WO2018201819A1 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2018201819A1
WO2018201819A1 PCT/CN2018/080410 CN2018080410W WO2018201819A1 WO 2018201819 A1 WO2018201819 A1 WO 2018201819A1 CN 2018080410 W CN2018080410 W CN 2018080410W WO 2018201819 A1 WO2018201819 A1 WO 2018201819A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission time
short
resource
time interval
sequence number
Prior art date
Application number
PCT/CN2018/080410
Other languages
English (en)
French (fr)
Inventor
杨瑾
卢有雄
黄双红
陈杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018201819A1 publication Critical patent/WO2018201819A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present disclosure relates to the field of communications, and in particular to an information transmission method and apparatus.
  • Vehicle networking communication is a special application of D2D communication in the Internet of Vehicles.
  • the vehicle networking system refers to providing vehicle information through sensors, vehicle terminals and electronic tags loaded on the vehicle, and adopts various communication technologies to realize the vehicle and the vehicle ( Vehicle to Vehicle (V2V), Vehicle to Person (V2P), Vehicle to Infrastructure (V2I), and information on the information network platform A system that effectively utilizes extraction, sharing, etc., and effectively controls vehicles and provides integrated services.
  • Vehicle networking can realize communication-based vehicle information notification and collision hazard warning.
  • Advanced wireless communication technology and next-generation information processing technology real-time information interaction between vehicle, vehicle, and roadside infrastructure can be realized, and each other can be informed.
  • State including vehicle position, speed, acceleration, driving route
  • learned road environment information collaboratively aware of road hazard conditions, timely provide a variety of collision warning information to prevent road traffic safety accidents, and vehicle networking communication becomes the current solution road A new way of thinking about traffic safety issues.
  • V2X vehicle-to-vehicle information exchange
  • SL edge link
  • the UE's Sidelink control and data information transmission are based on the LTE subframe subframe as the basic unit for information transmission, that is, one subframe subframe is used as a transmission time interval (Transmission Time). Interval, referred to as TTI). Due to the high demand for delay in some V2X service requirements, V2X communication with LTE Rel-14 standard is difficult to meet the severe delay requirements.
  • An embodiment of the present disclosure provides a method and an apparatus for transmitting information to at least solve the problem that a terminal cannot acquire a Sidelink resource configuration with a short TTI as a time unit in the related art.
  • an information transmission method including: receiving resource scheduling information sent by a network side; determining, according to a first timing relationship or a second timing relationship, an edge link resource indicated by the resource scheduling information a short transmission time interval, wherein the first timing relationship is a timing relationship between a sequence number of a subframe in which the resource scheduling information is located and a sequence number of the short transmission time interval in which the edge link resource is located,
  • the second timing relationship is a timing relationship between the sequence number of the short transmission time interval in which the resource scheduling information is located and the sequence number of the short transmission time interval in which the edge link resource is located, the first timing relationship or
  • the second timing relationship is configured by the system pre-defined or the network side; and at least one of the following information is transmitted on the edge link resource: control information, data information.
  • an information transmission apparatus including: a receiving module, configured to receive resource scheduling information sent by a network side; and a determining module configured to determine, according to the first timing relationship or the second timing relationship a short transmission time interval in which the edge link resource indicated by the resource scheduling information is located, where the first timing relationship is a sequence number of a subframe where the resource scheduling information is located and the short transmission where the edge link resource is located a timing relationship between the sequence numbers of the time intervals, where the second timing relationship is between the sequence number of the short transmission time interval in which the resource scheduling information is located and the sequence number of the short transmission time interval in which the edge link resource is located a timing relationship, the first timing relationship or the second timing relationship is predefined by a system or configured by a network; and the transmission module is configured to perform transmission of at least one of the following information on the edge link resource: control information, Data information.
  • a storage medium comprising a stored program, wherein the program executes any of the above methods when executed.
  • a processor for running a program wherein the program is executed to perform any of the methods described above.
  • the terminal receives the resource scheduling information sent by the network side, and determines, according to the first timing relationship or the second timing relationship, a short transmission time interval in which the edge link resource indicated by the scheduling information is located, where the first timing relationship is resource scheduling.
  • the second timing relationship is the sequence number of the short transmission time interval in which the resource scheduling information is located and the edge link resource.
  • the timing relationship between the sequence numbers of the short transmission time intervals, the first timing relationship or the second timing relationship is predefined by the system or configured by the network side; the terminal performs control information and/or data information transmission on the side link resources. Therefore, the problem that the terminal cannot obtain the Sidelink resource with the short TTI as the time unit in the related art can be solved.
  • the terminal can obtain the Sidelink short TTI resource and can transmit information on the configured Sidelink resource.
  • V2X vehicle-to-vehicle information exchange
  • FIG. 2 is a block diagram showing the hardware structure of a mobile terminal of an information transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a frame of an LTE system in the related art
  • FIG. 5 is a schematic structural diagram of an LTE system resource block RB in the related art
  • FIG. 6 is a schematic structural diagram of a short TTI resource of an LTE system in the related art
  • FIG. 7 is a schematic diagram of a timing relationship of an LTE system eNB scheduling PUSCH resources through DCI in the related art
  • FIG. 8 is a schematic diagram of a timing relationship of an LTE system eNB scheduling sPUSCH resources through sDCI in the related art
  • FIG. 9 is a schematic diagram of a subframe configuration in a Sidelink resource pool of an LTE system in the related art.
  • FIG. 10 is a schematic diagram (1) of a method for scheduling a Sidelink short TTI resource by DCI in this embodiment
  • 11 is a schematic diagram (2) of a method for scheduling a Sidelink short TTI resource by DCI in the present embodiment
  • FIG. 12 is a schematic diagram (1) of a method for scheduling a Sidelink short TTI resource by using sDCI in this embodiment
  • FIG. 13 is a schematic diagram (2) of a method for scheduling a Sidelink short TTI resource by using sDCI in this embodiment
  • FIG. 14 is a block diagram showing the structure of an information transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a hardware structural block diagram of a mobile terminal of an information transmission method according to an embodiment of the present disclosure.
  • mobile terminal 20 may include one or more (only one of which is shown in FIG. 2) processor 202 (processor 202 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA. ) a memory 204 for storing data, and a transmission device 206 for communication functions.
  • processor 202 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA.
  • memory 204 for storing data
  • a transmission device 206 for communication functions.
  • the structure shown in FIG. 2 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 20 may also include more or fewer components than those shown in FIG. 2, or have a different configuration than that shown in FIG. 2.
  • the memory 204 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the information transmission method in the embodiment of the present disclosure, and the processor 202 executes various kinds by executing software programs and modules stored in the memory 204. Functional application and data processing, that is, the above method is implemented.
  • Memory 204 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 204 can further include memory remotely located relative to processor 202, which can be connected to mobile terminal 20 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 206 is for receiving or transmitting data via a network.
  • the above specific network example may include a wireless network provided by a communication provider of the mobile terminal 20.
  • the transmission device 206 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 206 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 3 is a flowchart of an information transmission method according to an embodiment of the present disclosure. As shown in FIG. 3, the flow includes the following steps:
  • Step S302 receiving resource scheduling information sent by the network side
  • Step S304 determining, according to the first timing relationship or the second timing relationship, a short transmission time interval in which the edge link resource indicated by the resource scheduling information is located, where the first timing relationship is a sequence number of a subframe in which the resource scheduling information is located.
  • the timing relationship between the sequence numbers of the short transmission time intervals in which the edge link resources are located, where the second timing relationship is the sequence number of the short transmission time interval in which the resource scheduling information is located and the short transmission time of the edge link resource The timing relationship between the sequence numbers of the intervals, the first timing relationship or the second timing relationship is predefined by the system or configured on the network side;
  • Step S306 performing transmission of at least one of the following information on the edge link resource: control information, and data information.
  • the execution body of the foregoing steps may be a terminal, but is not limited thereto.
  • the terminal receives the resource scheduling information sent by the network side, and determines, according to the first timing relationship or the second timing relationship, a short transmission time interval in which the edge link resource indicated by the scheduling information is located, where the first timing relationship is a resource.
  • the timing relationship between the sequence number of the subframe in which the scheduling information is located and the sequence number of the short transmission time interval in which the edge link resource is located, and the second timing relationship is the sequence number and edge link resource of the short transmission time interval in which the resource scheduling information is located.
  • the timing relationship between the sequence numbers of the short transmission time intervals, the first timing relationship or the second timing relationship is predefined by the system or configured by the network side; the terminal performs control information and/or data on the determined side link Sidelink resources. Transmission of information.
