WO2018201278A1 - 开关磁阻电机及应用开关磁阻电机的装置 - Google Patents

开关磁阻电机及应用开关磁阻电机的装置 Download PDF

Info

Publication number
WO2018201278A1
WO2018201278A1 PCT/CN2017/082721 CN2017082721W WO2018201278A1 WO 2018201278 A1 WO2018201278 A1 WO 2018201278A1 CN 2017082721 W CN2017082721 W CN 2017082721W WO 2018201278 A1 WO2018201278 A1 WO 2018201278A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
teeth
stator
switched reluctance
reluctance motor
Prior art date
Application number
PCT/CN2017/082721
Other languages
English (en)
French (fr)
Inventor
阳光
李玥
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2017/082721 priority Critical patent/WO2018201278A1/zh
Priority to CN201780036082.7A priority patent/CN109643943B/zh
Publication of WO2018201278A1 publication Critical patent/WO2018201278A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current

Definitions

  • Embodiments of the present invention relate to the field of motor technologies, and in particular, to a switched reluctance motor and a device using the switched reluctance motor.
  • the basic principle of the existing switched reluctance motor is that the magnetic flux always follows the principle that the magnetic flux is always closed along the path with the smallest reluctance, and the stator and the rotor of the motor are both salient pole structures.
  • the stator is provided with concentrated windings, and no windings or permanent magnets are arranged on the rotor. According to the pole number and size of the rotor pole and the stator pole, it is divided into different switched reluctance motor structures, such as 6/4 and 8/6 two types of switched reluctance motors.
  • Embodiments of the present invention provide a switched reluctance motor and a device using the switched reluctance motor, which can effectively avoid vibration and noise caused by torque ripple and step feeling in low speed.
  • Embodiments of the present invention provide a switched reluctance motor including a stator and a rotor, wherein the stator includes a plurality of pairs of stator teeth and windings disposed on the teeth of the stator, the rotor including at least one pair of rotor teeth, wherein a pole arc of the rotor teeth is greater than The pole arc of the stator teeth, and the windings on at least two pairs of stator teeth disposed adjacent to each other can be connected in series.
  • the pole arc of the rotor tooth is greater than or equal to twice the pole arc of the stator tooth.
  • stator teeth are connected in series according to the direction of rotation of the rotor such that the positions of the series windings in each other vary in the direction of rotation.
  • the number of stator teeth is at least 4 times the number of rotor teeth.
  • the switched reluctance motor further comprises a plurality of series switches, wherein the series switches are series-connected when conducting, such that when energized, current flows through the series switches and windings.
  • the switched reluctance motor further includes a plurality of forward bridge arm switches and a plurality of negative bridge arms switches, wherein the first end of the windings on each pair of stator teeth is connected to the positive pole of the power source through a corresponding forward bridge arm switch, The second end of the winding on each pair of stator teeth is connected to the negative pole of the power supply via a corresponding negative arm switch, wherein the first end and the second end of the windings on the two adjacent pairs of stator teeth are connected by a series switch.
  • the switched reluctance motor further includes a plurality of forward freewheeling diodes and a plurality of negative freewheeling diodes, wherein the anodes of the plurality of forward freewheeling diodes are connected to the anode of the power source, and the anodes and windings of the plurality of forward freewheeling diodes The first end is connected; the anode of the plurality of negative freewheeling diodes is connected to the negative pole of the power source, and the cathodes of the plurality of negative freewheeling diodes are connected to the second end of the winding.
  • the rotor comprises a rotor center, and at least one pair of rotor teeth are spaced apart from the center of the rotor.
  • the rotor teeth are arranged in a strip structure.
  • the rotor teeth are arranged in an umbrella structure or a U-shaped structure.
  • An embodiment of the present invention further provides an apparatus for applying a switched reluctance motor, including a switched reluctance motor including a stator and a rotor, wherein the stator includes a plurality of pairs of stator teeth and windings disposed on the teeth of the stator,
  • the rotor includes at least one pair of rotor teeth, wherein the pole arc of the rotor teeth is greater than the pole arc of the stator teeth, and the windings on at least two pairs of stator teeth disposed adjacently can be connected in series.
  • the pole arc of the rotor tooth is greater than or equal to twice the pole arc of the stator tooth.
  • the number of stator teeth is at least 4 times the number of rotor teeth.
  • the switched reluctance motor further comprises a plurality of series switches, wherein the series switches are used for series windings such that when energized, current flows through the series switches and windings.
  • the switched reluctance motor further comprises a plurality of forward bridge arm switches and a plurality of negative bridge arms switches, wherein the first end of the windings on each pair of stator teeth is connected to the positive pole of the power supply through a corresponding forward bridge arm switch The second end of the winding on the stator teeth is connected to the negative pole of the power supply through a corresponding negative arm switch, wherein the first end and the second end of the windings on the two adjacent pairs of stator teeth are connected by a series switch.
  • the switched reluctance motor further includes a plurality of forward freewheeling diodes and a plurality of negative freewheeling diodes, wherein the anodes of the plurality of forward freewheeling diodes are connected to the anode of the power source, and the anodes and windings of the plurality of forward freewheeling diodes The first end is connected; the anode of the plurality of negative freewheeling diodes is connected to the negative pole of the power source, and the cathodes of the plurality of negative freewheeling diodes are connected to the second end of the winding.
  • the rotor comprises a rotor center, and at least one pair of rotor teeth are spaced apart from the center of the rotor.
  • the rotor teeth are arranged in a strip structure.
  • the rotor teeth are arranged in an umbrella structure or a U-shaped structure.
  • the device using the switched reluctance motor is an electric car, and the electric reciprocating motor is used to drive the wheel to rotate.
  • the beneficial effect of the embodiment of the invention is that the pole arc of the rotor tooth is larger than a pole arc of the sub-tooth, and the windings on at least two pairs of stator teeth disposed adjacently can be connected in series, thereby ensuring continuity of current flowing through windings of at least two pairs of stator teeth disposed adjacent to each other, and reducing torque
  • the pulsation which in turn weakens the stepping inductance of the switched reluctance motor at low speeds, and reduces the vibration and noise of the switched reluctance motor.
  • FIG. 1 is a schematic structural view of a switched reluctance motor according to an embodiment of the present invention
  • FIG. 2 is a topological structural view of an inverter of the switched reluctance motor of FIG. 1;
  • FIG. 3 is a schematic structural view of a switched reluctance motor according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an apparatus for applying a switched reluctance motor according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a switched reluctance motor according to an embodiment of the present invention
  • FIG. 2 is a topological structural view of the inverter of the switched reluctance motor of FIG.
  • the switched reluctance motor disclosed in this embodiment includes a stator 11 and a rotor 12, as shown in FIG.
  • the stator 11 includes a plurality of pairs of stator teeth 111 and windings 112 wound around the stator teeth.
  • the rotor 12 includes at least one pair of rotor teeth 121, wherein the pole arc L1 of the rotor teeth 121 is larger than the pole arc L2 of the stator teeth 111, and the windings 112 on at least two pairs of stator teeth 111 disposed adjacently can be connected in series to allow adjacent arrangement The windings 112 on at least two pairs of stator teeth 111 can operate simultaneously.
  • the number of stator teeth 111 is at least 4 times the number of rotor teeth 121.
