WO2018201580A1 - 一种用于识别宝石身份的方法及其识别系统 - Google Patents

一种用于识别宝石身份的方法及其识别系统 Download PDF

Info

Publication number
WO2018201580A1
WO2018201580A1 PCT/CN2017/088931 CN2017088931W WO2018201580A1 WO 2018201580 A1 WO2018201580 A1 WO 2018201580A1 CN 2017088931 W CN2017088931 W CN 2017088931W WO 2018201580 A1 WO2018201580 A1 WO 2018201580A1
Authority
WO
WIPO (PCT)
Prior art keywords
gemstone
database
identified
gem
identity
Prior art date
Application number
PCT/CN2017/088931
Other languages
English (en)
French (fr)
Inventor
刘厚祥
Original Assignee
刘厚祥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘厚祥 filed Critical 刘厚祥
Publication of WO2018201580A1 publication Critical patent/WO2018201580A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the present invention relates to the field of gem identification, and more particularly to a method for identifying a gemstone identity and an identification system therefor.
  • a gemstone is a stone or mineral material that has been honed and polished to meet the jewelry craftsmanship requirements.
  • the gemstones are beautiful in color, high in hardness, and do not change under the influence of the atmosphere and chemicals. Once they are honed and polished, their appearance will not change.
  • Gemstones are the most beautiful and valuable types of minerals in minerals. They are brightly colored, crystal clear, brilliant, hard and durable, and rare. They are natural mineral crystals such as diamonds, crystals and emeralds that can be used for jewelry and other purposes. Rubies, sapphires and gold emeralds (transformed stones, cat eyes), tourmalines, etc.; there are also a few natural single mineral aggregates, such as ice chalcedony, opal.
  • the testing institution issues certificates of different formats, such as diamond grading certificate, diamond grading certificate, jewellery and jade identification certificate, precious metal jewelry purity inspection certificate, etc., but the main contents are generally the same, generally Will indicate the test number, gemstone/jewelry name, total weight including inlay and carrier, photo of the ornament, name of the appraiser, date of identification, and some qualitative or quantitative description of the characteristics of the different varieties of jewelry, and marked on the certificate
  • the name of the accreditation body, the mark of the accredited certification, and the criteria for judging the identification of jewellery and jade can be used as a proof of identity for the accessory and has legal effect.
  • Chinese patent CN 106525746A gem tester and gem identification method discloses a device for distinguishing natural diamonds and synthetic diamonds by using different degrees of infrared reflection between natural diamonds and synthetic diamonds, and the identification method thereof, but the device and method are only used In the identification of true and false diamonds, but can not make an accurate judgment on the uniqueness of the diamond identity.
  • the present invention provides a method for identifying a gemstone identity and an identification system thereof, which can achieve a non-destructive unique confirmation of the gemstone identity, and avoid the imitation of the gemstone.
  • the technical solution of the present invention resides in a method for identifying a gemstone identity, comprising the following steps:
  • the geometric characteristic parameter comprises a geometric characteristic parameter of the faceted gemstone and a structural characteristic parameter of the plain gemstone; wherein the geometrical characteristic parameter of the faceted gemstone includes the perimeter of each facet of the gemstone, the area of each facet, The angle of each facet and waist, the waist waveform of the gemstone, the shape of the gemstone, the length and width of the gemstone, and the 3D model of the gemstone; the structural parameters of the gemstone include the curvature of the surface of the gemstone, the shape of the gemstone, and the surface area of the gemstone. , the length and width of the gemstone and the 3D model of the gem.
  • the gemstone identification database comprises a first database of pre-existing facet gemstone weight parameters and geometric structure feature parameter information, and a second database of pre-stored gemstone weight parameters and geometric structure feature parameter information;
  • the first database includes: a first sub-database pre-stored with information on the length, width and height of the faceted gemstone, a second sub-database pre-stored with information about the weight of the faceted gemstone, and pre-stored information on the circumference of each facet of the faceted gemstone.
  • a third sub-database a fourth sub-database pre-stored with information on the area of each facet of the faceted gemstone, a fifth sub-database pre-stored with information on the angles of the facets and the waist faces of the faceted gemstones, and a waist waveform pre-stored with respect to the faceted gemstones a sixth sub-database of information, a seventh sub-database pre-stored with respect to the type of faceted gemstone, and an eighth sub-database pre-stored with a faceted gemstone type;
  • the second database comprises: a first sub-database pre-stored with information on the length, width and height of the plain gemstone, a second sub-database pre-stored with information on the weight of the plain gemstone, a third sub-database pre-stored with information on the surface curvature of the plain gemstone, and a pre-stored related plain surface.
  • the fourth sub-database of surface area information of gemstones, pre-stored The fifth sub-database of the gemstones of the plain-faced gemstones and the sixth sub-database of pre-stored gemstones.
  • the category of the gemstone to be identified is first determined; secondly, the corresponding weight parameter and the geometric structure characteristic parameter are measured according to different gemstone categories.
  • the weight and geometric characteristics of the gemstone are measured by a measuring instrument, and the first database or the second database suitable for the gemstone category is selected in the database, and the test is performed.
  • the weight and geometrical features of the obtained gemstone are compared with the parameter information in each sub-database in the selected first or second database.
  • the calculation is stopped to obtain the identity of the gemstone to be identified; when the unique gemstone data cannot be found in the database, the sub-database containing the gemstone to be identified is obtained.
  • the invention also provides a system for identifying the identity of a gemstone, comprising at least:
  • a measuring instrument for determining the geometrical features of a gemstone
  • the processing system includes:
  • control module for controlling the operation of the system
  • a judging analysis module in communication with the control module, configured to compare the gemstone data of the identity to be identified with the gemstone data in the gem identification database;
  • a cache module in communication with the control module, for temporarily storing the measured data of the gemstone to be identified and the result obtained after the comparison;
  • a storage module in communication with the control module, configured to store the gem data of the identity to be identified and the data in the gem identification database for comparison;
  • a communication module in communication with the control module, for acquiring gemstone data in the gem identification database
  • An input module in communication with the control module, for selectively inputting data of the gemstone to be identified, selecting a database to be searched, and setting the judgment analysis module;
  • a display module that communicates with the control module for displaying data.
  • the data in the gem identification database is stored in the local storage device, the local storage device is in communication with the judgment analysis module, and the local storage device is provided with a communication module that is updated with the gem identification database on the Internet.
  • the gemstone data in the gem identification database is stored in the cloud computing and interacts with the Internet
  • the judging analysis module is provided with a communication module that interacts with the Internet.
  • the beneficial effects of the present invention are: by establishing a database when the gemstone is processed, and determining the weight of the gemstone and its geometrical features when the gemstone identity needs to be identified, and calculating and comparing with the data in the gem identification database, Get the unique identification result of the gem.
  • This method does not damage the gemstones, protects the gemstones very well, and at the same time, it is very convenient to get the true and unique identity of the gemstones, and to build a fidelity transaction "firewall" for other activities such as gemstone appreciation, trading, etc., which is very important. significance.
  • Figure 1 is a background art diagram
