WO2018199456A1 - 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법 - Google Patents

집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법 Download PDF

Info

Publication number
WO2018199456A1
WO2018199456A1 PCT/KR2018/002234 KR2018002234W WO2018199456A1 WO 2018199456 A1 WO2018199456 A1 WO 2018199456A1 KR 2018002234 W KR2018002234 W KR 2018002234W WO 2018199456 A1 WO2018199456 A1 WO 2018199456A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
solar
support part
support
water pipe
Prior art date
Application number
PCT/KR2018/002234
Other languages
English (en)
French (fr)
Inventor
김효진
정구락
김왕기
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to CN201880002699.1A priority Critical patent/CN109417105B/zh
Publication of WO2018199456A1 publication Critical patent/WO2018199456A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a complex power generation system and a power generation method that can be used simultaneously with solar light and solar heat, and more particularly, to an invention using a condensing and flat hybrid solar cell.
  • the installed capacity of such solar cell module reaches about 30GW by 2010 and is expected to reach 100GW by 2020.
  • domestic demand for solar cell modules is about 100MW a year, and electricity production capacity using solar cell modules reaches about 1GW. Given this situation at home and abroad, the solar industry is expected to continue to grow in the future.
  • a power generation device using solar energy there is a solar power generation device that converts sunlight into electrical energy, and a solar power device that collects solar energy into a heat collecting device and then uses the solar power device for heating or hot water.
  • the photovoltaic device does not consume fossil fuels and does not generate noise and pollution, unlike existing power generation facilities such as thermal power or nuclear power.
  • existing power generation facilities such as thermal power or nuclear power.
  • solar power generation does not require large-scale power generation facilities, it has an advantage that it can be used for home use.
  • the power generation technology using solar heat is at the level of producing electricity by collecting solar heat to produce hot water or by collecting the solar heat with a large-scale heat collecting system and rotating the engine.
  • a solar cell is a kind of semiconductor that converts sunlight into electrical energy using a photovoltaic effect, it can be largely divided into crystalline silicon solar cells, thin film solar cells and condensing solar cells.
  • crystalline silicon solar cells are made of silicon agglomerates, and are classified into a single crystal form and a polycrystalline form according to a method of manufacturing a silicon agglomerate.
  • Silicon chunks are basically used in solar cells as pn homojunctions.
  • Single crystal is a high-quality material with high purity and low crystal defect density, which can achieve high efficiency but is expensive, and polycrystalline material is produced as an efficient battery that can be commercialized by treating a relatively low-cost material with an inexpensive process, Inexpensive but relatively low efficiency.
  • the theoretical maximum efficiency of crystalline silicon solar cells is about 25% and has already been reported to be near this limit at the laboratory level.
  • cells produced for mass production using monocrystalline or polycrystalline wafers show approximately 14% to 17% efficiency. At this time, the conversion efficiency 100% means that the power production of 1KW in the width of 1m 2 .
  • Thin film solar cells are fabricated by coating a semiconductor film on a low cost substrate such as glass, stainless steel or plastic.
  • Thin-film solar cells have the advantage of using less materials and automating the module process compared to crystalline silicon cells, but they have the disadvantages of low efficiency and lack of empirical research on the life of the module. There are still technical difficulties in mass production of thin film solar cells, and thus, thin film solar cells are not competitive in price compared to crystalline silicon.
  • the solar cell using a group 3-5 compound has the advantage of having a high efficiency of about 45%, but since the expensive material is used, it is not mass produced in large areas. Therefore, in using the solar cell using a group 3-5 compound, the method of improving efficiency using a lens is used.
  • Condensing solar cells focus a large area of light onto the solar cell using a Fresnel lens or reflector. Condensing solar cells have the advantage of lowering the system cost by reducing the size of the solar cells for the same area.
  • condensing type solar cells have disadvantages such as difficulty in utilizing scattered light when increasing the condensing degree, having to always check the direction of the sun using a tracking device, and requiring a cooling device.
  • the blue sky is only about 100 days a year, and the light-converging system is not suitable for its operation because it does not fully function.
  • the light concentrating solar cell has a problem in that the inverter operation is stopped when the amount of direct solar radiation suddenly decreases due to a cloud or the like when inverting to an alternating current using an inverter.
  • the present embodiment has an object to provide a photovoltaic and solar thermal power generation system and a power generation method having a high efficiency.
  • the light concentrating type and flat type hybrid solar cells include a first solar cell including a flat type solar cell, a second solar cell including a condensing type solar cell, and the first solar cell is configured.
  • the first support portion, the second support portion composed of the second solar cell, the lens portion formed on the upper side of the second solar cell, the first support portion and the second support portion are formed in different positions. It is done.
  • the first solar cell comprises a plurality of first solar cell module, the plurality of first solar cell module is characterized in that it comprises a silicon-based solar cell.
  • the second solar cell comprises a plurality of second solar cell module, the plurality of second solar cell module is a solar cell comprising a compound of Group 3-5 do.
  • the reflector in order to increase the light collecting efficiency, further includes a reflector, and the focus of the reflector is characterized in that the plurality of second solar cell modules.
  • the lens unit is characterized in that it is composed of any one of a Fresnel lens, a spherical lens, a ball lens.
  • the method of condensing is a point condensing method in which the focus of the lens is condensed at one point and the condensing solar cell is condensed at one point, and the condensing is condensed in one line and the solar cells are arranged on the line. It is characterized by the light form.
  • the solar and solar combined cycle power generation system includes a hybrid solar cell
  • the hybrid solar cell includes a first solar cell, a condensed solar cell comprising a flat panel solar cell
  • a second solar cell including a first support part configured with the first solar cell, a second support part configured with the second solar cell, and a lens part configured on an upper side of the second support part;
  • the first support part is coupled to the first water pipe part
  • the second support part is coupled to the second water pipe part
  • the first support part and the second support part are formed at different positions.
  • the solar and solar combined cycle power generation system comprises a solar cell;
  • the solar cell may include a first solar cell including a flat panel solar cell, a first support part including the first solar cell, a second support part formed at different positions from the first support part, and the second support part;
  • An upper portion of the second support portion includes a lens portion configured; The first support portion is coupled to the first water pipe portion, and the second support portion is coupled to the second water pipe portion.
  • the lens portion is characterized in that the distance to the second support portion is adjusted.
  • the first support and the second support is characterized in that the thermal insulation by the heat insulating portion, respectively.
  • the solar light and the solar thermal power generation method is the step of generating sunlight to the first flat solar cell is configured on the first support, the second support is configured on the Generating photovoltaic cells with a second condensing solar cell;
  • the heat generated from the first solar cell is transferred to the refrigerant (water, antifreeze, etc.) flowing into the water pipe part, enters the water pipe attached to the second solar cell connected again, and receives additional heat generated from the second solar cell. It characterized in that it comprises the step of heating the water inside the water pipe.
  • the light concentrating type and the flat type solar cells are configured as a hybrid, thereby compensating each of the disadvantages and using only the advantages.
  • the area of the flat-panel solar cell and the III-V solar cell receive light without condensing, and by heating the water pipe part using solar heat, There is an advantage to use the heated liquid by heating the liquid in the tube.
  • FIG. 1 is a view showing the structure of a conventional focusing solar cell.
  • FIG. 2 is a view showing the structure of a conventional flat panel solar cell.
  • FIG. 3 is a view showing the structure of a solar photovoltaic composite power generation apparatus using a conventional flat panel solar cell.
  • Figure 4 is a view showing the structure of a solar photovoltaic composite generator using a conventional condensing solar cell.
  • FIG. 5 is a cross-sectional view of a first embodiment of a photovoltaic solar power generator using a hybrid solar cell according to an embodiment of the present invention.
  • FIG. 6 is a view showing the structure of the first support and the second support according to an embodiment of the present invention.
  • FIG. 7 is a top view of a first embodiment of a photovoltaic solar thermal power generation apparatus using a hybrid solar cell according to an embodiment of the present invention.
  • FIG 8 is a top view of a first embodiment of a reflector according to an embodiment of the present invention.
  • FIG. 9 is a top view of a second embodiment of a solar photovoltaic composite power generation apparatus using a hybrid solar cell according to an embodiment of the present invention.
  • FIG. 10 is a perspective view of a second embodiment of the reflector according to an embodiment of the present invention.
  • FIG. 11 is a top view of a third embodiment of a photovoltaic solar thermal power plant according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a view showing the structure of a conventional focusing solar cell.
  • FIG. 2 is a view showing the structure of a conventional flat panel solar cell.
  • FIG. 3 is a view showing the structure of a solar photovoltaic composite power generation apparatus using a conventional flat panel solar cell.
  • Conventional solar photovoltaic composite power generation apparatus using a flat panel solar cell is composed of a silicon-based solar cell in a flat plate type, and provided with a water tank containing water heated by solar heat on the top, is heated by solar heat It has a structure that facilitates the flow of water.
  • Such a structure has an advantage in terms of cost because it uses an inexpensive silicon-based flat panel solar cell, but has a disadvantage in that efficiency is reduced by about 16% of solar efficiency and about 40% of solar efficiency.
  • FIG 4 is a view showing the structure of a solar photovoltaic composite generator using a conventional condensing solar cell.
  • Conventional photovoltaic solar composite power generation apparatus using a condensing solar cell has a high efficiency of about 30% in solar efficiency and about 50% in solar thermal efficiency because it uses a reflecting plate having a structure for condensing, but it is expensive, The disadvantage is that it only works in direct sunlight.
  • the present invention discloses a hybrid solar cell composed of a flat plate and a light collecting type at the same time.
  • FIG. 5 is a cross-sectional view of a first embodiment of a photovoltaic solar power generator using a hybrid solar cell according to an embodiment of the present invention.