  • the pole arc L1 of the rotor tooth 121 is greater than or equal to twice the pole arc L2 of the stator tooth 111, that is, the pole arc L1 of the rotor tooth 121 may be n times the pole arc L2 of the stator tooth 111, where n is an integer greater than one.
  • the rotor 12 further includes a rotor center 122 with at least one pair of rotor teeth 121 spaced from opposite sides of the rotor center 122.
  • a six-phase 12/2-pole switched reluctance motor is taken as an example for detailed description.
  • the stator 11 includes six pairs of stator teeth 111, that is, twelve stator teeth 111, specifically stator teeth A, stator teeth B, stator teeth C, stator teeth D, stator teeth E, stator teeth F, and stator teeth.
  • the rotor 12 includes a pair of rotor teeth 121 and a rotor center 122, that is, two rotor teeth 121, and two rotor teeth 121 are spaced apart from the rotor center 122.
  • the number of stator teeth 111 is six times the number of rotor teeth 121; the pole arc L1 of the rotor teeth 121 is twice the pole arc L2 of the stator teeth 111.
  • the number of pairs of the rotor teeth 121 of the present embodiment is 1, and the rotor teeth 121 are provided in a strip structure as shown in FIG. In other embodiments, when the number of pairs of rotor teeth 121 is greater than one, the rotor teeth 121 are provided as an umbrella structure or a U-shaped structure.
  • the number of pairs of at least two pairs of stator teeth 111 disposed adjacently is two, that is, the windings 112 of the two pairs of stator teeth 111 can be connected in series, for example, the winding 112 of the stator tooth A and the winding 112 of the stator tooth B are connected in series, and the stator tooth A' Winding 112 is coupled in series with winding 112 of stator tooth B', or winding 112 of stator tooth B is coupled in series with winding 112 of stator tooth C, and winding 112 of stator tooth B' is coupled in series with winding 112 of stator tooth C'.
  • the windings 112 on the stator teeth 111 are connected in series in accordance with the direction of rotation of the rotor 12 such that the position of the series windings 112 varies in the direction of rotation. That is, when the rotational direction of the rotor 12 is clockwise, the rotor teeth 121 of the rotor 12 are aligned with the stator teeth A and the stator teeth B, the windings 112 of the stator teeth B and the windings 112 of the stator teeth C are energized in series; the rotor of the rotor 12 When the teeth 121 are aligned with the stator teeth B and the stator teeth C, the windings 112 of the stator teeth C and the windings 112 of the stator teeth D are energized in series, thereby causing the position of the series windings 112 to change in a clockwise direction.
  • winding 112 of stator tooth A After winding 112 of stator tooth A, winding 112 of stator tooth B, winding 112 of stator tooth A' and winding 112 of stator tooth B', winding 112 of stator tooth A, winding 112 of stator tooth B, stator tooth A
  • the winding 112 of the winding 112 and the stator tooth B' generates a magnetic field, and a pair of magnetic poles are generated on the inner side, and a magnetic induction line is emitted on one side of the N pole, and a magnetic induction line flows in one side of the S pole, and the winding 112 is energized.
  • the direction and winding mode determine the N and S poles. For example, as shown in FIG.
  • the winding 112 of the stator tooth A and the winding 112 of the stator tooth B are N poles
  • the winding 112 of the stator tooth A' and the winding 112 of the stator tooth B' are S poles
  • the magnetic sensing line 13 is The N pole flows out and flows into the S pole.
  • the switched reluctance motor further includes a plurality of series switches 13 for serially connecting the windings 112 on at least two pairs of stator teeth 111 disposed adjacently in series so that current flows through the series when energized.
  • the plurality of series switches 13 may be a series switch Sab, a string The switch Sbc, the series switch Scd, the series switch Sde, the series switch Sef, and the series switch Sfa.
  • the winding 112 of the stator tooth A and the winding 112 of the stator tooth A' are connected in series as a phase; the winding 112 of the stator tooth B and the winding 112 of the stator tooth B' are connected in series as the b phase; the winding 112 of the stator tooth C and the stator tooth C' Winding 112 is connected in series to phase c; winding 112 of stator tooth D and winding 112 of stator tooth D' are connected in series as d phase; winding 112 of stator tooth E and winding 112 of stator tooth E' are connected in series as phase e, winding of stator tooth F 112 and winding 112 of stator tooth F' are connected in series as f phase.
  • the plurality of series switches 13 are switches between the phases of the switched reluctance motor, which can allow the phases of the switched reluctance motor to be connected in series to make the output power of the switched reluctance motor more stable.
  • the switched reluctance motor further includes a plurality of forward bridge arm switches 14 and a plurality of negative leg bridge switches 15, wherein the first end of the windings 112 on each pair of stator teeth 111 is connected to the power source V via a corresponding forward bridge arm switch 14.
  • the positive pole, the second end of the winding 112 on each pair of stator teeth 111 is connected to the negative pole of the power source V through a corresponding negative arm switch 15, wherein the first end of the winding 112 on the two pairs of stator teeth 111 disposed adjacently
  • the second end is connected by a series switch 13.
  • the plurality of forward bridge arm switches 14 are a forward bridge arm switch Sa1, a forward bridge arm switch Sb1, a forward bridge arm switch Sc1, a forward bridge arm switch Sd1, a forward bridge arm switch Se1, and a forward bridge.
  • the arm switch Sf1; the plurality of negative arm switches 15 are a negative bridge switch Sa2, a negative bridge switch Sb2, a negative bridge switch Sc2, a negative bridge switch Sd2, a negative bridge switch Se2, and a negative direction Bridge arm switch Sf2.
  • the positive pole of the power supply V passes through the forward bridge arm switch Sa1, the forward bridge arm switch Sb1, the forward bridge arm switch Sc1, the forward bridge arm switch Sd1, the forward bridge arm switch Se1, and the forward bridge arm switch Sf1, respectively.
  • the first ends of the a phase, the b phase, the c phase, the d phase, the e phase, and the f phase are connected, and the negative terminal of the power source V passes through the negative bridge switch Sa2, the negative bridge switch Sb2, and the negative bridge switch Sc2.
  • the bridge arm switch Sd2, the negative arm switch Se2, and the negative arm switch Sf2 are connected to the second ends of the a phase, the b phase, the c phase, the d phase, the e phase, and the f phase, respectively.
  • the second end of the a phase is connected to the first end of the b phase through the series switch Sab; the second end of the b phase is connected to the first end of the c phase through the series switch Sbc; the second end of the c phase is passed through the series switch Scd and d
  • the first end of the phase is connected; the second end of the d phase is connected to the first end of the e phase by the series switch Sde; and the second end of the e phase is connected to the first end of the f phase by the series switch Sef.
  • the switched reluctance motor further includes a plurality of forward freewheeling diodes 16 and a plurality of negative freewheeling diodes 17.
  • the cathodes of the plurality of forward freewheeling diodes 16 are connected to the anode of the power source V, and the anodes of the plurality of forward freewheeling diodes 16 are connected to the first ends of the windings 112 on each pair of stator teeth 111; a plurality of negative freewheeling diodes
  • the anode of 17 is connected to the cathode of the power source V, and the cathodes of the plurality of negative freewheeling diodes 17 are connected to the second terminal of the winding 112 on each pair of stator teeth 111.
  • the positive pole of the power supply V and the forward freewheeling diode Da2 Negative electrode, negative pole of forward freewheeling diode Db2, negative pole of forward freewheeling diode Dc2, negative pole of forward freewheeling diode Dd2, negative pole of forward freewheeling diode De2, and negative pole of forward freewheeling diode Df2, positive
  • the positive pole of the freewheeling diode Da2 is connected to the first end of the a phase
  • the positive pole of the forward freewheeling diode Db2 is connected to the first end of the b phase
  • the positive pole of the forward freewheeling diode Dc2 is connected to the first end of the c phase.
  • the positive electrode of the freewheeling diode Dd2 is connected to the first end of the d phase