  • FIG. 2 is a flow chart of a method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a processing system according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing a diamond facet in Embodiment 1 of the present invention.
  • Figure 6 is a schematic view showing a facet of a diamond crown in Embodiment 1 of the present invention.
  • Figure 7 is a schematic plan view showing a diamond pavilion in the first embodiment of the present invention.
  • Figure 8 is a photograph of a measuring instrument used in Embodiment 1 of the present invention.
  • Figure 9 is a first schematic view showing the selection of diamond facets in the first embodiment of the present invention.
  • Figure 10 is a second schematic view of the diamond facet selection in the first embodiment of the present invention.
  • Figure 11 is a third schematic view of the diamond facet selection in the first embodiment of the present invention.
  • Figure 12 is a waveform diagram of the waist of the diamond in the first embodiment of the present invention.
  • Figure 13 is a 3D model 1 of a gemstone according to Embodiment 1 of the present invention.
  • Figure 14 is a 3D model 2 of a gemstone according to Embodiment 1 of the present invention.
  • M1-control module M2-judgment analysis module; M3-cache module; M4-memory module; M5-communication module; M6-input module; M7-display module; 1-crown facet; 11-counter; 12-star facet; 13-crown main facet; 131-first crown main facet; 14-upper waist; 141-first upper waist; 2-waist facet; 3-face facet ; 31 - lower waist; 311 - first lower waist; 32 - pavilion main face; 33 - bottom.
  • the invention relates to a method for identifying the identity of a gemstone, as shown in Figure 2, comprising the following steps:
  • a method for identifying a gemstone identity includes the following steps:
  • the geometric feature parameters include geometrical characteristic parameters of the faceted gemstone and structural characteristic parameters of the plain gemstone; wherein the geometrical characteristic parameters of the faceted gemstone include the perimeter of each facet of the gemstone, each moment The area of the face, the angle of each facet and waist, the waist waveform of the gemstone, the shape of the gemstone, the length and width of the gemstone, and the 3D model of the gemstone; the structural parameters of the gemstone include the curvature of the gem surface, the surface area of the gemstone, The shape of the gemstone, the length and width of the gemstone, and the 3D model of the gem.
  • the processing system involved in the method can also calculate the volume of the gemstone based on the measured geometrical features, or directly obtain the volume of the gemstone by means of a measuring instrument.
  • the gemstone identification database includes a first database of pre-existing facet gemstone weight parameters and geometric feature parameter information, and a second database of pre-stored gemstone weight parameters and geometric feature parameter information;
  • the first database includes: a first sub-database pre-stored with information on the length, width and height of the faceted gemstone, a second sub-database pre-stored with information about the weight of the faceted gemstone, and pre-stored information on the circumference of each facet of the faceted gemstone.
  • a third sub-database a fourth sub-database pre-stored with information on the area of each facet of the faceted gemstone, a fifth sub-database pre-stored with information on the angles of the facets and the waist faces of the faceted gemstones, and a waist waveform pre-stored with respect to the faceted gemstones a sixth sub-database of information, a seventh sub-database pre-stored with respect to the type of faceted gemstone, and an eighth sub-database pre-stored with a faceted gemstone type;
  • the second database comprises: a first sub-database pre-stored with information on the length, width and height of the plain gemstone, a second sub-database pre-stored with information on the weight of the plain gemstone, a third sub-database pre-stored with information on the surface curvature of the plain gemstone, and a pre-stored related plain surface.
  • the category of the gemstone to be identified is first determined; secondly, the corresponding weight parameter and geometric feature parameter are measured according to different gemstone categories.
  • the data comparison in the step (3) described herein specifically refers to the step (3) before the data comparison. It can be understood that in the above embodiment, the weight parameter and the geometric structure characteristic parameter of the gemstone to be identified may also be measured first, and then the type of the gemstone is determined.
  • the weight of the gemstone, the curvature of the gemstone surface, the shape of the gemstone, the surface area of the gemstone, and the 3D model of the gemstone are compared to determine the identity of the gemstone to be identified; when it is determined to be a faceted gemstone, further based on the gemstone
  • the length and width of the gemstone, the weight of the gemstone, the weight of the gemstone, the perimeter of each facet of the gemstone, the area of each facet of the gemstone, the angle of each facet of the gemstone and the waist, the waist waveform of the gemstone, and the 3D model of the gemstone For the judgment, the identity of the gem to be identified is finally determined.
  • the weight and geometric features of the gemstone are measured by a measuring instrument, and the first database or the second database suitable for the gemstone category is correspondingly selected in the database. And comparing the measured weight and geometric features of the gemstone with the parameter information in each sub-database in the selected first or second database.
  • the gemstone parameters when determining the category of the gemstone to be identified After determining whether the gemstone is a faceted gemstone or a plain gemstone, corresponding to selecting a plurality of gemstone parameters (first condition) of the gemstone to be identified, the gemstone parameters and the pre-stored corresponding parameters in the gemstone identification database The information is compared and calculated. When the unique corresponding gem data is found in the gem identification database, the calculation is stopped to obtain the identity of the gem to be identified; when the unique corresponding gem data cannot be found in the database, the identity to be identified is obtained.
  • a sub-database I of the gemstone again selecting a plurality of gemstone parameters (second condition) of the gemstone to be identified, performing a comparison calculation in the sub-database I, when a unique corresponding gem data is found in the sub-database I
  • the identity of the gemstone to be identified is obtained; when the unique gemstone data cannot be found in the sub-database I, the sub-database II containing the gemstone to be identified is obtained, and the gemstones of the identity to be identified are selected again.
  • Item gem data (third condition), performed in the sub-database II
  • the calculation process is repeated until the unique corresponding gemstone data is found in the sub-database N, the calculation is stopped, and the identity of the gemstone to be identified is obtained; when the unique corresponding gemstone data cannot be found, the calculation is stopped, and the calculation is not obtained. The identity of the gem to be identified.
  • the invention also provides a system for identifying the identity of a gemstone, comprising at least:
  • the high-precision balance should be at least one hundred thousandth of a balance, and the reading accuracy is at least 0.01 mg;
  • a measuring instrument for determining the geometrical features of a gemstone
  • the processing system shown in FIG. 4 includes:
  • control module M1 for controlling the operation of the system
  • the judgment analysis module M2 is communicatively coupled to the control module M1 for comparing the gemstone data of the identity to be identified with the gemstone data in the gem identification database;
  • the cache module M3 is connected to the control module M1 for temporarily storing the measured data of the gemstone to be identified and the result obtained after the comparison;
  • the storage module M4 is communicatively coupled to the control module M1 for storing the gems data of the identity to be identified and the data in the gem identification database for comparison;
  • the communication module M5 is communicatively coupled to the control module M1 for retrieving gemstone data in the gem identification database;
  • the input module M6 is communicatively coupled to the control module M1 for selectively inputting data of the gemstone to be identified, selecting a database to be searched, and setting the judgment analysis module;
  • the display module M7 is communicatively coupled to the control module M1 for displaying data.
  • the data in the gem identification database is stored in a local storage device, the local storage device is in communication with the judgment analysis module M2, and the local storage device is provided with an update communication with the gem identification database on the Internet.