  • the reachable terminal can obtain the configuration of the Sidelink resource with the short TTI as the time unit, and can transmit the information on the configured Sidelink resource.
  • the base station sends resource scheduling information to the terminal through DCI or sDCI.
  • the first timing relationship and the second timing relationship may be the same timing relationship, or may be different timing relationships.
  • the first timing relationship when the resource scheduling information is the downlink control information DCI or the short downlink control information sDCI, the first timing relationship includes: a sequence number of the subframe where the DCI or the sDCI is located, and the edge link. The offset between the sequence numbers of the short transmission time intervals in which the resource resides.
  • the second timing relationship when the resource scheduling information is the short downlink control information sDCI, the second timing relationship includes: a sequence number of the short transmission time interval in which the sDCI is located, and a short transmission time in which the edge link resource is located.
  • the offset between the sequence number of the short transmission time interval in which the sDCI is located and the sequence number of the short transmission time interval in which the edge link resource is located is the same as the subframe in which the DCI or sDCI described in the foregoing embodiment is located.
  • the offset between the sequence number and the sequence number of the short transmission time interval in which the edge link resource is located may be the same offset or a different offset.
  • the transmission time interval includes at least one of the following: determining the DCI or the foregoing according to the offset k 1 between the sequence number of the subframe in which the DCI or the sDCI is located and the sequence of the short transmission time interval in which the edge link resource is located.
  • k 1 -th transmission time is short short transmission time interval to the above-described link resources arranged side where the interval after the subframe where sDCI, wherein said k 1 is an M 1 is greater than or equal to the minimum so that the first k 1 short transmission time interval is a resource in the edge link resource pool, and k 1 and M 1 are positive integers, and the above M 1 is pre-configured by the system or indicated by the network side configuration; according to the above DCI or the sDCI k 2 of the short time after the transmission offset between the transmission time is short and the number of the frame where the above-mentioned boundary link resources interval number k 2, the above-described sub-frame is determined DCI sDCI located above or configured interval Of the short side link transmission time interval resource is located, wherein the k 2 is the number of logically contiguous side short transmission time interval link resource pool resources, said k 2 is a positive integer, k 2 or preconfigured by the system Indicated by the network side configuration.
  • determining, according to the offset between the sequence number of the short transmission time interval in which the sDCI is located and the sequence number of the short transmission time interval in which the edge link resource is located determining the short transmission of the edge link resource.
  • the time interval includes at least one of the following: determining the short transmission time of the sDCI according to the offset k 3 between the sequence number of the short transmission time interval in which the sDCI is located and the sequence number of the short transmission time interval in which the edge link resource is located.
  • the transmission time interval is a resource in the edge link resource pool, and the above k 3 and M 2 are positive integers, and the M 2 is pre-configured by the system or indicated by the network side configuration; according to the short transmission time interval sequence number of the sDCI and the foregoing edge number offset between the transmission time is short link resources located spaced k 4, short transmission time of the determination of k where sDCI interval after four short transmission time interval Transmission time of the short side where the link resources configured interval, wherein the logic k 4 consecutive transmission time is short side link number resource pool resource interval, said positive integer k 4, k 4 by the system Pre-configured or indicated by the network side configuration.
  • the foregoing edge link resource includes at least one of: a resource in a physical edge link control channel PSCCH with a short transmission time interval as a time unit; and a physical edge link shared channel in a PSSCH with a short transmission The time interval is a resource of time unit; the short structure physical side link control channel sPSCCH; the short structure physical side link shared channel sPSSCH.
  • the timing relationship between the resource scheduling indication signaling of the network side and the configured Sidelink short TTI resource is determined by using a predefined or network side configuration indication, and the indicated Sidelink is obtained.
  • Short TTI resources, and further use the indicated Sidelink short TTI resources for signal transmission which reduces the delay of the Sidelink resource scheduling, improves resource utilization, and avoids resource indication conflicts.
  • This embodiment provides a method for configuring the sidelink resource of the side link.
  • the resource scheduling instruction signaling between the network side and the configured Sidelink resource are determined by using the predefined or network side configuration indication.
  • the timing relationship is obtained by obtaining the indicated Sidelink resource in short TTI (hereinafter referred to as Sidelink short TTI resource), and further transmitting the signal using the indicated Sidelink short TTI resource.
  • Sidelink short TTI resource in short TTI (hereinafter referred to as Sidelink short TTI resource)
  • the timing relationship refers to the relative offset relationship between the subframe number or the short TTI sequence where the downlink control information DCI or the short structure downlink control information sDCI is located, and the configured Sidelink short TTI sequence number.
  • the network side in a subframe #n transmit the DCI
  • Sidelink short TTI resources are configured for the subframe #n after the logical sequence numbers of the k 2 th short TTI, the number Sidelink short TTI logic means
  • the resources in the Sidelink resource pool are logically consecutively numbered in short TTI time units;
  • Sidelink short TTI resources are configured for the first k 3 th short TTI after the short TTI # n, k M 3 is greater than a minimum value equal to 2, k 3 and satisfies the first short TTI th Sidelink resource pool is a resource;
  • the network side sending sDCI in short TTI # n, Sidelink short TTI resources are configured for the short TTI # n after a logical sequence number of k 4 th short TTI.
  • the M 1 , k 2 , M 2 , k 4 values in the above timing relationship are predefined by the system, or are indicated by the network side through high layer signaling and/or physical layer signaling configuration.
  • the Sidelink Short TTI resource includes any one or more of the following: PSCCH, PSSCH, sPSCCH, sPSSCH.
  • the network side includes one or more of the following entities: an evolved base station (eNB), a relay station (RN), a cell coordination entity (MCE), a gateway (GW), a mobility management device (MME), The Evolved Universal Terrestrial Radio Access Network (EUTRAN) Operation Management and Maintenance (OAM) Manager is described below by taking an eNB as a network side entity as an example.
  • eNB evolved base station
  • RN relay station
  • MCE cell coordination entity
  • GW gateway
  • MME mobility management device
  • EUTRAN Operation Management and Maintenance
  • radio resources divide resources in units of radio frames in the time domain, each radio frame is 10 ms, and includes 10 subframes. Each sub-frame is 1 ms, and is divided into two slots of 0.5 ms.
  • FIG. 4 is a schematic structural diagram of a frame of an LTE system in the related art, as shown in FIG. 4 .
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • each Each sub-frame contains 12 symbols, and each slot includes 6 symbols.
  • resources are divided in units of subcarriers, each of which contains 15 kHz or 7.5 kHz resources.
  • the minimum unit of the eNB scheduling the time-frequency resource for the UE is the RB (Resource Block), and the RB is defined as 1 slot in the time domain and continuous in the frequency domain.
  • FIG. 6 is a schematic diagram of a timing relationship of an LTE system eNB scheduling sPUSCH resources through sDCI in the related art, such as As shown in FIG. 6, each subframe can be divided into 6 sTTIs, each sTTI includes 2 or 3 OFDM/SC-FDMA symbols, or each subframe is divided into 2 sTTIs, and each sTTI includes 7 OFDM/SCs. -FDMA symbols, ie a slot as an sTTI.
  • the shorter time TTI structure enables faster resource scheduling to accommodate higher timeliness requirements.
  • the eNB sends the DCI to the UE on the PDCCH resource of the downlink subframe #n, and the DCI schedules the #n+4 subframe as the physical uplink shared channel configured by the UE.
  • the UE receives the DCI indication information carried on the PDCCH resource, and determines to use the PUSCH resource on the #n+4 subframe to perform information according to the timing relationship of the fixed #n subframe DCI scheduling indication #n+4 subframe PUSCH resource. Bearer transmission, as shown in Figure 7.
  • the eNB sends the sDCI to the UE on the sPDCCH resource of the DL short TTI#n, and the sDCI schedules the #n+k short TTI to be the sPUSCH resource configured by the UE, and the UE Receiving the sDCI indication information carried on the sPDCCH resource, determining, according to the timing relationship of the short TTI#n+k sPUSCH resource, the sDCI scheduling indication of the fixed short TTI#n, determining to use the sPUSCH resource on the short TTI#n+k for bearer transmission of information As shown in Figure 8.
  • the available resources of the V2X UE are configured in a resource pool manner.
  • the PSCCH resource pool and the PSSCH resource pool are respectively configured to carry the Sidelink control information and the data information, and the PSCCH resource pool and the PSSCH resource pool include the same subframe in the time domain, and are indicated in a bitmap manner.
  • the multiple subframes included in the PSCCH/PSSCH resource pool are a subset of the system uplink subframe Uplink subframe.
