WO2018199431A1 - Curved glass and manufacturing method thereof - Google Patents

Curved glass and manufacturing method thereof Download PDF

Info

Publication number
WO2018199431A1
WO2018199431A1 PCT/KR2018/000789 KR2018000789W WO2018199431A1 WO 2018199431 A1 WO2018199431 A1 WO 2018199431A1 KR 2018000789 W KR2018000789 W KR 2018000789W WO 2018199431 A1 WO2018199431 A1 WO 2018199431A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
coating layer
low reflection
reflection coating
tempered glass
Prior art date
Application number
PCT/KR2018/000789
Other languages
French (fr)
Korean (ko)
Inventor
문병천
최학년
안정식
이진수
장봉철
황민규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170121969A external-priority patent/KR102048993B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/608,070 priority Critical patent/US20200189951A1/en
Priority to EP18791491.6A priority patent/EP3617166A4/en
Publication of WO2018199431A1 publication Critical patent/WO2018199431A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to a curved cover glass used in a curved display and a manufacturing method thereof.
  • a cover glass for protecting the display is disposed.
  • the cover glass should be high in light transmittance and not easily broken.
  • various reinforcement methods have been utilized to prevent the glass from breaking easily.
  • the glass strengthening method As an example of the glass strengthening method, a chemical strengthening method has been utilized.
  • Conventional cover glass was prepared by replacing sodium ions contained in the glass with potassium ions through an ion exchange method. When the glass is cooled in a state in which potassium ions are relatively bulkier than sodium ions, the volume of the glass can be increased while maintaining the same volume as before.
  • the chemical strengthening method is a very useful glass strengthening method because it does not increase the thickness of the glass, and does not lower the transparency of the glass.
  • the chemical strengthening method has some disadvantages.
  • a low reflection coating layer is used that does not interfere with the driver's view.
  • the low reflection coating layer absorbs light introduced from the outside, thereby preventing the cover glass from reflecting light and obstructing the driver's view.
  • the low reflection coating layer may be destroyed at high temperatures and may interfere with chemical strengthening, it should be formed after the surface processing and chemical strengthening.
  • the thickness of the coating layer may vary depending on the curvature of the curved region.
  • the uniformity of the coating layer may be inferior as compared with forming the coating layer in the planar region. As a result, color differences between the planar region and the curved region may occur. This can give a sense of heterogeneity to the user.
  • the present invention provides a curved glass and a method of manufacturing the same that can solve the problems caused when chemically strengthening the curved glass while forming a low reflection coating layer.
  • a tempered glass and a manufacturing method thereof comprising a curved surface where the low reflection coating layer is uniformly formed in the curved area.
  • an object of the present invention is to provide a tempered glass including a curved surface for minimizing color difference between regions having different curvatures, and a method of manufacturing the same.
  • the present invention aims to be able to form a coating layer irrespective of the glass area by converting the low reflection coating treatment to a coating method instead of dry deposition.
  • the present invention comprises a glass comprising a curved area, a low reflection coating layer coated on the glass surface, a low reflection coating layer consisting of a mixture of a binder and a hollow material, the glass to a predetermined depth
  • a tempered glass characterized in that the ions have penetrated.
  • the content of the hollow material included in the low reflection coating layer, the central portion of the low reflection coating layer may be higher than the edge of the low reflection coating layer.
  • the binder may be in a state in which Tetraethyl orthosilicate and Trimethoxy-methylsilane are polymerized together.
  • the glass may include a first region having a first curvature and a second region having a second curvature different from the first curvature.
  • the color difference ⁇ E * ab between the first area and the second area may be 2 or less based on the first area.
  • the thickness of the low reflection coating layer coated on the first region and the thickness of the low reflection coating layer coated on the second region is 10% It can be different.
  • the weight average molecular weight of the binder may be 1500 to 3500.
  • the average particle diameter of the hollow material may be 60 to 90nm.
  • the low reflection coating layer may be formed of a single layer.
  • the depth of penetration of the potassium ions may be 30 to 50 ⁇ m.
  • the thickness of the low reflection coating layer may be 100 to 150 nm.
  • the present invention is a step of polymerizing the first monomer and the second monomer to form a binder polymer, by mixing the binder polymer and the hollow material and then polymerizing, to prepare a low reflection coating liquid, the low reflection coating liquid flat glass Forming a low reflection coating layer by baking on the glass, and forming a low reflection coating layer on the flat glass on which the low reflection coating layer is formed. It provides a method for producing tempered glass comprising the step of penetrating potassium ions.
  • the low reflection coating layer is formed before the curved surface processing, the low reflection coating layer can be uniformly formed even in regions having different curvatures. Through this, the present invention can minimize the color difference generated in the curved glass due to the low reflection coating layer.
  • the low reflection coating layer since the low reflection coating layer does not interfere with chemical strengthening, the low reflection coating layer can be formed on the glass surface before chemical strengthening. Through this, the present invention can form a low reflection coating layer before the glass is curved, it is possible to increase the uniformity of the low reflection coating layer.
  • FIG. 1 is a conceptual diagram illustrating a conventional method of performing chemical strengthening and low reflection coating on curved glass.
  • FIG. 2 is a conceptual diagram illustrating a method of manufacturing tempered glass according to the present invention.
  • FIG. 3 is a conceptual diagram showing a cross section of the tempered glass according to the present invention.
  • Figure 4a is a cross-sectional picture of the tempered glass before chemical strengthening.
  • Figure 4b is a cross-sectional picture of the tempered glass after chemical strengthening.
  • 5 is a graph showing reflectances before and after chemical strengthening.
  • Figure 6a is a graph showing the element distribution of the tempered glass chemically strengthened in the absence of a coating layer.
  • 6b is a graph showing an element distribution of tempered glass according to the present invention.
  • FIG. 1 is a conceptual diagram illustrating a conventional method of performing chemical strengthening and low reflection coating on curved glass.
  • the step (S120) of processing the flat glass of the desired size (S110), and the flat surface of the flat glass 110 (S120) proceeds first.
  • Curve forming is carried out at a high temperature of 600 ° C or higher. For this reason, when the chemical strengthening and the low reflection coating is performed before the surface forming, the chemical strengthening effect may disappear or the low reflection coating layer may be broken during the surface forming.
  • step S130 of chemically strengthening the curved glass is performed.
  • Chemical strengthening is a method of increasing the hardness of the glass by penetrating potassium ions into the glass, when the coating layer is formed on the glass surface, it is difficult to penetrate potassium ions. Because of this, chemical strengthening must be performed prior to forming a coating layer on the glass surface.
  • the present invention provides a method for uniformly forming a low reflection coating layer in performing chemical strengthening and low reflection coating on curved glass.
  • a method of manufacturing tempered glass according to the present invention will be described with reference to the accompanying drawings.
  • FIG. 2 is a conceptual diagram illustrating a method of manufacturing tempered glass according to the present invention.
  • the step S220 of processing a flat glass of a desired size and forming a low reflection coating layer on the flat glass is performed.
  • the low reflection coating layer 120 may be formed through a firing process after applying a coating liquid consisting of a mixture of a binder and a hollow material to the flat glass 110 surface.
  • the hollow material serves to lower the reflectance of the coating layer. Specifically, the hollow material lowers the reflectance by making an air layer on the glass surface to lower the refractive index.
  • the hollow material may be made of silica. Since the hollow silica made of silica does not decompose even at a high temperature of 600 ° C. or higher, the coating layer may not be broken even if the low reflection coating layer is formed and then the curved surface is formed.
  • the average particle diameter of the hollow material may be 60 to 90nm.
  • Hollow silica having a particle diameter of less than 60 nm is difficult to manufacture in fact, and when the particle diameter of the hollow silica exceeds 90 nm, the coating layer is difficult to form uniformly because it becomes similar to the thickness of the coating layer to be described later.
  • the binder serves to allow the hollow material to be fixed to the glass. Since the binder is exposed to a high temperature of 600 ° C. or higher during curved forming, the binder should be made of a material that does not break down even at a temperature of 600 ° C. or higher.
  • the binder may be made of a silane-based binder, and specifically, the binder may be a binder of tetraethyl orthosilicate (TEOS), trimethoxy-methylsilane (MTMS), Fluoro-Silaner series, Acryl-Silane series, Silazane series have.
  • TEOS tetraethyl orthosilicate
  • MTMS trimethoxy-methylsilane
  • Fluoro-Silaner series Acryl-Silane series
  • Silazane series have.
  • the weight average molecular weight of the binder may be 1500 to 3500.
  • the weight average molecular weight of the binder is less than 1500, since the viscosity of the coating liquid is lowered, the influence on foreign matters during coating may be increased, and the intermolecular interaction may be weakened, thereby decreasing the coatability.
  • the weight average molecular weight of the binder exceeds 3500, the viscosity is high, the smoothness of the coating layer is lowered, the stability of the coating layer may be lowered.
  • two or more kinds of binders may be mixed and used.
  • a mixture of TEOS and MTMS can be utilized as the binder.
  • the monomers of each of TEOS and MTMS may be mixed and polymerized first, and then mixed with a hollow material to prepare a coating solution.
  • the binder molecules surround the hollow material surface.
  • a core-cell structure can be formed in which the hollow material is the core and the binder molecules are the cell. This core-cell structure allows the hollow material to spread evenly when applied to the glass surface.
  • the present invention can protect the hollow material having a function of substantially lowering the reflectance from external impact or the like.
  • a low reflection coating layer may be formed through a firing process.
  • the firing may be performed for 4 to 6 minutes at a temperature of 400 to 750 °C in the kiln.
  • the low reflection coating layer formed in the above-described manner may have a thickness of 100 to 150 nm. If the thickness of the coating layer is less than 100nm, the effect of reducing the reflectance is inferior, and if it exceeds 150nm, the coating layer is inferior in uniformity, and the chemical strengthening to be performed later may not be performed properly.
  • the low reflection coating layer may be composed of a single layer so that potassium ions can pass through the coating layer.
  • the porosity of the low reflection coating layer according to the present invention may be 30 to 70%.
  • the porosity of the low reflection coating layer is less than 30%, it is difficult to expect the reflection suppression effect, and potassium ions hardly penetrate to the glass surface during chemical strengthening, which will be described later.
  • the porosity of the coating layer exceeds 70%, the durability of the coating layer may be excessively degraded.
  • the low reflection coating layer formed in the above-described manner has a reflectance of 1% or less.
  • the step of forming the curved surface of the flat glass is performed.
  • Curved molding may be performed by press molding, and may be performed at a pressure of 0.005 to 0.006 MPa at a temperature of 700 to 780 ° C.
  • the present invention is not limited thereto.
  • the hollow material and the binder according to the present invention are not decomposed at a temperature of 700 to 780 ° C., the low reflection coating layer is not destroyed even after the curved surface forming, and the uniform coating layer formed on the flat glass can be maintained as it is.
  • the radius of curvature of the curved glass may be 5R or more.
  • the present invention is not limited thereto, and the radius of curvature may vary depending on the thickness of the glass and the area of the glass.
  • step S240 is performed to chemically strengthen the curved surface.
  • Chemical strengthening may be carried out by immersing the glass in KNO 3 solution heated to a temperature of 380 to 435 ° C. for 2 to 8 hours. At this time, due to the difference in potassium ion concentration between the glass and the solution, potassium ions penetrate into the glass. As a result, the glass strength is improved.
  • the glass is implemented with a CS of 750 MPa or more. Since the low reflection coating layer according to the present invention is formed to a thickness of less than 150nm and has a porosity of 30% or more, potassium ions can easily penetrate the glass surface. That is, the low reflection coating layer according to the present invention does not interfere with the movement of potassium ions. An experimental example thereof will be described later.
  • TEOS and MTMS utilize primarily polymerized binders, the binder can surround the hollow material surface and protect the hollow material from strongly basic solutions.
  • FIG. 3 is a conceptual diagram showing a cross section of the tempered glass according to the present invention.
  • the tempered glass 100 manufactured by the above-described manufacturing method includes a glass 110 including a curved area, a low reflection coating layer coated on the glass surface and made of a mixture of a binder 120 and a hollow material 130.
  • the glass is characterized in that potassium ions penetrate to a predetermined depth.
  • the content of the hollow material included in the low reflection coating layer is higher than the edge of the low reflection coating layer .
  • This structure protects the hollow material from strongly basic solutions and protects the hollow material from external impacts upon chemical strengthening.
  • the tempered glass may include curved surfaces having different curvatures according to its use.
  • the glass may include a first region having a first curvature and a second region having a second curvature different from the first curvature.
  • the curvature when the curvature is 0, the curvature may be referred to as a plane, and the glass according to the present invention may include a planar region.
  • the thickness of the low reflection coating layer coated on the first region is based on the thickness of the low reflection coating layer coated on the first region.
  • the thickness of the low reflection coating layer coated on the second region may vary within 10%.
  • the color difference ⁇ E * ab between the first region and the second region may be 2 or less based on the first region.
  • the color difference ⁇ E * ab between a region having a maximum curvature and a region having a minimum curvature is 2 or less. That is, in the tempered glass according to the present invention, the color difference between all arbitrary regions is 2 or less.
  • the radius of curvature of the curved glass may be 5R or more.
  • the present invention is not limited thereto, and the radius of curvature may vary depending on the thickness of the glass and the area of the glass. That is, the tempered glass according to the present invention may have a curvature of at most 1 / 5R. Accordingly, the maximum curvature difference in the tempered glass according to the present invention may be 1 / 5R. In the tempered glass according to the present invention, the color difference ⁇ E * ab between two regions where the difference in curvature is maximum is 2 or less.
  • the depth of penetration of potassium ions into the glass may be 30 to 50 ⁇ m. This is the same depth as the potassium ions penetrated when the chemical strengthening is performed in the absence of the coating layer. That is, according to the present invention, even if the chemical strengthening after the coating layer is formed, the same chemical strengthening effect as in the prior art can be obtained.
  • Tempered glass was manufactured according to the above-mentioned manufacturing method using hollow silica having an average particle diameter of 73.29 nm and a dispersion degree of 0.031 as a hollow material, and a material obtained by primarily polymerizing TEOS and MTMS as a binder.
  • Figure 4a is a cross-sectional picture of the tempered glass before chemical strengthening
  • Figure 4b is a cross-sectional picture of the tempered glass after chemical strengthening.
  • the binder forms a coating layer in a state surrounding the surface of the hollow material. Accordingly, a binder is mainly disposed at the edge of the coating layer, and a hollow material is mainly disposed at the center of the coating layer.
  • the low reflection coating layer is 100 to 130nm.
  • the reflectance was measured before and after chemical strengthening.
  • 5 is a graph showing reflectances before and after chemical strengthening.
  • the tempered glass according to the present invention can be confirmed that the reflectance is less than 1% at a wavelength of 500nm or more. That is, it can be confirmed that the tempered glass according to the present invention has a reflectance of less than 1% even at a thickness of 100 to 150 nm.
  • ⁇ E * ab was 0.8 as a result of measuring the color difference between the curved area and the planar area of the tempered glass according to the present invention. This is difficult for the human eye to distinguish. Through this, the tempered glass according to the present invention is almost no color difference caused by the low reflection coating does not give a user a foreign object.
  • Element (Na, Si, K) distribution according to the depth of the tempered glass prepared in Example was measured.
  • element distribution of the tempered glass which was chemically strengthened in the absence of the coating layer was measured.
  • FIG. 6A is a graph showing an element distribution of tempered glass subjected to chemical strengthening in the absence of a coating layer
  • FIG. 6B is a graph showing an element distribution of tempered glass according to the present invention.