  • the gemstone data in the gemstone identification database is stored in the cloud computing and interacts with the Internet
  • the judging and analyzing module M2 is provided with a communication module M5 that interacts with the Internet.
  • the processing system can be integrated with the measuring instrument, or the data measured by the measuring instrument can be transmitted to the processing device provided with the processing system through the data transmission device.
  • the measuring instrument of the present invention can adopt the TSY circumferential multi-degree of freedom positioning tool measuring instrument (as shown in FIG. 8) or the like, as long as it can Get the data of the gem geometry.
  • the gemstone to be identified is a faceted gemstone or a plain gemstone, and other parameters are determined after determining.
  • the selection is made by the input device.
  • the type of the gemstone to be identified is not determined, the gemstone type is not selected; when the shape of the gemstone to be identified is not determined, the shape of the gemstone is not selected; when neither of these is undetermined, Do not choose.
  • the parameters are compared with the gem data in the sub-database I.
  • the unique gem data can be found, the calculation is stopped, and the identity of the gem to be identified is obtained.
  • the unique corresponding gemstone data cannot be found in the database, enter the parameters of other gemstones to be identified, such as the number of facets or the perimeter or area of one or two facets or a facet and The angle of the waist is compared again. Gradually reduce the scope of the database, and finally find the same data in the sub-database N as the diamond data to be identified until the unique corresponding gem data is found, then the gem identification work is completed.
  • the gemstones can be classified according to shape, weight, type and total volume, and then the data is retrieved from the sub-database for comparison, which saves the calculation. time.
  • the gemstone data in the gem identification database can be divided into a faceted gemstone database and a plain gemstone database.
  • the faceted gemstone database may include the following sub-databases: an external size database (including the length and width of the gemstone), a shape classification database, a weight classification database, a gemstone classification database, and a gemstone total volume classification database. Due to the size of the perimeter of the facet and the area of the facet, the amount of data is particularly large, for example 58 faceted diamonds, which have 58 faceted data, are therefore not suitable for sub-databases, but can be divided into facet number classification databases, such as 58, 81, 101, 111 and other faceted databases. The waist waveform of the gemstone is relatively difficult to classify for the time being.
  • the plain gemstone database can include the following sub-databases: an external size database (including the length and width of the gemstone), a shape classification database, a weight classification database, a gemstone classification database, and a gemstone total volume classification database.
  • an external size database including the length and width of the gemstone
  • a shape classification database including the length and width of the gemstone
  • a weight classification database including the weight and width of the gemstone
  • a gemstone classification database including the weight classification database
  • a gemstone total volume classification database a gemstone total volume classification database.
  • the curvature of the surface of the gemstone and the surface area of the gemstone can also form a classification database.
  • the shape classification database may be re-classified according to the shape of the gemstone, such as a circle, a square, an ellipse, a heart shape, a teardrop shape, a horse eye shape, and the like.
  • the weight classification database can be reclassified according to the weight level of the gemstone. For example, for diamonds, it can be divided according to the custom of the diamond industry, the diamond level below 0.05ct, the small drill level of 0.05ct-0.22ct, 0.23ct-1ct Middle drill level, large drill level above 1ct, extra large drill level of 10.8ct-50ct, and nominal drill level of 50ct or more. Other stones can also be classified according to other weight classes.
  • the gemstone classification database can be reclassified according to the type of gemstone, such as diamonds, rubies, sapphires, emeralds, aquamarine, spinel, and the like.
  • the gemstone total volume classification database can be reclassified according to the total volume of the gemstone, and can be classified by weight.
  • the faceted diamond includes a crown facet 1, a waist facet 2, and a pavilion facet 3, wherein the crown facet 1 includes a table 11 and a star.
  • the total number of crown facets 1 is 33, wherein the table 11 is a total of 1
  • the table 11 is a total of 1
  • the total number of pavilions is 25, of which there are 16 lower waist faces 31, pavilions.
  • the standard cut round diamond has a total of 58 facets. If there is no facet of the facet, there are 57 facets.
  • the 58 or 57 facets have 7 shapes. In theory, their position and angle are fixed, but in the actual processing process, due to the shape of the diamond blank material, the structure of the diamond blank material, the manipulation of the operator, etc., each facet
  • the size (side length), surface area, and spatial angle will deviate from the ideal state to some extent, thus forming individual differences.
  • the curvature of the gemstone surface combined with other geometric features also has individual differences. This is also the theoretical basis for determining the uniqueness of gemstone identity by the features of the gem itself.
  • a faceted diamond to be identified is placed in a TSY circumferential multi-degree of freedom positioning tool measuring instrument (hereinafter referred to as a measuring instrument), and the area and circumference, facet and waist of each facet of the faceted gemstone are measured. The angle between them, as well as the waist waveform.
  • a measuring instrument for the first main facet 131 in the crown main facet 13 of FIG. 9, the area is 13.61 mm 2 and the circumference is 4.7388 mm by means of a measuring instrument and assisted by CAD;
  • the first lower waist surface 311 of the surface 31 is measured by an instrument and assisted by CAD, and has an area of 35.31 mm 2 and a circumference of 7.3539 mm; as shown in Fig. 11, the upper waist is measured by a measuring instrument.
  • FIG. 12 is the faceted diamond scanned by the measuring instrument.
  • the waist waveform of the waist as can be seen from Figure 12, the thickest part of the waist is 0.565mm, and the thinnest part is only 0.115mm.
  • the length, width and height of the gemstone can be measured with an electronic vernier caliper or other tool with a resolution of 0.005 mm or more.
  • a 3D model of the gemstone can be obtained, for example, as shown in FIGS. 13-14, wherein the faceted gemstone shown in FIG.
  • the crown 14 has a diameter D of 4.780 mm and a height H of 2.987 mm, wherein the crown portion The height h1 is 0.761 mm, the waist thickness h2 is 0.162 mm, and the pavilion height h3 is 2.064 mm.
  • the weight of this diamond is obtained by a high precision balance. Since the accuracy of the measurement data is very good, and the data is large and the data combination is unique, the accuracy of the uniqueness judgment of the diamond can be improved.
  • the gemstone to be identified is a faceted gemstone, the gemstone type is a diamond, and the gemstone shape is a circle. According to the measured weight of the gemstone, or the volume of a diamond can be increased, the intersection of the above five sub-databases is firstly passed. Obtain a sub-database I, compare the data of the gem to be identified with this sub-database I, if you can not find the unique gem data, and then input other gem data, such as the perimeter or area of a facet or facet and waist Angle of view, to calculate the comparison, until the only corresponding gem data is found, stop the calculation, get the identity of the gem to be identified; when the unique gem data is not found, stop the calculation, fail to get the gem to be identified identity of.
  • other gem data such as the perimeter or area of a facet or facet and waist Angle of view
  • the waist waveform of the diamond is difficult to create a sub-database, the waist waveform can be directly compared as a parameter. However, at present, since the shape of the waist waveform is difficult in the process of comparison, this parameter can be placed later for comparison.
  • the amount of data in the sub-database I if the amount of data is large, input more data of several gemstones. If the amount of data is small, one or two pieces of data may be input less.
  • This method is stable and reliable, has no damage to the gemstone, does not affect the value of the gemstone, and is simple in method, convenient in operation, stable in results, and easy to use. Reproduction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Adornments (AREA)