  • the subframes in the PSCCH/PSSCH resource pool may be discontinuously distributed in the time domain, and thus are relative to each uplink subframe.
  • the physical sequence number subframe index#m can logically align the subframes in the PSCCH/PSSCH resource pool, and redefine the logical consecutive subframe sequence number of each subframe in the resource pool, that is, logic subframe index#M, both The relationship is shown in Figure 9.
  • the same subframe, for example, subframe index #2, the corresponding logic subframe index is index #0.
  • the DCI indicates the Sidelink resource
  • the DCI is transmitted in the #n subframe
  • the corresponding scheduled Sidelink PSCCH/PSSCH resource is located in the #n+k subframe
  • the #n+k subframe is the subframe in the Sidelink resource pool.
  • the eNB indicates to the UE that the DCI of the Sidelink resource scheduling also needs a determined timing relationship to uniquely determine the indicated Sidelink short TTI resource.
  • a method and a device for configuring a Sidelink resource are proposed to solve the above technical problem.
  • the transmission scheme of the LTE sTTI structure is not used at present, and the generality is not discussed.
  • the sTTI subframe structure defined in the cellular communication (as shown in FIG. 6) is discussed.
  • the scheduled Sidelink short TTI resource is the kth short TTI after the subframe#n, and k is a minimum value greater than or equal to M, so that the indicated k short TTIs are resources in the Sidelink resource pool.
  • M is predefined by the system or indicated by the eNB through higher layer signaling or physical layer signaling.
  • the UE receives the DCI scheduling information of the eNB on the Sidelink short TTI in the subframe#n, and then presses the short TTI in the subframe in the Sidelink resource pool based on the subframe#n where the DCI is located.
  • the structure determines the minimum value k that satisfies the condition such that the kth short TTI after subframe#n is a resource in the Sidelink subframe, and k ⁇ M.
  • the eNB indicates the Sidelink short TTI resource scheduling for the UE in the DCI
  • the PDCCH resource for transmitting the DCI is located in the subframe#n
  • the Sidelink resource pool includes the subframes #n, #n+3, #n+4.
  • the Sidelink subframe adopts a structure of two short TTIs per subframe. Therefore, the eNB is configured as the Sidelink short TTI of the UE, that is, sTTI#4 in the subframe#n+3.
  • the UE determines the configured Sidelink short TTI resource according to the DCI indication of the eNB and the timing relationship between the subframe where the DCI indication information is located and the indicated Sidelink short TTI, and sends the Sidelink information on the indicated short TTI resource.
  • the scheduled Sidelink short TTI resource is the kth logical short TTI after the subframe#n.
  • the logic short TTI refers to a short TTI resource numbered in a logically consecutive order in the Sidelink subframe.
  • the kth logical sTTI after the subframe#n is determined to be the configured resource, and the resource is used for bearer transmission of the Sidelink information.
  • the eNB indicates the Sidelink short TTI resource scheduling for the UE in the DCI
  • the PDCCH resource for transmitting the DCI is located in the subframe#n
  • the Sidelink resource pool includes the subframes #n, #n+3, #n+4.
  • the Sidelink subframe adopts a structure of two short TTIs per subframe. Therefore, the eNB is configured with the Sidelink short TTI of the UE as the fourth logic short TTI after the subframe#n, that is, the logic sTTI#3 in the subframe#n+4.
  • the UE determines the configured Sidelink short TTI resource according to the DCI indication of the eNB and the timing relationship between the subframe where the DCI indication information is located and the indicated Sidelink short TTI, and sends the Sidelink information on the indicated short TTI resource.
  • the scheduled Sidelink short TTI resource is the kth short TTI after the short TTI#n, where k is a minimum value greater than or equal to M, so that the indication is The kth short TTI is a resource in the Sidelink resource pool.
  • the UE determines the minimum value k of the condition in the Sidelink resource pool according to the short TTI structure based on the short TTI#n where the sDCI is located. So that the kth short TTI after short TTI#n is a resource in Sidelink subframe, and k ⁇ M.
  • the eNB indicates a Sidelink short TTI resource scheduling for the UE in the sDCI, and the eNB adopts a structure of 6 short TTIs per subframe in the DL subframe, and the sPDCCH resource that sends the sDCI is located in the short TTI#n, and the Sidelink resource
  • the pool contains subframes #n, #n+2, #n+4.
  • the corresponding sTTI is located in the Sidelink subframe.
  • the UE determines the configured Sidelink short TTI resource according to the sDCI indication of the eNB and the timing relationship between the short TTI where the sDCI indication information is located and the indicated Sidelink short TTI, and sends the Sidelink information on the indicated short TTI resource.
  • the scheduled Sidelink short TTI resource is the kth logical short TTI after the short TTI#n.
  • the logic short TTI refers to a short TTI resource numbered in a logically consecutive order in the Sidelink subframe.
  • the UE uses the short TTI#n where the sDCI is located as the reference, and the child in the Sidelink resource pool.
  • the kth logical sTTI after the short TTI#n is determined to be the configured resource, and the resource is used for bearer transmission of the Sidelink information.
  • the eNB indicates a Sidelink short TTI resource scheduling for the UE in the sDCI, and the eNB adopts a structure of two short TTIs per subframe in the DL subframe, and the sPDCCH resource that sends the sDCI is located in the short TTI#n, and the Sidelink resource.
  • the pool contains subframes #n+2, #n+3, #n+4.
  • the Sidelink subframe adopts a structure of two short TTIs per subframe. Therefore, the IE is configured as the sixth logical short TTI after the subframe#n, that is, the logic sTTI#5 in the subframe#n+4.
  • the UE determines the configured Sidelink short TTI resource according to the sDCI indication of the eNB and the timing relationship between the subframe where the sDCI indication information is located and the indicated Sidelink short TTI, and sends the Sidelink information on the indicated short TTI resource.
  • the Sidelink sTTI resource determined by the UE according to the foregoing method may specifically include any one or more of PSCCH, PSSCH, sPSCCH, and sPSSCH resources.
  • the sPSCCH is a dedicated channel for carrying the Sidelink control information in the Sidelink short TTI structure
  • the sPSSCH is a channel for carrying the Sidelink data in the Sidelink short TTI structure.
  • an information transmission device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 14 is a structural block diagram of an information transmission apparatus according to an embodiment of the present disclosure. As shown in FIG. 14, the apparatus includes: a receiving module 1402, a determining module 1404, and a transmitting module 1406, which are described in detail below:
  • the receiving module 1402 is configured to receive the resource scheduling information sent by the network side, and the determining module 1404 is configured to be connected to the receiving module 1402 in the foregoing, and configured to determine, according to the first timing relationship or the second timing relationship, the edge link indicated by the resource scheduling information.
  • the first timing relationship is a timing relationship between a sequence number of the subframe in which the resource scheduling information is located and a sequence number of the short transmission time interval in which the edge link resource is located
  • the second The timing relationship is a timing relationship between the sequence number of the short transmission time interval in which the resource scheduling information is located and the sequence number of the short transmission time interval in which the edge link resource is located, where the first timing relationship or the second timing relationship is pre-
  • the transmission module 1406 is connected to the determining module 1404 in the foregoing, and is configured to perform transmission of at least one of the following information on the edge link resource: control information, data information.
  • the determining module 1404 includes one of the following: a first determining unit, configured to: when the resource scheduling information is DCI or short downlink control information sDCI, according to the DCI or the subframe where the sDCI is located The offset between the sequence number and the sequence number of the short transmission time interval in which the edge link resource is located determines the short transmission time interval in which the edge link resource is located; and the second determining unit is configured to use when the resource scheduling information is sDCI And determining, according to the offset between the sequence number of the short transmission time interval in which the sDCI is located and the sequence number of the short transmission time interval in which the edge link resource is located, the short transmission time interval in which the edge link resource is located.
  • a first determining unit configured to: when the resource scheduling information is DCI or short downlink control information sDCI, according to the DCI or the subframe where the sDCI is located The offset between the sequence number and the sequence number of the short transmission time interval in which the edge link resource is located determines the short transmission
  • the first determining unit includes at least one of the following: a first determining subunit, configured to use the sequence number of the subframe where the DCI or the sDCI is located, and the short transmission of the edge link resource
  • the offset k 1 between the sequence numbers of the time intervals is determined, and the k 1 short transmission time interval after the subframe in which the DCI or the sDCI is located is a short transmission time interval in which the configured edge link resources are located, where , the above-described k 1 is an M equal to or greater than the minimum value of 1, so that the k 1 -th transmission time interval shorter side link resource pool is a resource, said K 1, M 1 is a positive integer, M 1 by the above-described system Pre-configured or configured by the network side; the second determining sub-unit is configured to use an offset between the sequence number of the subframe where the DCI or the sDCI is located and the sequence number of the short transmission time interval where the edge link resource is located.