Abstract

The present invention relates to curved cover glass used for a curved display, and a manufacturing method thereof. The present invention provides tempered glass comprising: glass including a curved area; and a low reflection coating layer, coated on a surface of the glass, composed of a mixture of a binder and a hollow material, wherein the glass comprises potassium ions which penetrate up to a predetermined depth therein. According to the present invention, a low reflection coating layer is formed prior to curved surface processing, and thus, the low reflection coating layer can be uniformly formed even on areas having different curvatures. Thus, the present invention can minimize the color difference generated in curved glass due to low reflection coating layers.

Description

곡면 글라스 및 그 제조방법Curved glass and its manufacturing method
본 발명은 곡면 디스플레이에 사용되는 곡면 커버 글라스 및 그 제조방법에 관한 것이다.The present invention relates to a curved cover glass used in a curved display and a manufacturing method thereof.
종래 디스플레이에는 디스플레이를 보호하기 위한 커버 글라스가 배치된다. 커버 글라스는 광 투과성이 높아야 하고, 쉽게 깨지지 않아야 한다. 이를 위해, 글라스가 쉽게 깨지지 않도록 하는 다양한 강화 방법이 활용되어 왔다.In a conventional display, a cover glass for protecting the display is disposed. The cover glass should be high in light transmittance and not easily broken. To this end, various reinforcement methods have been utilized to prevent the glass from breaking easily.
한편, 디스플레이 기술이 발전함에 따라, 곡면 디스플레이가 개발되기 시작하였고, 이에 따라, 곡면 형상의 커버 글라스에 대한 수요가 증가하고 있다. 특히, 상기 곡면 디스플레이를 차량 등에 적용하려는 시도가 이루어지고 있다. Meanwhile, as display technology develops, curved displays have started to develop, and accordingly, demand for curved cover glass is increasing. In particular, attempts have been made to apply the curved display to a vehicle.
글라스 강화 방법의 일 예로서, 화학강화 방식이 활용되어 왔다. 종래 커버 글라스는 이온 교환 방식을 통해 유리에 포함된 나트륨 이온을 칼륨 이온으로 치환시켜 제조 되었다. 나트륨 이온보다 상대적으로 부피가 큰 칼륨 이온이 포함된 상태에서 유리를 냉각하는 경우, 유리의 부피는 이전과 동일하게 유지하면서, 강도를 증가시킬 수 있다. As an example of the glass strengthening method, a chemical strengthening method has been utilized. Conventional cover glass was prepared by replacing sodium ions contained in the glass with potassium ions through an ion exchange method. When the glass is cooled in a state in which potassium ions are relatively bulkier than sodium ions, the volume of the glass can be increased while maintaining the same volume as before.
상기 화학강화 방식은 글라스의 두께를 증가시키지 않고, 글라스의 투명도를 낮추지 않기 때문에 매우 유용한 글라스 강화 방식이다. 하지만, 상기 화학강화 방식에는 몇 가지 단점이 있다.The chemical strengthening method is a very useful glass strengthening method because it does not increase the thickness of the glass, and does not lower the transparency of the glass. However, the chemical strengthening method has some disadvantages.
첫 번째, 화학강화 된 유리가 고온에 노출될 경우, 화학강화 효과가 사라진다는 단점이 있다. 이로 인하여, 글라스를 화학강화 시킨 후에는 고온 가공을 할 수 없는 문제가 있다. 두 번째, 화학강화는 글라스에 칼륨이온을 침투시키는 방식으로 진행되기 때문에, 글라스에 코팅층이 형성된 후에는 화학강화를 수행할 수 없다는 문제가 있다. 이러한 단점으로 인해, 화학강화는 반드시 곡면 가공 이후에 수행되어야 하며, 코팅층은 화학강화 이후에 형성되어야 한다.First, when the chemically strengthened glass is exposed to high temperatures, the chemical strengthening effect disappears. For this reason, there is a problem that high temperature processing cannot be performed after chemically strengthening the glass. Second, since the chemical strengthening proceeds in a manner of penetrating potassium ions into the glass, there is a problem that the chemical strengthening cannot be performed after the coating layer is formed on the glass. Due to this drawback, the chemical strengthening must be carried out after the curved surface processing, and the coating layer must be formed after the chemical strengthening.
한편, 곡면 글라스를 차량 등에 적용하기 위해, 운전자의 시야를 방해하지 않도록 하는 저반사 코팅층이 활용된다. 저반사 코팅층은 외부에서 유입된 빛을 흡수함으로써, 커버 글라스가 빛을 반사하여 운전자의 시야를 방해하는 것을 방지한다.Meanwhile, in order to apply the curved glass to a vehicle or the like, a low reflection coating layer is used that does not interfere with the driver's view. The low reflection coating layer absorbs light introduced from the outside, thereby preventing the cover glass from reflecting light and obstructing the driver's view.
상기 저반사 코팅층은 고온에서 파괴될 수 있고, 화학강화를 방해할 수 있기 때문에, 곡면 가공 및 화학강화 이후에 형성되어야 한다. 하지만, 곡면 영역에 코팅층을 형성할 경우, 곡면 영역의 곡률에 따라 코팅층의 두께가 달라질 수 있다. 또한, 곡면 영역에 코팅층을 형성할 경우, 평면 영역에 코팅층을 형성하는 것과 비교할 때, 코팅층의 균일도가 떨어질 수 있다. 이로 인하여 평면 영역과 곡면 영역 간의 색 차이가 발생될 수 있다. 이는 사용자에게 이질감을 줄 수 있다.Since the low reflection coating layer may be destroyed at high temperatures and may interfere with chemical strengthening, it should be formed after the surface processing and chemical strengthening. However, when the coating layer is formed on the curved region, the thickness of the coating layer may vary depending on the curvature of the curved region. In addition, when the coating layer is formed in the curved region, the uniformity of the coating layer may be inferior as compared with forming the coating layer in the planar region. As a result, color differences between the planar region and the curved region may occur. This can give a sense of heterogeneity to the user.
본 발명은 곡면 글라스에 화학강화를 함과 동시에 저반사 코팅층을 형성할 때 발생되는 문제를 해결할 수 있는 곡면 글라스 및 그 제조방법을 제시한다.The present invention provides a curved glass and a method of manufacturing the same that can solve the problems caused when chemically strengthening the curved glass while forming a low reflection coating layer.
첫 번째, 본 발명은 저반사 코팅층이 곡면 영역에 균일하게 형성된 곡면을 포함하는 강화유리 및 그 제조 방법을 제공하는 것을 그 목적으로 한다.First, it is an object of the present invention to provide a tempered glass and a manufacturing method thereof comprising a curved surface where the low reflection coating layer is uniformly formed in the curved area.
두 번째, 본 발명은 곡률이 다른 영역 간의 색 차이를 최소화하는 곡면을 포함하는 강화유리 및 그 제조 방법을 제공하는 것을 그 목적으로 한다. Secondly, an object of the present invention is to provide a tempered glass including a curved surface for minimizing color difference between regions having different curvatures, and a method of manufacturing the same.
또한, 본 발명은 저반사 코팅처리를 건식 증착이 아닌 코팅 방식으로 전환함으로써, 글라스 면적에 상관없이 코팅층을 형성할 수 있도록 하는 것을 그 목적으로 한다.In addition, the present invention aims to be able to form a coating layer irrespective of the glass area by converting the low reflection coating treatment to a coating method instead of dry deposition.
상술한 첫 번째 목적을 달성하기 위하여, 본 발명은 곡면 영역을 포함하는 글라스, 상기 글라스 표면에 코팅되며, 바인더 및 중공 물질의 혼합물질로 이루어지는 저반사 코팅층을 포함하고, 상기 글라스는 소정 깊이까지 칼륨 이온이 침투한 상태인 것을 특징으로 하는 강화유리를 제공한다.In order to achieve the first object described above, the present invention comprises a glass comprising a curved area, a low reflection coating layer coated on the glass surface, a low reflection coating layer consisting of a mixture of a binder and a hollow material, the glass to a predetermined depth Provided is a tempered glass, characterized in that the ions have penetrated.
일 실시 예에 있어서, 상기 저반사 코팅층에 포함된 중공 물질의 함량은, 상기 저반사 코팅층의 중심부가 상기 저반사 코팅층의 가장자리보다 높을 수 있다.In one embodiment, the content of the hollow material included in the low reflection coating layer, the central portion of the low reflection coating layer may be higher than the edge of the low reflection coating layer.
일 실시 예에 있어서, 상기 바인더는 Tetraethyl orthosilicate와 Trimethoxy-methylsilane가 함께 중합된 상태일 수 있다.In one embodiment, the binder may be in a state in which Tetraethyl orthosilicate and Trimethoxy-methylsilane are polymerized together.