  • the positive electrode of the forward freewheeling diode De2 is connected to the first end of the e phase
  • the positive electrode of the forward freewheeling diode Df2 is connected to the first end of the f phase.
  • the negative electrode of the power supply V is respectively connected to the positive electrode of the negative freewheeling diode Da1, the positive electrode of the negative freewheeling diode Db1, the positive electrode of the negative freewheeling diode Dc1, the positive electrode of the negative freewheeling diode Dd1, and the positive electrode of the negative freewheeling diode De1.
  • a positive pole connection of the negative freewheeling diode Df1 the negative pole of the negative freewheeling diode Da1 is connected to the second end of the a phase, and the positive pole of the negative pole of the negative freewheeling diode Db1 is connected to the second end of the b phase, negative direction
  • the negative pole of the freewheeling diode Dc1 is connected to the second end of the c phase
  • the negative pole of the negative freewheeling diode Dd1 is connected to the second end of the d phase
  • the negative pole of the negative freewheeling diode De1 is connected to the second end of the e phase
  • the negative electrode of the freewheeling diode Df1 is connected to the second end of the f-phase.
  • the switched reluctance motor calculates the torque of the switched reluctance motor based on the partial derivative of the magnetic common energy:
  • the torque T is only related to the derivative of the phase current i, the inductance L of the winding 112 to the position angle ⁇ of the rotor 12, and the switch reluctance can be made when the pitch of the plurality of stator teeth 111 is less than a preset threshold.
  • the torque of the motor is constant.
  • the forward bridge arm switch Sb1, the series switch Sbc, and the negative arm are opened.
  • the switch Sc2 is turned on in parallel with the b-phase and the c-phase, and the a-phase is cut, that is, the winding 112 of the stator tooth B and the winding 112 of the stator tooth C are energized in series by the series switch Sbc, and the winding 112 of the stator tooth A is cut.
  • the b-phase and the c-phase are energized in series to establish a current of the c-phase in advance, and the current flowing through the b-phase and the c-phase has continuity.
  • the rotor teeth 121 of the switched reluctance motor rotate toward the stator teeth C until the rotor teeth 121 of the switched reluctance motor are aligned with the stator teeth B and the stator teeth C.
  • the moment of the a phase has dropped to a lower level, and the phase b stabilizes the output torque.
  • the current of the phase c is established instead of the phase a, and the phase b can continuously output the torque, so each The torque generated by each phase will be more stable and Continuous output.
  • the forward bridge arm switch Sc1, the series switch Scd, and the negative arm switch Sd2 are turned on to make the c phase and the d
  • the phase is turned on in series by the series switch Scd, and the b phase is cut, that is, the winding 112 of the stator tooth C and the winding 112 of the stator tooth D are energized in series, and the winding 112 of the stator tooth B is cut.
  • the c-phase and the d-phase are energized in series to establish a current of the d-phase in advance, and the current flowing through the c-phase and the d-phase has continuity.
  • the rotor teeth 121 of the switched reluctance motor rotate toward the stator teeth D until the rotor teeth 121 of the switched reluctance motor are aligned with the stator teeth C and the stator teeth D.
  • the torque of the b-phase has dropped to a lower level, and the phase c stabilizes the output torque.
  • the d-phase current is established instead of the b-phase, and the c-phase can continuously output the torque, so each The torque generated by each phase will be more stable and continuous output.
  • the switched reluctance motor of the embodiment can ensure the continuity of the current at the commutation point.
  • the switched reluctance motor stabilizes the output torque and can reduce the rotation. The pulsation of the moment, thereby weakening the stepping inductance of the switched reluctance motor at low speed, and reducing the vibration and noise of the switched reluctance motor.
  • the rotor teeth 121 are provided in an umbrella structure or a U-shaped structure.
  • the present invention further provides a switched reluctance motor of another embodiment, which is different from the switched reluctance motor disclosed in the above embodiments in that, as shown in FIG. 3, the switched reluctance motor includes 12 pairs of stator teeth 311 and 2.
  • the pair of rotor teeth 321, that is, the switched reluctance motor, 12 is a twelve-phase 24/4-pole structure. Since the magnetic circuit is closed along the minimum path of the reluctance, in order to avoid closing the inner magnetic circuit to the adjacent winding 312, the rotor teeth 321 of the switched reluctance motor are arranged in a U-shaped configuration.
  • the stator 31 includes 12 pairs of stator teeth 311, that is, 24 stator teeth 311, specifically stator teeth A, stator teeth B, stator teeth C, stator teeth D, stator teeth E, stator teeth F, stator teeth G, stator teeth H, Stator tooth I, stator tooth J, stator tooth K, stator tooth L, stator tooth A', stator tooth B', stator tooth C', stator tooth D', stator tooth E', stator tooth F', stator tooth G' , stator tooth H', stator tooth I', stator tooth J', stator tooth K', and stator tooth L'.
  • the rotor 32 includes two pairs of rotor teeth 321 and a rotor center 322, that is, four rotor teeth 321, and four rotor teeth 321 are spaced apart from the rotor center 322.
  • the number of stator teeth 311 is six times the number of rotor teeth 321; the pole arc of the rotor teeth 321 is three times the pole arc of the stator teeth 311.
  • the number of pairs of at least two pairs of stator teeth 311 disposed adjacently is three, that is, the windings 312 of the three pairs of stator teeth 311 can be connected in series, for example, the winding 312 of the stator teeth A, the winding 312 of the stator teeth B, and the winding 312 of the stator teeth C are connected in series.
  • the winding 312 of the stator tooth G, the winding 312 of the stator tooth H, and the winding 312 of the stator tooth I are connected in series, or the winding 312 of the stator tooth A', the winding 312 of the stator tooth B', and the winding 312 of the stator tooth C'.
  • the winding 312 of the stator tooth G', the winding 312 of the stator tooth H', and the winding 312 of the stator tooth I' are connected in series.
  • the winding 312 of the stator tooth A After the winding 312 of the stator tooth A, the winding 312 of the stator tooth B, the winding 312 of the stator tooth C, the winding 312 of the stator tooth G, the winding 312 of the stator tooth H, and the winding 312 of the stator tooth I, the winding of the stator tooth A 312, the winding 312 of the stator tooth B, the winding 312 of the stator tooth C, the winding 312 of the stator tooth G, the winding 312 of the stator tooth H and the winding 312 of the stator tooth I generate a magnetic field, and a pair of magnetic poles are generated corresponding to the inner side, N pole A magnetic induction line is emitted on one side, and a magnetic induction line flows in a side of the S pole.
  • the energization direction and winding manner of the winding 312 determine the N pole and the S pole.
  • the winding 312 of the stator tooth A, the winding 312 of the stator tooth B, and the winding 312 of the stator tooth C are N poles, the winding 312 of the stator tooth G, the winding 312 of the stator tooth H, and the stator tooth I.
  • the winding 312 is an S pole, and the magnetic induction line 33 flows out from the N pole and flows into the S pole.
  • the switched reluctance motor of the present embodiment has a small magnetic resistance with respect to the switched reluctance motor of the above embodiment.
  • the present invention further provides an apparatus for applying a switched reluctance motor.
  • the apparatus 40 for applying a switched reluctance motor includes a switched reluctance motor 41.
  • the apparatus 40 for applying the reluctance motor can be an electric vehicle or an electric vehicle.
  • the switched reluctance motor 41 is used to drive the rotation of the wheel.
  • the switched reluctance motor 41 is the switched reluctance motor disclosed in the above embodiment, and details are not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种开关磁阻电机及应用开关磁阻电机的装置,所述开关磁阻电机包括定子(11)和转子(12),其中定子(11)包括多对定子齿(111)以及绕设于定子齿(111)上的绕组(112),转子(12)包括至少一对转子齿(121),其中转子齿(121)的极弧大于定子齿(111)的极弧,且相邻设置的至少两对定子齿(111)上的绕组(112)能够串联。通过上述方式,能够保证电流的连续性,能够减小转矩的脉动性,进而削弱在低速时开关磁阻电机的步进感,并且降低开关磁阻电机的振动与噪声。

