WO2018201757A1 - 一种通信方法、设备、系统和计算机存储介质 - Google Patents

一种通信方法、设备、系统和计算机存储介质 Download PDF

Info

Publication number
WO2018201757A1
WO2018201757A1 PCT/CN2018/073097 CN2018073097W WO2018201757A1 WO 2018201757 A1 WO2018201757 A1 WO 2018201757A1 CN 2018073097 W CN2018073097 W CN 2018073097W WO 2018201757 A1 WO2018201757 A1 WO 2018201757A1
Authority
WO
WIPO (PCT)
Prior art keywords
sctp
network element
coupling
transmission
pool
Prior art date
Application number
PCT/CN2018/073097
Other languages
English (en)
French (fr)
Inventor
周臣云
高音
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18794060.6A priority Critical patent/EP3637832A4/en
Priority to KR1020197035751A priority patent/KR102277936B1/ko
Publication of WO2018201757A1 publication Critical patent/WO2018201757A1/zh
Priority to US16/669,299 priority patent/US11071165B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/12Application layer protocols, e.g. WAP [Wireless Application Protocol]

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a communication method, device, system, and computer storage medium.
  • SCTP flow control transmission protocol
  • a network element of a wireless communication system such as an evolved base station (eNB, Evolved Node B), a mobility management entity (MME, Mobility Management Entity), and a core network device.
  • eNB evolved base station
  • MME mobility management entity
  • the Stream Control Transmission Protocol performs control signaling transmission to ensure the reliability of the transmission signaling.
  • different application layer protocols such as the S1 application protocol (S1AP, S1 Application Protocol) and the X2 application protocol (X2AP, X2 Application Protocol), are used.
  • the operator performs offsite hot backup of the core network element in order to ensure the reliability of the communication system, thereby improving the availability of the network element, and the hot backup network elements are independent of each other.
  • the functions of the network element are sliced, for example, the same core network is supported in a slice application. Part of the core network function sinks to the base station test, while in another network slice, the core network function maintains the current central node deployment mode; or the control plane of the same base station moves up to a core network deployment in one slice, and In another slice, the existing deployment mode is maintained.
  • the traditional network performs distributed deployment on the network element in order to load balance the multiple main control boards.
  • the current application protocol layer only supports one SCTP coupling. Therefore, when the above-mentioned three types of network elements are deployed in a distributed manner, the control signaling needs to be forwarded to the service network element or the board to which the SCTP protocol belongs. Controlling the rounding of signaling, thereby increasing communication latency.
  • Embodiments of the present invention are directed to providing a communication method, apparatus, system, and computer storage medium capable of reducing communication delay caused by control signaling bypass.
  • an embodiment of the present invention provides a communication method, where the method includes:
  • the first network element selects an SCTP transmission coupling for signaling transmission from the SCTP coupling pool
  • the first network element and the second network element are coupled to transmit signaling by using the SCTP transmission.
  • an embodiment of the present invention further provides a communication method, where the method includes:
  • An SCTP coupling pool is established between the second network element and the first network element; wherein the SCTP coupling pool includes more than one SCTP coupling;
  • the second network element receives signaling that is transmitted by the first network element through SCTP transmission coupling, where the SCTP transmission coupling is selected for the first network element.
  • the embodiment of the present invention further provides a network element device, where the network element device includes: a first network interface, a first memory, and a first processor;
  • the first network interface is configured to receive and send data during the process of transmitting and receiving information with other external network elements;
  • a first memory configured to store a computer program capable of running on the first processor
  • the first processor is configured to perform the steps of the communication method of the first aspect of the present invention when the computer program is run.
  • the embodiment of the present invention further provides a network element device, where the network element device includes a second network interface, a second memory, and a second processor;
  • the second network interface is configured to receive and send data during the process of transmitting and receiving information with other external network elements
  • a second memory configured to store a computer program capable of running on the second processor
  • a second processor configured to perform the steps of the communication method of the second aspect of the present invention when the computer program is run.
  • an embodiment of the present invention further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the steps of the communication method of the first aspect of the present invention.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, the steps of the communication method of the second aspect of the present invention are implemented.
  • the embodiment of the present invention further provides a communication system supporting multiple SCTP coupling, where the system includes a first network element and a second network element;
  • the first network element is configured to establish an SCTP coupling pool with the second network element; wherein the SCTP coupling pool includes more than one SCTP coupling; and the SCTP coupling pool is selected for use in the SCTP coupling pool Performing SCTP transmission coupling for signal transmission; and transmitting, by the second network element, the transmission signaling by using the SCTP transmission;
  • the second network element is configured to establish an SCTP coupling pool with the first network element; wherein the SCTP coupling pool includes more than one SCTP coupling; and the receiving the first network element is coupled by SCTP transmission Signaling of the transmission; wherein the SCTP transmission coupling is selected for the first network element.
  • the communication method, device, system and computer storage medium provided by the embodiments of the present invention perform signaling transmission services through multiple SCTP couplings between network elements, which greatly reduces the communication delay caused by control signal bypass.
  • FIG. 1 is a schematic flowchart of a communication method supporting multiple SCTP coupling according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of establishing a coupling pool according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of another method for establishing a coupling pool according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of selecting SCTP transmission coupling according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a SCTP coupling withdrawal service according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a SCTP coupling occlusion process according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a reselection SCTP transmission coupling according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another reselection SCTP transmission coupling according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a scenario 1 according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart 1 of establishing a coupling pool in scenario 1 according to an embodiment of the present disclosure
  • FIG. 12 is a second schematic flowchart of establishing a coupling pool in scenario 1 according to an embodiment of the present disclosure
  • FIG. 13 is a schematic flowchart 1 of a process for selecting SCTP transmission coupling in scenario 1 according to an embodiment of the present disclosure
  • FIG. 14 is a second schematic diagram of a process for selecting SCTP transmission coupling in scenario 1 according to an embodiment of the present disclosure
  • 15 is a schematic diagram of an occlusion and deletion process of SCTP coupling in scenario 1 according to an embodiment of the present invention.
  • FIG. 16 is a schematic flowchart of reselecting SCTP coupling in scenario 1 according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of scenario 2 according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic flowchart 1 of establishing a coupling pool in scenario 2 according to an embodiment of the present invention.
  • FIG. 19 is a second schematic flowchart of establishing a coupling pool in scenario 2 according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic flowchart of selecting SCTP transmission coupling in scenario 1 according to an embodiment of the present disclosure
  • FIG. 21 is a schematic structural diagram of a network element device according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of another network element device according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a communication system supporting multiple SCTP coupling according to an embodiment of the present invention.
  • a communication method for supporting multiple SCTP coupling according to an embodiment of the present invention is shown.
  • the method can be applied to a local network element and a peer network element.
  • the first network is respectively used. Yuan and second network element to represent. It can be understood that when the local network element is the first network element, the remote network element is the second network element; similarly, when the local network element is the second network element, the peer network element is the first network element.
  • the embodiment does not specifically limit this, and the method may include:
  • S101 An SCTP coupling pool between the first network element and the second network element.
  • SCTP coupling pool comprises more than one and independent SCTP coupling.
  • the first network element selects an SCTP transmission coupling for signaling transmission from the SCTP coupling pool.
  • S103 The first network element and the second network element are coupled to transmit signaling by using SCTP transmission.
  • an SCTP coupling pool including a plurality of SCTP couplings is established between the first network element and the second network element, and the signaling transmission between the network elements is provided through the SCTP coupling pool.
  • the service can not only provide high-reliability transmission services for network elements, but also support seamless migration of network element hot backups. When the network elements are deployed in different places, the control signaling bypass and the single point of the protocol stack can be avoided.
  • FIG. 2 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • the network architecture includes a first network element and a second network element.
  • the first network element and the first network element Under the application protocol layer of the two network elements, and the IP layer contains n SCTP-coupled coupling pools, the SCTP coupling in the pool is independent of each other, and the signaling transmission between the first network element and the second network element is The transmission can be carried out by SCTP coupling in the coupling pool, thereby achieving the effect achieved by the technical solution shown in FIG. 1 above.
  • the steps of S101 in FIG. 1 illustrate the establishment process of the SCTP coupling pool.
  • two implementation schemes are proposed for the establishment process, as follows:
  • a flow of establishing a coupling pool provided by an embodiment of the present invention may be included, which may include:
  • S301 The first network element and the second network element initiate an SCTP coupling establishment process to the opposite end according to the configuration data of the SCTP, and establish an SCTP coupling pool composed of multiple SCTP couplings between the local end and the opposite end.
  • the configuration data of the SCTP may be configured by using Operation Administration and Maintenance (OAM).
  • the configuration data of the SCTP may include: a set of IP quaternions, a peer network element type, and an SCTP coupling identifier; Optionally, fragmentation information can also be included.
  • the IP quaternion includes: the IP address and port number of the local NE, and the IP address and port number of the peer NE. It will be appreciated that the SCTP coupling identifier is used to indicate the SCTP coupling corresponding to the SCTP configuration data.
  • the coupling establishment process can be initiated by initiating a request, which is accomplished by a "four hand grip" process.
  • the specific steps of the establishment process of the SCTP coupling can be performed by referring to the related procedures in the current 3GPP protocol, which is not described in this embodiment.
  • this notification is used to inform that the SCTP coupling is established.
  • S303 The first network element and the second network element initiate a process of establishing an application protocol layer corresponding to each SCTP coupling to each other through the SCTP coupling, and negotiate the application protocol layer data corresponding to each SCTP coupling;
  • the first network element and the second network element combine the data of the application protocol layer corresponding to the SCTP coupling of the same peer end, and combine the SCTP couplings of the same peer end into the same activated coupling pool.
  • the application protocol layer maintains the following information for each SCTP coupling: coupling status, coupling priority, coupled fragmentation attributes, and coupled round-trip delays; coupling status includes service status and suspended service status;
  • the joint priority can be set to two levels, high and low. The default is low priority.
  • the coupled fragment attribute is determined by the application protocol layer and closely related to SCTP. It is divided into multiple different ones in a distributed network element. When slicing, in order to distinguish between different slices, the fragmentation attribute that is required to deliver the transmission signaling can be explicitly specified.
  • the application protocol layer can set the recent SCTP coupling priority of the deployment location to a high priority, thereby avoiding the bypass transmission of signaling.
  • an initial SCTP coupling information may be first negotiated between the first network element and the second network element, and then the application protocol layer interface signaling interaction is performed between the network elements through initial SCTP coupling.
  • an initial SCTP coupling information may be added to complete the establishment of the SCTP coupling pool.
  • S401 The first network element and the second network element initiate an initial SCTP coupling establishment process according to the initial SCTP configuration data, and establish an initial SCTP coupling.
  • the configuration data of the initial SCTP may be statically configured by the OAM, and may include an IP quaternion, a peer network element type, and an initial SCTP coupling identifier.
  • the fragmentation information may also be included.
  • S402 The initial SCTP coupling entity of the first network element and the second network element notifies the local application protocol layer that the coupling establishment is completed.
  • S403 The first network element and the second network element initiate an application protocol layer establishment process to the peer end by initial SCTP coupling, and negotiate application protocol layer data corresponding to the initial SCTP coupling.
  • S404 The application protocol layer of the first network element and the second network element join the initial SCTP coupling to the transmission coupling pool between the local end and the opposite end.
  • the signaling established by the application protocol layer may carry one or more of the local end and the opposite end transmission.
  • SCTP coupling information; or the application protocol layer update process carries one or more SCTP coupling information used by the local end for transmission with the peer end; where the application protocol layer signaling may include a radio access network (RAN, Radio Access Network) ) to the core network interface to establish a response message or core network configuration update message.
  • RAN Radio Access Network
  • the first network element and the second network element carry the SCTP coupling information to be added in the application protocol layer establishment process or the update process signaling, and trigger each SCTP coupling to be added to initiate SCTP coupling establishment to the opposite end.
  • the application protocol layer update process signaling includes a core network configuration update message.
  • the first network element carries the SCTP coupling information list to be added in the application protocol layer establishment process signaling.
  • S406 The SCTP-coupled entity that is successfully established in the first network element and the second network element notifies the local application protocol layer of the coupling state normal information.
  • S407 The application protocol layer of the first network element and the second network element establish a successful SCTP coupling to join the transmission coupling pool between the first network element and the second network element.
  • an SCTP coupling pool is established between the first network element and the second network element. Thereafter, when the application protocol layer needs to exchange signaling between the network elements, the SCTP coupling with the appropriate state can be selected according to actual needs.
  • the first network element selects an SCTP transmission coupling for signaling transmission from the SCTP coupling pool according to a preset selection policy.
  • the first network element determines the target network element type and the target network element identifier of the to-be-transmitted signaling according to the application layer protocol data. If yes, the fragment of the to-be-transmitted signaling needs to be determined.
  • S502 Select an alternative SCTP coupling set for transmitting signaling from the SCTP coupling pool according to the target network element type, the target network element identifier, and the fragment (if any).
