the method further includes: determining a system frame number of a radio system frame in which the third PBCH to be sent in the third TTI is located, where the third PBCH is included in the third SS burs t set, and The period of the third SS burs t set is the third period of the plurality of periods; the third processing block is processed by the first processing manner to obtain a third transport block, where the first processing manner is used to indicate the first The portion of the system frame number of the wireless system frame in which the third PBCH is located, where the third MIB includes the remaining bits of the system frame number of the wireless system frame in which the third PBCH is located, except for the bits on the partial bit; The third transport block is transmitted through the third PBCH in the radio system frame in which the three PBCHs are located.
  • the method further includes: determining a system frame number of a radio system frame in which the fourth PBCH to be sent in the fourth TTI is located, where the fourth PBCH is included in the fourth SS burs t set, and The fourth SS burs t set period is the fourth period of the plurality of periods; the fourth processing manner is used to process the fourth MIB to obtain a fourth transport block, where the first processing manner is used to indicate the first The portion of the system frame number of the wireless system frame in which the fourth PBCH is located, where the fourth MIB includes the remaining bits of the system frame number of the wireless system frame in which the fourth PBCH is located, except for the bits on the partial bit; The fourth transmission block is transmitted through the fourth PBCH in the radio system frame in which the four PBCHs are located.
  • the method further includes: determining a system frame number of a radio system frame in which the fifth PBCH to be sent in the fifth TTI is located, where the fifth PBCH is included in the fifth SS burs t set, and The fifth SS burs t set period is the fifth period of the plurality of cycles.
  • the fifth processing block is processed by the first processing manner to obtain a fifth transport block, where the first processing manner is used to indicate the first a portion of the system frame number of the wireless system frame in which the fifth PBCH is located, where the fifth MIB includes the remaining bits of the system frame number of the wireless system frame in which the fifth PBCH is located, except for the bits on the partial bit;
  • the fifth transport block is transmitted through the fifth PBCH in the radio system frame in which the five PBCHs are located.
  • the method further includes: determining a system frame number of a radio system frame where the sixth PBCH to be sent in the sixth TTI is located, where the sixth PBCH is included in the sixth SS burst set, and the The sixth SS burst set period is the sixth period of the plurality of periods; the sixth processing manner is performed on the sixth MIB to obtain a sixth transport block, where the first processing manner is used to indicate the sixth PBCH a portion of the system frame number of the wireless system frame, where the sixth MIB includes the remaining bits of the system frame number of the wireless system frame in which the sixth PBCH is located, except for the bits on the partial bit; in the sixth PBCH The sixth transport block is transmitted through the sixth PBCH in the wireless system frame in which it is located.
  • the base station in the period of two or more different SS burst sets, does not need to separately formulate a corresponding method for transmitting the SFN for each SS burst set period, but transmits the first MIB through the first MIB.
  • the remaining bits in the system frame number, and the first processing mode used for processing the first MIB implicitly indicating a part of the bits in the system frame number, can reduce the computational complexity of the base station and the UE, and reduce the UE detection. The complexity of SNF.
  • the partial bits include a second last bit (eg, the second least bit) and a third last bit (eg, the third least bit).
  • the partial bits include a minimum of 3 bits (eg, the least 3 bits).
  • the first processing manner includes at least one of a cyclic redundancy check CRC check, a cyclic shift, and a scrambling.
  • the application provides a communication method, the method comprising:
  • the processing block is processed to obtain a main information block MIB, and a partial bit in the system frame number of the radio system frame in which the PBCH is located and a bit on the partial bit are obtained by the processing manner, and the MIB includes The remaining bits of the system frame number of the wireless system frame in which the PBCH is located, except for the bits on the partial bits;
  • the system frame number of the wireless system frame in which the PBCH is located is determined.
  • the base station in a period of two or more different SS burst sets, the base station does not need to separately formulate a corresponding method for transmitting the SFN for each SS burst set period, but blindly detects the transmission.
  • the processing mode of the block obtains the partial bit and the bit on the partial bit, and obtains the MIB by using the processing manner.
  • the MIB includes the remaining bits, and the wireless system frame in which the PBCH is located is obtained according to the partial bit and the remaining bit.
  • the system frame number can reduce the computational complexity of the base station and the UE, and reduce the complexity of the UE detecting the SNF.
  • the partial bits include a first to last bit and a third to last. In a possible implementation, the partial bits comprise a minimum of 3 bits.
  • the processing manner includes at least one of a cyclic redundancy check CRC check, a cyclic shift, and a descrambling.
  • the present application provides a communication device for data transmission for performing the method of any of the above first aspects or any of the possible implementations of the first aspect.
  • the present application provides a communication device for data transmission for performing the method in any of the possible implementations of the second aspect or the second aspect above.
  • the application provides a communication device for data transmission, the communication device comprising: a memory, processing And a computer program stored on the memory and operable on the processor, wherein the processor executes the computer program to perform the first aspect or any of the possible implementations of the first aspect Methods.
  • the processor and the memory included in the device may also be implemented by using a chip.
  • the present application provides a communication device for data transmission, the communication device comprising: a memory, a processor, a transceiver, and a computer program stored on the memory and operable on the processor, wherein The method of any of the possible implementations of the second aspect or the second aspect above is performed when the processor executes the computer program.
  • the processor and the memory included in the device may also be implemented by using a chip.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the first aspect or the first aspect of the first aspect.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an SS burst included in each wireless system frame included in a period of an SS burst set provided by an embodiment of the present application;
  • FIG. 6 is a schematic block diagram of a communication device for data transmission provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of another communication device for data transmission according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of still another communication device for data transmission according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of still another communication device for data transmission provided by an embodiment of the present application. Detailed ways
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include at least one network device, and the network device 110 is illustrated in FIG. 1, which can provide communication coverage for a particular geographic area and can communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a network device (nodeB, NB) in a WCDMA system, or may be an evolved network device in an LTE system ( Evolved node B, eNB or eNodeB), or a wireless controller in a cloud radio access network (CRAN).
  • BTS base transceiver station
  • NB network device
  • LTE Long Term Evolution
  • eNB evolved node B
  • CRAN cloud radio access network
  • the network device may also be a core network, a relay station, an access point, an in-vehicle device, a wearable device, a network side device in a future 5G network, or a network device in a public land mobile network (PLMN) in a future evolution. Wait.
  • the wireless communication system 100 also includes at least one terminal device located within the coverage of the network device 110, and the user device 120 and the user device 130 are shown in FIG.
  • FIG. 1 exemplarily shows a network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like. The embodiment of the present application is not limited thereto.
  • UE user equipment
  • the UE may be mobile or fixed.
  • the UE may refer to a terminal device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user communication device, and the like.
  • the UE can be a cellular phone, a wireless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function.
  • FIG. 1 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application.
  • the method 200 can be applied to the wireless communication system as shown in FIG. 1.
  • the network device can be a base station, for example, a cell in the base station, but the embodiment of the present application does not limit this.
  • S210 Determine a system frame number of a radio system frame where the first PBCH is to be sent, where the first PBCH is included in the first synchronization signal segment set SS burst set, and the period of the first SS burst set is multiple Any of the cycles.
  • the synchronization signals include: PSS and SSS, which together with the PBCH constitute a
  • At least one SS block constitutes an SS burst, and at least one SS burst constitutes an SS burst set;
  • one PSS, one SSS, and two PBCHs can form one SS Block, four SS blocks can form one SS burst, and two SS burs can form an SS burst set.
  • the base station and the UE can configure a plurality of SS burst set periods, for example, 5 ms, 10 ms,
  • the period of the SS burst set in the same TTI is one, but the embodiment of the present application is not limited thereto.
  • the first primary information block MIB is processed by the first processing manner to obtain a first transport block, where the first processing manner is used to indicate a partial bit of a system frame number of the wireless system frame where the first PBCH is located. And the first MIB includes remaining bits of the system frame number of the wireless system frame where the first PBCH is located, except for the bits on the partial bits.
  • system frame number of the wireless system frame may be represented by consecutive N bits, each bit may be 0 or 1, and the position of each bit in the N bits is called a bit, and the value of the system frame number is It can be cycled from 0 ⁇ 2 N.
  • the system frame number 0000000010 indicates the radio system frame 2, where the bit on the ninth bit is 1, which can be understood as the ninth bit being 1.
  • the first processing mode used by the base station may include at least one of a CRC check, a cyclic shift, and a scrambling. It should be understood that this first processing mode is used to indicate a partial bit.
  • the UE may agree with the base station that the first processing mode is scrambling, and the part of the bit that is implicitly indicated by the scrambling; or the base station may indicate, by using the high layer signaling, that the first processing mode of the UE is scrambling , and through
  • the portion of the bit that is implicitly indicated by the scrambling mode is not limited in this embodiment of the present application.
  • the base station may obtain the first transport block by scrambling the first MIB, and the scrambling mode is used to implicitly indicate the partial bit.
  • the scrambling uses the pseudo-random sequence generated by the initialization seed and the information bits (the remaining bits in the system frame number of the radio system frame in which the first PBCH is located) to perform bit-wise exclusive OR operation (or multiplication) for scrambling.
  • the initialization seed is used to implicitly indicate a partial bit of the system frame number of the wireless system frame in which the first PBCH is located; or, the scrambling uses the pseudo-random sequence generated by the same initialization seed into multiple segments, and passes the multi-segment pseudo- The random sequence performs power interference on the information bits.
  • the UE may agree with the base station that the first processing mode is a CRC check, and the partial bit that is implicitly indicated by the CRC check, or the base station may indicate, by using the high layer signaling, that the first processing mode of the UE is The CRC check, and the partial bit indicated by the CRC check, are not limited in this embodiment.
  • the base station may add a CRC check bit to the first bit segment in the first MIB by using a CRC mask, and then perform coding to obtain the first transport block, where the CRC mask is used to implicitly indicate the part of the bit. Bit.
  • CRC ma s k can be used to generate different CRC check bits for the first M I B , that is, a CRC ma s k can uniquely generate a CRC check bit. It should also be understood that for different bits of information, there is a unique CRC mask corresponding to it.
  • the partial bit may be implicitly indicated by CRC mask 0 or implicitly indicated by CRC mask 1.
  • the initial sequence ⁇ 'J & ; of the N-bit CRC register of the cyclic redundancy check (CRC) check bit is generated. ; is also expressed as CRC mask (mask), information bits ⁇ b. , ..., b n > (that is, the bits included in the first bit segment) can be generated by inputting into the register to generate a CRC check bit.
  • the CRC check bits are placed after the original information bits to form a complete MIB message, and the base station further repeats and encodes the complete MIB information to obtain the first transport block.
  • the UE and the base station may specify, by using a protocol, that the first processing mode is a cyclic shift, and the partial bit of the implicit indication is cyclically shifted, or the base station may indicate, by using the high layer signaling, that the first processing mode of the UE is
  • the cyclic shift, and the partial bit implied by the cyclic shift are not limited in this embodiment of the present application.
  • the first processing mode may be a cyclic shift
  • the base station may perform a pre-coding cyclic shift or a post-encoding cyclic shift on the first bit segment in the first MIB to obtain the first transport block.
  • the cyclic shift length is used to implicitly indicate the partial bit.
  • cyclic shifts there are two types of cyclic shifts, one is to cyclically shift the information bits before encoding, and the other is to cyclically shift the information bits after encoding.
  • the data to be cyclically shifted is 10010011.
  • each length is 1 bit (that is, divided into 10, 01, 00, 11), and the data is cyclically shifted.
  • 1 bit (that is, the length of the cyclic shift is 1 bit) can be obtained after 11100100 (that is, the last one of 10010011 is shifted from the last cycle to the front), and the data is cyclically shifted by 2 copies (the length of the cyclic shift is 4) Bits can be followed by 00111001, and the data is cyclically shifted by 3 copies (ie, the length of the cyclic shift is 6 bits) to obtain 01001110.
  • the first processing manner may include CRC checksum scrambling, or the first processing manner may include cyclic shift and scrambling, or may include CRC checksum cyclic shift, or the first processing manner
  • the CRC check, the cyclic shift, and the scrambling may be included in the embodiment of the present application.
  • the base station may perform cyclic coding on the remaining bits in the first MIB, and then perform coding, The encoded first MIB is scrambled to obtain the first transport block, and the cyclic shift length and the scrambling mode are used together to implicitly indicate a partial bit.
  • S230 Send the first transmission block by using the first PBCH in a radio system frame where the first PBCH is located.
  • the UE in the coverage of the base station acquires a first transport block that is sent by the network device by using the first PBCH, where the first PBCH is included in the first synchronization signal segment set SS bur stset, and the first SS bur stset
  • the period is any of a variety of cycles.
  • the base station may further determine a system frame number of a radio system frame in which the second PBCH is to be sent in the second TT I, the second PBCH is included in the second SS bur stset, and the period of the second SS bur st se t is the multiple cycles
  • the second period of the system is processed by the first processing mode to obtain a second transport block, where the first processing mode is used to indicate the part of the system frame number of the wireless system frame where the second PBCH is located.
  • the second MIB includes the remaining bits of the system frame number of the wireless system frame in which the second PBCH is located, except for the bits on the partial bits; the wireless system frame where the second PBCH is located
  • the second transport block is transmitted through the second PBCH.
  • system frame number of the radio system frame in which the first PBCH is located may be the same as or different from the system frame number of the radio system frame in which the second PBCH is located, which is not limited in this embodiment of the present application.
  • the system frame number of the radio system frame in which the PBCH is located is transmitted in a unified processing manner.
  • the UE processes the first transport block by using a first processing manner to obtain a first primary information block MIB, and obtains, by using the first processing manner, a system frame of a wireless system frame where the first PBCH is located. a partial bit in the number and a bit on the partial bit, the first MIB including the remaining bits of the system frame number of the wireless system frame in which the first PBCH is located, except for the bits on the partial bit.
  • the first processing mode used by the UE corresponds to the first processing mode used by the base station, that is, the first processing mode used by the UE and the first processing mode used by the base station are mutually reversed processes.
  • some of the bits in the embodiment of the present application may be the second last bit and the third last bit.
  • the base station may process the first MIB by using the first processing manner to obtain a first transport block, where the first processing mode is used to implicitly indicate a system of the wireless system frame.
  • a partial bit in the frame number ie, the first bit of the last digit and the third bit of the last number
  • the first MIB containing the remaining bits of the system frame number of the wireless system frame except the bits on the partial bit ( That is, up to 7 bits and a minimum of 1 bit).
  • the highest 7 bits of the system frame number of the wireless system frame (eg, the highes t 7 bi ts of SFN) and the minimum 1 bit (eg, the leas t bi t of SFN) indicate the UE in the PBCH
  • the wireless system frame The reciprocal 1st bit and the reciprocal 3rd bit of the system frame number (eg, the 2nd and 3rd leas t bi ts of SFN) implicitly indicate the UE by the first processing mode of decoding the PBCH.
  • the bits on the partial bits are collectively referred to as partial bits in the embodiment of the present application, and the bits other than the partial bits in the system frame number are collectively referred to as remaining bits.
  • the period for different SS burs t sets will be described in detail below with reference to FIG. 5.
  • the base station uses the same processing mode (implicitly indicating the first and last digits of the last bit by the first processing mode) to transmit through the PBCH. SFN method.
  • FIG 3 shows the 6 TTIs of the PBCH (such as TTI 1, TTI 1, TTI 3, TTI 4, TTI 5 and TTI 6 as shown in Figure 3), each TTI is 80 ms in length, and each TTI includes 8 radio system frames (such as radio system frame 0_radio system frame 7 shown in Figure 3), the base station has a period of 5 ms for SS burs t set in TTI 1, and the period of SS burs t set is 10 ms in TTI 2
  • the period of SS burs t set in TTI 3 is 20 ms
  • the period of SS burs t set in TTI 4 is 40 ms
  • the period of SS burs t set in TTI 5 is 80 ms
  • the period of SS burs t set in TTI 6 It is 160ms.
  • TTI 1, TTI 1, TTI 3, TTI 4, TTI 5, and TTI 6 in the embodiments of the present application are all TTIs of any one of the PBCHs, and the base station uses different SS burs t sets to pass the PBCH in each TTI.
  • the SFN is transmitted.
  • the sequence number of the TTI is only used to distinguish the TTIs that use the different SS burs t set periods to transmit the SNF.
  • the sequence of the TTI 1 - TTI 6 is not limited in this embodiment.
  • each TTI includes 8 radio system frames
  • the following describes the method of transmitting SFN through PBCH under different SS burs t set periods.
  • the period of the SS burs t set is 10 ms, and the base station transmits the system frame number of the radio system frame by transmitting the PBCH in the radio system frame 0 to the radio system frame 7, respectively.
  • the system frame number of the wireless system frame 0 is 0000000000
  • the system frame number of the wireless system frame 1 is 0000000001
  • the system frame number of the wireless system frame 1 is 00000000010
  • the system frame number of the wireless system frame 3 is 000001001
  • the wireless system frame 4 The system frame number of the system frame number is 0000000100
  • the system frame number of the wireless system frame 5 is 0000000101
  • the system frame number of the wireless system frame 6 is 0000000110
  • the system frame number of the wireless system frame 7 is 0000000111.
  • the base station passes the first The remaining bits in the MIB transmission system frame number (minimum 1 bit and up to 7 bits) to ensure that the first MIB transmitted in each frame of the wireless system is the same, and the first processing mode is used to implicitly indicate the system frame number. Partial bits (the last 2nd bit and the last 3rd bit).
  • the base station passes the second The remaining bits in the frame number of the MIB transmission system (minimum 1 bit and up to 7 bits) to ensure that the second MIB transmitted in each frame of the wireless system is the same, and the first processing mode is used to implicitly indicate the system frame number. Partial bits (the last 2nd bit and the last 3rd bit).
  • the base station may separately process the first MIB by using different processing manners to obtain a transport block corresponding to each processing mode (transport block 0, transport block 2, and transport as described in FIG. 3).
  • Block 4 and transport block 6 wherein the first MIB contains the remaining bits in the system frame number (up to 7 bits and a minimum of 1 bit, and the minimum 1 bit is 0), and the processing mode is used to implicitly indicate the system frame Some bits in the number (the last 2nd bit and the last 3rd bit).
  • the base station may separately process the second MIB by using different processing manners to obtain a transport block corresponding to each processing mode (transport block 1, transport block 3, transport block 5, and transport block 7 as described in FIG. 3), wherein the second MIB contains the remaining bits in the system frame number (up to 7) The bit and the minimum 1 bit, and the minimum 1 bit is 1), the processing mode is used to implicitly indicate part of the system frame number (the last 2nd bit and the last 3rd bit).
  • the base station may be based on a minimum of 1 bit of the system frame number transmitted by the first MIB, a minimum 1 bit of the system frame number transmitted by the second MIB, and a reciprocal of the system frame number implicitly indicated by the first processing mode.
  • the second bit and the third last bit determine the minimum 3 bits of the system frame number of the wireless system frame, and the minimum 3 bits of the system frame number of the wireless system frame and the transmissions transmitted within the frame of the wireless system The mapping relationship of the block.
  • the minimum 3 bits of the system frame number of the radio system frame 0 is 000, corresponding to the transport block 0; the minimum 3 bits of the system frame number of the radio system frame 1 is 001, corresponding to the transport block 1; the radio system frame 1