Description

开关磁阻电机及应用开关磁阻电机的装置 【技术领域】
本发明实施例涉及电机技术领域,特别是涉及一种开关磁阻电机及应用开关磁阻电机的装置。
【背景技术】
现有的开关磁阻电机的基本原理是:在工作时遵循磁通总是要沿磁阻最小的路径闭合的原理产生力矩,该电机的定子和转子均为凸极结构。其中,定子上设置有集中绕组,转子上没有设置绕组或永磁体。根据转子极和定子极的极数和尺寸,划分为不同的开关磁阻电机的结构形式,例如:6/4与8/6两种形式的开关磁阻电机。在定子的某相通电后,为了减少磁路的阻抗,离该定子最近的转子凸极向该定子运动。
在开关磁阻电机的转子换相时,由于绕组的线圈的电感作用,流经绕组的电流缓慢降到零之后又无法在瞬间到达目标值,从而导致开关磁阻电机的转矩波动较大,以至于开关磁阻电机的转矩出现脉动,而带来振动与噪声,甚至会在低速时的转矩脉动可能会使用户产生“步进感”,即振动感。
【发明内容】
本发明实施例提供一种开关磁阻电机及应用开关磁阻电机的装置,能够有效避免因转矩的脉动性带来的振动与噪声以及在低速时的步进感问题。
本发明实施例提供一种开关磁阻电机,包括定子和转子,其中,定子包括多对定子齿以及绕设于定子齿上的绕组,转子包括至少一对转子齿,其中转子齿的极弧大于定子齿的极弧,且相邻设置的至少两对定子齿上的绕组能够串联。
其中,转子齿的极弧大于或等于定子齿的极弧的2倍。
其中,定子齿上的绕组按照转子的转动方向串联,以使得相互串联绕组的位置沿转动方向变化。其中,定子齿的数量为转子齿的数量的至少4倍。
其中,开关磁阻电机进一步包括多个串联开关,其中串联开关在导通时串联绕组,以使得在通电时,电流经串联开关和绕组。
其中,开关磁阻电机进一步包括多个正向桥臂开关和多个负向桥臂开关,其中每对定子齿上的绕组的第一端通过对应的正向桥臂开关连接电源的正极、 每对定子齿上的绕组的第二端通过对应的负向桥臂开关连接电源的负极,其中相邻设置的两对定子齿上的绕组的第一端和第二端通过串联开关进行连接。
其中,开关磁阻电机进一步包括多个正向续流二极管和多个负向续流二极管,多个正向续流二极管的负极与电源的正极连接,多个正向续流二极管的正极与绕组的第一端连接;多个负向续流二极管的正极与电源的负极连接,多个负向续流二极管的负极与绕组的第二端连接。
其中,转子包括转子中心,至少一对转子齿间隔设置于转子中心。
其中,在转子齿的对数为1时,转子齿设置为条形结构。
其中,在转子齿的对数大于1时,转子齿设置为伞形结构或U形结构。
本发明实施例还提供一种应用开关磁阻电机的装置,其包括开关磁阻电机,开关磁阻电机包括定子和转子,其中,定子包括多对定子齿以及绕设于定子齿上的绕组,转子包括至少一对转子齿,其中,转子齿的极弧大于定子齿的极弧,且相邻设置的至少两对定子齿上的绕组能够串联。
其中,转子齿的极弧大于或等于定子齿的极弧的2倍。
其中,定子齿的数量为转子齿的数量的至少4倍。
其中,开关磁阻电机进一步包括多个串联开关,其中串联开关用于串联绕组,以使得在通电时,电流经串联开关和绕组。
其中,开关磁阻电机进一步包括多个正向桥臂开关和多个负向桥臂开关,其中每对定子齿上的绕组的第一端通过对应的正向桥臂开关连接电源的正极、每对定子齿上的绕组的第二端通过对应的负向桥臂开关连接电源的负极,其中相邻设置的两对定子齿上的绕组的第一端和第二端通过串联开关进行连接。
其中,开关磁阻电机进一步包括多个正向续流二极管和多个负向续流二极管,多个正向续流二极管的负极与电源的正极连接,多个正向续流二极管的正极与绕组的第一端连接;多个负向续流二极管的正极与电源的负极连接,多个负向续流二极管的负极与绕组的第二端连接。
其中,转子包括转子中心,至少一对转子齿间隔设置于转子中心。
其中,在转子齿的对数为1时,转子齿设置为条形结构。
其中,在转子齿的对数大于1时,转子齿设置为伞形结构或U形结构。
其中,应用开关磁阻电机的装置为电动汽车,电动汽车应用开关磁阻电机驱动车轮转动。
与现有技术相比,本发明实施例的有益效果是:由于转子齿的极弧大于定 子齿的极弧,并且相邻设置的至少两对定子齿上的绕组能够串联,从而能够保证流经相邻设置的至少两对定子齿上的绕组的电流的连续性,能够减小转矩的脉动性,进而削弱在低速时开关磁阻电机的步进感,并且降低开关磁阻电机的振动与噪声。
【附图说明】
图1是本发明一实施例的开关磁阻电机的结构示意图;
图2是图1中开关磁阻电机的逆变器拓扑结构图;
图3是本发明另一实施例的开关磁阻电机的结构示意图;
图4是本发明一实施例的应用开关磁阻电机的装置的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1-2,图1是本发明一实施例的开关磁阻电机的结构示意图,图2是图1中开关磁阻电机的逆变器拓扑结构图。本实施例所揭示的开关磁阻电机包括定子11和转子12,如图1所示。
其中,定子11包括多对定子齿111以及绕设于定子齿上的绕组112。转子12包括至少一对转子齿121,其中转子齿121的极弧L1大于定子齿111的极弧L2,且相邻设置的至少两对定子齿111上的绕组112能够串联,以使相邻设置的至少两对定子齿111上的绕组112能够同时工作。
具体地,定子齿111的数量为转子齿121的数量的至少4倍。转子齿121的极弧L1大于或等于定子齿111的极弧L2的2倍,即转子齿121的极弧L1可为定子齿111的极弧L2的n倍,其中n为大于1的整数。
转子12进一步包括转子中心122,至少一对转子齿121间隔设置于转子中心122相对两侧。
本实施例以六相12/2极开关磁阻电机为例进行详细说明。