Abstract

一种用于识别宝石身份的方法,包括:宝石加工完成后,对宝石进行测量,得到该宝石的重量参数及宝石的几何结构特征参数,将上述参数信息以及宝石的类别保存至宝石身份识别数据库中(S1);测量待识别身份的宝石的特征参数(S2);将得到的待识别身份的宝石的上述参数,与宝石身份识别数据库中的宝石的特征参数进行比对,得到比对结果(S3)。通过在宝石形成时建立数据库,并在需要对宝石身份进行鉴定时测定宝石的重量及其几何结构特征,与宝石数据库中的数据进行比对,得到宝石身份的识别结果。本方法不会对宝石造成损坏,极好的保护了宝石,同时可以非常方便的得到宝石的真实唯一的身份,为宝石鉴赏、交易等其他活动构筑"防火墙",具有非常重要的意义。

Description

一种用于识别宝石身份的方法及其识别系统 技术领域
本发明涉及宝石鉴定领域,具体的说是一种用于识别宝石身份的方法及其识别系统。
背景技术
宝石是指经过琢磨和抛光后,可以达到珠宝工艺要求的石料或矿物材料。宝石色泽美丽、硬度高、在大气和化学药品作用下不起变化,一经琢磨和抛光后,其外观就不会改变。宝石是矿物中最美丽而贵重的一类石,它们颜色鲜艳,质地晶莹,光泽灿烂,坚硬耐久,同时赋存稀少,是可以制作首饰等用途的天然矿物晶体,如钻石、水晶、祖母绿、红宝石、蓝宝石和金绿宝石(变石、猫眼)、碧玺等;也有少数是天然单矿物集合体,如冰彩玉髓、欧泊。
由于宝石的稀缺以及价格的昂贵,宝石产生后绝大部分都是具备鉴定证书的,它由经过国际专业机构或者国家认证机构认证的专业检测机构出具,既是业内交易的质量凭证,更是让消费者放心消费的重要依据。
检测机构根据珠宝首饰的不同品种,出具不同格式的鉴定证书,比如钻石分级证书、镶嵌钻石分级证书、珠宝玉石鉴定证书、贵金属饰品纯度检验证书等,但是主要的内容大体都是相同的,一般均会标注检测编号、宝石/饰品名称、包括镶嵌物和载体在内的总重量、饰品的照片、鉴定师姓名、鉴定日期及对不同品种饰品特性的一些定性或定量的描述,并在证书上标明鉴定机构名称、获准认证的标志以及珠宝玉石判别鉴定依据的标准。这样的证书可以作为该饰品的身份证明,具有法律效力。
但是上述纸类证书容易遗失、甚至被仿造或“克隆”,并且当宝石在进行二次销售时,对于宝石身份的识别仅靠此证书,相对来说很难具有信服力。
中国专利CN 106525746A宝石测试仪及宝石鉴别方法,公开了一种利用天然钻石和合成钻石对红外线反射程度的不同来区分天然钻石和合成钻石的设备及其鉴别方法,但是此装置及方法仅是用于鉴别真假钻石,却不能对钻石身份的唯一性做出准确判断。
中国专利CN 1264445 C《宝石用激光划痕系统及划痕鉴别方法》公开了一种钻石及刻面宝石的标注及其鉴别方法,主要依靠在钻石或宝石表面某处(通常是腰部)用冷激光刻字符串、Logo或其它标识,使得钻石及刻面宝石形成独特的“指纹”,也是目前普遍采用的一种方法。现有技术中常用的标记方式之一如附图1所示,但是,这样的“指纹”易于被篡改或复制(克隆),从而无法确定宝石身份的唯一性。
发明内容
根据上述现有技术中的不足之处,本发明提供一种用于识别宝石身份的方法及其识别系统,该方法及系统可以实现对宝石身份的无损唯一确认,避免仿制的宝石“以假乱真”。
为实现上述目的,本发明的技术方案在于:一种用于识别宝石身份的方法,包括如下几个步骤:
(1)宝石加工完成后,对宝石进行测量,得到该宝石的重量参数及宝石的几何结构特征参数,并将测得的上述参数信息以及宝石的类别保存至宝石身份识别数据库中;
(2)测量待识别身份的宝石的重量参数及几何结构特征参数;
(3)将得到的待识别身份的宝石的上述参数,与宝石身份识别数据库中的宝石的重量参数及宝石的几何结构特征参数进行比对,若待识别身份的宝石的测量参数与宝石身份识别数据库中预存的参数值一致,则可以唯一确认该待识别身份的宝石的身份;若待识别身份的宝石的测量参数之一与宝石身份识别数据库中预存的参数值不一致,则可以停止对该待识别身份的宝石的身份确认。
优选的是:几何结构特征参数包括刻面宝石的几何结构特征参数和素面宝石的结构特征参数;其中,刻面宝石的几何结构特征参数包括宝石各个刻面的周长、各个刻面的面积、各个刻面与腰面的角度、宝石的腰部波形、宝石的琢型、宝石的长宽高以及宝石的3D模型;素面宝石的结构特征参数包括宝石表面的弧度、宝石的琢型、宝石的表面积、宝石的长宽高以及宝石的3D模型。
优选的是:宝石身份识别数据库包括预存刻面宝石的重量参数及几何结构特征参数信息的第一数据库及预存素面宝石的重量参数及几何结构特征参数信息的第二数据库;
其中,第一数据库包括:预存有关刻面宝石的长宽高信息的第一子数据库、预存有关刻面宝石的重量信息的第二子数据库、预存有关刻面宝石各个刻面的周长信息的第三子数据库、预存有关刻面宝石各个刻面的面积信息的第四子数据库、预存有关刻面宝石各个刻面与腰面的角度信息的第五子数据库以及预存有关刻面宝石的腰部波形信息的第六子数据库、预存有关刻面宝石类型的第七子数据库和预存有关刻面宝石琢型的第八子数据库;
第二数据库包括:预存有关素面宝石的长宽高信息的第一子数据库、预存有关素面宝石的重量信息的第二子数据库、预存有关素面宝石的表面弧度信息的第三子数据库以及预存有关素面宝石的表面积信息的第四子数据库、预存有 关素面宝石种类的第五子数据库和预存有关素面宝石琢型的第六子数据库。
优选的是:步骤(3)中进行数据比对时,首先判断待识别身份的宝石的类别;其次依据不同宝石类别测量其对应的重量参数及几何结构特征参数。
优选的是:步骤中,“首先判断待识别身份的宝石的类别”,具体为确定宝石是刻面宝石还是素面宝石,当确定是素面宝石时,再进一步根据宝石的种类、宝石的琢型、宝石的长宽高、宝石的重量、宝石表面的弧度、宝石的表面积以及宝石的3D模型进行比对判断,最终确定待识别身份的宝石的身份;当确定是刻面宝石时,再进一步根据宝石的种类、宝石的琢型、宝石的长宽高、宝石的重量、宝石各个刻面的周长、宝石各个刻面的面积、宝石各个刻面与腰面的角度、宝石的腰部波形以及宝石的3D模型进行比对判断,最终确定待识别身份的宝石的身份。
优选的是:当确认待识别身份的宝石的类别后,通过测量仪测量该宝石的重量及几何结构特征,并在数据库中对应选择适合宝石类别的第一数据库或是第二数据库,并将测得的该宝石的重量及几何结构特征与选定的第一或是第二数据库中的各个子数据库中的参数信息进行比对分析。
优选的是:当确定待识别身份的宝石的类别后,对应选择待识别身份的宝石的若干项宝石参数,将该若干项宝石参数与宝石身份识别数据库中预存的对应的参数信息进行对比计算,当在宝石身份识别数据库中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当在数据库中不能找到唯一对应的宝石数据时,得到包含有待识别身份的宝石的子数据库Ⅰ,再次选择待识别身份的宝石的若干项宝石参数,在所述子数据库Ⅰ中进行对比计算,当在所述子数据库Ⅰ中找到唯一对应的宝石数据时,停止计算,得到待识别身份 的宝石的身份;当在子数据库Ⅰ中不能找到唯一对应的宝石数据时,得到包含有待识别身份的宝石的子数据库Ⅱ,再次选择待识别身份的宝石的若干项宝石数据,在所述子数据库Ⅱ中进行对比计算;重复上述过程,直至在子数据库N中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当未能找到唯一对应的宝石数据时,停止计算,未能得到待识别身份的宝石的身份。
本发明还提供一种用于识别宝石身份的系统,至少包括:
用于测定宝石重量的高精度天平;
用于测定宝石几何结构特征的测量仪;
以及用于将测得的待识别身份的宝石的重量参数及几何结构特征参数与宝石身份识别数据库中的预存的宝石重量参数及几何结构特征参数信息进行比对,得出该待识别身份的宝石的身份的处理系统;
其中,处理系统包括:
控制模块,用于控制本系统进行运作;
判断分析模块,与控制模块通信连接,用于将待识别身份的宝石数据与宝石身份识别数据库中的宝石数据进行比对;