  • the foregoing second determining unit includes at least one of the following: a third determining subunit, configured to use, according to the sequence number of the short transmission time interval where the sDCI is located, and the short transmission time of the edge link resource offset between the number of intervals k 3, short transmission time of the determination of k 3 where sDCI short transmission time interval after the above-described transmission time interval shorter link resources arranged side where the spacer, wherein the k 3 is greater than or equal to the minimum of M 3, k 3 so that the first transmission time interval short side link resource pool is a resource, said k 3, M 3 being a positive integer, the above-described system is pre-M 3 Configuring or indicating by the network side; the fourth determining subunit is configured to: according to the offset k 4 between the sequence number of the short transmission time interval in which the sDCI is located and the short transmission time interval sequence number of the edge link resource determining a short transmission time of the first k 4 where sDCI short transmission time interval after the
  • the foregoing edge link resource includes at least one of: a resource in a physical edge link control channel PSCCH with a short transmission time interval as a time unit; and a physical edge link shared channel in a PSSCH with a short transmission The time interval is a resource of time unit; the short structure physical side link control channel sPSCCH; the short structure physical side link shared channel sPSSCH.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the above storage medium may be configured to store program code for performing the above steps.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present disclosure also provide an information transmission device including a memory and a processor for executing a program, wherein the program is executed to perform the steps of any of the above methods.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure is applicable to the field of communication, and solves the problem that the terminal cannot obtain the Sidelink resource with the short TTI as the time unit in the related art, and the terminal can obtain the Sidelink short TTI resource, and can transmit the information on the configured Sidelink resource. effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息传输方法及装置,所述方法包括:接收网络侧发送的资源调度信息;根据第一时序关系或第二时序关系确定资源调度信息指示的边链路(Sidelink)资源所在的短传输时间间隔(sTTI),其中,第一时序关系是资源调度信息所在的子帧的序号与边链路资源所在的sTTI的序号之间的时序关系,第二时序关系是资源调度信息所在的sTTI的序号与边链路资源所在的sTTI的序号之间的时序关系,第一时序关系或第二时序关系由系统预定义或者网络侧配置;在边链路的sTTI资源上进行以下信息至少之一的传输:控制信息、数据信息。本申请解决了终端无法获得以sTTI为时间单位的Sidelink资源配置的问题。

Description

信息传输方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种信息传输方法及装置。
背景技术
在长期演进(Long Term Evolution,简称为LTE)D2D(Device-to-Device)通信系统中,用户设备(User Equipment,简称为UE)之间有业务需要传输时,UE之间的业务数据不经过基站的转发,而是直接由数据源UE通过空中接口传输给目标UE。车联网通信是D2D通信在车联网中的一种特殊应用,车联网系统是指通过装载在车辆上的传感器、车载终端及电子标签等设备提供车辆信息,采用各种通信技术实现车与车(Vehicle to Vehicle,简称为V2V)、车与人(Vehicle to Person,简称为V2P)、车与基础设施(Vehicle to Infrastructure,简称为V2I)之间的互连互通,并在信息网络平台上对信息进行提取、共享等有效利用,对车辆进行有效的管控和提供综合服务的系统。车联网可以实现基于通信的车辆信息通知及碰撞危险预警,通过利用先进的无线通信技术和新一代信息处理技术,实现车与车、车与路侧基础设施间的实时信息交互,告知彼此目前的状态(包括车辆的位置、速度、加速度、行驶路径)及获知的道路环境信息,协作感知道路危险状况,及时提供多种碰撞预警信息,防止道路交通安全事故的发生,车联网通信成为当前解决道路交通安全问题的一种新的思路。
图1是相关技术中车与车的信息交换(vehicle to X简称为,V2X)通信结构示意图,如图1所示,V2X UE之间的无线链路称为边链路(Sidelink,简称为SL)。近年来随着新的移动通信技术的发展,基于LTE系统来解决车联网通信是热点研究之一,LTE标准体系中已定义了支持V2V通信的边链路Sidelink相关标准。在LTE Release 14标准中定义的V2V Sidelink通信方案中,UE的Sidelink控制及数据信息传输以LTE子帧subframe为基本单位,进行信息的传输,即以一个子帧subframe为一个传输时间间隔(Transmission Time Interval,简称为TTI)。由于V2X业务需求中,部分业务在时延方面的要求很高,以LTE Rel-14标准的V2X通信难以满足严苛的时延要求。
在Sidelink传输中,目前没有采用LTE短传输时间间隔(short TTI,简称为sTTI)结构的传输方案,则演进型节点B(evolved Node B,简称为eNB)无法对Sidelink配置指示short TTI资源,从而导致终端无法获得边链路的短传输时间间隔Sidelink short TTI资源的问题。
针对上述技术问题,相关技术中尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种信息传输方法及装置,以至少解决相关技术中终端无法获取以short TTI为时间单位的Sidelink资源配置的问题。
根据本公开的一个实施例,提供了一种信息传输方法,包括:接收网络侧发送的资源调度信息;根据第一时序关系或第二时序关系确定所述资源调度信息指示的边链路资源所在的短传输时间间隔,其中,所述第一时序关系是所述资源调度信息所在的子帧的序号与所述边链路资源所在的所述短传输时间间隔的序号之间的时序关系,所述第二时序关系是所述资源调度信息所在的所述短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的时序关系,所述第一时序关系或所述第二时序关系由系统预定义或网络侧配置;在所述边链路资源上进行以下信息至少之一的传输:控制信息,数据信息。
根据本公开的另一个实施例,还提供一种信息传输装置,包括:接收模块,设置为接收网络侧发送的资源调度信息;确定模块,设置为根据第一时序关系或第二时序关系确定所述资源调度信息指示的边链路资源所在的短传输时间间隔,其中,所述第一时序关系是所述资源调度信息所在的子帧的序号与所述边链路资源所在的所述短传输时间间隔的序号之间的时序关系,所述第二时序关系是所述资源调度信息所在的所述短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的时序关系,所述第一时序关系或所述第二时序关系由系统预定义或者网络侧配置;传输模块,设置为在所述边链路资源上进行以下信息至少之一的传输:控制信息,数据信息。
根据本公开的另一个实施例,还提供一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一方法。
根据本公开的另一个实施例,还提供一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一方法。
通过本公开,由于终端接收网络侧发送的资源调度信息,根据第一时序关系或第二时序关系确定调度信息指示的边链路资源所在的短传输时间间隔,其中,第一时序关系是资源调度信息所在的子帧的序号与边链路资源所在的所述短传输时间间隔的序号之间的时序关系,第二时序关系是资源调度信息所在的短传输时间间隔的序号与边链路资源所在的短传输时间间隔的序号之间的时序关系,第一时序关系或第二时序关系由系统预定义或者网络侧配置的;终端在边链路资源上进行控制信息和/或数据信息的传输。因此,可以解决相关技术中终端无法获得以short TTI为时间单位的Sidelink资源的问题。达到终端可以获得Sidelink short TTI资源,并可以在配置的Sidelink资源上进行信息的传输的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是相关技术中车与车的信息交换(vehicle to X简称为,V2X)通信结构示意图;