如图1所示,定子11包括6对定子齿111,即12个定子齿111,具体为定子齿A、定子齿B、定子齿C、定子齿D、定子齿E、定子齿F、定子齿A’、定 子齿B’、定子齿C’、定子齿D’、定子齿E’以及定子齿F’。转子12包括一对转子齿121和转子中心122,即2个转子齿121,2个转子齿121间隔设置于转子中心122。定子齿111的数量为转子齿121的数量的6倍;转子齿121的极弧L1为定子齿111的极弧L2的2倍。
本实施例的转子齿121的对数为1,转子齿121设置为条形结构,如图1所示。在其他实施例中,在转子齿121的对数大于1时,转子齿121设置为伞形结构或U形结构。
其中,相邻设置的至少两对定子齿111的对数为2,即两对定子齿111的绕组112能够串联,例如定子齿A的绕组112和定子齿B的绕组112串联,定子齿A’的绕组112和定子齿B’的绕组112串联,或者定子齿B的绕组112和定子齿C的绕组112串联,定子齿B’的绕组112和定子齿C’的绕组112串联。
定子齿111上的绕组112按照转子12的转动方向串联,以使得相互串联绕组112的位置沿转动方向变化。即,在转子12的转动方向为顺时针,转子12的转子齿121与定子齿A和定子齿B位置对准时,定子齿B的绕组112和定子齿C的绕组112串联通电;转子12的转子齿121与定子齿B和定子齿C位置对准时,定子齿C的绕组112和定子齿D的绕组112串联通电,进而使得相互串联绕组112的位置沿顺时针方向变化。在转子12的转动方向为逆时针,转子12的转子齿121与定子齿C和定子齿D位置对准时,定子齿C的绕组112和定子齿B的绕组112串联通电;转子12的转子齿121与定子齿B和定子齿C位置对准时,定子齿B的绕组112和定子齿A的绕组112串联通电,进而使得相互串联绕组112的位置沿逆时针方向变化。
在定子齿A的绕组112、定子齿B的绕组112、定子齿A’的绕组112以及定子齿B’的绕组112通电后,定子齿A的绕组112、定子齿B的绕组112、定子齿A’的绕组112以及定子齿B’的绕组112产生磁场,对应内侧会产生一对磁极,N极的一侧会发出磁感线,S极的一侧会有磁感线流入,绕组112的通电方向和缠绕方式决定N极和S极。例如,如图1所示,定子齿A的绕组112和定子齿B的绕组112为N极,定子齿A’的绕组112和定子齿B’的绕组112为S极,则磁感线13由N极流出,并且流入S极。
如图2所示,开关磁阻电机进一步包括多个串联开关13,其中串联开关13用于串联相邻设置的至少两对定子齿111上的绕组112,以使得在通电时,电流流经串联开关13和绕组112。具体地,多个串联开关13可为串联开关Sab、串 联开关Sbc、串联开关Scd、串联开关Sde、串联开关Sef以及串联开关Sfa。定子齿A的绕组112和定子齿A’的绕组112串联为a相;定子齿B的绕组112和定子齿B’的绕组112串联为b相;定子齿C的绕组112和定子齿C’的绕组112串联为c相;定子齿D的绕组112和定子齿D’的绕组112串联为d相;定子齿E的绕组112和定子齿E’的绕组112串联为e相,定子齿F的绕组112和定子齿F’的绕组112串联为f相。其中,多个串联开关13为开关磁阻电机的各个相之间的开关,能够允许开关磁阻电机的相与相之间串联,以使开关磁阻电机输出的功率更加稳定。
开关磁阻电机进一步包括多个正向桥臂开关14和多个负向桥臂开关15,其中每对定子齿111上的绕组112的第一端通过对应的正向桥臂开关14连接电源V的正极、每对定子齿111上的绕组112的第二端通过对应的负向桥臂开关15连接电源V的负极,其中相邻设置的两对定子齿111上的绕组112的第一端和第二端通过串联开关13进行连接。具体地,多个正向桥臂开关14为正向桥臂开关Sa1、正向桥臂开关Sb1、正向桥臂开关Sc1、正向桥臂开关Sd1、正向桥臂开关Se1以及正向桥臂开关Sf1;多个负向桥臂开关15为负向桥臂开关Sa2、负向桥臂开关Sb2、负向桥臂开关Sc2、负向桥臂开关Sd2、负向桥臂开关Se2以及负向桥臂开关Sf2。
其中,电源V的正极通过正向桥臂开关Sa1、正向桥臂开关Sb1、正向桥臂开关Sc1、正向桥臂开关Sd1、正向桥臂开关Se1以及正向桥臂开关Sf1分别与a相、b相、c相、d相、e相以及f相的第一端连接,电源V的负极通过负向桥臂开关Sa2、负向桥臂开关Sb2、负向桥臂开关Sc2、负向桥臂开关Sd2、负向桥臂开关Se2以及负向桥臂开关Sf2分别与a相、b相、c相、d相、e相以及f相的第二端连接。a相的第二端通过串联开关Sab与b相的第一端连接;b相的第二端通过串联开关Sbc与c相的第一端连接;c相的第二端通过串联开关Scd与d相的第一端连接;d相的第二端通过串联开关Sde与e相的第一端连接;以及e相的第二端通过串联开关Sef与f相的第一端连接。