  • the photovoltaic solar power generator 100 using the hybrid solar cell may include a first solar cell 110, a second solar cell 120, and a lens unit 130.
  • the first support part 140, the second support part 150, the water pipe parts 161 and 162, the reflector 170, and the heat insulating part 180 are included.
  • the photovoltaic solar power generator 100 may further include a pump (not shown) and a controller (not shown).
  • the first solar cell 110 may be configured as a flat panel solar cell.
  • the first solar cell may be composed of at least one of Si-based solar cell, CIGS solar cell, organic solar cell, dye-sensitized solar cell, perovskite and CdTe.
  • the first solar cell 110 may be composed of a plurality of first solar cell modules.
  • first solar cell 110 is composed of a plurality of first solar cell modules, there is an advantage that can be applied to a system of various sizes.
  • the first solar cell 110 is coupled to the top surface of the plurality of first support parts 140.
  • the first solar cell module may be formed over the entire surface of the first support 140, and may be formed in a larger area than the first support 140.
  • the second solar cell 120 is a condensing solar cell, and may be composed of a group 3-5 compound-based solar cell.
  • a plurality of second solar cell modules 121 may be arranged to constitute the second solar cell 120.
  • the second solar cell module 121 may be supported by the plurality of second support parts 150.
  • the second solar cell module 121 may include a substrate on a lower surface thereof, and the substrate may be made of a material having good thermal conductivity.
  • the plurality of first support parts 140 and the second support part 150 may be formed at different heights, the plurality of first support parts 140 may be disposed at predetermined intervals, and the plurality of first support parts ( Between the predetermined intervals of 140, the second support 150 may be disposed.
  • the reason for arranging the support parts 140 and 150 as described above is to allow the hybrid solar cell to operate at maximum efficiency and to improve the convection of the water inside the heated water pipe parts 161 and 162.
  • the second support part 150 is disposed such that at least a part thereof is drawn out in a space formed within a predetermined interval of the plurality of first support parts 140.
  • the second support part 150 may be disposed to include only one second solar cell module 121 and may be disposed to be long in the longitudinal direction along the water pipe part.
  • the lens unit 130 may be disposed above the second solar cell 120.
  • the lens unit 130 may be disposed in the form for point condensation (first embodiment) and in the form for line condensation (second embodiment).
  • the lens unit 130 may be configured of a plurality of lenses, and the lens may be a Fresnel lens, a spherical lens, a ball lens, or the like.
  • the sunlight collected by the lens unit 130 is focused in a space formed within a predetermined interval of the first support unit 140.
  • the sunlight will be focused on the second solar cell module 121, and when the lens unit 130 for collecting light is disposed, the sunlight is the first support part. It will focus entirely on the space formed within a predetermined interval of 140.
  • the reflector 170 may have a circular cup shape, as shown in FIG. 8, and the lens unit 130 for precondensation may be disposed. In this case, the reflector 170 may have an elongated shape in the longitudinal direction, as shown in FIG. 10.
  • FIG. 10 is a perspective view of a second embodiment of the reflector according to an embodiment of the present invention.
  • a plurality of second solar cell modules 121 may be arranged in a line that is pre-condensed, and the spacing may be adjusted based on installation characteristics. Can be.
  • the water pipe part is divided into a first water pipe part 161 and a second water pipe part 162.
  • FIG. 6 is a view showing the structure of the first support and the second support according to an embodiment of the present invention.
  • the first water pipe part 161 may be positioned on a lower surface of the first support part 140 and may have a structure that is thermally coupled with the first support part 140.
  • the first support part 140 may have a structure in which the first water pipe part 161 may be inserted, or may have a structure in which the first water pipe part 161 is separately coupled to the first support part 140. It is preferable to have a structure in which the first water pipe part 161 is inserted in order to be thermally coupled, and a buffer 163 having a low thermal resistance may be inserted together in order to have a better thermal coupling.
  • the second water pipe part 162 may be positioned on a lower surface of the second support part 150 and may be implemented in the same structure as the first water pipe part 161.
  • the pump (not shown) supplies power so that water flows into the water pipe parts 161 and 162. Water flowing through the first water pipe part 161 may be discharged to the outside of the second water pipe part 162, but may be re-introduced into another first water pipe part through the second water pipe part 162.
  • a pump (not shown) provides power to allow water to flow back into each of the water pipe portions 161 and 162, and to re-introduce water from the second water pipe portion 162 to another first water pipe portion.
  • the controller controls the flow of water in the water pipes 161 and 162.
  • the controller includes a temperature sensor (not shown), and grasps the temperature of the water discharged to the second water pipe part 162. Depending on whether the temperature of the water discharged to the second water pipe portion 162 exceeds a preset reference value, the controller (not shown) may discharge the water discharged from the second water pipe portion 162 as it is, or another first water. Determine whether to reintroduce the tube. When the temperature of the water discharged to the second water pipe portion 162 exceeds a preset reference value, the water discharged to the second water pipe portion 162 has a low cooling effect while being sufficiently heated.
  • the controller (not shown) discharges the water discharged from the second water pipe 162 as it is.
  • the controller (not shown) re-injects the water discharged from the second water pipe part 162 to another first water pipe part.
  • control unit includes an optical sensor (not shown), and changes the reference value for controlling the flow of water in each of the water pipes (161, 162) according to the amount of light received.
  • the first and second solar cells 110 and 120 may generate power with high efficiency at the same time.
  • the second solar cell 120 may generate power with high efficiency. Accordingly, when the light reception amount of sunlight measured by the optical sensor (not shown) is a predetermined level or more, the controller (not shown) raises the reference value to a temperature at which the second solar cell 120 can operate.
  • the controller may set the reference value to 80 ° C, the temperature at which the second solar cell can operate.
  • the first solar cell 110 can generate power with high efficiency while the second The solar cell 120 generates power with low efficiency.
  • the controller raises the reference value only up to a temperature at which the first solar cell 110 can operate.
  • the reference value is set lower on a day on which the light reception amount is small compared to a day on which the light reception amount is large.
  • the controller may set the reference value to about 40 ° C. In this way, the controller (not shown) controls the solar solar power generator 100 to maintain the optimal cooling efficiency by appropriately setting the reference value according to the environment.
  • FIG. 7 is a top view of a first embodiment of a photovoltaic solar thermal power generation apparatus using a hybrid solar cell according to an embodiment of the present invention.
  • first water pipe portion 161 and the second water pipe portion 162 is connected to the end.
  • the first water pipe part 161 and the second water pipe part 162 connected to each other may be configured in one set, and each set may be configured in various forms on the installation structure. Further, each support may be made integral with each water pipe.
  • the following is a method for photovoltaic power generation using the hybrid solar cell proposed in the present invention.
  • the flat panel solar cell may have a certain level of power generation efficiency even if it is sunlight, not direct sunlight, but the focusing solar cell has very low efficiency because the focus of the solar light is not made.
  • the first and second solar cells 110 and 120 When direct sunlight is present, the first and second solar cells 110 and 120 simultaneously generate sunlight.
  • the second solar cell 120 generates power with high efficiency
  • the first solar cell 110 also generates power with high efficiency.
  • the first solar cell 110 and the second solar cell 120 generate power with high efficiency and emit high heat.
  • This heat is transferred to the first water pipe part 161 and the second water pipe part 162 to generate an effect of warming the water inside the water pipe part. That is, liquid such as a coolant introduced into the first water pipe part 161 (including water, which refers to all liquids that are easy to heat transfer) is generated in the first solar cell 110 while passing through the first water pipe part 161. It is primarily heated by the heat, and is further heated while passing through the second water pipe part 162.
  • the first water pipe part 161 and the second water pipe part 162 may circulate the liquid without a separate pump by the height difference.
  • the heated liquid may be provided to another external power generation device so that separate power generation is made, or may be provided for heating.
  • the first and second solar cells 110 and 120 generate photovoltaic power using direct sunlight, and at the same time, the first and second solar cells 110 and 120 cannot convert the electricity into electricity.
  • Solar heat heats the liquid in the water pipe.
  • the first water pipe part 161 and the second water pipe part 162 may include a heat insulating part therebetween, and each water pipe part may have heat as well as possible by the heat insulating part.
  • the controller (not shown) sets a relatively high reference value to determine whether the temperature of the water discharged from the second water pipe part 162 exceeds the set reference value.
  • the controller (not shown) discharges the water discharged from the second water pipe portion 162 as it is, and from the second water pipe portion 162. If the temperature of the water discharged does not exceed the set reference value, the controller (not shown) re-injects the water discharged from the second water pipe 162 to another first water pipe.
  • the lens unit 130 may be adjusted in height with the second solar cell 120.
  • the height of the lens unit 130 and the second solar cell 120 is adjusted, there is an advantage that the amount of energy of sunlight and solar heat can also be adjusted.
  • the controller may control the flow of water discharged from the second water pipe part 162, such as clear weather. However, unlike the case of clear weather, the controller (not shown) sets and controls a relatively low reference value.
  • FIG. 11 is a top view of a third embodiment of a photovoltaic solar thermal power plant according to an embodiment of the present invention.
  • the solar photovoltaic composite generator shown in FIG. 11 has the same configuration as that of the second embodiment except that the second solar cell 120 is not provided.
  • the first and second embodiments of the solar photovoltaic composite power generator have a structure in which the water of the second water pipe part 162 is heated by heat generated in the second solar cell 120 or heat collected around it. .
  • the third embodiment of the solar solar power generator has a structure in which the heat of sunlight collected by the reflector 170 does not directly heat the second water pipe 162 without the second solar cell 120. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법을 개시한다. 본 발명의 일 측면에 의하면, 집광형 및 평판형 하이브리드 태양전지는 평판형 태양전지를 포함하는 제1 태양전지, 집광형 태양전지를 포함하는 제2 태양전지, 상기 제1 태양전지가 구성되어 있는 제1 지지부, 상기 제2 태양전지가 구성되어 있는 제2 지지부, 상기 제2 태양전지의 상측에는 구성되어 있는 렌즈부, 상기 제1 지지부와 상기 제2 지지부는 서로 다른 위치에 형성되어 있는 집광형 및 평판형 하이브리드 태양전지를 제공한다.

