WO2018199544A1 - 무선 랜 시스템에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치 - Google Patents

무선 랜 시스템에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018199544A1
WO2018199544A1 PCT/KR2018/004505 KR2018004505W WO2018199544A1 WO 2018199544 A1 WO2018199544 A1 WO 2018199544A1 KR 2018004505 W KR2018004505 W KR 2018004505W WO 2018199544 A1 WO2018199544 A1 WO 2018199544A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
ppdu
wur
sig
symbols
Prior art date
Application number
PCT/KR2018/004505
Other languages
English (en)
French (fr)
Inventor
임동국
박은성
최진수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP18790385.1A priority Critical patent/EP3609146B1/en
Priority to CN201880035498.1A priority patent/CN110692221B/zh
Priority to US16/609,169 priority patent/US11088879B2/en
Publication of WO2018199544A1 publication Critical patent/WO2018199544A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless LAN system, and more particularly, to a method and apparatus for transmitting or receiving a new format PPDU including an L-part for an existing STA.
  • IEEE 802.11a and b are described in 2.4. Using unlicensed band at GHz or 5 GHz, IEEE 802.11b provides a transmission rate of 11 Mbps and IEEE 802.11a provides a transmission rate of 54 Mbps.
  • IEEE 802.11g applies orthogonal frequency-division multiplexing (OFDM) at 2.4 GHz to provide a transmission rate of 54 Mbps.
  • IEEE 802.11n applies multiple input multiple output OFDM (MIMO-OFDM) to provide a transmission rate of 300 Mbps for four spatial streams. IEEE 802.11n supports channel bandwidths up to 40 MHz, in this case providing a transmission rate of 600 Mbps.
  • the WLAN standard uses a maximum of 160MHz bandwidth, supports eight spatial streams, and supports IEEE 802.11ax standard through an IEEE 802.11ac standard supporting a speed of up to 1Gbit / s.
  • An object of the present invention is to provide a method and apparatus for transmitting or receiving a new format of PPDU more accurately and efficiently.
  • the present invention is not limited to the above-described technical problem and other technical problems can be inferred from the embodiments of the present invention.
  • a method for transmitting a physical layer protocol data unit (PPDU) by a station (STA) in a WLAN system is a legacy-short training field (L-STF) Setting up an L-part including a legacy-long training field (L-LTF) and a legacy-signal field (L-SIG); If the PPDU to be transmitted by the STA corresponds to a predetermined format, performing binary phase shift keying (BPSK) modulation on N consecutive symbols located after the L-SIG for packet classification; And transmitting the PPDU including the L-part and the BPSK modulated N symbols.
  • L-STF legacy-short training field
  • L-LTF legacy-long training field
  • L-SIG legacy-signal field
  • a station (STA) for transmitting a physical layer protocol data unit (PPDU) in a wireless local area network (WLAN) system may include a legacy short training field (L-STF), If an L-part including a legacy-long training field (L-LTF) and a legacy-signal field (L-SIG) is set, and the PPDU to be transmitted by the STA corresponds to a predetermined format, packet classification A processor for performing binary phase shift keying (BPSK) modulation on N consecutive symbols located after the L-SIG, and the L-part and the BPSK modulated N symbols according to control of the processor. It may include a transmitter for transmitting the PPDU.
  • L-STF legacy short training field
  • L-LTF legacy-long training field
  • L-SIG legacy-signal field
  • BPSK binary phase shift keying
  • the PPDU of the predetermined format may correspond to a wake up radio (WUR) PPDU.
  • the WUR PPDU may further include a WUR preamble for synchronization.
  • the L-SIG included in the WUR PPDU and N symbols for packet discrimination may be transmitted through the entire PCR (primary connectivity radio) band.
  • the WUR preamble may be transmitted on some tones of the PCR band.
  • the N symbols for packet discrimination may correspond to dummy symbols or repeat the L-SIG.
  • the STA may skip scrambling for the N symbols for the packet discrimination.
  • N may correspond to 2 or 3.
  • the STA may be an access point (AP) STA or a non-AP STA.
  • AP access point
  • a plurality of consecutive BPSK modulation symbols are set after the L-SIG field, thereby preventing the corresponding PPDU from being incorrectly determined as 11a / n / ac / ax PPDU.
  • FIG. 1 is a diagram illustrating an example of a configuration of a WLAN system.
  • FIG. 2 is a diagram illustrating another example of a configuration of a WLAN system.
  • FIG. 3 is a diagram illustrating a general link setup process.
  • FIG. 4 is a diagram for describing a backoff process.
  • 5 is a diagram for explaining hidden nodes and exposed nodes.
  • FIG. 6 is a diagram for explaining an RTS and a CTS.
  • 7 to 9 are diagrams for explaining the operation of the STA receiving the TIM.
  • FIG. 10 is a diagram for explaining an example of a frame structure used in an IEEE 802.11 system.
  • FIG. 11 is a diagram for explaining discriminating OFDM packets in an IEEE 802.11 system.
  • FIG. 12 is a diagram for explaining a BPSK modulation symbol and a QBPSK modulation symbol.
  • FIG. 13 is a diagram illustrating a WUR receiver usable in a WLAN system (e.g., 802.11).
  • FIG. 16 illustrates a waveform for a WUR packet.
  • FIG. 17 illustrates a WUR packet generated by using an OFDM transmitter of a wireless LAN.
  • FIG. 19 shows an example of a frame structure of a WUR PPDU.
  • FIG. 20 illustrates a PPDU structure for packet discrimination according to an embodiment of the present invention.
  • FIG. 21 illustrates a PPDU structure for packet discrimination according to another embodiment of the present invention.
  • 22 is a flowchart illustrating a PPDU transmission / reception method according to an embodiment of the present invention.
  • 23 is a diagram for explaining an apparatus according to an embodiment of the present invention.
  • the following description relates to a method and an apparatus therefor for efficiently utilizing a channel having a wide band in a WLAN system.
  • a WLAN system to which the present invention is applied will be described in detail.
  • FIG. 1 is a diagram illustrating an example of a configuration of a WLAN system.
  • the WLAN system includes one or more basic service sets (BSSs).
  • BSS is a set of stations (STAs) that can successfully synchronize and communicate with each other.
  • An STA is a logical entity that includes a medium access control (MAC) and a physical layer interface to a wireless medium.
  • the STA is an access point (AP) and a non-AP STA (Non-AP Station). Include.
  • the portable terminal operated by the user among the STAs is a non-AP STA, and when referred to simply as an STA, it may also refer to a non-AP STA.
  • a non-AP STA is a terminal, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, or a mobile subscriber. It may also be called another name such as a mobile subscriber unit.
  • the AP is an entity that provides an associated station (STA) coupled to the AP to access a distribution system (DS) through a wireless medium.
  • STA station
  • DS distribution system
  • the AP may be called a centralized controller, a base station (BS), a Node-B, a base transceiver system (BTS), or a site controller.
  • BS base station
  • BTS base transceiver system
  • BSS can be divided into infrastructure BSS and Independent BSS (IBSS).
  • IBSS Independent BSS
  • the BBS shown in FIG. 1 is an IBSS.
  • the IBSS means a BSS that does not include an AP. Since the IBSS does not include an AP, access to the DS is not allowed, thereby forming a self-contained network.
  • FIG. 2 is a diagram illustrating another example of a configuration of a WLAN system.
  • the BSS shown in FIG. 2 is an infrastructure BSS.
  • Infrastructure BSS includes one or more STAs and APs.
  • communication between non-AP STAs is performed via an AP.
  • AP access point
  • a plurality of infrastructure BSSs may be interconnected through a DS.
  • a plurality of BSSs connected through a DS is called an extended service set (ESS).
  • STAs included in the ESS may communicate with each other, and a non-AP STA may move from one BSS to another BSS while seamlessly communicating within the same ESS.
  • the DS is a mechanism for connecting a plurality of APs.
  • the DS is not necessarily a network, and there is no limitation on the form if it can provide a predetermined distribution service.
  • the DS may be a wireless network such as a mesh network or a physical structure that connects APs to each other.
  • the operation of the STA operating in the WLAN system may be described in terms of a layer structure.
  • the hierarchy may be implemented by a processor.
  • the STA may have a plurality of hierarchical structures.
  • the hierarchical structure covered by the 802.11 standard document is mainly the MAC sublayer and physical (PHY) layer on the DLL (Data Link Layer).
  • the PHY may include a Physical Layer Convergence Procedure (PLCP) entity, a Physical Medium Dependent (PMD) entity, and the like.
  • PLCP Physical Layer Convergence Procedure
  • PMD Physical Medium Dependent
  • the MAC sublayer and PHY conceptually contain management entities called MAC sublayer management entities (MLMEs) and physical layer management entities (PLMEs), respectively.These entities provide a layer management service interface on which layer management functions operate. .
  • SME Station Management Entity
  • An SME is a layer-independent entity that can appear to be in a separate management plane or appear to be off to the side. While the exact features of the SME are not described in detail in this document, they generally do not include the ability to collect layer-dependent states from various Layer Management Entities (LMEs), and to set similar values for layer-specific parameters. You may seem to be in charge. SMEs can generally perform these functions on behalf of general system management entities and implement standard management protocols.
  • LMEs Layer Management Entities
  • the aforementioned entities interact in a variety of ways.
  • entities can interact by exchanging GET / SET primitives.
  • a primitive means a set of elements or parameters related to a particular purpose.
  • the XX-GET.request primitive is used to request the value of a given MIB attribute (management information based attribute information).
  • the XX-GET.confirm primitive is used to return the appropriate MIB attribute information value if the Status is "Success", otherwise it is used to return an error indication in the Status field.
  • the XX-SET.request primitive is used to request that the indicated MIB attribute be set to a given value. If the MIB attribute means a specific operation, this is to request that the operation be performed.
  • the XX-SET.confirm primitive confirms that the indicated MIB attribute is set to the requested value when status is "success", otherwise it is used to return an error condition in the status field. If the MIB attribute means a specific operation, this confirms that the operation has been performed.
  • the MLME and SME may exchange various MLME_GET / SET primitives through a MLME_SAP (Service Access Point).
  • various PLME_GET / SET primitives may be exchanged between PLME and SME through PLME_SAP and may be exchanged between MLME and PLME through MLME-PLME_SAP.
  • FIG. 3 is a diagram illustrating a general link setup process.
  • an STA In order for an STA to set up a link and transmit / receive data with respect to a network, an STA first discovers the network, performs authentication, establishes an association, and authenticates for security. It must go through the back.
  • the link setup process may also be referred to as session initiation process and session setup process.
  • a process of discovery, authentication, association, and security establishment of a link setup process may be collectively referred to as association process.
  • the STA may perform a network discovery operation.
  • the network discovery operation may include a scanning operation of the STA. That is, in order for the STA to access the network, the STA must find a network that can participate. The STA must identify a compatible network before joining the wireless network. A network identification process existing in a specific area is called scanning.
  • the STA performing scanning transmits a probe request frame and waits for a response to discover which AP exists in the vicinity while moving channels.
  • the responder transmits a probe response frame to the STA that transmits the probe request frame in response to the probe request frame.
  • the responder may be an STA that last transmitted a beacon frame in the BSS of the channel being scanned.
  • the AP transmits a beacon frame, so the AP becomes a responder.
  • the responder is not constant.
  • an STA that transmits a probe request frame on channel 1 and receives a probe response frame on channel 1 stores the BSS-related information included in the received probe response frame and stores the next channel (eg, number 2).
  • Channel to perform scanning (i.e., probe request / response transmission and reception on channel 2) in the same manner.
  • the scanning operation may be performed by a passive scanning method.
  • passive scanning the STA performing scanning waits for a beacon frame while moving channels.
  • the beacon frame is one of management frames in IEEE 802.11.
  • the beacon frame is notified of the existence of a wireless network and is periodically transmitted to allow the STA performing scanning to find the wireless network and participate in the wireless network.
  • the AP periodically transmits a beacon frame
  • the IBSS STAs in the IBSS rotate and transmit a beacon frame.
  • the STA that performs the scanning receives the beacon frame, the STA stores the information on the BSS included in the beacon frame and records beacon frame information in each channel while moving to another channel.
  • the STA may store BSS related information included in the received beacon frame, move to the next channel, and perform scanning on the next channel in the same manner.
  • active scanning has the advantage of less delay and power consumption than passive scanning.
  • step S520 After the STA discovers the network, an authentication process may be performed in step S520.
  • This authentication process may be referred to as a first authentication process in order to clearly distinguish from the security setup operation of step S540 described later.
  • the authentication process includes a process in which the STA transmits an authentication request frame to the AP, and in response thereto, the AP transmits an authentication response frame to the STA.
  • An authentication frame used for authentication request / response corresponds to a management frame.
  • the authentication frame includes an authentication algorithm number, an authentication transaction sequence number, a status code, a challenge text, a Robust Security Network, and a finite cyclic group. Group) and the like. This corresponds to some examples of information that may be included in the authentication request / response frame, and may be replaced with other information or further include additional information.
  • the STA may send an authentication request frame to the AP.
  • the AP may determine whether to allow authentication for the corresponding STA based on the information included in the received authentication request frame.
  • the AP may provide a result of the authentication process to the STA through an authentication response frame.
  • the association process includes a process in which the STA transmits an association request frame to the AP, and in response thereto, the AP transmits an association response frame to the STA.
  • the association request frame may include information related to various capabilities, beacon listening interval, service set identifier (SSID), supported rates, supported channels, RSN, mobility domain. Information about supported operating classes, TIM Broadcast Indication Map Broadcast request, interworking service capability, and the like.
  • an association response frame may include information related to various capabilities, status codes, association IDs (AIDs), support rates, Enhanced Distributed Channel Access (EDCA) parameter sets, Received Channel Power Indicators (RCPI), Received Signal to Noise Information, such as an indicator, a mobility domain, a timeout interval (association comeback time), an overlapping BSS scan parameter, a TIM broadcast response, and a QoS map.
  • AIDs association IDs
  • EDCA Enhanced Distributed Channel Access
  • RCPI Received Channel Power Indicators
  • Received Signal to Noise Information such as an indicator, a mobility domain, a timeout interval (association comeback time), an overlapping BSS scan parameter, a TIM broadcast response, and a QoS map.
  • a security setup process may be performed at step S540.
  • the security setup process of step S540 may be referred to as an authentication process through a Robust Security Network Association (RSNA) request / response.
  • the authentication process of step S520 is called a first authentication process, and the security setup process of step S540 is performed. It may also be referred to simply as the authentication process.
  • RSNA Robust Security Network Association
  • the security setup process of step S540 may include, for example, performing a private key setup through 4-way handshaking through an Extensible Authentication Protocol over LAN (EAPOL) frame. .
  • the security setup process may be performed according to a security scheme not defined in the IEEE 802.11 standard.
  • a basic access mechanism of MAC is a carrier sense multiple access with collision avoidance (CSMA / CA) mechanism.
  • the CSMA / CA mechanism is also called the Distributed Coordination Function (DCF) of the IEEE 802.11 MAC. It basically employs a "listen before talk" access mechanism.
  • the AP and / or STA may sense a radio channel or medium during a predetermined time period (e.g., during a DCF Inter-Frame Space (DIFS), before starting transmission.
  • DIFS DCF Inter-Frame Space
  • a delay period for example, a random backoff period
  • HCF hybrid coordination function
  • the PCF refers to a polling-based synchronous access scheme in which polling is performed periodically so that all receiving APs and / or STAs can receive data frames.
  • the HCF has an Enhanced Distributed Channel Access (EDCA) and an HCF Controlled Channel Access (HCCA).
  • EDCA is a competition based approach for providers to provide data frames to multiple users, and HCCA uses a non-competition based channel access scheme using a polling mechanism.
  • the HCF includes a media access mechanism for improving the quality of service (QoS) of the WLAN, and can transmit QoS data in both a contention period (CP) and a contention free period (CFP).
  • QoS quality of service
  • FIG. 4 is a diagram for describing a backoff process.
  • the random backoff count has a packet number value and may be determined as one of values ranging from 0 to CW.
  • CW is a contention window parameter value.
  • the CW parameter is given CWmin as an initial value, but may take a double value in case of transmission failure (eg, when an ACK for a transmitted frame is not received).
  • the STA continues to monitor the medium while counting down the backoff slots according to the determined backoff count value. If the medium is monitored as occupied, the countdown stops and waits; if the medium is idle, it resumes the remaining countdown.
  • the STA3 may confirm that the medium is idle as much as DIFS and transmit the frame immediately. Meanwhile, the remaining STAs monitor and wait for the medium to be busy. In the meantime, data may also be transmitted in each of STA1, STA2, and STA5, and each STA waits for DIFS when the medium is monitored idle, and then counts down the backoff slot according to a random backoff count value selected by the STA. Can be performed. In the example of FIG. 4, STA2 selects the smallest backoff count value, and STA1 selects the largest backoff count value.
  • the remaining backoff time of the STA5 is shorter than the remaining backoff time of the STA1 at the time when the STA2 finishes the backoff count and starts the frame transmission.
  • STA1 and STA5 stop counting for a while and wait for STA2 to occupy the medium.