  • the minimum 3 bits of the system frame number are 010, corresponding to transport block 2; the minimum 3 bits of the system frame number of the radio system frame 3 are 011, corresponding to transport block 3; the system frame number of the radio system frame 4
  • the base station transmits the transport block 0 through the PBCH in the radio system frame 0; in the radio system frame 1, the transport block 1 is transmitted through the PBCH; in the radio system frame 1, the transport block 2 is transmitted through the PBCH; in the radio system frame 3 In the radio system frame 4, the transport block 4 is transmitted through the PBCH; in the radio system frame 5, the transport block 5 is transmitted through the PBCH; in the radio system frame 6, the transport block 6 is transmitted through the PBCH. In the radio system frame 7, the transport block 7 is transmitted through the PBCH.
  • the period of the SS burst set is 20 ms, and the base station transmits the SFN through the PBCH in the radio system frame 0, the radio system frame 2, the radio system frame 4, and the radio system frame 6, respectively.
  • the base station may implicitly indicate the last 2nd bit and the third last bit of the system frame number according to the minimum 1 bit of the system frame number transmitted by the first MIB and the different manners included in the first processing manner. Determining a minimum of 3 bits of the system frame number of the wireless system frame, and a mapping relationship between a minimum of 3 bits of the system frame number of the wireless system frame and a transport block transmitted within the frame of the wireless system.
  • the minimum 3 bits of the system frame number of the radio system frame 0 is 000, corresponding to the transport block 0; the minimum 3 bits of the system frame number of the radio system frame 1 is 010, corresponding to the transport block 2; the radio system frame 4
  • the minimum 3 bits of the system frame number are 100, corresponding to transport block 4; the minimum 3 bits of the system frame number of the radio system frame 6 are 110, corresponding to transport block 6.
  • the base station transmits the transport block 0 through the PBCH in the radio system frame 0; in the radio system frame 1, the transport block 2 is transmitted through the PBCH; in the radio system frame 4, the transport block 4 is transmitted through the PBCH; in the radio system frame 6 Inside, the transport block 6 is transmitted through the PBCH.
  • the method of transmitting the SFN through the PBCH in the radio system frame 0, the radio frame 2, the radio system frame 4, and the radio system frame 6 and the SS burst set period is 10 ms, in the wireless
  • the method of transmitting the SFN through the PBCH in the system frame 0, the radio frame 2, the radio system frame 4, and the radio system frame 6 is the same.
  • the period of the SS burst set is the first period (for example, 10 ms)
  • the system frame number of the radio system frame in which the first PBCH is located is 0011010 1 (that is, the radio system frame 1 in the TTI 2)
  • the base station Processing the first MIB by using the first processing manner to obtain a first transport block, where the first processing manner is used to indicate the first PBCH
  • the second and third digits of the system frame number of the wireless system frame in which it is located (the two bits shown in the underline), and the first MIB includes the system of the wireless system frame in which the first PBCH is located. 00110101 in the frame number (up to 7 bits and a minimum of 1 bit).
  • the period of the SS burs t set is the second period (for example, 20 ms), and if the system frame number of the radio system frame in which the second PBCH is located is 0110110 1 (that is, the radio system frame 1 in the TTI 3)
  • the base station processes the second MIB by using the second processing manner to obtain a second transport block, where the second processing mode is used to indicate the second and last digits of the system frame number of the wireless system frame where the second PBCH is located.
  • the second MIB contains 01101101 (up to 7 bits and a minimum of 1 bit) in the system frame number of the wireless system frame in which the second PBCH is located; If the system frame number of the radio system frame where the second PBCH is located is 0110110 0 (that is, the radio system frame 2 in the TTI 3), the base station processes the second MIB by using the second processing manner to obtain a second transport block, where the second transport block is obtained.
  • the second processing mode is used to indicate the second and third digits of the system frame number of the wireless system frame in which the second PBCH is located (the two bits shown in the following line), and the second MIB includes The 01101100 (up to 7 bits and a minimum of 1 bit) in the system frame number of the wireless system frame in which the second PBCH is located.
  • the SFN can be transmitted through the PBCH in a unified manner, which can reduce the complexity of the base station and the UE.
  • the period of the SS burs t set is 40 ms, and the base station transmits the SFN through the PBCH in the radio system frame 0 and the radio system frame 4, respectively.
  • the base station may implicitly indicate the first 1st bit and the third last bit of the system frame number according to the minimum 1 bit of the system frame number transmitted by the first MIB and the different manners included in the first processing manner. Determining a minimum of 3 bits of the system frame number of the wireless system frame, and a mapping relationship between a minimum of 3 bits of the system frame number of the wireless system frame and a transport block transmitted within the frame of the wireless system.
  • the minimum 3 bits of the system frame number of the radio system frame 0 is 000, corresponding to transport block 0; the minimum 3 bits of the system frame number of the radio system frame 4 are 100, corresponding to transport block 4.
  • the base station transmits the transport block 0 through the PBCH in the radio system frame 0; in the radio system frame 4,
  • the PBCH transmits the transport block 4.
  • the method of transmitting the SFN through the PBCH in the radio system frame 0 and the radio system frame 4 and the period of the SS burs t set are 10 ms, in the radio system frame 0 and the radio system frame.
  • the method of transmitting the SFN through the PBCH is the same in 4, and in order to avoid repetition, the complex is not described here.
  • the period of SS burs t set is 80ms, and the base station transmits SFN through PBCH in frame 0 of the wireless system.
  • the base station may implicitly indicate the last 2nd bit and the third last bit of the system frame number according to the minimum 1 bit of the system frame number transmitted by the first MIB and the different manners included in the first processing manner. Determining a minimum of 3 bits of the system frame number of the wireless system frame, and a mapping relationship between a minimum of 3 bits of the system frame number of the wireless system frame and a transport block transmitted within the frame of the wireless system.
  • the minimum 3 bits of the system frame number of frame 0 of the wireless system is 000, corresponding to transport block 0.
  • the base station transmits a transport block 0 through the PBCH in the radio system frame 0.
  • the base station transmits the SFN through the PBCH in the radio system frame 0, and transmits the next SFN through the PBCH in another TTI separated by one TTI after the TTI 6 .
  • the base station may implicitly indicate the last 2nd bit and the third last bit of the system frame number according to the minimum 1 bit of the system frame number transmitted by the first MIB and the different manners included in the first processing manner. Determining a minimum of 3 bits of the system frame number of the wireless system frame, and a mapping relationship between a minimum of 3 bits of the system frame number of the wireless system frame and a transport block transmitted within the frame of the wireless system.
  • the minimum 3 bits of the system frame number of frame 0 of the wireless system is 000, corresponding to transport block 0.
  • the base station transmits a transport block 0 through the PBCH in the radio system frame 0.
  • TTI 1 the period of SS burs t set is 5ms, and the base station is in the wireless system frame 0 to the wireless system frame.
  • the 7 transmits the SFN through the PBCH, and transmits SS b lock twice in each wireless system frame, that is, SS b lock is transmitted in the first half frame and the second half frame respectively, wherein the SS b lock and the second half frame transmitted in the first half frame
  • the transmitted SS b lock may both contain PBCH, or only one SS b lock may contain PBCH. Since both the first half frame and the second half frame are located in the same wireless system frame, the SFN in the SS b lock transmitted in the first half frame is the same as the SFN in the SS b lock transmitted in the second half frame.
  • the method of transmitting SFN through PBCH in the radio system frame 0_radio system frame 7 and the period of SS burs t set are 10 ms, in the wireless system frame 0_wireless system frame
  • the method of transmitting the SFN through the PBCH is the same in the 7th. To avoid repetition, the details are not described here.
  • the base station can be configured with multiple SS burs t set periods, that is, different SS burs t set periods are used in different TTIs, and the periods of the multiple SS burs t sets can be, for example, 5 ms, 10 ms, 20 ms. Any two or more SS burs t set periods of 40 ms, 80 ms, and 160 ms are not limited in this embodiment of the present application.
  • the base station does not need to separately formulate a corresponding method for transmitting the SFN for each SS burs t set period under the period of two or more different SS burs t sets, but by using the first method.
  • the highest 7 bits and the smallest 1 bit in the MIB transmission system frame number, and the first processing mode for processing the first MIB implicitly indicates the second to last bit and the last number in the system frame number With 3 bits, the computational complexity of the base station and the UE can be reduced, and the complexity of detecting the SNF by the UE can be reduced.
  • the first processing mode may indicate a partial bit and a bit on a partial bit.
  • the period of the SS burs t set is 10 ms, and the base station transmits the radio system frame by transmitting the PBCH in the radio system frame 0 to the radio system frame 7 respectively. Frame number.
  • the system frame number of the wireless system frame 0 is 0000000000
  • the system frame number of the wireless system frame 1 is 0000000001
  • the system frame number of the wireless system frame 1 is 00000000010
  • the system frame number of the wireless system frame 3 is 000001001
  • the wireless system frame 4 The system frame number of the system frame number is 0000000100
  • the system frame number of the wireless system frame 5 is 0000000101
  • the system frame number of the wireless system frame 6 is 0000000110
  • the system frame number of the wireless system frame 7 is 0000000111.
  • the base station passes the first The remaining bits in the MIB transmission system frame number (minimum 1 bit and up to 7 bits) to ensure that the first MIB transmitted in each frame of the wireless system is the same, and the first processing mode is used to implicitly indicate the system frame number. Partial bit (the last bit of the last bit and pour Number 3 bit).
  • the base station passes the second The remaining bits in the frame number of the MIB transmission system (minimum 1 bit and up to 7 bits) to ensure that the second MIB transmitted in each frame of the wireless system is the same, and the first processing mode is used to implicitly indicate the system frame number. Partial bits (the last 2nd bit and the last 3rd bit).
  • the base station may separately process the first MIB by using four different processing manners to obtain a transport block corresponding to each processing manner (such as transport block 0 and transport block 2 as described in FIG. 3). a transport block 4 and a transport block 6), wherein the first MIB carries the remaining bits in the system frame number (up to 7 bits and a minimum of 1 bit, and the minimum 1 bit is 0), and the processing mode is used for implicit indication Part of the bits in the system frame number (the first bit from the last and the third from the bottom).
  • the processing mode 0 used by the transport block 0 implicitly indicates that the partial bit is 00
  • the processing mode 1 used by the transport block 1 implicitly indicates that the partial bit is 01
  • the processing mode 4 used by the transport block 4 is implied.
  • the processing mode 6 for indicating that the partial bit is 10 and is used by the transport block 6 implicitly indicates that the partial bit is 11.
  • the base station may separately process the second MIB by using four different processing manners to obtain a transport block corresponding to each processing manner (such as transport block 1 and transport block 3 as described in FIG. 3).
  • a transport block 5 and a transport block 7 wherein the second MIB carries the remaining bits in the system frame number (up to 7 bits and a minimum of 1 bit, and the minimum 1 bit is 1), and the processing mode is used for implicit indication Part of the bits in the system frame number (the first bit from the last and the third from the bottom).
  • the processing mode 1 used by the transport block 1 implicitly indicates that the partial bit is 00
  • the processing mode 3 used by the transport block 3 implicitly indicates that the partial bit is 01
  • the processing mode 5 used by the transport block 5 is implicit.
  • the processing mode 7 indicated by the transmission block 7 implicitly indicates that the partial bit is 10, and the partial bit is 11.
  • the processing modes used by the transport block 0 and the transport block 1 both imply that the partial bit indicating the system frame number is 00
  • the processing mode 0 and the transport block 1 used by the transport block 0 are used.
  • the processing method 1 can be the same.
  • the processing mode 1 used in the transport block 1 and the processing mode 3 used in the transport block 3 can be the same, and the processing mode 4 and the transport block 5 used in the transport block 4 are the same.
  • the processing method 5 used can be the same, and the processing method 6 used in the transport block 6 and the processing method 7 used in the transport block 7 can be the same.
  • the base station may scramble the first MIB by using the scrambling mode 1 to obtain the transport block 0, and scramble the second MI B by using the scrambling mode 1 to obtain the transport block 1
  • the scrambling mode 1 is used to implicitly indicate that the partial bit is 00; the first MIB is scrambled by the scrambling mode 1 to obtain the transport block 2, and the second MIB is scrambled by the scrambling mode 2 to obtain the transmission.
  • Block 3 wherein the scrambling mode 2 is used to implicitly indicate that the partial bit is 01; the first MI B is scrambled by the scrambling mode 3 to obtain the transport block 4, and the scrambling mode 3 is used to perform the second MI B
  • the scrambling is performed to obtain the transport block 5, wherein the scrambling mode 3 is used to implicitly indicate that the partial bit is 10; the first MI B is scrambled by the scrambling mode 4, and the transport block 6 is obtained, and the scrambling mode is used to
  • the second MI B performs scrambling to obtain a transport block 7, wherein the scrambling scrambling mode 4 is used to implicitly indicate that the partial bit is 11.
  • the base station processes the first MIB through the four processing methods to obtain the transport block 0, the transport block 2, the transport block 4, and the transport block 6, and processes the second MIB through the same four processing methods to obtain the transport block 1, and transmits the data.
  • Block 3, transport block 5 and transport block 7 reduce the complexity of base station calculations.
  • Block 0 uses processing mode 0, it can determine that part of the bit is 00; if it is detected that the transport block uses processing mode 2, it can determine that part of the bit is 01; if the transport block is detected, the processing mode 4 is used. It can be determined that the partial bit is 10, and if the processing block 6 is detected, the partial bit is determined to be 11, which reduces the complexity of the UE detection.
  • the base station may implicitly indicate the last number of the system frame number according to the minimum 1 bit of the system frame number transmitted by the first MIB, the minimum 1 bit of the system frame number transmitted by the second MIB, and the first processing mode. Two bits and a third last bit, determining a minimum of 3 bits of the system frame number of the wireless system frame, and a minimum of 3 bits of the system frame number of the wireless system frame and a transport block transmitted within the frame of the wireless system Mapping relationship.
  • the minimum 3 bits 000 of the system frame number of frame 0 of the wireless system correspond to transport block 0; the minimum 3 bits of the system frame number of frame 1 of the wireless system are 001, corresponding to transport block 1;
  • the minimum 3 bits of the system frame number is 010, corresponding to transport block 2; the minimum 3 bits of the system frame number of the wireless system frame 3 is 011, corresponding to transport block 3;
  • the minimum system 3 of the wireless system frame 4 is 3
  • the bits are 100, corresponding to transport block 4;
  • the minimum 3 bits of the system frame number of the radio system frame 5 are 101, corresponding to transport block 5;
  • the minimum 3 bits of the system frame number of the radio system frame 6 are 110 Corresponding to the transport block 6;
  • the minimum 3 bits of the system frame number of the radio system frame 7 is 111, corresponding to transport block 0.
  • the base station transmits the transport block 0 through the PBCH in the radio system frame 0; in the radio system frame 1, the transport block 1 is transmitted through the PBCH; in the radio system frame 1, the transport block 2 is transmitted through the PBCH; in the radio system frame 3 In the radio system frame 4, the transport block 4 is transmitted through the PBCH; in the radio system frame 5, the transport block 5 is transmitted through the PBCH; in the radio system frame 6, the transport block 6 is transmitted through the PBCH. In the radio system frame 7, the transport block 7 is transmitted through the PBCH.
  • some of the bits in the embodiment of the present application may be a minimum of three bits.
  • the base station may process the first MIB by using the first processing manner to obtain a first transport block, where the first processing mode is used to implicitly indicate a system of the wireless system frame.
  • a partial bit in the frame number i.e., a minimum of 3 bits
  • the first MIB containing the remaining bits of the system frame number of the wireless system frame except the bits on the partial bit (i.e., up to 7 bits).
  • the highest 7 bits of the system frame number of the wireless system frame (eg, the highest 7 bits of SFN) indicate in the PBCH the minimum 3 bits of the system frame number of the wireless system frame (eg, the least 3 bits of SFN)
  • the UE is implicitly indicated by the first processing mode of decoding the PBCH.
  • bits on some of the bits in the embodiment of the present application are collectively referred to as partial bits, and the bits other than the partial bits in the system frame number are collectively referred to as remaining bits.
  • the method for transmitting the SFN through the PBCH in the same processing mode (the first 3 ways to implicitly indicate the minimum 3 bits in the system frame number) is described in detail below with reference to FIG. 4 for the period of the different SS burst sets.
  • each TTI has a length of 80 ms, and each TTI includes 8 radio system frames (such as radio system frame 0_radio system frame 7 shown in Figure 4), the base station SS burst set period in TTI 1 is 5ms, and the SS burst set period in TTI 2 is 10ms.
  • the period of the SS burst set in TTI 3 is 20 ms
  • the period of SS burst set in TTI 4 is 40 ms
  • the period of SS burst set in TTI 5 is 80 ms
  • the period of SS burst set in TTI 6 is 160 ms.
  • TTI 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 in the embodiment of the present application are all P of any PBCH, and the base station uses different SS burs t set through each PBCH in each ⁇
  • the SFN is transmitted.
  • the sequence number of the TTI is only used to distinguish the TTIs that use the different SS burs t set periods to transmit the SNF.
  • the sequence of the TTI 1 - TTI 6 is not limited in this embodiment.
  • each TTI includes 8 radio system frames
  • the system frame number n f satisfies n f mod within each TTI.
  • the following describes the method of transmitting SFN through PBCH under different SS burs t set periods.
  • the period of the SS burs t set is 10 ms, and the base station transmits the system frame number of the radio system frame by transmitting the PBCH in the radio system frame 0 to the radio system frame 7, respectively.
  • the system frame number of the wireless system frame 0 is 0000000000
  • the system frame number of the wireless system frame 1 is
  • the system frame number of the wireless system frame 1 is 00000000010
  • the system frame number of the wireless system frame 3 is 000001001
  • the system frame number of the wireless system frame 4 is 0000000100
  • the system frame number of the wireless system frame 5 is 0000000101
  • the wireless system frame 6 The system frame number is 0000000110
  • the system frame number of the wireless system frame 7 is 000001111.
  • the base station transmits the remaining bits (up to 7 bits) in the system frame number through the first MIB to ensure each wireless system frame.
  • the first MIB transmitted is the same, and the first processing mode is used to implicitly indicate a part of the system frame number (minimum 3 bits).
  • the base station may separately process the first MIB by using eight different processing manners to obtain a transport block corresponding to each processing mode (transport block 0_transport block 7 as described in FIG. 4).
  • the first MIB contains the remaining bits (up to 7 bits) in the system frame number, and the processing mode is used to implicitly indicate part of the system frame number (minimum 3 bits).
  • the base station may determine, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system.
  • the mapping relationship of the block may be determined, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system. The mapping relationship of the block.
  • the minimum 3 bits of the system frame number of the radio system frame 0 is 000, corresponding to the transport block 0; the minimum 3 bits of the system frame number of the radio system frame 1 is 001, corresponding to the transport block 1; the radio system frame 1
  • the minimum 3 bits of the system frame number are 010, corresponding to transport block 2; the minimum 3 bits 011 of the system frame number of the radio system frame 3 correspond to transport block 3; the minimum system frame number of the radio system frame 4 3 bits are 100, corresponding to transport block 4;
  • the minimum 3 bits of the system frame number of the radio system frame 5 is 101, corresponding to transport block 5; the minimum 3 bits of the system frame number of the radio system frame 6 is 110, Corresponding to the transport block 6; the minimum 3 bits of the system frame number of the radio system frame 7 is 111, corresponding to transport block 0.
  • the base station transmits the transport block 0 through the PBCH in the radio system frame 0; in the radio system frame 1, the transport block 1 is transmitted through the PBCH; in the radio system frame 1, the transport block 2 is transmitted through the PBCH; In the radio system frame 4, the transport block 4 is transmitted through the PBCH; in the radio system frame 5, the transport block 5 is transmitted through the PBCH; in the radio system frame 6, the transport block 6 is transmitted through the PBCH. In the radio system frame 7, the transport block 7 is transmitted through the PBCH.
  • the communication method provided by the embodiment of the present application implicitly indicates the minimum 3 bits of the system frame number by the first processing mode, thereby reducing the amount of data transmitted, thereby improving the transmission efficiency.
  • the period of SS burs t set is 20ms, and the base station is in the wireless system frame 0, wireless system