Description

집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법
본 발명은 태양광 및 태양열 동시에 이용할 수 있는 복합발전시스템 및 발전방법에 관한 것으로, 특히 집광형 및 평판형 하이브리드 태양전지를 이용하는 발명에 관한 것이다.
최근 들어, 전통적인 화석연료의 매장량이 줄어들고 화석연료로 인한 환경오염이 심각해지면서, 친환경적인 대체 에너지의 활용에 관심이 증가하고 있다. 특히, 태양광을 이용한 태양전지모듈은 오랜 연구를 거치며 축적된 기술로 인해 향후 전통적인 에너지를 대체할 가장 유력한 대체에너지로 각광받고 있다.
이러한 태양전지모듈의 설치용량은 2010년까지 약 30GW에 이르고 있으며, 2020년에는 100GW에 이를 것으로 전망된다. 또한, 국내에서는 태양전지모듈에 관한 수요가 1년에 약 100MW 정도 발생하고 있으며, 태양전지모듈을 이용한 전기 생산 능력은 약 1GW에 달하고 있다. 이러한 국내외 상황을 감안할 때, 태양광 산업은 향후 지속적으로 성장할 것으로 예상된다.
태양에너지를 이용하는 발전 장치로는 태양광을 전기에너지로 변환하는 태양광 발전장치와, 태양에너지를 집열장치로 집열한 후에 난방용 또는 온수용으로 사용할 수 있도록 하는 태양열 장치가 있다.
이 중에서 태양광 발전장치는, 화력이나 원자력 같은 기존 발전설비와 달리, 화석 연료를 소모하지 않으며, 소음과 공해를 발생시키지 않는 장점을 갖는다. 또한, 태양광 발전은 대규모 발전설비를 필요로 하지 않기 때문에, 가정용으로 설치 사용될 수 있는 장점을 갖는다.
최근, 독일, 일본, 미국 등 선진국에서는 태양광 발전기술을 널리 사용하고 있으며, 국내에서도 대체에너지 이용 보급 촉진법이 개정, 공표됨으로써 태양광 발전 10,000호 건설과 같은 구체적인 시행계획들이 현실화되고 있다.
또한, 종래의 경우, 태양에너지를 이용함에 있어 태양광과 태양열은 각기 다른 에너지 변환기구에 의해 전기로 변환되어 사용되었다. 특히 태양열을 이용하는 발전기술은 태양열을 집열하여 생활온수를 생산하거나, 대단위의 집열시스템으로 태양열을 집열하여 엔진을 회전시킴으로써 전력을 생산하는 수준에 머물러 있는 실정이다.
따라서, 태양광과 태양열을 직접적으로 전기화할 수 있을 뿐만 아니라, 이들을 복합적으로 전기화함으로써 태양에너지의 전기화 효율을 종래에 비해 25%이상 향상시킬 수 있는 장치의 개발이 절실히 요구되고 있다.
한편, 태양전지는 광기전력 효과(Photovoltaic Effect)를 이용하여 태양광을 전기에너지로 바꿔주는 일종의 반도체로서, 크게 결정질 실리콘 태양전지, 박막 태양전지 및 집광형 태양전지로 구분될 수 있다.
이 중, 결정질 실리콘 태양전지는 실리콘 덩어리로 제작되며, 실리콘 덩어리의 제조 방법에 따라 단결정(single crystal) 형태와 다결정(polycrystalline) 형태로 구분된다. 실리콘 덩어리는 기본적으로 p-n 동종접합(homojunction)으로서 태양전지에 사용된다. 단결정은 순도가 높고 결정결함밀도가 낮은 고품질의 재료로서, 높은 효율을 달성할 수 있으나 고가이고, 다결정 재료는 상대적으로 저급한 재료를 저렴한 공정으로 처리하여 상용화가 가능한 정도의 효율의 전지로 생산되므로, 저렴하나 상대적으로 낮은 효율을 갖는다. 결정질 실리콘 태양전지의 이론적 최대 효율은 약 25%이며, 이미 실험실 수준에서는 이 한계치에 가까운 효율을 갖는 것으로 보고된 바 있다. 하지만 단결정 또는 다결정 웨이퍼를 사용하며 양산용으로 제작되는 셀의 효율은 대략 14% ~ 17%를 보이고 있다. 이때, 변환효율 100%는 1m2의 너비에서 1KW의 전력생산을 하는 것을 의미한다.
한편, 태양광 발전에 있어서 가장 장애요인이 되는 것은 과도한 투자비용으로, 다른 화석원료를 사용한 상업용 발전에 비해 경제성이 떨어지는 점이다. 이러한 효율 대비 고가의 태양전지 가격을 낮추기 위하여 등장한 것이 대표적으로 박막 태양전지와 집광형 태양전지이다.
박막 태양전지는 유리, 스테인리스 강 또는 플라스틱과 같은 저가의 기판에 반도체 막을 코팅하여 제작된다. 박막 태양전지는 결정질 실리콘 전지에 비해 소재를 적게 사용하고 자동화를 통해 모듈 공정까지 일관화할 수 있다는 장점을 갖지만, 대체로 효율이 낮고 모듈의 수명에 관한 실증 연구가 부족하다는 단점을 가지고 있다. 박막 태양전지를 양산하기에는 아직까지 기술적 어려움을 갖고 있어, 박막 태양전지는 결정질 실리콘에 비하여 가격 경쟁력을 갖추고 있지 않은 상태이다.
또한, 3-5족 화합물을 이용한 태양전지는 약 45%의 높은 효율을 갖는 장점은 있지만, 고가의 재료가 사용되기 때문에, 대면적으로는 양산되고 있지 않은 실정이다. 이에 따라, 3-5족 화합물을 이용한 태양전지를 사용함에 있어, 렌즈를 이용하여 효율을 높이는 방법이 이용되고 있다.
집광형 태양전지는 프레넬 렌즈나 반사경을 이용하여 넓은 면적의 빛을 태양전지에 집중시키는 방식으로, 대체로 수배 ~ 수백배 정도로 빛을 집광한다. 집광형 태양전지는 동일한 면적에 대하여 태양전지의 크기를 감소시킴으로써, 시스템 가격을 낮출 수 있는 장점을 갖는다. 다만, 집광형 태양전지는 집광도를 높일 경우 산란광을 활용하기 어렵다는 점, 추적 장치를 이용해 항상 태양의 방향을 확인해야 한다는 점 및 냉각장치를 요한다는 점 등의 단점을 갖는다. 특히, 국내 기후에서는 구름 생성으로 인해 청명일이 연간 약 100일 정도에 불과하여 집광형 시스템이 그 기능을 충분히 발휘하지 못하여 작동에 적합하지 못하다. 더구나, 집광형 태양전지는 인버터를 이용하여 교류로 반전함에 있어서, 구름 등으로 인해 직달 일사량이 급감하는 경우, 인버터 작동이 멈추는 현상이 발생하는 등의 문제점을 갖는다.
본 실시예는 높은 효율을 갖는 태양광 및 태양열 복합발전 시스템 및 발전방법을 제공하는 데 일 목적이 있다.