  • the STA1 and the STA5 resume the stopped backoff count after waiting for DIFS. That is, the frame transmission can be started after counting down the remaining backoff slots by the remaining backoff time. Since the remaining backoff time of the STA5 is shorter than that of the STA1, the STA5 starts frame transmission. Meanwhile, while STA2 occupies the medium, data to be transmitted may also occur in STA4.
  • the STA4 waits for DIFS, performs a countdown according to a random backoff count value selected by the STA4, and starts frame transmission.
  • the remaining backoff time of STA5 coincides with an arbitrary backoff count value of STA4.
  • a collision may occur between STA4 and STA5. If a collision occurs, neither STA4 nor STA5 receive an ACK, and thus data transmission fails. In this case, STA4 and STA5 may double the CW value, select a random backoff count value, and perform a countdown.
  • the STA1 waits while the medium is occupied due to transmission of the STA4 and STA5, waits for DIFS when the medium is idle, and starts frame transmission after the remaining backoff time passes.
  • the CSMA / CA mechanism includes virtual carrier sensing in addition to physical carrier sensing in which the AP and / or STA directly sense the medium.
  • Virtual carrier sensing is intended to compensate for problems that may occur in media access, such as a hidden node problem.
  • the MAC of the WLAN system may use a network allocation vector (NAV).
  • the NAV is a value in which an AP and / or STA currently using or authorized to use a medium instructs another AP and / or STA how long to remain until the medium becomes available.
  • the value set to NAV corresponds to a period in which the medium is scheduled to be used by the AP and / or STA transmitting the corresponding frame, and the STA receiving the NAV value is prohibited from accessing the medium during the period.
  • the NAV may be set, for example, according to the value of the "duration" field of the MAC header of the frame.
  • 5 is a diagram for explaining hidden nodes and exposed nodes.
  • 5A illustrates an example of a hidden node, in which STA A and STA B are in communication and STA C has information to transmit.
  • STA A may be transmitting information to STA B, it may be determined that the medium is idle when STA C performs carrier sensing before sending data to STA B. This is because transmission of STA A (ie, media occupation) may not be sensed at the location of STA C.
  • STA B since STA B receives the information of STA A and STA C at the same time, a collision occurs.
  • STA A may be referred to as a hidden node of STA C.
  • FIG. 5B is an example of an exposed node
  • STA B is a case in which STA C has information to be transmitted from STA D while transmitting data to STA A.
  • FIG. 5B is an example of an exposed node
  • STA C is a case in which STA C has information to be transmitted from STA D while transmitting data to STA A.
  • FIG. 5B when STA C performs carrier sensing, it may be determined that the medium is occupied by the transmission of STA B. Accordingly, since STA C is sensed as a medium occupancy state even if there is information to be transmitted to STA D, it must wait until the medium becomes idle. However, since STA A is actually outside the transmission range of STA C, transmission from STA C and transmission from STA B may not collide with STA A's point of view, so STA C is unnecessary until STA B stops transmitting. To wait. At this time, STA C may be referred to as an exposed node of STA B.
  • FIG. 6 is a diagram for explaining an RTS and a CTS.
  • a short signaling packet such as a request to send (RTS) and a clear to send (CTS) may be used.
  • RTS request to send
  • CTS clear to send
  • the RTS / CTS between the two STAs may allow the surrounding STA (s) to overhear, allowing the surrounding STA (s) to consider whether to transmit information between the two STAs. For example, when an STA to transmit data transmits an RTS frame to an STA receiving the data, the STA receiving the data may inform the neighboring STAs that they will receive the data by transmitting the CTS frame.
  • FIG. 6A illustrates an example of a method for solving a hidden node problem, and assumes that both STA A and STA C try to transmit data to STA B.
  • FIG. 6A When STA A sends the RTS to STA B, STA B transmits the CTS to both STA A and STA C around it. As a result, STA C waits until data transmission between STA A and STA B is completed, thereby avoiding collision.
  • FIG. 6 (b) illustrates an example of a method for solving an exposed node problem
  • STA C overhears RTS / CTS transmission between STA A and STA B so that STA C may use another STA (eg, STA). It may be determined that no collision will occur even if data is transmitted to D). That is, STA B transmits the RTS to all neighboring STAs, and only STA A having the data to actually transmit the CTS. Since STA C receives only RTS and not STA A's CTS, it can be seen that STA A is out of STC C's carrier sensing.
  • the WLAN system channel sensing must be performed before the STA performs transmission and reception, and always sensing the channel causes continuous power consumption of the STA.
  • the power consumption in the receive state is not significantly different from the power consumption in the transmit state, and maintaining the receive state is also a great burden for the power limited STA (ie, operated by a battery). Therefore, if the STA maintains a reception standby state in order to continuously sense the channel, it inefficiently consumes power without any particular advantage in terms of WLAN throughput.
  • the WLAN system supports a power management (PM) mode of the STA.
  • PM power management
  • the power management mode of the STA is divided into an active mode and a power save (PS) mode.
  • the STA basically operates in the active mode.
  • the STA operating in the active mode maintains an awake state.
  • the awake state is a state in which normal operation such as frame transmission and reception or channel scanning is possible.
  • the STA operating in the PS mode operates by switching between a sleep state (or a doze state) and an awake state.
  • the STA operating in the sleep state operates at the minimum power, and does not perform frame scanning as well as channel scanning.
  • the STA operates in the sleep state for as long as possible, power consumption is reduced, so the STA has an increased operation period. However, it is impossible to operate unconditionally long because frame transmission and reception are impossible in the sleep state. If there is a frame to be transmitted to the AP, the STA operating in the sleep state may transmit the frame by switching to the awake state. On the other hand, when the AP has a frame to transmit to the STA, the STA in the sleep state may not receive it and may not know that there is a frame to receive. Accordingly, the STA may need to switch to the awake state according to a specific period in order to know whether or not the frame to be transmitted to (or, if there is, receive it) exists.
  • the AP may transmit a beacon frame to STAs in the BSS at regular intervals.
  • the beacon frame may include a traffic indication map (TIM) information element.
  • the TIM information element may include information indicating that the AP has buffered traffic for STAs associated with the AP and transmits a frame.
  • the TIM element includes a TIM used to inform unicast frames and a delivery traffic indication map (DTIM) used to inform multicast or broadcast frames.
  • DTIM delivery traffic indication map
  • 7 to 9 are diagrams for explaining in detail the operation of the STA receiving the TIM.
  • the STA may switch from the sleep state to the awake state to receive a beacon frame including the TIM from the AP, interpret the received TIM element, and know that there is buffered traffic to be transmitted to the AP. .
  • the STA may transmit a PS-Poll frame to request an AP to transmit a data frame.
  • the AP may transmit the frame to the STA.
  • the STA may receive a data frame and transmit an acknowledgment (ACK) frame thereto to the AP.
  • the STA may then go back to sleep.
  • ACK acknowledgment
  • the AP may operate according to an immediate response method of transmitting a data frame after a predetermined time (for example, a short inter-frame space (SIFS)) after receiving a PS-Poll frame from an STA. Can be. Meanwhile, when the AP fails to prepare a data frame to be transmitted to the STA during the SIFS time after receiving the PS-Poll frame, the AP may operate according to a deferred response method, which will be described with reference to FIG. 8.
  • a predetermined time for example, a short inter-frame space (SIFS)
  • SIFS short inter-frame space
  • the STA switches from the sleep state to the awake state to receive the TIM from the AP and transmits the PS-Poll frame to the AP through contention as in the example of FIG. 7. If the AP does not prepare a data frame during SIFS even after receiving the PS-Poll frame, the AP may transmit an ACK frame to the STA instead of transmitting the data frame. When the data frame is prepared after transmitting the ACK frame, the AP may transmit the data frame to the STA after performing contention. The STA may transmit an ACK frame indicating that the data frame was successfully received to the AP and go to sleep.
  • STAs may transition from a sleep state to an awake state to receive a beacon frame containing a DTIM element from the AP. STAs may know that a multicast / broadcast frame will be transmitted through the received DTIM.
  • the AP may transmit data (ie, multicast / broadcast frame) immediately after the beacon frame including the DTIM without transmitting and receiving the PS-Poll frame.
  • the STAs may receive data while continuously awake after receiving the beacon frame including the DTIM, and may switch back to the sleep state after the data reception is completed.
  • FIG. 10 is a diagram for explaining an example of a frame structure used in an IEEE 802.11 system.
  • the Physical Layer Protocol Data Unit (PPDU) frame format may include a Short Training Field (STF), a Long Training Field (LTF), a SIG (SIGNAL) field, and a Data field.
  • STF Short Training Field
  • LTF Long Training Field
  • SIGNAL SIGNAL
  • Data field a Data field.
  • the most basic (eg, non-HT) PPDU frame format may include only a legacy-STF (L-STF), a legacy-LTF (L-LTF), a SIG field, and a data field.
  • the STF is a signal for signal detection, automatic gain control (AGC), diversity selection, precise time synchronization, etc.
  • the LTF is a signal for channel estimation, frequency error estimation, and the like.
  • the STF and LTF may be referred to as a PLCP preamble, and the PLCP preamble may be referred to as a signal for synchronization and channel estimation of an OFDM physical layer.
  • the SIG field may include a RATE field and a LENGTH field.
  • the RATE field may include information about modulation and coding rate of data.
  • the LENGTH field may include information about the length of data.
  • the SIG field may include a parity bit, a SIG TAIL bit, and the like.
  • the data field may include a SERVICE field, a physical layer service data unit (PSDU), a PPDU TAIL bit, and may also include a padding bit if necessary.
  • Some bits of the SERVICE field may be used for synchronization of the descrambler at the receiving end.
  • the PSDU corresponds to an MPDU (MAC Protocol Data Unit) defined in the MAC layer and may include data generated / used in an upper layer.
  • the PPDU TAIL bit can be used to return the encoder to zero.
  • the padding bit may be used to adjust the length of the data field in a predetermined unit.
  • the MPDU is defined according to various MAC frame formats, and the basic MAC frame is composed of a MAC header, a frame body, and a frame check sequence (FCS).
  • the MAC frame may consist of MPDUs and may be transmitted / received through the PSDU of the data portion of the PPDU frame format.
  • the MAC header includes a frame control field, a duration / ID field, an address field, and the like.
  • the frame control field may include control information required for frame transmission / reception.
  • the duration / ID field may be set to a time for transmitting the corresponding frame.
  • the duration / ID field included in the MAC header may be set to 16 bits long (e.b., B0 to B15).
  • the content included in the period / ID field may vary depending on the frame type and subtype, whether the content is transmitted during the CFP (contention free period), the QoS capability of the transmitting STA, and the like.
  • the duration / ID field may include the AID of the transmitting STA (e.g., via 14 LSB bits), and 2 MSB bits may be set to one.
  • the period / ID field may be set to a fixed value (e.g., 32768).
  • the duration / ID field may include a duration value defined for each frame type.
  • Sequence Control, QoS Control, and HT Control subfields of the MAC header refer to the IEEE 802.11 standard document.
  • the frame control field of the MAC header may include Protocol Version, Type, Subtype, To DS, From DS, More Fragment, Retry, Power Management, More Data, Protected Frame, Order subfields.
  • the content of each subfield of the frame control field may refer to an IEEE 802.11 standard document.
  • the L-SIG field of the 11a PPDU includes a binary phase shift keying (BPSK) symbol.
  • BPSK binary phase shift keying
  • a PPDU may be classified into a 11n-MM (mixed mode) format and a 11n-GP (green field) format.
  • the 11n-MM format includes L-STF, L-LTF, and L-SIG fields corresponding to Legacy, and includes HT-SIG 1 and HT-SIG 2 fields corresponding to 11n.
  • the L-SIG field includes a BPSK symbol, and each of the HT-SIG 1 and HT-SIG 2 fields includes a quadrature binary phase shift keying (QBPSK) symbol.
  • QBPSK corresponds to BPSK rotated 90 degrees.
  • OFDM symbol # 1 in Figure 12 corresponds to a BPSK symbol (ie, a symbol modulated through the BPSK constellation)
  • OFDM symbol # 2 is a QBPSK symbol (ie, QPSK constellation Symbol is modulated through).
  • the 11n-GP (green field) format includes HT-STF, HT-LTF1, HT-SIG 1 and HT-SIG 2, and each of the HT-SIG 1 and HT-SIG 2 fields includes a QBPSK symbol.
  • the 11ac PPDU includes the L-STF, L-LTF, and L-SIG fields corresponding to Legacy, and includes the VHT-SIG 1 and VHT-SIG 2 fields corresponding to 11ac.
  • the L-SIG field includes a BPSK symbol
  • the VHT-SIG 1 includes a BPSK symbol
  • the V HT-SIG 2 field includes a QBPSK symbol.
  • the 11ax PPDU includes the L-STF, L-LTF, and L-SIG fields corresponding to Legacy, and may further include an RL-SIG which repeats the L-SIG.
  • L-SIG and RL-SIG include BPSK symbols.
  • the 11ax PPDU may include a HE-SIG 1 and / or HE-SIG 2 field corresponding to 11ax.
  • the HE-SIG 1 and HE-SIG 2 fields may include a BPSK symbol.
  • an STA includes a primary connectivity radio (PCR) (eg, IEEE 802.11a / b / g / n / ac / ax WLAN) and a wake up radio for main wireless communication.
  • PCR primary connectivity radio
  • WUR eg, IEEE 802.11ba
  • PCR is used for data transmission and reception, and may be turned off when there is no data to transmit and receive. As such, when the PCR is turned off, the WURx of the STA may wake up the PCR when there is a packet to receive. Therefore, user data is transmitted and received through PCR.
  • WURx is not used for user data, it can only serve to wake up the PCR transceiver.
  • WURx can be in the form of a simple receiver without a transmitter and is active while PCR is off. It is desirable that the target power consumption of the WURx in the activated state does not exceed 100 microwatts (uW).
  • a simple modulation scheme for example, an on-off keying (OOK) scheme, may be used, and a narrow bandwidth (e.g., 4 MHz, 5 MHz) may be used.
  • the reception range (e.g., distance) that WURx targets may be equivalent to the current 802.11.
  • FIG. 14 is a diagram for explaining the design and operation of a WUR packet.
  • the WUR packet may include a PCR part 1200 and a WUR part 1205.
  • the PCR part 1200 is for coexistence with the legacy WLAN system, and the PCR part may be referred to as a WLAN preamble.
  • the PCR part may be referred to as a WLAN preamble.
  • at least one or more of L-STF, L-LTF, and L-SIG of the legacy WLAN may be included in the PCR part 1200.
  • the 3rd party legacy STA may know that the WUR packet is not intended for the user through the PCR part 1200 of the WUR packet, and that the medium of the PCR is occupied by another STA.
  • WURx does not decode the PCR part of the WUR packet. This is because WURx, which supports narrowband and OOK demodulation, does not support PCR signal reception.
  • At least a part of the WUR part 1205 may be modulated by an on-off keying (OOK) method.
  • the WUR part may include at least one of a WUR preamble, a MAC header (e.g., a recipient address, etc.), a frame body, and a frame check sequence (FCS).
  • OOK modulation may be performed by modifying the OFDM transmitter.
  • WURx 1210 consumes very little power of 100 uW or less as described above and can be implemented with a small and simple OOK demodulator.
  • the WUR packet since the WUR packet needs to be designed to be compatible with the WLAN system, the WUR packet includes a preamble (eg, OFDM) and a new LP-WUR signal waveform (eg, OOK) of legacy WLAN. can do.
  • a preamble eg, OFDM
  • a new LP-WUR signal waveform eg, OOK
  • the WUR packet of FIG. 15 shows an example of a WUR packet.
  • the WUR packet of FIG. 15 includes a PCR part (e.g., legacy WLAN preamble) for coexistence with a legacy STA.
  • PCR part e.g., legacy WLAN preamble
  • the legacy WLAN preamble may include L-STF, L-LTF, and L-SIG.
  • the WLAN STA e.g., 3rd Party
  • the L-SIG field may indicate the length of the payload (e.g., OOK modulated) of the WUR packet.
  • the WUR part may include at least one of a WUR preamble, a MAC header, a frame body, and an FCS.
  • the WUR preamble may include, for example, a PN sequence.
  • the MAC header may include the receiver address.
  • the frame body may contain other information needed for wake up.
  • the FCS may include a cyclic redundancy check (CRC).
  • FIG. 16 illustrates the waveform for the WUR packet of FIG. 15.
  • 1 bit may be transmitted per 1 OFDM symbol length (e.g., 4 usec).
  • the data rate of the WUR part may be 250 kbps.
  • FIG. 17 illustrates generation of a WUR packet using an OFDM transmitter of a wireless LAN.
  • a phase shift keying (PSK) -OFDM transmission scheme is used.
  • Generating a WUR packet by adding a separate OOK modulator for OOK modulation has a disadvantage of increasing an implementation cost of a transmitter. Therefore, a method of generating a OOK modulated WUR packet by reusing an OFDM transmitter will be described.
  • bit value 1 is a symbol (ie, on) in which any power in a symbol is loaded or has a power above a threshold
  • bit value 0 is a symbol in which no power in the symbol is loaded or has a power below a threshold. modulated to (ie, off).
  • bit value 1 it is also possible to define bit value 1 as power off.
  • OOK modulation scheme As described above, in the OOK modulation scheme, a bit value 1/0 is indicated through on / off of power at a corresponding symbol position.
