WO2018199372A1 - Monitoring apparatus for monitoring high-speed streaming data processing system, and method therefor - Google Patents

Monitoring apparatus for monitoring high-speed streaming data processing system, and method therefor Download PDF

Info

Publication number
WO2018199372A1
WO2018199372A1 PCT/KR2017/004718 KR2017004718W WO2018199372A1 WO 2018199372 A1 WO2018199372 A1 WO 2018199372A1 KR 2017004718 W KR2017004718 W KR 2017004718W WO 2018199372 A1 WO2018199372 A1 WO 2018199372A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
speed
streaming data
monitoring
time
Prior art date
Application number
PCT/KR2017/004718
Other languages
French (fr)
Korean (ko)
Inventor
김형근
박관영
서강원
Original Assignee
주식회사 모비젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모비젠 filed Critical 주식회사 모비젠
Publication of WO2018199372A1 publication Critical patent/WO2018199372A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2405Monitoring of the internal components or processes of the server, e.g. server load
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms

Definitions

  • the present invention relates to a monitoring apparatus and a method for monitoring a streaming data high-speed processing system, and more particularly, a threshold value that is variable to accurately detect performance degradation and failure occurrence of a system that collects and processes streaming data at high speed. It relates to a monitoring device for calculating the and a monitoring method of the device.
  • the streaming data processing system is generally operated in conjunction with a monitoring device that monitors the occurrence of failure or failure of the system, and the system administrator (system administrator) uses the streaming data processing system through the monitoring device. Can be monitored efficiently.
  • the monitoring device In order for the monitoring device to determine whether the streaming data processing system is operating normally, a standard is required.If the system administrator assigns and manages the standard value every time, the monitoring device can effectively cope with changes in streaming data throughput or system failure. It is difficult and the burden of the system administrator is excessive.
  • the monitoring device actively adjusts the reference value for determining the normal operation of the streaming data processing system according to the passage of time and the system situation, the monitoring device that can minimize unnecessary intervention of the system administrator Is needed.
  • the technical problem to be solved by the present invention is to calculate the reference value for determining the performance degradation of the processing system for processing the streaming data through the accumulated performance indicators, the normal value of the processing system without human intervention through the calculated reference value
  • the present invention provides a monitoring device and method for accurately determining whether or not to operate.
  • Monitoring device for monitoring the technical problem, in the monitoring device for monitoring the streaming data high-speed processing system, processing speed information of the data processed by the streaming data high-speed processing system to the first time point And a database storing failure occurrence information for each unit time.
  • a speed shortening information detecting unit for grasping speed shortening information at a time when data is processed slower than a first reference speed in the processing speed information;
  • a relationship information calculation unit for calculating correlation information between the processing speed information and the failure occurrence information;
  • 2 standard speed calculation unit and an alarm output unit configured to output a performance abnormality alarm when the data processing speed at the second time point is slower than the second reference speed.
  • Monitoring method for solving the technical problem, in the monitoring method for monitoring a streaming data high-speed processing system, the processing speed information and failure occurrence information of the data processed up to the first time point unit
  • a second reference speed which is a threshold value compared with a processing result of a streaming data processing system that processes big streaming data
  • a second reference speed is actively calculated and applied without the need for an administrator to intervene with a change in time.
  • the performance change of the streaming data processing system can be monitored while minimizing the intervention of the system administrator, thereby reducing the burden on the system administrator.
  • the monitoring device according to the present invention when applied to the streaming data processing system, it is possible to achieve the same or more system monitoring effect as before even with less manpower and time.
  • FIG. 1 is a view schematically showing the overall configuration of a monitoring system according to the present invention.
  • FIG. 2 is a block diagram of an example of a monitoring apparatus according to the present invention.
  • FIG. 3 is a diagram schematically showing a second reference speed calculated according to the present invention.
  • FIG. 5 is a flowchart illustrating an example of a method for monitoring a streaming data high speed processing system according to the present invention.
  • Monitoring device for monitoring the technical problem, in the monitoring device for monitoring the streaming data high-speed processing system, processing speed information of the data processed by the streaming data high-speed processing system to the first time point And a database storing failure occurrence information for each unit time.
  • a speed shortening information detecting unit for grasping speed shortening information at a time when data is processed slower than a first reference speed in the processing speed information;
  • a relationship information calculation unit for calculating correlation information between the processing speed information and the failure occurrence information;
  • 2 standard speed calculation unit and an alarm output unit configured to output a performance abnormality alarm when the data processing speed at the second time point is slower than the second reference speed.
  • the first reference speed may be set differently for each unit time.
  • the failure occurrence information may include reference failure information when a preset reference failure code occurs and non-reference failure information at a time except when the reference failure code occurs.
  • the received ratio information may be information on a ratio between the speed shortage information and the reference failure information.
  • the relationship information calculation unit may calculate the correlation information by using a maximum likelihood method.
  • the relationship information calculation unit may be configured to use logit transformation in calculating the correlation information.