본 발명의 일 측면에 의하면, 집광형 및 평판형 하이브리드 태양전지는 평판형 태양전지를 포함하는 제1 태양전지, 집광형 태양전지를 포함하는 제2 태양전지, 상기 제1 태양전지가 구성되어 있는 제1 지지부, 상기 제2 태양전지가 구성되어 있는 제2 지지부, 상기 제2 태양전지의 상측에는 구성되어 있는 렌즈부, 상기 제1 지지부와 상기 제2 지지부는 서로 다른 위치에 형성되어 있는 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 상기 제1 태양전지는 복수의 제1 태양전지 모듈을 포함하고, 상기 복수의 제1 태양전지 모듈은 실리콘 기반의 태양전지를 포함하는 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 상기 제2 태양전지는 복수의 제2 태양전지 모듈을 포함하고, 상기 복수의 제2 태양전지 모듈은 3-5족의 화합물을 포함하는 태양전지인 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 집광효율을 높이기 위해서, 반사경부를 더 포함하고, 상기 반사경부의 초점은 복수의 제2 태양전지 모듈인 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 상기 렌즈부는 프레넬렌즈, 구면렌즈, 볼렌즈 중 어느 하나로 구성된 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 집광의 방법은 렌즈의 초점이 한점으로 집광하고 그 점 위치에 집광 태양전지가 있는 점집광방식과 하나의 선으로 집광하고 그 선상에 태양전지들이 배열되어 있는 선집광 형태인 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 태양광 및 태양열 복합발전시스템은 상기 복합발전시스템은 하이브리드 태양전지를 포함하고, 상기 하이브리드 태양전지는 평판형 태양전지를 포함하는 제1 태양전지, 집광형 태양전지를 포함하는 제2 태양전지, 상기 제1 태양전지가 구성되어 있는 제1 지지부, 상기 제2 태양전지가 구성되어 있는 제2 지지부, 상기 제2 지지부의 상측에는 구성되어 있는 렌즈부를 포함하고; 상기 제1 지지부는 제1 수관부와 결합되어 있고, 상기 제2 지지부는 제2 수관부와 결합되어 있고, 상기 제1 지지부와 상기 제2 지지부는 서로 다른 위치에 형성되어 있는 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 태양광 및 태양열 복합발전시스템은 상기 복합발전시스템은 태양전지를 포함하고; 상기 태양전지는 평판형 태양전지를 포함하는 제1 태양전지, 상기 제1 태양전지가 구성되어 있는 제1 지지부, 상기 제1 지지부와 상기 제2 지지부는 서로 다른 위치에 형성되어 있는 제2 지지부, 상기 제2 지지부의 상측에는 구성되어 있는 렌즈부를 포함하고; 상기 제1 지지부는 제1 수관부와 결합되어 있고, 상기 제2 지지부는 제2 수관부와 결합되어 있는 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 상기 렌즈부는 상기 제2 지지부와의 거리가 조절되는 것을 특징으로 한다.
본 발명의 다른 일 측면에 의하면, 상기 제1 지지부와 제2 지지부는 단열부에 의해서 각각 단열되는 것을 특징으로 한다.
또한, 본 발명의 다른 일 측면에 의하면, 태양광 및 태양열 복합발전방법은 제1 지지부의 상부에 구성되어 있는 평판형 제1 태양전지로 태양광을 발전하는 단계, 제2 지지부의 상부에 구성되어 있는 집광형 제2 태양전지로 태양광을 발전하는 단계; 상기 제 1 태양전지에서 발생되는 열을 수관부 내부로 흐르는 냉매 (물, 부동액 등) 로 전달되어 나오고 다시 연결된 제 2 태양전지에 부착된 수관으로 들어가서 제2 태양전지에서 발생되는 열을 추가적으로 전달 받아 수관부 내부의 물을 가열하는 단계를 포함하는 것을 특징으로 한다.
이상에서 설명한 바와 같이 본 발명의 일 실시예에 의하면, 집광형 및 평판형 태양전지를 하이브리드로 구성하여, 각각의 단점을 보완하고, 장점만을 이용할 수 있는 장점이 있다.
본 발명의 일 실시예에 의하면, 태양광 태양열을 동시에 발전에 활용할 수 있는 장점이 있다.
본 발명의 일 실시예에 의하면, 직사광선이 비출 경우, 태양광을 이용하여 집광렌즈에 의하여 고효율의 집광셀로 전기를 생성함과 동시에, 태양열을 이용하여 냉매 등의 액체가 흐르는 수관부를 가열함으로써, 수관부 내 액체를 가열하여 가열된 액체를 이용할 수 있도록 하는 장점이 있다.
본 발명의 일 실시예에 의하면, 구름이 있어 직사광선이 형성되지 않을 경우, 집광없이 평판형 태양전지의 면적과 III-V 태양전지로 태양광을 수광하며, 태양열을 이용하여 수관부를 가열함으로써, 수관부 내 액체를 가열하여 가열된 액체를 이용할 수 있도록 하는 장점이 있다.
도 1은 종래의 집광형 태양전지의 구조를 도시한 도면이다.
도 2는 종래의 평판형 태양전지의 구조를 도시한 도면이다.
도 3은 종래의 평판형 태양전지를 이용한 태양광 태양열 복합발전장치의 구조를 도시한 도면이다.
도 4는 종래의 집광형 태양전지를 이용한 태양광 태양열 복합발전장치의 구조를 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 하이브리드 태양전지를 이용한 태양광 태양열 복합발전장치의 제1 실시예의 단면도이다.
도 6은 본 발명의 일 실시예에 따른 제1 지지부 및 제2 지지부의 구조를 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 하이브리드 태양전지를 이용한 태양광 태양열 복합발전장치의 제1 실시예의 상면도이다.
도 8은 본 발명의 일 실시예에 따른 반사경부의 제1 실시예의 상면도이다.
도 9는 본 발명의 일 실시예에 따른 하이브리드 태양전지를 이용한 태양광 태양열 복합발전장치의 제 2실시예의 상면도이다.
도 10은 본 발명의 일 실시예에 따른 반사경부의 제2 실시예의 사시도이다.
도 11은 본 발명의 일 실시예에 따른 태양광 태양열 복합발전장치의 제 3실시예의 상면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서, 첨부된 도면들을 참조하여 본 발명에 따른 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법에 대해 상세하게 설명한다.
도 1은 종래의 집광형 태양전지의 구조를 도시한 도면이다.
종래의 집광형 태양전지는 별도의 렌즈를 이용하여 태양광을 포커싱하여 효율을 높이지만, 직사광선 외에는 포커싱되지 않는 다는 단점을 가지며, 태양전지가 보통 3-5족의 물질로 제작이 되기 때문에 가격이 비싸다는 단점을 갖는다.
도 2는 종래의 평판형 태양전지의 구조를 도시한 도면이다.
종래의 평판형 태양전지는 별도의 렌즈없이 실리콘을 이용하여 제작되므로 저렴하지만, 효율이 떨어지는 단점을 갖는다.
도 3은 종래의 평판형 태양전지를 이용한 태양광 태양열 복합발전장치의 구조를 도시한 도면이다. 종래의 평판형 태양전지를 이용한 태양광 태양열 복합발전장치는 실리콘 기반의 태양전지를 평판형으로 구성하고, 상부에 태양열에 의해서 가열되는 물을 포함하는 수조를 상부에 구비하여, 태양열에 의해서 가열되는 물의 흐름을 원활하게 하는 구조를 갖는다. 이 같은 구조는 저렴한 실리콘 기반의 평판형 태양전지를 사용하기 때문에 가격적인 면에서 장점을 갖지만, 태양광 효율로 약 16%, 태양열의 효율로 약 40%정도를 가져 효율이 떨어지는 단점을 갖는다.
도 4는 종래의 집광형 태양전지를 이용한 태양광 태양열 복합발전장치의 구조를 도시한 도면이다. 종래의 집광형 태양전지를 이용한 태양광 태양열 복합발전장치는 집광을 할 수 있는 구조의 반사판을 이용하기 때문에, 태양광 효율로 약 30%, 태양열 효율로 약 50%의 고효율을 갖지만, 고가이고, 직사광에서만 동작하는 단점을 갖는다.