  • the SFN is transmitted through the PBCH in the frame 1, the radio system frame 4, and the radio system frame 6.
  • the base station may determine, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system.
  • the mapping relationship of the block may be determined, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system. The mapping relationship of the block.
  • the minimum 3 bits of the system frame number of the radio system frame 0 is 000, corresponding to the transport block 0; the minimum 3 bits of the system frame number of the radio system frame 1 is 010, corresponding to the transport block 2; the radio system frame 4
  • the minimum 3 bits of the system frame number are 100, corresponding to transport block 4; the minimum 3 bits of the system frame number of the radio system frame 6 is 110, corresponding to transport block 6.
  • the base station transmits the transport block 0 through the PBCH in the radio system frame 0; in the radio system frame 1, the transport block 2 is transmitted through the PBCH; in the radio system frame 4, the transport block 4 is transmitted through the PBCH; in the radio system frame 6 Inside, the transport block 6 is transmitted through the PBCH.
  • the method of transmitting the SFN through the PBCH in the radio system frame 0, the radio frame 2, the radio system frame 4, and the radio system frame 6 and the SS burst set period is 10 ms, in the wireless
  • the method of transmitting the SFN through the PBCH in the system frame 0, the radio frame 2, the radio system frame 4, and the radio system frame 6 is the same.
  • the period of the SS burst set is the first period (for example, 10 ms)
  • the system frame number of the radio system frame in which the first PBCH is located is 0011010 (that is, the radio system frame 1 in the TTI 2)
  • the base station The first MIB is processed by the first processing manner to obtain a first transport block, where the first processing mode is used to indicate a minimum of three bits of a system frame number of a radio system frame in which the first PBCH is located (as shown in the following figure) The three bits shown), the first MIB contains 0011010 (up to 7 bits) in the system frame number of the radio system frame in which the first PBCH is located.
  • the period of the SS burst set is the second period (for example, 20 ms)
  • the system frame number of the radio system frame in which the second PBCH is located is 011010 (that is, the radio system frame 1 in the TTI 3)
  • the second MIB is processed by the second processing mode to obtain a second transport block, where the second processing mode is used to indicate a minimum of three bits of the system frame number of the radio system frame where the second PBCH is located (as follows) The 3 bits shown), the second MIB includes 011010 (up to 7 bits) in the system frame number of the radio system frame in which the second PBCH is located; if the system frame number of the radio system frame in which the second PBCH is located is 0110110 (that is, the radio system frame 2 in the TTI 3), the base station processes the second MIB by using the second processing manner to obtain a second transport block, where the second processing mode is used to indicate the radio system where the second PBCH is located.
  • the base station can transmit the SFN through the PBCH in a unified manner, which can reduce the complexity of the base station and the UE.
  • the period of the SS burst set is 40 ms, and the base station transmits the SFN through the PBCH in the radio system frame 0 and the radio system frame 4, respectively.
  • the base station may determine, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system.
  • the mapping relationship of the block may be determined, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system. The mapping relationship of the block.
  • the minimum 3 bits of the system frame number of the radio system frame 0 is 000, corresponding to transport block 0; the minimum 3 bits of the system frame number of the radio system frame 4 is 100, corresponding to transport block 4.
  • the base station transmits the transport block 0 through the PBCH in the radio system frame 0; in the radio system frame 4, The PBCH transmits the transport block 4.
  • the method of transmitting the SFN through the PBCH in the radio system frame 0 and the radio system frame 4 and the period of the SS burst set are 10 ms, in the radio system frame 0 and the radio system frame 4
  • the method of transmitting the SFN through the PBCH is the same. To avoid repetition, the details are not described here.
  • the period of the SS burst set is 80 ms, and the base station transmits the SFN through the PBCH in the radio system frame 0.
  • the base station may determine, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system.
  • the mapping relationship of the block may be determined, according to a minimum of three bits of the system frame number implicitly indicated by the first processing mode, a minimum of three bits of the system frame number of the wireless system frame and a transmission transmitted in the frame of the wireless system. The mapping relationship of the block.
  • the minimum 3 bits of the system frame number of frame 0 of the wireless system is 000, corresponding to transport block 0.
  • the base station transmits a transport block 0 through the PBCH in the radio system frame 0.
  • the period of the SS burst set is 80 ms
  • the method of transmitting the SFN through the PBCH in the frame 0 of the wireless system and the period of the SS burst set are 10 ms
  • the method of transmitting the SFN through the PBCH in the frame 0 of the wireless system is the same, in order to avoid Repeat, no more details here.
  • the base station transmits the SFN through the PBCH in the radio system frame 0, and transmits the next SFN through the PBCH in another TTI separated by one TTI after the TTI 6.
  • the base station may process the first MIB by using the first processing manner to obtain a first transport block, where the first processing manner implicitly indicates the PBCH.
  • the minimum 3 bits of the system frame number of frame 0 of the wireless system is 000, corresponding to transport block 0.
  • the base station transmits a transport block 0 through the PBCH in the radio system frame 0.
  • the period of the SS burst set is 160 ms
  • the method of transmitting the SFN through the PBCH in the frame 0 of the wireless system and the period of the SS burst set are 10 ms
  • the method of transmitting the SFN through the PBCH in the frame 0 of the wireless system is the same, in order to avoid Repeat, no more details here.
  • the period of the SS burst set is 5 ms
  • the base station transmits the SFN through the PBCH in the radio system frame 0 to the radio system frame 7, and transmits the SS block twice in each radio system frame, that is,
  • the SS block is transmitted in the first half frame and the second half frame respectively, wherein the SS block transmitted in the first field and the SS block transmitted in the second field may both contain the PBCH, or only one SS block includes the PBCH. Since the first half frame and the second half frame are both located in the same wireless system frame, the SFN in the SS block transmitted in the first half frame is the same as the SFN in the SS block transmitted in the second half frame.
  • the method of transmitting the SFN through the PBCH in the radio system frame 0_radio system frame 7 and the period of the SS burst set are 10 ms, in the frame 0 of the wireless system frame 0_wireless system
  • the method of transmitting the SFN through the PBCH is the same. To avoid repetition, the details are not described here.
  • the base station in the period of two or more different SS burst sets, does not need to separately formulate a corresponding method for transmitting the SFN for each SS burst set period, but transmits the first MIB through the first MIB.
  • the highest 7 bits in the system frame number, and the first processing mode for processing the first MIB implicitly indicates the minimum 3 bits in the system frame number, which can reduce the computational complexity of the base station and the UE. At the same time, the complexity of detecting the SNF by the UE is reduced.
  • the base station needs to send two SS blocks in a radio system frame, that is, the first half frame sends an SS block. And/or the latter half frame sends an SS block, so the base station needs to indicate the frame information of the SS block to the UE, and the frame information is used to indicate that the SS block is transmitted in the first half frame or in the second half frame.
  • the base station can indicate the frame information in multiple manners, which is not limited in this embodiment of the present application.
  • the base station may carry the indication information of the 1-bit bit in the transmission block obtained by processing the first MIB by using the first processing manner, and indicate the frame information.
  • the 1-bit bit has a bit value of 0, corresponding to the SS block being transmitted in the first half of the frame; the 1-bit bit has a bit value of 1, corresponding to the SS block occurring in the second half of the frame.
  • the base station may indicate the frame information by using different MN RS sequences, or may indicate the frame information by using different frequency offsets of the MN RS sequence.
  • the base station may pre-arrange with the UE to indicate that the SS block is transmitted in the first half frame by using the first RS sequence, and to indicate that the SS block is transmitted in the second half frame by using the second RS sequence.
  • the base station may pre-arrange with the UE to indicate that the SS block is sent in the first half frame by using the first frequency domain offset of the first MN RS sequence, by using the second frequency of the first MN RS sequence. Offset, indicating that the SS block was sent in the second half of the frame.
  • the UE and the base station may specify a correspondence between the frame information and the frequency offset of the MN RS sequence and/or the MN RS sequence, or the base station may indicate the UE by using the high layer signaling. Not limited.
  • the base station may indicate the frame information by using the positions of the first symbol and the second symbol occupied by the PBCH included in the SS block.
  • the base station may indicate the frame information by using the content included in the SS block.
  • the base station and the UE may pre-arrange whether the PBCH is included in the SS block, indicating whether the SS block is sent in the first half frame or in the second half frame.
  • the base station may use the reserved bits in the first MIB to indicate the frame information, or the base station may multiplex the bits in the first MIB to indicate the frame information, for example, the first MIB may be multiplexed.
  • the bit used to indicate the SS block or the bit used to indicate the period of the SS burst set in the first MIB is limited in this embodiment of the present application.
  • the base station indicates the frame information of the SS block in a plurality of different manners, so that the UE can obtain a finer-grained system frame number.
  • the base station may send the SS burst in only one radio frame in each SS burst set period, and even send the SS burst in each half of the radio frame, for example, in FIG. 5 and FIG.
  • Each PBCH shown can be included in an SS burst.
  • the base station may transmit an SS burst in each radio frame during each SS burst set period, and even send an SS burst in each half of each radio frame, the SS burst set All SS bursts in the cycle constitute the SS burst set;
  • FIG. 5 shows a schematic diagram of an SS burst included in each radio frame included in the period of the SS burst set.
  • the period of the SS burst set in the TTI 1 is 20 ms
  • the SS burst set includes 2 SS burst (ie 1 st SS burst and 2 nd SS burst )
  • 1 st SS burst is transmitted in the first 10 ms radio frame in the 20 ms period
  • 2 nd SS burst in the second 10 ms radio in the 20 ms period Intraframe transmission.
  • the period of the SS burst set in TTI 2 is 20 ms, and the SS burst set includes 4 SS bursts (ie, 1 st SS burst, 2 nd SS burst, 3 rd SS burst, 4 th SS burst ), and 1 st SS burst is in 20 ms.
  • the same method for transmitting the system frame number in the SS burst in the same radio frame the method of transmitting the SFN through the SS burst in each radio system frame is the same as that described above in FIG. 2 to FIG.
  • the method of transmitting the SFN through the PBCH in the frame is similar. To avoid repetition, it will not be described here.
  • FIG. 6 is a schematic block diagram of a communication device 600 for data transmission provided by an embodiment of the present application.
  • the communication device 600 includes:
  • a determining unit 610 configured to determine a system frame number of a radio system frame where the first broadcast channel PBCH is to be sent, where the first PBCH is included in the first synchronization signal segment set SS burst set, and the first SS burst set
  • the period is any one of a plurality of cycles
  • the processing unit 620 is configured to process, by using the first processing manner, the first primary information block (MIB) to obtain a first transport block, where the first processing mode is used to indicate that the first PBCH is determined by the determining unit 610. a partial bit of the system frame number, where the first MIB includes a remaining bit of the system frame number of the wireless system frame in which the first PBCH is located, except for the bit on the partial bit;
  • MIB primary information block
  • the sending unit 630 is configured to send, by using the first PBCH, the first transport block processed by the processing unit 620 in a radio system frame in which the first PBCH is located.
  • the first PBCH is sent in the first transmission time interval TTI, and the period of the first SS burst set in the first TTI is the first period in the multiple cycles, and the determining unit further a system frame number used to determine a radio system frame in which the second PBCH to be transmitted in the second TTI is located, where the second PBCH is included in the second SS burst set, and the period of the second SS burst set is the multiple period
  • the processing unit is further configured to process the second MIB by using the first processing manner to obtain a second transmission block, where the first processing manner is used to indicate a system of the wireless system frame where the second PBCH is located.
  • the transmitting unit is further configured to use the second PBCH Within the wireless system frame, the second transport block is transmitted through the second PBCH.
  • the partial bits include a first to last bit and a third to last.
  • the partial bit comprises a minimum of 3 bits.
  • the first processing mode includes at least one of a cyclic redundancy check CRC check, a cyclic shift, and a scrambling.
  • the present application provides a communication method and communication device capable of passing through different periods of SS burst set
  • the PBCH transmits the SFN.
  • the base station does not need to separately formulate a corresponding method for transmitting the SFN for each SS burst set period, but transmits the remaining bits in the system frame number of the first MIB. And implicitly indicating a part of the bits in the system frame number by using the first processing manner for processing the first MIB, which can reduce the computational complexity of the base station and the UE, and reduce the complexity of detecting the SNF by the UE.
  • the communication device 600 may be specifically the network device in the foregoing method embodiment, and the communication device 600 may be used to perform various processes corresponding to the network device in the foregoing method embodiment and/ Or steps, to avoid repetition, will not be repeated here.
  • the communication device 600 herein may be embodied in the form of a functional unit.
  • the term "unit, here, can Means an ASIC, an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group processor, etc.) for executing one or more software or firmware programs, and memory, merge logic, and/or other support described The right component for the function.
  • FIG. 7 is a schematic block diagram of still another communication device 700 for data transmission provided by an embodiment of the present application.
  • the communication device 700 includes:
  • the obtaining unit 710 is configured to obtain a transport block that is sent by the network device by using a broadcast channel PBCH, where the PBCH is included in a synchronization burst set SS burst set, and the period of the SS burst set is any one of multiple cycles; 720, configured to process, by using the processing mode, the transport block obtained by the acquiring unit 710, to obtain a main information block MIB, and obtain a part of the system frame number of the radio system frame where the PBCH is located by using the processing manner, and a bit on a partial bit, the MIB containing the remaining bits of the system frame number of the wireless system frame in which the PBCH is located, except for the bits on the partial bit;
  • the determining unit 730 is configured to determine, according to the partial bit and the remaining bits processed by the processing unit 720, a system frame number of a radio system frame in which the PBCH is located.
  • the partial bits include a first to last bit and a third to last.
  • the partial bit comprises a minimum of 3 bits.
  • the processing manner includes at least one of a cyclic redundancy check CRC check, a cyclic shift, and a descrambling.
  • the present application provides a communication method and communication apparatus capable of transmitting an SFN through a PBCH for different periods of SS burst sets.
  • the base station does not need to separately formulate a corresponding method for transmitting the SFN for each SS burst set period in the period of two or more different SS burst sets, but transmits the remaining bits in the system frame number through the MIB, and
  • the processing method for processing the MIB implicitly indicates a part of the bits in the system frame number, which can reduce the computational complexity of the base station and the UE, and reduce the complexity of the UE detecting the SNF.
  • the communication device 700 may be specifically the UE in the foregoing method embodiment, and the communication device 700 may be used to perform various processes and/or steps corresponding to the UE in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • the communication device 700 herein may be embodied in the form of a functional unit.
  • the term "unit” herein may refer to an ASIC, an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group processor, etc.) and a memory, merge logic circuit for executing one or more software or firmware programs. And/or other suitable components that support the described functionality.
  • FIG. 8 is a schematic block diagram of still another communication device 800 for data transmission provided by an embodiment of the present application.
  • the communication device 800 includes a processor 810, a transceiver 820, and a memory 830.
  • the processor 810, the transceiver 820, and the memory 830 communicate with each other through an internal connection path.
  • the memory 830 is configured to store instructions
  • the processor 810 is configured to execute instructions stored in the memory 830 to control the transceiver 820 to send signals and / or receive signals.
  • the processor and the memory included in the device may also be implemented by using a chip.
  • the processor 810 is specifically configured to: determine a system frame number of a radio system frame where the first broadcast channel PBCH is to be sent, where the first PBCH is included in the first synchronization signal segment set SS burst set, and the first SS burst
  • the set period is any one of a plurality of cycles.
  • the first processing block is processed by the first processing mode to obtain a first transport block, where the first processing mode is used to indicate the wireless system where the first PBCH is located.
  • the first MIB includes a ratio of a system frame number of the wireless system frame in which the first PBCH is located, except for the partial bit position a special extra bit; controlling the transceiver 820 to transmit the first transport block through the first PBCH in a radio system frame in which the first PBCH is located.
  • the communication device 800 may be specifically the network device in the above embodiment, and may be used to perform various steps and/or processes corresponding to the network device in the above method.
  • the memory 820 can include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include a non-volatile, random access memory.
  • the memory can also store information of the device type.
  • the processor 810 can be configured to execute instructions stored in a memory, and when the processor 810 executes instructions stored in the memory, the processor 810 is configured to perform various steps and/or processes corresponding to the network devices in the above embodiments. .
  • the processor of the foregoing communication device may be a central processing unit (centra l proces s ing uni t , CPU ) , and the processor may also be other general purpose processors and digital signal processors ( digi Ta ls igna l proces s ing, DSP ), application specific integrated circuit (ASIC), field-programmable gate array (FPGA) or other programmable logic device, discrete Gate or transistor logic, discrete hardware components, etc.
  • the general purpose processor may be a processor or the processor or any conventional processor or the like.
  • FIG. 9 is a schematic block diagram of still another communication device 900 for data transmission provided by an embodiment of the present application.
  • the communication device 900 includes a processor 910, a transceiver 920, and a memory 930.
  • the processor 910, the transceiver 920, and the memory 930 communicate with each other through an internal connection path.
  • the memory 930 is configured to store instructions, and the processor 910 is configured to execute instructions stored in the memory 930 to control the transceiver 920 to send signals and / or receive signals.
  • the processor and the memory included in the device may also be implemented by using a chip.
  • the processor 910 is specifically configured to: control the transceiver 920 to acquire a transport block that is sent by the network device through the broadcast channel PBCH, where the PBCH is included in the synchronization signal segment set SS burs t set, and the period of the SS burs t set is multiple cycles.
  • the MIB includes a remaining bit of the system frame number of the wireless system frame in which the PBCH is located, except for the bit on the partial bit; and determining, according to the partial bit and the remaining bit, a system frame of the wireless system frame in which the PBCH is located number.
  • the communication device 900 may be specifically the UE in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the UE in the foregoing method.
  • the memory 930 can include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 910 can be configured to execute instructions stored in a memory, and when the processor 910 executes instructions stored in the memory, the processor 910 is configured to perform various steps and/or processes corresponding to the UEs in the above-described embodiments.
  • the processor may be a central processing unit (CPU), and the processor may also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and field programmable gates.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA field programmable gate array
  • the general purpose processor may be a processor or the processor or any conventional processor or the like.
  • the disclosed systems, communication devices, and methods may be implemented in other manners.
  • the embodiment of the communication device described above is only illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Either can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, communication device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present application or the part contributing to the prior art or the part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium, including
  • the thousands of instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM, Random Acces s Memory), a magnetic disk, or an optical disk, and the like, which can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:确定待发送的第一广播信道PBCH所在的无线系统帧的系统帧号,该第一PBCH包含在第一同步信号段集合SS burst set中,且该第一SS burst set的周期为多种周期中的任一种;通过第一处理方式,对第一主信息块MIB进行处理,得到第一传输块,该第一处理方式用于指示该第一PBCH所在无线系统帧的系统帧号的部分比特位,该第一MIB包含该第一PBCH所在无线系统帧的系统帧号中除该部分比特位上的比特外的剩余比特;在该第一PBCH所在的无线系统帧内,通过该第一PBCH发送该第一传输块。本申请提供的通信方法和通信装置,能够针对不同的SS burst set的周期,通过PBCH传输SFN。