  • the first network element can select a candidate activation coupling pool, and then remove the SCTP coupling from the occlusion state from the activation coupling pool to construct an alternative SCTP coupling set.
  • the SCTP coupling of the desired slice may also be excluded from the candidate coupling set according to the fragmentation attribute.
  • S503 Selecting a high priority SCTP coupling from the candidate SCTP coupling set, constructing a preferred SCTP coupling set.
  • S504 when the preferred SCTP coupling set is non-empty, selecting one SCTP coupling from the preferred SCTP coupling set as the SCTP transmission coupling according to the polling scheduling (RR, Round Robin) principle;
  • an SCTP is selected from the alternative SCTP coupling set according to the minimum principle of Round-Trip Time (RTT) as the SCTP transmission coupling;
  • RTT Round-Trip Time
  • the application protocol layer is coupled through SCTP. After receiving the transmission signaling, the SCTP coupling of the transmission signaling needs to be saved, and the subsequent SCTP coupling is selected by the same application or the user's signaling until the other SCTP coupling is replaced.
  • the technical solution shown in FIG. 1 may further include:
  • the first network element sends an update request message to the second network element when the application protocol layer or the user decides to delete the SCTP coupling in the SCTP coupling pool by using the OAM.
  • the update request message is indicated by the first network element. Deleting one or more SCTP couplings;
  • S602 The second network element returns an update request response message to the first network element.
  • the update request message and the return update request response message may be sent through the SCTP coupling that needs to be deleted;
  • the SCTP coupling in the SCTP coupling pool established by the scheme 2 may carry the SCTP coupled identifier list to be deleted in the update request message and the update request response message. It can be understood that the list may include one or more needs.
  • Deleted SCTP Coupling Identity SCTP coupling for transmitting the update request message and the update request response message may be optional in the SCTP coupling pool.
  • S603 The SCTP that needs to be deleted in the first network element and the second network element is coupled to the service, and the application protocol layer is notified.
  • the local SCTP may notify the application protocol layer after detecting the exit, and the SCTP coupling exits the service.
  • S604 The application protocol layer of the first network element and the second network element detach the SCTP that needs to be deleted from the activation coupling pool.
  • the signaling between the network elements can be coupled by other available SCTPs in the SCTP coupling pool. Transmission, so does not affect the signaling interaction between the network elements, only need to remove the SCTP coupling of the exit service from the SCTP pool through the technical solution shown in FIG. 6.
  • the technical solution shown in FIG. 1 may further include:
  • the first network element sends an update request message to the second network element, where the update request message indicates one or more SCTP couplings corresponding to the occlusion.
  • the update request message and the return update request response message can be transmitted by SCTP coupling requiring occlusion;
  • the SCTP coupling in the SCTP coupling pool established in the second scheme shown may carry the SCTP coupling identifier that needs to be blocked in the update request message and the update request response message, and is used to transmit the update request message and the update request.
  • the SCTP coupling of the response message can be optional in the SCTP coupling pool.
  • S703 The first network element and the second network element application protocol layer update the SCTP coupling state in the SCTP coupling pool that needs to be occluded to an occlusion state, and the SCTP coupling that requires occlusion is not selected when the application protocol layer subsequently sends signaling.
  • the process of SCTP coupling retreat and SCTP coupling occlusion shown in FIG. 6 and FIG. 7 can dynamically implement the coupling deletion without affecting the transmission of application protocol layer signaling.
  • the technical solution shown in FIG. 1 may further include:
  • the first network element sends an update request message to the second network element, where the update request message is used to indicate SCTP transmission coupled reselection.
  • the update request message is used to update the user route to the new SCTP transmission coupling;
  • the update request message includes related information indicating a new SCTP transmission coupling, such as a user information list, a new SCTP transmission coupling identifier, or a new first network element node identifier, and the user information may be a user application identifier pair of the first network element and the second network element;
  • the second network element migrates the user signaling to the new core network node according to the new SCTP transmission coupling in the update request message.
  • the first network element and the second network element update the core network of the local user to the RAN interface identifier information after the route migration succeeds.
  • the second fragment may be a single fragment different from the first fragment, or may be a plurality of fragments different from the first fragment, which is not described in this embodiment.
  • S902 The second fragment notifies the second network element SCTP coupling reselection.
  • the second network element migrates the transmission of the migrated application to the SCTP transmission coupling corresponding to the second fragment; or, for the elastic scalability, the first network element deletes the first when the load is low.
  • the application protocol layer of the first fragment actively notifies the second network element to reselect the connection of the user or application corresponding to the first fragment to the second fragment; the second network element migrates the transmission of the migrated application. Coupling to the SCTP transmission corresponding to the second slice.
  • This embodiment provides a communication method for supporting multiple SCTP coupling.
  • a SCTP coupling pool including a plurality of SCTP couplings is established between the first network element and the second network element, and the network is connected through the SCTP coupling pool.
  • the signaling transmission service between the elements can not only provide high-reliability transmission services for network elements, but also support seamless migration of network element hot backups, and can avoid control signaling bypass and protocol stack when network elements are deployed in different places. Single point problem.
  • this embodiment describes the specific implementation of the technical solution of the foregoing embodiment in two application scenarios.
  • this scenario describes a scheme for deploying an SCTP coupling pool between a core network and a base station, that is, a Next Generation Core network (NGC) and a 5G base station (gNB, g Node B)
  • NGC Next Generation Core network
  • gNB 5G base station
  • This scenario only lists two shards as an example to illustrate, NGC
  • the fragmentation can be two functionally independent parts. Each part can communicate independently.
  • the data synchronization channel is internally implemented between the fragments to implement disaster recovery and context migration.
  • the hot backup can be implemented between slices.
  • the application protocol layers of the two NGC fragments docked to the gNB are named NGAP a and NGAP b respectively;
  • the gNB supports the SCTP coupling pool, which is embodied as a The complete gNB;
  • the SCTP coupling pool of the gNB includes two SCTP couplings, which are referred to as SCTP a and SCTP b in the scenario; based on the scenario shown in FIG. 10, the specific implementation process of the foregoing embodiment is as follows:
  • the process of establishing the SCTP coupling pool in this scenario may include:
  • the gNB configures two SCTP couplings to the NGC and corresponding parameter transmission parameters
  • SCTPa and SCTPb respectively initiate an SCTP coupling establishment process, and establish a transmission SCTP coupling between two network elements;
  • S1103 The two SCTPs of the gNB and the NGC are coupled, that is, the SCTPa and the SCTPb notify the protocol NGAP layer of the own network element, and the coupling is successfully established.
  • S1104 The protocol NGAP layer of the gNB initiates an NGAP establishment request (SETUP REQUEST) message to the NGC on SCTP a and SCTP b, respectively;
  • the NGAP SETUP REQUEST message carries related parameters of the gNB, such as a gNB ID, and adds optional fragment selection information.
  • the NGC receives the NGAP SETUP REQUEST message from the two SCTP couplings, and after determining the two NGAP SETUP REQUESTs of the same gNB according to the gNB ID in the message, the related parameters of the gNB are merged, and the SCTP a and the SCTP b are combined. Incorporate into the SCTP coupling pool for gNB;
  • NGC sends an NGAP establishment request response (SETUP RESPONSE) message to the gNB on the SCTP a and SCTPb coupling respectively;
  • SETUP RESPONSE NGAP establishment request response
  • fragment selection information needs to be added in the NGAP SETUP RESPONSE message
  • the gNB receives the NGAP SETUP RESEPONSE message, and after determining the same NGC according to the NGC related information, the protocol parameters are combined, and the SCTP a and the SCTP b are included in the transmission coupling pool to the NGC;
  • the gNB and the NGC maintain the SCTP coupling priority and the round trip delay information in the SCTP coupling pool, which can be determined by gNB and NGC.
  • the process of establishing the SCTP coupling pool in this scenario may include:
  • the gNB configures an SCTP coupling to the NGC and corresponding parameter transmission parameters
  • SCTPa initiates a coupling establishment process and establishes a transmission SCTP coupling between two network elements;
  • SCNBa of gNB and NGC informs the protocol NGAP layer of the respective network element, and the coupling establishment is successful;
  • the NGAP layer of the gNB protocol sends an NGAP SETUP REQUEST message to the NGC on the STPPA;
  • the NGAP SETUP REQUEST message carries the relevant parameters of the gNB, such as the gNB ID, and the optional fragment selection information and an optional SCTP coupling parameter list are added to the message, and the list may include an IP quad. Port and SCTP coupled identification;
  • the NGC receives the NGAP SETUP REQUEST message, and determines that the initial coupling pool of the gNB includes the SCTPa according to the gNB ID in the message, and sends an NGAP SETUP RESPONSE message to the gNB on the SCTP a coupling;
  • an optional SCTP coupling parameter list needs to be added to the NGAP SETUP RESPONSE message, including the IP quaternary group, the port and the SCTP coupling identifier, and the fragment selection information.
  • the gNB receives the NGAP SETUP RESEPONSE message, constructs a transmission coupling pool to the NGC, and adds the SCTPa to the coupling pool;
  • S1205 The NGC and the gNB trigger the local SCTP b to initiate the coupling establishment process to the opposite end according to the SCTP coupling parameter list; after the coupling is successfully established, the SCTP b is added to the transmission coupling pool.
  • the process of selecting the SCTP transmission coupling from the SCTP coupling pool may include:
  • the gNB determines an SCTP coupling pool established between the gNB and the target NGC according to the selected NGC information.
  • S1303 Select, according to the determined SCTP coupling pool, SCTP transmission coupling for transmitting signaling, and deliver signaling to the corresponding SCTP transmission coupling;
  • S1402 Determine an SCTP coupling pool established between the NGC and the target gNB according to the target gNB information
  • S1403 Select, according to the determined SCTP coupling pool, SCTP transmission coupling for transmitting signaling, and deliver signaling to the corresponding SCTP transmission coupling;
  • the target network element is selected according to the foregoing method. Coupling, no more details here.
  • gNB or NGC may have the requirement of stickiness. After the UE accesses a certain fragment, the UE hopes to be in this fragment as much as possible. In this case, the above selection method is only applicable.
  • the gNB and the NGC need to save the selected SCTP transmission coupling for subsequent signaling transmission until the logical connection is released or reselected. .
  • an NGC Update Request (UPDATE REQUEST) message is sent to the gNB; if initiated by the gNB, a GNB UPDATE REQEUST message is sent to the NGC.
  • the message carries the specified SCTP coupled list, including the specified SCTP coupled identifier, the specified SCTP coupled operational indication, such as deletion, occlusion, and the like.
  • the specific process is described by taking NGC as an example.
  • the NGC returns a GNB Update Request Response (UPDATE RESPONSE) message to the gNB or the gNB returns an NGC UPDATE RESPONSE message to the NGC.
  • GNB Update Request Response UPDATE RESPONSE
  • NGC fragment 1 migrates the user to the fragment 2;
  • the NGC fragment 1 sends a message ROUTE UPDATE REQUEST message to the gNB.
  • the message carries the updated SCTP transmission coupling identifier and the target SCTP transmission coupling identifier, and a list of UE identification information that needs to be updated, and the list may mainly include, for example, a Gnb UE NGAP ID and an NGC UE NGAP ID;
  • the gNB After receiving the UE ROUTE UPDATE REQUEST message, the gNB updates the information specified by the UE identifier; at the same time, sets the updated SCTP coupling state to be blocked; sends a ROUTE UPDATE RESPONSE message to the NGC;
  • the gNB can also request the NGC to update the SCTP coupling information of the local end, and the same message is sent, and details are not described herein again.
  • this scenario describes a scheme for deploying an SCTP coupling pool between a gNB and a gNB.
  • gNB1 is a distributed base station; it consists of two independent XnAP functions, which are respectively XnAP a and XnAP b; gNB 1 and gNB2 support SCTP coupling pool, and there are two in the coupling pool. Coupled with SCTPa and SCTPb;
  • the process of establishing the SCTP coupling pool in this scenario may include:
  • S1801 The two gNBs respectively configure SCTP transmission parameters and network element types; respectively initiate SCTP coupling establishment; establish SCTPa and SCTPb;
  • S1802 SCTPa and SCTPb in gNB1 and gNB2 respectively notify the application protocol (XnAP, Xn Application Protocol) between gNBs that the SCTP coupling establishment is successful;
  • S1803 The XnAP of gNB 2 establishes an Xn connection by sending an Xn SETUP REQUEST message through SCTPa and SCTPb, respectively.
  • an optional fragment attribute is added to the message
  • S1805: gNB1 and gNB2 are coupled to multiple SCTPs of the same gNB according to the gNB identifier in the received Xn SETUP REQUEST or Xn SETUP RESPONSE message, and then multiple SCTP couplings are incorporated into the SCTP coupling pool.
  • the process of establishing the SCTP coupling pool in this scenario may include:
  • An SCTP parameter is configured between the ONB or the self-organizing network (SON, Self-Organized Networks); the SCTP coupling establishment process is initiated; after the coupling is successfully established, the local XnAP coupling establishment is notified successfully;
  • SON Self-Organized Networks
  • S1902 The XnAP of gNB1 initiates an Xn SETUP REQUEST message
  • the message is added to the fragment SCTP parameter list used by the local end for transmission, and the list mainly includes: a coupling identifier, an IP, a port, and a fragmentation attribute;
  • the message also includes the local end for transmitting the SCTP parameter list.
  • gNB1 and gNB2 respectively use SCTPa as the Xn transmission coupling pool between them;
  • S1904 gNB1 and gNB2 initiate coupling establishment according to the SCTP parameter list respectively; SCTPb is successfully established; SCTPb is added to the Xn transmission coupling pool.
  • the process of selecting SCTP transmission coupling from the SCTP coupling pool, as shown in FIG. 20, may include:
  • the gNB determines, according to the service flow, a target gNB that needs to be sent by the signaling;
  • S2002 Determine an SCTP coupling pool used for transmitting signaling according to the target gNB;
  • S2003 selecting, according to the determined SCTP coupling pool, SCTP transmission coupling for transmitting signaling, and delivering signaling to the corresponding SCTP transmission coupling;
  • the SCTP-coupled occlusion and deletion processing method is similar to the scenario 1 scenario. Only the SCTP coupling list and each coupled operation indication need to be added to the Xn UPDATE REQUEST message.
  • the reselection of the SCTP transmission coupling also needs to increase the message Xn UE ROUTE UPDATE REQUEST/RESPONSE message, and add the updated transmission coupling identifier and the target transmission coupling identifier in the Xn UE ROUTE UPDATE REQUEST message, and the need
  • a list of UE identification information that is updated, and the list includes gNB Xn UEAP IDs at both ends.
  • the SCTP coupling pool provides services for signaling transmission between network elements, which can provide high-reliability transmission services for network elements. It also supports seamless migration of network element hot backup, and can avoid control signaling bypass and single point problem of protocol stack when network elements are deployed in different places.
  • a network element device 210 is provided.
  • the network element device 210 may be a first network element different from the second network element.
  • the metadevice 210 includes a first network interface 2101, a first memory 2102, and a first processor 2103; the various components are coupled together by a bus system 2104.
  • the bus system 2104 is used to implement connection communication between these components.
  • the bus system 2104 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 2104 in FIG. among them,