  • Such a simple OOK modulation / demodulation scheme has an advantage of reducing power consumption and cost for realizing the signal detection / demodulation of the receiver.
  • OOK modulation for turning on / off a signal may be performed by reusing an existing OFDM transmitter.
  • the left graph of FIG. 17 shows real parts and imaginary numbers of normalized amplitudes during one symbol period (eg, 4 usec) for OOK modulated bit value 1 by reusing the OFDM transmitter of the existing WLAN. (imaginary) shows the part. Since the OOK modulation result for the bit value 0 corresponds to power off, illustration is omitted.
  • the right graph of FIG. 17 shows normalized power spectral density (PSD) in the frequency domain for OOK modulated bit value 1 by reusing an OFDM transmitter of an existing WLAN.
  • PSD normalized power spectral density
  • a center 4 MHz in that band may be used for the WUR.
  • the WUR operates in a 4 MHz bandwidth.
  • a frequency bandwidth of another size may be used.
  • the subcarrier spacing (e.g., subcarrier spacing) is 312.5 kHz, and the bandwidth of the OOK pulse corresponds to 13 subcarriers.
  • CP cyclic prefix
  • the WUR packet may be referred to as a WUR signal, a WUR frame, or a WUR PPDU.
  • the WUR packet may be a packet for broadcast / multicast (e.g., WUR beacon) or a packet for unicast (e.g., a packet for terminating and waking up the WUR mode of a specific WUR STA).
  • the WURx may include an RF / analog front-end, a digital baseband processor, and a simple packet parser.
  • FIG. 18 is an exemplary configuration, and the WUR receiver of the present invention is not limited to FIG. 18.
  • a WLAN STA having a WUR receiver will be referred to simply as a WUR STA.
  • the WUR STA may be referred to simply as STA.
  • Manchester coding may be used to generate OOK symbols.
  • one-bit information is indicated through two sub information (or two coded bits).
  • two lower information bits '10' i.e., On-Off
  • the 1-bit information '1' passes through Manchester coding
  • two lower information bits '01' i.e., Off-On
  • the on-off order of the lower information bits may be reversed according to an embodiment.
  • one OOK symbol is 3.2 us in the time domain and corresponds to K subcarriers in the frequency domain, but the present invention is not limited thereto.
  • the length of 1 OOK symbol is (i) 1.6 us for the first lower information bit '1' and (ii) It can be divided into 1.6 us for the second lower information bit '0'.
  • a signal corresponding to the first lower information bit '1' is obtained by mapping ⁇ to odd subcarriers among K subcarriers, and mapping 0 to even subcarriers and performing IFFT.
  • IFFT is performed by mapping ⁇ at two subcarrier intervals on the frequency domain
  • a periodic signal of 1.6 us appears twice in the time domain.
  • the first or second signal of the 1.6 us periodic signal repeated twice may be used as the signal corresponding to the first lower information bit '1'.
  • may be, for example, 1 / sqrt (ceil (K / 2)) as the power normalization factor.
  • consecutive K subcarriers used to generate a signal corresponding to the first lower information bit '1' of all 64 subcarriers are, for example, [33-floor (K / 2): 33 + ceil (K / 2) -1].
  • the signal corresponding to the second lower information bit '0' may be obtained by mapping 0 to K subcarriers and performing IFFT.
  • consecutive K subcarriers used to generate a signal corresponding to the second lower information bit '0' of the total 64 subcarriers are, for example, [33-floor (K / 2): 33 + ceil (K / 2) -1].
  • the OOK symbol for 1-bit information '1' may be obtained by disposing a signal corresponding to the lower information bit '1' after the signal corresponding to the lower information bit '0'.
  • one symbol length for WUR may be set smaller than 3.2 us.
  • one symbol may be set to information + CP of 1.6us, 0.8us or 0.4us.
  • a time domain signal can be obtained by mapping 0 to K subcarriers and performing IFFT, one of which can be used with a 0.8us length signal.
  • a time domain signal can be obtained by mapping 0 to K subcarriers and performing IFFT, and one 0.4us length signal can be used.
  • an existing PCR STA misidentifies the WUR packet as its own packet and performs decoding of the WUR packet.
  • the WUR band corresponds to a portion of the PCR band
  • the STA operating in the PCR mode may receive the WUR PPDU. If the PCR STA falsely detects the WUR PPDU as a PCR PPDU, the PCR STA may recognize it as its own PPDU and attempt decoding. In this case, since the PCR STA performs decoding unnecessarily, power waste may occur.
  • FIG. 19 illustrates a WUR PPDU according to an example of the present invention.
  • the WUR signal for waking the PCR may be transmitted using a frame format as shown in FIG. 19.
  • the WUR frame may be configured to transmit an L-Part first before the WUR part for coexistence with an existing PCR.
  • the WUR part may include at least one of a WUR-Preamble, a WUR-SIG (signal), and a WUR-body.
  • the WUR-Body may include control information that is not user data for the WUR STA.
  • User data for the WUR STA may be transmitted through PCR after the WUR STA wakes up.
  • the WUR PPDU of the present invention is not limited to FIG. 19, and the WUR-SIG may be omitted from the WUR PPDU.
  • the WUR PPDU may be configured as follows.
  • the L-part may also be omitted and the WUR PPDU may consist of only the WUR part.
  • the WUR PPDU may be configured as follows.
  • the L-PART is for a 3rd party STA (e.g., a STA operating in PCR mode), not a WUR receiver, and the WUR receiver may not decode the L-part.
  • a 3rd party STA e.g., a STA operating in PCR mode
  • the WUR receiver may not decode the L-part.
  • the WUR part may be transmitted at narrow bandwidth using some of the available tones (ie, subcarriers) on the BW (eg, 20 MHz PCR band) over which the L-Part is transmitted.
  • the BW for transmitting the WUR part may be one of 1, 2, 4, 5, 8, and 10 MHz.
  • the number of available tones corresponding to 1,2,4,5,8,10 MHz BW is 4,8,13,16,26,32, respectively.
  • the length of the frequency sequence for constructing the WUR ON symbol may be equal to the number of available tones. For example, when the WUR band is 4 MHz, the length of the frequency sequence corresponding to the WUR ON symbol may correspond to 13 tones.
  • the number of available tones for 1,2,4,5,8,10 MHz BW is 13, 26, 52, 103, and 128, respectively.
  • the WUR signal may be carried only on 13 tones and not on the remaining tones.
  • the existing PCR STA may perform packet classification as follows.
  • PCR STA such as 11n / 11ac first performs L-SIG detection. Since the WUR PPDU includes the same L-part as the L-part of the existing PCR PPDU, the PCR STA performs auto detection on the 2 OFDM symbols following the L-SIG after detecting the L-SIG. Auto detection can be performed through Phase Detection (e.g., QBPSK Detection). At this time, since the WUR signal located after the L-SIG is transmitted using only some tones in terms of frequency, the other tones without the WUR signal carry random signals due to noise and interference effects.
  • Phase Detection e.g., QBPSK Detection
  • the existing PCR STA may mistake two WUR symbols as QBPSK symbols when QBPSK-based Auto Detection is performed. That is, the existing PCR STA may incorrectly determine that the WUR PPDU is 11n PPDU.
  • FIG. 20 illustrates a PPDU structure for packet discrimination according to an embodiment of the present invention.
  • two OFDM symbols located after an L-SIG field of a WUR PPDU may be used for packet discrimination, and two symbols for packet discrimination may be modulated with BPSK.
  • 2 OFDM symbols for packet discrimination may be transmitted using PCR full band (e.g., 20 MHz) rather than some tones.
  • 2 OFDM symbols for packet discrimination may be transmitted using Numerology of 11a.
  • the WUR PPDU can not only be distinguished from the existing 11n PPDU, but also can be prevented from being incorrectly determined as 11ac PPDU during auto detection.
  • the 11n STA since the 11n STA recognizes the PPDU as an 11n PPDU when 2 symbols after the L-SIG are all QBPSKs, the 11n STA misidentifies the WUR PPDU as an 11n PPDU when the 2 symbols following the L-SIG are transmitted to the BPSK. Can be prevented.
  • 11ac STA recognizes the corresponding PPDU as 11ac PPDU when 2 symbols after L-SIG are BPSK + QBPSK, 11ac STA misidentifies WUR PPDU as 11ac PPDU when 2 symbols following L-SIG are transmitted to BPSK. Can be prevented.
  • two symbols for packet discrimination may be set as dummy symbols or the L-SIG may be repeated in the two symbols.
  • scrambling may not be performed in the case of a symbol for packet discrimination.
  • the packet discrimination has been described using L-SIG followed by 2 OFDM symbols.
  • the present invention is not limited thereto, and three or more symbols may be used for packet discrimination.
  • the number of symbols for packet discrimination is N (N is an integer of 2 or more), and N symbols may be located after the L-SIG.
  • the N symbols may be dummy symbols as described above, or may be configured by L-SIG repetition, or may be configured by repeating at least a portion of the L-part.
  • N symbols may be configured by repeating the L-LTF included in the L-part.
  • FIG. 21 illustrates a PPDU structure for packet discrimination according to another embodiment of the present invention.
  • the three symbols may be set as shown in FIG. 21.
  • three symbols may also be configured by repeating the L-SIG and / or L-LTF and scrambling for the three symbols may be omitted.
  • PPDUs in the above description is not limited to WUR PPDUs and may be applied to other new PPDU formats.
  • the aforementioned schemes may be used to prevent a newly defined PPDU from being mistaken for an existing PPDU when a specific PPDU is newly defined.
  • 22 is a flowchart illustrating a PPDU transmission / reception method according to an embodiment of the present invention.
  • the STA sets an L-part including a legacy-short training field (L-STF), a legacy-long training field (L-LTF), and a legacy-signal field (L-SIG) (2205). ).
  • the STA may be an access point (AP) STA or a non-AP STA.
  • the STA modulates binary sequence shift keying (BPSK) of N consecutive symbols located after the L-SIG for packet classification (2210).
  • BPSK binary sequence shift keying
  • N may correspond to 2 or 3.
  • the STA transmits the PPDU including the L-part and BPSK modulated N symbols (2215).
  • the PPDU of a predetermined format may correspond to a wake up radio (DU) PPDU.
  • the WUR PPDU may further include a WUR preamble for synchronization.
  • the L-SIG included in the WUR PPDU and N symbols for packet discrimination may be transmitted through the entire PCR (primary connectivity radio) band.
  • the WUR preamble may be transmitted on some tones of the PCR band.
  • N symbols for packet discrimination may correspond to dummy symbols or repeat L-SIG.
  • the STA may skip scrambling for N symbols for packet discrimination.
  • FIG. 23 is a diagram for describing an apparatus for implementing the method as described above.
  • the wireless device 100 of FIG. 23 may correspond to a specific STA of the above-described description, and the wireless device 850 may correspond to the AP of the above-described description.
  • the STA 100 may include a processor 110, a memory 120, and a transceiver 130, and the AP 150 may include a processor 160, a memory 170, and a transceiver 180.
  • the transceivers 130 and 180 transmit / receive wireless signals and may be implemented in a physical layer, such as IEEE 802.11 / 3GPP.
  • Processors 110 and 160 run at the physical layer and / or MAC layer and are coupled to transceivers 130 and 180.
  • Processors 110 and 160 may perform the aforementioned UL MU scheduling procedure.
  • Processors 110 and 160 and / or transceivers 130 and 180 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processors.
  • the memories 120 and 170 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage units.
  • ROM read-only memory
  • RAM random access memory
  • flash memory memory cards
  • storage media storage media and / or other storage units.
  • the method described above can be executed as a module (eg, process, function) that performs the functions described above.
  • the module may be stored in the memories 120 and 170 and may be executed by the processors 110 and 160.
  • the memories 120 and 170 may be disposed inside or outside the processes 110 and 160, and may be connected to the processes 110 and 160 by well-known means.
  • the transceiver 130 of the STA may include a transmitter (not shown) and a receiver (not shown).
  • the receiver of the STA may include a main connected radio receiver for receiving a main connected radio signal (eg, a wireless LAN such as IEEE 802.11 a / b / g / n / ac / ax) and a WUR receiver for receiving a WUR signal.
  • the transmitter of the STA may include a primary connected radio transmitter for transmitting the primary connected radio signal.
  • the transceiver 180 of the AP may include a transmitter (not shown) and a receiver (not shown).
  • the transmitter of the AP may correspond to an OFDM transmitter.
  • the AP may transmit the WUR payload by the OOK scheme by reusing the OFDM transmitter. For example, as described above, the AP may OOK modulate the WUR payload through an OFDM transmitter.
  • the present invention can be applied to various wireless communication systems including IEEE 802.11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예에 따른 무선 랜(WLAN) 시스템에서 스테이션(STA)이 PPDU (physical layer protocol data unit)를 송신하는 방법은, L-STF(legacy-short training field), L-LTF(legacy-long training field) 및 L-SIG(legacy-signal field)를 포함하는 L-파트를 설정하는 단계; 상기 STA이 송신하고자 하는 PPDU가 소정의 포맷에 해당하는 경우, 패킷 구별(classification)을 위하여 상기 L-SIG 다음에 위치한 N개의 연속하는 심볼들을 BPSK(binary phase shift keying) 변조하는 단계; 및 상기 L-파트 및 상기 BPSK 변조된 N개의 심볼들을 포함하는 상기 PPDU를 송신하는 단계를 포함할 수 있다.

Description

무선 랜 시스템에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치
본 발명은 무선 랜 시스템에 관한 것으로서, 보다 상세하게는 기존 STA을 위한 L-파트를 포함하는 새로운 포맷의 PPDU를 송신 또는 수신하는 방법 및 이를 위한 장치에 대한 것이다.
무선랜 기술에 대한 표준은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준으로서 개발되고 있다. IEEE 802.11a 및 b는 2.4. GHz 또는 5 GHz에서 비면허 대역(unlicensed band)을 이용하고, IEEE 802.11b는 11 Mbps의 전송 속도를 제공하고, IEEE 802.11a는 54 Mbps의 전송 속도를 제공한다. IEEE 802.11g는 2.4 GHz에서 직교 주파수 분할 다중화(Orthogonal frequency-division multiplexing, OFDM)를 적용하여, 54 Mbps의 전송 속도를 제공한다. IEEE 802.11n은 다중입출력 OFDM(multiple input multiple output-OFDM, MIMO-OFDM)을 적용하여, 4 개의 공간적인 스트림(spatial stream)에 대해서 300 Mbps의 전송 속도를 제공한다. IEEE 802.11n에서는 채널 대역폭(channel bandwidth)을 40 MHz까지 지원하며, 이 경우에는 600 Mbps의 전송 속도를 제공한다.
상술한 무선랜 표준은 최대 160MHz 대역폭을 사용하고, 8개의 공간 스트림을 지원하여 최대 1Gbit/s의 속도를 지원하는 IEEE 802.11ac 표준을 거쳐, IEEE 802.11ax 표준화에 대한 논의가 이루어지고 있다.
본 발명이 이루고자 하는 기술적 과제는, 새로운 포맷의 PPDU를 보다 정확하고 효율적으로 송신 또는 수신하기 위한 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명은 상술된 기술적 과제에 한정되지 않으며 다른 기술적 과제들이 본 발명의 실시예들로부터 유추될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 랜(WLAN) 시스템에서 스테이션(STA)이 PPDU (physical layer protocol data unit)를 송신하는 방법은, L-STF(legacy-short training field), L-LTF(legacy-long training field) 및 L-SIG(legacy-signal field)를 포함하는 L-파트를 설정하는 단계; 상기 STA이 송신하고자 하는 PPDU가 소정의 포맷에 해당하는 경우, 패킷 구별(classification)을 위하여 상기 L-SIG 다음에 위치한 N개의 연속하는 심볼들을 BPSK(binary phase shift keying) 변조하는 단계; 및 상기 L-파트 및 상기 BPSK 변조된 N개의 심볼들을 포함하는 상기 PPDU를 송신하는 단계를 포함할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 무선 랜(WLAN) 시스템에서 PPDU (physical layer protocol data unit)를 송신하는 스테이션(STA)은, L-STF(legacy-short training field), L-LTF(legacy-long training field) 및 L-SIG(legacy-signal field)를 포함하는 L-파트를 설정하고, 상기 STA이 송신하고자 하는 PPDU가 소정의 포맷에 해당하는 경우, 패킷 구별(classification)을 위하여 상기 L-SIG 다음에 위치한 N개의 연속하는 심볼들을 BPSK(binary phase shift keying) 변조하는 프로세서 및 상기 프로세서의 제어에 다라서 상기 L-파트 및 상기 BPSK 변조된 N개의 심볼들을 포함하는 상기 PPDU를 송신하는 송신기를 포함할 수 있다.
상기 소정의 포맷의 PPDU는 WUR(wake up radio) PPDU에 해당할 수 있다. 상기 WUR PPDU는 동기화를 위한 WUR 프리앰블을 더 포함할 수 있다. 상기 WUR PPDU에 포함된 L-SIG 및 패킷 구별을 위한 N개의 심볼들은 PCR (primary connectivity radio) 대역 전체를 통해서 송신될 수 있다. 상기 WUR 프리앰블은 PCR 대역의 일부 톤(tone)들을 통해서 송신될 수 있다.