이러한 문제를 해결하기 위해서, 본 발명은 평판형과 집광형이 동시에 구성된 하이브리드 태양전지를 개시한다.
도 5는 본 발명의 일 실시예에 따른 하이브리드 태양전지를 이용한 태양광 태양열 복합발전장치의 제1 실시예의 단면도이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 하이브리드 태양전지를 이용한 태양광 태양열 복합발전장치(100)는 제1 태양전지(110), 제2 태양전지(120), 렌즈부(130), 제1 지지부(140), 제2 지지부(150), 수관부(161, 162), 반사경부(170) 및 단열부(180)를 포함한다. 나아가, 태양광 태양열 복합발전장치(100)는 펌프(미도시) 및 제어부(미도시)를 더 포함할 수 있다.
제1 태양전지(110)는 평판형 태양전지로 구성될 수 있다. 제1 태양전지는 Si기반 태양전지, CIGS태양전지, 유기태양전지, 염료 감응형 태양전지, 페로브스카이트 및 CdTe 중 적어도 하나로 구성될 수 있다.
제1 태양전지(110)는 복수의 제1 태양전지 모듈로 구성될 수 있다. 제1 태양전지(110)가 복수의 제1 태양전지 모듈로 구성되는 경우, 다양한 크기의 시스템에 적용할 수 있는 장점이 있다.
제1 태양전지(110)는 복수의 제1 지지부(140)의 상면에 결합된다. 제1 태양전지 모듈은 제1 지지부(140)의 전면에 걸쳐서 형성될 수 있고, 제1 지지부(140)보다 더 넓은 면적으로 형성될 수 있다.
제2 태양전지(120)는 집광형 태양전지로, 3-5족의 화합물 기반의 태양전지로 구성될 수 있다. 복수 개의 제2 태양전지 모듈(121)이 배열되어 제2 태양전지(120)를 구성할 수 있다. 제2 태양전지 모듈(121)은 복수의 제2 지지부(150)에 의해서 지지될 수 있다. 제2 태양전지 모듈(121)은 하면에 기판을 구비할 수 있으며,기판은 열전도가 잘되는 재질로 구현되는 것이 바람직하다.
복수의 제1 지지부(140)와 제2 지지부(150)는 서로 다른 높이로 형성될 수 있고, 복수의 제1 지지부(140)는 소정의 간격을 두고 배치될 수 있으며, 복수의 제1 지지부(140)의 소정의 간격사이로, 제2 지지부(150)가 배치될 수 있다. 이 같이 각 지지부(140, 150)를 배치하는 이유는 하이브리드 태양전지가 최대의 효율로 동작할 수 있도록 하며, 가열된 수관부(161, 162)의 내부의 물의 대류를 좋게 하기 위함이다.
제2 지지부(150)는 복수의 제1 지지부(140)의 소정의 간격 내에 형성된 공간 에 적어도 일부분이 도출되도록 배치된다.
제2 지지부(150)는 하나의 제2 태양전지 모듈(121)만을 포함하도록 배치될 수 있고, 수관부를 따라서 길이방향으로 길게 배치될 수도 있다.
렌즈부(130)는 제2 태양전지(120)의 상부에 배치될 수 있다. 렌즈부(130)는 점집광(제1실시예)을 위한 형태와 선집광(제2실시예)을 위한 형태로 배치될 수 있다. 렌즈부(130)는 복수의 렌즈로 구성될 수 있고, 렌즈는 프레넬렌즈, 구면렌즈, 볼렌즈 등이 사용될 수 있다.
렌즈부(130)에 의해서 집광되는 태양광은 제1 지지부(140)의 소정의 간격 내에 형성되는 공간에 포커싱된다. 점집광을 하는 렌즈부(130)가 배치될 경우, 태양광은 제2 태양전지 모듈(121)에 포커싱될 것이고, 선집광을 하는 렌즈부(130)가 배치될 경우, 태양광은 제1 지지부(140)의 소정의 간격 내에 형성되는 공간에 전체적으로 포커싱될 것이다.
포커싱된 태양광은 반사경부(170)에 의해서 각각의 제2 태양전지 모듈(121)에 정확히 포커싱된다. 점집광을 하는 렌즈부(130)가 배치될 경우, 반사경부(170)는, 도 8에 도시된 바와 같이, 원형의 컵모양을 가질 수 있고, 선집광을 하는 렌즈부(130)가 배치될 경우, 반사경부(170)는, 도 10에 도시된 바와 같이, 길이방향으로 길쭉한 형상을 가질 수 있다.
도 10은 본 발명의 일 실시예에 따른 반사경부의 제2 실시예의 사시도이다.
도 10에 도시된 바와 같이, 반사경부(170)가 길이방향으로 길쭉한 형상을 가질 경우, 제2 태양전지 모듈(121)은 선집광되는 라인으로 복수 개가 배열될 수 있고, 그 간격은 설치 특성상 조절될 수 있다.
수관부는 제1 수관부(161)와 제2 수관부(162)로 나뉜다.
도 6은 본 발명의 일 실시예에 따른 제1지지부 및 제2지지부의 구조를 도시한 도면이다.
제1 수관부(161)는 제1 지지부(140)의 하면에 위치하며, 제1 지지부(140)와 열적으로 커플링되어 있는 구조를 갖는 것이 바람직하다. 제1 지지부(140)는 제1 수관부(161)를 삽입할 수 있는 구조를 가질 수 있고, 별도로 제1 수관부(161)를 제1 지지부(140)에 결합하는 구조를 가질 수도 있다. 열적으로 커플링되기 위해서는 제1 수관부(161)가 삽입되는 구조를 갖는 것이 바람직하고, 열적으로 커플링이 보다 잘 되기 위해서, 열 저항이 낮은 완충제(163)가 함께 삽입될 수 있다.
제2 수관부(162)는 제2 지지부(150)의 하면에 위치하며, 제1 수관부(161)와 동일한 구조로 구현될 수 있다.
펌프(미도시)는 각 수관부(161, 162) 내부로 물이 흐를 수 있도록 동력을 공급한다. 제1 수관부(161)를 흐르는 물이 제2 수관부(162) 외부로 배출될 수도 있으나, 제2 수관부(162)를 거쳐 다른 제1 수관부로 재투입될 수 있다. 펌프(미도시)는 각 수관부(161, 162) 내부로 물이 흐를 수 있도록 하면서, 제2 수관부(162)에서 다시 다른 제1 수관부로 물이 재투입될 수 있도록 동력을 제공한다.
제어부(미도시)는 각 수관부(161, 162) 내의 물의 흐름을 제어한다. 제어부(미도시)는 온도 센서(미도시)를 포함하며, 제2 수관부(162)로 배출되는 물의 온도를 파악한다. 제2 수관부(162)로 배출되는 물의 온도가 기 설정된 기준치를 초과하는지 여부에 따라, 제어부(미도시)는 제2 수관부(162)에서 배출되는 물을 그대로 배출시킬지, 또는 다른 제1 수관부로 재투입시킬지 결정한다. 제2 수관부(162)로 배출되는 물의 온도가 기 설정된 기준치를 초과하는 경우, 제2 수관부(162)로 배출되는 물은 이미 충분히 가열된 상태로 낮은 냉각효과를 갖는다. 따라서, 이 경우,제어부(미도시)는 제2 수관부(162)에서 배출되는 물을 그대로 배출시킨다. 반대로, 제2 수관부(162)로 배출되는 물의 온도가 기 설정된 기준치를 초과하지 않는 경우, 제2 수관부(162)로 배출되는 물은 충분히 가열된 상태가 아니므로 여전히 냉각효과를 갖는다. 따라서, 제어부(미도시)는 제2 수관부(162)에서 배출되는 물을 다른 제1 수관부로 재투입시킨다. 이와 같이, 운용함으로써, 높은 온도로 가열된 냉각수를 적절한 시기에 배출시킴으로써, 태양광 태양열 복합발전장치(100)는 최적의 냉각효율을 유지할 수 있다.