  • the first network interface 2101 is configured to receive and send data during the process of transmitting and receiving information with other external network elements;
  • a first memory 2102 configured to store a computer program executable on the first processor 2103;
  • the first processor 2103 is configured to, when the computer program is executed, perform: establishing an SCTP coupling pool between the second network element and the second network element; wherein the SCTP coupling pool includes more than one SCTP coupling; The SCTP coupling pool is selected to perform SCTP transmission coupling for signaling transmission; and the second network element is coupled to transmit signaling by using the SCTP transmission.
  • the first memory 2102 in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable Read Only Memory (PROM), an Erasable PROM (EPROM), or an Erasable PROM. Erase programmable read only memory (EEPROM, Electrically EPROM) or flash memory.
  • EEPROM Electrically EPROM
  • flash memory Erase programmable read only memory
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM, Synchronous).
  • the first memory 2102 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the first processor 2103 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the first processor 2103 or an instruction in a form of software.
  • the first processor 2103 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA). Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the first memory 2102, and the first processor 2103 reads the information in the first memory 2102 and completes the steps of the above method in combination with the hardware thereof.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASICs), DSPs, digital signal processing devices (DSPDs, DSPs), programmable logic devices (PLDs, Programmable Logic Devices), An FPGA, a general purpose processor, a controller, a microcontroller, a microprocessor, other electronic units for performing the functions described herein, or a combination thereof.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the first processor 2103 is further configured to: when the computer program is executed, perform: initiate an SCTP coupling establishment process to the peer according to the configuration data of the SCTP, and couple the SCTP of the same peer to the corresponding application.
  • the protocol layer data is merged and the SCTP couplings at the same peer are combined into the same activated coupling pool.
  • the first processor 2103 is further configured to: when the computer program is executed, perform: initial SCTP coupling with a second network element; and signaling interaction by the initial SCTP coupling to add one or Multiple SCTP couplings.
  • the first processor 2103 is further configured to: when the computer program is executed, perform: carrying an SCTP coupled information list to be added in the application protocol layer update process signaling.
  • the application protocol layer update process signaling includes a core network configuration update message.
  • the first processor 2103 is further configured to: when the computer program is executed, perform: carrying the SCTP coupled information list to be added in the application protocol layer setup process signaling.
  • the first processor 2103 is further configured to: when the computer program is executed, perform: selecting an alternative SCTP coupling set for transmitting signaling from the SCTP coupling pool; An SCTP coupling is selected among the alternative SCTP coupling sets as the SCTP transmission coupling for the signaling transmission.
  • the first processor 2103 is further configured to: when the computer program is executed, perform: selecting an alternative SCTP coupling set for transmitting signaling from the SCTP coupling pool; Selecting a high priority SCTP coupling in an alternative SCTP coupling set constructs a preferred SCTP coupling set; selecting one SCTP coupling from the preferred SCTP coupling set as the SCTP transport coupling for signaling transport.
  • the first processor 2103 is further configured to: when the computer program is executed, execute: send an update request message to the second network element; the update request message indicates deleting one or more SCTP pairs Union.
  • the first processor 2103 is further configured to: when the computer program is executed, perform: receiving an update request response message sent by the second network element.
  • the first processor 2103 is further configured to: when the computer program is executed, execute: send an update request message to a second network element; the update request message indicates that one or more SCTP pairs corresponding to the occlusion are blocked And receiving an update request response message replied by the second network element.
  • the first processor 2103 is further configured to: when the computer program is executed, execute: send an update request message to a second network element; wherein the update request message is used to indicate that the SCTP transmission is coupled Re-election.
  • the first processor 2103 is further configured to, when the computer program is executed, perform: when the first fragment fails to be retired, the application protocol layer migrates the application to the second fragment.
  • each component in this embodiment may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function module.
  • the integrated unit may be stored in a computer readable storage medium if it is implemented in the form of a software function module and is not sold or used as a stand-alone product.
  • the technical solution of the embodiment is essentially Said that the part contributing to the prior art or all or part of the technical solution can be embodied in the form of a software product stored in a storage medium, comprising a plurality of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc. or a processor that performs all or part of the steps of the method described in this embodiment.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the embodiment provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, performing: establishing an SCTP coupling pool between the second network element and the second network element;
  • the SCTP coupling pool includes more than one SCTP coupling; SCTP transmission coupling for signal transmission is selected from the SCTP coupling pool; and the second network element is coupled to transmit signals by the SCTP transmission.
  • the method when the computer program is executed by the processor, the method further comprises: initiating an SCTP coupling establishment process to the opposite end according to the configuration data of the SCTP, and combining the application protocol layer data corresponding to the SCTP coupling of the same peer end, The same pair of SCTP couplings were combined into the same activated coupling pool.
  • the computer program when executed by the processor, further performs: establishing an initial SCTP coupling with the second network element; and signaling interaction by the initial SCTP coupling to add one or more SCTP couplings.
  • the computer program when executed by the processor, it further performs: carrying the SCTP coupled information list to be added in the application protocol layer update process signaling.
  • the application protocol layer update process signaling includes a core network configuration update message.
  • the method when the computer program is executed by the processor, the method further comprises: carrying the SCTP coupled information list to be added in the application protocol layer setup process signaling.
  • the computer program when executed by the processor, performing: selecting an alternative SCTP coupling set for transmitting signaling from the SCTP coupling pool; from the candidate SCTP coupling set One SCTP coupling is selected as the SCTP transmission coupling for the signaling transmission.
  • the computer program when executed by the processor, further performs: transmitting an update request message to the second network element; wherein the update request message indicates requesting deletion of one or more SCTP couplings.
  • the method when the computer program is executed by the processor, the method further comprises: receiving an update request response message sent by the second network element.
  • the method when the computer program is executed by the processor, the method further comprises: sending an update request message to the second network element; wherein the update request message indicates that one or more SCTP couplings corresponding to the occlusion are performed; Receiving an update request response message replied by the second network element.
  • the first network element when the computer program is executed by the processor, the first network element further sends an update request message to the second network element, where the update request message is used to indicate that the SCTP transmission is Re-election.
  • the application protocol layer migrates the application to the second fragment when the first fragment fails to be retired.
  • a network element device 220 is provided.
  • the network element device 210 may be a second network element different from the first network element.
  • the network element device 220 includes a second network interface 2201, a second memory 2202, and a second processor 2203; the various components are coupled together by a bus system 2204.
  • the bus system 2204 is used to implement connection communication between these components.
  • the bus system 2204 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 2204 in FIG. among them,
  • the second network interface 2201 is configured to receive and send data during the process of transmitting and receiving information with other external network elements.
  • a second memory 2202 configured to store a computer program executable on the second processor 2203;
  • the second processor 2203 is configured to: when the computer program is executed, perform: establishing an SCTP coupling pool with the first network element; wherein the SCTP coupling pool includes more than one SCTP coupling; and receiving the first network element The signaling of the coupled transmission is transmitted by SCTP; wherein the SCTP transmission coupling is selected for the first network element.
  • the second memory 2202 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a ROM, a PROM, an EPROM, an EEPROM, or a flash memory.
  • the volatile memory can be RAM, which acts as an external cache.
  • many forms of RAM are available, such as SRAM, DRAM, SDRAM, DDRSDRAM, ESDRAM, SLDRAM, and DRRAM.
  • the second memory 2202 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the second processor 2203 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the second processor 2203 or an instruction in a form of software.
  • the second processor 2203 described above may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the second memory 2202, and the second processor 2203 reads the information in the second memory 2202, and completes the steps of the above method in combination with the hardware thereof.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more ASICs, DSPs, DSPDs, PLDs, FPGAs, general purpose processors, controllers, microcontrollers, microprocessors, other electronic units for performing the functions described herein Or a combination thereof.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: initiate an SCTP coupling establishment process to the opposite end according to the configuration data of the SCTP; and couple the SCTP corresponding application of the same peer end
  • the protocol layer data is merged and the SCTP couplings at the same peer are combined into the same activated coupling pool.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: initial SCTP coupling with the first network element; and signaling interaction by the initial SCTP coupling to add one or Multiple SCTP couplings.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: carrying the SCTP coupling information to be added in the application protocol layer update process signaling.
  • the application layer update process signaling includes a core network configuration update message.
  • the second processor 2203 is further configured to: when the computer program is executed, execute: a list of SCTP coupled information to be carried carried in the application protocol layer setup process signaling.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: receiving an update request message sent by the first network element; wherein the update request message indicates deleting one or more SCTPs Coupling.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: returning an update request response message to the first network element.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: receiving an update request message sent by the first network element; wherein the update request message indicates one or more corresponding to the occlusion SCTP coupling; replying to the first network element with an update request response message.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: receiving an update request message sent by the first network element; wherein the update request message is used to indicate SCTP transmission coupling Re-election.
  • the second processor 2203 is further configured to: when the computer program is executed, perform: receiving a second fragmentation notification message of the first network element; the notification message is used to notify the second network element SCTP Coupling reselection; migrating the transport of the migrated application to the SCTP transport coupling corresponding to the second slice.
  • each component in this embodiment may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function module.
  • the integrated unit may be stored in a computer readable storage medium if it is implemented in the form of a software function module and is not sold or used as a stand-alone product.
  • the technical solution of the embodiment is essentially Said that the part contributing to the prior art or all or part of the technical solution can be embodied in the form of a software product stored in a storage medium, comprising a plurality of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc. or a processor that performs all or part of the steps of the method described in this embodiment.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the embodiment provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, performing: establishing an SCTP coupling pool with the first network element; wherein the SCTP couple The pool includes more than one SCTP coupling; receiving the signaling that the first network element transmits the coupling by SCTP transmission; wherein the SCTP transmission coupling is selected for the first network element.
  • the method when the computer program is executed by the processor, the method further comprises: initiating an SCTP coupling establishment process to the opposite end according to the configuration data of the SCTP; and combining the application protocol layer data corresponding to the SCTP coupling of the same peer end, The same pair of SCTP couplings were combined into the same activated coupling pool.
  • the computer program when executed by the processor, further performs: establishing an initial SCTP coupling with the first network element; and signaling interaction by the initial SCTP coupling to add one or more SCTP couplings.
  • the computer program when executed by the processor, it is further executed to: carry the SCTP coupling information to be added in the application protocol layer update process signaling.
  • the application layer update process signaling includes a core network configuration update message.
  • the computer program when executed by the processor, it further performs: a list of SCTP coupled information to be carried carried carried in the application protocol layer establishment process signaling.
  • the method when the computer program is executed by the processor, the method further comprises: receiving an update request message sent by the first network element; wherein the update request message indicates deleting one or more SCTP couplings.
  • the computer program when executed by the processor, it is further executed to: return an update request response message to the first network element.
  • the method when the computer program is executed by the processor, the method further comprises: receiving an update request message sent by the first network element; wherein the update request message indicates one or more SCTP couplings corresponding to the occlusion Sending an update request response message to the first network element.
  • the method when the computer program is executed by the processor, the method further comprises: receiving an update request message sent by the first network element; wherein the update request message is used to indicate SCTP transmission coupled reselection.
  • the method when the computer program is executed by the processor, the method further includes: receiving a second fragmentation notification message of the first network element; the notification message is used to notify the second network element to SCTP coupling Reselection; migrating the transport of the migrated application to the SCTP transport coupling corresponding to the second slice.
  • the system 230 may include a first network element 210 and a second network. Yuan 220; among them,
  • the first network element 210 is configured to establish an SCTP coupling pool with the second network element 220; wherein the SCTP coupling pool includes more than one SCTP coupling; and the SCTP coupling pool is selected An SCTP transmission coupling for signaling transmission; and the second network element 220 is coupled to transmit signaling by using the SCTP transmission;
  • the second network element 220 is configured to establish an SCTP coupling pool with the first network element 210.
  • the SCTP coupling pool includes more than one SCTP coupling; and the first network element 210 is received by the SCTP. Transmitting the signaling of the coupled transmission; wherein the SCTP transmission coupling is selected for the first network element 210.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the technical solution of the embodiment of the present invention performs signaling transmission service by using multiple SCTP couplings between network elements, which greatly reduces the communication delay caused by control signaling bypass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种通信方法、设备、系统和计算机存储介质;该方法包括:第一网元建立和第二网元之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;所述第一网元从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联;所述第一网元和所述第二网元通过所述SCTP传输偶联传输信令。