图2是本公开实施例的一种信息传输方法的移动终端的硬件结构框图;
图3是根据本公开实施例的信息传输方法的流程图;
图4是相关技术中LTE系统帧的结构示意图;
图5是相关技术中LTE系统资源块RB结构示意图;
图6是相关技术中LTE系统short TTI资源结构示意图;
图7是相关技术中LTE系统eNB通过DCI调度PUSCH资源的时序关系示意图;
图8是相关技术中LTE系统eNB通过sDCI调度sPUSCH资源的时序关系示意图;
图9是相关技术中LTE系统Sidelink资源池中的子帧配置示意图;
图10是本实施例中通过DCI调度Sidelink short TTI资源方法的示意图(一);
图11是本实施中通过DCI调度Sidelink short TTI资源方法的示意图(二);
图12是本实施例中通过sDCI调度Sidelink short TTI资源方法的示意图(一);
图13是本实施例中通过sDCI调度Sidelink short TTI资源方法的示意图(二);
图14是根据本公开实施例的信息传输装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是本公开实施例的一种信息传输方法的移动终端的硬件结构框图。如图2所示,移动终端20可以包括一个或多个(图2中仅示出一个)处理器202(处理器202可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器204、以及用于通信功能的传输装置206。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端20还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器204可用于存储应用软件的软件程序以及模块,如本公开实施例中的信息传输方法对应的程序指令/模块,处理器202通过运行存储在存储器204内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器204可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器204可进一步包括相对于处理器202远程设置的存储器,这些远程存储器可以通过网络连接至移动终端20。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置206用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端20的通信供应商提供的无线网络。在一个实例中,传输装置206包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置206可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种信息传输方法,图3是根据本公开实施例的信息传输方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,接收网络侧发送的资源调度信息;
步骤S304,根据第一时序关系或第二时序关系确定上述资源调度信息指示的边链路资源所在的短传输时间间隔,其中,上述第一时序关系是上述资源调度信息所在的子帧的序号与上述边链路资源所在的上述短传输时间间隔的序号之间的时序关系,上述第二时序关系是上述资源调度信息所在的上述短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔的序号之间的时序关系,上述第一时序关系或上述第二时序关系由系统预定义或者网络侧配置;
步骤S306,在上述边链路资源上进行以下信息至少之一的传输:控制信息,数据信息。
可选地,上述步骤的执行主体可以为终端,但不限于此。
通过本公开,由于终端接收网络侧发送的资源调度信息,根据第一时序关系或第二时序关系确定调度信息指示的边链路资源所在的短传输时间间隔,其中,,第一时序关系是资源调度信息所在的子帧的序号与边链路资源所在的所述短传输时间间隔的序号之间的时序关系,第二时序关系是资源调度信息所在的短传输时间间隔的序号与边链路资源所在的短传输时间间隔的序号之间的时序关系,第一时序关系或第二时序关系由系统预定义或者网络侧配置;终端在所确定的边链路Sidelink资源上进行控制信息和/或数据信息的传输。因此,可以解决相关技术中终端无法获得以short TTI为时间单位的Sidelink资源配置的问题。达到终端可以获得以short TTI为时间单位的Sidelink资源配置,并可以在所配置的Sidelink资源上进行信息的传输的效果。
在本实施例中,基站通过DCI或sDCI向终端发送资源调度信息。并且,第一时序关系与第二时序关系可以是相同的时序关系,也可以是不同的时序关系。
在一个可选的实施例中,在上述资源调度信息为下行控制信息DCI或短下行控制信息sDCI时,上述第一时序关系包括:上述DCI或上述sDCI所在的子帧的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量。
在一个可选的实施例中,在上述资源调度信息为短下行控制信息sDCI时,上述第二时序关系包括:上述sDCI所在的短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量。在本实施例中,sDCI所在的短传输时间间隔的序号与边链路资源所在的短传输时间间隔的序号之间的偏移量,与上述实施例中记载的DCI或sDCI所在的子帧的序号与边链路资源所在的短传输时间间隔的序号之间的偏移量可以是相同的偏移量,也可以是不同的偏移量。
在一个可选的实施例中,根据上述DCI或上述sDCI所在的子帧的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量确定上述边链路资源所在的短传输时间间隔,包括以下至少之一:根据上述DCI或上述sDCI所在的子帧的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量k 1,确定上述DCI或上述sDCI所在的子帧之后的第k 1个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 1为大于或者等于M 1的最小值,以使上述第k 1个短传输时间间隔是边链路资源池中的资源,上述k 1、M 1为正整数,上述M 1由系统预配置或由网络侧配置指示;根据上述DCI或上述sDCI所在 的子帧的序号与上述边链路资源所在的短传输时间间隔序号之间的偏移量k 2,确定上述DCI或上述sDCI所在的子帧之后的第k 2个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 2为边链路资源池中的短传输时间间隔资源的逻辑连续的序号,上述k 2为正整数,k 2由系统预配置或由网络侧配置指示。在本实施例中,上述M 1的取值可以是系统预配置给终端的,也可以是网络侧配置指示给终端的,终端根据上述M 1的值确定k 1的值。
在一个可选的实施例中,根据上述sDCI所在的短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量确定上述边链路资源所在的短传输时间间隔包括以下至少之一:根据上述sDCI所在的短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量k 3,确定上述sDCI所在的短传输时间间隔之后的第k 3个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 3为大于或者等于M 2的最小值,以使上述第k 3个短传输时间间隔是边链路资源池中的资源,上述k 3、M 2为正整数,上述M 2由系统预配置或由网络侧配置指示;根据上述sDCI所在的短传输时间间隔序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量k 4,确定上述sDCI所在的短传输时间间隔之后的第k 4个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 4为边链路资源池中的短传输时间间隔资源的逻辑连续的序号,上述k 4为正整数,k 4由系统预配置或由网络侧配置指示。
在一个可选的实施例中,上述边链路资源包括以下至少之一:物理边链路控制信道PSCCH中以短传输时间间隔为时间单位的资源;物理边链路共享信道PSSCH中以短传输时间间隔为时间单位的资源;短结构物理边链路控制信道sPSCCH;短结构物理边链路共享信道sPSSCH。
通过上述实施例,在Sidelink使用Short TTI结构情况下,通过预定义或网络侧配置指示确定网络侧的资源调度指示信令与所配置的Sidelink short TTI资源之间的时序关系,获得所指示的Sidelink short TTI资源,并进一步使用所指示的Sidelink short TTI资源进行信号的传输,达到降低Sidelink资源调度时延,提高资源利用率,避免资源指示冲突的效果。
下面结合具体实施例对本公开进行详细描述:
本实施例提出了一种边链路Sidelink资源配置的方法,在Sidelink使用Short TTI结构情况下,通过预定义或网络侧配置指示确定网络侧的资源调度指示信令与所配置的Sidelink资源之间的时序关系,获得所指示的以short TTI为单位的Sidelink资源(下面简称为Sidelink short TTI资源),并进一步使用所指示的Sidelink short TTI资源进行信号的传输。本实施例提出的方法具体包括:
根据系统预定义或网络侧配置指示的时序关系,确定所配置的Sidelink short TTI资源,并进一步在所配置的Sidelink short TTI资源上发送Sidelink control和data information其中至少之一,其中,
时序关系是指网络侧发送下行控制信息DCI或短结构下行控制信息sDCI所在的子帧序 号或所在的short TTI序号,与所配置的Sidelink short TTI序号之间的相对偏移关系。
网络侧在子帧#n(对应上述中的DCI所在的子帧序号)发送DCI,则所配置的Sidelink short TTI资源为所述子帧#n之后的第k 1个short TTI,k 1是大于等于M 1的最小值,且满足所述第k 1个short TTI是Sidelink资源池中的资源;
网络侧在子帧#n发送所述DCI,则所配置的Sidelink short TTI资源为子帧#n之后的按逻辑顺序编号的第k 2个short TTI,所述Sidelink short TTI的逻辑序号是指在Sidelink资源池中的资源上,以short TTI为时间单位进行逻辑连续的顺序编号;
网络侧在short TTI#n(对应上述中的sDCI所在的short TTI的序号)发送所述sDCI,则所配置的Sidelink short TTI资源为所述short TTI#n之后的第k 3个short TTI,k 3是大于等于M 2的最小值,且满足所述第k 3个short TTI是Sidelink资源池中的资源;
网络侧在short TTI#n发送sDCI,则所配置的Sidelink short TTI资源为所述short TTI#n之后的按逻辑顺序编号的第k 4个short TTI。
上述时序关系中的M 1,k 2,M 2,k 4值为系统预定义,或者由网络侧通过高层信令和/或物理层信令配置指示。
在Sidelink short TTI资源上发送Sidelink控制信息和数据信息其中至少之一包括,Sidelink Short TTI资源包含以下任意一项或多项:PSCCH,PSSCH,sPSCCH,sPSSCH。