상기 패킷 구별을 위한 N개의 심볼들은 더미(dummy) 심볼들에 해당하거나 또는 상기 L-SIG를 반복한 것일 수 있다.
상기 STA은 상기 패킷 구별을 위한 N개의 심볼들에 대하여 스크램블링을 건너뛸 수 있다.
상기 N은 2 또는 3에 해당할 수 있다.
상기 STA은 AP(access point) STA이거나 또는 Non-AP STA일 수 있다.
본 발명의 일 실시예에 따르면 L-SIG 필드 다음에 연속하는 복수의 BPSK 변조 심볼들이 설정됨으로써 해당 PPDU가 11a/n/ac/ax PPDU로 잘못 판단되는 것을 방지할 수 있다.
상술된 기술적 효과 외에 다른 기술적 효과들이 본 발명의 실시예들로부터 유추될 수 있다.
도 1은 무선랜 시스템의 구성의 일례를 나타낸 도면이다.
도 2는 무선랜 시스템의 구성의 다른 예를 나타낸 도면이다.
도 3은 일반적인 링크 셋업(link setup) 과정을 설명하기 위한 도면이다.
도 4는 백오프 과정을 설명하기 위한 도면이다.
도 5는 숨겨진 노드 및 노출된 노드에 대한 설명을 위한 도면이다.
도 6은 RTS와 CTS를 설명하기 위한 도면이다.
도 7 내지 9는 TIM을 수신한 STA의 동작을 설명하기 위한 도면이다.
도 10은 IEEE 802.11 시스템에서 사용되는 프레임 구조의 일례를 설명하기 위한 도면이다.
도 11은 IEEE 802.11 시스템에서의 OFDM 패킷 구별을 설명하기 위한 도면이다.
도 12는 BPSK 변조 심볼과 QBPSK 변조 심볼을 설명하기 위한 도면이다.
도 13은 무선랜 시스템(e.g., 802.11)에서 사용 가능한 WUR 수신기를 설명하기 위한 도면이다.
도 14는 WUR 수신기 동작을 설명하기 위한 도면이다.
도 15은 WUR 패킷의 일 예를 도시한다.
도 16는 WUR 패킷에 대한 파형을 예시한다.
도 17는 무선 랜의 OFDM 송신기를 사용하여 생성되는 WUR 패킷을 설명하기 위한 도면이다.
도 18은 WUR 수신기의 구조를 예시한다.
도 19는 WUR PPDU의 프레임 구조의 일 예를 나타낸다.
도 20은 본 발명의 일 실시예에 따른 패킷 구별을 위한 PPDU 구조를 도시한다.
도 21은 본 발명의 다른 일 실시예에 따른 패킷 구별을 위한 PPDU 구조를 도시한다.
도 22는 본 발명의 일 실시예에 따른 PPDU 송수신 방법의 흐름을 도시한다.
도 23은 본 발명의 일 실시예에 따른 장치를 설명하기 위한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다.
상술한 바와 같이 이하의 설명은 무선랜 시스템에서 넓은 대역을 가지는 채널을 효율적으로 활용하기 위한 방법 및 이를 위한 장치에 대한 것이다. 이를 위해 먼저 본 발명이 적용되는 무선랜 시스템에 대해 구체적으로 설명한다.
도 1은 무선랜 시스템의 구성의 일례를 나타낸 도면이다.
도 1에 도시된 바와 같이, 무선랜 시스템은 하나 이상의 기본 서비스 세트(Basic Service Set, BSS)를 포함한다. BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 스테이션(Station, STA)의 집합이다.
STA는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리계층(Physical Layer) 인터페이스를 포함하는 논리 개체로서, 액세스 포인트(access point, AP)와 비AP STA(Non-AP Station)을 포함한다. STA 중에서 사용자가 조작하는 휴대용 단말은 Non-AP STA로써, 단순히 STA이라고 할 때는 Non-AP STA을 가리키기도 한다. Non-AP STA은 단말(terminal), 무선 송수신 유닛(Wireless Transmit/Receive Unit, WTRU), 사용자 장비(User Equipment, UE), 이동국(Mobile Station, MS), 휴대용 단말(Mobile Terminal), 또는 이동 가입자 유닛(Mobile Subscriber Unit) 등의 다른 명칭으로도 불릴 수 있다.
그리고, AP는 자신에게 결합된 STA(Associated Station)에게 무선 매체를 통해 분배 시스템(Distribution System, DS)으로의 접속을 제공하는 개체이다. AP는 집중 제어기, 기지국(Base Station, BS), Node-B, BTS(Base Transceiver System), 또는 사이트 제어기 등으로 불릴 수도 있다.
BSS는 인프라스트럭처(infrastructure) BSS와 독립적인(Independent) BSS(IBSS)로 구분할 수 있다.
도 1에 도시된 BBS는 IBSS이다. IBSS는 AP를 포함하지 않는 BSS를 의미하고, AP를 포함하지 않으므로, DS로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
도 2는 무선랜 시스템의 구성의 다른 예를 나타낸 도면이다.
도 2에 도시된 BSS는 인프라스트럭처 BSS이다. 인프라스트럭처 BSS는 하나 이상의 STA 및 AP를 포함한다. 인프라스트럭처 BSS에서 비AP STA들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이나, 비AP STA 간에 직접 링크(link)가 설정된 경우에는 비AP STA들 사이에서 직접 통신도 가능하다.
도 2에 도시된 바와 같이, 복수의 인프라스트럭처 BSS는 DS를 통해 상호 연결될 수 있다. DS를 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set, ESS)라 한다. ESS에 포함되는 STA들은 서로 통신할 수 있으며, 동일한 ESS 내에서 비AP STA은 끊김 없이 통신하면서 하나의 BSS에서 다른 BSS로 이동할 수 있다.
DS는 복수의 AP들을 연결하는 메커니즘(mechanism)으로서, 반드시 네트워크일 필요는 없으며, 소정의 분배 서비스를 제공할 수 있다면 그 형태에 대해서는 아무런 제한이 없다. 예컨대, DS는 메쉬(mesh) 네트워크와 같은 무선 네트워크일 수도 있고, AP들을 서로 연결시켜 주는 물리적인 구조물일 수도 있다.
계층 구조
무선랜 시스템에서 동작하는 STA의 동작은 계층(layer) 구조의 관점에서 설명할 수 있다. 장치 구성의 측면에서 계층 구조는 프로세서에 의해서 구현될 수 있다. STA는 복수개의 계층 구조를 가질 수 있다. 예를 들어, 802.11 표준문서에서 다루는 계층 구조는 주로 DLL(Data Link Layer) 상의 MAC 서브계층(sublayer) 및 물리(PHY) 계층이다. PHY은 PLCP(Physical Layer Convergence Procedure) 개체, PMD(Physical Medium Dependent) 개체 등을 포함할 수 있다. MAC 서브계층 및 PHY은 각각 MLME(MAC sublayer Management Entity) 및 PLME((Physical Layer Management Entity)라고 칭하여지는 관리 개체들을 개념적으로 포함한다. 이러한 개체들은 계층 관리 기능이 작동하는 계층 관리 서비스 인터페이스를 제공한다.
정확한 MAC 동작을 제공하기 위해서, SME(Station Management Entity) 가 각각의 STA 내에 존재한다. SME는, 별도의 관리 플레인 내에 존재하거나 또는 따로 떨어져(off to the side) 있는 것으로 보일 수 있는, 계층 독립적인 개체이다. SME의 정확한 기능들은 본 문서에서 구체적으로 설명하지 않지만, 일반적으로는 다양한 계층 관리 개체(LME)들로부터 계층-종속적인 상태를 수집하고, 계층-특정 파라미터들의 값을 유사하게 설정하는 등의 기능을 담당하는 것으로 보일 수 있다. SME는 일반적으로 일반 시스템 관리 개체를 대표하여(on behalf of) 이러한 기능들을 수행하고, 표준 관리 프로토콜을 구현할 수 있다.
전술한 개체들은 다양한 방식으로 상호작용한다. 예를 들어, 개체들 간에는 GET/SET 프리머티브(primitive)들을 교환(exchange)함으로써 상호작용할 수 있다. 프리머티브는 특정 목적에 관련된 요소(element)나 파라미터들의 세트를 의미한다. XX-GET.request 프리머티브는 주어진 MIB attribute(관리 정보 기반 속성 정보)의 값을 요청하기 위해 사용된다. XX-GET.confirm 프리머티브는, Status가 "성공"인 경우에는 적절한 MIB 속성 정보 값을 리턴하고, 그렇지 않으면 Status 필드에서 에러 지시를 리턴하기 위해 사용된다. XX-SET.request 프리머티브는 지시된 MIB 속성이 주어진 값으로 설정되도록 요청하기 위해 사용된다. 상기 MIB 속성이 특정 동작을 의미하는 경우, 이는 해당 동작이 수행되는 것을 요청하는 것이다. 그리고, XX-SET.confirm 프리머티브는 status가 "성공"인 경우에 지시된 MIB 속성이 요청된 값으로 설정되었음을 확인하여 주고, 그렇지 않으면 status 필드에 에러 조건을 리턴하기 위해 사용된다. MIB 속성이 특정 동작을 의미하는 경우, 이는 해당 동작이 수행되었음을 확인하여 준다.
또한, MLME 및 SME는 다양한 MLME_GET/SET 프리머티브들을 MLME_SAP(Service Access Point)을 통하여 교환할 수 있다. 또한, 다양한 PLME_GET/SET 프리머티브들이, PLME_SAP을 통해서 PLME와 SME 사이에서 교환될 수 있고, MLME-PLME_SAP을 통해서 MLME와 PLME 사이에서 교환될 수 있다.
링크 셋업 과정
도 3은 일반적인 링크 셋업(link setup) 과정을 설명하기 위한 도면이다.
STA이 네트워크에 대해서 링크를 셋업하고 데이터를 송수신하기 위해서는, 먼저 네트워크를 발견(discovery)하고, 인증(authentication)을 수행하고, 연관(association)을 맺고(establish), 보안(security)을 위한 인증 절차 등을 거쳐야 한다. 링크 셋업 과정을 세션 개시 과정, 세션 셋업 과정이라고도 칭할 수 있다. 또한, 링크 셋업 과정의 발견, 인증, 연관, 보안 설정의 과정을 통칭하여 연관 과정이라고 칭할 수도 있다.
도 3을 참조하여 예시적인 링크 셋업 과정에 대해서 설명한다.
단계 S510에서 STA은 네트워크 발견 동작을 수행할 수 있다. 네트워크 발견 동작은 STA의 스캐닝(scanning) 동작을 포함할 수 있다. 즉, STA이 네트워크에 액세스하기 위해서는 참여 가능한 네트워크를 찾아야 한다. STA은 무선 네트워크에 참여하기 전에 호환 가능한 네트워크를 식별하여야 하는데, 특정 영역에 존재하는 네트워크 식별과정을 스캐닝이라고 한다.
스캐닝 방식에는 능동적 스캐닝(active scanning)과 수동적 스캐닝(passive scanning)이 있다.
도 3에서는 예시적으로 능동적 스캐닝 과정을 포함하는 네트워크 발견 동작을 도시한다. 능동적 스캐닝에서 스캐닝을 수행하는 STA은 채널들을 옮기면서 주변에 어떤 AP가 존재하는지 탐색하기 위해 프로브 요청 프레임(probe request frame)을 전송하고 이에 대한 응답을 기다린다. 응답자(responder)는 프로브 요청 프레임을 전송한 STA에게 프로브 요청 프레임에 대한 응답으로 프로브 응답 프레임(probe response frame)을 전송한다. 여기에서, 응답자는 스캐닝되고 있는 채널의 BSS에서 마지막으로 비콘 프레임(beacon frame)을 전송한 STA일 수 있다. BSS에서는 AP가 비콘 프레임을 전송하므로 AP가 응답자가 되며, IBSS에서는 IBSS 내의 STA들이 돌아가면서 비콘 프레임을 전송하므로 응답자가 일정하지 않다. 예를 들어, 1번 채널에서 프로브 요청 프레임을 전송하고 1번 채널에서 프로브 응답 프레임을 수신한 STA은, 수신한 프로브 응답 프레임에 포함된 BSS 관련 정보를 저장하고 다음 채널(예를 들어, 2번 채널)로 이동하여 동일한 방법으로 스캐닝(즉, 2번 채널 상에서 프로브 요청/응답 송수신)을 수행할 수 있다.
도 3에서 도시하고 있지 않지만, 스캐닝 동작은 수동적 스캐닝 방식으로 수행될 수도 있다. 수동적 스캐닝에서 스캐닝을 수행하는 STA은 채널들을 옮기면서 비콘 프레임을 기다린다. 비콘 프레임은 IEEE 802.11에서 관리 프레임(management frame) 중 하나로서, 무선 네트워크의 존재를 알리고, 스캐닝을 수행하는 STA으로 하여금 무선 네트워크를 찾아서, 무선 네트워크에 참여할 수 있도록 주기적으로 전송된다. BSS에서 AP가 비콘 프레임을 주기적으로 전송하는 역할을 수행하고, IBSS에서는 IBSS 내의 STA들이 돌아가면서 비콘 프레임을 전송한다. 스캐닝을 수행하는 STA은 비콘 프레임을 수신하면 비콘 프레임에 포함된 BSS에 대한 정보를 저장하고 다른 채널로 이동하면서 각 채널에서 비콘 프레임 정보를 기록한다. 비콘 프레임을 수신한 STA은, 수신한 비콘 프레임에 포함된 BSS 관련 정보를 저장하고 다음 채널로 이동하여 동일한 방법으로 다음 채널에서 스캐닝을 수행할 수 있다.
능동적 스캐닝과 수동적 스캐닝을 비교하면, 능동적 스캐닝이 수동적 스캐닝보다 딜레이(delay) 및 전력 소모가 작은 장점이 있다.
STA이 네트워크를 발견한 후에, 단계 S520에서 인증 과정이 수행될 수 있다. 이러한 인증 과정은 후술하는 단계 S540의 보안 셋업 동작과 명확하게 구분하기 위해서 첫 번째 인증(first authentication) 과정이라고 칭할 수 있다.
인증 과정은 STA이 인증 요청 프레임(authentication request frame)을 AP에게 전송하고, 이에 응답하여 AP가 인증 응답 프레임(authentication response frame)을 STA에게 전송하는 과정을 포함한다. 인증 요청/응답에 사용되는 인증 프레임(authentication frame)은 관리 프레임에 해당한다.
인증 프레임은 인증 알고리즘 번호(authentication algorithm number), 인증 트랜잭션 시퀀스 번호(authentication transaction sequence number), 상태 코드(status code), 검문 텍스트(challenge text), RSN(Robust Security Network), 유한 순환 그룹(Finite Cyclic Group) 등에 대한 정보를 포함할 수 있다. 이는 인증 요청/응답 프레임에 포함될 수 있는 정보들의 일부 예시에 해당하며, 다른 정보로 대체되거나, 추가적인 정보가 더 포함될 수 있다.
STA은 인증 요청 프레임을 AP에게 전송할 수 있다. AP는 수신된 인증 요청 프레임에 포함된 정보에 기초하여, 해당 STA에 대한 인증을 허용할지 여부를 결정할 수 있다. AP는 인증 처리의 결과를 인증 응답 프레임을 통하여 STA에게 제공할 수 있다.
STA이 성공적으로 인증된 후에, 단계 S530에서 연관 과정이 수행될 수 있다. 연관 과정은 STA이 연관 요청 프레임(association request frame)을 AP에게 전송하고, 이에 응답하여 AP가 연관 응답 프레임(association response frame)을 STA에게 전송하는 과정을 포함한다.
예를 들어, 연관 요청 프레임은 다양한 능력(capability)에 관련된 정보, 비콘 청취 간격(listen interval), SSID(service set identifier), 지원 레이트(supported rates), 지원 채널(supported channels), RSN, 이동성 도메인, 지원 오퍼레이팅 클래스(supported operating classes), TIM 방송 요청(Traffic Indication Map Broadcast request), 상호동작(interworking) 서비스 능력 등에 대한 정보를 포함할 수 있다.
예를 들어, 연관 응답 프레임은 다양한 능력에 관련된 정보, 상태 코드, AID(Association ID), 지원 레이트, EDCA(Enhanced Distributed Channel Access) 파라미터 세트, RCPI(Received Channel Power Indicator), RSNI(Received Signal to Noise Indicator), 이동성 도메인, 타임아웃 간격(연관 컴백 시간(association comeback time)), 중첩(overlapping) BSS 스캔 파라미터, TIM 방송 응답, QoS 맵 등의 정보를 포함할 수 있다.
이는 연관 요청/응답 프레임에 포함될 수 있는 정보들의 일부 예시에 해당하며, 다른 정보로 대체되거나, 추가적인 정보가 더 포함될 수 있다.
STA이 네트워크에 성공적으로 연관된 후에, 단계 S540에서 보안 셋업 과정이 수행될 수 있다. 단계 S540의 보안 셋업 과정은 RSNA(Robust Security Network Association) 요청/응답을 통한 인증 과정이라고 할 수도 있고, 상기 단계 S520의 인증 과정을 첫 번째 인증(first authentication) 과정이라고 하고, 단계 S540의 보안 셋업 과정을 단순히 인증 과정이라고도 칭할 수도 있다.