Description

一种通信方法、设备、系统和计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710313516.5、申请日为2017年5月5日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本发明涉及无线通信技术,尤其涉及一种通信方法、设备、系统和计算机存储介质。
背景技术
当前,无线通信系统的网元之间,比如演进型基站(eNB,Evolved Node B)、移动性管理实体(MME,Mobility Management Entity)等基站和核心网设备之间通常采用流控制传输协议(SCTP,Stream Control Transmission Protocol)进行控制信令的传输,以保证传输信令的可靠性。在SCTP之上,不同的网元间根据应用的需要采用不同的应用层协议,如S1应用协议(S1AP,S1Application Protocol)、X2应用协议(X2AP,X2Application Protocol)。目前,根据第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)36.412第7章的描述,一对网元间,例如eNodeB和MME间,或者eNodeB和eNodeB间的应用协议层只有一个SCTP偶联。
但是目前通信技术的发展带来了以下情况:1、运营商为了保证通信系统的可靠性会对核心网网元进行异地热备份,从而提高网元的可用性,而热备份网元彼此均是独立的;2、在第五代移动通信技术(5G,5th-Generation)中,为了能够同时满足多种应用场景的需求,将网元的功能进行切片,比 如同一个核心网支持在一个切片应用中核心网部分功能下沉到基站测,而在另一个网络切片中核心网功能任保持现在的中心节点部署方式;或者同一个基站的控制面在一个切片中上移到靠近核心网部署,而在另一个切片中任保持现有的部署方式;3、传统网络为了对多主控板进行负荷分担,会对网元进行分布式部署。
由于当前应用协议层只支持一个SCTP偶联,因此,当上述的三种网元分布式部署的情况出现时,控制信令均需要转发至SCTP协议所部属的服务网元或单板,造成了控制信令的迂回,从而增加了通信时延。
发明内容
本发明实施例期望提供一种通信方法、设备、系统和计算机存储介质,能够降低由控制信令迂回所造成的通信时延。
本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供了一种通信方法,所述方法包括:
第一网元建立和第二网元之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;
所述第一网元从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联;
所述第一网元和所述第二网元通过所述SCTP传输偶联传输信令。
第二方面,本发明实施例还提供了一种通信方法,所述方法包括:
第二网元和第一网元建立SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;
所述第二网元接收所述第一网元通过SCTP传输偶联传输的信令;其中,所述SCTP传输偶联为所述第一网元选取得到。
第三方面,本发明实施例还提供了一种网元设备,所述网元设备包括:第一网络接口、第一存储器和第一处理器;
第一网络接口,配置为在与其他外部网元之间进行收发信息过程中,接收和发送数据;
第一存储器,配置为存储能够在第一处理器上运行的计算机程序;
第一处理器,配置为在运行所述计算机程序时,执行本发明上述第一方面所述通信方法的步骤。
第四方面,本发明实施例还提供了一种网元设备,所述网元设备包括第二网络接口、第二存储器和第二处理器;
所述第二网络接口,配置为在与其他外部网元之间进行收发信息过程中,接收和发送数据;
第二存储器,配置为存储能够在第二处理器上运行的计算机程序;
第二处理器,配置为在运行所述计算机程序时,执行本发明上述第二方面所述通信方法的步骤。
第五方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本发明上述第一方面所述通信方法的步骤。
第六方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本发明上述第二方面所述通信方法的步骤。
第七方面,本发明实施例还提供了一种支持多SCTP偶联的通信系统,所述系统包括第一网元和第二网元;其中,
所述第一网元,配置为建立和第二网元之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;从所述SCTP偶联池中选取用于进行信号传输的SCTP传输偶联;和所述第二网元通过所述SCTP传输偶联传输信令;
所述第二网元,配置为和所述第一网元建立SCTP偶联池;其中,所述 SCTP偶联池中包括一个以上SCTP偶联;接收所述第一网元通过SCTP传输偶联传输的信令;其中,所述SCTP传输偶联为所述第一网元选取得到。
本发明实施例提供了的通信方法、设备、系统和计算机存储介质,通过网元间的多个SCTP偶联进行信令传输服务,大大降低了由控制信令迂回所造成的通信时延。
附图说明
图1为本发明实施例提供的一种支持多SCTP偶联的通信方法流程示意图;
图2为本发明实施例提供的一种网络架构示意图;
图3为本发明实施例提供的一种建立偶联池的流程示意图;
图4为本发明实施例提供的另一种建立偶联池的流程示意图;
图5为本发明实施例提供的一种选择SCTP传输偶联的流程示意图;
图6为本发明实施例提供的一种SCTP偶联退出服务的流程示意图;
图7为本发明实施例提供的一种SCTP偶联闭塞处理的流程示意图;
图8为本发明实施例提供的一种重选SCTP传输偶联的流程示意图;
图9为本发明实施例提供的另一种重选SCTP传输偶联的流程示意图;
图10为本发明实施例提供的场景一的架构示意图;
图11为本发明实施例提供的场景一中建立偶联池的流程示意图一;
图12为本发明实施例提供的场景一中建立偶联池的流程示意图二;
图13为本发明实施例提供的场景一中选择SCTP传输偶联的流程示意图一;
图14为本发明实施例提供的场景一中选择SCTP传输偶联的流程示意图二;
图15为本发明实施例提供的场景一中SCTP偶联的闭塞及删除流程示意图;
图16为本发明实施例提供的场景一中重选SCTP偶联的流程示意图;
图17为本发明实施例提供的场景二的架构示意图;
图18为本发明实施例提供的场景二中建立偶联池的流程示意图一;
图19为本发明实施例提供的场景二中建立偶联池的流程示意图二;
图20为本发明实施例提供的场景一中选择SCTP传输偶联的流程示意图;
图21为本发明实施例提供的一种网元设备的结构示意图;
图22为本发明实施例提供的另一种网元设备的结构示意图;
图23为本发明实施例提供的一种支持多SCTP偶联的通信系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例一
参见图1,其示出了本发明实施例提供的一种支持多SCTP偶联的通信方法,该方法可以应用于本端网元和对端网元,在本实施例中分别以第一网元和第二网元来表示。可以理解地,本端网元为第一网元时,对端网元则为第二网元;相类似的,本端网元为第二网元时,对端网元则为第一网元,本实施例对此不作具体限定,该方法可以包括:
S101:第一网元建立和第二网元之间的SCTP偶联池;
其中,所述SCTP偶联池中包括一个以上且彼此独立的SCTP偶联。
S102:第一网元从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联。
S103:第一网元和第二网元通过SCTP传输偶联传输信令。
对于图1所示的技术方案,通过第一网元和第二网元之间建立包含有 多个SCTP偶联的SCTP偶联池,并通过SCTP偶联池为网元间的信令传输提供服务,从而不仅能够为网元提供高可靠的传输服务,还支持网元热备份的无缝迁移,而且当网元异地分布式部署时可以避免控制信令迂回以及协议栈的单点问题。
参见图2,其示出了本发明实施例提供的一种网络架构示意图,在该网络架构中,包括第一网元和第二网元,从图2中可以获知,第一网元和第二网元的应用协议层之下,并且IP层之上包含n个SCTP偶联的偶联池,池内的SCTP偶联彼此独立,第一网元和第二网元之间的信令传输就可以通过偶联池内的SCTP偶联进行传输,从而实现上述图1所示技术方案所达到的效果。
示例性地,图1中S101的步骤说明了SCTP偶联池的建立过程,在本实施例中,对于该建立过程提出了两种实现方案,如下所述:
方案一
参见图3,其示出了本发明实施例提供的一种建立偶联池的流程,可以包括:
S301:第一网元和第二网元根据SCTP的配置数据向对端发起SCTP偶联建立过程,在本端与对端之间建立由多个SCTP偶联组成的SCTP偶联池。
具体来说,SCTP的配置数据可以是通过操作维护管理(OAM,Operation Administration and Maintenance)进行配置,SCTP的配置数据可以包括:一组IP四元组、对端网元类型和SCTP偶联标识;可选地还能够包括分片信息。而IP四元组包括:本端网元IP地址和端口号,对端网元IP地址和端口号。可以理解地,SCTP偶联标识用来表示SCTP配置数据所对应的SCTP偶联。
可以理解地,偶联建立过程可以通过发起请求来启动,通过“四次握 手”过程来实现。SCTP偶联的建立过程的具体步骤可以参照目前3GPP协议中的相关过程来进行,本实施例对此不做赘述。
S302:第一网元和第二网元的SCTP偶联池内的每个SCTP偶联实体通知本端的应用协议层实体。
可以理解地,该通知用于告知SCTP偶联建立正常。
S303:第一网元和第二网元通过各SCTP偶联向对端发起各SCTP偶联对应的应用协议层建立过程,协商各SCTP偶联对应的应用协议层数据;
S304:第一网元和第二网元将同一对端的SCTP偶联对应的应用协议层数据进行合并,并将同一对端的SCTP偶联合并为同一个激活偶联池。
对于图3所示的技术方案,需要说明的是:针对同一个偶联池内的多个偶联进行的多次应用层协议的建立的协商数据,不同种类的数据可以按照增量的方式合并,相同种类的数据可以按照以最新的协商数据为准;在多个应用协议层的建立过程中,在某一个应用协议层建立完成后,网元就可以开始正常对外提供服务,后续的应用协议层建立过程可以不影响已经建立的应用上下文,也就是说可以在后续应用协议层建立的消息中明确指示是否保持应用上下文。给一个SCTP偶联池内增加一条偶联的处理方法类似,执行上面的步骤1到步骤4。另外,初始偶联池可以只有一个SCTP偶联,后续根据需要动态增加。
此外,应用协议层为每个SCTP偶联维护以下信息:偶联状态、偶联优先级、偶联的分片属性和偶联的往返时延;偶联状态包括服务状态和暂停服务状态;偶联优先级可以设置高和低两个等级,默认为低优先级;偶联的分片属性由应用协议层确定,并与SCTP紧密关联;在一个分布式的网元中划分成多个不同的切片时,为了区分不同切片,可以明确要求对传输信令进行投递的分片属性。
对于在分布式场景,特别需要说明的是,应用协议层可以将部署位置 最近的SCTP偶联优先级设置为高优先级,从而能够避免信令的迂回传输。
方案二
除了方案一的建立过程以外,还可以采用第一网元和第二网元之间首先协商一份初始SCTP偶联信息,随后,网元间通过初始SCTP偶联进行应用协议层接口信令交互来增加一个或多个SCTP偶联信息,从而完成SCTP偶联池的建立。具体过程参见图4,可以包括:
S401:第一网元和第二网元根据初始SCTP的配置数据,发起初始SCTP偶联建立过程,建立初始SCTP偶联。
具体的,初始SCTP的配置数据可以通过OAM静态配置,具体可以包括IP四元组、对端网元类型和初始SCTP偶联标识;可选地,还可以包括分片信息。
S402:第一网元和第二网元的初始SCTP偶联实体通知本端应用协议层偶联建立完成。
S403:第一网元和第二网元通过初始SCTP偶联向对端发起应用协议层建立过程,协商初始SCTP偶联对应的应用协议层数据。
S404:第一网元和第二网元的应用协议层将初始SCTP偶联加入本端与对端之间的传输偶联池。
需要说明的是,在建立完初始SCTP偶联并且建立完偶联池之后,为了支持多个SCTP偶联,应用协议层建立的信令中可以携带本端用于和对端传输的一个或多个SCTP偶联信息;或者在应用协议层更新过程携带本端用于与对端传输的一个或多个SCTP偶联信息;这里应用协议层信令可以包括无线接入网(RAN,Radio Access Network)至核心网接口建立响应消息或核心网配置更新消息。