缓存模块,与控制模块通信连接,用于暂时存放测得的待识别身份的宝石的数据以及比对后得出的结果;
存储模块,与控制模块通信连接,用于存储待识别身份的宝石数据与宝石身份识别数据库中的数据进行比对的记录;
通信模块,与控制模块通信连接,用于调取宝石身份识别数据库中的宝石数据;
输入模块,与控制模块通信连接,用于选择性输入待识别身份的宝石的数据、选择所要查找的数据库以及对判断分析模块做设定;
显示模块,与控制模块通信连接,用于显示数据。
优选的是:宝石身份识别数据库中的数据存放在本地存储设备中,本地存储设备与判断分析模块通信连接,本地存储设备设有与互联网上的宝石身份识别数据库进行更新的通信模块。
优选的是:宝石身份识别数据库中的宝石数据存放在云计算中,并与互联网实现交互,所述的判断分析模块设有与互联网实现交互的通信模块。
本发明的有益效果在于:通过在宝石加工完成时建立数据库,并在需要对宝石身份进行鉴定时测定宝石的重量及其几何结构特征,通过计算,与宝石身份识别数据库中的数据进行比对,得到宝石的唯一身份的识别结果。本方法不会对宝石造成损坏,极好的保护了宝石,同时可以非常方便的得到宝石的真实唯一的身份,为宝石鉴赏、交易等其他活动,构筑保真交易“防火墙”,具有非常重要的意义。
附图说明
图1是背景技术图;
图2是本发明一种实施方式所述的方法流程图;
图3是本发明一种实施方式所述的数据比对流程图;
图4是本发明一种实施方式所述的处理系统的结构示意图;
图5是本发明实施例1中钻石刻面示意图;
图6是本发明实施例1中钻石冠部刻面示意图;
图7是本发明实施例1中钻石亭部刻面示意图;
图8是本发明实施例1中所采用的测量仪的照片;
图9是本发明实施例1中钻石刻面选取的示意图一;
图10是本发明实施例1中钻石刻面选取的示意图二;
图11是本发明实施例1中钻石刻面选取的示意图三;
图12是本发明实施例1中钻石的腰部波形图;
图13是本发明实施例1所述的宝石的3D模型一;
图14是本发明实施例1所述的宝石的3D模型二。
图中:M1-控制模块;M2-判断分析模块;M3-缓存模块;M4-存储模块;M5-通信模块;M6-输入模块;M7-显示模块;1-冠部刻面;11-台面;12-星刻面;13-冠部主刻面;131-第一冠部主刻面;14-上腰面;141-第一上腰面;2-腰部刻面;3-亭部刻面;31-下腰面;311-第一下腰面;32-亭部主刻面;33-底面。
具体实施方式
下面结合具体实施例对本发明做进一步说明。
本发明涉及一种用于识别宝石身份的方法,如图2所示,包括如下几个步骤:
一种用于识别宝石身份的方法,包括如下几个步骤:
(1)宝石加工完成后,对宝石进行测量,得到该宝石的重量参数及宝石的几何结构特征参数,并将测得的上述参数信息以及宝石的类别保存至宝石身份识别数据库中,即图2中S1步骤所示;
(2)测量待识别身份的宝石的重量参数及几何结构特征参数,即图2中S2步骤所示;
(3)将得到的待识别身份的宝石的上述参数,与宝石身份识别数据库中的 宝石的重量参数及宝石的几何结构特征参数进行比对,若待识别身份的宝石的测量参数与宝石身份识别数据库中预存的参数值一致,则可以唯一确认该待识别身份的宝石的身份;若待识别身份的宝石的测量参数之一与宝石身份识别数据库中预存的参数值不一致,则可以停止对该待识别身份的宝石的身份确认;即图2中S3步骤所示。
作为一种优选的实施方式,几何结构特征参数包括刻面宝石的几何结构特征参数和素面宝石的结构特征参数;其中,刻面宝石的几何结构特征参数包括宝石各个刻面的周长、各个刻面的面积、各个刻面与腰面的角度、宝石的腰部波形、宝石的琢型、宝石的长宽高以及宝石的3D模型;素面宝石的结构特征参数包括宝石表面的弧度、宝石的表面积、宝石的琢型、宝石的长宽高以及宝石的3D模型。
本方法中涉及的处理系统还可以根据测得的几何结构特征计算得到宝石的体积,或者直接通过测量仪器得到宝石的体积。
作为一种优选的实施方式,宝石身份识别数据库包括预存刻面宝石的重量参数及几何结构特征参数信息的第一数据库及预存素面宝石的重量参数及几何结构特征参数信息的第二数据库;
其中,第一数据库包括:预存有关刻面宝石的长宽高信息的第一子数据库、预存有关刻面宝石的重量信息的第二子数据库、预存有关刻面宝石各个刻面的周长信息的第三子数据库、预存有关刻面宝石各个刻面的面积信息的第四子数据库、预存有关刻面宝石各个刻面与腰面的角度信息的第五子数据库以及预存有关刻面宝石的腰部波形信息的第六子数据库、预存有关刻面宝石类型的第七子数据库和预存有关刻面宝石琢型的第八子数据库;
第二数据库包括:预存有关素面宝石的长宽高信息的第一子数据库、预存有关素面宝石的重量信息的第二子数据库、预存有关素面宝石的表面弧度信息的第三子数据库以及预存有关素面宝石的表面积信息的第四子数据库、预存有关素面宝石种类的第五子数据库和预存有关素面宝石琢型的第六子数据库。
作为一种优选的实施方式,步骤(3)中进行数据比对时,首先判断待识别身份的宝石的类别;其次依据不同宝石类别测量其对应的重量参数及几何结构特征参数。此处所述的步骤(3)中进行数据比对时具体是指步骤(3)进行数据比对之前。可以理解的是,上述实施方式中也可以先测量待识别身份的宝石的重量参数及几何结构特征参数,再判断宝石的类别。
作为一种优选的实施方式,步骤中,“首先判断待识别身份的宝石的类别”,具体为确定宝石是刻面宝石还是素面宝石,当确定是素面宝石时,再进一步根据宝石的长宽高、宝石的重量、宝石表面的弧度、宝石的琢型、宝石的表面积以及宝石的3D模型进行比对判断,最终确定待识别身份的宝石的身份;当确定是刻面宝石时,再进一步根据宝石的长宽高、宝石的琢型、宝石的重量、宝石各个刻面的周长、宝石各个刻面的面积、宝石各个刻面与腰面的角度、宝石的腰部波形以及宝石的3D模型进行比对判断,最终确定待识别身份的宝石的身份。
作为一种优选的实施方式,当确认待识别身份的宝石的类别后,通过测量仪测量该宝石的重量及几何结构特征,并在数据库中对应选择适合宝石类别的第一数据库或是第二数据库,并将测得的该宝石的重量及几何结构特征与选定的第一或是第二数据库中的各个子数据库中的参数信息进行比对分析。
作为一种优选的实施方式,如图3所示,当确定待识别身份的宝石的类别 后,具体为确定宝石是刻面宝石还是素面宝石后,对应选择待识别身份的宝石的若干项宝石参数(第一条件),将该若干项宝石参数与宝石身份识别数据库中预存的对应的参数信息进行对比计算,当在宝石身份识别数据库中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当在数据库中不能找到唯一对应的宝石数据时,得到包含有待识别身份的宝石的子数据库Ⅰ,再次选择待识别身份的宝石的若干项宝石参数(第二条件),在所述子数据库Ⅰ中进行对比计算,当在所述子数据库Ⅰ中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当在子数据库Ⅰ中不能找到唯一对应的宝石数据时,得到包含有待识别身份的宝石的子数据库Ⅱ,再次选择待识别身份的宝石的若干项宝石数据(第三条件),在所述子数据库Ⅱ中进行对比计算;重复上述过程,直至在子数据库N中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当未能找到唯一对应的宝石数据时,停止计算,未能得到待识别身份的宝石的身份。
本发明还提供一种用于识别宝石身份的系统,至少包括:
用于测定宝石重量的高精度天平,所述高精度天平至少应为十万分之一天平,即可读精度至少达到为0.01mg;
用于测定宝石几何结构特征的测量仪;
以及用于将测得的待识别身份的宝石的重量参数及几何结构特征参数与宝石身份识别数据库中的预存的宝石重量参数及几何结构特征参数信息进行比对,得出该待识别身份的宝石的身份的处理系统;
其中,如图4所示的处理系统包括:
控制模块M1,用于控制本系统进行运作;