단계 S540의 보안 셋업 과정은, 예를 들어, EAPOL(Extensible Authentication Protocol over LAN) 프레임을 통한 4-웨이(way) 핸드쉐이킹을 통해서, 프라이빗 키 셋업(private key setup)을 하는 과정을 포함할 수 있다. 또한, 보안 셋업 과정은 IEEE 802.11 표준에서 정의하지 않는 보안 방식에 따라 수행될 수도 있다.
매체 액세스 메커니즘
IEEE 802.11에 따른 무선랜 시스템에서, MAC(Medium Access Control)의 기본 액세스 메커니즘은 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 메커니즘이다. CSMA/CA 메커니즘은 IEEE 802.11 MAC의 분배 조정 기능(Distributed Coordination Function, DCF)이라고도 불리는데, 기본적으로 "listen before talk" 액세스 메커니즘을 채용하고 있다. 이러한 유형의 액세스 메커니즘 따르면, AP 및/또는 STA은 전송을 시작하기에 앞서, 소정의 시간구간(예를 들어, DIFS(DCF Inter-Frame Space) 동안 무선 채널 또는 매체(medium)를 센싱(sensing)하는 CCA(Clear Channel Assessment)를 수행할 수 있다. 센싱 결과, 만일 매체가 유휴 상태(idle status)인 것으로 판단 되면, 해당 매체를 통하여 프레임 전송을 시작한다. 반면, 매체가 점유 상태(occupied status)인 것으로 감지되면, 해당 AP 및/또는 STA은 자기 자신의 전송을 시작하지 않고 매체 액세스를 위한 지연 기간(예를 들어, 임의 백오프 주기(random backoff period))을 설정하여 기다린 후에 프레임 전송을 시도할 수 있다. 임의 백오프 주기의 적용으로, 여러 STA들은 서로 다른 시간 동안 대기한 후에 프레임 전송을 시도할 것이 기대되므로, 충돌(collision)을 최소화시킬 수 있다.
또한, IEEE 802.11 MAC 프로토콜은 HCF(Hybrid Coordination Function)를 제공한다. HCF는 상기 DCF와 PCF(Point Coordination Function)를 기반으로 한다. PCF는 폴링(polling) 기반의 동기식 액세스 방식으로 모든 수신 AP 및/또는 STA이 데이터 프레임을 수신할 수 있도록 주기적으로 폴링하는 방식을 일컫는다. 또한, HCF는 EDCA(Enhanced Distributed Channel Access)와 HCCA(HCF Controlled Channel Access)를 가진다. EDCA는 제공자가 다수의 사용자에게 데이터 프레임을 제공하기 위한 액세스 방식을 경쟁 기반으로 하는 것이고, HCCA는 폴링(polling) 메커니즘을 이용한 비경쟁 기반의 채널 액세스 방식을 사용하는 것이다. 또한, HCF는 WLAN의 QoS(Quality of Service)를 향상시키기 위한 매체 액세스 메커니즘을 포함하며, 경쟁 주기(Contention Period; CP)와 비경쟁 주기(Contention Free Period; CFP) 모두에서 QoS 데이터를 전송할 수 있다.
도 4는 백오프 과정을 설명하기 위한 도면이다.
도 4를 참조하여 임의 백오프 주기에 기반한 동작에 대해서 설명한다. 점유(occupy 또는 busy) 상태이던 매체가 유휴(idle) 상태로 변경되면, 여러 STA들은 데이터(또는 프레임) 전송을 시도할 수 있다. 이 때, 충돌을 최소화하기 위한 방안으로서, STA들은 각각 임의 백오프 카운트를 선택하고 그에 해당하는 슬롯 시간만큼 대기한 후에, 전송을 시도할 수 있다. 임의 백오프 카운트는 패킷 번호(Packet Number) 값을 가지며, 0 내지 CW 범위의 값 중에서 하나로 결정될 수 있다. 여기서, CW는 경쟁 윈도우(Contention Window) 파라미터 값이다. CW 파라미터는 초기값으로 CWmin이 주어지지만, 전송 실패의 경우(예를 들어, 전송된 프레임에 대한 ACK을 수신하지 못한 경우)에 2 배의 값을 취할 수 있다. CW 파라미터 값이 CWmax가 되면 데이터 전송이 성공할 때까지 CWmax 값을 유지하면서 데이터 전송을 시도할 수 있고, 데이터 전송이 성공하는 경우에는 CWmin 값으로 리셋된다. CW, CWmin 및 CWmax 값은 2n-1 (n=0, 1, 2, ...)로 설정되는 것이 바람직하다.
임의 백오프 과정이 시작되면 STA은 결정된 백오프 카운트 값에 따라서 백오프 슬롯을 카운트 다운하는 동안에 계속하여 매체를 모니터링한다. 매체가 점유상태로 모니터링되면 카운트 다운을 멈추고 대기하고, 매체가 유휴 상태가 되면 나머지 카운트 다운을 재개한다.
도 4의 예시에서 STA3의 MAC에 전송할 패킷이 도달한 경우에, STA3는 DIFS 만큼 매체가 유휴 상태인 것을 확인하고 바로 프레임을 전송할 수 있다. 한편, 나머지 STA들은 매체가 점유(busy) 상태인 것을 모니터링하고 대기한다. 그 동안 STA1, STA2 및 STA5의 각각에서도 전송할 데이터가 발생할 수 있고, 각각의 STA은 매체가 유휴상태로 모니터링되면 DIFS만큼 대기한 후에, 각자가 선택한 임의 백오프 카운트 값에 따라 백오프 슬롯의 카운트 다운을 수행할 수 있다. 도 4의 예시에서는 STA2가 가장 작은 백오프 카운트 값을 선택하고, STA1이 가장 큰 백오프 카운트 값을 선택한 경우를 나타낸다. 즉, STA2가 백오프 카운트를 마치고 프레임 전송을 시작하는 시점에서 STA5의 잔여 백오프 시간은 STA1의 잔여 백오프 시간보다 짧은 경우를 예시한다. STA1 및 STA5는 STA2가 매체를 점유하는 동안에 잠시 카운트 다운을 멈추고 대기한다. STA2의 점유가 종료되어 매체가 다시 유휴 상태가 되면, STA1 및 STA5는 DIFS만큼 대기한 후에, 멈추었던 백오프 카운트를 재개한다. 즉, 잔여 백오프 시간만큼의 나머지 백오프 슬롯을 카운트 다운한 후에 프레임 전송을 시작할 수 있다. STA5의 잔여 백오프 시간이 STA1보다 짧았으므로 STA5이 프레임 전송을 시작하게 된다. 한편, STA2가 매체를 점유하는 동안에 STA4에서도 전송할 데이터가 발생할 수 있다. 이 때, STA4의 입장에서는 매체가 유휴 상태가 되면 DIFS만큼 대기한 후, 자신이 선택한 임의 백오프 카운트 값에 따른 카운트 다운을 수행하고 프레임 전송을 시작할 수 있다. 도 6의 예시에서는 STA5의 잔여 백오프 시간이 STA4의 임의 백오프 카운트 값과 우연히 일치하는 경우를 나타내며, 이 경우, STA4와 STA5 간에 충돌이 발생할 수 있다. 충돌이 발생하는 경우에는 STA4와 STA5 모두 ACK을 받지 못하여, 데이터 전송을 실패하게 된다. 이 경우, STA4와 STA5는 CW 값을 2배로 늘린 후에 임의 백오프 카운트 값을 선택하고 카운트 다운을 수행할 수 있다. 한편, STA1은 STA4와 STA5의 전송으로 인해 매체가 점유 상태인 동안에 대기하고 있다가, 매체가 유휴 상태가 되면 DIFS만큼 대기한 후, 잔여 백오프 시간이 지나면 프레임 전송을 시작할 수 있다.
STA의 센싱 동작
전술한 바와 같이 CSMA/CA 메커니즘은 AP 및/또는 STA이 매체를 직접 센싱하는 물리적 캐리어 센싱(physical carrier sensing) 외에 가상 캐리어 센싱(virtual carrier sensing)도 포함한다. 가상 캐리어 센싱은 숨겨진 노드 문제(hidden node problem) 등과 같이 매체 액세스에서 발생할 수 있는 문제를 보완하기 위한 것이다. 가상 캐리어 센싱을 위하여, 무선랜 시스템의 MAC은 네트워크 할당 벡터(Network Allocation Vector; NAV)를 이용할 수 있다. NAV는 현재 매체를 사용하고 있거나 또는 사용할 권한이 있는 AP 및/또는 STA이, 매체가 이용 가능한 상태로 되기까지 남아 있는 시간을 다른 AP 및/또는 STA에게 지시(indicate)하는 값이다. 따라서 NAV로 설정된 값은 해당 프레임을 전송하는 AP및/또는 STA에 의하여 매체의 사용이 예정되어 있는 기간에 해당하고, NAV 값을 수신하는 STA은 해당 기간동안 매체 액세스가 금지된다. NAV는, 예를 들어, 프레임의 MAC 헤더(header)의 "duration" 필드의 값에 따라 설정될 수 있다.
또한, 충돌 가능성을 감소시키기 위해서 강인한 충돌 검출(robust collision detect) 메커니즘이 도입되었다. 이에 대해서 도 5 및 도 7을 참조하여 설명한다. 실제 캐리어 센싱 범위와 전송 범위는 동일하지 않을 수도 있지만, 설명의 편의를 위해서 동일한 것으로 가정한다.
도 5는 숨겨진 노드 및 노출된 노드에 대한 설명을 위한 도면이다.
도 5(a)는 숨겨진 노드에 대한 예시이며, STA A와 STA B는 통신 중에 있고 STA C가 전송할 정보를 가지고 있는 경우이다. 구체적으로 STA A가 STA B에 정보를 전송하고 있는 상황이지만, STA C가 STA B로 데이터를 보내기 전에 캐리어 센싱을 수행할 때에 매체가 유휴 상태인 것으로 판단할 수 있다. 이는 STA A의 전송(즉, 매체 점유)을 STA C의 위치에서는 센싱하지 못할 수도 있기 때문이다. 이러한 경우에, STA B는 STA A와 STA C의 정보를 동시에 받기 때문에 충돌이 발생하게 된다. 이 때 STA A는 STA C의 숨겨진 노드라고 할 수 있다.
도 5(b)는 노출된 노드(exposed node)에 대한 예시이며, STA B는 STA A에 데이터를 전송하고 있는 상황에서, STA C가 STA D에서 전송할 정보를 가지고 있는 경우이다. 이 경우에 STA C가 캐리어 센싱을 수행하면, STA B의 전송으로 인하여 매체가 점유된 상태라고 판단할 수 있다. 이에 따라, STA C가 STA D에 전송할 정보가 있더라도 매체 점유 상태라고 센싱되기 때문에 매체가 유휴 상태가 될 때까지 기다려야 한다. 그러나, 실제로는 STA A는 STA C의 전송 범위 밖에 있으므로, STA C로부터의 전송과 STA B로부터의 전송은 STA A의 입장에서는 충돌하지 않을 수도 있으므로, STA C는 STA B가 전송을 멈출 때까지 불필요하게 대기하는 것이 된다. 이 때 STA C를 STA B의 노출된 노드라고 할 수 있다.
도 6은 RTS와 CTS를 설명하기 위한 도면이다.
도 5와 같은 예시적인 상황에서 충돌 회피(collision avoidance) 메커니즘을 효율적으로 이용하기 위해서, RTS(request to send)와 CTS(clear to send)등의 짧은 시그널링 패킷(short signaling packet)을 이용할 수 있다. 두 STA 간의 RTS/CTS는 주위의 STA(들)이 오버히어링(overhearing)할 수 있도록 하여, 상기 주위의 STA(들)이 상기 두 STA 간의 정보 전송 여부를 고려하도록 할 수 있다. 예를 들어, 데이터를 전송하려는 STA이 데이터를 받는 STA에 RTS 프레임을 전송하면, 데이터를 받는 STA은 CTS 프레임을 주위의 STA들에게 전송함으로써 자신이 데이터를 받을 것임을 알릴 수 있다.
도 6(a)는 숨겨진 노드 문제를 해결하는 방법에 대한 예시이며, STA A와 STA C가 모두 STA B에 데이터를 전송하려고 하는 경우를 가정한다. STA A가 RTS를 STA B에 보내면 STA B는 CTS를 자신의 주위에 있는 STA A와 STA C에 모두 전송을 한다. 그 결과 STA C는 STA A와 STA B의 데이터 전송이 끝날 때까지 기다리게 되어 충돌을 피할 수 있게 된다.
도 6(b)는 노출된 노드 문제를 해결하는 방법에 대한 예시이며, STA A와 STA B 간의 RTS/CTS 전송을 STA C가 오버히어링함으로써, STA C는 자신이 다른 STA(예를 들어, STA D)에게 데이터를 전송하더라도 충돌이 발생하지 않을 것으로 판단할 수 있다. 즉, STA B는 주위의 모든 STA들에게 RTS를 전송하고, 실제로 보낼 데이터가 있는 STA A만 CTS를 전송하게 된다. STA C는 RTS만을 받고 STA A의 CTS를 받지 못했기 때문에 STA A는 STC C의 캐리어 센싱 밖에 있다는 것을 알 수 있다.
전력 관리
전술한 바와 같이 무선랜 시스템에서는 STA이 송수신을 수행하기 전에 채널 센싱을 수행해야 하는데, 채널을 항상 센싱하는 것은 STA의 지속적인 전력 소모를 야기한다. 수신 상태에서의 전력 소모는 송신 상태에서의 전력 소모에 비하여 크게 차이가 나지 않으며, 수신 상태를 계속 유지하는 것도 전력이 제한된(즉, 배터리에 의해 동작하는) STA에게 큰 부담이 된다. 따라서, STA이 지속적으로 채널을 센싱하기 위해서 수신 대기 상태를 유지하면, 무선랜 처리율 측면에서 특별한 이점 없이 전력을 비효율적으로 소모하게 된다. 이러한 문제점을 해결하기 위해서, 무선랜 시스템에서는 STA의 전력 관리(power management; PM) 모드를 지원한다.
STA의 전력 관리 모드는 액티브(active) 모드 및 전력 절약(power save; PS) 모드로 나뉘어 진다. STA은 기본적으로 액티브 모드로 동작한다. 액티브 모드로 동작하는 STA은 어웨이크 상태(awake state)를 유지한다. 어웨이크 상태는, 프레임 송수신이나 채널 스캐닝 등 정상적인 동작이 가능한 상태이다. 한편, PS 모드로 동작하는 STA은 슬립 상태(sleep state) (또는 도즈(doze) 상태)와 어웨이크 상태(awake state)를 전환(switch)해가며 동작한다. 슬립 상태로 동작하는 STA은 최소한의 전력으로 동작하며, 프레임 송수신은 물론 채널 스캐닝도 수행하지 않는다.
STA이 슬립 상태로 가능한 오래 동작할수록 전력 소모가 줄어들기 때문에, STA은 동작 기간이 증가한다. 하지만 슬립 상태에서는 프레임 송수신이 불가능하기 때문에 무조건적으로 오래 동작할 수는 없다. 슬립 상태로 동작하는 STA이 AP에게 전송할 프레임이 존재하는 경우 어웨이크 상태로 전환하여 프레임을 송신할 수 있다. 한편, AP가 STA에게 전송할 프레임이 있는 경우, 슬립 상태의 STA은 이를 수신할 수 없으며 수신할 프레임이 존재하는 것도 알 수 없다. 따라서, STA은 자신에게 전송될 프레임의 존재 여부를 알기 위해(또한 존재한다면 이를 수신하기 위해) 특정 주기에 따라 어웨이크 상태로 전환하는 동작이 필요할 수 있다.
AP는 일정한 주기로 비콘 프레임(beacon frame)을 BSS 내의 STA들에게 전송할 수 있다. 비콘 프레임에는 TIM(Traffic Indication Map) 정보 요소(Information Element)가 포함될 수 있다. TIM 정보 요소는 AP가 자신과 연관된 STA들에 대한 버퍼된 트래픽이 존재하며, 프레임을 전송할 것임을 알려주는 정보를 포함할 수 있다. TIM 요소에는 유니캐스트(unicast) 프레임을 알려주는데 사용되는 TIM과 멀티캐스트(multicast) 또는 브로드캐스트(broadcast) 프레임을 알려주는데 사용되는 DTIM(delivery traffic indication map)이 있다.
도 7 내지 9는 TIM을 수신한 STA의 동작을 상세하게 설명하기 위한 도면이다.
도 7을 참조하면, STA은 AP로부터 TIM을 포함하는 비콘 프레임을 수신하기 위해 슬립 상태에서 어웨이크 상태로 전환하고, 수신한 TIM 요소를 해석하여 자신에게 전송될 버퍼된 트래픽이 있음을 알 수 있다. STA은 PS-Poll 프레임 전송을 위한 매체 액세스를 위해 다른 STA들과 경쟁(contending)을 수행한 후에, AP에게 데이터 프레임 전송을 요청하기 위하여 PS-Poll 프레임을 전송할 수 있다. STA에 의해 전송된 PS-Poll 프레임을 수신한 AP는 STA에게 프레임을 전송할 수 있다. STA은 데이터 프레임을 수신하고 이에 대한 확인응답(ACK) 프레임을 AP에게 전송할 수 있다. 이후 STA은 다시 슬립 상태로 전환될 수 있다.