Description

通信方法和通信装置 本申请要求于 2017年 05月 05 日提交中国专利局、 申请号为 201710314110.9、 发明 名称为 "通信方法和通信装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本 申请中。 技术领域
本申请涉及通信领域, 并且更具体地, 涉及通信领域中通信方法和通信装置。 背景技术
随着移动业务的不断发展, 人们对无线通信的传输速率的要求越来越高, 在长期演进
( long term evolution, LTE )通信系统中, 用户设备 ( user equipment, UE )在接入某 网络设备之前, 需要获取该网络设备的系统信息 ( system information, SI) , 才能知道 该网络设备是如何配置的, 以便在该网络设备内正确的工作。
在 LTE中, 网络设备通过广播信道(physical broadcast channel, PBCH ) 向该网络 设备覆盖范围内的所有 UE发送主信息块 (master information block, MIB ) 。 MIB信息 包含 10个比特(bits) 的系统帧号 (system frame number, SFN ) 中的最高 8个比特, 用于 UE与网络设备进行时间对准。在 LTE通信系统中, PBCH的传输时间间隔( t r ansmi s s i on time interval, TTI ) 为 40ms, PBCH的周期为 10ms, 基站在每个 PBCH的 TTI 内, 重复 传输 4次 PBCH。
然而, 在新无线 ( new radio, NR )通信系统中, 同步信号 ( synchronous signal, SS ) 包括: 主同步信号 ( rimary synchronous signal, PSS )和辅同步信号 ( secondary synchronous signal, SSS ) , 它们和 PBCH—起构成一个同步信号 SS块( block ) , 至少 一个 SS block构成一个 SS段( burst ),至少一个 SS burst构成一个 SS burst集合( set )。
由于, 在 NR通信系统中 PBCH的 TTI为 80ms, SS burst set有多种不同的周期, 例 如, SS burst set的周期可以为 5ms, 10ms, 20ms, 40ms, 80ms或 160ms等。 目前还没 有能够针对不同的 SS burst set的周期通过 PBCH传输 SFN的统一方法。 发明内容
本申请提供一种通信方法和通信装置, 能够针对不同的 SS burst set 的周期, 通过 PBCH传输 SFN。
第一方面, 本申请提供了一种通信方法, 该方法包括:
确定待发送的第一 PBCH所在的无线系统帧的系统帧号,该第一 PBCH包含在第一同步 信号段集合 SS burst set中, 且该第一 SS burst set的周期为多种周期中的任一种; 通过第一处理方式, 对第一主信息块 MIB进行处理, 得到第一传输块, 该第一处理方 式用于指示该第一 PBCH所在无线系统帧的系统帧号的部分比特位, 该第一 MIB包含该第 一 PBCH所在无线系统帧的系统帧号中除该部分比特位上的比特外的剩余比特; 在该第一 PBCH所在的无线系统帧内, 通过该第一 PBCH发送该第一传输块。
可选地, 该第一处理方式用于指示该第一 PBCH所在无线系统帧的系统帧号中的部分 比特位, 可以理解为该第一处理方式用于隐式指示该第一 PBCH所在无线系统帧的系统帧 号的部分比特位, 或者可以理解为该第一处理方式用于隐含指示该第一 PBCH所在无线系 统帧的系统帧号的部分比特位, 本申请实施例对此不作限定。
本申请提供一种通信方法和通信装置, 能够针对不同的 SS burs t set 的周期, 通过
PBCH传输 SFN。
在一种可能的实现方式中, 该第一 PBCH是在第一传输时间间隔 TTI 内发送的, 且在 该第一 TTI 内该第一 SS burs t set的周期为该多种周期中的第一周期, 该方法还包括: 确定第二 TTI内待发送的第二 PBCH所在的无线系统帧的系统帧号,该第二 PBCH包含在第 二 SS burs t set中, 且该第二 SS burs t set的周期为该多种周期中的第二周期; 通过该 第一处理方式, 对第二 MIB进行处理, 得到第二传输块, 该第一处理方式用于指示该第二 PBCH所在无线系统帧的系统帧号的该部分比特位, 该第二 MIB包含该第二 PBCH所在无线 系统帧的系统帧号中除该部分比特位上的比特外的剩余比特; 在该第二 PBCH所在的无线 系统帧内, 通过该第二 PBCH发送该第二传输块。
可选地, 该第一处理方式还用于指示该第一 PBCH所在无线帧的系统帧号中的部分比 特位上的比特。
在一种可能的实现方式中, 该方法还包括: 确定第三 TTI 内待发送的第三 PBCH所在 的无线系统帧的系统帧号, 该第三 PBCH包含在第三 SS burs t set中, 且该第三 SS burs t set的周期为该多种周期中的第三周期; 通过该第一处理方式, 对第三 MIB进行处理, 得 到第三传输块, 该第一处理方式用于指示该第三 PBCH所在无线系统帧的系统帧号的该部 分比特位, 该第三 MIB包含该第三 PBCH所在无线系统帧的系统帧号中除该部分比特位上 的比特外的剩余比特; 在该第三 PBCH所在的无线系统帧内, 通过该第三 PBCH发送该第三 传输块。
在一种可能的实现方式中, 该方法还包括: 确定第四 TTI 内待发送的第四 PBCH所在 的无线系统帧的系统帧号, 该第四 PBCH包含在第四 SS burs t set中, 且该第四 SS burs t set的周期为该多种周期中的第四周期; 通过该第一处理方式, 对第四 MIB进行处理, 得 到第四传输块, 该第一处理方式用于指示该第四 PBCH所在无线系统帧的系统帧号的该部 分比特位, 该第四 MIB包含该第四 PBCH所在无线系统帧的系统帧号中除该部分比特位上 的比特外的剩余比特; 在该第四 PBCH所在的无线系统帧内 , 通过该第四 PBCH发送该第四 传输块。
在一种可能的实现方式中, 该方法还包括: 确定第五 TTI 内待发送的第五 PBCH所在 的无线系统帧的系统帧号, 该第五 PBCH包含在第五 SS burs t set中, 且该第五 SS burs t set的周期为该多种周期中的第五周期; 通过该第一处理方式, 对第五 MIB进行处理, 得 到第五传输块, 该第一处理方式用于指示该第五 PBCH所在无线系统帧的系统帧号的该部 分比特位, 该第五 MIB包含该第五 PBCH所在无线系统帧的系统帧号中除该部分比特位上 的比特外的剩余比特; 在该第五 PBCH所在的无线系统帧内 , 通过该第五 PBCH发送该第五 传输块。 在一种可能的实现方式中, 该方法还包括: 确定第六 TTI 内待发送的第六 PBCH所在 的无线系统帧的系统帧号, 该第六 PBCH包含在第六 SS burst set中, 且该第六 SS burst set的周期为该多种周期中的第六周期; 通过该第一处理方式, 对第六 MIB进行处理, 得 到第六传输块, 该第一处理方式用于指示该第六 PBCH所在无线系统帧的系统帧号的该部 分比特位, 该第六 MIB包含该第六 PBCH所在无线系统帧的系统帧号中除该部分比特位上 的比特外的剩余比特; 在该第六 PBCH所在的无线系统帧内 , 通过该第六 PBCH发送该第六 传输块。
本申请实施例提供的通信方法, 基站在两种或者两种以上不同的 SS burst set 的周 期下, 无需针对每种 SS burst set周期分别制定相应的传输 SFN的方法, 而是通过第一 MIB传输系统帧号中的剩余比特, 并通过对该第一 MIB进行处理釆用的第一处理方式隐含 指示系统帧号中的部分比特位, 能够降低基站和 UE的计算复杂度, 同时降低 UE检测 SNF 的复杂度。
在一种可能的实现方式中, 该部分比特位包括倒数第 2 个比特位(例如 the second least bit)和倒数第 3个比特位(例如 the third least bit) 。
在一种可能的实现方式中, 该部分比特位包括最小 3 个比特位(例如 the least 3 bits) 。
在一种可能的实现方式中,该第一处理方式包括循环冗余码校验 CRC校验、循环移位、 加扰中的至少一项。
第二方面, 本申请提供了一种通信方法, 该方法包括:
获取网络设备通过 PBCH发送的传输块, 该 PBCH包含在同步信号段集合 SS burst set 中, 且该 SS burst set的周期为多种周期中的任一种;
通过处理方式, 对该传输块进行处理, 得到主信息块 MIB, 并通过该处理方式得到该 PBCH所在无线系统帧的系统帧号中的部分比特位和该部分比特位上的比特, 该 MIB 包含 该 PBCH所在无线系统帧的系统帧号中除该部分比特位上的比特外的剩余比特;
根据该部分比特和该剩余比特, 确定该 PBCH所在的无线系统帧的系统帧号。
本申请实施例提供的通信方法, 基站在两种或者两种以上不同的 SS burst set 的周 期下, 无需针对每种 SS burst set周期分别制定相应的传输 SFN的方法, 而是通过盲检 测该传输块的处理方式, 得到该部分比特位和该部分比特位上的比特, 并通过该处理方式 得到 MIB, MIB中包含了剩余比特, 根据该部分比特和该剩余比特得到该 PBCH所在的无线 系统帧的系统帧号, 能够降低基站和 UE的计算复杂度, 同时降低 UE检测 SNF的复杂度。
在一种可能的实现方式中,该部分比特位包括倒数第 1个比特位和倒数第 3个比特位。 在一种可能的实现方式中, 该部分比特位包括最小 3个比特位。
在一种可能的实现方式中, 该处理方式包括循环冗余码校验 CRC校验、 循环移位、 解 扰中的至少一项。
第三方面, 本申请提供了一种数据传输的通信装置, 用于执行上述第一方面或第一方 面的任意可能的实现方式中的方法。
第四方面, 本申请提供了一种数据传输的通信装置, 用于执行上述第二方面或第二方 面的任意可能的实现方式中的方法。
第五方面, 本申请提供了一种数据传输的通信装置, 该通信装置包括: 存储器、 处理 器、 收发器及存储在该存储器上并可在该处理器上运行的计算机程序, 其特征在于, 该处 理器执行该计算机程序时执行上述第一方面或第一方面的任意可能的实现方式中的方法。
可选地, 该装置包括的处理器、 存储器还可以通过芯片实现。
第六方面, 本申请提供了一种数据传输的通信装置, 该通信装置包括: 存储器、 处理 器、 收发器及存储在该存储器上并可在该处理器上运行的计算机程序, 其特征在于, 该处 理器执行该计算机程序时执行上述第二方面或第二方面的任意可能的实现方式中的方法。
可选地, 该装置包括的处理器、 存储器还可以通过芯片实现。
第七方面, 本申请提供了一种计算机可读介质, 用于存储计算机程序, 该计算机程序 包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面, 本申请提供了一种计算机可读介质, 用于存储计算机程序, 该计算机程序 包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第九方面, 本申请提供了一种包含指令的计算机程序产品, 当其在计算机上运行时, 使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面, 本申请提供了一种包含指令的计算机程序产品, 当其在计算机上运行时, 使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。 附图说明
图 1是本申请实施例提供的无线通信系统的示意性架构图;
图 1是本申请实施例提供的通信方法的示意性流程图;
图 3是本申请实施例提供的另一通信方法的示意性流程图;
图 4是本申请实施例提供的又一通信方法的示意性流程图;
图 5是本申请实施例提供的 SS burst set的周期中包含的每个无线系统帧内都包含 SS burst的示意图;
图 6是本申请实施例提供的数据传输的通信装置的示意性框图;
图 7是本申请实施例提供的另一数据传输的通信装置的示意性框图;
图 8是本申请实施例提供的又一数据传输的通信装置的示意性框图;
图 9是本申请实施例提供的又一数据传输的通信装置的示意性框图。 具体实施方式
下面将结合附图, 对本申请中的技术方案进行描述。
图 1示出了本申请实施例应用的无线通信系统 100。 该无线通信系统 100可以包括至 少一个网络设备, 图 1中示出了网络设备 110, 网络设备 110可以为特定的地理区域提供 通信覆盖, 并且可以与位于该覆盖区域内的终端设备进行通信。 该网络设备 110 可以是 GSM系统或 CDMA系统中的网络设备(base transceiver station, BTS ) , 也可以是 WCDMA 系统中的网络设备 (nodeB, NB ) , 还可以是 LTE系统中的演进型网络设备 ( evolved node B, eNB或 eNodeB) , 或者是云无线接入网络 ( cloud radio access network, CRAN ) 中 的无线控制器。 该网络设备还可以为核心网、 中继站、 接入点、 车载设备、 可穿戴设备、 未来 5G 网络中的网络侧设备或者未来演进的公共陆地移动网络(public land mobile network, PLMN ) 中的网络设备等。 该无线通信系统 100还包括位于网络设备 110覆盖范围内的至少一个终端设备, 图 1 中示出了用户设备 120和用户设备 130。
图 1示例性地示出了一个网络设备和两个终端设备, 可选地, 该无线通信系统 100可 以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申 请实施例对此不做限定。 可选地, 该无线通信系统 100还可以包括网络控制器、 移动管理 实体等其他网络实体, 本申请实施例不限于此。
应理解, 用户设备(user equipment, UE )可以是移动的或固定的。 该 UE可以指终 端设备、 接入终端、 用户单元、 用户站、 移动站、 移动台、 远方站、 远程终端、 移动设备、 用户终端、 终端、 无线通信设备、 用户代理或用户通信装置等。 UE 可以是蜂窝电话、 无 黾电话、会话启动协议( session initiation protocol, SIP )电话、无线本地环路( wireless local loop, WLL)站、 个人数字处理 ( ersonal digital assistant, PDA) 、 具有无线 通信功能的手持设备、 计算设备或连接到无线调制解调器的其它处理设备、 车载设备、 可 穿戴设备、 未来 5G网络中的终端设备或者未来演进的 PLMN中的终端设备等。
图 1示出了本申请实施例提供的通信方法 200的示意性流程图。该方法 200可以应用 于如图 1中所示的无线通信系统, 该网络设备可以为基站, 例如可以为基站中的小区, 但 本申请实施例对此不作限定。
S210, 确定待发送的第一 PBCH所在的无线系统帧的系统帧号, 所述第一 PBCH包含在 第一同步信号段集合 SS burst set中, 且所述第一 SS burst set的周期为多种周期中的 任一种。
应理解, 在 NR通信系统中, 同步信号包括: PSS和 SSS, 它们和 PBCH—起构成一个
SS block, 至少一个 SS block构成一个 SS burst, 至少一个 SS burst构成一个 SS burst set;。
例如, 1个 PSS、 1个 SSS和 2个 PBCH可以构成 1个 SS Block, 4个 SS block可以 构成 1个 SS burst, 2个 SS burs t可以构成一个 SS burst set。
还应理解, 基站和 UE可以配置多种 SS burst set的周期, 例如可以为 5ms, 10ms,
20ms, 40ms, 80ms或 160ms等, 同一个 TTI内 SS burst set的周期为一种, 但本申请实 施例不限于此。
S220, 通过第一处理方式, 对第一主信息块 MIB进行处理, 得到第一传输块, 所述第 一处理方式用于指示所述第一 PBCH所在无线系统帧的系统帧号的部分比特位, 所述第一 MIB 包含所述第一 PBCH所在无线系统帧的系统帧号中除所述部分比特位上的比特外的剩 余比特。
应理解, 无线系统帧的系统帧号可以通过连续的 N个比特表示, 每个比特可以为 0或 1, 每个比特在这 N个比特中的位置称为比特位, 系统帧号的取值可以从 0~2N循环。
例如, 当系统帧号的长度为 lObits时, 系统帧号 0000000010表示无线系统帧 2, 其 中, 第 9个比特位上的比特为 1, 可以理解为第 9个比特为 1。
可选地,基站釆用的第一处理方式可以包括 CRC校验、循环移位、加扰中的至少一项。 应理解, 该第一处理方式用于指示部分比特位。
可选地, UE 可以与基站通过协议约定该第一处理方式为加扰, 以及通过加扰隐含指 示的部分比特位; 或者基站可以通过高层信令指示该 UE该第一处理方式为加扰, 以及通 过该加扰方式隐含指示的部分比特位, 本申请实施例对此不作限定。
作为一个可选实施例, 基站可以通过对该第一 MIB进行加扰, 得到该第一传输块, 加 扰方式用于隐含指示该部分比特位。
应理解, 加扰釆用将初始化种子生成的伪随机序列与信息 bits (第一 PBCH所在的无 线系统帧的系统帧号中的剩余比特)做 b i t级异或操作(或相乘)进行加扰, 初始化种子 用于隐含指示该第一 PBCH所在的无线系统帧的系统帧号的部分比特位; 或者, 加扰釆用 将同一个初始化种子生成的伪随机序列分为多段, 并通过多段伪随机序列对信息 bits进 行力口扰。
可选地, UE可以与基站通过协议约定该第一处理方式为 CRC校验, 以及通过 CRC校 验隐含指示的部分比特位, 或者基站可以通过高层信令指示该 UE该第一处理方式为 CRC 校验, 以及通过 CRC校验隐含指示的部分比特位, 本申请实施例对此不作限定。
作为一个可选实施例,基站可以通过 CRC mask为该第一 MIB中的第一比特段添加 CRC 校验位后再进行编码, 得到该第一传输块, CRC mask用于隐含指示该部分比特位。
应理解,对第一 M I B釆用不同的 CRC ma s k可以产生不同的 CRC校验位 ,即一种 CRC ma s k 可以唯一生成一种 CRC校验位。 还应理解, 对于不同的信息 bits, 都有唯一的 CRC mask 与之对应。
例如, 可以通过 CRC mask 0隐含指示该部分比特位, 或者通过 CRC mask 1隐含指示 该部分比特位。
例如, 生成循环冗余校验 ( cyclic redundancy check, CRC )校验位的 N位 CRC寄存 器的初始序歹 'J &;;表示为 也称为 CRC掩码 (mask ) , 信 息 bits<b。, ..., bn> (即第一比特段中包括的比特位)输入到寄存器当中可以产生出 CRC校 验位。 CRC校验位放到原始的信息 bits后面组成一个完整的 MIB信息, 基站对完整的 MIB 信息做进一步的重复和编码, 得到该第一传输块。
可选地, UE 和基站可以通过协议约定该第一处理方式为循环移位, 以及通过循环移 位隐含指示的部分比特位, 或者基站可以通过高层信令指示该 UE该第一处理方式为循环 移位, 以及通过循环移位隐含指示的部分比特位, 本申请实施例对此不作限定。
作为一个可选实施例, 该第一处理方式可以为循环移位, 该基站可以对第一 MIB中的 第一比特段进行编码前循环移位或编码后循环移位, 得到该第一传输块, 该循环移位长度 用于隐含指示该部分比特位。
例如, 循环移位包含两种, 一种是对信息 bits编码之前进行循环移位, 另外一种是 对信息 bits进行编码之后进行循环移位。 假设待循环移位的数据为 10010011, 为了对其 循环移位, 将其分为 4份, 每 1份的长度为 1位(即分为 10、 01、 00、 11 ) , 对该数据 循环移位 1份(即循环移位的长度为 1位)之后可得 11100100 (即将 10010011中最后 1 份从最后循环移位至最前), 对该数据循环移位 2份(循环移位的长度为 4位)之后可得 00111001, 对该数据循环移位 3份(即循环移位的长度为 6位)之后可得 01001110。
可选地, 该第一处理方式可以包括 CRC校验和加扰, 或者该第一处理方式可以包括循 环移位和加扰, 或者可以包括 CRC校验和循环移位, 或者该第一处理方式可以包括 CRC校 验、 循环移位和加扰, 本申请实施例对此不作限定。 例如, 该第一处理方式包括循环移位 和加扰时, 该基站可以对第一 MIB中的剩余比特进行编码前循环移位, 然后进行编码, 对 编码后的第一 MIB进行加扰, 得到该第一传输块, 该循环移位长度和加扰方式共同用于隐 含指示部分比特位。
S230 , 在所述第一 PBCH所在的无线系统帧内 , 通过所述第一 PBCH发送所述第一传输 块。 相应地, 该基站覆盖范围内的 UE获取网络设备通过第一 PBCH发送的第一传输块, 所 述第一 PBCH包含在第一同步信号段集合 SS bur s t s e t中, 且所述第一 SS bur s t s e t的 周期为多种周期中的任一种。
可选地, 若该第一 PBCH是在第一 TTI内发送的, 且在该第一 TTI内该第一 SS burs t s e t 的周期为该多种周期中的第一周期, 则该基站还可以确定第二 TT I 内待发送的第二 PBCH所在的无线系统帧的系统帧号, 该第二 PBCH 包含在第二 SS bur s t s e t 中, 且该第 二 SS bur s t se t 的周期为该多种周期中的第二周期; 通过该第一处理方式, 对第二 MIB 进行处理, 得到第二传输块, 该第一处理方式用于指示该第二 PBCH所在无线系统帧的系 统帧号的该部分比特位, 即通过该第一处理方式隐含指示第一 PBCH所在的无线系统帧的 系统帧号的部分比特位与通过该第一处理方式隐含指示第二 PBCH所在的无线系统帧的系 统帧号中的部分比特位相同; 该第二 MIB包含该第二 PBCH所在无线系统帧的系统帧号中 除该部分比特位上的比特外的剩余比特; 在该第二 PBCH所在的无线系统帧内, 通过该第 二 PBCH发送该第二传输块。
应理解,该第一 PBCH所在的无线系统帧的系统帧号与该第二 PBCH所在的无线系统帧 的系统帧号可以相同也可以不同, 本申请实施例对此不作限定。
也就是说, 在不同的 SS bur s t se t的周期下, 釆用统一的处理方式传输 PBCH所在的 无线系统帧的系统帧号。
S240 , 所述 UE通过第一处理方式, 对所述第一传输块进行处理, 得到第一主信息块 MIB ,并通过所述第一处理方式得到所述第一 PBCH所在无线系统帧的系统帧号中的部分比 特位和所述部分比特位上的比特, 所述第一 MIB包含所述第一 PBCH所在无线系统帧的系 统帧号中除所述部分比特位上的比特外的剩余比特。
应理解, UE釆用的第一处理方式与基站釆用的第一处理方式相对应, 即 UE釆用的第 一处理方式与基站釆用的第一处理方式互为逆过程。
S250 , 根据所述部分比特和所述剩余比特, 确定所述第一 PBCH所在的无线系统帧的 系统帧号。
可选地,本申请实施例中的部分比特位可以为倒数第 2个比特位和倒数第 3个比特位。 当无线系统帧的系统帧号的长度为 10 比特时, 基站可以通过第一处理方式, 对第一 MIB 进行处理, 得到第一传输块, 第一处理方式用于隐含指示无线系统帧的系统帧号中的部分 比特位(即倒数第 1个比特位和倒数第 3个比特位), 该第一 MIB包含无线系统帧的系统 帧号中除该部分比特位上的比特外的剩余比特(即最高 7个比特和最小 1个比特) 。
相应地, 无线系统帧的系统帧号的最高 7个比特(例如 the highes t 7 bi ts of SFN) 和最小 1个比特(例如 the leas t bi t of SFN)在 PBCH中指示 UE , 无线系统帧的系统帧 号的倒数第 1个比特和倒数第 3个比特(例如 the 2nd and 3rd leas t bi ts of SFN)通 过解码 PBCH的第一处理方式隐含指示 UE。
为描述方便, 本申请实施例中将部分比特位上的比特, 统称为部分比特, 将系统帧号 中除部分比特以外的比特统称为剩余比特。 下面将结合图 5详细描述针对不同的 SS burs t set的周期, 基站釆用相同的处理方 式(通过第一处理方式隐含指示倒数第 1个比特位和倒数第 3个比特位)通过 PBCH传输 SFN的方法。
图 3示出了 PBCH的 6个 TTI (如图 3中所示的 TTI 1、 TTI 1、 TTI 3、 TTI 4、 TTI 5 和 TTI 6 ) , 每个 TTI的长度均为 80ms , 每个 TTI包括 8个无线系统帧 (如图 3中所示的 无线系统帧 0_无线系统帧 7 ) , 基站在 TTI 1 内 SS burs t set 的周期为 5ms、 在 TTI 2 内 SS burs t set的周期为 10ms、 在 TTI 3内 SS burs t set的周期为 20ms、 在 TTI 4内 SS burs t set的周期为 40ms、在 TTI 5内 SS burs t set的周期为 80ms、在 TTI 6内 SS burs t set的周期为 160ms。