开关磁阻电机进一步包括多个正向续流二极管16和多个负向续流二极管17。多个正向续流二极管16的负极与电源V的正极连接,多个正向续流二极管16的正极与每对定子齿111上的绕组112的第一端连接;多个负向续流二极管17的正极与电源V的负极连接,多个负向续流二极管17的负极与每对定子齿111上的绕组112的第二端连接。电源V的正极分别与正向续流二极管Da2的 负极、正向续流二极管Db2的负极、正向续流二极管Dc2的负极、正向续流二极管Dd2的负极、正向续流二极管De2的负极以及正向续流二极管Df2的负极连接,正向续流二极管Da2的正极与a相的第一端连接,正向续流二极管Db2的正极与b相的第一端连接,正向续流二极管Dc2的正极与c相的第一端连接,正向续流二极管Dd2的正极与d相的第一端连接,正向续流二极管De2的正极与e相的第一端连接,正向续流二极管Df2的正极与f相的第一端连接。电源V的负极分别与负向续流二极管Da1的正极、负向续流二极管Db1的正极、负向续流二极管Dc1的正极、负向续流二极管Dd1的正极、负向续流二极管De1的正极以及负向续流二极管Df1的正极极连接,负向续流二极管Da1的负极与a相的第二端连接,负向续流二极管Db1的负极的正极与b相的第二端连接,负向续流二极管Dc1的负极与c相的第二端连接,负向续流二极管Dd1的负极与d相的第二端连接,负向续流二极管De1的负极与e相的第二端连接,负向续流二极管Df1的负极与f相的第二端连接。
开关磁阻电机根据磁共能的偏导数形式计算可得该开关磁阻电机的力矩:
Figure PCTCN2017082721-appb-000001
根据公式(1)可知,力矩T仅与相电流i、绕组112的电感L对转子12位置角度θ的导数相关,在多个定子齿111的间距小于预设的阈值时,能够使得开关磁阻电机的转矩恒定。
由于绕组112的电感L的感性作用,电流i不能瞬间达到理论值,因此需要提前通电以建立电流i,以使得电流i恒定。以下详细描述开关磁阻电机的工作原理:
在开关磁阻电机的转子齿121按顺时针方向转动,转子齿121与定子齿A和定子齿B位置具有预设的角度时,开启正向桥臂开关Sb1、串联开关Sbc以及负向桥臂开关Sc2,以使b相和c相串联导通,切断a相,即定子齿B的绕组112和定子齿C的绕组112通过串联开关Sbc串联通电,切断定子齿A的绕组112。b相和c相串联通电,以提前建立c相的电流,进而流经b相和c相的电流具有连续性。此时开关磁阻电机的转子齿121向定子齿C转动,直至开关磁阻电机的转子齿121与定子齿B和定子齿C位置对准。在转子齿121换相点时,a相的力矩已经下降至较低的水平,b相稳定输出力矩,此时建立起来c相的电流来代替a相,而b相可持续输出力矩,因此每个相产生的力矩会更加稳定且 持续输出。
在开关磁阻电机的转子齿121与定子齿B和定子齿C位置具有预设的角度时,开启正向桥臂开关Sc1、串联开关Scd以及负向桥臂开关Sd2,以使c相和d相通过串联开关Scd串联导通,切断b相,即定子齿C的绕组112和定子齿D的绕组112串联通电,切断定子齿B的绕组112。c相和d相串联通电,以提前建立d相的电流,进而流经c相和d相的电流具有连续性。此时开关磁阻电机的转子齿121向定子齿D转动,直至开关磁阻电机的转子齿121与定子齿C和定子齿D位置对准。在转子齿121换相点时,b相的力矩已经下降至较低的水平,c相稳定输出力矩,此时建立起来d相的电流来代替b相,而c相可持续输出力矩,因此每个相产生的力矩会更加稳定且持续输出。
通过上述方式,本实施例开关磁阻电机在换相点时能够保证电流的连续性,在绕组112的电感对转子位置角度的导数保持恒定时,开关磁阻电机稳定输出力矩,能够减小转矩的脉动性,进而削弱在低速时开关磁阻电机的步进感,并且降低开关磁阻电机的震动与噪声。
可选地,转子齿121设置为伞形结构或U形结构。
本发明进一步提供另一实施例的开关磁阻电机,其与上述实施例所揭示的开关磁阻电机不同之处在于:如图3所示,该开关磁阻电机包括12对定子齿311和2对转子齿321,即开关磁阻电机包括12为十二相24/4极结构。由于磁路会沿磁阻的最小路径闭合,为了避免循最近磁路向相邻绕组312内闭合,因此开关磁阻电机的转子齿321设置为U形结构。
定子31包括12对定子齿311,即24个定子齿311,具体为定子齿A、定子齿B、定子齿C、定子齿D、定子齿E、定子齿F、定子齿G、定子齿H、定子齿I、定子齿J、定子齿K、定子齿L、定子齿A’、定子齿B’、定子齿C’、定子齿D’、定子齿E’、定子齿F’、定子齿G’、定子齿H’、定子齿I’、定子齿J’、定子齿K’以及定子齿L’。转子32包括两对转子齿321和转子中心322,即4个转子齿321,4个转子齿321间隔设置于转子中心322。定子齿311的数量为转子齿321的数量的6倍;转子齿321的极弧为定子齿311的极弧的3倍。
相邻设置的至少两对定子齿311的对数为3,即三对定子齿311的绕组312能够串联,例如定子齿A的绕组312、定子齿B的绕组312和定子齿C的绕组312串联,定子齿G的绕组312、定子齿H的绕组312以及定子齿I的绕组312串联,或者定子齿A’的绕组312、定子齿B’的绕组312和定子齿C’的绕组312 串联,定子齿G’的绕组312、定子齿H’的绕组312以及定子齿I’的绕组312串联。
在定子齿A的绕组312、定子齿B的绕组312、定子齿C的绕组312、定子齿G的绕组312、定子齿H的绕组312以及定子齿I的绕组312通电后,定子齿A的绕组312、定子齿B的绕组312、定子齿C的绕组312、定子齿G的绕组312、定子齿H的绕组312以及定子齿I的绕组312产生磁场,对应内侧会产生一对磁极,N极的一侧会发出磁感线,S极的一侧会有磁感线流入,绕组312的通电方向和缠绕方式决定N极和S极。例如,如图3所示,定子齿A的绕组312、定子齿B的绕组312和定子齿C的绕组312为N极,定子齿G的绕组312、定子齿H的绕组312以及定子齿I的绕组312为S极,则磁感线33由N极流出,并且流入S极。
相对于上述实施例的开关磁阻电机,本实施例的开关磁阻电机的磁阻小。