도 7과 같이 AP는 STA으로부터 PS-Poll 프레임을 수신한 다음 소정의 시간(예를 들어, SIFS(Short Inter-Frame Space)) 후에 데이터 프레임을 전송하는 즉시 응답(immediate response) 방식에 따라 동작할 수 있다. 한편, AP가 PS-Poll 프레임을 수신한 후에 STA에게 전송할 데이터 프레임을 SIFS 시간 동안에 준비하지 못한 경우에는 지연된 응답(deferred response) 방식에 따라 동작할 수 있으며, 이에 대해서 도 8를 참조하여 설명한다.
도 8의 예시에서 STA이 슬립 상태에서 어웨이크 상태로 전환하여 AP로부터 TIM을 수신하고 경쟁을 거쳐 PS-Poll 프레임을 AP로 전송하는 동작은 도 7의 예시와 동일하다. AP가 PS-Poll 프레임을 수신하고도 SIFS 동안 데이터 프레임을 준비하지 못한 경우, 데이터 프레임을 전송하는 대신 ACK 프레임을 STA에게 전송할 수 있다. AP는 ACK 프레임 전송 후 데이터 프레임이 준비되면, 컨텐딩을 수행한 후 데이터 프레임을 STA에게 전송할 수 있다. STA은 데이터 프레임을 성공적으로 수신하였음을 나타내는 ACK 프레임을 AP에게 전송하고, 슬립 상태로 전환될 수 있다.
도 9는 AP가 DTIM을 전송하는 예시에 대한 것이다. STA들은 AP로부터 DTIM 요소를 포함하는 비콘 프레임을 수신하기 위해 슬립 상태에서 어웨이크 상태로 전환할 수 있다. STA들은 수신한 DTIM을 통해 멀티캐스트/브로드캐스트 프레임이 전송될 것임을 알 수 있다. AP는 DTIM을 포함하는 비콘 프레임 전송 후 PS-Poll 프레임의 송수신 동작 없이 바로 데이터(즉, 멀티캐스트/브로드캐스트 프레임)를 전송할 수 있다. STA들은 DTIM을 포함하는 비콘 프레임을 받은 후에 계속하여 어웨이크 상태를 유지하는 중에 데이터를 수신하고, 데이터 수신이 완료된 후에 다시 슬립 상태로 전환할 수 있다.
프레임 구조 일반
도 10은 IEEE 802.11 시스템에서 사용되는 프레임 구조의 일례를 설명하기 위한 도면이다.
PPDU(Physical Layer Protocol Data Unit) 프레임 포맷은, STF(Short Training Field), LTF(Long Training Field), SIG(SIGNAL) 필드, 및 데이터(Data) 필드를 포함하여 구성될 수 있다. 가장 기본적인(예를 들어, non-HT(High Throughput)) PPDU 프레임 포맷은 L-STF(Legacy-STF), L-LTF(Legacy-LTF), SIG 필드 및 데이터 필드만으로 구성될 수 있다.
STF는 신호 검출, AGC(Automatic Gain Control), 다이버시티 선택, 정밀한 시간 동기 등을 위한 신호이고, LTF는 채널 추정, 주파수 오차 추정 등을 위한 신호이다. STF와 LTF를 합쳐서 PLCP 프리앰블(preamble)이라고 칭할 수 있고, PLCP 프리앰블은 OFDM 물리계층의 동기화 및 채널 추정을 위한 신호라고 할 수 있다.
SIG 필드는 RATE 필드 및 LENGTH 필드 등을 포함할 수 있다. RATE 필드는 데이터의 변조 및 코딩 레이트에 대한 정보를 포함할 수 있다. LENGTH 필드는 데이터의 길이에 대한 정보를 포함할 수 있다. 추가적으로, SIG 필드는 패리티(parity) 비트, SIG TAIL 비트 등을 포함할 수 있다.
데이터 필드는 SERVICE 필드, PSDU(Physical layer Service Data Unit), PPDU TAIL 비트를 포함할 수 있고, 필요한 경우에는 패딩 비트도 포함할 수 있다. SERVICE 필드의 일부 비트는 수신단에서의 디스크램블러의 동기화를 위해 사용될 수 있다. PSDU는 MAC 계층에서 정의되는 MPDU(MAC Protocol Data Unit)에 대응하며, 상위 계층에서 생성/이용되는 데이터를 포함할 수 있다. PPDU TAIL 비트는 인코더를 0 상태로 리턴하기 위해서 이용될 수 있다. 패딩 비트는 데이터 필드의 길이를 소정의 단위로 맞추기 위해서 이용될 수 있다.
MPDU는 다양한 MAC 프레임 포맷에 따라서 정의되며, 기본적인 MAC 프레임은 MAC 헤더, 프레임 바디, 및 FCS(Frame Check Sequence)로 구성된다. MAC 프레임은 MPDU로 구성되어 PPDU 프레임 포맷의 데이터 부분의 PSDU를 통하여 송신/수신될 수 있다.
MAC 헤더는 프레임 제어(Frame Control) 필드, 기간(Duration)/ID 필드, 주소(Address) 필드 등을 포함한다. 프레임 제어 필드는 프레임 송신/수신에 필요한 제어 정보들을 포함할 수 있다. 기간/ID 필드는 해당 프레임 등을 전송하기 위한 시간으로 설정될 수 있다.
MAC 헤더에 포함된 기간/ID 필드는 16 비트 길이(e.b., B0~B15)로 설정될 수 있다. 기간/ID 필드에 포함되는 콘텐츠는 프레임 타입 및 서브타입, CFP(contention free period) 동안 전송되는지, 송신 STA의 QoS 캐퍼빌리티 등에 따라서 달라질 수 있다. (i) 서브타입이 PS-Poll인 제어 프레임에서, 기간/ID 필드는 송신 STA의 AID를 포함할 수 있으며(e.g., 14 LSB 비트들을 통해), 2 MSB 비트들은 1로 설정될 수 있다. (ii) PC(point coordinator) 또는 non-QoS STA에 의해 CFP 동안 전송되는 프레임들에서, 기간/ID 필드는 고정된 값(e.g., 32768)로 설정될 수 있다. (iii) 그 밖에 non-QoS STA에 의해 전송되는 다른 프레임들 또는 QoS STA에 의해 전송되는 제어 프레임들에서, 기간/ID 필드는 각 프레임 타입별로 정의된 duration 값을 포함할 수 있다. QoS STA에 의해 전송되는 데이터 프레임 또는 매니지먼트 프레임에서, 기간/ID 필드는 각 프레임 타입에 대하서 정의된 duration 값을 포함할 수 있다. 예컨대, 기간/ID 필드의 B15=0으로 설정되면 기간/ID 필드가 TXOP Duration 을 지시하는데 사용된다는 것을 나타내며, B0~B14는 실제 TXOP Duration을 지시하는데 사용될 수 있다. B0~B14에 의해 지시되는 실제 TXOP Duration은 0~32767 중 어느 하나일 수 있으며, 그 단위는 마이크로 세컨드(us)일 수 있다. 다만, 기간/ID 필드가 고정된 TXOP Duration 값(e.g., 32768)을 지시하는 경우에는 B15=1이고, B0~B14=0으로 설정될 수 있다. 그 밖에 B14=1, B15=1로 설정되면 기간/ID 필드가 AID를 지시하기 위하여 사용되고, B0~B13은 1~2007 중 하나의 AID를 지시한다. MAC 헤더의 Sequence Control, QoS Control, HT Control 서브필드들의 구체적인 내용은 IEEE 802.11 표준 문서를 참조할 수 있다.
MAC 헤더의 프레임 제어 필드는, Protocol Version, Type, Subtype, To DS, From DS, More Fragment, Retry, Power Management, More Data, Protected Frame, Order 서브필드들을 포함할 수 있다. 프레임 제어 필드의 각각의 서브필드의 내용은 IEEE 802.11 표준 문서를 참조할 수 있다.
OFDM packet Classification for IEEE 802.11a/n/ac/ax
도 11을 참조하여 IEEE 802.11a/n/ac/ax 에서 패킷 구분(Classification)을 간략히 살펴본다. Legacy는 11a에 해당한다.
11a PPDU의 L-SIG 필드는 BPSK(binary phase shift keying) 심볼을 포함한다.
11n 의 경우 11n-MM(mixed mode) 포맷과, 11n-GP(green field) 포맷으로 PPDU가 구분될 수 있다. 11n-MM 포맷은 Legacy에 해당하는 L-STF, L-LTF 및 L-SIG 필드를 포함하고, 11n에 해당하는 HT-SIG 1 및 HT-SIG 2 필드를 포함한다. L-SIG 필드는 BPSK 심볼을 포함하고, HT-SIG 1 및 HT-SIG 2 필드 각각은 QBPSK(quadrate binary phase shift keying) 심볼을 포함한다. QBPSK는 90도 회전된 BPSK에 해당한다. 도 12를 참조하여 BPSK과 QBPSK 심볼을 살펴보면, 도 12에서 OFDM 심볼 #1은 BPSK 심볼(i.e., BPSK 성상을 통해 변조된 심볼)에 해당하며, OFDM 심볼 #2은 QBPSK 심볼(i.e., QPSK 성상을 통해 변조된 심볼)에 해당한다. 11n-GP(green field) 포맷은 HT-STF, HT-LTF1, HT-SIG 1 및 HT-SIG 2를 포함하며, HT-SIG 1 및 HT-SIG 2 필드 각각은 QBPSK 심볼을 포함한다.
11ac PPDU는 Legacy에 해당하는 L-STF, L-LTF 및 L-SIG 필드를 포함하고, 11ac에 해당하는 VHT-SIG 1 및 VHT-SIG 2 필드를 포함한다. L-SIG 필드는 BPSK 심볼을 포함하고, VHT-SIG 1는 BPSK 심볼을 포함하고, V HT-SIG 2 필드는 QBPSK 심볼을 포함한다.
11ax PPDU는 Legacy에 해당하는 L-STF, L-LTF 및 L-SIG 필드를 포함하고, 추가적으로 L-SIG를 반복한 RL-SIG를 포함할 수 있다. L-SIG 및 RL-SIG는 BPSK 심볼을 포함한다. 또한, 11ax PPDU는 11ax에 해당하는 HE-SIG 1 및/또는 HE-SIG 2 필드를 포함할 수 있다. HE-SIG 1 및 HE-SIG 2 필드는 BPSK 심볼을 포함할 수 있다.
WUR(Wake-Up Radio)
먼저 도 13을 참조하여 무선랜 시스템(e.g., 802.11)과 호환 가능한 웨이크 업 라디오 수신기 (Wake-Up Radio Receiver, WURx)에 대한 일반적인 내용을 살펴본다.
도 13을 참조하면 STA은 메인 무선 통신 용도의 주 연결 라디오(Primary connectivity radio, PCR) (e.g., IEEE 802.11a/b/g/n/ac/ax 무선랜)과 웨이크 업 라디오(Wake Up Radio, WUR)(e.g., IEEE 802.11ba)를 지원할 수 있다.
PCR은 데이터 송신 및 수신을 위해서 사용되며, 송수신할 데이터가 없을 경우에는 턴-오프될 수 있다. 이와 같이 PCR이 턴-오프된 경우로서, 수신할 패킷이 있을 때 STA의 WURx은 PCR을 웨이크 업 시킬 수 있다. 따라서 사용자 데이터는 PCR을 통해서 송수신 된다.
WURx은 사용자 데이터를 위해서 사용되지는 않고, 단지 PCR 송수신기를 깨우는 역할을 수행할 수 있다. WURx은 송신기를 갖지 않는 단순한 수신기 형태일 수 있으며, PCR이 꺼져 있는 동안 활성화 된다. 활성화 상태에서 WURx의 목표 전력 소비은 100 마이크로 와트(uW)를 초과하지 않는 것이 바람직하다. 이와 같이 저 전력으로 작동하기 위해서 단순한 변조 방식, 예를 들면 OOK(on-off keying) 방식이 사용될 수 있으며, 좁은 대역폭(e.g., 4MHz, 5 MHz)이 사용될 수 있다. WURx가 목표로 하는 수신 범위(e.g., 거리)는 현재 802.11에 상당할 수 있다.
도 14는 WUR 패킷의 설계 및 동작을 설명하기 위한 도면이다.
도 14를 참조하면 WUR 패킷은 PCR 파트(1200) 및 WUR 파트(1205)를 포함할 수 있다.
PCR 파트(1200)는 레거시 무선랜 시스템과 공존을 위한 것으로서, PCR 파트는 무선랜 프리앰블로 지칭될 수도 있다. 다른 PCR STA으로부터 WUR 패킷을 보호하기 위하여 레거시 무선랜의 L-STF, L-LTF 및 L-SIG 중 적어도 하나 이상이 PCR 파트(1200)에 포함될 수 있다. 따라서, 3rd Party 레거시 STA은 WUR 패킷의 PCR 파트(1200)을 통해서 해당 WUR 패킷이 자신에게 의도된 것이 아니고, PCR의 매체가 다른 STA에 의해서 점유되었음을 알 수 있다. 단, WURx는 WUR 패킷의 PCR 파트를 디코딩하지는 않는다. 협대역 및 OOK 복조를 지원하는 WURx가 PCR 신호 수신을 지원하지는 않기 때문이다.
WUR 파트(1205)의 적어도 일부는 OOK(on-off keying) 방식으로 변조된 것일 수 있다. 일 예로, WUR 파트는 WUR 프리앰블, MAC 헤더(e.g., 수신자 주소 등), 프레임 바디 및 FCS(frame check sequence) 중 적어도 하나를 포함할 수 있다. 한편, OOK 변조는 OFDM 송신기를 수정함으로써 수행될 수도 있다.
WURx(1210)은 상술된 바와 같이 100 uW 이하의 매우 적은 전력을 소비하며, 작고 단순한 OOK 복조기로 구현될 수 있다.
이와 같이 WUR 패킷이 무선랜 시스템에서 호환 가능(compatible)하도록 설계될 필요가 있으므로, WUR 패킷은 레거시 무선 랜의 프리앰블(e.g., OFDM 방식) 및 새로운 LP-WUR 신호 파형(e.g., OOK 방식)을 포함할 수 있다.
도 15는 WUR 패킷의 일 예를 도시한다. 도 15의 WUR 패킷은 레거시 STA과 공존을 위하여 PCR 파트(e.g., 레거시 무선 랜 프리앰블)을 포함한다.
도 15를 참조하면, 레거시 무선 랜 프리앰블은 L-STF, L-LTF 및 L-SIG 를 포함할 수 있다. 또한, 무선 랜 STA(e.g., 3rd Party)은 L-SIG를 통해서 WUR 패킷의 끝을 파악할 수 있다. 예컨대, L-SIG 필드는 WUR 패킷의 페이로드(e.g., OOK 변조된)의 길이를 지시할 수 있다.
WUR 파트는 WUR 프리앰블, MAC 헤더, 프레임 바디 및 FCS 중 적어도 하나를 포함할 수 있다. WUR 프리앰블은 예컨대, PN 시퀀스를 포함할 수 있다. MAC 헤더는 수신기 주소를 포함할 수 있다. 프레임 바디는 웨이크 업을 위해 필요한 다른 정보를 포함할 수 있다. FCS는 CRC(cyclic redundancy check)를 포함할 수 있다.
도 16은 도 15의 WUR 패킷에 대한 파형을 예시한다. 도 16을 참조하면, OOK 변조된 WUR 파트에서는, 1 OFDM 심볼 길이 (e.g., 4 usec) 당 1 비트가 송신될 수 있다. 따라서, WUR 파트의 데이터 레이트는 250 kbps 일 수 있다.
도 17은 무선 랜의 OFDM 송신기를 사용하여 WUR 패킷을 생성하는 것을 설명하기 위한 도면이다. 무선 랜에서는 PSK(phase shift keying)-OFDM 송신 기법이 사용되고 있는데, OOK 변조를 위하여 별도의 OOK 변조기를 추가함으로써 WUR 패킷을 생성하는 것은 송신기의 구현 비용을 증가시키는 단점이 있다. 따라서, OFDM 송신기를 재사용함으로써 OOK 변조된 WUR 패킷을 생성하는 방법을 살펴본다.
OOK 변조 방식에 따르면, 비트 값 1은 심볼 내 임의의 전력이 실리거나 혹은 임계치 이상의 전력을 갖는 심볼(i.e., on)로, 비트 값 0은 심볼 내 전력이 실리지 않거나 혹은 임계치 미만의 전력을 갖는 심볼(i.e., off)로 변조된다. 물론, 이와는 반대로 비트 값 1을 전력 off로 정의하는 것도 가능하다.
이와 같이 OOK 변조 방식에서는 비트 값 1/0이 해당 심볼 위치에서 전력의 on/off를 통해서 지시된다. 이와 같은 단순한 OOK 변조/복조 방식은 수신기의 신호 검출/복조에 소모되는 전력과 이를 구현하기 위한 비용을 저감할 수 있는 장점이 있다. 또한, 신호를 on/off 하는 OOK 변조는 기존의 OFDM 송신기를 재사용하여 수행될 수도 있다.