本实施例中,网络侧包括以下实体中的一种或多种:演进型基站(eNB)、中继站(RN)、小区协作实体(MCE)、网关(GW)、移动性管理设备(MME)、演进型通用陆地无线接入网(EUTRAN)操作管理及维护(OAM)管理器,下面以eNB作为网络侧实体为例进行说明。
在LTE系统中,无线资源在时域上以无线帧为单位划分资源,每个无线帧为10ms,包含10个子帧。每个子帧为1ms,分为0.5ms的2个时隙(slot),图4是相关技术中LTE系统帧的结构示意图,如图4所示。当系统帧结构采用普通循环前缀(Normal Cyclic Prefix,简称Normal CP)时,每个子帧含有14个单载波频分多址(Single-carrier Frequency Division Multiple Access,简称SC-FDMA)符号或正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号,分为2个slot,每个slot上包括7个符号,当系统帧结构采用扩展循环前缀(Extended Cyclic Prefix,简称为Extended CP)时,每个子帧含有12个符号,每个slot上包括6个符号。在频域上,以子载波为单位划分资源,每个子载波包含15kHz或7.5kHz资源。按照上述时域和频域资源的划分单位,eNB为UE调度时频资源的最小单位为RB(Resource Block,资源块),RB定义为在时域上为1个slot,在频域上为连续的
Figure PCTCN2018080410-appb-000001
个子载波,
Figure PCTCN2018080410-appb-000002
如图5所示。
在LTE系统中,目前已定义了Short TTI资源结构。与上述以子帧为时域最小调度单元不同,系统中采用了更短的时域调度单元,即short TTI,图6是相关技术中LTE系统eNB 通过sDCI调度sPUSCH资源的时序关系的示意图,如图6所示,每个subframe可以划分为6个sTTI,每个sTTI中包含2或3个OFDM/SC-FDMA symbols,或者每个subframe划分为2个sTTI,每个sTTI包含7个OFDM/SC-FDMA symbols,即一个slot作为一个sTTI。更短时间的TTI结构,可以实现更快速的资源调度,以适应于更高时效性要求的业务。
在以子帧为时域调度单元的资源调度中,eNB在下行子帧#n的PDCCH资源上向UE发送DCI,DCI中调度指示了#n+4子帧为UE所配置的物理上行共享信道PUSCH资源,UE接收PDCCH资源上承载的DCI指示信息,根据固定的#n子帧DCI调度指示#n+4子帧PUSCH资源的时序关系,确定使用#n+4子帧上的PUSCH资源进行信息的承载传输,如图7所示。
在以short TTI为时域调度单元的资源调度中,eNB在DL short TTI#n的sPDCCH资源上向UE发送sDCI,sDCI中调度指示了#n+k short TTI为UE所配置的sPUSCH资源,UE接收sPDCCH资源上承载的sDCI指示信息,根据固定的short TTI#n的sDCI调度指示short TTI#n+k sPUSCH资源的时序关系,确定使用short TTI#n+k上的sPUSCH资源进行信息的承载传输,如图8所示。
在现有技术的V2X通信中,对V2X UE的可用资源以资源池的方式配置。分为PSCCH资源池和PSSCH资源池,分别用于承载Sidelink控制信息和数据信息,PSCCH资源池和PSSCH资源池在时域上包含相同的子帧,以bitmap的方式指示。PSCCH/PSSCH资源池中包含的多个子帧,是系统上行子帧Uplink subframe的子集,PSCCH/PSSCH资源池中的子帧在时域上可以不连续分布,因此相对于每个上行子帧的物理序号subframe index#m,可以对PSCCH/PSSCH资源池中的子帧进行逻辑连续排列,并重新定义资源池中的每个子帧的逻辑连续的子帧序号,即logic subframe index#M,二者的关系如图9所示。以图9的实例中,同一个子帧,例如subframe index#2,对应的logic subframe index为index#0。
在现有技术中DCI指示Sidelink资源时,在#n子帧发送DCI,则相应调度的Sidelink PSCCH/PSSCH资源位于#n+k子帧,#n+k子帧为Sidelink资源池中的子帧。当Sidelink资源采用short TTI结构时,eNB为UE指示Sidelink资源调度的DCI同样需要确定的时序关系,来唯一确定所指示的Sidelink short TTI资源。本实施例即针对此问题提出了一种Sidelink资源配置的方法及装置,用以解决上述技术问题。
在Sidelink传输中,目前没有采用LTE sTTI结构的传输方案,不失一般性的,本实施例中以蜂窝通信中已定义的sTTI子帧结构(如图6所示)为基础进行讨论。
方法一:
当eNB在subframe#n通过DCI发送Sidelink short TTI资源调度信息时,所调度的Sidelink short TTI资源为subframe#n之后的第k个short TTI,k为大于等于M的最小值,使所指示的第k个short TTI是Sidelink资源池中的资源。M的值由系统预定义,或者由eNB通过高层信令或物理层信令指示。
具体实施例1:
当系统预定义M=4时,则UE在subframe#n接收到eNB对Sidelink short TTI的DCI 调度信息后,以DCI所在的subframe#n为基准,在Sidelink资源池中的子帧中按short TTI结构确定符合条件的最小值k,使subframe#n之后的第k个short TTI是Sidelink subframe中的资源,且k≥M。
如图10所示,eNB在DCI中为UE指示Sidelink short TTI资源调度,发送DCI的PDCCH资源位于subframe#n,且Sidelink资源池中包含子帧#n,#n+3,#n+4。Sidelink子帧采用每个子帧2个short TTI的结构,因此eNB为UE所配置的Sidelink short TTI即subframe#n+3中的sTTI#4,此时满足条件k=5,k大于M,且所对应的sTTI位于Sidelink subframe中。UE根据eNB的DCI指示,以及DCI指示信息所在的子帧与所指示的Sidelink short TTI之间的时序关系,确定所配置的Sidelink short TTI资源,并在所指示的short TTI资源上发送Sidelink信息。
方法二:
当eNB在subframe#n通过DCI发送Sidelink short TTI调度信息时,所调度的Sidelink short TTI资源为subframe#n之后的第k个logic short TTI。所述的logic short TTI是指在Sidelink subframe中按逻辑连续的顺序编号的short TTI资源。
具体实施例2:
eNB通过RRC消息指示UE对Sidelink资源调度时序设置为k=4,则UE在subframe#n接收到eNB对Sidelink short TTI的DCI调度信息后,以DCI所在的subframe#n为基准,在Sidelink资源池中的子帧中按逻辑连续的short TTI顺序,确定在subframe#n之后的第k个logic sTTI为所配置的资源,并使用此资源进行Sidelink信息的承载发送。
如图11所示,eNB在DCI中为UE指示Sidelink short TTI资源调度,发送DCI的PDCCH资源位于subframe#n,且Sidelink资源池中包含子帧#n,#n+3,#n+4。Sidelink子帧采用每个子帧2个short TTI的结构,因此eNB为UE所配置的Sidelink short TTI为subframe#n之后的第4个logic short TTI,即subframe#n+4中的logic sTTI#3。UE根据eNB的DCI指示,以及DCI指示信息所在的子帧与所指示的Sidelink short TTI之间的时序关系,确定所配置的Sidelink short TTI资源,并在所指示的short TTI资源上发送Sidelink信息。
方法三
当eNB在short TTI#n通过sDCI发送Sidelink short TTI资源调度信息时,所调度的Sidelink short TTI资源为short TTI#n之后的第k个short TTI,k为大于等于M的最小值,使所指示的第k个short TTI是Sidelink资源池中的资源。
具体实施例3:
eNB通过物理层信令指示M=4,且eNB通过sDCI为UE指示所配置的Sidelink short TTI资源。则UE在DL short TTI#n接收到eNB对Sidelink short TTI的sDCI调度信息后,以sDCI 所在的short TTI#n为基准,在Sidelink资源池中的资源按short TTI结构确定符合条件的最小值k,使short TTI#n之后的第k个short TTI是Sidelink subframe中的资源,且k≥M。
如图12所示,eNB在sDCI中为UE指示Sidelink short TTI资源调度,eNB在DL子帧上采用每个子帧6个short TTI的结构,发送sDCI的sPDCCH资源位于short TTI#n,且Sidelink资源池中包含子帧#n,#n+2,#n+4。Sidelink子帧采用每个子帧2个short TTI的结构,因此eNB为UE所配置的Sidelink short TTI即subframe#n+2中的sTTI#3,此时满足条件k=4,k=M,且所对应的sTTI位于Sidelink subframe中。UE根据eNB的sDCI指示,以及sDCI指示信息所在的short TTI与所指示的Sidelink short TTI之间的时序关系,确定所配置的Sidelink short TTI资源,并在所指示的short TTI资源上发送Sidelink信息。
方法四
当eNB在short TTI#n通过sDCI发送Sidelink short TTI资源调度信息时,所调度的Sidelink short TTI资源为short TTI#n之后的第k个logic short TTI。所述的logic short TTI是指在Sidelink subframe中按逻辑连续的顺序编号的short TTI资源。
具体实施例4:
系统预定义Sidelink资源调度时序k=6,则UE在DL short TTI#n接收到eNB对Sidelink short TTI的sDCI调度信息后,以sDCI所在的short TTI#n为基准,在Sidelink资源池中的子帧中按逻辑连续的short TTI顺序,确定在short TTI#n之后的第k个logic sTTI为所配置的资源,并使用此资源进行Sidelink信息的承载发送。
如图13所示,eNB在sDCI中为UE指示Sidelink short TTI资源调度,eNB在DL子帧上采用每个子帧2个short TTI的结构,发送sDCI的sPDCCH资源位于short TTI#n,且Sidelink资源池中包含子帧#n+2,#n+3,#n+4。Sidelink子帧采用每个子帧2个short TTI的结构,因此eNB为UE所配置的Sidelink short TTI为subframe#n之后的第6个logic short TTI,即subframe#n+4中的logic sTTI#5。UE根据eNB的sDCI指示,以及sDCI指示信息所在的子帧与所指示的Sidelink short TTI之间的时序关系,确定所配置的Sidelink short TTI资源,并在所指示的short TTI资源上发送Sidelink信息。