또한, 제어부(미도시)는 광학센서(미도시)를 포함하며, 태양광의 수광량에 따라 각 수관부(161, 162) 내의 물의 흐름을 제어하기 위한 기준치를 변경한다. 구름이 없는 맑은 날과 같이, 태양광이 태양광 태양열 복합발전장치(100)로 많이 도달하는 경우, 제1,2 태양전지(110, 120)가 동시에 높은 효율로 발전을 할 수 있다. 특히, 태양광의 수광량이 높은 경우, 제2 태양전지(120)가 높은 효율로 발전할 수 있다. 이에 따라, 광학센서(미도시)로 측정되는 태양광의 수광량이 일정 수준 이상인 경우, 제어부(미도시)는 제2 태양전지(120)가 작동할 수 있는 온도까지 기준치를 상승시킨다. 예를 들어, 제2 태양전지(120)가 III-V 화합물로 구성될 경우, 제어부(미도시)는 기준치를 제2 태양전지가 작동할 수 있는 온도인 80˚C로 설정할 수 있다. 반대로, 구름이 많이 낀 흐린 날과 같이, 태양광이 태양광 태양열 복합발전장치(100)로 많이 도달하지 못하는 경우, 제1 태양전지(110)는 높은 효율로 발전을 할 수 있는 반면, 제2 태양전지(120)는 낮은 효율로 발전하게 된다. 이에 따라, 광학센서(미도시)로 측정되는 태양광의 수광량이 일정 수준에 미치지 못하는 경우, 제어부(미도시)는 제1 태양전지(110)가 작동할 수 있는 온도까지만 기준치를 상승시킨다. 제1 태양전지(110)가 작동할 수 있는 온도는 제2 태양전지(120)가 작동할 수 있는 온도보다 상대적으로 낮기 때문에, 수광량이 많은 날에 비해 수광량이 적은 날은 기준치가 낮게 설정된다. 예를 들어, 흐린 날과 같이 수광량이 적은 날의 경우, 제어부(미도시)는 기준치를 약 40˚C로 설정할 수 있다. 이와 같이, 제어부(미도시)는 환경에 따라 적절히 기준치를 설정함으로써, 태양광 태양열 복합발전장치(100)가 최적의 냉각효율을 유지할 수 있도록 제어한다.
도 7은 본 발명의 일 실시예에 따른 하이브리드 태양전지를 이용한 태양광 태양열 복합발전장치의 제1 실시예의 상면도이다.
도 7에서 확인할 수 있듯이, 제1 수관부(161)과 제2 수관부(162)는 종단이 연결되어 있다. 연결되어 있는 제1 수관부(161)와 제2 수관부(162)는 하나의 세트로 구성되며, 각각의 세트는 설치구조상 다양한 형태로 구성될 수 있다. 또한, 각각의 지지부는 각각의 수관부와 일체형으로 이루어질 수 있다.
다음은 태양광 본 발명에서 제안된 하이브리드 태양전지를 이용하여 태양광 발전을 하는 방법이다.
구름이 없는 맑은 날에는 태양광이 직사광선으로 지상에 도달하지만, 흐린날에는 구름에 산란되어 태양광이 직사광선으로 지상에 도달하지 못한다. 흐린날의 경우, 평판형 태양전지는 직사광선이 아닌 태양광이더라도, 어느 정도의 수준의 발전효율을 가질 수 있지만, 집광형 태양전지는 태양광의 포커싱이 이루어지지 않아 아주 낮은 효율을 갖는다.
직사광선이 존재하는 경우, 제1,2 태양전지(110, 120)가 동시에 태양광을 발전시킨다. 제2 태양전지(120)는 높은 효율로 발전을 하고, 제1 태양전지(110) 또한 높은 효율로 발전을 한다.
제1 태양전지(110)과 제2 태양전지(120)는 높은 효율로 발전을 함과 동시에, 높은 열을 방출한다. 이 열은 제1 수관부(161)와 제2 수관부(162)로 전달되어, 수관부 내부의 물을 데우는 효과를 발생시킨다. 즉, 제1 수관부(161)로 인입되는 냉매 등의 액체(물을 포함하여, 열전달이 용이한 액체 모두를 지칭)는 제1 수관부(161)를 거치며 제1 태양전지(110)에서 발생된 열에 의해서 1차적으로 가열되고, 제2 수관부(162)를 거치면서 추가적으로 가열된다. 이때, 제1 수관부(161)와 제2 수관부(162)는 높이 차이에 의해서 별도의 펌프없이도 액체를 순환시킬 수 있다. 가열된 액체는 별도의 발전이 이루어지도록 외부의 다른 발전장치로 제공될 수 있고, 난방용으로 제공될 수도 있다.
즉, 맑은 날씨에는 직사하는 태양광을 이용해 제1, 2 태양전지(110, 120)가 태양광 발전을 하고, 그와 동시에 제1, 2태양전지(110, 120)에 의해서 전기로 변환하지 못한 태양열은 수관부 내 액체를 가열한다.
제1 수관부(161)와 제2 수관부(162)는 사이에 단열부를 포함할 수 있으며, 단열부에 의해서 각각의 수관부는 열을 최대한 잘 머금을 수 있다.
한편, 수광량이 일정수준 이상인 경우에 해당하므로, 제어부(미도시)는 상대적으로 높은 기준치를 설정하여, 제2 수관부(162)로부터 배출되는 물의 온도가 설정된 기준치를 초과하는지를 판단한다. 제2 수관부(162)로부터 배출되는 물의 온도가 설정된 기준치를 초과하는 경우, 제어부(미도시)는 제2 수관부(162)에서 배출되는 물을 그대로 배출시키고, 제2 수관부(162)로부터 배출되는 물의 온도가 설정된 기준치를 초과하지 않는 경우, 제어부(미도시)는 제2 수관부(162)에서 배출되는 물을 다른 제1 수관부로 재투입시킨다.
구름이 있는 날은 구름에 의한 난반사에 의해 직사광선이 잘 형성되지 않아서, 제2 태양전지(120)의 태양광 발전 효율이 떨어지게 된다. 이런 다양한 날씨에 대해서 대응하기 위해서, 렌즈부(130)는 제2 태양전지(120)와의 높이가 조절될 수 있다. 렌즈부(130)와 제2 태양전지(120)의 높이가 조절되면, 태양광과 태양열의 에너지 양도 조절될 수 있는 장점이 있다.
제어부(미도시)는 맑은 날씨와 같이, 제2 수관부(162)로부터 배출되는 물의 흐름을 제어할 수 있다. 다만, 제어부(미도시)는 맑은 날씨의 경우와 달리, 상대적으로 낮은 기준치를 설정하여 제어한다.
도 11은 본 발명의 일 실시예에 따른 태양광 태양열 복합발전장치의 제 3실시예의 상면도이다.
도 11에 도시된 태양광 태양열 복합발전장치는 앞서 설명한 렌즈부(130)가 태양광을 선집광하는 구조이다. 도 11에 도시된 태양광 태양열 복합발전장치는, 제2 태양전지(120)가 없는 것을 제외하면, 제2실시예와 전체적으로 동일한 구성을 갖는다.
태양광 태양열 복합발전장치에 관한 제1 및 제2 실시예는 제2 태양전지(120)에서 발생하는 열 또는 그 주위에서 집광되는 열에 의해서 제2 수관부(162)의 물이 가열되는 구조를 가진다.
태양광 태양열 복합발전장치에 관한 제3실시예는 제2 태양전지(120)없이, 반사경부(170)에 의해서 집광되는 태양광의 열이 제2 수관부(162)를 직접적으로 가열하는 구조를 갖는다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2017년 04월 27일 한국에 출원한 특허출원번호 제 10-2017-0054035 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (10)