应理解, 本申请实施例中的 TTI 1、 TTI 1、 TTI 3、 TTI 4、 TTI 5和 TTI 6均为任意 一个 PBCH的 TTI , 基站在每个 TTI内釆用不同的 SS burs t set通过 PBCH传输 SFN, TTI 的序号仅用于区分釆用不同 SS burs t set周期传输 SNF的 TTI ,本申请实施例对 TTI 1—TTI 6的先后顺序不做限定。
应理解,当每个 TTI包括 8个无线系统帧时,在每个 TTI 内 ,将系统帧号 nf满足 nf mod 8=0的无线系统帧作为该 TTI内 SS burs t set的周期的起始无线系统帧。
下面将对不同的 SS burs t set的周期下, 通过 PBCH传输 SFN的方法进行详细描述。
( 1 )在 TTI 2内, SS burs t set的周期为 10ms , 基站分别在无线系统帧 0至无线系 统帧 7内通过发送 PBCH传输无线系统帧的系统帧号。
例如, 无线系统帧 0 的系统帧号为 0000000000、 无线系统帧 1 的系统帧号为 0000000001、 无线系统帧 1 的系统帧号为 0000000010、 无线系统帧 3 的系统帧号为 0000000011、 无线系统帧 4 的系统帧号为 0000000100、 无线系统帧 5 的系统帧号为 0000000101、 无线系统帧 6 的系统帧号为 0000000110、 无线系统帧 7 的系统帧号为 0000000111。
在无线系统帧 0、 无线系统帧 2、 无线系统帧 4和无线系统帧 6的系统帧号中, 最小 1个比特相同、 且均为 0 , 最高 7个比特也相同, 因此, 基站通过第一 MIB传输系统帧号 中的剩余比特(最小 1 个比特和最高 7 个比特) , 以保证每个无线系统帧内传输的第一 MIB相同, 第一处理方式用于隐含指示系统帧号中的部分比特位(倒数第 2个比特位和倒 数第 3个比特位) 。
在无线系统帧 1、 无线系统帧 3、 无线系统帧 5和无线系统帧 7的系统帧号中, 最小 1个比特相同、 且均为 1 , 最高 7个比特也相同, 因此, 基站通过第二 MIB传输系统帧号 中的剩余比特(最小 1 个比特和最高 7 个比特) , 以保证每个无线系统帧内传输的第二 MIB相同, 第一处理方式用于隐含指示系统帧号中的部分比特位(倒数第 2个比特位和倒 数第 3个比特位) 。
作为一个可选实施例, 基站可以釆用不同的处理方式分别对第一 MIB进行处理, 得到 与每种处理方式对应的传输块(如图 3中所述的传输块 0、 传输块 2、 传输块 4和传输块 6 ) , 其中, 第一 MIB包含系统帧号中的剩余比特(最高 7个比特和最小 1个比特, 且最 小 1个比特为 0 ) , 处理方式用于隐含指示系统帧号中的部分比特位(倒数第 2个比特位 和倒数第 3个比特位) 。
作为一个可选实施例, 基站可以釆用不同的处理方式分别对第二 MIB进行处理, 得到 与每种处理方式对应的传输块(如图 3中所述的传输块 1、 传输块 3、 传输块 5和传输块 7 ) , 其中, 第二 MIB包含系统帧号中的剩余比特(最高 7个比特和最小 1个比特, 且最 小 1个比特为 1 ) , 处理方式用于隐含指示系统帧号中的部分比特位(倒数第 2个比特位 和倒数第 3个比特位) 。
具体而言, 基站可以根据第一 MIB传输的系统帧号的最小 1个比特、 第二 MIB传输的 系统帧号的最小 1个比特,以及通过第一处理方式隐含指示的系统帧号的倒数第二个比特 位和倒数第 3个比特位, 确定无线系统帧的系统帧号的最小 3个比特, 以及无线系统帧的 系统帧号的最小 3个比特与在该无线系统帧内发送的传输块的映射关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000, 对应于传输块 0; 无线系统 帧 1的系统帧号的最小 3个比特为 001, 对应于传输块 1; 无线系统帧 1的系统帧号的最 小 3个比特为 010, 对应于传输块 2; 无线系统帧 3的系统帧号的最小 3个比特位为 011, 对应于传输块 3; 无线系统帧 4的系统帧号的最小 3个比特位为 100, 对应于传输块 4; 无线系统帧 5的系统帧号的最小 3个比特位为 101, 对应于传输块 5; 无线系统帧 6的系 统帧号的最小 3个比特位为 110, 对应于传输块 6; 无线系统帧 7的系统帧号的最小 3个 比特位为 111, 对应于传输块 0。
因此, 基站在无线系统帧 0内, 通过 PBCH发送传输块 0; 在无线系统帧 1 内, 通过 PBCH发送传输块 1; 在无线系统帧 1 内 , 通过 PBCH发送传输块 2; 在无线系统帧 3内, 通过 PBCH发送传输块 3; 在无线系统帧 4 内 , 通过 PBCH发送传输块 4; 在无线系统帧 5 内, 通过 PBCH发送传输块 5; 在无线系统帧 6 内 , 通过 PBCH发送传输块 6; 在无线系统 帧 7内, 通过 PBCH发送传输块 7。
( 2 )在 TTI 3内, SS burst set的周期为 20ms, 基站分别在无线系统帧 0、 无线系 统帧 2、 无线系统帧 4和无线系统帧 6内通过 PBCH传输 SFN。
具体而言, 基站可以根据第一 MIB传输的系统帧号的最小 1个比特, 以及通过第一处 理方式包括的不同的方式隐含指示系统帧号的倒数第 2个比特和倒数第 3个比特,确定无 线系统帧的系统帧号的最小 3个比特,以及无线系统帧的系统帧号的最小 3个比特与在该 无线系统帧内发送的传输块的映射关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000, 对应于传输块 0; 无线系统 帧 1的系统帧号的最小 3个比特为 010, 对应于传输块 2; 无线系统帧 4的系统帧号的最 小 3个比特位为 100,对应于传输块 4;无线系统帧 6的系统帧号的最小 3个比特位为 110, 对应于传输块 6。
因此, 基站在无线系统帧 0内, 通过 PBCH发送传输块 0; 在无线系统帧 1 内, 通过 PBCH发送传输块 2; 在无线系统帧 4 内 , 通过 PBCH发送传输块 4; 在无线系统帧 6内, 通过 PBCH发送传输块 6。
应理解, SS burst set的周期为 20ms时, 在无线系统帧 0、 无线帧 2、 无线系统帧 4 和无线系统帧 6内通过 PBCH传输 SFN的方法与 SS burst set的周期为 10ms时, 在无线 系统帧 0、 无线帧 2、 无线系统帧 4和无线系统帧 6内通过 PBCH传输 SFN的方法相同。
假设在 TTI 2内, SS burst set的周期为第一周期 (例如为 10ms ) , 第一 PBCH所在 的无线系统帧的系统帧号为 0011010 1 (即在 TTI 2内的无线系统帧 1 ) , 基站通过第一 处理方式对该第一 MIB进行处理,得到第一传输块,该第一处理方式用于指示该第一 PBCH 所在的无线系统帧的系统帧号的倒数第 2个比特位和倒数第 3个比特位(如下划线所示的 2个比特位),第一 MIB包含该第一 PBCH所在的无线系统帧的系统帧号中的 00110101 (最 高 7个比特和最小 1个比特) 。
假设在 TTI 3内, SS burs t set的周期为第二周期 (例如为 20ms ) , 若第二 PBCH所 在的无线系统帧的系统帧号为 0110110 1 (即在 TTI 3内的无线系统帧 1 ) , 基站通过第 二处理方式对该第二 MIB 进行处理, 得到第二传输块, 该第二处理方式用于指示该第二 PBCH所在的无线系统帧的系统帧号的倒数第 2个比特位和倒数第 3个比特位(如下划线 所示的 2 个比特位) , 第二 MIB 包含该第二 PBCH 所在的无线系统帧的系统帧号中的 01101101 (最高 7个比特和最小 1个比特) ; 若第二 PBCH所在的无线系统帧的系统帧号 为 0110110 0 (即在 TTI 3内的无线系统帧 2 ) , 基站通过第二处理方式对该第二 MIB进 行处理, 得到第二传输块, 该第二处理方式用于指示该第二 PBCH所在的无线系统帧的系 统帧号的倒数第 2个比特位和倒数第 3个比特位(如下划线所示的 2个比特位) , 第二 MIB包含该第二 PBCH所在的无线系统帧的系统帧号中的 01101100 (最高 7个比特和最小 1个比特) 。
因此, 无论在不同的周期下, 基站通过 PBCH传输的系统帧号相同还是不同, 都可以 釆用统一的方法通过 PBCH传输 SFN, 能够降低基站和 UE的复杂度。
( 3 )在 TTI 4内, SS burs t set的周期为 40ms , 基站分别在无线系统帧 0和无线系 统帧 4内通过 PBCH传输 SFN。
具体而言, 基站可以根据第一 MIB传输的系统帧号的最小 1个比特, 以及通过第一处 理方式包括的不同的方式隐含指示系统帧号的倒数第 1个比特和倒数第 3个比特,确定无 线系统帧的系统帧号的最小 3个比特,以及无线系统帧的系统帧号的最小 3个比特与在该 无线系统帧内发送的传输块的映射关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000 , 对应于传输块 0; 无线系统 帧 4的系统帧号的最小 3个比特位为 100 , 对应于传输块 4。
因此, 基站在无线系统帧 0内, 通过 PBCH发送传输块 0; 在无线系统帧 4 内, 通过
PBCH发送传输块 4。
应理解, SS burs t set的周期为 40ms时,在无线系统帧 0和无线系统帧 4内通过 PBCH 传输 SFN的方法与 SS burs t set的周期为 10ms时, 在无线系统帧 0和无线系统帧 4内通 过 PBCH传输 SFN的方法相同, 为避免重复, 此处不再赘述复。
( 4 )在 TTI 5 内, SS burs t set的周期为 80ms , 基站在无线系统帧 0内通过 PBCH 传输 SFN。
具体而言, 基站可以根据第一 MIB传输的系统帧号的最小 1个比特, 以及通过第一处 理方式包括的不同的方式隐含指示系统帧号的倒数第 2个比特和倒数第 3个比特,确定无 线系统帧的系统帧号的最小 3个比特,以及无线系统帧的系统帧号的最小 3个比特与在该 无线系统帧内发送的传输块的映射关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000 , 对应于传输块 0。 基站在无 线系统帧 0内, 通过 PBCH发送传输块 0。
( 5 )在 TTI 6内, SS burs t set的周期为 160ms , 基站在无线系统帧 0内通过 PBCH 传输 SFN, 并在与该 TTI 6之后间隔一个 TTI的另一个 TTI内通过 PBCH传输下一次 SFN。 具体而言, 基站可以根据第一 MIB传输的系统帧号的最小 1个比特, 以及通过第一处 理方式包括的不同的方式隐含指示系统帧号的倒数第 2个比特和倒数第 3个比特,确定无 线系统帧的系统帧号的最小 3个比特,以及无线系统帧的系统帧号的最小 3个比特与在该 无线系统帧内发送的传输块的映射关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000 , 对应于传输块 0。 基站在无 线系统帧 0内, 通过 PBCH发送传输块 0。
应理解, SS burs t set的周期为 160ms时, 在无线系统帧 0内通过 PBCH传输 SFN的 方法与 SS burs t set的周期为 10ms时, 在无线系统帧 0内通过 PBCH传输 SFN的方法相 同, 为避免重复, 此处不再赘述复。
( 6 )在 TTI 1 内, SS burs t set的周期为 5ms , 基站在无线系统帧 0至无线系统帧
7 内通过 PBCH传输 SFN, 且在每个无线系统帧内, 传输两次 SS b lock , 即在前半帧和后 半帧分别传输 SS b lock , 其中, 前半帧传输的 SS b lock和后半帧传输的 SS b lock中可 以都包含 PBCH , 或者只有一个 SS b lock包含 PBCH。 由于前半帧和后半帧都位于相同的无 线系统帧, 因此, 在前半帧传输的 SS b lock中的 SFN和后半帧传输的 SS b lock中的 SFN 相同。
应理解, SS burs t set的周期为 5ms时, 在无线系统帧 0_无线系统帧 7内通过 PBCH 传输 SFN的方法与 SS burs t set的周期为 10ms时, 在无线系统帧 0_无线系统帧 7 内通 过 PBCH传输 SFN的方法相同, 为避免重复, 此处不再赘述复。
应理解, 基站可以配置多种 SS burs t set的周期, 即在不同的 TTI内釆用不同的 SS burs t set的周期, 该多种 SS burs t set的周期例如可以为: 5ms、 10ms , 20ms , 40ms , 80ms , 160ms 中的任意两种或者两种以上 SS burs t set 周期, 本申请实施例对此不作限 定。
本申请实施例提供的通信方法, 基站在两种或者两种以上不同的 SS burs t set 的周 期下, 无需针对每种 SS burs t set周期分别制定相应的传输 SFN的方法, 而是通过第一 MIB传输系统帧号中的最高 7个比特和最小 1个比特, 并通过对该第一 MIB进行处理釆用 的第一处理方式隐含指示系统帧号中的倒数第 2个比特位和倒数第 3个比特, 能够降低基 站和 UE的计算复杂度, 同时降低 UE检测 SNF的复杂度。
可选地, 该第一处理方式可以指示部分比特位和部分比特位上的比特。
作为一个可选实施例, 如图 4中所示, 在 TTI 2内, SS burs t set的周期为 10ms , 基站分别在无线系统帧 0至无线系统帧 7内通过发送 PBCH传输无线系统帧的系统帧号。
例如, 无线系统帧 0 的系统帧号为 0000000000、 无线系统帧 1 的系统帧号为 0000000001、 无线系统帧 1 的系统帧号为 0000000010、 无线系统帧 3 的系统帧号为 0000000011、 无线系统帧 4 的系统帧号为 0000000100、 无线系统帧 5 的系统帧号为 0000000101、 无线系统帧 6 的系统帧号为 0000000110、 无线系统帧 7 的系统帧号为 0000000111。
在无线系统帧 0、 无线系统帧 2、 无线系统帧 4和无线系统帧 6的系统帧号中, 最小 1个比特相同、 且均为 0 , 最高 7个比特也相同, 因此, 基站通过第一 MIB传输系统帧号 中的剩余比特(最小 1 个比特和最高 7 个比特) , 以保证每个无线系统帧内传输的第一 MIB相同, 第一处理方式用于隐含指示系统帧号中的部分比特位(倒数第 2个比特位和倒 数第 3个比特位) 。
在无线系统帧 1、 无线系统帧 3、 无线系统帧 5和无线系统帧 7的系统帧号中, 最小 1个比特相同、 且均为 1 , 最高 7个比特也相同, 因此, 基站通过第二 MIB传输系统帧号 中的剩余比特(最小 1 个比特和最高 7 个比特) , 以保证每个无线系统帧内传输的第二 MIB相同, 第一处理方式用于隐含指示系统帧号中的部分比特位(倒数第 2个比特位和倒 数第 3个比特位) 。
作为一个可选实施例, 基站可以釆用 4种不同的处理方式分别对第一 MIB进行处理, 得到与每种处理方式对应的传输块(如图 3中所述的传输块 0、 传输块 2、 传输块 4和传 输块 6 ) , 其中, 第一 MIB携带系统帧号中的剩余比特(最高 7个比特和最小 1个比特, 且最小 1个比特为 0 ) , 处理方式用于隐含指示系统帧号中的部分比特位(倒数第 1个比 特位和倒数第 3个比特位) 。
例如, 通过传输块 0釆用的处理方式 0隐含指示部分比特为 00、 通过传输块 1釆用 的处理方式 1隐含指示部分比特为 01、 通过传输块 4釆用的处理方式 4隐含指示部分比 特为 10、 通过传输块 6釆用的处理方式 6隐含指示部分比特为 11。
作为一个可选实施例, 基站可以釆用 4种不同的处理方式分别对第二 MIB进行处理, 得到与每种处理方式对应的传输块(如图 3中所述的传输块 1、 传输块 3、 传输块 5和传 输块 7 ) , 其中, 第二 MIB携带系统帧号中的剩余比特(最高 7个比特和最小 1个比特, 且最小 1个比特为 1 ) , 处理方式用于隐含指示系统帧号中的部分比特位(倒数第 1个比 特位和倒数第 3个比特位) 。
例如, 通过传输块 1釆用的处理方式 1 隐含指示部分比特为 00、 通过传输块 3釆用 的处理方式 3隐含指示部分比特为 01、 通过传输块 5釆用的处理方式 5隐含指示部分比 特为 10、 通过传输块 7釆用的处理方式 7隐含指示部分比特为 11。
可选地, 由于传输块 0和传输块 1所釆用的处理方式均隐含指示系统帧号的部分比特 为 00 , 因此, 传输块 0所釆用的处理方式 0和传输块 1所釆用的处理方式 1可以相同, 同理, 传输块 1所釆用的处理方式 1和传输块 3所釆用的处理方式 3可以相同, 传输块 4 所釆用的处理方式 4和传输块 5所釆用的处理方式 5可以相同,传输块 6所釆用的处理方 式 6和传输块 7所釆用的处理方式 7可以相同。
例如, 当第一处理方式为加扰时, 基站可以通过加扰方式 1对第一 MIB进行加扰, 得 到传输块 0 , 通过加扰方式 1对第二 MI B进行加扰, 得到传输块 1 , 其中, 加扰方式 1用 于隐含指示部分比特为 00; 通过加扰方式 1对第一 MIB进行加扰, 得到传输块 2 , 通过加 扰方式 2对第二 MIB进行加扰, 得到传输块 3 , 其中, 加扰方式 2用于隐含指示部分比特 为 01 ; 通过加扰方式 3对第一 MI B进行加扰,得到传输块 4 , 通过加扰方式 3 ,对第二 MI B 进行加扰, 得到传输块 5 , 其中, 加扰方式 3用于隐含指示部分比特为 10; 通过加扰方式 4对第一 MI B进行加扰, 得到传输块 6 , 通过加扰方式 4对第二 MI B进行加扰, 得到传输 块 7 , 其中, 加扰加扰方式 4用于隐含指示部分比特为 11。
这样以来, 基站通过 4种处理方式对第一 MIB处理得到传输块 0、 传输块 2、 传输块 4和传输块 6 , 并通过相同的 4种处理方式对第二 MIB处理得到传输块 1、 传输块 3、 传输 块 5和传输块 7 , 降低了基站计算的复杂度。
相应地, UE只需要釆用 4种加扰方式对接收到的传输块进行盲检测, 若检测到传输 块釆用的是处理方式 0,就能够确定部分比特为 00;若检测到传输块釆用的是处理方式 2, 就能够确定部分比特为 01; 若检测到传输块釆用的是处理方式 4, 就能够确定部分比特为 10, 若检测到传输块釆用的是处理方式 6, 就能够确定部分比特为 11, 降低了 UE检测的 复杂度。
具体而言, 基站可以根据第一 MIB传输的系统帧号的最小 1个比特、 第二 MIB传输的 系统帧号的最小 1个比特,以及通过第一处理方式隐含指示系统帧号的倒数第二个比特位 和倒数第 3个比特位, 确定无线系统帧的系统帧号的最小 3个比特, 以及无线系统帧的系 统帧号的最小 3个比特与在该无线系统帧内发送的传输块的映射关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特 000, 对应于传输块 0; 无线系统帧 1的系统帧号的最小 3个比特为 001, 对应于传输块 1; 无线系统帧 1的系统帧号的最小 3 个比特为 010, 对应于传输块 2; 无线系统帧 3的系统帧号的最小 3个比特为 011, 对应 于传输块 3; 无线系统帧 4的系统帧号的最小 3个比特为 100, 对应于传输块 4; 无线系 统帧 5的系统帧号的最小 3个比特位为 101, 对应于传输块 5; 无线系统帧 6的系统帧号 的最小 3个比特位为 110, 对应于传输块 6; 无线系统帧 7的系统帧号的最小 3个比特位 为 111, 对应于传输块 0。
因此, 基站在无线系统帧 0内, 通过 PBCH发送传输块 0; 在无线系统帧 1 内, 通过 PBCH发送传输块 1; 在无线系统帧 1 内 , 通过 PBCH发送传输块 2; 在无线系统帧 3内, 通过 PBCH发送传输块 3; 在无线系统帧 4 内 , 通过 PBCH发送传输块 4; 在无线系统帧 5 内, 通过 PBCH发送传输块 5; 在无线系统帧 6 内 , 通过 PBCH发送传输块 6; 在无线系统 帧 7内, 通过 PBCH发送传输块 7。
可选地, 本申请实施例中的部分比特位可以为最小 3个比特位。 当无线系统帧的系统 帧号的长度为 10比特时, 基站可以通过第一处理方式, 对第一 MIB进行处理, 得到第一 传输块, 第一处理方式用于隐含指示无线系统帧的系统帧号中的部分比特位(即最小 3个 比特位), 该第一 MIB包含无线系统帧的系统帧号中除该部分比特位上的比特外的剩余比 特(即最高 7个比特) 。
相应地, 无线系统帧的系统帧号的最高 7个比特(例如 the highest 7 bits of SFN) 在 PBCH中指示 UE,无线系统帧的系统帧号的最小 3个比特(例如 the least 3 bits of SFN) 通过解码 PBCH的第一处理方式隐含指示 UE。
为描述方便, 本申请实施例中将部分比特位上的比特, 统称为部分比特, 将系统帧号 中除部分比特以外的比特统称为剩余比特。
下面将结合图 4详细描述针对不同的 SS burst set的周期, 基站釆用相同的处理方 式(通过第一处理方式隐含指示系统帧号中的最小 3个比特位)通过 PBCH传输 SFN的方 法。
图 4示出了 PBCH的 6个 TTI (如图 4中所示的 TTI 1、 TTI 1、 TTI 3、 TTI 4、 TTI 5 和 TTI 6 ) , 每个 TTI的长度均为 80ms, 每个 TTI包括 8个无线系统帧 (如图 4中所示的 无线系统帧 0_无线系统帧 7 ) , 基站在 TTI 1 内 SS burst set 的周期为 5ms、 在 TTI 2 内 SS burst set的周期为 10ms、 在 TTI 3内 SS burst set的周期为 20ms、 在 TTI 4内 SS burst set的周期为 40ms、在 TTI 5内 SS burst set的周期为 80ms、在 TTI 6内 SS burst set的周期为 160ms。 应理解, 本申请实施例中的 TTI 1、 ΤΤΙ 2、 ΤΤΙ 3、 ΤΤΙ 4、 ΤΤΙ 5和 ΤΤΙ 6均为任意 一个 PBCH的 ΤΤΙ , 基站在每个 ΤΤΙ内釆用不同的 SS burs t set通过 PBCH传输 SFN, TTI 的序号仅用于区分釆用不同 SS burs t set周期传输 SNF的 TTI ,本申请实施例对 TTI 1—TTI 6的先后顺序不做限定。
应理解,当每个 TTI包括 8个无线系统帧时,在每个 TTI 内 ,将系统帧号 nf满足 nf mod
8=0的无线系统帧作为该 TTI内 SS burs t set的周期的起始无线系统帧。
下面将对不同的 SS burs t set的周期下, 通过 PBCH传输 SFN的方法进行详细描述。
( 1 )在 TTI 2内, SS burs t set的周期为 10ms , 基站分别在无线系统帧 0至无线系 统帧 7内通过发送 PBCH传输无线系统帧的系统帧号。
例如, 无线系统帧 0 的系统帧号为 0000000000、 无线系统帧 1 的系统帧号为
0000000001、 无线系统帧 1 的系统帧号为 0000000010、 无线系统帧 3 的系统帧号为 0000000011、 无线系统帧 4 的系统帧号为 0000000100、 无线系统帧 5 的系统帧号为 0000000101、 无线系统帧 6 的系统帧号为 0000000110、 无线系统帧 7 的系统帧号为 0000000111。
在无线系统帧 0—无线系统帧 7的系统帧号中, 最高 7个比特相同, 因此, 基站通过 第一 MIB传输系统帧号中剩余比特(最高 7个比特), 以保证每个无线系统帧内传输的第 一 MIB相同, 第一处理方式用于隐含指示系统帧号中的部分比特位(最小 3个比特位) 。
作为一个可选实施例, 基站可以釆用 8种不同的处理方式分别对第一 MIB进行处理, 得到与每种处理方式对应的传输块(如图 4 中所述的传输块 0_传输块 7 ) , 其中, 第一 MIB包含系统帧号中的剩余比特(最高 7个比特) , 处理方式用于隐含指示系统帧号中的 部分比特位(最小 3个比特位) 。