需要说明的是,UE根据上述方法确定的Sidelink sTTI资源具体可以包括PSCCH,PSSCH,sPSCCH,sPSSCH资源中的任意一项或多项。其中,sPSCCH是Sidelink short TTI结构中,用于承载Sidelink control information的专用信道,sPSSCH是Sidelink short TTI结构中,用于承载Sidelink data的信道。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机, 服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种信息传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是根据本公开实施例的信息传输装置的结构框图,如图14所示,该装置包括:接收模块1402、确定模块1404和传输模块1406,下面对该装置进行详细说明:
接收模块1402,用于接收网络侧发送的资源调度信息;确定模块1404,连接至上述中的接收模块1402,用于根据第一时序关系或第二时序关系确定上述资源调度信息指示的边链路资源所在的短传输时间间隔,其中,上述第一时序关系是上述资源调度信息所在的子帧的序号与上述边链路资源所在的上述短传输时间间隔的序号之间的时序关系,上述第二时序关系是上述资源调度信息所在的上述短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔的序号之间的时序关系,上述第一时序关系或上述第二时序关系由系统预定义或者网络侧配置;传输模块1406,连接至上述中的确定模块1404,用于在上述边链路资源上进行以下信息至少之一的传输:控制信息,数据信息。
在一个可选的实施例中,上述确定模块1404包括以下之一:第一确定单元,用于在上述资源调度信息为DCI或短下行控制信息sDCI时,根据上述DCI或上述sDCI所在的子帧的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量确定上述边链路资源所在的短传输时间间隔;第二确定单元,用于在上述资源调度信息为sDCI时,根据上述sDCI所在的短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔序号之间的偏移量确定上述边链路资源所在的短传输时间间隔。
在一个可选的实施例中,上述第一确定单元包括以下至少之一:第一确定子单元,用于根据上述DCI或上述sDCI所在的子帧的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量k 1,确定上述DCI或上述sDCI所在的子帧之后的第k 1个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 1为大于或者等于M 1的最小值,以使上述第k 1个短传输时间间隔是边链路资源池中的资源,上述k 1、M 1为正整数,上述M 1由系统预配置或由网络侧配置指示;第二确定子单元,用于根据上述DCI或上述sDCI所在的子帧的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量k 2,确定上述DCI或上述sDCI所在的子帧之后的第k 2个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 2为边链路资源池中的短传输时间间隔的逻辑连续的序号,上述k 2为正整数,k 2由系统预配置或由网络侧配置指示。
在一个可选的实施例中,上述第二确定单元包括以下至少之一:第三确定子单元,用于根据上述sDCI所在的短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔的序号之间的偏移量k 3,确定上述sDCI所在的短传输时间间隔之后的第k 3个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 3为大于或者等于M 3的最小值,以使上述第k 3个短传输时间间隔是边链路资源池中的资源,上述k 3、M 3为正整数,上 述M 3是由系统预配置或由网络侧配置指示的;第四确定子单元,用于根据上述sDCI所在的短传输时间间隔的序号与上述边链路资源所在的短传输时间间隔序号之间的偏移量k 4,确定上述sDCI所在的短传输时间间隔之后的第k 4个短传输时间间隔为所配置的上述边链路资源所在的短传输时间间隔,其中,上述k 4为边链路资源池中的短传输时间间隔的逻辑连续的序号,上述k 4为正整数,k 4由系统预配置或由网络侧配置指示。
在一个可选的实施例中,上述边链路资源包括以下至少之一:物理边链路控制信道PSCCH中以短传输时间间隔为时间单位的资源;物理边链路共享信道PSSCH中以短传输时间间隔为时间单位的资源;短结构物理边链路控制信道sPSCCH;短结构物理边链路共享信道sPSSCH。
根据本公开的另一个实施例,还提供一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本公开的另一个实施例,还提供一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以上各步骤的程序代码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本公开的实施例还提供了一种信息传输设备,包括存储器和处理器,上述存储器和处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开适用于通信领域,用以解决相关技术中终端无法获得以short TTI为时间单位的Sidelink资源的问题,达到终端可以获得Sidelink short TTI资源,并可以在配置的Sidelink资源上进行信息的传输的效果。

Claims (11)

  1. 一种信息传输方法,包括:
    接收网络侧发送的资源调度信息;
    根据第一时序关系或第二时序关系确定所述资源调度信息指示的边链路资源所在的短传输时间间隔,其中,所述第一时序关系是所述资源调度信息所在的子帧的序号与所述边链路资源所在的所述短传输时间间隔的序号之间的时序关系,所述第二时序关系是所述资源调度信息所在的所述短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的时序关系,所述第一时序关系或所述第二时序关系由系统预定义或网络侧配置;
    在所述边链路资源上进行以下信息至少之一的传输:控制信息,数据信息。
  2. 根据权利要求1所述的方法,其中,在所述资源调度信息为下行控制信息DCI或短下行控制信息sDCI时,所述第一时序关系包括:
    所述DCI或所述sDCI所在的子帧的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量。
  3. 根据权利要求1所述的方法,其中,在所述资源调度信息为短下行控制信息sDCI时,所述第二时序关系包括:
    所述sDCI所在的短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量。
  4. 根据权利要求2所述的方法,其中,根据所述DCI或所述sDCI所在的子帧的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量确定所述边链路资源所在的短传输时间间隔,包括以下至少之一:
    根据所述DCI或所述sDCI所在的子帧的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量k 1,确定所述DCI或所述sDCI所在的子帧之后的第k 1个短传输时间间隔为所配置的所述边链路资源所在的短时间间隔,其中,所述k 1为大于或者等于M 1的最小值,以使所述第k 1个短传输时间间隔是边链路资源池中的资源,所述k 1、M 1为正整数,所述M 1由系统预配置或由网络侧配置指示;
    根据所述DCI或所述sDCI所在的子帧的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量k 2,确定所述DCI或所述sDCI所在的子帧之后的第k 2个短传输时间间隔为所配置的所述边链路资源所在的短时间间隔,其中,所述k 2为边链路资源池中的短传输时间间隔的逻辑连续的序号,所述k 2为正整数,所述k 2由系统预配置或由网络侧配置指示。
  5. 根据权利要求3所述的方法,其中,根据所述sDCI所在的短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量确定所述边链路资源所在的短传输时间间隔包括以下至少之一:
    根据所述sDCI所在的短传输时间间隔的序号与所述边链路资源所在的短传输时间间 隔的序号之间的偏移量k 3,确定所述sDCI所在的短传输时间间隔之后的第k 3个短传输时间间隔为所配置的所述边链路资源所在的短传输时间间隔,其中,所述k 3为大于或者等于M 2的最小值,以使所述第k 3个短传输时间间隔是边链路资源池中的资源,所述k 3、M 2为正整数,所述M 2由系统预配置或由网络侧配置指示;
    根据所述sDCI所在的短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量k 4,确定所述sDCI所在的短传输时间间隔之后的第k 4个短传输时间间隔为所配置的所述边链路资源所在的短传输时间间隔,其中,所述k 4为边链路资源池中的短传输时间间隔的逻辑连续的序号,所述k 4为正整数,所述k 4由系统预配置或由网络侧配置指示。
  6. 根据权利要求1-5中任一项所述的方法,其中,所述边链路资源包括以下至少之一:
    物理边链路控制信道PSCCH中以短传输时间间隔为时间单位的资源;
    物理边链路共享信道PSSCH中以短传输时间间隔为时间单位的资源;
    短结构物理边链路控制信道sPSCCH;
    短结构物理边链路共享信道sPSSCH。
  7. 一种信息传输装置,包括:
    接收模块,设置为接收网络侧发送的资源调度信息;
    确定模块,设置为根据第一时序关系或第二时序关系确定所述资源调度信息指示的边链路资源所在的短传输时间间隔,其中,所述第一时序关系是所述资源调度信息所在的子帧的序号与所述边链路资源所在的所述短传输时间间隔的序号之间的时序关系,所述第二时序关系是所述资源调度信息所在的所述短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的时序关系,所述第一时序关系或所述第二时序关系由系统预定义或网络侧配置;
    传输模块,设置为在所述边链路资源上进行以下信息至少之一的传输:控制信息,数据信息。
  8. 根据权利要求7所述的装置,其中,所述确定模块包括以下之一:
    第一确定单元,设置为在所述资源调度信息为下行控制信息DCI或短下行控制信息sDCI时,根据所述DCI或所述sDCI所在的子帧的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量确定所述边链路资源所在的短传输时间间隔;
    第二确定单元,设置为在所述资源调度信息为sDCI时,根据所述sDCI所在的短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量确定所述边链路资源所在的短传输时间间隔。
  9. 根据权利要求8所述的装置,其中,所述第一确定单元包括以下至少之一:
    第一确定子单元,设置为根据所述DCI或所述sDCI所在的子帧的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量k 1,确定所述DCI或所述sDCI所在的子帧之后的第k 1个短传输时间间隔为所配置的所述边链路资源所在的短传输时间间隔,其 中,所述k 1为大于或者等于M 1的最小值,以使所述第k 1个短传输时间间隔是边链路资源池中的资源,所述k 1、M 1为正整数,所述M 1由系统预配置或由网络侧配置指示;