  1. 집광형 및 평판형 하이브리드 태양전지에 있어서,
    평판형 태양전지를 포함하는 제1 태양전지;
    집광형 태양전지를 포함하는 제2 태양전지;
    상기 제1 태양전지가 구성되어 있는 제1 지지부;
    상기 제2 태양전지가 구성되어 있는 제2 지지부;
    상기 제2 태양전지의 상측에는 구성되어 있는 렌즈부를 포함하고,
    상기 제1 지지부와 상기 제2 지지부는 서로 다른 위치에 형성되어 있는 것을 특징으로 하는 집광형 및 평판형 하이브리드 태양전지.
  2. 제1항에 있어서,
    상기 제1 태양전지는 복수의 제1 태양전지 모듈을 포함하고,
    상기 복수의 제1 태양전지 모듈은 Si기반 태양전지, CIGS태양전지, 유기태양전지, 염료 감응형, 페로브스카이트, CdTe 태양전지 중 적어도 하나로 구성되어 있는 것을 특징으로 하는 집광형 및 평판형 하이브리드 태양전지.
  3. 제2항에 있어서,
    상기 제2 태양전지는 복수의 제2 태양전지 모듈을 포함하고,
    상기 복수의 제2 태양전지 모듈은 3-5족의 화합물을 포함하는 태양전지인 것을 특징으로 하는 집광형 및 평판형 하이브리드 태양전지.
  4. 제2항에 있어서,
    집광효율을 높이기 위해서, 반사경부를 더 포함하고,
    상기 반사경부의 초점은 복수의 제2 태양전지 모듈인 것을 특징으로 하는 집광형 및 평판형 하이브리드 태양전지.
  5. 제1항에 있어서,
    상기 렌즈부는 프레넬렌즈, 구면렌즈, 볼렌즈 중 어느 하나로 구성된 것을 특징으로 하는 집광형 및 평판형 하이브리드 태양전지.
  6. 태양광 및 태양열 복합발전시스템에 있어서,
    상기 복합발전시스템은 하이브리드 태양전지를 포함하고;
    상기 하이브리드 태양전지는 평판형 태양전지를 포함하는 제1 태양전지, 집광형 태양전지를 포함하는 제2 태양전지, 상기 제1 태양전지가 구성되어 있는 제1 지지부, 상기 제2 태양전지가 구성되어 있는 제2 지지부, 상기 제2 지지부의 상측에는 구성되어 있는 렌즈부를 포함하고;
    상기 제1 지지부는 제1 수관부와 결합되어 있고, 상기 제2 지지부는 제2 수관부와 결합되어 있고, 상기 제1 지지부와 상기 제2 지지부는 서로 다른 위치에 형성되어 있는 것을 특징으로 하는 태양광 및 태양열 복합발전시스템.
  7. 태양광 및 태양열 복합발전시스템에 있어서,
    상기 복합발전시스템은 태양전지를 포함하고;
    상기 태양전지는 평판형 태양전지를 포함하는 제1 태양전지, 상기 제1 태양전지가 구성되어 있는 제1 지지부, 상기 제1 지지부와 상기 제2 지지부는 서로 다른 위치에 형성되어 있는 제2 지지부, 상기 제2 지지부의 상측에는 구성되어 있는 렌즈부를 포함하고;
    상기 제1 지지부는 제1 수관부와 결합되어 있고, 상기 제2 지지부는 제2 수관부와 결합되어 있는 것을 특징으로 하는 태양광 및 태양열 복합발전시스템.
  8. 제5항 또는 제6항에 있어서,
    상기 렌즈부는 상기 제2 지지부와의 거리가 조절되는 것을 특징으로 하는 태양광 및 태양열 복합발전시스템.
  9. 제5항 또는 제6항에 있어서,
    상기 제1 지지부와 제2 지지부는 단열부에 의해서 각각 단열되어지는 것을 특징으로 하는 태양광 및 태양열 복합발전시스템.
  10. 태양광 및 태양열 복합발전방법에 있어서,
    제1 지지부의 상부에 구성되어 있는 평판형 제1 태양전지로 태양광을 발전하는 단계;
    제2 지지부의 상부에 구성되어 있는 집광형 제2 태양전지로 태양광을 발전하는 단계;
    상기 제2 태양전지에서 발생되는 열을 이용하여 수관부 내부의 물을 가열하는 단계를 포함하는 태양광 및 태양열 복합발전방법.
PCT/KR2018/002234 2017-04-27 2018-02-23 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법 WO2018199456A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880002699.1A CN109417105B (zh) 2017-04-27 2018-02-23 利用聚光式及平板式混合太阳能电池的太阳光及太阳热复合发电系统发电方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0054035 2017-04-27
KR1020170054035A KR101997761B1 (ko) 2017-04-27 2017-04-27 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법