S405:第一网元和第二网元在应用协议层建立过程或更新过程信令中携带需增加的SCTP偶联信息,并触发每个需增加的SCTP偶联向对端发起 SCTP偶联建立过程。其中,所述应用协议层更新过程信令包括核心网配置更新消息。其中,所述第一网元在应用协议层建立过程信令中携带需增加的SCTP偶联信息列表。
S406:第一网元和第二网元中建立成功的SCTP偶联实体向本端应用协议层通知偶联状态正常信息。
S407:第一网元和第二网元的应用协议层将建立成功的SCTP偶联加入第一网元和第二网元间的传输偶联池。
通过图4的技术方案,也同样完成了SCTP偶联池的建立过程。
通过上述两个方案中的任一个方案,第一网元和第二网元之间便建立完成一个SCTP偶联池。此后,应用协议层在需要在网元间交互信令时,可以根据实际需要选择状态合适的SCTP偶联。
示例性地,当第一网元或第二网元的应用协议层需要传输信令给对端时,需要从已建立的SCTP偶联池中选择合适的SCTP偶联用于应用协议层信令的传输,因此,以第一网元为例,参见图5,第一网元按照预设的选择策略从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联,具体可以包括:
S501:第一网元根据应用层协议数据,确定待传输信令的目标网元类型和目标网元标识;如果存在,还需要确定待传输信令的分片。
S502:根据目标网元类型、目标网元标识和分片(如果存在)从SCTP偶联池中选取用于传输信令的备选SCTP偶联集合。
具体地,第一网元可以选取候选的激活偶联池,随后从激活偶联池中剔除闭塞状态的SCTP偶联,构造备选SCTP偶联集合。
需要说明的是,当第一网元的应用层具有分片属性时,还可以按分片属性从备选偶联集合剔除非期望切片的SCTP偶联。
S503:从备选SCTP偶联集合中选择优先级高的SCTP偶联,构造优选 SCTP偶联集合。
S504:当优选SCTP偶联集合非空时,则按照轮询调度(RR,Round Robin)原则从优选SCTP偶联集合中选择一个SCTP偶联作为SCTP传输偶联;
当优选SCTP偶联集合为空时,则从备选SCTP偶联集合中按照往返时延(RTT,Round-Trip Time)最小原则选择一个SCTP作为SCTP传输偶联;
对于图5所示的技术方案,在分布式网元中,希望避免一个应用或用户的用户级上下文在网元间进行动态迁移,为了能处理这种情况下,应用协议层在通过SCTP偶联接收到传输信令后,需要保存传输信令的SCTP偶联,后续同一应用或用户的信令都选择这条SCTP偶联,直到更换其他SCTP偶联时为止。
示例性地,参见图6,当SCTP偶联池中的SCTP偶联退出服务状态时,图1所示的技术方案还可以包括:
S601:当应用协议层或用户通过OAM决定删除SCTP偶联池中的某个SCTP偶联时,第一网元向第二网元发送更新请求消息;需要说明的是,所述更新请求消息指示删除一个或多个SCTP偶联;
S602:第二网元向第一网元返回更新请求响应消息。
具体地,对于通过图3所示的方案一建立的SCTP偶联池中的SCTP偶联,可以通过需要删除的SCTP偶联来发送更新请求消息以及返回更新请求响应消息;而通过对于图4所示的方案二建立的SCTP偶联池中的SCTP偶联,可以在更新请求消息和更新请求响应消息中携带需要删除的SCTP偶联标识列表,可以理解地,该列表可以包含一个或多个需要删除的SCTP偶联标识此时,用于传输更新请求消息和更新请求响应消息的SCTP偶联可以在SCTP偶联池中任选。
S603:第一网元和第二网元中需要删除的SCTP偶联退出服务,并通 知应用协议层。
需要说明的是,在一些可能的异常情况下,当SCTP偶联池内某个SCTP偶联退出服务时,本端SCTP检测到退出后可以通知应用协议层,该SCTP偶联退出服务。
S604:第一网元和第二网元的应用协议层从激活偶联池中将需要删除的SCTP偶联剔除。
需要说明的是,对于分布式场景,还需要做应用协议层数据的同步。
可以理解地,因为SCTP偶联池内存在多个SCTP偶联,当其中一个SCTP偶联由于故障或者人工操作退出服务时,网元间的信令可以由SCTP偶联池中的其他可用SCTP偶联传输,所以不影响网元间的信令交互,只需通过图6所示的技术方案将退出服务的SCTP偶联从SCTP池中剔除即可。
示例性地,由于维护或应用层根据业务的需求,在一些可能的情况下,需要闭塞SCTP偶联池的一个或多个SCTP偶联,并禁止这些SCTP偶联上传输新的信令。因此,参见图7,图1所示的技术方案还可以包括:
S701:第一网元给第二网元发送更新请求消息;该更新请求消息指示闭塞对应的一个或多个SCTP偶联。
S702:第二网元给第一网元回复更新请求响应消息。
具体地,对于通过图3所示的方案一建立的SCTP偶联池中的SCTP偶联,可以通过在需要闭塞的SCTP偶联来发送更新请求消息以及返回更新请求响应消息;而通过对于图4所示的方案二建立的SCTP偶联池中的SCTP偶联,可以则在更新请求消息和更新请求响应消息中携带需要闭塞的SCTP偶联标识,此时,用于传输更新请求消息和更新请求响应消息的SCTP偶联可以在SCTP偶联池中任选。
S703:第一网元和第二网元应用协议层将SCTP偶联池内需要闭塞的SCTP偶联状态更新为闭塞状态,并且应用协议层后续发送信令时不选择需 要闭塞的SCTP偶联。
综合图6和图7所示的SCTP偶联退服和SCTP偶联闭塞的过程,可以动态实现偶联的删除且不影响应用协议层信令的传输。
示例性地,当需要重选SCTP传输偶联时,参见图8,图1所示的技术方案还可以包括:
S801:第一网元向第二网元发送更新请求消息,所述更新请求消息用于指示SCTP传输偶联的重选。
其中,该更新请求消息用于更新用户路由到新的SCTP传输偶联;该更新请求消息中包括指示新的SCTP传输偶联的相关信息,比如用户信息列表,新的SCTP传输偶联标识,或者新的第一网元节点标识等,而用户信息可以为第一网元和第二网元的用户应用标识对;
S802:第二网元根据更新请求消息中新的SCTP传输偶联将用户信令迁移到新核心网节点。
S803:第一网元和第二网元在路由迁移成功后更新各自本地用户的核心网至RAN接口标识信息。
需要说明的是,对于分布式的网元内功能完全相同的多个弹性切片来说,在需要做弹性伸缩时,需要删除某个分片;但是对于有粘滞性需求的网元,如无线核心网网元,需要通知对端网元闭塞对应的SCTP偶联,避免新用户的进入;对于已经建立上下文的应用,可能需要通知对端网元进行SCTP传输偶联的更换,而网元内的上下文通过应用自身实现迁移;此外,如果第一网元由于一个分片软件或硬件故障而导致内部发生故障迁移,需要迁移到新的一个或多个分片上时,需要通知第二网元路径切换;路径的切换可以是分片级的也可以是用户级的消息通知;此时,重选SCTP传输偶联的过程如图9所示:
S901:在第一网元的第一分片发生故障退服时,应用协议层将应用迁 移到第二分片。
可以理解地,第二分片可以是不同于第一分片的单个分片,也可以是不同于第一分片的多个分片,本实施例不做赘述。
S902:第二分片通知第二网元SCTP偶联重选。
S903:第二网元将被迁移应用的传输迁移到第二分片对应的SCTP传输偶联上;或者,出于弹性伸缩方面的需要,在负荷低的情况下,第一网元删除第一分片后,第一分片的应用协议层主动通知第二网元将第一分片对应的用户或应用的连接重选到第二分片;第二网元将被迁移的应用的传输迁移到第二分片对应的SCTP传输偶联。
本实施例提供了一种支持多SCTP偶联的通信方法,通过第一网元和第二网元之间建立包含有多个SCTP偶联的SCTP偶联池,并通过SCTP偶联池为网元间的信令传输提供服务,不仅能够为网元提供高可靠的传输服务,还支持网元热备份的无缝迁移,而且当网元异地分布式部署时可以避免控制信令迂回以及协议栈的单点问题。
实施例二
基于前述实施例相同的技术构思,本实施例在两种应用场景中对前述实施例的技术方案的具体实现进行说明。
场景一
参见图10所示的场景架构示意图,本场景描述了5G在核心网和基站之间部署SCTP偶联池的方案,即在下一代核心网(NGC,Next Generation Core network)和5G基站(gNB,g Node B)之间部署偶联池的方案,如图10所示,NGC为支持多个分片的分布式部署的网元,本场景只列出2个分片为例来说明,NGC的分片可以是两个功能独立的部分,每部分都可以独立对外通信,分片间有内部实现的数据同步通道用于实现容灾和上下文迁移,分片间可以实现热备份,当分片1出现故障时,可以有分片2接 替分片1继续服务;本实例中将两个NGC分片对接gNB的应用协议层分别命名为NGAP a和NGAP b;gNB支持SCTP偶联池,对外体现为一个完整的gNB;gNB的SCTP偶联池中包括两个SCTP偶联,在场景中称为SCTP a和SCTP b;基于图10所示的场景,前述实施例的技术方案具体实现过程如下:
1、对于SCTP偶联池的建立过程,如前述实施例所述的方案一,参见图11,在本场景中SCTP偶联池的建立流程可以包括:
S1101:gNB配置两个到NGC的SCTP偶联及对应的参数传输参数;
S1102:SCTPa和SCTPb分别发起SCTP偶联建立流程,建立两条网元间的传输SCTP偶联;
S1103:gNB和NGC的两个SCTP偶联,即SCTPa和SCTPb通知自身网元的协议NGAP层,偶联建立成功。
S1104:gNB的协议NGAP层分别在SCTP a和SCTP b上发起NGAP建立请求(SETUP REQUEST)消息给NGC;
其中,NGAP SETUP REQUEST消息携带gNB的相关参数,如gNB ID,并且增加可选的分片选择信息;
S1105:NGC从两个SCTP偶联收到NGAP SETUP REQUEST消息,根据该消息中的gNB ID确定为同一个gNB的两个NGAP SETUP REQUEST后,对gNB的相关参数进行合并,将SCTP a和SCTP b纳入到对gNB的SCTP偶联池中;
S1106:NGC分别在SCTP a和SCTPb偶联上发送NGAP建立请求响应(SETUP RESPONSE)消息给gNB;
需要说明的是,在NGAP SETUP RESPONSE消息中需要增加分片选择信息;
S1107:gNB收到NGAP SETUP RESEPONSE消息,根据NGC相关的 信息确定为同一个NGC后,对协议参数进行合并处理,将SCTP a和SCTP b纳入到对NGC的传输偶联池中;
可以理解地,gNB和NGC同时维护SCTP偶联池中的SCTP偶联优先级和往返时延信息,具体可以由gNB和NGC实现确定。
2、对于SCTP偶联池的建立过程,如前述实施例所述的方案二,参见图12,在本场景中SCTP偶联池的建立流程可以包括:
S1201:gNB配置一个到NGC的SCTP偶联及对应的参数传输参数;
例如,SCTPa发起偶联建立流程,建立两条网元间的传输SCTP偶联;gNB和NGC的SCTPa通知各自网元的协议NGAP层,偶联建立成功;
S1202:gNB的协议NGAP层在SCTPa上发送NGAP SETUP REQUEST消息给NGC;
其中,NGAP SETUP REQUEST消息中携带有gNB的相关参数,如gNB ID,并且消息中需要增加可选的分片选择信息、一个可选的SCTP偶联参数列表,该列表可以包括IP四元组、端口和SCTP偶联标识;
S1203:NGC收到NGAP SETUP REQUEST消息,根据消息中的gNB ID确定gNB的初始偶联池包含SCTPa后,在SCTP a偶联上发送NGAP SETUP RESPONSE消息给gNB;
需要说明的是,NGAP SETUP RESPONSE消息中需要增加一个可选的SCTP偶联参数列表,主要包括IP四元组、端口和SCTP偶联标识以及分片选择信息;
S1204:gNB收到NGAP SETUP RESEPONSE消息,构建到NGC的传输偶联池,并将SCTPa加入偶联池;
S1205:NGC和gNB根据SCTP偶联参数列表,触发本端SCTP b发起到对端的偶联建立过程;在偶联建立成功后,将SCTP b加入传输偶联池中。
3、对于从SCTP偶联池中选择SCTP传输偶联的过程,具体地,gNB 对NGC传输信令而选择SCTP传输偶联的过程如图13所示,可以包括:
S1301:gNB在需要把信令发送给NGC时,根据应用上下文确定信令发送的目标NGC信息;
S1302:gNB根据选择的NGC信息,确定gNB与目标NGC间建立的SCTP偶联池;
S1303:根据确定的SCTP偶联池,选择用于传输信令的SCTP传输偶联,将信令投递给对应的SCTP传输偶联;