判断分析模块M2,与控制模块M1通信连接,用于将待识别身份的宝石数据与宝石身份识别数据库中的宝石数据进行比对;
缓存模块M3,与控制模块M1通信连接,用于暂时存放测得的待识别身份的宝石的数据以及比对后得出的结果;
存储模块M4,与控制模块M1通信连接,用于存储待识别身份的宝石数据与宝石身份识别数据库中的数据进行比对的记录;
通信模块M5,与控制模块M1通信连接,用于调取宝石身份识别数据库中的宝石数据;
输入模块M6,与控制模块M1通信连接,用于选择性输入待识别身份的宝石的数据、选择所要查找的数据库以及对判断分析模块做设定;
显示模块M7,与控制模块M1通信连接,用于显示数据。
作为一种优选的实施方式,宝石身份识别数据库中的数据存放在本地存储设备中,本地存储设备与判断分析模块M2通信连接,本地存储设备设有与互联网上的宝石身份识别数据库进行更新的通信模块M5。
作为一种优选的实施方式,宝石身份识别数据库中的宝石数据存放在云计算中,并与互联网实现交互,所述的判断分析模块M2设有与互联网实现交互的通信模块M5。
其中,处理系统可以与测量仪进行集成,也可以通过数据传输设备将测量仪测得的数据传输至设置有处理系统的处理设备中。
由于目前还没有专门用于测定宝石几何结构特征的测量仪,因此,本发明中的测量仪可采用TSY周视多自由度定位刀具测量仪(如图8所示)或其他类似仪器,只要可以获取宝石几何结构特征的数据即可。
实际操作过程中,可以先确定待识别身份的宝石是刻面宝石还是素面宝石,确定后再确定其他参数。当本领域技术人员通过目测可以确定待识别身份的宝石的种类和宝石的形状时,通过输入设备,进行选择。当不能确定待识别身份的宝石的种类时,则不选定宝石种类;当不能确定待识别身份的宝石的形状时,则不选定宝石的形状;当这两者均不能确定的,则均不选择。
通过输入设备输入若干项区别度较高、且较易判断的指标,例如宝石的长宽高、宝石的重量和宝石的总体积,此为一个子数据库Ⅰ,当通过将待识别身份的宝石的参数与此子数据库Ⅰ中的宝石数据进行比对,能够找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份。当在数据库中不能找到唯一对应的宝石数据时,再输入其它的待识别身份的宝石的参数,例如刻面的数量或者某一项或两项刻面的周长或面积或者某个刻面与腰面的角度,再次进行比对。逐步缩小数据库的范围,最终找到子数据库N中与待鉴定钻石数据相同的一条数据,直至找到唯一对应的宝石数据,则宝石身份识别工作完成。
当然,也可以直接将测得的待识别身份的宝石的数据与宝石身份识别数据库中的数据进行直接比对。
为了加速数据的寻找和比对的过程,提高对比计算的速率,可以先行将宝石根据形状、重量、种类和总体积等进行分类,再从子数据库中调取数据进行比对,节省了计算的时间。具体的说,宝石身份识别数据库中宝石的数据可以分为刻面宝石数据库和素面宝石数据库。
其中,刻面宝石数据库可以包括以下几个子数据库:外部尺寸数据库(包括宝石的长宽高)、形状分类数据库、重量分类数据库、宝石种类分类数据库和宝石总体积分类数据库。由于刻面的周长及刻面的面积数据量特别大,例如 58个刻面的钻石,其有58个刻面的数据,因此不适宜再分数据库,但是可以分为刻面数量分类数据库,例如58个、81个、101个、111个等刻面数据库。宝石的腰部波形相对来说也暂时很难分类。
素面宝石数据库可以包括以下几个子数据库:外部尺寸数据库(包括宝石的长宽高)、形状分类数据库、重量分类数据库、宝石种类分类数据库和宝石总体积分类数据库。当然,宝石表面的弧度、宝石的表面积也可以形成分类数据库。
其中,形状分类数据库可以根据宝石的形状进行再次分类,例如圆形、方形、椭圆形、心形、水滴形、马眼形等。
重量分类数据库可以根据宝石的重量级别进行再次分类,例如对于钻石来说,可以依照钻石行业的习惯划分,0.05ct以下的碎钻级别,0.05ct-0.22ct的小钻级别,0.23ct-1ct的中钻级别,1ct以上的大钻级别,10.8ct-50ct的特大钻级别,50ct以上的记名钻级别。其他宝石也可以根据其他重量等级进行分类。
宝石种类分类数据库可以根据宝石的种类进行再次分类,例如钻石、红宝石、蓝宝石、祖母绿、海蓝宝石、尖晶石等。
宝石总体积分类数据库可以根据宝石的总体积进行再次分类,可以参照重量分类进行。
实施例1
以刻面钻石为例加以说明,如图5-7所示,刻面钻石包括冠部刻面1、腰部刻面2以及亭部刻面3,其中,冠部刻面1包括台面11、星刻面12、冠部主刻面13以及上腰面14,亭部刻面3包括下腰面31、亭部主刻面32以及底面33。本实施例中所提供的刻面钻石,其冠部刻面1总数为33个,其中,台面11共1 个,星刻面12共8个,冠部主刻面13共8个,上腰面14共16个;其亭部刻面3总数为25个,其中,下腰面31共16个,亭部主刻面32共8个,底面33共1个。标准切工圆形的钻石一共有58个刻面,如果没有底尖的小刻面,就是57个刻面,这58或57个刻面共有7个形状。理论上讲,它们的位置、角度都是固定的,但是在实际加工过程中,由于钻石毛坯原料的形状、钻石毛坯原料的结构、加工时操作人员的手法等因素的影响,每个刻面的大小(边长)、表面积、空间角度都会有一定程度偏离理想状态,从而形成个体差异特征。对于素面宝石来说,宝石表面的弧度结合其他几何结构特征,也存在个体差异特性。这也就是本发明通过宝石本身的特征来确定宝石身份唯一性的理论依据。
将一待识别身份的刻面钻石置于TSY周视多自由度定位刀具测量仪(以下简称测量仪)中,测量该刻面宝石的每个刻面的面积和周长、刻面与腰面之间的角度、以及腰部波形。例如,针对图9冠部主刻面13中的第一主刻面131,通过测量仪,并在CAD的辅助下,测得其面积为13.61mm2,周长为4.7388mm;针对图10下腰面31中的第一下腰面311,通过测量仪,并在CAD的辅助下,测得其面积为35.31mm2和周长为7.3539mm;如图11所示,经测量仪测得上腰面14中的第一上腰面141与腰部的角度为24.66°,下腰面31中的第一下腰面311与腰部的角度为42.56°;图12为通过测量仪扫描得到的该刻面钻石的腰部波形图,从图12中可以看出,腰部最厚处达0.565mm、最薄处仅0.115mm。另外,宝石的长宽高可以采用分辨率为0.005mm以上的电子游标卡尺或其他工具进行测量。此外,通3D扫描的形式,可以得到宝石的3D模型,例如图13-14所示,其中,图14所示的刻面宝石的直径D为4.780mm,高H为2.987mm,其中,冠部高度h1为0.761mm,腰部厚度h2为0.162mm,亭部高度h3为2.064mm。 通过高精度天平得到此钻石的重量。由于测量数据的精确度很好,且数据多、数据组合独特,可以提高对于钻石唯一性判断的准确性。
将测量装置与控制器相连,将测得的数据直接传输至控制器上,也可以手动将测得的数据输入控制器内。
通过目测判断该待识别身份的宝石为刻面宝石,宝石种类是钻石,宝石形状为圆形,根据测得的宝石的重量,或者还可以增加一个钻石的体积,先行通过上述5个子数据库的交集得到一个子数据库Ⅰ,将待鉴定宝石的数据与此子数据库I进行对比,如不能找到唯一对应的宝石数据,再输入其他宝石数据,例如某个刻面的周长或面积或刻面与腰部的角度,进行计算比对,直至找到唯一对应的宝石数据,停止计算,得到待识别身份的宝石的身份;当未能找到唯一对应的宝石数据时,停止计算,未能得到待识别身份的宝石的身份。
由于钻石的腰部波形很难建立子数据库,因此,可以直接将腰部波形作为一项参数进行比对。但是目前由于腰部波形的形状在比对的过程中难度较大,因此,此项参数可以放在后面进行比对。
实际过程中,还可以根据子数据库I中的数据量,数据量大的话多输入几项宝石的数据,数据量小的话可以少输入一两项数据。
通过测得的宝石数据与数据库中的数据进对比,得到宝石的真实身份,此方法稳定、可靠,没有对宝石产生破坏,不会影响宝石的价值,且方法简单、操作方便、结果稳定、易于再现。