Publications (1)

Publication Number Publication Date
WO2018199456A1 true WO2018199456A1 (ko) 2018-11-01

Family

ID=63918489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002234 WO2018199456A1 (ko) 2017-04-27 2018-02-23 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법

Country Status (3)

Country Link
KR (1) KR101997761B1 (ko)
CN (1) CN109417105B (ko)
WO (1) WO2018199456A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102211789B1 (ko) * 2018-12-20 2021-02-03 한국광기술원 태양전지를 이용한 태양광/태양열 조절 발전장치 및 방법
KR102390195B1 (ko) * 2019-11-30 2022-04-25 한국광기술원 태양광·태양열 복합발전시스템 및 발전방법
KR102499527B1 (ko) * 2020-12-17 2023-02-14 한국광기술원 Bipv형 태양전지, 태양광 패널 및 태양광 패널 어레이
KR102526602B1 (ko) * 2020-12-28 2023-04-27 한국광기술원 개폐형 태양광 발전장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945164B1 (ko) * 2009-02-20 2010-03-08 주식회사 태평양기술 태양광 집광용 다층 태양전지 어레이 구조
JP2011233649A (ja) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd 太陽電池モジュール、太陽光発電装置、および太陽光発電システム
KR101083827B1 (ko) * 2009-02-27 2011-11-18 안행수 태양광 발전장치
JP2012169570A (ja) * 2011-02-17 2012-09-06 Mitsui Eng & Shipbuild Co Ltd 太陽光発電装置
KR101685178B1 (ko) * 2016-07-28 2016-12-09 정에디영 발전효율을 향상시킨 태양전지모듈

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070088221A (ko) * 2006-02-17 2007-08-29 강성탁 태양에너지 발전용 집광장치
US8609455B2 (en) * 2010-04-26 2013-12-17 Guardian Industries Corp. Patterned glass cylindrical lens arrays for concentrated photovoltaic systems, and/or methods of making the same
CN104422147A (zh) * 2013-08-30 2015-03-18 南京帕偌特太阳能有限公司 一种低层建筑物中太阳能光伏光热联合智能供水系统
CN103607166B (zh) * 2013-11-26 2015-12-30 华北电力大学 一种聚光光伏光热复合发电系统
CN106160650A (zh) * 2015-04-21 2016-11-23 南京嘉业新能源有限公司 一种热管式聚光光伏光热一体化热电联产装置
CN106533340B (zh) * 2015-09-15 2018-09-25 中电电气(上海)太阳能科技有限公司 光伏光热一体化装置及发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945164B1 (ko) * 2009-02-20 2010-03-08 주식회사 태평양기술 태양광 집광용 다층 태양전지 어레이 구조
KR101083827B1 (ko) * 2009-02-27 2011-11-18 안행수 태양광 발전장치
JP2011233649A (ja) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd 太陽電池モジュール、太陽光発電装置、および太陽光発電システム
JP2012169570A (ja) * 2011-02-17 2012-09-06 Mitsui Eng & Shipbuild Co Ltd 太陽光発電装置
KR101685178B1 (ko) * 2016-07-28 2016-12-09 정에디영 발전효율을 향상시킨 태양전지모듈

Also Published As

Publication number Publication date
CN109417105B (zh) 2022-12-20
KR101997761B1 (ko) 2019-07-08
CN109417105A (zh) 2019-03-01
KR20180120322A (ko) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2018199456A1 (ko) 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법
KR101979659B1 (ko) 건물일체형 태양광·태양열 시스템
CN102104346B (zh) 一种聚光光伏-温差发电一体化装置
CN102201478A (zh) 光伏光热一体化系统(stpv)
CN100578819C (zh) 太阳能电池的光伏板及带有该光伏板的集光发电装置
CN101127498A (zh) 并网型住宅全自动太阳能供电供热装置
CN201084872Y (zh) 一种太阳能发电、蓄能热水装置
CN201817988U (zh) 一种低倍聚光发电供热的太阳能瓦
CN206211928U (zh) 一种新型阵列式聚光光伏发电装置
CN201113835Y (zh) 并网型住宅全自动太阳能供电供热装置
CN101974963A (zh) 一种低倍聚光发电供热的太阳能瓦
KR101723602B1 (ko) 태양열 집열부를 구비하는 이동식 레저 겸용 태양열 온풍기
CN102263151B (zh) 一种太阳能光伏、光热集成模组
Acar et al. Investigation of energy generation at test system designed by use of concentrated photo-voltaic panel and thermoelectric modules
CN205584065U (zh) 一种太阳能光伏发电系统
CN201474197U (zh) 波形瓦聚光太阳能水电一体化建筑模块
CN211457074U (zh) 一种低倍聚光太阳能薄膜电池组件
CN111464131B (zh) 抗风型防冻高聚光光伏-光热太阳能综合利用系统
CN102104345A (zh) 一种聚光晶体硅太阳能电池组件
CN111964282A (zh) 一种高效光伏系统
CN205490384U (zh) 一种槽式太阳能热电联产接收器装置
CN202039513U (zh) 一种调温式太阳能光伏瓦
CN206361962U (zh) 一种抛物面槽式水平轴跟踪太阳能集热器
CN205490414U (zh) 一种基于热管冷却的蝶式聚光光伏光热一体化装置
CN107196593A (zh) 一种槽式太阳能热电联产接收器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791313

Country of ref document: EP

Kind code of ref document: A1