일 실시 예에 있어서, 상기 글라스는, 제1곡률을 가지는 제1영역 및 상기 제1곡률과 다른 제2곡률을 가지는 제2영역을 포함할 수 있다.In one embodiment, the glass may include a first region having a first curvature and a second region having a second curvature different from the first curvature.
일 실시 예에 있어서, 상기 제1영역을 기준으로, 상기 제1영역과 상기 제2영역과의 색차 ΔE*ab는 2이하 일 수 있다.In an embodiment, the color difference ΔE * ab between the first area and the second area may be 2 or less based on the first area.
일 실시 예에 있어서, 상기 제1영역에 코팅된 저반사 코팅층의 두께를 기준으로, 상기 제1영역에 코팅된 저반사 코팅층의 두께와 상기 제2영역에 코팅된 저반사 코팅층의 두께는 10% 이내로 차이날 수 있다.In one embodiment, based on the thickness of the low reflection coating layer coated on the first region, the thickness of the low reflection coating layer coated on the first region and the thickness of the low reflection coating layer coated on the second region is 10% It can be different.
일 실시 예에 있어서, 상기 바인더의 중량 평균 분자량은 1500 내지 3500일 수 있다.In one embodiment, the weight average molecular weight of the binder may be 1500 to 3500.
일 실시 예에 있어서, 상기 중공 물질의 평균 입경은 60 내지 90nm일 수 있다.In one embodiment, the average particle diameter of the hollow material may be 60 to 90nm.
일 실시 예에 있어서, 상기 저반사 코팅층은 단일층으로 이루어질 수 있다.In one embodiment, the low reflection coating layer may be formed of a single layer.
일 실시 예에 있어서, 상기 칼륨 이온이 침투한 깊이는 30 내지 50μm일 수 있다.In one embodiment, the depth of penetration of the potassium ions may be 30 to 50μm.
일 실시 예에 있어서, 상기 저반사 코팅층의 두께는, 100 내지 150 nm일 수 있다.In one embodiment, the thickness of the low reflection coating layer may be 100 to 150 nm.
또한, 본 발명은 제1단량체와 제2단량체를 중합시켜 바인더 중합체를 형성하는 단계, 상기 바인더 중합체와 중공 물질을 혼합한 후 중합 시켜, 저반사 코팅액을 제조하는 단계, 상기 저반사 코팅액을 평면 글라스에 코팅한 후 소성 시켜 저반사 코팅층을 형성하는 단계, 상기 저반사 코팅층이 형성된 평면 글라스에 곡면이 형성되도록, 상기 저반사 코팅층이 형성된 평면 글라스를 소정 온도에서 성형하는 단계 및 곡면을 포함하는 글라스에 칼륨 이온을 침투시키는 단계를 포함하는 강화유리의 제조방법을 제공한다.In addition, the present invention is a step of polymerizing the first monomer and the second monomer to form a binder polymer, by mixing the binder polymer and the hollow material and then polymerizing, to prepare a low reflection coating liquid, the low reflection coating liquid flat glass Forming a low reflection coating layer by baking on the glass, and forming a low reflection coating layer on the flat glass on which the low reflection coating layer is formed. It provides a method for producing tempered glass comprising the step of penetrating potassium ions.
본 발명에 따르면, 저반사 코팅층이 곡면 가공 이전에 형성되기 때문에, 곡률이 다른 영역에서도 저반사 코팅층이 균일하게 형성되도록 할 수 있다. 이를 통해, 본 발명은 저반사 코팅층으로 인해 곡면 글라스에서 발생되는 색차이를 최소화 할 수 있다.According to the present invention, since the low reflection coating layer is formed before the curved surface processing, the low reflection coating layer can be uniformly formed even in regions having different curvatures. Through this, the present invention can minimize the color difference generated in the curved glass due to the low reflection coating layer.
또한, 본 발명에 따르면, 저반사 코팅층이 화학강화를 방해하지 않기 때문에, 화학강화 이전에 글라스 표면에 저반사 코팅층을 형성할 수 있게 된다. 이를 통해, 본 발명은 글라스를 곡면 가공하기 전에 저반사 코팅층을 형성할 수 있게 되어, 저반사 코팅층의 균일도를 높일 수 있게 된다. Further, according to the present invention, since the low reflection coating layer does not interfere with chemical strengthening, the low reflection coating layer can be formed on the glass surface before chemical strengthening. Through this, the present invention can form a low reflection coating layer before the glass is curved, it is possible to increase the uniformity of the low reflection coating layer.
도 1은 곡면 글라스에 화학강화 및 저반사 코팅을 수행하는 종래 방법을 나타내는 개념도이다.1 is a conceptual diagram illustrating a conventional method of performing chemical strengthening and low reflection coating on curved glass.
도 2는 본 발명에 따른 강화유리의 제조방법을 나타내는 개념도이다.2 is a conceptual diagram illustrating a method of manufacturing tempered glass according to the present invention.
도 3을 본 발명에 따른 강화유리의 단면을 나타내는 개념도이다.3 is a conceptual diagram showing a cross section of the tempered glass according to the present invention.
도 4a는 화학강화 전 강화유리의 단면 사진이다.Figure 4a is a cross-sectional picture of the tempered glass before chemical strengthening.
도 4b는 화학강화 후 강화유리의 단면 사진이다. Figure 4b is a cross-sectional picture of the tempered glass after chemical strengthening.
도 5는 화학강화 전후 각각의 반사율을 나타내는 그래프이다.5 is a graph showing reflectances before and after chemical strengthening.
도 6a는 코팅층이 없는 상태에서 화학강화를 수행한 강화유리의 원소분포를 나타내는 그래프이다.Figure 6a is a graph showing the element distribution of the tempered glass chemically strengthened in the absence of a coating layer.
도 6b는 본 발명에 따른 강화유리의 원소분포를 나타내는 그래프이다.6b is a graph showing an element distribution of tempered glass according to the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, and the same or similar components are denoted by the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. In addition, in describing the embodiments disclosed herein, when it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted. In addition, the accompanying drawings are intended to facilitate understanding of the embodiments disclosed herein, but are not limited to the technical spirit disclosed herein by the accompanying drawings, all changes included in the spirit and scope of the present invention. It should be understood to include equivalents and substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
먼저, 곡면 글라스에 화학강화를 수행하고 저반사 코팅층을 형성하는 종래 방법에 대하여 설명한다.First, a conventional method of performing chemical strengthening on a curved glass and forming a low reflection coating layer will be described.
도 1은 곡면 글라스에 화학강화 및 저반사 코팅을 수행하는 종래 방법을 나타내는 개념도이다.1 is a conceptual diagram illustrating a conventional method of performing chemical strengthening and low reflection coating on curved glass.
종래 방법에 따르면, 원하는 크기의 평면 글라스를 가공(S110)하고, 평면 글라스(110)를 곡면 성형하는 단계(S120)가 가장 먼저 진행된다. 곡면 성형은 600℃ 이상의 고온에서 진행된다. 이로 인하여, 화학강화 및 저반사 코팅을 곡면 성형 이전에 수행할 경우, 곡면 성형 중 화학강화 효과가 사라지거나, 저반사 코팅층이 파괴될 수 있다.According to the conventional method, the step (S120) of processing the flat glass of the desired size (S110), and the flat surface of the flat glass 110 (S120) proceeds first. Curve forming is carried out at a high temperature of 600 ° C or higher. For this reason, when the chemical strengthening and the low reflection coating is performed before the surface forming, the chemical strengthening effect may disappear or the low reflection coating layer may be broken during the surface forming.
이후, 종래 방법에서는 곡면 성형된 글라스를 화학강화 하는 단계(S130)가 수행된다. 화학강화는 글라스에 칼륨 이온을 침투시켜 글라스의 경도를 높이는 방법으로, 글라스 표면에 코팅층이 형성되어 있을 경우, 칼륨이온 침투가 어렵다. 이로 인하여, 화학강화는 글라스 표면에 코팅층을 형성하기 이전에 수행되어야 한다.Thereafter, in the conventional method, step S130 of chemically strengthening the curved glass is performed. Chemical strengthening is a method of increasing the hardness of the glass by penetrating potassium ions into the glass, when the coating layer is formed on the glass surface, it is difficult to penetrate potassium ions. Because of this, chemical strengthening must be performed prior to forming a coating layer on the glass surface.
마지막으로, 화학강화 된 곡면 글라스 표면에 저반사 코팅층을 형성하는 단계(S140)가 진행된다. 곡면 형상에 비교적 균일한 코팅층을 형성하기 위해 증착 방식이 활용된다. 하지만, 이러한 증착 방식을 활용하더라도, 평면 영역과 곡면 영역 각각에 증착된 코팅층 간의 두께 차이를 일정 수준 이하로 줄이기 어렵다. 이로 인하여, 곡면 영역은 평면 영역과 다른 색을 띠게 된다. Finally, forming a low reflection coating layer on the surface of the chemically strengthened curved glass (S140). The deposition method is utilized to form a relatively uniform coating layer on the curved shape. However, even using such a deposition method, it is difficult to reduce the difference in thickness between the coating layer deposited on each of the planar region and the curved region below a certain level. As a result, the curved area has a different color from the planar area.