本发明进一步提供应用开关磁阻电机的装置,如图4所示,该应用开关磁阻电机的装置40包括开关磁阻电机41,该应用开关磁阻电机的装置40可为电动汽车,电动汽车应用开关磁阻电机41驱动车轮转动,该开关磁阻电机41为上述实施例所揭示的开关磁阻电机,在此不再赘述。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种开关磁阻电机,其特征在于,所述开关磁阻电机包括定子和转子,其中,所述定子包括多对定子齿以及绕设于所述定子齿上的绕组,所述转子包括至少一对转子齿,其中,所述转子齿的极弧大于所述定子齿的极弧,且相邻设置的至少两对所述定子齿上的所述绕组能够串联。
  2. 根据权利要求1所述的开关磁阻电机,其特征在于,所述转子齿的极弧大于或等于所述定子齿的极弧的2倍。
  3. 根据权利要求1所述的开关磁阻电机,其特征在于,所述定子齿上的所述绕组按照所述转子的转动方向串联,以使得相互串联所述绕组的位置沿所述转动方向变化。
  4. 根据权利要求1所述的开关磁阻电机,其特征在于,所述定子齿的数量为所述转子齿的数量的至少4倍。
  5. 根据权利要求1所述的开关磁阻电机,其特征在于,所述开关磁阻电机进一步包括多个串联开关,其中,所述串联开关在导通时串联相邻设置的至少两对所述定子齿上的绕组,以使得在通电时,电流流经所述串联开关和所述绕组。
  6. 根据权利要求5所述的开关磁阻电机,其特征在于,所述开关磁阻电机进一步包括多个正向桥臂开关和多个负向桥臂开关,其中每对所述定子齿上的所述绕组的第一端通过对应的所述正向桥臂开关连接电源的正极、每对所述定子齿上的所述绕组的第二端通过对应的所述负向桥臂开关连接所述电源的负极,其中相邻设置的两对所述定子齿上的所述绕组的所述第一端和所述第二端通过所述串联开关进行连接。
  7. 根据权利要求6所述的开关磁阻电机,其特征在于,所述开关磁阻电机进一步包括多个正向续流二极管和多个负向续流二极管,所述多个正向续流二极管的负极与所述电源的正极连接,所述多个正向续流二极管的正极与所述绕组的第一端连接;所述多个负向续流二极管的正极与所述电源的负极连接,所述多个负向续流二极管的负极与所述绕组的第二端连接。
  8. 根据权利要求1所述的开关磁阻电机,其特征在于,所述转子包括转子中心,所述至少一对转子齿间隔设置于所述转子中心。
  9. 根据权利要求8述的开关磁阻电机,其特征在于,在所述转子齿的对数为1时,所述转子齿设置为条形结构。
  10. 根据权利要求9的开关磁阻电机,其特征在于,在所述转子齿的对数大于1时,所述转子齿为伞形结构或U形结构。
  11. 一种应用开关磁阻电机的装置,其特征在于,所述装置包括开关磁阻电机,所述开关磁阻电机包括定子和转子,其中,所述定子包括多对定子齿以及绕设于所述定子齿上的绕组,所述转子包括至少一对转子齿,其中,所述转子齿的极弧大于所述定子齿的极弧,且相邻设置的至少两对所述定子齿上的所述绕组能够串联。
  12. 根据权利要求11所述的装置,其特征在于,所述转子齿的极弧大于或等于所述定子齿的极弧的2倍。
  13. 根据权利要求11所述的装置,其特征在于,所述定子齿的数量为所述转子齿的数量的至少4倍。
  14. 根据权利要求11所述的装置,其特征在于,所述开关磁阻电机进一步包括多个串联开关,其中,所述串联开关在导通时串联相邻设置的至少两对所述定子齿上的绕组,以使得在通电时,电流流经所述串联开关和所述绕组。
  15. 根据权利要求11所述的装置,其特征在于,所述开关磁阻电机进一步包括多个正向桥臂开关和多个负向桥臂开关,其中每对所述定子齿上的所述绕组的第一端通过对应的所述正向桥臂开关连接电源的正极、每对所述定子齿上的所述绕组的第二端通过对应的所述负向桥臂开关连接所述电源的负极,其中相邻设置的两对所述定子齿上的所述绕组的所述第一端和所述第二端通过所述串联开关进行连接。
  16. 根据权利要求15所述的装置,其特征在于,所述开关磁阻电机进一步包括多个正向续流二极管和多个负向续流二极管,所述多个正向续流二极管的负极与所述电源的正极连接,所述多个正向续流二极管的正极与所述绕组的第一端连接;所述多个负向续流二极管的正极与所述电源的负极连接,所述多个负向续流二极管的负极与所述绕组的第二端连接。
  17. 根据权利要求15所述的装置,其特征在于,所述转子包括转子中心,所述至少一对转子齿间隔设置于所述转子中心。
  18. 根据权利要求17所述的装置,其特征在于,在所述转子齿的对数为1时,所述转子齿设置为条形结构。
  19. 根据权利要求18所述的装置,其特征在于,在所述转子齿的对数大于1时,所述转子齿设置为伞形结构或U形结构。
  20. 根据权利要求11所述的装置,其特征在于,所述应用开关磁阻电机的装置为电动汽车,所述电动汽车应用所述开关磁阻电机驱动车轮转动。
PCT/CN2017/082721 2017-05-02 2017-05-02 开关磁阻电机及应用开关磁阻电机的装置 WO2018201278A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/082721 WO2018201278A1 (zh) 2017-05-02 2017-05-02 开关磁阻电机及应用开关磁阻电机的装置
CN201780036082.7A CN109643943B (zh) 2017-05-02 2017-05-02 开关磁阻电机及应用开关磁阻电机的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/082721 WO2018201278A1 (zh) 2017-05-02 2017-05-02 开关磁阻电机及应用开关磁阻电机的装置