具体而言, 基站可以根据通过第一处理方式隐含指示的系统帧号的最小 3个比特位, 确定无线系统帧的系统帧号的最小 3 个比特位与在该无线系统帧内发送的传输块的映射 关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000 , 对应于传输块 0; 无线系统 帧 1的系统帧号的最小 3个比特为 001 , 对应于传输块 1 ; 无线系统帧 1的系统帧号的最 小 3个比特为 010 , 对应于传输块 2 ; 无线系统帧 3的系统帧号的最小 3个比特位 011 , 对应于传输块 3; 无线系统帧 4的系统帧号的最小 3个比特为 100 , 对应于传输块 4; 无 线系统帧 5的系统帧号的最小 3个比特为 101 , 对应于传输块 5 ; 无线系统帧 6的系统帧 号的最小 3个比特为 110 , 对应于传输块 6; 无线系统帧 7的系统帧号的最小 3个比特为 111 , 对应于传输块 0。
因此, 基站在无线系统帧 0内, 通过 PBCH发送传输块 0; 在无线系统帧 1 内, 通过 PBCH发送传输块 1 ; 在无线系统帧 1 内 , 通过 PBCH发送传输块 2 ; 在无线系统帧 3内, 通过 PBCH发送传输块 3; 在无线系统帧 4 内 , 通过 PBCH发送传输块 4; 在无线系统帧 5 内 , 通过 PBCH发送传输块 5 ; 在无线系统帧 6 内 , 通过 PBCH发送传输块 6; 在无线系统 帧 7内, 通过 PBCH发送传输块 7。
本申请实施例提供的通信方法,通过第一处理方式隐含指示系统帧号的最小 3个比特 位, 能够减少传输的数据量, 从而提高传输的效率。
( 2 )在 TTI 3内, SS burs t set的周期为 20ms , 基站分别在无线系统帧 0、 无线系 统帧 1、 无线系统帧 4和无线系统帧 6内通过 PBCH传输 SFN。
具体而言, 基站可以根据通过第一处理方式隐含指示的系统帧号的最小 3个比特位, 确定无线系统帧的系统帧号的最小 3 个比特位与在该无线系统帧内发送的传输块的映射 关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000, 对应于传输块 0; 无线系统 帧 1的系统帧号的最小 3个比特为 010, 对应于传输块 2; 无线系统帧 4的系统帧号的最 小 3个比特为 100, 对应于传输块 4; 无线系统帧 6的系统帧号的最小 3个比特为 110, 对应于传输块 6。
因此, 基站在无线系统帧 0内, 通过 PBCH发送传输块 0; 在无线系统帧 1 内, 通过 PBCH发送传输块 2; 在无线系统帧 4 内 , 通过 PBCH发送传输块 4; 在无线系统帧 6内, 通过 PBCH发送传输块 6。
应理解, SS burst set的周期为 20ms时, 在无线系统帧 0、 无线帧 2、 无线系统帧 4 和无线系统帧 6内通过 PBCH传输 SFN的方法与 SS burst set的周期为 10ms时, 在无线 系统帧 0、 无线帧 2、 无线系统帧 4和无线系统帧 6内通过 PBCH传输 SFN的方法相同。
假设在 TTI 2内, SS burst set的周期为第一周期 (例如为 10ms ) , 第一 PBCH所在 的无线系统帧的系统帧号为 0011010里 (即在 TTI 2内的无线系统帧 1 ) , 基站通过第一 处理方式对该第一 MIB进行处理,得到第一传输块,该第一处理方式用于指示该第一 PBCH 所在的无线系统帧的系统帧号的最小 3 个比特位(如下划线所示的 3 个比特位) , 第一 MIB包含该第一 PBCH所在的无线系统帧的系统帧号中的 0011010 (最高 7个比特) 。
假设在 TTI 3内, SS burst set的周期为第二周期 (例如为 20ms ) , 若第二 PBCH所 在的无线系统帧的系统帧号为 0110110里 (即在 TTI 3内的无线系统帧 1 ) , 基站通过第 二处理方式对该第二 MIB 进行处理, 得到第二传输块, 该第二处理方式用于指示该第二 PBCH所在的无线系统帧的系统帧号的最小 3个比特位(如下划线所示的 3个比特位) , 第二 MIB包含该第二 PBCH所在的无线系统帧的系统帧号中的 0110110 (最高 7个比特) ; 若第二 PBCH所在的无线系统帧的系统帧号为 0110110 (即在 TTI 3内的无线系统帧 2 ), 基站通过第二处理方式对该第二 MIB进行处理, 得到第二传输块, 该第二处理方式用于指 示该第二 PBCH所在的无线系统帧的系统帧号的最小 3个比特位(如下划线所示的 3个比 特位) , 第二 MIB包含该第二 PBCH所在的无线系统帧的系统帧号中的 0110110最高 7个 比特) 。
因此, 无论在不同的周期下, 通过 PBCH传输的系统帧号相同还是不同, 基站都可以 釆用统一的方法通过 PBCH传输 SFN, 能够降低基站和 UE的复杂度。
( 3 )在 TTI 4内, SS burst set的周期为 40ms, 基站分别在无线系统帧 0和无线系 统帧 4内通过 PBCH传输 SFN。
具体而言, 基站可以根据通过第一处理方式隐含指示的系统帧号的最小 3个比特位, 确定无线系统帧的系统帧号的最小 3 个比特位与在该无线系统帧内发送的传输块的映射 关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000, 对应于传输块 0; 无线系统 帧 4的系统帧号的最小 3个比特为 100, 对应于传输块 4。
因此, 基站在无线系统帧 0内, 通过 PBCH发送传输块 0; 在无线系统帧 4 内, 通过 PBCH发送传输块 4。
应理解, SS burst set的周期为 40ms时,在无线系统帧 0和无线系统帧 4内通过 PBCH 传输 SFN的方法与 SS burst set的周期为 10ms时, 在无线系统帧 0和无线系统帧 4内通 过 PBCH传输 SFN的方法相同, 为避免重复, 此处不再赘述复。
(4)在 TTI 5 内, SS burst set的周期为 80ms, 基站在无线系统帧 0内通过 PBCH 传输 SFN。
具体而言, 基站可以根据通过第一处理方式隐含指示的系统帧号的最小 3个比特位, 确定无线系统帧的系统帧号的最小 3 个比特位与在该无线系统帧内发送的传输块的映射 关系。
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000, 对应于传输块 0。 基站在无 线系统帧 0内, 通过 PBCH发送传输块 0。
应理解, SS burst set的周期为 80ms时, 在无线系统帧 0内通过 PBCH传输 SFN的 方法与 SS burst set的周期为 10ms时, 在无线系统帧 0内通过 PBCH传输 SFN的方法相 同, 为避免重复, 此处不再赘述复。
(5)在 TTI 6内, SS burst set的周期为 160ms, 基站在无线系统帧 0内通过 PBCH 传输 SFN, 并在与该 TTI 6之后间隔一个 TTI的另一个 TTI内通过 PBCH传输下一次 SFN。
具体而言, 基站可以通过第一处理方式对第一 MIB进行处理, 得到第一传输块, 该第 一处理方式隐含指示 PBCH,
例如, 无线系统帧 0的系统帧号的最小 3个比特为 000, 对应于传输块 0。 基站在无 线系统帧 0内, 通过 PBCH发送传输块 0。
应理解, SS burst set的周期为 160ms时, 在无线系统帧 0内通过 PBCH传输 SFN的 方法与 SS burst set的周期为 10ms时, 在无线系统帧 0内通过 PBCH传输 SFN的方法相 同, 为避免重复, 此处不再赘述复。
(6)在 TTI 1 内, SS burst set的周期为 5ms, 基站在无线系统帧 0至无线系统帧 7 内通过 PBCH传输 SFN, 且在每个无线系统帧内, 传输两次 SS block, 即在前半帧和后 半帧分别传输 SS block, 其中, 前半帧传输的 SS block和后半帧传输的 SS block中可 以都包含 PBCH, 或者只有一个 SS block包含 PBCH。 由于前半帧和后半帧都位于相同的无 线系统帧, 因此, 在前半帧传输的 SS block中的 SFN和后半帧传输的 SS block中的 SFN 相同。
应理解, SS burst set的周期为 5ms时, 在无线系统帧 0_无线系统帧 7内通过 PBCH 传输 SFN的方法与 SS burst set的周期为 10ms时, 在无线系统帧 0_无线系统帧 7 内通 过 PBCH传输 SFN的方法相同, 为避免重复, 此处不再赘述复。
本申请实施例提供的通信方法, 基站在两种或者两种以上不同的 SS burst set 的周 期下, 无需针对每种 SS burst set周期分别制定相应的传输 SFN的方法, 而是通过第一 MIB传输系统帧号中的最高 7个比特, 并通过对该第一 MIB进行处理釆用的第一处理方式 隐含指示系统帧号中的最小 3个比特位, 能够降低基站和 UE的计算复杂度, 同时降低 UE 检测 SNF的复杂度。
可选地, 当该 SS burst set 的周期为该 SS burst set 所在的无线系统帧的长度的 一半时, 则基站在一个无线系统帧内需要发送两个 SS block, 即前半帧发送一个 SS block 和 /或后半帧发送一个 SS block, 因此基站需要向 UE指示 SS block的帧信息, 该帧信息 用于表示该 SS block在前半帧发送或在后半帧发送。
可选地, 基站可以通过多种方式指示帧信息, 本申请实施例对此不作限定。
作为一个可选实施例, 基站可以在通过第一处理方式, 对第一 MIB进行处理得到的传 输块中携带 1比特位的指示信息, 指示该帧信息。
例如, 该 1比特位的比特值为 0, 对应于 SS block是在前半帧发送的; 该 1比特位 的比特值为 1, 对应于 SS block是在后半帧发生的。
作为一个可选实施例, 基站可以通过釆用不同的丽 RS序列指示该帧信息, 或者可以 通过釆用丽 RS序列的不同频率偏移指示该帧信息。
例如, 基站可以与 UE预先约定, 通过釆用第一丽 RS序列指示该 SS block是在前半 帧发送的, 通过釆用第二丽 RS序列指示 SS block是在后半帧发送的。
又例如, 基站可以与 UE预先约定, 通过釆用第一丽 RS序列的第一频域偏移, 指示该 SS block是在前半帧发送的,通过釆用该第一丽 RS序列的第二频率偏移,指示该 SS block 是在后半帧发送的。
可选地, UE和基站可以通过协议约定帧信息与丽 RS序列和 /或丽 RS序列的频率偏移 之间的对应关系, 或者该基站可以通过高层信令指示 UE, 本申请实施例对此不作限定。
作为一个可选实施例, 基站可以通过该 SS block中包含的 PBCH占用的第一符号和第 二符号的位置, 指示该帧信息。
作为一个可选的实施例, 基站可以通过 SS block包含的内容指示帧信息。
例如, 基站和 UE可以预先约定通过 SS block中是否包含 PBCH, 指示该 SS block是 在前半帧发送的, 还是后半帧发送的。
作为一个可选实施例, 基站可以使用第一 MIB中的预留比特, 指示该帧信息, 或者该 基站可以复用该第一 MIB 中的比特, 指示该帧信息, 例如可以复用第一 MIB 中用于指示 SS block的比特位, 或者复用第一 MIB中用于指示 SS burst set的周期的比特, 本申请 实施例对此作限定。
本申请实施例提供的通信方法, 基站通过多种不同的方式指示 SS block的帧信息, 使得 UE能够得到更细粒度的系统帧号。
可选地, 基站在每个 SS burst set的周期中, 可以只在一个无线帧内发送 SS burst, 甚至在该无线帧中的每个半帧内发送 SS burst, 例如图 5和图 4中所示的每个 PBCH都可 以包含在一个 SS burst中。
还应理解,基站在每个 SS burst set的周期中,可以在每个无线帧内都发送 SS burst, 甚至在该每个无线帧中的每个半帧内发送 SS burst, 这个 SS burst set的周期内的所有 SS burst组成了该 SS burst set;。
例如, 图 5中示出了 SS burst set的周期包括的每个无线帧内都包含 SS burst的示 意图, 如图 5所示, TTI 1 中 SS burst set的周期为 20ms, 该 SS burst set 包括 2个 SS burst (即 1st SS burst和 2nd SS burst ) , 1st SS burst在 20ms的周期内的第一个 10ms 无线帧内发送, 2nd SS burst在 20ms的周期内的第二个 10ms无线帧内发送。 TTI 2中 SS burst set的周期为 20ms, 该 SS burst set包括 4个 SS burst (即 1st SS burst, 2nd SS burst, 3rd SS burst, 4 th SS burst ) , 1st SS burst在 20ms的周期内的第 1个 10ms无线 帧的前半帧内发送, 2nd SS burst在 20ms的周期内的第 1个 10ms无线帧的后半帧内发送, 3rd SS burst在 20ms的周期内的第 1个 10ms无线帧的前半帧内发送, 4thSS burst在 20ms 的周期内的第 1个 10ms无线帧的后半帧内发送。
应理解, 同一个无线帧内的 SS burst 中传输的系统帧号的相同的, 在每个无线系统 帧内通过 SS burst传输 SFN的方法与上述图 2至图 4中所描述的在每个无线帧内通过 PBCH 传输 SFN的方法类似, 为避免重复, 此处不再赘述。
图 6示出了本申请实施例提供的数据传输的通信装置 600的示意性框图。该通信装置 600包括:
确定单元 610, 用于确定待发送的第一广播信道 PBCH所在的无线系统帧的系统帧号, 该第一 PBCH包含在第一同步信号段集合 SS burst set中, 且该第一 SS burst set的周 期为多种周期中的任一种;
处理单元 620, 用于通过第一处理方式, 对第一主信息块 MIB进行处理, 得到第一传 输块, 该第一处理方式用于指示该确定单元 610确定的第一 PBCH所在无线系统帧的系统 帧号的部分比特位, 该第一 MIB包含该第一 PBCH所在无线系统帧的系统帧号中除该部分 比特位上的比特外的剩余比特;
发送单元 630, 用于在该第一 PBCH所在的无线系统帧内, 通过该第一 PBCH发送该处 理单元 620处理得到的该第一传输块。
可选地, 该第一 PBCH是在第一传输时间间隔 TTI 内发送的, 且在该第一 TTI 内该第 一 SS burst set的周期为该多种周期中的第一周期, 该确定单元还用于确定第二 TTI 内 待发送的第二 PBCH所在的无线系统帧的系统帧号, 该第二 PBCH包含在第二 SS burst set 中, 且该第二 SS burst set 的周期为该多种周期中的第二周期; 该处理单元还用于通过 该第一处理方式, 对第二 MIB进行处理, 得到第二传输块, 该第一处理方式用于指示该第 二 PBCH所在无线系统帧的系统帧号的该部分比特位,该第二 MIB包含该第二 PBCH所在无 线系统帧的系统帧号中除该部分比特位上的比特外的剩余比特;该发送单元还用于在该第 二 PBCH所在的无线系统帧内, 通过该第二 PBCH发送该第二传输块。
可选地, 该部分比特位包括倒数第 1个比特位和倒数第 3个比特位。
可选地, 该部分比特位包括最小 3个比特位。
可选地, 该第一处理方式包括循环冗余码校验 CRC校验、 循环移位、 加扰中的至少一 项。
本申请提供一种通信方法和通信装置, 能够针对不同的 SS burst set 的周期, 通过
PBCH传输 SFN。
另外,基站在两种或者两种以上不同的 SS burst set的周期下,无需针对每种 SS burst s e t周期分别制定相应的传输 SFN的方法,而是通过第一 MIB传输系统帧号中的剩余比特, 并通过对该第一 MIB进行处理釆用的第一处理方式隐含指示系统帧号中的部分比特位,能 够降低基站和 UE的计算复杂度, 同时降低 UE检测 SNF的复杂度。
在一个可选例子中, 本领域技术人员可以理解, 通信装置 600可以具体为上述方法实 施例中的网络设备,通信装置 600可以用于执行上述方法实施例中与网络设备对应的各个 流程和 /或步骤, 为避免重复, 在此不再赘述。
应理解, 这里的通信装置 600可以以功能单元的形式体现。 这里的术语 "单元,, 可以 指 ASIC、 电子电路、 用于执行一个或多个软件或固件程序的处理器(例如共享处理器、 专有处理器或组处理器等)和存储器、 合并逻辑电路和 /或其它支持所描述的功能的合适 组件。
图 7提供了本申请实施例提供的又一数据传输的通信装置 700的示意性框图。该通信 装置 700包括:
获取单元 710, 用于获取网络设备通过广播信道 PBCH发送的传输块, 该 PBCH包含在 同步信号段集合 SS burst set中, 且该 SS burst set的周期为多种周期中的任一种; 处理单元 720, 用于通过处理方式, 对该获取单元 710获取的该传输块进行处理, 得 到主信息块 MIB, 并通过该处理方式得到该 PBCH所在无线系统帧的系统帧号中的部分比 特位和该部分比特位上的比特, 该 MIB包含该 PBCH所在无线系统帧的系统帧号中除该部 分比特位上的比特外的剩余比特;
确定单元 730, 用于根据该处理单元 720处理得到的该部分比特和该剩余比特, 确定 该 PBCH所在的无线系统帧的系统帧号。
可选地, 该部分比特位包括倒数第 1个比特位和倒数第 3个比特位。
可选地, 该部分比特位包括最小 3个比特位。
可选地, 该处理方式包括循环冗余码校验 CRC校验、 循环移位、 解扰中的至少一项。 本申请提供一种通信方法和通信装置, 能够针对不同的 SS burst set 的周期, 通过 PBCH传输 SFN。
另外,基站在两种或者两种以上不同的 SS burst set的周期下,无需针对每种 SS burst set周期分别制定相应的传输 SFN的方法, 而是通过 MIB传输系统帧号中的剩余比特, 并 通过对该 MIB进行处理釆用的处理方式隐含指示系统帧号中的部分比特位, 能够降低基站 和 UE的计算复杂度, 同时降低 UE检测 SNF的复杂度。
在一个可选例子中, 本领域技术人员可以理解, 通信装置 700可以具体为上述方法实 施例中的 UE, 通信装置 700可以用于执行上述方法实施例中与 UE对应的各个流程和 /或 步骤, 为避免重复, 在此不再赘述。
应理解, 这里的通信装置 700可以以功能单元的形式体现。 这里的术语 "单元,, 可以 指 ASIC、 电子电路、 用于执行一个或多个软件或固件程序的处理器(例如共享处理器、 专有处理器或组处理器等)和存储器、 合并逻辑电路和 /或其它支持所描述的功能的合适 组件。
图 8提供了本申请实施例提供的又一数据传输的通信装置 800的示意性框图。该通信 装置 800包括处理器 810、 收发器 820和存储器 830。 其中, 处理器 810、 收发器 820和 存储器 830通过内部连接通路互相通信, 该存储器 830用于存储指令, 该处理器 810用于 执行该存储器 830存储的指令, 以控制该收发器 820发送信号和 /或接收信号。 可选地, 该装置包括的处理器、 存储器还可以通过芯片实现。
该处理器 810具体用于: 确定待发送的第一广播信道 PBCH所在的无线系统帧的系统 帧号, 该第一 PBCH包含在第一同步信号段集合 SS burst set中, 且该第一 SS burst set 的周期为多种周期中的任一种; 通过第一处理方式, 对第一主信息块 MIB进行处理, 得到 第一传输块, 该第一处理方式用于指示该第一 PBCH所在无线系统帧的系统帧号的部分比 特位, 该第一 MIB包含该第一 PBCH所在无线系统帧的系统帧号中除该部分比特位上的比 特外的剩余比特;控制该收发器 820在该第一 PBCH所在的无线系统帧内,通过该第一 PBCH 发送该第一传输块。
应理解, 通信装置 800可以具体为上述实施例中的网络设备, 并且可以用于执行上述 方法中网络设备对应的各个步骤和 /或流程。 可选地, 该存储器 820可以包括只读存储器 和随机存取存储器, 并向处理器提供指令和数据。 存储器的一部分还可以包括非易失性随 机存取存储器。 例如, 存储器还可以存储设备类型的信息。 该处理器 810可以用于执行存 储器中存储的指令, 并且当该处理器 810执行存储器中存储的指令时, 该处理器 810用于 执行与上述实施例中网络设备对应的各个步骤和 /或流程。
应理解, 在本申请实施例中, 上述通信装置的处理器可以是中央处理单元 (centra l proces s ing uni t , CPU ) , 该处理器还可以是其他通用处理器、 数字信号处理器( digi ta l s igna l proces s ing, DSP )、 专用集成电路 ( appl icat ion specif ic integrated circui t , ASIC ) 、 现场可编程门阵列 (f ield-programmable gate array, FPGA )或者其他可编程 逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是 ^敫处理器或 者该处理器也可以是任何常规的处理器等。
图 9示出了本申请实施例提供的又一数据传输的通信装置 900的示意性框图。该通信 装置 900包括处理器 910、 收发器 920和存储器 930。 其中, 处理器 910、 收发器 920和 存储器 930通过内部连接通路互相通信, 该存储器 930用于存储指令, 该处理器 910用于 执行该存储器 930存储的指令, 以控制该收发器 920发送信号和 /或接收信号。
可选地, 该装置包括的处理器、 存储器还可以通过芯片实现。
处理器 910具体用于: 控制该收发器 920获取网络设备通过广播信道 PBCH发送的传 输块, 该 PBCH包含在同步信号段集合 SS burs t set中, 且该 SS burs t set的周期为多 种周期中的任一种; 通过处理方式, 对该传输块进行处理, 得到主信息块 MIB, 并通过该 处理方式得到该 PBCH所在无线系统帧的系统帧号中的部分比特位和该部分比特位上的比 特, 该 MIB包含该 PBCH所在无线系统帧的系统帧号中除该部分比特位上的比特外的剩余 比特; 根据该部分比特和该剩余比特, 确定该 PBCH所在的无线系统帧的系统帧号。
应理解, 通信装置 900可以具体为上述实施例中的 UE, 并且可以用于执行上述方法 中 UE对应的各个步骤和 /或流程。 可选地, 该存储器 930可以包括只读存储器和随机存取 存储器, 并向处理器提供指令和数据。 存储器的一部分还可以包括非易失性随机存取存储 器。 例如, 存储器还可以存储设备类型的信息。 该处理器 910可以用于执行存储器中存储 的指令, 并且当该处理器 910执行存储器中存储的指令时, 该处理器 910用于执行与上述 实施例中 UE对应的各个步骤和 /或流程。
应理解, 在本申请实施例中, 处理器可以是中央处理单元(CPU ) , 处理器还可以是 其他通用处理器、 数字信号处理器(DSP ) 、 专用集成电路(ASIC ) 、 现场可编程门阵列 ( FPGA )或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用 处理器可以是 ^敫处理器或者该处理器也可以是任何常规的处理器等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。 这些功能究竟以 硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描述的系统、 通 信装置和单元的具体工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 通信装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的通信装置实施例仅仅是示意性的, 例如, 所 述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个 单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一 点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 通信装 置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元, 即可以比特于一个地方, 或者也可以分布到多个网 络单元上。 可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目 的。
另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各 个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解, 本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中, 包括若千指令用以使得一台计算机设备 (可以是个人计 算机, 服务器, 或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。 而 前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory ) 、 随机 存取存储器(RAM, Random Acces s Memory ) 、 磁碟或者光盘等各种可以存储程序代码的 介质。