본 발명은 곡면 글라스에 화학강화 및 저반사 코팅을 수행함에 있어서, 저반사 코팅층이 균일하게 형성되도록 하는 방법을 제시한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 강화유리의 제조방법에 대하여 설명한다.The present invention provides a method for uniformly forming a low reflection coating layer in performing chemical strengthening and low reflection coating on curved glass. Hereinafter, a method of manufacturing tempered glass according to the present invention will be described with reference to the accompanying drawings.
도 2는 본 발명에 따른 강화유리의 제조방법을 나타내는 개념도이다.2 is a conceptual diagram illustrating a method of manufacturing tempered glass according to the present invention.
먼저, 본 발명에 따른 제조 방법에서는 원하는 크기의 평면 글라스를 가공(S210)하고, 평면 글라스에 저반사 코팅층을 형성하는 단계(S220)가 진행된다. First, in the manufacturing method according to the present invention, the step S220 of processing a flat glass of a desired size and forming a low reflection coating layer on the flat glass is performed.
본 발명에 따른 저반사 코팅층(120)은 바인더 및 중공 물질의 혼합물로 이루어진 코팅액을 평면 글라스(110) 표면에 도포한 후, 소성 공정을 통해 형성될 수 있다.The low reflection coating layer 120 according to the present invention may be formed through a firing process after applying a coating liquid consisting of a mixture of a binder and a hollow material to the flat glass 110 surface.
여기서, 중공 물질은 코팅층의 반사율을 낮추는 역할을 한다. 구체적으로, 중공 물질은 글라스 표면에 공기층을 만들어 굴절율을 낮추는 방식으로 반사율을 낮춘다. Here, the hollow material serves to lower the reflectance of the coating layer. Specifically, the hollow material lowers the reflectance by making an air layer on the glass surface to lower the refractive index.
한편, 중공 물질은 실리카로 이루어질 수 있다. 실리카로 이루어지는 중공 실리카는 600℃ 이상의 고온에서도 분해되지 않기 때문에, 저반사 코팅층을 형성한 후 곡면 성형을 하더라도 코팅층이 파괴되지 않을 수 있다.On the other hand, the hollow material may be made of silica. Since the hollow silica made of silica does not decompose even at a high temperature of 600 ° C. or higher, the coating layer may not be broken even if the low reflection coating layer is formed and then the curved surface is formed.
한편, 중공 물질의 평균 입경은 60 내지 90nm일 수 있다. 60nm 미만의 입경을 가지는 중공 실리카는 사실상 제조가 어렵고, 중공 실리카의 입경이 90nm를 초과하는 경우, 후술할 코팅층의 두께와 유사해지기 때문에 코팅층이 균일하게 형성되기 어렵다. On the other hand, the average particle diameter of the hollow material may be 60 to 90nm. Hollow silica having a particle diameter of less than 60 nm is difficult to manufacture in fact, and when the particle diameter of the hollow silica exceeds 90 nm, the coating layer is difficult to form uniformly because it becomes similar to the thickness of the coating layer to be described later.
한편, 바인더는 상기 중공 물질이 글라스에 고정될 수 있도록 하는 역할을 한다. 상기 바인더는 곡면 성형 시 600℃ 이상의 고온에 노출되기 때문에, 600℃ 이상의 온도에서도 파괴되지 않는 물질로 이루어져야 한다. 예를 들어, 상기 바인더는 silane 계열 바인더로 이루어질 수 있으며, 구체적으로, 상기 바인더는 Tetraethyl orthosilicate (TEOS), Trimethoxy-methylsilane(MTMS), Fluoro-Silaner계열, Acryl-Silane계열, Silazane계열의 바인더일 수 있다.On the other hand, the binder serves to allow the hollow material to be fixed to the glass. Since the binder is exposed to a high temperature of 600 ° C. or higher during curved forming, the binder should be made of a material that does not break down even at a temperature of 600 ° C. or higher. For example, the binder may be made of a silane-based binder, and specifically, the binder may be a binder of tetraethyl orthosilicate (TEOS), trimethoxy-methylsilane (MTMS), Fluoro-Silaner series, Acryl-Silane series, Silazane series have.
한편, 상기 바인더의 중량 평균 분자량은 1500 내지 3500일 수 있다. 바인더의 중량 평균 분자량이 1500 미만일 경우, 코팅액의 점도가 낮아지기 때문에 코팅 시 이물에 대한 영향이 커질 수 있으며, 분자간 상호작용이 약해져서 코팅성이 저하될 수 있다. 한편, 바인더의 중량 평균 분자량이 3500을 초과하는 경우, 점도가 높아져 코팅층의 평활성이 저하되며, 코팅층의 안정성이 떨어질 수 있다.On the other hand, the weight average molecular weight of the binder may be 1500 to 3500. When the weight average molecular weight of the binder is less than 1500, since the viscosity of the coating liquid is lowered, the influence on foreign matters during coating may be increased, and the intermolecular interaction may be weakened, thereby decreasing the coatability. On the other hand, when the weight average molecular weight of the binder exceeds 3500, the viscosity is high, the smoothness of the coating layer is lowered, the stability of the coating layer may be lowered.
한편, 본 발명에서는 두 종류 이상의 바인더를 혼합하여 사용할 수 있다. 예를 들어, TEOS 및 MTMS의 혼합물이 바인더로 활용될 수 있다. 이러한 경우, TEOS 및 MTMS 각각의 단량체를 혼합하여 1차적으로 중합반응을 시킨 후, 중공 물질과 혼합하여 코팅액을 제조할 수 있다. TEOS 및 MTMS를 1차적으로 중합시킨 후 중공 물질과 혼합할 경우, 바인더 분자들이 중공 물질 표면을 에워싼다. 이로 인하여, 중공 물질을 코어로 하고, 바인더 분자들을 셀로 하는 코어-셀 구조가 형성될 수 있다. 이러한 코어-셀 구조는 중공 물질이 글라스 표면에 도포되었을 때, 고르게 퍼질 수 있도록 한다. 또한, 상기 바인더가 항상 중공 물질을 에워싸고 있기 때문에, 저반사 코팅층의 가장자리에는 바인더의 함량이 더 많게 되며, 저반사 코팅층의 중심부에는 중공 물질의 함량이 더 많게 된다. 이를 통해, 본 발명은 실질적으로 반사율을 낮추는 기능을 하는 중공 물질을 외부충격 등으로부터 보호할 수 있게 된다.Meanwhile, in the present invention, two or more kinds of binders may be mixed and used. For example, a mixture of TEOS and MTMS can be utilized as the binder. In this case, the monomers of each of TEOS and MTMS may be mixed and polymerized first, and then mixed with a hollow material to prepare a coating solution. When TEOS and MTMS are first polymerized and then mixed with the hollow material, the binder molecules surround the hollow material surface. As a result, a core-cell structure can be formed in which the hollow material is the core and the binder molecules are the cell. This core-cell structure allows the hollow material to spread evenly when applied to the glass surface. In addition, since the binder always surrounds the hollow material, the content of the binder is increased at the edge of the low reflection coating layer, and the content of the hollow material is more at the center of the low reflection coating layer. Through this, the present invention can protect the hollow material having a function of substantially lowering the reflectance from external impact or the like.
중공 물질 및 바인더의 혼합물로 이루어지는 코팅액을 평면 글라스 표면에 도포한 후, 소성 공정을 통해 저반사 코팅층이 형성될 수 있다. 여기서, 소성은 소성로에서 400 내지 750℃의 온도로 4 내지 6분 동안 수행될 수 있다. After applying a coating liquid consisting of a mixture of a hollow material and a binder to the flat glass surface, a low reflection coating layer may be formed through a firing process. Here, the firing may be performed for 4 to 6 minutes at a temperature of 400 to 750 ℃ in the kiln.
상술한 방식으로 형성된 저반사 코팅층은 그 두께가 100 내지 150nm일 수 있다. 코팅층의 두께가 100nm 미만인 경우, 반사율 저감 효과가 떨어지며, 150nm을 초과하는 경우, 코팅층이 균일도가 떨어지고, 이후 수행될 화학강화가 제대로 이루어지지 못할 수 있다. The low reflection coating layer formed in the above-described manner may have a thickness of 100 to 150 nm. If the thickness of the coating layer is less than 100nm, the effect of reducing the reflectance is inferior, and if it exceeds 150nm, the coating layer is inferior in uniformity, and the chemical strengthening to be performed later may not be performed properly.
한편, 저반사 코팅층은 칼륨 이온이 코팅층을 잘 통과할 수 있도록 단일층으로 구성될 수 있다. On the other hand, the low reflection coating layer may be composed of a single layer so that potassium ions can pass through the coating layer.
한편, 본 발명에 따른 저반사 코팅층의 공극률은 30 내지 70%일 수 있다. 저반사 코팅층의 공극률이 30% 미만이 경우, 반사 억제 효과를 기대하기 어려우며, 후술할 화학강화 시 칼륨 이온이 글라스 표면까지 침투하기 어렵게 된다. 한편, 코팅층의 공극률이 70%를 초과하는 경우, 코팅층의 내구성이 지나치게 떨어질 수 있다. On the other hand, the porosity of the low reflection coating layer according to the present invention may be 30 to 70%. When the porosity of the low reflection coating layer is less than 30%, it is difficult to expect the reflection suppression effect, and potassium ions hardly penetrate to the glass surface during chemical strengthening, which will be described later. On the other hand, when the porosity of the coating layer exceeds 70%, the durability of the coating layer may be excessively degraded.