Publications (1)

Publication Number Publication Date
WO2018201278A1 true WO2018201278A1 (zh) 2018-11-08

Family

ID=64015653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082721 WO2018201278A1 (zh) 2017-05-02 2017-05-02 开关磁阻电机及应用开关磁阻电机的装置

Country Status (2)

Country Link
CN (1) CN109643943B (zh)
WO (1) WO2018201278A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505083A (zh) * 2009-03-09 2009-08-12 南京航空航天大学 一种分段转子开关磁阻电机
CN103138519A (zh) * 2011-11-29 2013-06-05 三星电机株式会社 开关磁阻电机
CN104767336A (zh) * 2015-03-30 2015-07-08 北京工业大学 一种单相他励磁阻式发电机
CN104821697A (zh) * 2015-04-29 2015-08-05 江苏大学 电动汽车驱动用容错式四相开关磁阻电动机
CN105391263A (zh) * 2015-12-10 2016-03-09 山东大学 一种短端部短磁路分块式开关磁阻电机及其控制电路
JP2016111751A (ja) * 2014-12-03 2016-06-20 スズキ株式会社 回転電機
CN106655688A (zh) * 2017-01-14 2017-05-10 山东理工大学 一种边缘效应互相抵消的磁阻电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623471B2 (ja) * 2006-08-08 2011-02-02 トヨタ自動車株式会社 回転電動機
CN201107842Y (zh) * 2006-12-04 2008-08-27 袁会文 盘式开关磁阻电机
NZ630743A (en) * 2014-01-17 2016-05-27 Resmed Motor Technologies Inc Switched reluctance motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505083A (zh) * 2009-03-09 2009-08-12 南京航空航天大学 一种分段转子开关磁阻电机
CN103138519A (zh) * 2011-11-29 2013-06-05 三星电机株式会社 开关磁阻电机
JP2016111751A (ja) * 2014-12-03 2016-06-20 スズキ株式会社 回転電機
CN104767336A (zh) * 2015-03-30 2015-07-08 北京工业大学 一种单相他励磁阻式发电机
CN104821697A (zh) * 2015-04-29 2015-08-05 江苏大学 电动汽车驱动用容错式四相开关磁阻电动机
CN105391263A (zh) * 2015-12-10 2016-03-09 山东大学 一种短端部短磁路分块式开关磁阻电机及其控制电路
CN106655688A (zh) * 2017-01-14 2017-05-10 山东理工大学 一种边缘效应互相抵消的磁阻电机

Also Published As

Publication number Publication date
CN109643943A (zh) 2019-04-16
CN109643943B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN103187846B (zh) 各相电感对称的四相双凸极无刷直流电机
CN102005837B (zh) 一种磁通切换型发电机
WO2012110883A2 (en) Rotary electric machine driving system
CN110311522B (zh) 一种四相对称的电励磁双凸极电机
CN102130564A (zh) 四相双凸极电机
WO2017173788A1 (zh) 电动车及其开关磁阻电机、开关磁阻电机系统
CN201868960U (zh) 一种磁通切换型发电机
WO2023173567A1 (zh) 一种单绕组双励磁磁场调制电机及其协同励磁设计方法
WO2016051250A2 (en) Magnetless rotary electric machine
CN107070156B (zh) 一种电动车无刷直流电机
CN105375716B (zh) 机电能量转换双边开关磁阻直线电机动子位置估测方法
Ma et al. Design considerations of switched reluctance motors with bipolar excitation for low torque ripple applications
CN205178807U (zh) 一种短端部短磁路分块式开关磁阻电机及其控制电路与系统
CN210380419U (zh) 四相分块转子极电励磁双凸极电机
CN102111046A (zh) 三相(6/4N/4N/6)k结构双定子双凸极电机
CN103095085A (zh) 一种四相双凸极电机
CN207184294U (zh) 开关磁阻电机及应用开关磁阻电机的装置
WO2018201278A1 (zh) 开关磁阻电机及应用开关磁阻电机的装置
CN103840577B (zh) 双电枢绕组双凸极电机发电系统
Krall et al. Comparison of leakage inductance between fractional slot winding and distributed winding
Ye et al. Torque ripple and copper loss minimization for a family of mutually coupled switched reluctance machines
CN105391263A (zh) 一种短端部短磁路分块式开关磁阻电机及其控制电路
US9806574B2 (en) Low loss permanent magnet excited electric machine
Kumar et al. Performance analysis of single phase induction motor and switched reluctance motor used in domestic appliances with a view of energy conservation
CN113809843A (zh) 一种三相对称的12k/8k电励磁双凸极电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908651

Country of ref document: EP

Kind code of ref document: A1