Claims (10)

  1. 一种用于识别宝石身份的方法,其特征在于:包括如下几个步骤:
    (1)宝石加工完成后,对宝石进行测量,得到该宝石的重量参数及宝石的几何结构特征参数,并将测得的上述参数信息以及宝石的类别保存至宝石身份识别数据库中;
    (2)测量待识别身份的宝石的重量参数及几何结构特征参数;
    (3)将得到的待识别身份的宝石的上述参数,与宝石身份识别数据库中的宝石的重量参数及宝石的几何结构特征参数进行比对,若待识别身份的宝石的测量参数与宝石身份识别数据库中预存的参数值一致,则可以唯一确认该待识别身份的宝石的身份;若待识别身份的宝石的测量参数之一与宝石身份识别数据库中预存的参数值不一致,则可以停止对该待识别身份的宝石的身份确认。
  2. 根据权利要求1所述的用于识别宝石身份的方法,其特征在于:所述的几何结构特征参数包括刻面宝石的几何结构特征参数和素面宝石的结构特征参数;所述刻面宝石的几何结构特征参数包括宝石各个刻面的周长、各个刻面的面积、各个刻面与腰面的角度、宝石的腰部波形、宝石的琢型、宝石的长宽高以及宝石的3D模型;所述素面宝石的结构特征参数包括宝石表面的弧度、宝石的表面积、宝石的琢型、宝石的长宽高以及宝石的3D模型。
  3. 根据权利要求1所述的用于识别宝石身份的方法,其特征在于:所述的宝石身份识别数据库包括预存刻面宝石的重量参数及几何结构特征参数信息的第一数据库及预存素面宝石的重量参数及几何结构特征参数信息的第二数据库;
    所述第一数据库包括:预存有关刻面宝石的长宽高信息的第一子数据库、 预存有关刻面宝石的重量信息的第二子数据库、预存有关刻面宝石各个刻面的周长信息的第三子数据库、预存有关刻面宝石各个刻面的面积信息的第四子数据库、预存有关刻面宝石各个刻面与腰面的角度信息的第五子数据库以及预存有关刻面宝石的腰部波形信息的第六子数据库、预存有关宝石种类的第七子数据库和预存有关宝石琢型的第八子数据库;
    所述第二数据库包括:预存有关素面宝石的长宽高信息的第一子数据库、预存有关素面宝石的重量信息的第二子数据库、预存有关素面宝石的表面弧度信息的第三子数据库以及预存有关素面宝石的表面积信息的第四子数据库、预存有关宝石种类的第五子数据库和预存有关宝石琢型的第六子数据库。
  4. 根据权利要求1所述的用于识别宝石身份的方法,其特征在于:所述步骤(3)中进行数据比对时,首先判断待识别身份的宝石的类别;其次依据不同宝石类别测量其对应的重量参数及几何结构特征参数。
  5. 根据权利要求4所述的用于识别宝石身份的方法,其特征在于:步骤中,“首先判断待识别身份的宝石的类别”,具体为确定宝石是刻面宝石还是素面宝石,当确定是素面宝石时,再进一步根据宝石的长宽高、宝石的重量、宝石表面的弧度、宝石的琢型、宝石的表面积以及宝石的3D模型进行比对判断,最终确定待识别身份的宝石的身份;当确定是刻面宝石时,再进一步根据宝石的长宽高、宝石的琢型、宝石的重量、宝石各个刻面的周长、宝石各个刻面的面积、宝石各个刻面与腰面的角度、宝石的腰部波形以及宝石的3D模型进行比对判断,最终确定待识别身份的宝石的身份。
  6. 根据权利要求3所述的用于识别宝石身份的方法,其特征在于:当确认待识别身份的宝石的类别后,通过测量仪测量该宝石的重量及几何结构特征, 并在数据库中对应选择适合宝石类别的第一数据库或是第二数据库,并将测得的该宝石的重量及几何结构特征与选定的第一或是第二数据库中的各个子数据库中的参数信息进行比对分析。
  7. 根据权利要求6所述的用于识别宝石身份的方法,其特征在于:当确定待识别身份的宝石的类别后,对应选择待识别身份的宝石的若干项宝石参数,将该若干项宝石参数与宝石身份识别数据库中预存的对应的参数信息进行对比计算,当在宝石身份识别数据库中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当在数据库中不能找到唯一对应的宝石数据时,得到包含有待识别身份的宝石的子数据库Ⅰ,再次选择待识别身份的宝石的若干项宝石参数,在所述子数据库Ⅰ中进行对比计算,当在所述子数据库Ⅰ中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当在子数据库Ⅰ中不能找到唯一对应的宝石数据时,得到包含有待识别身份的宝石的子数据库Ⅱ,再次选择待识别身份的宝石的若干项宝石数据,在所述子数据库Ⅱ中进行对比计算;重复上述过程,直至在子数据库N中找到唯一对应的宝石数据时,停止计算,得到待识别身份的宝石的身份;当未能找到唯一对应的宝石数据时,停止计算,未能得到待识别身份的宝石的身份。
  8. 一种用于识别宝石身份的系统,其采用权利要求1-7任一项所述的方法识别宝石的身份,其特征在于:至少包括:
    用于测定宝石重量的高精度天平;
    用于测定宝石几何结构特征的测量仪;
    以及用于将测得的待识别身份的宝石的重量参数及几何结构特征参数与宝石身份识别数据库中的预存的宝石重量参数及几何结构特征参数信息进行比 对,得出该待识别身份的宝石的身份的处理系统;
    所述的处理系统包括:
    控制模块,用于控制本系统进行运作;
    判断分析模块,与控制模块通信连接,用于将待识别身份的宝石数据与宝石身份识别数据库中的宝石数据进行比对;
    缓存模块,与控制模块通信连接,用于暂时存放测得的待识别身份的宝石的数据以及比对后得出的结果;
    存储模块,与控制模块通信连接,用于存储待识别身份的宝石数据与宝石身份识别数据库中的数据进行比对的记录;
    通信模块,与控制模块通信连接,用于调取宝石身份识别数据库中的宝石数据;
    输入模块,与控制模块通信连接,用于选择性输入待识别身份的宝石的数据、选择所要查找的数据库以及对判断分析模块做设定;
    显示模块,与控制模块通信连接,用于显示数据。
  9. 根据权利要求8所述的用于识别宝石身份的系统,其特征在于:所述宝石身份识别数据库中的数据存放在本地存储设备中,所述的本地存储设备与判断分析模块通信连接,所述的本地存储设备设有与互联网上的宝石身份识别数据库进行更新的通信模块。
  10. 根据权利要求8所述的用于识别宝石身份的系统,其特征在于:所述宝石身份识别数据库中的宝石数据存放在云计算中,并与互联网实现交互,所述的判断分析模块设有与互联网实现交互的通信模块。
PCT/CN2017/088931 2017-05-05 2017-06-19 一种用于识别宝石身份的方法及其识别系统 WO2018201580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710311953.3 2017-05-05
CN201710311953.3A CN107238409B (zh) 2017-05-05 2017-05-05 一种用于识别宝石身份的方法及其识别系统