한편, 상술한 방식으로 형성된 저반사 코팅층은 1% 이하의 반사율을 가진다.On the other hand, the low reflection coating layer formed in the above-described manner has a reflectance of 1% or less.
한편, 평면 글라스 상에 저반사 코팅층을 형성한 후, 평면 글라스를 곡면 성형하는 단계(S230)가 진행된다. 곡면 성형은 프레스 성형으로 진행하고, 700 내지 780℃의 온도에서 0.005 내지 0.006MPa의 압력으로 수행될 수 있다. 다만, 이에 한정되지 않는다.On the other hand, after forming the low reflection coating layer on the flat glass, the step of forming the curved surface of the flat glass (S230) is performed. Curved molding may be performed by press molding, and may be performed at a pressure of 0.005 to 0.006 MPa at a temperature of 700 to 780 ° C. However, the present invention is not limited thereto.
본 발명에 따른 중공 물질 및 바인더는 700 내지 780℃의 온도에서 분해되지 않기 때문에, 곡면 성형 이후에도 저반사 코팅층은 파괴되지 않으며, 평면 글라스에 형성된 균일한 코팅층을 그대로 유지할 수 있게 된다. Since the hollow material and the binder according to the present invention are not decomposed at a temperature of 700 to 780 ° C., the low reflection coating layer is not destroyed even after the curved surface forming, and the uniform coating layer formed on the flat glass can be maintained as it is.
한편, 곡면 성형된 글라스의 곡률반경은 5R 이상일 수 있다. 다만, 이에 한정되지 않고, 상기 곡률반경은 글라스의 두께, 글라스의 면적에 따라 달라질 수 있다. On the other hand, the radius of curvature of the curved glass may be 5R or more. However, the present invention is not limited thereto, and the radius of curvature may vary depending on the thickness of the glass and the area of the glass.
마지막으로, 곡면 성형 후 화학강화를 하는 단계(S240)가 진행된다.Finally, step S240 is performed to chemically strengthen the curved surface.
화학강화는 380 내지 435℃의 온도로 가열된 KNO3용액에 글라스를 2 내지 8시간 동안 침지시키는 과정을 통해 수행될 수 있다. 이때, 글라스와 용액의 칼륨이온 농도 차이로 인하여, 칼륨 이온이 글라스로 침투한다. 이에 따라, 글라스 강도가 향상된다.Chemical strengthening may be carried out by immersing the glass in KNO 3 solution heated to a temperature of 380 to 435 ° C. for 2 to 8 hours. At this time, due to the difference in potassium ion concentration between the glass and the solution, potassium ions penetrate into the glass. As a result, the glass strength is improved.
종래 화학강화는 칼륨 이온이 글라스에 30μm 이상 침투하도록 수행된다. 이러한 경우, 글라스는 750MPa 이상의 CS가 구현된다. 본 발명에 따른 저반사 코팅층은 150nm 이하의 두께로 형성되며 30% 이상의 공극률을 가지기 때문에 칼륨 이온이 글라스 표면으로 용이하게 침투할 수 있다. 즉, 본 발명에 따른 저반사 코팅층은 칼륨 이온의 이동을 방해하지 않는다. 이에 대한 실험 예는 후술한다.Conventional chemical strengthening is carried out to allow potassium ions to penetrate 30 μm or more into the glass. In this case, the glass is implemented with a CS of 750 MPa or more. Since the low reflection coating layer according to the present invention is formed to a thickness of less than 150nm and has a porosity of 30% or more, potassium ions can easily penetrate the glass surface. That is, the low reflection coating layer according to the present invention does not interfere with the movement of potassium ions. An experimental example thereof will be described later.
한편, 화학강화는 높은 pH의 용액에서 수행되기 때문에 hydrolysis로 인하여 저반사 코팅층, 특히 중공 물질, 이 파괴될 수 있다. TEOS와 MTMS가 1차적으로 중합된 바인더를 활용할 경우, 바인더가 중공 물질 표면을 에워싸면서 중공 물질을 강염기성 용액으로부터 보호할 수 있다.On the other hand, because the chemical strengthening is carried out in a high pH solution, hydrolysis may destroy the low reflection coating layer, especially hollow material. If TEOS and MTMS utilize primarily polymerized binders, the binder can surround the hollow material surface and protect the hollow material from strongly basic solutions.
이하에서는, 상술한 방법으로 제조된 강화유리에 대하여 설명한다. Hereinafter, the tempered glass manufactured by the method mentioned above is demonstrated.
도 3을 본 발명에 따른 강화유리의 단면을 나타내는 개념도이다.3 is a conceptual diagram showing a cross section of the tempered glass according to the present invention.
상술한 제조방법으로 제조된 강화유리(100)는 곡면 영역을 포함하는 글라스(110), 상기 글라스 표면에 코팅되며, 바인더(120) 및 중공 물질(130)의 혼합물질로 이루어지는 저반사 코팅층을 포함하고, 상기 글라스에는 소정 깊이까지 칼륨 이온이 침투한 상태인 것을 특징으로 한다.The tempered glass 100 manufactured by the above-described manufacturing method includes a glass 110 including a curved area, a low reflection coating layer coated on the glass surface and made of a mixture of a binder 120 and a hollow material 130. The glass is characterized in that potassium ions penetrate to a predetermined depth.
한편, 강화유리 제조과정에서 TEOS와 MTMS가 1차적으로 중합된 바인더를 활용할 경우, 상기 저반사 코팅층에 포함된 중공 물질의 함량은, 상기 저반사 코팅층의 중심부가 상기 저반사 코팅층의 가장자리보다 높게 된다. 이러한 구조는 화학강화시 중공 물질을 강염기성 용액으로부터 보호하고, 중공 물질을 외부 충격으로부터 보호한다.On the other hand, when using a binder polymerized primarily by TEOS and MTMS in the tempered glass manufacturing process, the content of the hollow material included in the low reflection coating layer, the center of the low reflection coating layer is higher than the edge of the low reflection coating layer . This structure protects the hollow material from strongly basic solutions and protects the hollow material from external impacts upon chemical strengthening.
한편, 상기 강화유리는 그 용도에 따라 서로 다른 곡률을 가지는 곡면을 포함할 수 있다. 예를 들어, 상기 글라스는 제1곡률을 가지는 제1영역 및 상기 제1곡률과 다른 제2곡률을 가지는 제2영역을 포함할 수 있다. 여기서, 상기 곡률이 0인 경우, 평면이라 할 수 있으며, 본 발명에 따른 글라스는 평면 영역을 포함할 수 있다. On the other hand, the tempered glass may include curved surfaces having different curvatures according to its use. For example, the glass may include a first region having a first curvature and a second region having a second curvature different from the first curvature. Here, when the curvature is 0, the curvature may be referred to as a plane, and the glass according to the present invention may include a planar region.
한편, 본 발명에 따른 강화유리는 평면 글라스에 코팅층을 형성한 후 곡면 성형되기 때문에, 상기 제1영역에 코팅된 저반사 코팅층의 두께를 기준으로, 상기 제1영역에 코팅된 저반사 코팅층의 두께와 상기 제2영역에 코팅된 저반사 코팅층의 두께는 10% 이내로 차이날 수 있다. Meanwhile, since the tempered glass according to the present invention is formed by forming a coating layer on the flat glass and then curved, the thickness of the low reflection coating layer coated on the first region is based on the thickness of the low reflection coating layer coated on the first region. The thickness of the low reflection coating layer coated on the second region may vary within 10%.
이로 인하여, 본 발명에 따른 강화유리는 상기 제1영역을 기준으로, 상기 제1영역과 상기 제2영역과의 색차 ΔE*ab는 2 이하일 수 있다. 글라스에서 두 영역 간의 곡률 차이가 클수록 색차이가 커진다. 본 발명에 따른 강화유리에서 최대 곡률을 가지는 영역과 최소 곡률을 가지는 영역 간의 색차 ΔE*ab는 2 이하이다. 즉, 본 발명에 따른 강화유리에서 모든 임의의 영역 간의 색차는 2 이하가 된다.For this reason, in the tempered glass according to the present invention, the color difference ΔE * ab between the first region and the second region may be 2 or less based on the first region. The greater the difference in curvature between the two regions of the glass, the larger the color difference. In the tempered glass according to the present invention, the color difference ΔE * ab between a region having a maximum curvature and a region having a minimum curvature is 2 or less. That is, in the tempered glass according to the present invention, the color difference between all arbitrary regions is 2 or less.