具体的,S1303的实现过程如图5所述,在此不再赘述。
4、对于从SCTP偶联池中选择SCTP传输偶联的过程,具体地,NGC对gNB传输信令而选择SCTP传输偶联的过程如图14所示;
S1401:NGC在需要给gNB发送消息时,根据应用上下文或者信令中的内容确定消息需要发送的目标eNB信息;
S1402:根据目标gNB信息,确定NGC和目标gNB间建立的SCTP偶联池;
S1403:根据确定的SCTP偶联池,选择用于传输信令的SCTP传输偶联,将信令投递给对应的SCTP传输偶联;
具体的,S1403的实现过程如图5所述,在此不再赘述。
对于图13和图14所示的方案,需要说明的是,对于非UE级的信令,因为gNB或者NGC均明确信令需要发送的对端网元,因此,根据目标网元采用上述方法选择偶联,这里不再赘述。
而对于UE级信令,gNB或者NGC可能均有粘滞性的要求,即UE接入某个分片后,这个UE希望尽可能还在这个分片,这种情况,上面的选择方法只适用于UE没有在gNB和NGC之间建立逻辑连接时;对于已经建立连接的UE,gNB和NGC需要保存本次选择的SCTP传输偶联用于后续信令的传输,直到逻辑连接被释放或重选。
5、对于SCTP偶联的闭塞和删除过程,如图15所示:
S1501:在NGC或gNB需要删除或闭塞某个SCTP偶联,或某个SCTP偶联异常断链时;由发起端分片通知对端网元;
具体地,如果由NGC发起,则给gNB发送NGC更新请求(UPDATE REQUEST)消息;如果由gNB发起,则给NGC发送GNB UPDATE REQEUST消息。消息中携带指定的SCTP偶联列表,包括指定的SCTP偶联标识、指定的SCTP偶联的操作指示,例如删除,闭塞等。在图15中,具体过程以NGC发起为例进行说明。
S1502:在NGC收到GNB UPDATE REQUEST消息或者gNB收到NGC的NGC UPDATE RQUEST消息时,更新指定的SCTP偶联状态为闭塞状态,或者发起SCTP退服过程;
S1503:NGC给gNB回复GNB更新请求响应(UPDATE RESPONSE)消息或者gNB给NGC回复NGC UPDATE RESPONSE消息。
6、对于SCTP传输偶联的重选流程,假设在NGC的分片1需要被删除,如图16所示可以包括:
S1601:NGC分片1将用户迁移到分片2上;
S1602:NGC分片1给gNB发送UE路由更新请求(ROUTE UPDATE REQUEST)消息;
该消息中携带被更新的SCTP传输偶联标识和目标SCTP传输偶联标识,以及需要被更新路由的UE标识信息列表,该列表主要可以包括如Gnb UE NGAP ID和NGC UE NGAP ID;
S1603:gNB在收到UE ROUTE UPDATE REQUEST消息后,更新UE标识指定的信息;同时设置被更新的SCTP偶联状态为闭塞;给NGC发送UE路由更新请求响应(ROUTE UPDATE RESPONSE)消息;
同样,gNB也可以要求NGC更新本端的SCTP偶联信息,发送消息相 同,在此不再赘述。
场景二
参见图17所示的场景架构示意图,本场景描述了在gNB和gNB间部署SCTP偶联池的方案。如图17所示,gNB1为支持分布式的基站;它由两个独立的XnAP功能各部分组成,分别对应为XnAP a和XnAP b;gNB 1和gNB2支持SCTP偶联池,偶联池内有两个偶联SCTPa和SCTPb;
1、对于SCTP偶联池的建立过程,如前述实施例所述的方案一,参见图18,在本场景中SCTP偶联池的建立流程可以包括:
S1801:两个gNB分别配置SCTP传输参数和网元类型;分别发起SCTP偶联建立;建立SCTPa和SCTPb;
S1802:gNB1和gNB2内的SCTPa和SCTPb分别通知gNB之间的应用协议(XnAP,Xn Application Protocol)关于SCTP偶联建立成功;
S1803:gNB 2的XnAP分别通过SCTPa和SCTPb发送Xn SETUP REQUEST消息建立Xn连接,
具体地,该消息中增加可选的分片属性;
S1804:gNB 1在接收消息的偶联上给gNB 2回复Xn SETUP RESPONSE消息。
S1805:gNB1和gNB2根据接收到的Xn SETUP REQUEST或Xn SETUP RESPONSE消息中gNB标识确定是同一个gNB的多个SCTP偶联后,将多个SCTP偶联纳入SCTP偶联池。
2、对于SCTP偶联池的建立过程,如前述实施例所述的方案二,参见图19,在本场景中SCTP偶联池的建立流程可以包括:
S1901:gNB1和gNB2间通过OAM或自组织网络(SON,Self-Organized Networks)配置一个SCTP参数;发起SCTP偶联建立过程;偶联建立成功后,通知本端XnAP偶联建立成功;
S1902:gNB1的XnAP发起Xn SETUP REQUEST消息;
其中,该消息增加本端用于传输的分片SCTP参数列表,该列表主要包括:偶联标识、IP、端口、分片属性;
S1903:gNB2回复Xn SETUP RESPONSE消息;
其中,该消息同样包括本端用于传输SCTP参数列表。
gNB1和gNB2分别把SCTPa作为之间的Xn传输偶联池;
S1904:gNB1和gNB2分别根据SCTP参数列表发起偶联建立;SCTPb建立成功;SCTPb加入Xn传输偶联池。
3、对于从SCTP偶联池中选择SCTP传输偶联的过程,如图20所示,可以包括:
S2001:gNB根据业务流程确定信令需要发送的目标gNB;
S2002:根据目标gNB确定用于传输信令的SCTP偶联池;
S2003:根据确定的SCTP偶联池,选择用于传输信令的SCTP传输偶联,将信令投递给对应SCTP传输偶联;
具体的,S2003的实现过程如图5所述,在此不再赘述。
4、关于SCTP偶联的闭塞、删除处理方法与场景一的流程类似,仅需要在Xn UPDATE REQUEST消息中增加SCTP偶联列表以及每个偶联的操作指示;
同理,SCTP传输偶联的重选也同样需要增加消息Xn UE ROUTE UPDATE REQUEST/RESPONSE消息,在Xn UE ROUTE UPDATE REQUEST消息中增加携带被更新的传输偶联标识和目标传输偶联标识,以及需要被更新路由的UE标识信息列表,该列表中包含两端的gNB Xn UEAP ID。
通过上述两个场景对实施例一的技术方案进行了详细的描述,从而可以理解到:通过SCTP偶联池为网元间的信令传输提供服务,不仅能够为网 元提供高可靠的传输服务,还支持网元热备份的无缝迁移,而且当网元异地分布式部署时可以避免控制信令迂回以及协议栈的单点问题。
实施例三
基于前述实施例相同的技术构思,参见图21,其示出了本发明实施例提供的一种网元设备210,该网元设备210可以为区别于第二网元的第一网元;网元设备210包括:第一网络接口2101、第一存储器2102和第一处理器2103;各个组件通过总线系统2104耦合在一起。可理解,总线系统2104用于实现这些组件之间的连接通信。总线系统2104除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图21中将各种总线都标为总线系统2104。其中,
第一网络接口2101,配置为在与其他外部网元之间进行收发信息过程中,接收和发送数据;
第一存储器2102,配置为存储能够在第一处理器2103上运行的计算机程序;
第一处理器2103,配置为在运行所述计算机程序时,执行:建立和第二网元之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联;和所述第二网元通过所述SCTP传输偶联传输信令。
可以理解,本发明实施例中的第一存储器2102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read-Only Memory)、可编程只读存储器(PROM,Programmable ROM)、可擦除可编程只读存储器(EPROM,Erasable PROM)、电可擦除可编程只读存储器(EEPROM,Electrically EPROM)或闪存。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许 多形式的RAM可用,例如静态随机存取存储器(SRAM,Static RAM)、动态随机存取存储器(DRAM,Dynamic RAM)、同步动态随机存取存储器(SDRAM,Synchronous DRAM)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate SDRAM)、增强型同步动态随机存取存储器(ESDRAM,Enhanced SDRAM)、同步连接动态随机存取存储器(SLDRAM,Synchlink DRAM)和直接内存总线随机存取存储器(DRRAM,Direct Rambus RAM)。本文描述的系统和方法的第一存储器2102旨在包括但不限于这些和任意其它适合类型的存储器。
而第一处理器2103可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第一处理器2103中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第一处理器2103可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、现成可编程门阵列(FPGA,Field Programmable Gate Array)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于第一存储器2102,第一处理器2103读取第一存储器2102中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ASIC,Application Specific Integrated Circuits)、DSP、 数字信号处理设备(DSPD,DSP Device)、可编程逻辑设备(PLD,Programmable Logic Device)、FPGA、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:根据SCTP的配置数据向对端发起SCTP偶联建立过程,将同一对端的SCTP偶联对应的应用协议层数据进行合并,并将同一对端的SCTP偶联合并为同一个激活偶联池。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:和第二网元建立初始SCTP偶联;通过所述初始SCTP偶联进行信令交互增加一个或多个SCTP偶联。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:在应用协议层更新过程信令中携带需增加的SCTP偶联信息列表。
在一实施例中,所述应用协议层更新过程信令包括核心网配置更新消息。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:在应用协议层建立过程信令中携带需增加的SCTP偶联信息列表。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:从所述SCTP偶联池中选取用于传输信令的备选SCTP偶联集合;从所述备选SCTP偶联集合中选择一个SCTP偶联作为所述进行信令传输的SCTP传输偶联。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:从所述SCTP偶联池中选取用于传输信令的备选SCTP偶联集合;从所述备选SCTP偶联集合中选择优先级高的SCTP偶联,构造优选SCTP偶联集合;从所述优选SCTP偶联集合中选择一个SCTP偶联作为所述进行信令传输的SCTP传输偶联。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:向所述第二网元发送更新请求消息;所述更新请求消息指示删除一个或多个SCTP偶联。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:接收第二网元发送的更新请求响应消息。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:向第二网元发送更新请求消息;所述更新请求消息指示闭塞对应的一个或多个SCTP偶联;接收第二网元回复的更新请求响应消息。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:向第二网元发送更新请求消息;其中,所述更新请求消息用于指示SCTP传输偶联的重选。