도 17의 좌측 그래프는 기존 무선 랜의 OFDM 송신기를 재사용하여 OOK 변조된 비트 값 1에 대한 1 심볼 구간(e.g., 4 usec) 동안의 정규화된 전력 크기(normalized amplitude)의 실수(real) 파트와 허수(imaginary) 파트를 도시한다. 비트 값 0에 대한 OOK 변조 결과는 전력 off 에 해당하므로, 도시를 생략한다.
도 17의 우측 그래프는 기존 무선 랜의 OFDM 송신기를 재사용하여 OOK 변조된 비트 값 1에 대한 주파수 도메인 상에서의 정규화된 PSD(power spectral density)를 나타낸다. 예컨대, 해당 대역에서 중심 4 MHz가 WUR을 위해서 사용될 수 있다. 도 17에서는 WUR이 4 MHz 대역폭으로 동작하는 것을 가정하였으나 이는 설명의 편의를 위함이며, 다른 크기의 주파수 대역폭이 사용될 수도 있다. 단, WUR는 PCR(e.g., 기존의 무선 랜)의 동작 대역폭 보다는 작은 대역폭으로 동작하는 것이 전력 저감을 위해서 바람직하다.
도 17에서는, 서브캐리어 폭(e.g., subcarrier spacing)이 312.5 kHz이고, OOK 펄스의 대역폭은 13개 서브캐리어들에 해당한다고 가정하였다. 13개 서브캐리어들은 앞서 언급된 바와 같이 약 4 MHz(i.e., 4.06 MHz = 13 * 312.5 kHz)에 해당한다.
기존 OFDM 송신기에서 IFFT(inverse fast Fourier transform)의 입력 시퀀스를 s= {13 subcarrier tone sequence}로 정의하고 해당 시퀀스 s에 대한 IFFT를 Xt = IFFT(s)와 같이 수행한 뒤, 0.8 usec 길이의 CP(cyclic prefix)를 붙이면 약 4 us 심볼 길이가 된다.
WUR 패킷은 WUR 신호, WUR 프레임 또는 WUR PPDU로 지칭될 수도 있다. WUR 패킷은 브로드캐스트/멀티캐스트를 위한 패킷(e.g., WUR 비컨)이거나 유니캐스트를 위한 패킷(e.g., 특정 WUR STA의 WUR 모드를 종료시키고 깨우기 위한 패킷)일 수 있다.
도 18은 WURx(WUR receiver)의 구조를 예시한다. 도 18을 참조하면, WURx는 RF/아날로그 전단(RF/analog Front-end), 디지털 기저 대역 처리기 및 심플한 패킷 Parser를 포함할 수 있다. 도 18은 예시적인 구성이며, 본 발명의 WUR 수신기는 도 18에 한정되지 않는다.
이하에서, WUR 수신기를 갖는 WLAN STA을 간략히 WUR STA이라고 지칭한다. WUR STA은 간략히 STA으로 지칭될 수도 있다.
- OOK modulation with Manchester coding
본 발명의 일 실시예에 따르면, OOK 심볼 생성을 위하여 맨체스터 코딩이 사용될 수 있다. 맨체스터 코딩에 따르면 1-비트 정보는 2개의 하위(sub) 정보(또는 2개의 코딩된 비트들)를 통해서 지시된다. 예컨대, 1-비트 정보 '0'가 맨체스터 코딩을 거치면 2개의 하위 정보 비트들 '10'(i.e., On-Off)이 출력된다. 반대로, 1-비트 정보 '1'가 맨체스터 코딩을 거치면 2개의 하위 정보 비트들 '01'(i.e., Off-On)이 출력된다. 다만, 하위 정보 비트의 On-Off 순서는 실시예에 따라서 반전될 수도 있다.
이와 같은 맨체스터 코딩 방식에 기반하여 1 OOK 심볼을 생성하는 방법에 대해서 살펴본다. 설명의 편의상 1 OOK 심볼은 시간 도메인에서 3.2 us이고, 주파수 도메인에서 K개 서브캐리어들에 대응한다고, 본 발명은 이에 한정되지 않는다.
먼저, 맨체스터 코딩에 기반하여, 1-비트 정보 '0'를 위한 OOK 심볼을 생성하는 방안을 살펴보면, 1 OOK 심볼 길이는 (i) 첫 번째 하위 정보 비트 '1'을 위한 1.6 us와 (ii) 두 번째 하위 정보 비트 '0'을 위한 1.6 us로 구분될 수 있다.
(i) 첫 번째 하위 정보 비트 '1'에 해당하는 신호는, K개의 서브캐리어들 중에서 홀수 번째 서브캐리어들에 β를 맵핑하고, 짝수 번째 서브캐리어들에는 0을 맵핑한 뒤 IFFT를 수행하여 획득될 수 있다. 예컨대, 주파수 도메인 상에 2개 서브캐리어 간격으로 β를 맵핑하여 IFFT를 수행하는 경우 시간 도메인에서는 1.6 us의 주기적 신호가 2회 반복하여 나타나게 된다. 2회 반복되는 1.6 us의 주기적 신호 중 첫 번째 또는 두 번째 신호가 첫 번째 하위 정보 비트 '1'에 해당하는 신호로 사용될 수 있다. β는 전력 정규화 factor로서 예컨대, 1/sqrt(ceil(K/2))일 수 있다. 예컨대, 전체 64 서브캐리어들(i.e., 20 MHz 대역) 중 첫 번째 하위 정보 비트 '1'에 해당하는 신호 생성에 사용되는 연속된 K 서브캐리어들은 예컨대, [33-floor(K/2): 33+ceil(K/2)-1]과 같이 표현될 수 있다.
(ii) 두 번째 하위 정보 비트 '0'에 해당하는 신호는, K개의 서브캐리어들 에 0을 맵핑한 뒤 IFFT를 수행하여 획득될 수 있다. 예컨대, 전체 64 서브캐리어들(i.e., 20 MHz 대역) 중 두 번째 하위 정보 비트 '0'에 해당하는 신호 생성에 사용되는 연속된 K 서브캐리어들은 예컨대, [33-floor(K/2): 33+ceil(K/2)-1]과 같이 표현될 수 있다.
1-비트 정보 '1'를 위한 OOK 심볼은, 하위 정보 비트 '0'에 해당하는 신호 이후에 하위 정보 비트 '1'에 해당하는 신호를 배치함으로써 획득될 수 있다.
- Symbol Reduction
일 예로, WUR을 위한 1 심볼 길이는 3.2 us 보다 작게 설정될 수도 있다. 예컨대, 1 심볼이 1.6us, 0.8us 또는 0.4us의 정보 + CP로 설정될 수 있다.
(i) 0.8 us, 정보 비트 1: K개의 연속된 서브캐리어들 중에서 mod(서브캐리어 인덱스,4)=1을 만족하는 서브캐리어(i.e., 1, 5, 9,....)에는 β(e.g., power normalization factor)*1이 맵핑되고, 나머지 서브캐리어들은 nulling (e.g., 0이 맵핑)될 수 있다. β는 1/sqrt(ceil(K/4))일 수 있다. 이와 같이 4개 서브캐리어 간격으로 β*1이 맵핑될 수 있다. 주파수 도메인 상에서 4개 서브캐리어 간격으로 β*1을 맵핑하여 IFFT를 수행하면, 0.8us 길이의 신호들이 시간 도메인에서 반복되는데 이 신호들 중 하나가 정보 비트 1에 해당하는 신호로 사용될 수 있다.
(ii) 0.8 us, 정보 비트 0: K개의 서브캐리어들에 0를 맵핑하고 IFFT를 수행함으로써 시간 도메인 신호를 획득할 수 있으며, 이 중 하나의 0.8us 길이의 신호가 사용될 수 있다.
(iii) 0.4 us, 정보 비트 1: K개의 연속된 서브캐리어들 중에서 mod(서브캐리어 인덱스,8)=1을 만족하는 서브캐리어(i.e., 1, 9, 17....)에는 β(e.g., power normalization factor)*1이 맵핑되고, 나머지 서브캐리어들은 nulling (e.g., 0이 맵핑)될 수 있다. β는 1/sqrt(ceil(K/8))일 수 있다. 이와 같이 8개 서브캐리어 간격으로 β*1이 맵핑될 수 있다. 주파수 도메인 상에서 8개 서브캐리어 간격으로 β*1을 맵핑하여 IFFT를 수행하면, 0.4us 길이의 신호들이 시간 도메인에서 반복되는데 이 신호들 중 하나가 정보 비트 1에 해당하는 신호로 사용될 수 있다.
(iv) 0.4 us, 정보 비트 0: K개의 서브캐리어들에 0를 맵핑하고 IFFT를 수행함으로써 시간 도메인 신호를 획득할 수 있으며, 이 중 하나의 0.4us 길이의 신호가 사용될 수 있다.
Packet Classification for WUR PPDU
PCR 대역의 일부를 통해서 WUR 패킷이 전송될 때, 기존의 PCR STA (e.g., 11n, 11ac, 11ax 등의 Wi-Fi device)가 WUR 패킷을 자신의 패킷으로 오인하여, WUR 패킷의 디코딩을 수행하는 경우가 있을 수 있다. 예컨대, WUR 대역이 PCR 대역의 일부에 해당하므로, WUR 수신기 뿐 아니라 PCR 모드로 동작하는 STA 또한 WUR PPDU를 수신할 수 있다. 만약 PCR STA이 WUR PPDU를 PCR PPDU라고 잘못 검출(false detection)하는 경우에 자신의 PPDU로 인지하고 디코딩을 시도할 수 있다. 이 경우 PCR STA이 불필요하게 디코딩을 수행하게 되므로 전력 낭비가 발생할 수 있다.
이러한 문제를 해결하기 위해서 WUR 신호와 PCR 신호(e.g., convention Wi-fi packet) 간의 구별을 위한 방법을 제안한다.
도 19는 본 발명의 일 예에 따른 WUR PPDU를 도시한다. PCR을 깨우기 위한 WUR 신호는 도 19와 같은 프레임 포맷을 이용하여 전송할 수 있다.
도 19를 참조하면, WUR 프레임은 기존 PCR과의 공존(coexistence)을 위하여 WUR 파트 앞에 L-Part를 먼저 전송하는 구조로 구성될 수 있다. WUR 파트는 WUR-Preamble, WUR-SIG(signal) 및 WUR-body로 중 적어도 하나를 포함할 수 있다. WUR-Body는 WUR STA에 대한 사용자 데이터가 아닌 제어 정보를 포함할 수 있다. WUR STA에 대한 사용자 데이터는 WUR STA이 깨어난 후 PCR을 통해서 송신될 수 있다.
본 발명의 WUR PPDU는 도 19에 한정되지 않으며, WUR-SIG는 WUR PPDU에서 생략될 수도 있다. 예를 들어 WUR SIG 필드가 생략되는 경우 WUR PPDU는 아래와 같이 구성될 수 있다.
[L-파트(L-STF +L-LTF + L-SIG)+ WUR 파트(WUR Preamble+ WUR body)]
또한, L-파트 역시 생략되고 WUR PPDU가 WUR 파트 만으로 구성될 수도 있다. 이 경우 WUR PPDU는 아래와 같이 구성될 수 있다.
[WUR Preamble + WUR body] 또는 [WUR Preamble + WUR SIG + WUR body]
한편, L-PART는 WUR 수신기가 아닌 3rd Party STA(e.g., PCR 모드로 동작하는 STA)을 위한 것으로써, WUR 수신기는 L-파트를 디코딩 하지 않을 수 잇다.
WUR 파트는 L-파트가 전송되는 BW(bandwidth)(e.g., 20 MHz PCR 대역) 상의 가용 톤(tone)들(i.e., 서브캐리어들) 중 일부 톤들을 이용하여 협 대역폭(narrow bandwidth)으로 전송될 수 있다. 예컨대, WUR 파트을 전송을 위한 BW는 1,2,4,5,8,10 MHz 중 하나의 BW일 수 있다. 예를 들어, IEEE 802.11a의 OFDM Numerology가 사용되는 경우, 1,2,4,5,8,10 MHz BW에 해당하는 가용 톤들의 수는 각각 4,8,13,16,26,32개이다. WUR ON 심볼을 구성하기 위한 주파수 시퀀스의 길이는 각 가용 톤들의 수와 같을 수 있다. 예컨대, WUR 대역이 4 MHz인 경우, WUR ON 심볼에 해당하는 주파수 시퀀스의 길이는 13개 톤들에 해당할 수 있다.
다른 일 예로, IEEE 802.11ax의 Numerology가 사용되는 경우 1,2,4,5,8,10 MHz BW에 대한 가용 톤들의 수는 각각 13, 26, 52, 103, 128 개이다.
따라서 20 MHz 내 가용 톤들 중 일부 예를 들어, 13 톤들이 사용되는 경우를 가정하면, 13 톤들에만 WUR 신호가 실리고 나머지 톤들에는 신호가 실지 않을 수 있다.
도 19와 같은 프레임 포맷을 갖는 WUR PPDU가 기존 PCR STA에 수신되었다고 가정할 때, 기존 PCR STA은 다음과 같이 패킷 구분(classification)을 수행할 수 있다.
11n/11ac 등의 PCR STA은 먼저 L-SIG 검출을 수행한다. WUR PPDU가 기존 PCR PPDU의 L-part와 동일한 L-part를 포함하기 때문에 PCR STA은 L-SIG 검출 후 L-SIG 다음 2 OFDM 심볼에 대해서 Auto Detection을 수행한다. Auto Detection은 Phase Detection (e.g., QBPSK Detection)을 통해서 수행될 수 있다. 이때 L-SIG 다음에 위치한 WUR 신호는 앞서 언급한 바와 같이 주파수 측면에서 일부 톤 만을 이용하여 전송되기 때문에 WUR 신호가 실리지 않은 나머지 톤들에는 잡음 및 간섭의 영향으로 임의의 신호가 실리게 된다.
이와 같이 잡음 및 간섭에 의해 나머지 톤들에 실리는 임의의 신호의 영향으로 인해, 기존 PCR STA이 QBPSK 기반의 Auto Detection을 수행시 2개의 WUR 심볼들을 QBPSK 심볼들로 오인할 수 있다. 즉, 기존 PCR STA이 WUR PPDU를 11n PPDU라고 잘못 판단할 수 있다.
이와 같은 판단 오류를 줄이기 위해서 다음과 같은 방법이 이용될 수 있다.
도 20은 본 발명의 일 실시예에 따른 패킷 구별을 위한 PPDU 구조를 도시한다.
도 20을 참조하면 WUR PPDU의 L-SIG 필드 다음에 위치한 2 OFDM 심볼들이 패킷 구별을 위해 사용될 수 있으며, 패킷 구별을 위한 2개 심볼들은 BPSK로 변조될 수 있다.
패킷 구별을 위한 2 OFDM 심볼들은 일부 톤이 아니라 PCR 전체 대역(e.g., 20 MHz)를 이용하여 전송될 수 있다. 예컨대, 패킷 구별을 위한 2 OFDM 심볼들은 11a의 Numerology를 이용하여 전송될 수 있다.
이와 같이 WUR PPDU에서 L-SIG 다음에 패킷 구별을 위한 2개의 BPSK 심볼들이 송신되면 WUR PPDU는 기존의 11n PPDU와 구별될 수 있을 뿐만 아니라 Auto Detection시 11ac PPDU로 잘못 판단되는 것도 방지할 수 있다.
예컨대, 11n STA은 L-SIG 다음에 2 심볼들이 모두 QBPSK일 경우에 해당 PPDU를 11n PPDU로 인지하기 때문에, L-SIG 다음 2 심볼들이 BPSK로 전송되면 11n STA이 WUR PPDU를 11n PPDU로 오인하는 것을 방지할 수 있다.
또한, 11ac STA은 L-SIG 다음에 2 심볼들이 BPSK + QBPSK 일 경우에 해당 PPDU를 11ac PPDU로 인지하기 때문에 L-SIG 다음 2 심볼들이 BPSK로 전송되면 11ac STA이 WUR PPDU를 11ac PPDU로 오인하는 것을 방지할 수 있다.
11ax STA의 경우 L-SIG 검출시 L-Length 필드(e.g., length mode 3 =0 인지 여부)를 통해서 11ax PPDU를 판단하기 때문에, L-SIG 다음의 2 심볼들이 BPSK로 전송되면 11ax STA이 WUR PPDU를 11ax의 PPDU로 오인하는 것을 방지할 수 있다.
한편, 패킷 구별을 위한 2 심볼들은 더미(dummy) 심볼들로 설정되거나 또는 해당 2 심볼들에서 L-SIG가 반복될 수도 있다.
또한, 패킷 구별을 위한 심볼의 경우 스크램블링이 수행되지 않을 수 있다.
이상에서는 L-SIG 다음에 2 OFDM 심볼들 이용하여 패킷 구별하는 것을 살펴보았으나, 본 발명은 이에 한정되지 않으며 3개 이상의 심볼들이 패킷 구별을 위해서 사용될 수도 있다.
이와 같이 패킷 구별을 위한 심볼들의 개수가 N이고(N은 2 이상의 정수), N개의 심볼들이 L-SIG 다음에 위치할 수 있다. N 개의 심볼들은 앞서 설명된 바와 같이 더미 심볼들이거나 또는 L-SIG 반복에 의해 구성될 수도 있고, 또는 L-파트의 적어도 일부를 반복하여 하여 구성될 수도 있다. 예를 들어, N개의 심볼들은 L-파트에 포함된 L-LTF를 반복하여 구성될 수도 있다.