한편, 곡면 성형된 글라스의 곡률반경은 5R 이상일 수 있다. 다만, 이에 한정되지 않고, 상기 곡률반경은 글라스의 두께, 글라스의 면적에 따라 달라질 수 있다. 즉, 본 발명에 따른 강화유리는 최대 1/5R의 곡률을 가질 수 있다. 이에 따라, 본 발명에 따른 강화유리에서 최대 곡률차이는 1/5R 일 수 있다. 본 발명에 따른 강화유리에서 곡률 차이가 최대인 두 영역 간의 색차 ΔE*ab는 2 이하이다.On the other hand, the radius of curvature of the curved glass may be 5R or more. However, the present invention is not limited thereto, and the radius of curvature may vary depending on the thickness of the glass and the area of the glass. That is, the tempered glass according to the present invention may have a curvature of at most 1 / 5R. Accordingly, the maximum curvature difference in the tempered glass according to the present invention may be 1 / 5R. In the tempered glass according to the present invention, the color difference ΔE * ab between two regions where the difference in curvature is maximum is 2 or less.
한편, 본 발명에 따른 강화유리에서 글라스에 칼륨 이온이 침투한 깊이는 30 내지 50μm일 수 있다. 이는 코팅층이 없는 상태에서 화학강화를 수행하였을 때, 칼륨 이온이 침투한 깊이와 동일한 깊이이다. 즉, 본 발명에 따르면, 코팅층을 형성한 후 화학강화를 수행하더라도, 종래와 동일한 화학강화 효과를 얻을 수 있다.On the other hand, in the tempered glass according to the present invention, the depth of penetration of potassium ions into the glass may be 30 to 50 μm. This is the same depth as the potassium ions penetrated when the chemical strengthening is performed in the absence of the coating layer. That is, according to the present invention, even if the chemical strengthening after the coating layer is formed, the same chemical strengthening effect as in the prior art can be obtained.
이하에서는, 실시 예 및 실험 예들을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만, 후술할 실시 예 및 실험 예들에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석되지 않는다.Hereinafter, the present invention will be described in more detail with reference to examples and experimental examples, but the scope and contents of the present invention are not reduced or limited by the following examples and experimental examples.
실시 예. 강화유리의 제조Example. Manufacture of Tempered Glass
평균 입경이 73.29nm이고, 분산도가 0.031인 중공 실리카를 중공 물질로 하고, TEOS와 MTMS를 1차적으로 중합시킨 물질을 바인더로 하여 상술한 제조방법에 따라 강화유리를 제조하였다.Tempered glass was manufactured according to the above-mentioned manufacturing method using hollow silica having an average particle diameter of 73.29 nm and a dispersion degree of 0.031 as a hollow material, and a material obtained by primarily polymerizing TEOS and MTMS as a binder.
도 4a는 화학강화 전 강화유리의 단면 사진이고, 도 4b는 화학강화 후 강화유리의 단면 사진이다. Figure 4a is a cross-sectional picture of the tempered glass before chemical strengthening, Figure 4b is a cross-sectional picture of the tempered glass after chemical strengthening.
도 4b의 경우, 글라스에 물결 무늬가 발생된 것을 확인할 수 있지만, 이는 글라스 절단과정에서 발생된 무늬일 뿐, 화학강화를 수행하더라도 글라스의 구조가 육안으로 확인할 정도로 변화하지는 않는다.In the case of Figure 4b, it can be seen that the wave pattern is generated in the glass, but this is only a pattern generated during the glass cutting process, even if the chemical strengthening does not change the structure of the glass with the naked eye.
한편, 도 4a 및 4b를 참조하면 바인더가 중공 물질의 표면을 에워싼 상태로 코팅층을 형성하는 모습을 확인할 수 있다. 이에 따라, 코팅층 가장자리에는 바인더가 주로 배치되고, 코팅층 중심에는 중공 물질이 주로 배치된다.Meanwhile, referring to FIGS. 4A and 4B, it can be seen that the binder forms a coating layer in a state surrounding the surface of the hollow material. Accordingly, a binder is mainly disposed at the edge of the coating layer, and a hollow material is mainly disposed at the center of the coating layer.
한편, 도 4b를 참조하면 저반사 코팅층이 100 내지 130nm인 것을 확인할 수 있다.On the other hand, referring to Figure 4b it can be seen that the low reflection coating layer is 100 to 130nm.
실험 예1. 강화유리의 반사율 측정Experimental Example 1. Reflectance Measurement of Tempered Glass
상기 실시 예에 따른 강화유리를 제조할 때, 화학강화 전후로 반사율을 측정하였다. When manufacturing the tempered glass according to the embodiment, the reflectance was measured before and after chemical strengthening.
도 5는 화학강화 전후 각각의 반사율을 나타내는 그래프이다.5 is a graph showing reflectances before and after chemical strengthening.
도 5를 참조하면, 화학강화 후 강화유리의 반사율이 소폭 감소한 것을 확인할 수 있다. 즉, 화학강화를 수행하더라도 저반사 코팅층에 포함된 중공 물질이 파괴되지 않는다는 것을 확인할 수 있다.Referring to Figure 5, after the chemical strengthening it can be seen that the reflectance of the tempered glass slightly decreased. That is, even when chemical strengthening is performed, it can be seen that the hollow material included in the low reflection coating layer is not destroyed.
한편, 도 5를 참조하면, 본 발명에 따른 강화유리는 500nm 이상의 파장에서 반사율이 1% 미만인 것을 확인할 수 있다. 즉, 본 발명에 따른 강화유리는 100 내지 150nm의 두께에서도 1% 미만의 반사율을 가진다는 것을 확인할 수 있다.On the other hand, referring to Figure 5, the tempered glass according to the present invention can be confirmed that the reflectance is less than 1% at a wavelength of 500nm or more. That is, it can be confirmed that the tempered glass according to the present invention has a reflectance of less than 1% even at a thickness of 100 to 150 nm.
실험 예. 2 강화유리의 색차 측정Experimental Example 2 Color difference measurement of tempered glass
본 발명에 따른 강화유리의 곡면 영역과 평면 영역 간의 색차를 측정한 결과 ΔE*ab는 0.8이었다. 이는 사람이 육안으로 구분하기 어려운 정도이다. 이를 통해, 본 발명에 따른 강화유리는 저반사 코팅으로 인해 발생되는 색차가 거의 없어 사용자에게 이물감을 주지 않는다.ΔE * ab was 0.8 as a result of measuring the color difference between the curved area and the planar area of the tempered glass according to the present invention. This is difficult for the human eye to distinguish. Through this, the tempered glass according to the present invention is almost no color difference caused by the low reflection coating does not give a user a foreign object.
한편, 비교를 위하여, 종래 증착 방식으로 저반사 코팅층을 형성한 곡면 글라스의 곡면 영역과 평면 영역간 색차를 측정하였다. 측정 결과 ΔE*ab는 8이었고, 평면 영역의 색은 purple이었으며, 곡면 영역의 색은 yellow였다. 이는 사람이 육안으로 확인한 정도의 색차이이다. On the other hand, for comparison, the color difference between the curved area and the planar area of the curved glass on which the low reflection coating layer was formed by the conventional deposition method was measured. As a result, ΔE * ab was 8, the color of the planar region was purple, and the color of the curved region was yellow. This is the color difference that humans see with the naked eye.
실험 예. 3 화학강화 깊이 측정Experimental Example 3 Chemical Strengthening Depth Measurement
실시 예에서 제조된 강화유리의 깊이에 따른 원소(Na, Si, K) 분포를 측정하였다. 한편, 비교를 위하여 코팅층이 없는 상태에서 화학강화를 수행한 강화유리의 원소 분포를 측정하였다.Element (Na, Si, K) distribution according to the depth of the tempered glass prepared in Example was measured. On the other hand, for comparison, the element distribution of the tempered glass which was chemically strengthened in the absence of the coating layer was measured.
도 6a는 코팅층이 없는 상태에서 화학강화를 수행한 강화유리의 원소분포를 나타내는 그래프이고, 도 6b는 본 발명에 따른 강화유리의 원소분포를 나타내는 그래프이다.6A is a graph showing an element distribution of tempered glass subjected to chemical strengthening in the absence of a coating layer, and FIG. 6B is a graph showing an element distribution of tempered glass according to the present invention.
도 6a 및 6b를 비교하여, 코팅층이 없는 상태에서 화학강화를 수행한 강화유리 및 본 발명에 따른 강화유리 각각의 깊이에 따른 K 원소의 분포가 유사한 것을 확인할 수 있다. 이를 통해, 본 발명에 따른 제조방법으로 화학강화를 수행하더라도 종래와 유사한 화학강화 효과를 얻을 수 있음을 알 수 있다.6a and 6b, it can be seen that the distribution of the K element according to the depth of each of the tempered glass and the tempered glass according to the present invention performed the chemical strengthening in the absence of the coating layer. Through this, it can be seen that the chemical strengthening effect similar to the conventional one can be obtained even if the chemical strengthening by the manufacturing method according to the present invention.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention.
또한, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In addition, the above detailed description should not be interpreted as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.