以上所述, 仅为本申请的具体实施方式, 但本申请的保护范围并不局限于此, 任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖 在本申请的保护范围之内。 因此, 本申请的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种通信方法, 其特征在于, 包括:
确定待发送的广播信道 PBCH所在的无线系统帧的系统帧号,所述 PBCH包含在同步信 号段集合 SS bur s t s e t中, 且所述 SS bur s t s e t的周期为多种周期中的任一种;
将同一个初始化种子生成的伪随机序列分为多段伪随机序列,通过所述多段伪随机序 列对信息比特进行加扰, 得到传输块; 其中, 每段伪随机序列隐含部分比特位, 所述部分 比特位包括所述系统帧号的倒数第二和倒数第三位,或所述部分比特位包括所述系统帧号 的后三位;
在所述 PBCH所在的无线系统帧内 , 通过所述 PBCH发送所述传输块。
2、 根据权利要求 1所述的通信方法, 其特征在于, 当所述部分比特位包括所述系统 帧号的倒数第二和倒数第三位时, 所述多段伪随机序列包括第一段伪随机序列、 第二段伪 随机序列、 第三段伪随机序列和第一段伪随机序列; 其中,
所述第一段伪随机序列隐含的部分比特为 00 , 所述第二段伪随机序列隐含的部分比 特为 01 , 所述第三段伪随机序列隐含的部分比特为 10 , 所述第四段伪随机序列隐含的部 分比特为 11。
3、 根据权利要求 1或 2所述的通信方法, 其特征在于, 所述加扰为: 将伪随机序列 与信息比特做 b i t级异或操作。
4、 根据权利要求 1-3中任一项所述的通信方法, 其特征在于, 所述方法进一步包括: 基站和终端设备通过协议约定所述加扰的处理方式和每段伪随机序列隐含的部分比 特位。
5、 根据权利要求 1-4 中任一项所述的通信方法, 其特征在于, 所述方法还包括: 通 过所述无线系统帧的前半帧和 /或后半帧发送与所述系统帧号对应的 PBCH。
6、 根据权利要求 5所述的通信方法, 其特征在于, 所述方法还包括:
通过不同的丽 RS序列指示所述无线系统帧的半帧信息。
7、 根据权利要求 1-6 中任一项所述的通信方法, 其特征在于, 所述信息比特是主信 息块 MIB中的信息比特。
8、 一种通信方法, 其特征在于, 包括:
获取网络设备通过广播信道 PBCH发送的传输块, 所述 PBCH 包含在同步信号段集合 SS bur s t s e t中, 且所述 SS bur s t s e t的周期为多种周期中的任一种;
通过解扰方式,对所述传输块进行处理, 得到信息比特, 所述信息比特包含所述 PBCH 所在无线系统帧的系统帧号中除部分比特位外的剩余比特; 所述部分比特位包括所述系统 帧号的倒数第二和倒数第三位, 或所述部分比特位包括所述系统帧号的后三位。
9、 根据权利要求 8所述的通信方法, 其特征在于, 所述方法进一步包括: 使用伪随 机序列进行解扰。
10、 根据权利要求 8或 9所述的通信方法, 其特征在于, 所述方法还包括: 根据所述部分比特位上的比特和所述剩余比特, 确定所述 PBCH所在的无线系统帧的 系统帧号。
11、 根据权利要求 8-10 中任一项所述的通信方法, 其特征在于, 所述方法还包括: 通过所述无线系统帧的前半帧和 /或后半帧接收与所述系统帧号对应的 PBCH。
12、 根据权利要求 11所述的方法, 其特征在于, 所述方法还包括:
通过不同的丽 RS序列确定所述无线系统帧的半帧信息。
13、 一种通信方法, 其特征在于, 包括:
确定待发送的第一广播信道 PBCH所在的无线系统帧的系统帧号,所述第一 PBCH包含 在第一同步信号段集合 SS burs t set中, 且所述第一 SS burs t set的周期为多种周期中 的任一种;
通过第一处理方式, 对第一主信息块 MIB进行处理, 得到第一传输块, 所述第一处理 方式隐含指示所述第一 PBCH所在无线系统帧的系统帧号的部分比特位, 所述第一 MIB包 含所述第一 PBCH 所在无线系统帧的系统帧号中除所述部分比特位上的比特外的剩余比 特;
在所述第一 PBCH所在的无线系统帧内 , 通过所述第一 PBCH发送所述第一传输块。
14、 根据权利要求 13所述的通信方法, 其特征在于, 当所述处理方式为加扰时, 将 同一个初始化种子生成的伪随机序列分为多段,通过多段伪随机序列对所述剩余比特进行 力口扰。
15、 根据权利要求 13或 14所述的通信方法, 其特征在于, 所述多段伪随机序列包括 第一段伪随机序列、 第二段伪随机序列、 第三段伪随机序列和第一段伪随机序列; 其中, 所述第一段伪随机序列隐含指示的部分比特为 00 , 所述第二段伪随机序列隐含指示 的部分比特为 01 , 所述第三段伪随机序列隐含指示的部分比特为 10 , 所述第四段伪随机 序列隐含指示的部分比特为 11。
16、 根据权利要求 13-15中任一项所述的通信方法, 其特征在于, 所述方法还包括: 通过所述无线系统帧的前半帧和 /或后半帧发送与所述系统帧号对应的 PBCH。
17、 根据权利要求 16所述的通信方法, 其特征在于, 所述通过所述无线系统帧的前 半帧和 /或后半帧发送与所述系统帧号对应的 PBCH包括:
当所述 SS burs t set的周期为该 SS burs t set所在的无线系统帧的长度的一半时, 通过所述无线系统帧的前半帧和后半帧发送与所述系统帧号对应的 PBCH。
18、 根据权利要求 13-17中任一项所述的通信方法, 其特征在于, 所述 MIB包含所述 PBCH所在无线系统帧的系统帧号中的剩余比特;
所述剩余比特是所述无线系统帧的系统帧号中倒数第二位和倒数第三位之外的比特, 或所述剩余比特是所述无线系统帧的系统帧号中最后三位之外的比特。
19、 根据权利要求 16-18中任一项所述的通信方法, 其特征在于, 所述传输块中包括 1比特位的指示信息, 所述指示信息用于指示所述无线系统帧的半帧信息。
20、 根据权利要求 16-18中任一项所述的通信方法, 其特征在于, 所述方法还包括: 通过不同的丽 RS序列指示所述无线系统帧的半帧信息。
21、 根据权利要求 19或 20所述的通信方法, 其特征在于, 所述半帧信息指示所述 PBCH通过所述无线系统帧的前半帧发送, 或所述帧信息指示所述 PBCH通过所述无线系统 帧的后半帧发送。
11、 根据权利要求 13-21中任一项所述的通信方法, 其特征在于: 通过所述无线系统帧的倒数第二位和倒数第三位对所述剩余比特进行加扰; 或, 通过所述无线系统帧的倒数第一位、倒数第二位和倒数第三位对所述剩余比特进行加 扰。
23、 根据权利要求 13-22中任一项所述的通信方法, 其特征在于, 所述方法还包括: 通过不同的加扰方式对不同 PBCH的 MIB进行加扰, 以获取不同的传输块。
24、 根据权利要求 13所述的通信方法, 其特征在于, 所述第一 PBCH是在第一传输时 间间隔 TTI 内发送的, 且在所述第一 TTI 内所述第一 SS burs t set的周期为所述多种周 期中的第一周期, 所述通信方法还包括:
确定第二 TTI内待发送的第二 PBCH所在的无线系统帧的系统帧号,所述第二 PBCH包 含在第二 SS burs t set中, 且所述第二 SS burs t set的周期为所述多种周期中的第二周 期;
通过所述第一处理方式, 对第二 MIB进行处理, 得到第二传输块, 所述第一处理方式 隐含指示所述第二 PBCH所在无线系统帧的系统帧号的所述部分比特位, 所述第二 MIB包 含所述第二 PBCH 所在无线系统帧的系统帧号中除所述部分比特位上的比特外的剩余比 特;
在所述第二 PBCH所在的无线系统帧内, 通过所述第二 PBCH发送所述第二传输块。
25、 根据权利要求 13所述的通信方法, 其特征在于, 所述第一处理方式包括循环冗 余码校验 CRC校验、 循环移位、 加扰中的至少一项。
26、 一种通信方法, 其特征在于, 包括:
获取网络设备通过广播信道 PBCH发送的传输块, 所述 PBCH 包含在同步信号段集合
SS burs t set中, 且所述 SS burs t set的周期为多种周期中的任一种;
通过处理方式, 对所述传输块进行处理, 得到主信息块 MIB, 并通过所述处理方式得 到所述 PBCH所在无线系统帧的系统帧号中的部分比特位和所述部分比特位上的比特, 所 述 MIB包含所述 PBCH所在无线系统帧的系统帧号中除所述部分比特位上的比特外的剩余 比特;
根据所述部分比特和所述剩余比特, 确定所述 PBCH所在的无线系统帧的系统帧号。
27、 根据权利要求 26所述的通信方法, 其特征在于, 当所述处理方式为解扰时, 将 同一个初始化种子生成的伪随机序列分为多段,通过多段伪随机序列对所述剩余比特进行 解扰。
28、 根据权利要求 26或 27所述的通信方法, 其特征在于, 所述方法还包括: 通过所 述无线系统帧的前半帧和 /或后半帧接收与所述系统帧号对应的 PBCH。
29、 根据权利要求 28所述的通信方法, 其特征在于, 所述通过所述无线系统帧的前 半帧和 /或后半帧接收与所述系统帧号对应的 PBCH包括:
当所述 SS burs t set的周期为该 SS burs t set所在的无线系统帧的长度的一半时, 通过所述无线系统帧的前半帧和 /或后半帧接收与所述系统帧号对应的 PBCH。
30、 根据权利要求 26至 29 中任一项所述的方法, 其特征在于, 所述 MIB 包含所述 PBCH所在无线系统帧的系统帧号中的剩余比特;
所述剩余比特是所述无线系统帧的系统帧号中倒数第二位和倒数第三位之外的比特, 或所述剩余比特是所述无线系统帧的系统帧号中最后三位之外的比特。
31、 根据权利要求 28-30中任一项所述的方法, 其特征在于, 所述传输块中包括 1比 特位的指示信息, 才艮据所述指示信息确定所述无线系统帧的半帧信息。
32、 根据权利要求 28-30中任一项所述的方法, 其特征在于, 所述方法还包括: 通过不同的丽 RS序列确定所述无线系统帧的半帧信息。
33、 根据权利要求 31或 32所述的方法, 其特征在于, 所述半帧信息指示所述 PBCH 通过所述无线系统帧的前半帧发送, 或所述帧信息指示所述 PBCH通过所述无线系统帧的 后半帧发送。
34、 根据权利要求 26所述的通信方法, 其特征在于, 所述处理方式包括循环冗余码 校验 CRC校验、 循环移位、 解扰中的至少一项。
35、 一种数据传输的通信装置, 其特征在于, 包括:
确定单元,用于确定待发送的广播信道 PBCH所在的无线系统帧的系统帧号,所述 PBCH 包含在同步信号段集合 SS burs t set中, 且所述 SS burs t set的周期为多种周期中的任 一种;
处理单元, 用于将同一个初始化种子生成的伪随机序列分为多段伪随机序列, 通过所 述多段伪随机序列对信息比特进行加扰, 得到传输块; 其中, 每段伪随机序列隐含部分比 特位, 所述部分比特位包括所述系统帧号的倒数第二和倒数第三位, 或所述部分比特位包 括所述系统帧号的后三位;
发送单元, 用于在所述 PBCH所在的无线系统帧内 , 通过所述 PBCH发送所述传输块。
36、 根据权利要求 35所述的通信装置, 其特征在于, 当所述部分比特位包括所述系 统帧号的倒数第二和倒数第三位时, 所述多段伪随机序列包括第一段伪随机序列、 第二段 伪随机序列、 第三段伪随机序列和第一段伪随机序列; 其中,
所述第一段伪随机序列隐含的部分比特为 00 , 所述第二段伪随机序列隐含的部分比 特为 01 , 所述第三段伪随机序列隐含的部分比特为 10 , 所述第四段伪随机序列隐含的部 分比特为 11。
37、 根据权利要求 35或 36所述的通信装置, 其特征在于, 所述处理单元通过所述多 段伪随机序列对信息比特进行加扰包括:所述处理单元将伪随机序列与信息比特做 b i t级 异或操作。
38、 根据权利要求 35-37中任一项所述的通信装置, 其特征在于, 所述通信装置与终 端设备通过协议约定所述加扰的处理方式和每段伪随机序列隐含的部分比特位。
39、 根据权利要求 35-38中任一项所述的通信装置, 其特征在于, 所述发送单元还用 于通过所述无线系统帧的前半帧和 /或后半帧发送与所述系统帧号对应的 PBCH。
40、 根据权利要求 39所述的通信装置, 其特征在于, 所述处理单元还用于通过不同 的丽 RS序列指示所述无线系统帧的半帧信息。
41、 根据权利要求 35-40中任一项所述的通信装置, 其特征在于, 所述信息比特是主 信息块 MIB中的信息比特。
42、 一种数据传输的通信装置, 其特征在于, 包括:
获取单元, 用于网络设备通过广播信道 PBCH发送的传输块, 所述 PBCH包含在同步信 号段集合 SS burs t set中, 且所述 SS burs t set的周期为多种周期中的任一种;
处理单元, 用于通过解扰方式, 对所述传输块进行处理, 得到信息比特, 所述信息比 特包含所述 PBCH所在无线系统帧的系统帧号中除部分比特位外的剩余比特; 所述部分比 特位包括所述系统帧号的倒数第二和倒数第三位,或所述部分比特位包括所述系统帧号的 后三位。
43、 根据权利要求 42所述的通信装置, 其特征在于, 所述处理单元使用伪随机序列 进行解扰。
44、 根据权利要求 42或 43所述的通信装置, 其特征在于, 所述通信装置还包括: 确定单元, 用于根据所述部分比特位上的比特和所述剩余比特, 确定所述 PBCH所在 的无线系统帧的系统帧号。
45、 根据权利要求 42-44中任一项所述的通信装置, 其特征在于, 所述通信装置还包 括:
接收单元, 用于通过所述无线系统帧的前半帧和 /或后半帧接收与所述系统帧号对应 的 PBCH。
46、根据权利要求 45所述的装置,其特征在于,所述确定单元还用于通过不同的丽 RS 序列确定所述无线系统帧的半帧信息。
47、 一种数据传输的通信装置, 其特征在于, 包括:
确定单元, 用于确定待发送的第一广播信道 PBCH所在的无线系统帧的系统帧号, 所 述第一 PBCH包含在第一同步信号段集合 SS bur s t s e t中, 且所述第一 SS bur s t s e t的 周期为多种周期中的任一种;
处理单元,用于通过第一处理方式,对第一主信息块 MIB进行处理,得到第一传输块, 所述第一处理方式隐含指示所述确定单元确定的第一 PBCH所在无线系统帧的系统帧号的 部分比特位, 所述第一 MIB包含所述第一 PBCH所在无线系统帧的系统帧号中除所述部分 比特位上的比特外的剩余比特;
发送单元, 用于在所述第一 PBCH所在的无线系统帧内 , 通过所述第一 PBCH发送所述 处理单元处理得到的所述第一传输块。
48、 根据权利要求 47所述的通信装置, 其特征在于, 所述处理单元还用于将同一个 初始化种子生成的伪随机序列分为多段, 通过多段伪随机序列对所述剩余比特进行加扰。
49、 根据权利要求 47或 48所述的通信装置, 其特征在于, 所述多段伪随机序列包括 第一段伪随机序列、 第二段伪随机序列、 第三段伪随机序列和第一段伪随机序列; 其中, 所述第一段伪随机序列隐含指示的部分比特为 00 , 所述第二段伪随机序列隐含指示 的部分比特为 01 , 所述第三段伪随机序列隐含指示的部分比特为 10 , 所述第四段伪随机 序列隐含指示的部分比特为 11。
50、 根据权利要求 47-49中任一项所述的通信装置, 其特征在于, 所述发送单元还用 于通过所述无线系统帧的前半帧和 /或后半帧发送与所述系统帧号对应的 PBCH。
51、 根据权利要求 50所述的通信装置, 其特征在于, 当所述 SS burs t s e t的周期为 该 SS bur s t se t所在的无线系统帧的长度的一半时, 所述发送单元还用于通过所述无线 系统帧的前半帧和后半帧发送与所述系统帧号对应的 PBCH。
52、 根据权利要求 47-51中任一项所述的通信装置, 其特征在于, 所述 MIB包含所述 PBCH所在无线系统帧的系统帧号中的剩余比特;
所述剩余比特是所述无线系统帧的系统帧号中倒数第二位和倒数第三位之外的比特, 或所述剩余比特是所述无线系统帧的系统帧号中最后三位之外的比特。
53、 根据权利要求 50-52中任一项所述的通信装置, 其特征在于, 所述传输块中包括 1比特位的指示信息, 所述指示信息用于指示所述无线系统帧的半帧信息。
54、 根据权利要求 50-52中任一项所述的通信装置, 其特征在于, 所述处理单元还用 于通过不同的丽 RS序列指示所述无线系统帧的半帧信息。
55、 根据权利要求 53或 54 所述的通信装置, 其特征在于, 所述半帧信息指示所述 PBCH通过所述无线系统帧的前半帧发送, 或所述帧信息指示所述 PBCH通过所述无线系统 帧的后半帧发送。
56、 根据权利要求 47-55中任一项所述的通信装置, 其特征在于:
所述处理单元还用于通过所述无线系统帧的倒数第二位和倒数第三位对所述剩余比 特进行加扰; 或,
所述处理单元还用于通过所述无线系统帧的倒数第一位、倒数第二位和倒数第三位对 所述剩余比特进行加扰。
57、 根据权利要求 47-56中任一项所述的通信装置, 其特征在于, 所述处理单元还用 于通过不同的加扰方式对不同 PBCH的 MIB进行加扰, 以获取不同的传输块。
58、 根据权利要求 47所述的通信装置, 其特征在于, 所述第一 PBCH是在第一传输时 间间隔 TTI 内发送的, 且在所述第一 TTI 内所述第一 SS burs t set的周期为所述多种周 期中的第一周期,
所述确定单元还用于确定第二 TTI 内待发送的第二 PBCH所在的无线系统帧的系统帧 号, 所述第二 PBCH包含在第二 SS burs t set中, 且所述第二 SS burs t set的周期为所 述多种周期中的第二周期;
所述处理单元还用于通过所述第一处理方式,对第二 MIB进行处理,得到第二传输块, 所述第一处理方式隐含指示所述第二 PBCH 所在无线系统帧的系统帧号的所述部分比特 位, 所述第二 MIB包含所述第二 PBCH所在无线系统帧的系统帧号中除所述部分比特位上 的比特外的剩余比特;
所述发送单元还用于在所述第二 PBCH所在的无线系统帧内 ,通过所述第二 PBCH发送 所述第二传输块。
59、 根据权利要求 47所述的通信装置, 其特征在于, 所述第一处理方式包括循环冗 余码校验 CRC校验、 循环移位、 加扰中的至少一项。
60、 一种数据传输的通信装置, 其特征在于, 包括:
获取单元, 用于获取网络设备通过广播信道 PBCH发送的第一传输块, 所述 PBCH包含 在第一同步信号段集合 SS burs t set中, 且所述第一 SS burs t set的周期为多种周期中 的任一种;
处理单元,用于通过第一处理方式,对所述获取单元获取的所述第一传输块进行处理, 得到第一主信息块 MIB, 并通过所述第一处理方式得到所述 PBCH所在无线系统帧的系统 帧号中的部分比特位和所述部分比特位上的比特, 所述第一 MIB包含所述 PBCH所在无线 系统帧的系统帧号中除所述部分比特位上的比特外的剩余比特;
确定单元, 用于根据所述处理单元处理得到的所述部分比特和所述剩余比特, 确定所 述第一 PBCH所在的无线系统帧的系统帧号。
61、 根据权利要求 60所述的通信装置, 其特征在于, 所述处理单元还用于将同一个 初始化种子生成的伪随机序列分为多段, 通过多段伪随机序列对所述剩余比特进行解扰。
62、 根据权利要求 60或 61所述的通信装置, 其特征在于, 所述通信装置还包括接收 单元, 用于通过所述无线系统帧的前半帧和 /或后半帧接收与所述系统帧号对应的 PBCH。
63、 根据权利要求 62所述的通信装置, 其特征在于, 当所述 SS burs t set的周期为 该 SS burs t set所在的无线系统帧的长度的一半时, 所述接收单元通过所述无线系统帧 的前半帧和 /或后半帧接收与所述系统帧号对应的 PBCH。
64、根据权利要求 60-63中任一项所述的装置, 其特征在于, 所述 MIB包含所述 PBCH 所在无线系统帧的系统帧号中的剩余比特;
所述剩余比特是所述无线系统帧的系统帧号中倒数第二位和倒数第三位之外的比特, 或所述剩余比特是所述无线系统帧的系统帧号中最后三位之外的比特。
65、 根据权利要求 62-64中任一项所述的装置, 其特征在于, 所述传输块中包括 1比 特位的指示信息, 所述确定单元还用于根据所述指示信息确定所述无线系统帧的半帧信 息。
66、 根据权利要求 62-64中任一项所述的装置, 其特征在于, 所述确定单元还用于通 过不同的丽 RS序列确定所述无线系统帧的半帧信息。
67、 根据权利要求 65或 66所述的装置, 其特征在于, 所述半帧信息指示所述 PBCH 通过所述无线系统帧的前半帧发送, 或所述帧信息指示所述 PBCH通过所述无线系统帧的 后半帧发送。
68、 根据权利要求 60所述的通信装置, 其特征在于, 所述第一处理方式包括循环冗 余码校验 CRC校验、 循环移位、 解扰中的至少一项。
69、 一种数据传输的通信装置, 其特征在于, 包括: 存储器和处理器, 其中, 所述存 储器用于存储指令, 所述处理器用于执行所述存储器存储的所述指令, 以在执行所述指令 时执行如权利要求 1至 7中或权利要求 13-25中任一项所述的方法。
70、 一种数据传输的通信装置, 其特征在于, 包括: 存储器和处理器, 其中, 所述存 储器用于存储指令, 所述处理器用于执行所述存储器存储的所述指令, 以在执行所述指令 时执行如权利要求 8至 12中或权利要求 26-34中任一项所述的方法。
71、 一种计算机可读存储介质, 包括指令, 当所述指令在计算机上运行时, 使得所述 计算机执行如权利要求 1至 7中或权利要求 13-25中任一项所述的方法。
72、 一种计算机可读存储介质, 包括指令, 当所述指令在计算机上运行时, 使得所述 计算机执行如权利要求 8至 12中或权利要求 26-34中任一项所述的方法。
PCT/CN2018/085696 2017-05-05 2018-05-04 通信方法和通信装置 WO2018202156A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP22207846.1A EP4207888A1 (en) 2017-05-05 2018-05-04 Communication method and communication apparatus
EP18795259.3A EP3518591B1 (en) 2017-05-05 2018-05-04 Communication method and communication apparatus
RU2019139244A RU2776677C2 (ru) 2017-05-05 2018-05-04 Способ связи и устройство связи
JP2019560762A JP6903390B2 (ja) 2017-05-05 2018-05-04 通信方法および通信装置
KR1020197035362A KR102308291B1 (ko) 2017-05-05 2018-05-04 통신 방법 및 통신 장치
AU2018261988A AU2018261988C1 (en) 2017-05-05 2018-05-04 Communication method and communications apparatus
MX2019013209A MX2019013209A (es) 2017-05-05 2018-05-04 Metodo de comunicacion y aparato de comunicaciones.
BR112019023172-2A BR112019023172B1 (pt) 2017-05-05 2018-05-04 Método de comunicação e aparelho de comunicação
US16/532,708 US11115904B2 (en) 2017-05-05 2019-08-06 Communication method and communications apparatus
US17/458,538 US11711751B2 (en) 2017-05-05 2021-08-26 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710314110.9 2017-05-05
CN201710314110.9A CN108811073B (zh) 2017-05-05 2017-05-05 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/532,708 Continuation US11115904B2 (en) 2017-05-05 2019-08-06 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2018202156A1 true WO2018202156A1 (zh) 2018-11-08