    第二确定子单元,设置为根据所述DCI或所述sDCI所在的子帧的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量k 2,确定所述DCI或所述sDCI所在的子帧之后的第k 2个短传输时间间隔为所配置的所述边链路资源所在的短传输时间间隔,其中,所述k 2为边链路资源池中的短传输时间间隔的逻辑连续的序号,所述k 2为正整数,所述k 2由系统预配置或由网络侧配置指示。
  10. 根据权利要求8所述的装置,其中,所述第二确定单元包括以下至少之一:
    第三确定子单元,设置为根据所述sDCI所在的短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量k 3,确定所述sDCI所在的短传输时间间隔之后的第k 3个短传输时间间隔为所配置的所述边链路资源所在的短传输时间间隔,其中,所述k 3为大于或者等于M 2的最小值,以使所述第k 3个短传输时间间隔是边链路资源池中的资源,所述k 3、M 2为正整数,所述M 2是由系统预配置或由网络侧配置指示;
    第四确定子单元,设置为根据所述sDCI所在的短传输时间间隔的序号与所述边链路资源所在的短传输时间间隔的序号之间的偏移量k 4,确定所述sDCI所在的短传输时间间隔之后的第k 4个短传输时间间隔为所配置的所述边链路资源所在的短传输时间间隔,其中,所述k 4为边链路资源池中的短传输时间间隔的逻辑连续的序号,所述k 4为正整数,所述k 4由系统预配置或由网络侧配置指示。
  11. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行如权利要求1-6中任一项所述的方法。
PCT/CN2018/080410 2017-05-05 2018-03-26 信息传输方法及装置 WO2018201819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710311886.5 2017-05-05
CN201710311886.5A CN108811147B (zh) 2017-05-05 2017-05-05 信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018201819A1 true WO2018201819A1 (zh) 2018-11-08

Family

ID=64015767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080410 WO2018201819A1 (zh) 2017-05-05 2018-03-26 信息传输方法及装置

Country Status (2)

Country Link
CN (1) CN108811147B (zh)
WO (1) WO2018201819A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193930A (zh) * 2020-01-14 2021-07-30 维沃移动通信有限公司 信息处理方法及通信设备
WO2022006842A1 (en) * 2020-07-10 2022-01-13 Lenovo (Beijing) Limited Methods and apparatus for detecting sidelink transmission burst over unlicensed spectrum

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385844B (zh) * 2018-12-29 2021-12-03 华为技术有限公司 资源配置的方法、装置及设备
CN110622551B (zh) * 2019-08-15 2023-08-29 北京小米移动软件有限公司 数据发送方法及装置
CN112399622B (zh) * 2019-08-16 2022-11-25 华为技术有限公司 一种控制信息的发送、接收方法和通信装置
WO2021155497A1 (zh) * 2020-02-04 2021-08-12 Oppo广东移动通信有限公司 侧行传输资源配置方法与系统、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400081A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 Tdd系统中的上行资源调度方法、系统及设备
WO2016199989A1 (ko) * 2015-06-11 2016-12-15 엘지전자 주식회사 Tdd 기반의 무선 통신 시스템에서 복수의 서브프레임을 사용하여 통신을 수행하는 방법 및 장치
CN106455097A (zh) * 2016-09-06 2017-02-22 珠海市魅族科技有限公司 上行跳频方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522101B2 (en) * 2008-04-15 2013-08-27 Qualcomm Incorporated Physical HARQ indicator channel (PHICH) resource assignment signaling in a wireless communication environment
US9743432B2 (en) * 2013-09-23 2017-08-22 Qualcomm Incorporated LTE-U uplink waveform and variable multi-subframe scheduling
CN104378185B (zh) * 2014-12-04 2017-07-11 武汉虹信通信技术有限责任公司 一种用于lte系统中子帧绑定的调度方法及装置
CN106304351A (zh) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 一种资源分配的方法和装置
CN106550465B (zh) * 2015-09-22 2022-04-19 中兴通讯股份有限公司 发送、接收短传输时间间隔通信的资源分配信息的方法和装置
EP4113924A1 (en) * 2015-09-25 2023-01-04 Innovative Technology Lab Co., Ltd. Method for configuring dm-rs for v2x

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400081A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 Tdd系统中的上行资源调度方法、系统及设备
WO2016199989A1 (ko) * 2015-06-11 2016-12-15 엘지전자 주식회사 Tdd 기반의 무선 통신 시스템에서 복수의 서브프레임을 사용하여 통신을 수행하는 방법 및 장치
CN106455097A (zh) * 2016-09-06 2017-02-22 珠海市魅族科技有限公司 上行跳频方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on Short TTI with eV2X", 3GPP TSG RAN WG1 MEETING # 88BIS, R1-1704655, 24 March 2017 (2017-03-24), XP051250551 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193930A (zh) * 2020-01-14 2021-07-30 维沃移动通信有限公司 信息处理方法及通信设备
WO2022006842A1 (en) * 2020-07-10 2022-01-13 Lenovo (Beijing) Limited Methods and apparatus for detecting sidelink transmission burst over unlicensed spectrum

Also Published As

Publication number Publication date
CN108811147A (zh) 2018-11-13
CN108811147B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2018177109A1 (zh) 数据传输方法、装置、终端及存储介质
WO2018201819A1 (zh) 信息传输方法及装置
US20220210802A1 (en) Method for transmitting or receiving signal for multiple transport block scheduling and apparatus therefor
WO2018059589A1 (zh) 物理上行共享信道pusch的传输方法及装置
WO2017133202A1 (zh) 实现资源配置的方法及装置
JP2022173281A (ja) 無線アクセスネットワークノード、無線端末、及びこれらの方法
CN107211470A (zh) 设备到设备(d2d)通信的改善资源分配
WO2015043341A1 (zh) 一种设备到设备的通信方法、设备和系统
KR20200138249A (ko) V2x를 위한 향상된 서비스 품질
JP2022153447A (ja) 通信装置、通信方法、及び基地局
WO2017133417A1 (zh) 数据信道子帧的指示方法及装置
CN110121910A (zh) 一种发送上行控制信息的方法、网络设备及终端
WO2016177177A1 (zh) 发送、接收短传输时间间隔通信的资源分配信息的方法和装置
EP4169314A1 (en) Energy-efficient autonomous resource selection for nr v2x sidelink communication
JP7344870B2 (ja) 通信装置、通信方法、及びシステム
US20220217684A1 (en) Method and apparatus for using sidelink bandwidth part
EP3860259B1 (en) Harq process id determination method, apparatus, and medium
CN116686389A (zh) 用于在无线通信系统中处理sl drx不活动定时器的方法和装置
JP7394145B2 (ja) 無線通信システムにおけるサイドリンク通信のための制御情報を送受信する方法及び装置
EP3142438A1 (en) Method for inter-device communications, base station, and user equipment
US11917578B2 (en) Identifying sidelink resources through sidelink paging
US20230232382A1 (en) Procedures for coreset sharing
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) 由用户设备执行的方法以及用户设备
CN116261844A (zh) 一种侧行链路通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794158

Country of ref document: EP

Kind code of ref document: A1