Claims (12)

  1. 곡면 영역을 포함하는 글라스;A glass comprising a curved area;
    상기 글라스 표면에 코팅되며, 바인더 및 중공 물질의 혼합물질로 이루어지는 저반사 코팅층을 포함하고, A low reflection coating layer coated on the glass surface, the mixture comprising a binder and a hollow material;
    상기 글라스는,The glass,
    소정 깊이까지 칼륨 이온이 침투한 상태인 것을 특징으로 하는 강화유리.Tempered glass, characterized in that the potassium ion has penetrated to a predetermined depth.
  2. 제1항에 있어서,The method of claim 1,
    상기 저반사 코팅층에 포함된 중공 물질의 함량은,The content of the hollow material included in the low reflection coating layer,
    상기 저반사 코팅층의 중심부가 상기 저반사 코팅층의 가장자리보다 높은 것을 특징으로 하는 강화유리.Tempered glass, characterized in that the central portion of the low reflection coating layer is higher than the edge of the low reflection coating layer.
  3. 제2항에 있어서,The method of claim 2,
    상기 바인더는 Tetraethyl orthosilicate와 Trimethoxy-methylsilane가 함께 중합된 상태인 것을 특징으로 하는 강화유리.The binder is tempered glass, characterized in that the tetraethyl orthosilicate and Trimethoxy-methylsilane is polymerized together.
  4. 제1항에 있어서,The method of claim 1,
    상기 글라스는,The glass,
    제1곡률을 가지는 제1영역; 및A first region having a first curvature; And
    상기 제1곡률과 다른 제2곡률을 가지는 제2영역을 포함하는 것을 특징으로 하는 강화유리.And a second region having a second curvature different from the first curvature.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1영역을 기준으로, 상기 제1영역과 상기 제2영역과의 색차 ΔE*ab는 2이하 인 것을 특징으로 하는 강화유리.The tempered glass according to the first region, wherein the color difference ΔE * ab between the first region and the second region is 2 or less.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제1영역에 코팅된 저반사 코팅층의 두께를 기준으로,Based on the thickness of the low reflection coating layer coated on the first region,
    상기 제1영역에 코팅된 저반사 코팅층의 두께와 상기 제2영역에 코팅된 저반사 코팅층의 두께는 10% 이내로 차이나는 것을 특징으로 하는 강화유리.Tempered glass, characterized in that the thickness of the low reflection coating layer coated on the first region and the thickness of the low reflection coating layer coated on the second region within 10%.
  7. 제1항에 있어서,The method of claim 1,
    상기 바인더의 중량 평균 분자량은 1500 내지 3500인 것을 특징으로 하는 강화유리.Tempered glass, characterized in that the weight average molecular weight of the binder is 1500 to 3500.
  8. 제1항에 있어서,The method of claim 1,
    상기 중공 물질의 평균 입경은 60 내지 90nm인 것을 특징으로 하는 강화유리.Tempered glass, characterized in that the average particle diameter of the hollow material is 60 to 90nm.
  9. 제1항에 있어서,The method of claim 1,
    상기 저반사 코팅층은 단일층으로 이루어지는 것을 특징으로 하는 강화유리.The low reflection coating layer is tempered glass, characterized in that consisting of a single layer.
  10. 제1항에 있어서,The method of claim 1,
    상기 칼륨 이온이 침투한 깊이는 30 내지 50um인 것을 특징으로 하는 강화유리.Tempered glass, characterized in that the penetration depth of the potassium ion is 30 to 50um.
  11. 제1항에 있어서, The method of claim 1,
    상기 저반사 코팅층의 두께는,The thickness of the low reflection coating layer,
    100 내지 150 nm인 것을 특징으로 하는 강화유리.Tempered glass, characterized in that 100 to 150 nm.
  12. 제1단량체와 제2단량체를 중합시켜 바인더 중합체를 형성하는 단계;Polymerizing the first monomer and the second monomer to form a binder polymer;
    상기 바인더 중합체와 중공 물질을 혼합한 후 중합시켜, 저반사 코팅액을 제조하는 단계;Mixing and then polymerizing the binder polymer and the hollow material to prepare a low reflection coating solution;
    상기 저반사 코팅액을 평면 글라스에 코팅한 후 소성 시켜 저반사 코팅층을 형성하는 단계;Coating the low reflection coating liquid on a flat glass and then baking to form a low reflection coating layer;
    상기 저반사 코팅층이 형성된 평면 글라스에 곡면이 형성되도록, 상기 저반사 코팅층이 형성된 평면 글라스를 소정 온도에서 성형하는 단계; 및Molding the flat glass on which the low reflection coating layer is formed at a predetermined temperature such that a curved surface is formed on the flat glass on which the low reflection coating layer is formed; And
    곡면을 포함하는 글라스에 칼륨 이온을 침투시키는 단계를 포함하는 강화유리의 제조방법.Method of manufacturing a tempered glass comprising the step of penetrating potassium ions into the glass comprising a curved surface.
PCT/KR2018/000789 2017-04-24 2018-01-17 Curved glass and manufacturing method thereof WO2018199431A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/608,070 US20200189951A1 (en) 2017-04-24 2018-01-17 Curved glass and manufacturing method thereof
EP18791491.6A EP3617166A4 (en) 2017-04-24 2018-01-17 Curved glass and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762488867P 2017-04-24 2017-04-24
US62/488,867 2017-04-24
KR10-2017-0121969 2017-09-21
KR1020170121969A KR102048993B1 (en) 2017-04-24 2017-09-21 Curved glass and method for producing the same