Family

ID=64016876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085696 WO2018202156A1 (zh) 2017-05-05 2018-05-04 通信方法和通信装置

Country Status (9)

Country Link
US (2) US11115904B2 (zh)
EP (2) EP4207888A1 (zh)
JP (1) JP6903390B2 (zh)
KR (1) KR102308291B1 (zh)
CN (3) CN109302741B (zh)
AU (1) AU2018261988C1 (zh)
BR (1) BR112019023172B1 (zh)
MX (1) MX2019013209A (zh)
WO (1) WO2018202156A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245537B (zh) * 2018-11-29 2021-06-01 华为技术有限公司 一种测量方法及装置
CN112689970B (zh) * 2020-03-31 2022-05-17 华为技术有限公司 一种通信方法及装置
CN115278705B (zh) * 2020-07-10 2024-05-14 展讯半导体(成都)有限公司 通信时序规划方法、装置、相关设备、存储介质及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016032200A2 (ko) * 2014-08-28 2016-03-03 엘지전자(주) 무선 통신 시스템에서 포지셔닝(positioning)을 수행하기 위한 방법 및 이를 위한 장치
WO2016036154A1 (ko) * 2014-09-04 2016-03-10 엘지전자(주) 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치
CN105900361A (zh) * 2014-01-15 2016-08-24 Lg电子株式会社 在无线通信系统中执行小区搜索过程的方法以及基于搜索信号执行搜索过程的用户设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2439796C2 (ru) 2007-06-05 2012-01-10 Квэлкомм Инкорпорейтед Преобразование псевдослучайной последовательности в беспроводной связи
CN102271023B (zh) * 2010-09-30 2013-01-23 重庆重邮信科通信技术有限公司 长期演进lte系统的系统帧号检测方法及装置
CN102035623B (zh) * 2010-12-21 2013-03-13 大唐移动通信设备有限公司 一种确定系统帧号的方法及装置
WO2012109542A1 (en) 2011-02-11 2012-08-16 Interdigital Patent Holdings, Inc Systems and methods for an enhanced control channel
US8937918B2 (en) * 2011-10-29 2015-01-20 Ofinno Technologies, Llc Efficient special subframe allocation
US9893853B2 (en) * 2012-11-01 2018-02-13 Lg Electronics Inc. Method and apparatus for transceiving reference signal in wireless communication system
CN103944699A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 一种系统帧序号信息的传输方法、装置及系统
CN103944663B (zh) * 2013-01-18 2017-11-14 电信科学技术研究院 一种增强pbch的传输方法及装置
CN105144731B (zh) * 2013-03-17 2018-11-09 Lg 电子株式会社 分配广播信道的方法、发送和接收广播信道信号的方法、以及用于支持其的设备
KR20150140273A (ko) * 2013-03-21 2015-12-15 엘지전자 주식회사 방송채널 방법, 방송채널신호 송수신 방법 및 이를 지원하는 장치
CN104125037B (zh) * 2013-04-25 2018-10-26 中兴通讯股份有限公司 参考信号配置信息的处理方法、装置和系统
US9419750B2 (en) * 2013-06-05 2016-08-16 Texas Instruments Incorporated NLOS wireless backhaul uplink communication
US9516541B2 (en) * 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
US9775134B2 (en) * 2013-09-20 2017-09-26 Samsung Electronics Co., Ltd. System and method for coverage enhancements of broadcast channels
SG11201606699XA (en) * 2014-02-13 2016-09-29 Lg Electronics Inc Method for transmitting/receiving synchronization signal for d2d communication in wireless communication system, and apparatus therefor
WO2015200667A1 (en) * 2014-06-27 2015-12-30 Intel IP Corporation Method and apparatus of ue and enb for mtc with narrowband deployment
CN108141815A (zh) 2015-08-14 2018-06-08 瑞典爱立信有限公司 无线网络中的系统信息广播
EP3367601B1 (en) * 2015-10-19 2022-03-09 LG Electronics Inc. Method and user equipment for receiving downlink signals, and method and base station for transmitting downlink signals
CN106455040B (zh) * 2016-11-30 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
WO2018129147A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Error check-based synchronization and broadcast channel
EP4152675A1 (en) * 2017-02-07 2023-03-22 Innovative Technology Lab Co., Ltd. Method and apparatus for broadcast channel configuration and broadccast channel transmission and reception for communication system
WO2018174587A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for pbch transmission in a multi-beam based system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900361A (zh) * 2014-01-15 2016-08-24 Lg电子株式会社 在无线通信系统中执行小区搜索过程的方法以及基于搜索信号执行搜索过程的用户设备
WO2016032200A2 (ko) * 2014-08-28 2016-03-03 엘지전자(주) 무선 통신 시스템에서 포지셔닝(positioning)을 수행하기 위한 방법 및 이를 위한 장치
WO2016036154A1 (ko) * 2014-09-04 2016-03-10 엘지전자(주) 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Acquisition of Minimum SI", R2-1700477, 3GPP TSG-RAN WG 2 NR AD HOC, 19 January 2017 (2017-01-19), XP051204025 *
ERICSSON: "FeMBMS Agreements List", R1-1613790, 3GPP TSG-RAN WG 1 MEETING #87, 18 November 2016 (2016-11-18), XP051191620 *
ERICSSON: "Synchronization and Acquisition of System Information for FeMBMS", R1-1609677, 3GP PTSG-RANWG 1 MEETING #86BIS, 14 October 2016 (2016-10-14), XP051158814 *
NOKIA ET AL.: "NR-PBCH Design", R1-1701060, 3GPPTSG-RAN WG1#NR, 20 January 2017 (2017-01-20), XP051202363 *

Also Published As

Publication number Publication date
CN109451575B (zh) 2019-11-19
AU2018261988B2 (en) 2021-07-15
US11115904B2 (en) 2021-09-07
KR102308291B1 (ko) 2021-10-01
EP4207888A1 (en) 2023-07-05
EP3518591B1 (en) 2022-12-28
CN109302741A (zh) 2019-02-01
JP6903390B2 (ja) 2021-07-14
RU2019139244A3 (zh) 2021-09-08
EP3518591A1 (en) 2019-07-31
CN109302741B (zh) 2019-11-19
US20190364486A1 (en) 2019-11-28
US20210410046A1 (en) 2021-12-30
RU2019139244A (ru) 2021-06-07
AU2018261988A1 (en) 2019-12-05
KR20200003103A (ko) 2020-01-08
AU2018261988C1 (en) 2022-02-10
CN108811073A (zh) 2018-11-13
EP3518591A4 (en) 2019-11-06
JP2020519204A (ja) 2020-06-25
MX2019013209A (es) 2020-07-27
CN108811073B (zh) 2023-08-18
BR112019023172A2 (pt) 2020-06-02
CN109451575A (zh) 2019-03-08
US11711751B2 (en) 2023-07-25
BR112019023172B1 (pt) 2022-04-26

Similar Documents

Publication Publication Date Title
US11711751B2 (en) Communication method and communications apparatus
EP3487095B1 (en) Transmission device, reception device and communication method
JP7354311B2 (ja) 処理装置、ネットワークノード、クライアント装置、およびそれらの方法
RU2754433C2 (ru) Способ и устройство для передачи
WO2018201470A1 (zh) 时间索引指示方法、定时获取方法及其装置、通信系统
CA3030677A1 (en) Transmission apparatus, reception apparatus, communication method, and integrated circuit
TWI754052B (zh) 傳輸信號的方法、網絡設備和終端設備
KR102443678B1 (ko) 잔여 최소 시스템 정보 통신 방법 및 관련 장치
TWI594590B (zh) 資訊傳輸方法及裝置
TWI766007B (zh) 傳輸信息的方法、終端設備和網絡設備
CN108631923B (zh) 传输信息的方法、网络设备和终端设备
CN107547171B (zh) 传输帧的方法和装置
RU2776677C2 (ru) Способ связи и устройство связи
US10985873B2 (en) CRC bits for information transmission method and device
WO2018202062A1 (zh) 下行同步方法和设备
WO2014063592A1 (zh) 数据的传输方法及装置
WO2018201479A1 (zh) 信息指示方法、信息检测方法及其装置、通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018795259

Country of ref document: EP

Effective date: 20190425

ENP Entry into the national phase

Ref document number: 2019560762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019023172

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197035362

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018261988

Country of ref document: AU

Date of ref document: 20180504

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019023172

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191104

WWE Wipo information: entry into national phase

Ref document number: 519410486

Country of ref document: SA