도 21은 본 발명의 다른 일 실시예에 따른 패킷 구별을 위한 PPDU 구조를 도시한다.
예를 들어 패킷 구별을 위해 3 심볼들이 사용되는 경우 3개의 심볼들은 도 21과 같이 설정될 수 있다.
2 심볼 케이스와 유사하게 3 심볼 또한 L-SIG 및/또는 L-LTF가 반복되어 구성될 수 있으며 3 심볼들에 대한 스크램블링은 생략될 수 있다.
3 심볼이 이용되는 경우에서도 11ax STA이 L-SIG의 Length field를 이용함으로써, 11ax STA이 WUR PPDU를 11ax PPDU로 잘못 판단하는 것을 줄일 수 있다.
이상의 설명에서의 PPDU에 대한 구별은 WUR PPDU에 한정되지 않으며 다른 새로운 PPDU 포맷에 대해서도 적용될 수 있다. 예컨대, 특정 PPDU가 새롭게 정의될 때 새롭게 정의된 PPDU가 기존 PPDU로 오인되는 것을 방지하기 위하여 앞서 언급된 방안들이 사용될 수도 있다.
도 22는 본 발명의 일 실시예에 따른 PPDU 송수신 방법의 흐름을 도시한다.
도 22를 참조하면, STA은 L-STF(legacy-short training field), L-LTF(legacy-long training field) 및 L-SIG(legacy-signal field)를 포함하는 L-파트를 설정한다(2205). STA은 AP(access point) STA이거나 또는 Non-AP STA일 수 있다.
STA은 자신이 송신하고자 하는 PPDU가 소정의 포맷에 해당하는 경우, 패킷 구별(classification)을 위하여 L-SIG 다음에 위치한 N개의 연속하는 심볼들을 BPSK(binary phase shift keying) 변조한다(2210). 일 예로, N은 2 또는 3에 해당할 수 있다.
STA은 L-파트 및 BPSK 변조된 N개의 심볼들을 포함하는 PPDU를 송신한다(2215).
일 예로, 소정의 포맷의 PPDU는 WUR(wake up radio) PPDU에 해당할 수 있다. WUR PPDU는 동기화를 위한 WUR 프리앰블을 더 포함할 수 있다. WUR PPDU에 포함된 L-SIG 및 패킷 구별을 위한 N개의 심볼들은 PCR (primary connectivity radio) 대역 전체를 통해서 송신될 수 있다. WUR 프리앰블은 상기 PCR 대역의 일부 톤(tone)들을 통해서 송신될 수 있다.
패킷 구별을 위한 N개의 심볼들은 더미(dummy) 심볼들에 해당하거나 또는 L-SIG를 반복한 것일 수 있다.
STA은 패킷 구별을 위한 N개의 심볼들에 대하여 스크램블링을 건너뛸 수 있다.
도 23은 상술한 바와 같은 방법을 구현하기 위한 장치를 설명하기 위한 도면이다.
도 23의 무선 장치(100)은 상술한 설명의 특정 STA, 그리고 무선 장치(850)은 상술한 설명의 AP에 대응할 수 있다.
STA (100)은 프로세서(110), 메모리(120), 송수신기(130)를 포함할 수 있고, AP (150)는 프로세서(160), 메모리(170) 및 송수신기(180)를 포함할 수 있다. 송수신기(130 및 180)은 무선 신호를 송신/수신하고, IEEE 802.11/3GPP 등의 물리적 계층에서 실행될 수 있다. 프로세서(110 및 160)은 물리 계층 및/또는 MAC 계층에서 실행되고, 송수신기(130 및 180)와 연결되어 있다. 프로세서(110 및 160)는 상기 언급된 UL MU 스케줄링 절차를 수행할 수 있다.
프로세서(110 및 160) 및/또는 송수신기(130 및 180)는 특정 집적 회로(application-specific integrated circuit, ASIC), 다른 칩셋, 논리 회로 및/또는 데이터 프로세서를 포함할 수 있다. 메모리(120 및 170)은 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 유닛을 포함할 수 있다. 일 실시 예가 소프트웨어에 의해 실행될 때, 상기 기술한 방법은 상기 기술된 기능을 수행하는 모듈(예를 들어, 프로세스, 기능)로서 실행될 수 있다. 상기 모듈은 메모리(120, 170)에 저장될 수 있고, 프로세서(110, 160)에 의해 실행될 수 있다. 상기 메모리(120, 170)는 상기 프로세스(110, 160)의 내부 또는 외부에 배치될 수 있고, 잘 알려진 수단으로 상기 프로세스(110, 160)와 연결될 수 있다.
STA의 송수신기(130)은 송신기(미도시) 및 수신기(미도시)를 포함할 수 있다. STA의 수신기는, 주 연결 라디오(e.g., IEEE 802.11 a/b/g/n/ac/ax 등 무선 랜) 신호를 수신하기 위한 주 연결 라디오 수신기 및 WUR 신호를 수신하기 위한 WUR 수신기를 포함할 수 있다. STA의 송신기는, 주 연결 라디오 신호를 송신하기 위한 주 연결 라디오 송신기를 포함할 수 있다.
AP의 송수신기(180)은 송신기(미도시) 및 수신기(미도시)를 포함할 수 있다. AP의 송신기는 OFDM 송신기에 해당할 수 있다. AP는 OFDM 송신기를 재사용하여 WUR 페이로드를 OOK 방식으로 송신할 수 있다. 예컨대, 앞서 설명된 바와 같이 AP는 OFDM 송신기를 통해 WUR 페이로드를 OOK 변조할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 상술한 설명으로부터 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 IEEE 802.11을 비롯한 다양한 무선 통신 시스템에 적용될 수 있다.

Claims (14)

  1. 무선 랜(WLAN) 시스템에서 스테이션(STA)이 PPDU (physical layer protocol data unit)를 송신하는 방법에 있어서,
    L-STF(legacy-short training field), L-LTF(legacy-long training field) 및 L-SIG(legacy-signal field)를 포함하는 L-파트를 설정하는 단계;
    상기 STA이 송신하고자 하는 PPDU가 소정의 포맷에 해당하는 경우, 패킷 구별(classification)을 위하여 상기 L-SIG 다음에 위치한 N개의 연속하는 심볼들을 BPSK(binary phase shift keying) 변조하는 단계; 및
    상기 L-파트 및 상기 BPSK 변조된 N개의 심볼들을 포함하는 상기 PPDU를 송신하는 단계를 포함하는, PPDU 송신 방법.
  2. 제 1 항에 있어서,
    상기 소정의 포맷의 PPDU는 WUR(wake up radio) PPDU에 해당하는, PPDU 송신 방법.
  3. 제 2 항에 있어서,
    상기 WUR PPDU는 동기화를 위한 WUR 프리앰블을 더 포함하고,
    상기 WUR PPDU에 포함된 L-SIG 및 패킷 구별을 위한 N개의 심볼들은 PCR (primary connectivity radio) 대역 전체를 통해서 송신되고,
    상기 WUR 프리앰블은 상기 PCR 대역의 일부 톤(tone)들을 통해서 송신되는, PPDU 송신 방법.
  4. 제 1 항에 있어서,
    상기 패킷 구별을 위한 N개의 심볼들은 더미(dummy) 심볼들에 해당하거나 또는 상기 L-SIG를 반복한 것인, PPDU 송신 방법.
  5. 제 4 항에 있어서,
    상기 STA은 상기 패킷 구별을 위한 N개의 심볼들에 대하여 스크램블링을 건너뛰는, PPDU 송신 방법.
  6. 제 1 항에 있어서,
    상기 N은 2 또는 3에 해당하는, PPDU 송신 방법.
  7. 제 1 항에 있어서,
    상기 STA은 AP(access point) STA이거나 또는 Non-AP STA인, PPDU 송신 방법.
  8. 무선 랜(WLAN) 시스템에서 PPDU (physical layer protocol data unit)를 송신하는 스테이션(STA)에 있어서,
    L-STF(legacy-short training field), L-LTF(legacy-long training field) 및 L-SIG(legacy-signal field)를 포함하는 L-파트를 설정하고, 상기 STA이 송신하고자 하는 PPDU가 소정의 포맷에 해당하는 경우, 패킷 구별(classification)을 위하여 상기 L-SIG 다음에 위치한 N개의 연속하는 심볼들을 BPSK(binary phase shift keying) 변조하는 프로세서 및
    상기 프로세서의 제어에 다라서 상기 L-파트 및 상기 BPSK 변조된 N개의 심볼들을 포함하는 상기 PPDU를 송신하는 송신기를 포함하는, 스테이션.
  9. 제 8 항에 있어서,
    상기 소정의 포맷의 PPDU는 WUR(wake up radio) PPDU에 해당하는, 스테이션.
  10. 제 8 항에 있어서,
    상기 WUR PPDU는 동기화를 위한 WUR 프리앰블을 더 포함하고,
    상기 WUR PPDU에 포함된 L-SIG 및 패킷 구별을 위한 N개의 심볼들은 PCR (primary connectivity radio) 대역 전체를 통해서 송신되고,
    상기 WUR 프리앰블은 상기 PCR 대역의 일부 톤(tone)들을 통해서 송신되는, 스테이션.
  11. 제 8 항에 있어서,
    상기 패킷 구별을 위한 N개의 심볼들은 더미(dummy) 심볼들에 해당하거나 또는 상기 L-SIG를 반복한 것인, 스테이션.
  12. 제 11 항에 있어서,
    상기 프로세서는 상기 패킷 구별을 위한 N개의 심볼들에 대하여 스크램블링을 건너뛰는, 스테이션.
  13. 제 8 항에 있어서,
    상기 N은 2 또는 3에 해당하는, 스테이션.
  14. 제 8 항에 있어서,
    상기 STA은 AP(access point) STA이거나 또는 Non-AP STA인, 스테이션.
PCT/KR2018/004505 2017-04-26 2018-04-18 무선 랜 시스템에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치 WO2018199544A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18790385.1A EP3609146B1 (en) 2017-04-26 2018-04-18 Method for transmitting or receiving frame in wireless lan system and apparatus therefor
CN201880035498.1A CN110692221B (zh) 2017-04-26 2018-04-18 在无线lan系统中发送或接收帧的方法和用于该方法的设备
US16/609,169 US11088879B2 (en) 2017-04-26 2018-04-18 Method for transmitting or receiving frame in wireless LAN system and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762490035P 2017-04-26 2017-04-26
US62/490,035 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018199544A1 true WO2018199544A1 (ko) 2018-11-01

Family

ID=63919050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004505 WO2018199544A1 (ko) 2017-04-26 2018-04-18 무선 랜 시스템에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US11088879B2 (ko)
EP (1) EP3609146B1 (ko)
CN (1) CN110692221B (ko)
WO (1) WO2018199544A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184787A1 (ko) * 2019-03-08 2020-09-17 엘지전자 주식회사 무선랜 시스템에서 ppdu를 송신하는 방법 및 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589309B2 (en) * 2018-01-12 2023-02-21 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
CN114258114A (zh) * 2020-09-22 2022-03-29 展讯通信(上海)有限公司 一种数据传输方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026769A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 dcm 방식으로 신호를 전송하는 방법 및 이를 위한 장치
US20170094600A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Apparatus, system and method of communicating a wakeup packet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596763B2 (en) 2005-10-24 2009-09-29 International Business Machines Corporation Automatic 3D object generation and deformation for representation of data files based on taxonomy classification
US8681757B2 (en) * 2009-11-09 2014-03-25 Lg Electronics Inc. Method and apparatus for transmitting PLCP frame in wireless local area network system
US8824441B2 (en) * 2011-05-12 2014-09-02 Electronics And Telecommunications Research Institute Method for transmitting data frame in wireless local area network and apparatus for the same
US8830815B2 (en) * 2011-05-19 2014-09-09 Qualcomm Incorporated Preamble design for television white space transmissions
WO2013073921A1 (ko) * 2011-11-18 2013-05-23 엘지전자 주식회사 무선랜 시스템에서 데이터 유닛을 전송하는 방법 및 이를 지원하는 장치
KR20160083868A (ko) * 2013-11-07 2016-07-12 엘지전자 주식회사 무선랜에서 멀티 유저 상향링크 수신 방법 및 장치
EP3082283A4 (en) * 2013-12-14 2017-08-30 LG Electronics Inc. Method and device for transferring data from wireless lan to plurality of stas
US9755795B2 (en) * 2013-12-18 2017-09-05 Huawei Technologies Co., Ltd. System and method for WLAN OFDMA design of subcarrier groups and frame format
KR20160019383A (ko) * 2014-08-11 2016-02-19 뉴라컴 인코포레이티드 고효율 무선랜의 물리계층 프로토콜 데이터 유닛 포맷
KR20160026749A (ko) * 2014-08-28 2016-03-09 뉴라컴 인코포레이티드 프레임 전송 방법 및 프레임 수신 방법
US9906391B2 (en) * 2014-09-16 2018-02-27 Qualcomm Incorporated Methods and apparatus for packet acquisition in mixed-rate wireless communication networks
CN105120520B (zh) * 2015-07-17 2019-04-19 魅族科技(中国)有限公司 无线局域网络中数据传输的方法和设备
US10485029B2 (en) * 2017-03-07 2019-11-19 Futurewei Technologies, Inc. System and method for collision detection and mitigation with wake-up packets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026769A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 dcm 방식으로 신호를 전송하는 방법 및 이를 위한 장치
US20170094600A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Apparatus, system and method of communicating a wakeup packet

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONGGUK LIM, LGE ET AL.: "WUR Frame Structure Follow-up", IEEE 802.1 1-17/352R1, 12 March 2017 (2017-03-12), pages 1 - 15, XP068115409 *
JEONGKI KIM (LG ELECTRONICS): "WUR MAC Issues Follow-up", IEEE 802.11-17/0381R0, 11 March 2017 (2017-03-11), pages 1 - 20, XP068115464, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/17/11-17-0381-01-00ba-wur-mac-issues-follow-up.pptx> *
JOHN SON (WILUS): "WUR Signaling Field", IEEE 802.11-17/0049R0, 16 January 2017 (2017-01-16), pages 1 - 9, XP068112453, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/17/11-17-0049-00-00ba-wur-signaling-field.pptx> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184787A1 (ko) * 2019-03-08 2020-09-17 엘지전자 주식회사 무선랜 시스템에서 ppdu를 송신하는 방법 및 장치

Also Published As

Publication number Publication date
EP3609146A1 (en) 2020-02-12
EP3609146B1 (en) 2021-02-24
US11088879B2 (en) 2021-08-10
CN110692221A (zh) 2020-01-14
US20200099556A1 (en) 2020-03-26
EP3609146A4 (en) 2020-03-18
CN110692221B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2018070820A1 (ko) 무선랜 시스템에서 웨이크 업 패킷을 송수신하는 방법 및 이를 위한 장치
WO2018062787A1 (ko) 무선랜 시스템에서 웨이크 업 수신기를 운용하는 방법 및 이를 위한 장치
WO2018074740A1 (ko) 무선랜 시스템에서 웨이크 업 신호를 송수신하는 방법 및 이를 위한 장치
WO2017074024A1 (ko) 무선랜 시스템에서 nav를 업데이트하는 방법 및 이를 위한 장치
WO2018097679A1 (ko) 무선 랜 시스템에서 웨이크 업 라디오 패킷을 송신 또는 수신하는 방법 및 이를 위한 장치
WO2017057990A1 (ko) 무선랜 시스템에서 다중 bss를 지원하는 방법 및 이를 위한 장치
WO2018066955A1 (ko) 무선랜 시스템에서 프레임을 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2018093132A1 (ko) 무선 랜 시스템에서 채널 정보를 보고하는 방법 및 이를 위한 장치
WO2018062739A1 (ko) 무선랜 시스템에서 웨이크 업 신호를 송수신하는 방법 및 이를 위한 장치
WO2018106006A1 (ko) 무선 랜 시스템에서 웨이크 업 라디오 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치
WO2016039534A1 (ko) 무선 통신 시스템에서 스테이션이 신호를 수신하는 방법 및 장치
WO2018128497A1 (ko) 무선랜 시스템에서 채널 엑세스 방법 및 이를 위한 장치
WO2019088732A1 (ko) 무선 랜에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치
WO2016182412A1 (ko) 무선랜 시스템에서 프레임을 송수신하는 방법 및 이를 위한 장치
WO2016200020A1 (ko) 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2017086730A1 (ko) 무선 랜 시스템에서 전력 저감 모드로 동작하는 방법 및 이를 위한 장치
WO2019050135A1 (ko) 무선 랜 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019022506A1 (ko) 무선 랜에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019074249A1 (ko) 무선 랜 시스템에서 프레임을 송신하는 방법 및 이를 위한 장치
WO2019009683A1 (ko) 무선 랜에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019088645A1 (ko) 무선 랜 시스템에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019004741A1 (ko) 무선 랜 시스템에서 프레임을 송신 또는 수신하는 방법 및 이를 위한 장치
WO2017018615A1 (ko) 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2017022897A1 (ko) 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2016182415A1 (ko) 무선랜 시스템에서 전력 저감 모드로 동작하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790385

Country of ref document: EP

Effective date: 20191105