Publications (1)

Publication Number Publication Date
WO2018199431A1 true WO2018199431A1 (en) 2018-11-01

Family

ID=63918389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000789 WO2018199431A1 (en) 2017-04-24 2018-01-17 Curved glass and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2018199431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691573A (en) * 2019-03-11 2020-09-22 重庆大学 Outer retaining wall structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120098668A (en) * 2009-10-20 2012-09-05 후구비카가구코오교우가부시끼가이샤 Method of producing reinforced antireflection glass
KR20130034693A (en) * 2011-09-29 2013-04-08 (주)석경에이티 Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
KR20140026535A (en) * 2011-05-02 2014-03-05 코닝 인코포레이티드 Glass article having antireflective layer and method of making
KR20140058962A (en) * 2012-11-07 2014-05-15 (주)엘지하우시스 Super hydrophilic anti-reflection coating composition containing siloxane compound, super hydrophilic anti-reflection film and manufacturing method using the same
WO2015186753A1 (en) * 2014-06-06 2015-12-10 旭硝子株式会社 Chemically toughened glass plate with function film, method for producing same, and article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120098668A (en) * 2009-10-20 2012-09-05 후구비카가구코오교우가부시끼가이샤 Method of producing reinforced antireflection glass
KR20140026535A (en) * 2011-05-02 2014-03-05 코닝 인코포레이티드 Glass article having antireflective layer and method of making
KR20130034693A (en) * 2011-09-29 2013-04-08 (주)석경에이티 Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
KR20140058962A (en) * 2012-11-07 2014-05-15 (주)엘지하우시스 Super hydrophilic anti-reflection coating composition containing siloxane compound, super hydrophilic anti-reflection film and manufacturing method using the same
WO2015186753A1 (en) * 2014-06-06 2015-12-10 旭硝子株式会社 Chemically toughened glass plate with function film, method for producing same, and article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617166A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691573A (en) * 2019-03-11 2020-09-22 重庆大学 Outer retaining wall structure
CN111691573B (en) * 2019-03-11 2021-05-07 重庆大学 Outer retaining wall structure

Similar Documents

Publication Publication Date Title
KR102048993B1 (en) Curved glass and method for producing the same
EP3447547B1 (en) Light-shielding plate
DE102017009250B4 (en) Anti-glare film-coated substrate, anti-glare film-forming liquid composition and method for producing an anti-glare film-coated substrate
KR100671990B1 (en) Composite thin film holding substrate, transparent conductive film holding substrate, and surface light emitting body
US20060164740A1 (en) Optical multilayer film, polarizing plate and optical product
WO2016186450A1 (en) Eco-friendly flame retardant coating composition for wood-containing construction material, eco-friendly flame-retardant treatment method using same, and flame retardant coated wood-containing construction material formed using eco-friendly flame retardant coating composition
EP0675908B1 (en) Method of preparing a composite material comprising a silica network and chains of a polyhydroxy compound and a liquid crystal display device having a top coat of such material
WO2018199431A1 (en) Curved glass and manufacturing method thereof
WO2013176422A1 (en) Transparent conductive film including hybrid undercoating layer, method for manufacturing same, and touch panel using same
US7211317B2 (en) Light transmitting hard coat film for use in touch panels
WO2011049030A1 (en) Method for producing antireflection reinforced glass
CN100547036C (en) The crosslinked silicon-containing copolymer and the solidifying product prepared therefrom of the composition of silicon-containing copolymer, dissolvable agents dissolving
WO2018147666A1 (en) Low-reflection coating glass
WO2013141478A1 (en) Transparent substrate having antireflective function
US20200346975A1 (en) Strengthened glass and manufacturing method therefor
WO2017164485A1 (en) Cover window for display device and manufacturing method therefor
JPH06183784A (en) Ceramic color composition for vehicle window glass and production of window glass using the composition
WO2017091052A1 (en) Method for printing touch panel cover glass and touch panel cover glass manufactured by using same
WO2011074820A2 (en) Decoration sheet with high weather resistanace and hair line
US7309457B2 (en) Chain inorganic oxide fine particle groups
WO2016122282A1 (en) Anti-glare film, and polarising plate and display device comprising same
WO2014092344A1 (en) Coating composition for layer having low refractive index, and transparent conductive film including same
JPH08271769A (en) Optical product
WO2021107707A1 (en) Chemically durable, low-e coating compatible black enamel compositions
US5750203A (en) Method of preparing organically modified aluminosilcates sol-gel films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018791491

Country of ref document: EP

Effective date: 20191125