作为另一个实施例,所述第一处理器2103还配置为运行所述计算机程序时,执行:在第一分片发生故障退服时,应用协议层将应用迁移到第二分片。
另外,在本实施例中的各组成部分可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样 的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
因此,本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器运行时,执行:建立和第二网元之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;从所述SCTP偶联池中选取用于进行信号传输的SCTP传输偶联;和所述第二网元通过所述SCTP传输偶联传输信号。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:根据SCTP的配置数据向对端发起SCTP偶联建立过程,将同一对端的SCTP偶联对应的应用协议层数据进行合并,并将同一对端的SCTP偶联合并为同一个激活偶联池。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:和第二网元建立初始SCTP偶联;通过所述初始SCTP偶联进行信令交互增加一个或多个SCTP偶联。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:在应用协议层更新过程信令中携带需增加的SCTP偶联信息列表。
在一实施例中,所述应用协议层更新过程信令包括核心网配置更新消息。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:在应用协议层建立过程信令中携带需增加的SCTP偶联信息列表。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:从所 述SCTP偶联池中选取用于传输信令的备选SCTP偶联集合;从所述备选SCTP偶联集合中选择一个SCTP偶联作为所述进行信令传输的SCTP传输偶联。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:从所述SCTP偶联池中选取用于传输信令的备选SCTP偶联集合;从所述备选SCTP偶联集合中选择优先级高的SCTP偶联,构造优选SCTP偶联集合;从所述优选SCTP偶联集合中选择一个SCTP偶联作为所述进行信令传输的SCTP传输偶联。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:向所述第二网元发送更新请求消息;其中,所述更新请求消息指示请求删除一个或多个SCTP偶联。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:接收所述第二网元发送的更新请求响应消息。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:向所述第二网元发送更新请求消息;其中,所述更新请求消息指示闭塞对应的一个或多个SCTP偶联;接收所述第二网元回复的更新请求响应消息。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:所述第一网元向所述第二网元发送更新请求消息;其中,所述更新请求消息用于指示SCTP传输偶联的重选。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:在第一分片发生故障退服时,应用协议层将应用迁移到第二分片。
实施例四
基于前述实施例相同的技术构思,参见图22,其示出了本发明实施例提供的一种网元设备220,该网元设备210可以为区别于第一网元的第二网元;所述网元设备220包括:第二网络接口2201、第二存储器2202和第二 处理器2203;各个组件通过总线系统2204耦合在一起。可理解,总线系统2204用于实现这些组件之间的连接通信。总线系统2204除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图22中将各种总线都标为总线系统2204。其中,
其中,所述第二网络接口2201,配置为在与其他外部网元之间进行收发信息过程中,接收和发送数据;
第二存储器2202,配置为存储能够在第二处理器2203上运行的计算机程序;
第二处理器2203,配置为在运行所述计算机程序时,执行:与第一网元建立SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;接收第一网元通过SCTP传输偶联传输的信令;其中,所述SCTP传输偶联为第一网元选取得到。
可以理解,本发明实施例中的第二存储器2202可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如SRAM、DRAM、SDRAM、DDRSDRAM、ESDRAM、SLDRAM和DRRAM。本文描述的系统和方法的第二存储器2202旨在包括但不限于这些和任意其它适合类型的存储器。
而第二处理器2203可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第二处理器2203中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第二处理器2203可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可 以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于第二存储器2202,第二处理器2203读取第二存储器2202中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个ASIC、DSP、DSPD、PLD、FPGA、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:根据SCTP的配置数据向对端发起SCTP偶联建立过程;将同一对端的SCTP偶联对应的应用协议层数据进行合并,并将同一对端的SCTP偶联合并为同一个激活偶联池。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:和第一网元建立初始SCTP偶联;通过所述初始SCTP偶联进行信令交互增加一个或多个SCTP偶联。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:在所述应用协议层更新过程信令中携带需增加的SCTP偶联信息。
在一实施例中,所述应用层更新过程信令包括核心网配置更新消息。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程 序时,执行:在应用协议层建立过程信令中携带的需增加的SCTP偶联信息列表。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:接收第一网元发送的更新请求消息;其中,所述更新请求消息指示删除一个或多个SCTP偶联。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:向第一网元返回更新请求响应消息。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:接收第一网元发送的更新请求消息;其中,所述更新请求消息指示闭塞对应的一个或多个SCTP偶联;向第一网元回复更新请求响应消息。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:接收第一网元发送的更新请求消息;其中,所述更新请求消息用于指示SCTP传输偶联的重选。
作为另一个实施例,所述第二处理器2203还配置为运行所述计算机程序时,执行:接收第一网元的第二分片通知消息;所述通知消息用于通知第二网元SCTP偶联重选;将被迁移应用的传输迁移到第二分片对应的SCTP传输偶联上。
另外,在本实施例中的各组成部分可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或 者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
因此,本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器运行时,执行:和第一网元建立SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;接收所述第一网元通过SCTP传输偶联传输的信令;其中,所述SCTP传输偶联为所述第一网元选取得到。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:根据SCTP的配置数据向对端发起SCTP偶联建立过程;将同一对端的SCTP偶联对应的应用协议层数据进行合并,并将同一对端的SCTP偶联合并为同一个激活偶联池。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:和第一网元建立初始SCTP偶联;通过所述初始SCTP偶联进行信令交互增加一个或多个SCTP偶联。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:在所述应用协议层更新过程信令中携带需增加的SCTP偶联信息。
在一实施例中,所述应用层更新过程信令包括核心网配置更新消息。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:在应用协议层建立过程信令中携带的需增加的SCTP偶联信息列表。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:接收所述第一网元发送的更新请求消息;其中,所述更新请求消息指示删除一个或多个SCTP偶联。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:向所述第一网元返回更新请求响应消息。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:接收所述第一网元发送的更新请求消息;其中,所述更新请求消息指示闭塞对应的一个或多个SCTP偶联;向所述第一网元回复更新请求响应消息。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:接收所述第一网元发送的更新请求消息;其中,所述更新请求消息用于指示SCTP传输偶联的重选。
作为另一个实施例,所述计算机程序被处理器运行时,还执行:接收所述第一网元的第二分片通知消息;所述通知消息用于通知所述第二网元SCTP偶联重选;将被迁移应用的传输迁移到所述第二分片对应的SCTP传输偶联上。
实施例五
基于前述实施例相同的技术构思,参见图23,其示出了本发明实施例提供的一种支持多SCTP偶联的通信系统230,所述系统230可以包括第一网元210和第二网元220;其中,
所述第一网元210,配置为建立和第二网元220之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联;和所述第二网元220通过所述SCTP传输偶联传输信令;
所述第二网元220,配置为和所述第一网元210建立SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;接收所述第一网元210通过SCTP传输偶联传输的信令;其中,所述SCTP传输偶联为所述第一网元210选取得到。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、 或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例的技术方案通过网元间的多个SCTP偶联进行信令传输 服务,大大降低了由控制信令迂回所造成的通信时延。