Publications (1)

Publication Number Publication Date
WO2018201580A1 true WO2018201580A1 (zh) 2018-11-08

Family

ID=59985708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088931 WO2018201580A1 (zh) 2017-05-05 2017-06-19 一种用于识别宝石身份的方法及其识别系统

Country Status (2)

Country Link
CN (1) CN107238409B (zh)
WO (1) WO2018201580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751083A (zh) * 2019-10-17 2020-02-04 曹轶 基于同态加密保护的宝石图像特征识别方法
EP3703920B1 (en) * 2017-12-22 2022-02-02 Sahajanand Technologies Private Limited Cutting machine for processing a gemstone, method of processing a gemstone and computer readable medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099867A (zh) * 2018-06-26 2018-12-28 无锡新吉凯氏测量技术有限公司 一种基于几何形态信息的宝石认证和识别系统及方法
CN110836963B (zh) * 2018-08-18 2022-11-01 王承砚 测量祖母绿宝石成品质量的方法和装置
CN109682414A (zh) * 2019-02-28 2019-04-26 襄阳爱默思智能检测装备有限公司 一种宝石身份的特征表征和识别方法
CN113129035A (zh) * 2021-04-26 2021-07-16 北京金玖银玖数字科技有限公司 一种黄金制品管理方法、装置及系统
CN114910121B (zh) * 2022-04-08 2024-04-26 广西诸宝科技开发有限公司 珍珠溯源识别方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290141A1 (en) * 2008-05-22 2009-11-26 David Friedman Matched pairs of gemstones
CN102374992A (zh) * 2010-08-09 2012-03-14 张耀拓 钻石身份特征鉴定方法及系统装置
CN103837481A (zh) * 2014-02-14 2014-06-04 温州市质量技术监督检测院 一种珠宝玉石红外光谱图库建立的方法
CN106525746A (zh) * 2015-09-09 2017-03-22 深圳迪凯工贸有限公司 宝石测试仪及宝石鉴别方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2162532C (en) * 1995-11-09 2001-01-30 Dana J. Vanier Gemstone registration system
US5932119A (en) * 1996-01-05 1999-08-03 Lazare Kaplan International, Inc. Laser marking system
CN1304035A (zh) * 1999-11-25 2001-07-18 图像统计公司 用于对宝石进行标准化分级的方法和相关的装置
GB0919235D0 (en) * 2009-11-03 2009-12-16 De Beers Centenary AG Inclusion detection in polished gemstones
CN106662566A (zh) * 2014-12-09 2017-05-10 萨哈加纳德科技私人有限公司 宝石鉴定

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290141A1 (en) * 2008-05-22 2009-11-26 David Friedman Matched pairs of gemstones
CN102374992A (zh) * 2010-08-09 2012-03-14 张耀拓 钻石身份特征鉴定方法及系统装置
CN103837481A (zh) * 2014-02-14 2014-06-04 温州市质量技术监督检测院 一种珠宝玉石红外光谱图库建立的方法
CN106525746A (zh) * 2015-09-09 2017-03-22 深圳迪凯工贸有限公司 宝石测试仪及宝石鉴别方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3703920B1 (en) * 2017-12-22 2022-02-02 Sahajanand Technologies Private Limited Cutting machine for processing a gemstone, method of processing a gemstone and computer readable medium
CN110751083A (zh) * 2019-10-17 2020-02-04 曹轶 基于同态加密保护的宝石图像特征识别方法
CN110751083B (zh) * 2019-10-17 2023-04-18 曹轶 基于同态加密保护的宝石图像特征识别方法

Also Published As

Publication number Publication date
CN107238409A (zh) 2017-10-10
CN107238409B (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2018201580A1 (zh) 一种用于识别宝石身份的方法及其识别系统
US20210027447A1 (en) System, method and computer program product for security analysis of jewelery items
US10733615B2 (en) Method and system for certification and verification of gemstones
Kennedy et al. Inspection and Gaging: A Training Manual and Reference Work that Discusses the Place of Inspection in Industry...
Whitbread et al. Fabric description of archaeological ceramics
US11475262B2 (en) Unique secured product identification for gemstones
US11953446B2 (en) System and method for processing multiple loose gemstones using image-based analysis techniques
US10380734B2 (en) System, method and computer program product for security analysis of jewelry items
CN104395094A (zh) 钻石的鉴定书及其鉴定书的制作方法
CN106228167B (zh) 特征采集、标记和识别方法
JP2512979Y2 (ja) 宝石保証書
WO2022072577A1 (en) System, method and computer program product for security analysis of jewelry items
WO2006117406A2 (en) Identifying a gemstone
CN103983492A (zh) 一种玉石无损检测样品模型及其制作方法
CN109099867A (zh) 一种基于几何形态信息的宝石认证和识别系统及方法
Fecher et al. The ceramic finds from Guadalupe, Honduras: Optimizing archaeological documentation with a combination of digital and analog techniques
US11428641B2 (en) Gemstone verification
CN112834507A (zh) 一种基于图像配准和光谱鉴别的唯一性识别系统及方法
US20170140445A1 (en) System and Method for Determining the Market Value of a Diamond
CN106461573A (zh) 用于蓝宝石元件的光学检查的方法和系统
US20210372935A1 (en) Device for inspection and authentication of gemstones and method of using same
CN115684167A (zh) 一种基于轮廓特征检测的钻石查重方法
Kiyomoto Arteaga et al. Semiautomatic Toolmark Classification in Chased Metals Using Surface Microtopography
Ferro The authenticity of the false
Küfer et al. Maximal material yield in gemstone cutting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908298

Country of ref document: EP

Kind code of ref document: A1