Claims (29)

  1. 一种通信方法,所述方法包括:
    第一网元建立和第二网元之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;
    所述第一网元从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联;
    所述第一网元和所述第二网元通过所述SCTP传输偶联传输信令。
  2. 根据权利要求1所述的方法,其中,所述第一网元建立和第二网元之间的SCTP偶联池,包括:
    所述第一网元和第二网元建立初始SCTP偶联;
    通过所述初始SCTP偶联进行信令交互增加一个或多个SCTP偶联。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述第一网元在应用协议层更新过程信令中携带需增加的SCTP偶联信息列表。
  4. 根据权利要求3所述的方法,其特征在于,所述应用协议层更新过程信令包括核心网配置更新消息。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一网元在应用协议层建立过程信令中携带需增加的SCTP偶联信息列表。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一网元向所述第二网元发送更新请求消息;所述更新请求消息指示删除一个或多个SCTP偶联。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述第一网元接收所述第二网元发送的更新请求响应消息。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一网元给所述第二网元发送更新请求消息;所述更新请求消息指示闭塞对应的一个或多个SCTP偶联;
    接收所述第二网元回复的更新请求响应消息。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一网元向所述第二网元发送更新请求消息,其中,所述更新请求消息用于指示SCTP传输偶联的重选。
  10. 根据权利要求1所述的方法,其中,当所述第一网元为分布式部署且具有功能相同的多个切片时,所述方法还包括:
    在所述第一网元的第一分片发生故障退服时,所述第一网元的应用协议层将应用迁移到第二分片。
  11. 根据权利要求1所述的方法,其中,所述第一网元建立和第二网元之间的SCTP偶联池,包括:
    所述第一网元根据SCTP的配置数据向对端发起SCTP偶联建立过程,所述第一网元将同一对端的SCTP偶联对应的应用协议层数据进行合并,并将同一对端的SCTP偶联合并为同一个激活偶联池。
  12. 根据权利要求1所述的方法,其中,所述第一网元从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联,包括:
    从所述SCTP偶联池中选取用于传输信令的备选SCTP偶联集合;
    从所述备选SCTP偶联集合中选择一个SCTP偶联作为所述进行信令传输的SCTP传输偶联。
  13. 根据权利要求1所述的方法,其中,所述第一网元从所述SCTP偶联池中选取用于进行信令传输的SCTP传输偶联,包括:
    从所述SCTP偶联池中选取用于传输信令的备选SCTP偶联集合;
    从所述备选SCTP偶联集合中选择优先级高的SCTP偶联,构造优选SCTP偶联集合;
    从所述优选SCTP偶联集合中选择一个SCTP偶联作为所述进行信令传输的SCTP传输偶联。
  14. 一种通信方法,所述方法包括:
    第二网元和第一网元建立SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;
    所述第二网元接收所述第一网元通过SCTP传输偶联传输的信令;其中,所述SCTP传输偶联为所述第一网元选取得到。
  15. 根据权利要求14所述的方法,其中,所述第二网元和第一网元建立SCTP偶联池,可以包括:
    所述第二网元和第一网元建立初始SCTP偶联;
    通过所述初始SCTP偶联进行信令交互增加一个或多个SCTP偶联。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述第二网元在应用协议层更新过程信令中携带需增加的SCTP偶联信息。
  17. 根据权利要求16所述的方法,其特征在于,所述应用层更新过程信令包括核心网配置更新消息。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二网元在应用协议层建立过程信令中携带的需增加的SCTP偶联信息列表。
  19. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第二网元接收所述第一网元发送的更新请求消息;所述更新请求消息指示删除一个或多个SCTP偶联;
  20. 根据权利要求19所述的方法,其中,所述方法还包括:
    所述第二网元向所述第一网元返回更新请求响应消息。
  21. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第二网元接收所述第一网元发送的更新请求消息;所述更新请求消息指示闭塞对应的一个或多个SCTP偶联;
    所述第二网元向所述第一网元回复更新请求响应消息。
  22. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第二网元接收所述第一网元发送的更新请求消息;其中,所述更新请求消息用于指示SCTP传输偶联的重选。
  23. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第二网元接收所述第一网元发送的的第二分片通知消息;所述通知消息用于通知所述第二网元SCTP偶联重选;
    所述第二网元将被迁移应用的传输迁移到所述第二分片对应的SCTP传输偶联上。
  24. 根据权利要求14所述的方法,其中,所述第二网元和第一网元建立SCTP偶联池,可以包括:
    所述第二网元根据SCTP的配置数据向对端发起SCTP偶联建立过程;
    所述第二网元将同一对端的SCTP偶联对应的应用协议层数据进行合并,并将同一对端的SCTP偶联合并为同一个激活偶联池。
  25. 一种网元设备,所述网元设备包括:第一网络接口、第一存储器和第一处理器;其中,
    第一网络接口,配置为在与其他外部网元之间进行收发信息过程中,接收和发送数据;
    第一存储器,配置为存储能够在第一处理器上运行的计算机程序;
    第一处理器,配置为在运行所述计算机程序时,执行权利要求1至13任一项所述方法的步骤。
  26. 一种网元设备,所述网元设备包括第二网络接口、第二存储器和第二处理器;
    其中,所述第二网络接口,配置为在与其他外部网元之间进行收发信息过程中,接收和发送数据;
    第二存储器,配置为存储能够在第二处理器上运行的计算机程序;
    第二处理器,配置为在运行所述计算机程序时,执行执行权利要求14至24任一项所述方法的步骤。
  27. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至13任一项所述方法的步骤。
  28. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求14至24任一项所述方法的步骤。
  29. 一种支持多SCTP偶联的通信系统,所述系统包括第一网元和第二网元;其中,
    所述第一网元,配置为建立和第二网元之间的SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;从所述SCTP偶联池中选取用于配置为进行信令传输的SCTP传输偶联;和所述第二网元通过所述SCTP传输偶联传输信令;
    所述第二网元,配置为和所述第一网元建立SCTP偶联池;其中,所述SCTP偶联池中包括一个以上SCTP偶联;接收所述第一网元通过SCTP传输偶联传输的信令;其中,所述SCTP传输偶联为所述第一网元选取得到。
PCT/CN2018/073097 2017-05-05 2018-01-17 一种通信方法、设备、系统和计算机存储介质 WO2018201757A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18794060.6A EP3637832A4 (en) 2017-05-05 2018-01-17 PROCESS, APPARATUS, COMMUNICATION SYSTEM, AND COMPUTER STORAGE MEDIA
KR1020197035751A KR102277936B1 (ko) 2017-05-05 2018-01-17 통신 방법, 장비, 시스템 및 컴퓨터 저장 매체
US16/669,299 US11071165B2 (en) 2017-05-05 2019-10-30 Communication method, equipment, system, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313516.5 2017-05-05
CN201710313516.5A CN108810942B (zh) 2017-05-05 2017-05-05 一种通信方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/669,299 Continuation US11071165B2 (en) 2017-05-05 2019-10-30 Communication method, equipment, system, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2018201757A1 true WO2018201757A1 (zh) 2018-11-08

Family

ID=64016411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073097 WO2018201757A1 (zh) 2017-05-05 2018-01-17 一种通信方法、设备、系统和计算机存储介质

Country Status (5)

Country Link
US (1) US11071165B2 (zh)
EP (1) EP3637832A4 (zh)
KR (1) KR102277936B1 (zh)
CN (2) CN113660686B (zh)
WO (1) WO2018201757A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071165B2 (en) * 2017-05-05 2021-07-20 Zte Corporation Communication method, equipment, system, and computer storage medium
CN113453378A (zh) * 2020-03-26 2021-09-28 成都鼎桥通信技术有限公司 一种s1应用协议链路的建立方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965613A (zh) * 2021-09-29 2022-01-21 新华三信息安全技术有限公司 一种双机热备处理方法、装置、设备及机器可读存储介质
CN114143730B (zh) * 2022-01-29 2022-09-16 阿里巴巴达摩院(杭州)科技有限公司 信令处理方法、通信系统、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075900A1 (en) * 2000-12-18 2002-06-20 Klaus Turina Signaling transport protocol extensions for load balancing and server pool support
CN1400777A (zh) * 2001-07-30 2003-03-05 华为技术有限公司 在网络设备之间传输大容量信令消息的方法及其设备
CN101060469A (zh) * 2006-06-14 2007-10-24 华为技术有限公司 实现流控制传输协议多归属特性的系统和方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440584B1 (ko) * 2002-05-20 2004-07-19 한국전자통신연구원 에스씨티피에서의 다중 연결 관리 방법
US7680051B2 (en) * 2007-02-28 2010-03-16 Cisco Technology, Inc. Optimizing TCP traffic via an SCTP association
US8792487B2 (en) * 2007-08-21 2014-07-29 Cisco Technology, Inc. Communication path selection
JP4998316B2 (ja) * 2008-02-20 2012-08-15 富士通株式会社 通信システム及び通信処理方法並びにノード
CN101541093B (zh) * 2008-03-21 2013-04-24 华为技术有限公司 一种接口连接建立及维护的方法和装置
CN101729324B (zh) * 2008-10-10 2012-05-09 中兴通讯股份有限公司 资源分配方法以及家庭基站配置服务器
US8306039B2 (en) * 2008-12-15 2012-11-06 Ciena Corporation Methods and systems for automatic transport path selection for multi-homed entities in stream control transmission protocol
CN101489247A (zh) * 2009-01-13 2009-07-22 华为技术有限公司 提高业务分发性能的方法和系统及业务分发节点
US8131862B2 (en) * 2009-03-24 2012-03-06 International Business Machines Corporation Integration of SS7 with an application server
CN101998519B (zh) * 2009-08-27 2014-11-26 上海中兴软件有限责任公司 将rnsap协议应用于sctp连接上的方法和装置
US8307097B2 (en) * 2009-12-18 2012-11-06 Tektronix, Inc. System and method for automatic discovery of topology in an LTE/SAE network
US9451018B2 (en) * 2011-03-30 2016-09-20 Telefonaktiebolaget Lm Ericsson (Publ) SCTP endpoint migration
ES2647445T3 (es) * 2012-05-10 2017-12-21 Alcatel Lucent Transferencia de mensajes
EP3235210A1 (en) * 2014-12-19 2017-10-25 Telefonaktiebolaget LM Ericsson (publ) Methods and first network node for managing a stream control transmission protocol association
US9992240B2 (en) * 2015-02-13 2018-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Preserving S1-AP UE contexts on SCTP failover
CN109315007B (zh) * 2016-04-12 2022-06-07 瑞典爱立信有限公司 每s1ap连接的多个sctp关联和在sctp关联之间移动s1ap信令连接
CN113660686B (zh) * 2017-05-05 2023-07-21 中兴通讯股份有限公司 一种通信方法、设备和系统
US11368362B2 (en) * 2017-11-07 2022-06-21 Apple Inc. Transport network layer associations on the FI interface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075900A1 (en) * 2000-12-18 2002-06-20 Klaus Turina Signaling transport protocol extensions for load balancing and server pool support
CN1400777A (zh) * 2001-07-30 2003-03-05 华为技术有限公司 在网络设备之间传输大容量信令消息的方法及其设备
CN101060469A (zh) * 2006-06-14 2007-10-24 华为技术有限公司 实现流控制传输协议多归属特性的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637832A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071165B2 (en) * 2017-05-05 2021-07-20 Zte Corporation Communication method, equipment, system, and computer storage medium
CN113453378A (zh) * 2020-03-26 2021-09-28 成都鼎桥通信技术有限公司 一种s1应用协议链路的建立方法和装置

Also Published As

Publication number Publication date
EP3637832A1 (en) 2020-04-15
CN108810942A (zh) 2018-11-13
KR102277936B1 (ko) 2021-07-15
CN113660686A (zh) 2021-11-16
US11071165B2 (en) 2021-07-20
KR20200004854A (ko) 2020-01-14
CN108810942B (zh) 2021-07-23
CN113660686B (zh) 2023-07-21
US20200100323A1 (en) 2020-03-26
EP3637832A4 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US11805567B2 (en) Method and apparatus for initiating user plane path re-establishment and communications system
US20190166634A1 (en) Communication control method, and related network element
WO2018201757A1 (zh) 一种通信方法、设备、系统和计算机存储介质
CN109792651B (zh) 一种通信方法及设备
KR102156093B1 (ko) 서비스 네트워크를 선택하는 방법 및 네트워크, 및 관리 장치
KR20210125079A (ko) Iab 링크 제어 방법, 통신 유닛, 컴퓨터 판독가능 저장매체
JP2020502928A5 (zh)
WO2017054178A1 (zh) 保持业务连续性的方法、控制面网关和移动管理网元
WO2018233445A1 (zh) 网络系统的切换处理方法、装置及系统、存储介质
WO2019184722A1 (zh) 一种通信方法、设备及系统
RU2628700C2 (ru) Способ, устройство и система для управления абонентским устройством
JP2019508958A (ja) Ueコンテキスト情報を再開する方法、デバイス及びシステム
WO2019037500A1 (zh) 一种选择无线接入网设备的方法及装置
US10932316B2 (en) Method for reestablishing RRC connection, terminal and storage medium
WO2021129018A1 (zh) 网络连接的重建立方法及装置、存储介质、电子装置
US11343738B2 (en) Handover-based connection resume technique
WO2018032741A1 (zh) 一种终端切换方法、装置和设备
TWI816295B (zh) 配置演進分組系統非接入層安全演算法的方法及相關裝置
US20160295479A1 (en) Method for establishing optimal path, mme and gateway, and computer storage medium
US11129060B2 (en) Handover method and apparatus, and computer storage medium
WO2018201973A1 (zh) 一种消息传输的方法及装置
JP5139785B2 (ja) 無線基地局、通信システム、所属情報管理方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197035751

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018794060

Country of ref document: EP

Effective date: 20191205