  • the underspeed information detecting unit uses a binary variable to distinguish the speed achievement information at the time when data is processed faster than the first reference speed in the processing speed information from the determined underspeed information. You can do
  • Monitoring method for solving the technical problem, in the monitoring method for monitoring a streaming data high-speed processing system, the processing speed information and failure occurrence information of the data processed up to the first time point unit
  • the first reference speed may be set differently for each unit time.
  • the failure occurrence information may include reference failure information when a preset reference failure code occurs and non-reference failure information at a time except when the reference failure code occurs.
  • the received ratio information may be information on a ratio between the speed shortage information and the reference failure information.
  • the calculating of the relationship information may include calculating the correlation information by using a maximum likelihood method.
  • the calculating of the relationship information may include using logit transformation to calculate the correlation information.
  • the step of identifying the underspeed information may include using a binary variable to distinguish the speed achievement information at the time when data is processed faster than the first reference speed in the processing speed information from the determined underspeed information. It can be characterized.
  • the present invention can provide a computer readable recording medium having recorded thereon a program for executing a method for solving the above technical problem.
  • a specific process order may be performed differently from the described order.
  • two processes described in succession may be performed substantially simultaneously or in the reverse order of the described order.
  • FIG. 1 is a view schematically showing the overall configuration of a monitoring system according to the present invention.
  • the monitoring system 10 of the streaming data processing system includes a streaming data transmission system 110, a streaming data processing system 130, and a monitoring device 200. It can be seen that the transmission system 110 and the streaming data processing system 130 are connected through the communication network 150 to transmit and receive various data.
  • the streaming data transmission system 110 stores streaming data.
  • the streaming data transmission system 110 receives a request to transmit streaming data from the streaming data processing system 130
  • the streaming data transmission system 110 streams the streaming data to the streaming data processing system 130 through the communication network 150.
  • Send the data refers to various video and audio data that can be transmitted by dividing only a part of the entire data, and can play a part of the streaming data on the side receiving the part of the streaming data.
  • the streaming data processing system 130 transmits a streaming data transmission request to the streaming data transmission system 110 and receives and processes the streaming data.
  • the streaming data processing system 130 is a storage device capable of semi-permanently storing the streaming data received from the streaming data transmission system 110, and a graphics control device for processing the streaming data and outputting it through an output device, audio control.
  • the device may include all kinds of processors.
  • the streaming data processing system 130 may record and store a history of processing the streaming data in a log for each unit time or event.
  • the monitoring device 200 performs a function of monitoring whether the performance of the streaming data processing system 130 or an error code is generated.
  • the monitoring apparatus 200 directly receives the data processing result from the streaming data processing system 130 or analyzes the log of the streaming data processing system 130 to generate a performance degradation or failure code in the streaming data processing system 130. To detect that.
  • the streaming data processing system 130 When the streaming data processing system 130 detects that a performance degradation or a failure code has occurred, the detected result may be visually output.
  • the monitoring device 200 may be connected to the streaming data processing system 130 by wire or may be physically or logically included in the streaming data processing system 130 to operate.
  • the streaming data transmission system 110 and the streaming data processing system 130 transmit and receive various data through the communication network 150, where the communication network 150 includes various wired and wireless communication networks such as a general telephone network, a data network, and a mobile communication network. do.
  • the communication network 150 includes various wired and wireless communication networks such as a general telephone network, a data network, and a mobile communication network. do.
  • FIG. 2 is a block diagram of an example of a monitoring apparatus according to the present invention.
  • the monitoring device 200 includes a database 210, an underspeed information detecting unit 230, a relationship information calculating unit 250, a second reference speed calculating unit 270, and an alarm output. It can be seen that the unit 290 is included, and for convenience of description, it will be described with reference to FIG. 1.
  • the database 210 stores processing speed information and failure occurrence information of data processed up to a first time point for each unit time.
  • the first time point refers to a time zone closest to the present of the past time points when the streaming data processing system 130 processes the streaming data. For example, if the streaming data processing system 130 processes the streaming data from 2 pm to 3 pm, the first time point may be 3 pm.
  • the processing speed information refers to information on a value of the speed at which the streaming data processing system 130 processes data.
  • the processing speed information may be generated based on information recorded for each unit time in a log of the streaming data processing system 130.
  • the data processing speed of the streaming data processing system 130 depends on the amount of resources held by the system when processing data, a failure state, the capacity of the streaming data, the type of streaming data (meaning the data format, extension, etc.), and the like.
  • the processing speed information is information in which various information including the various data processing speeds are recorded by unit time. In general, slowing down the data throughput of a system is interpreted as a performance degradation of the system.
  • the failure occurrence information refers to information on various failures that occur while the streaming data processing system 130 processes the data.
  • the failure occurrence information includes not only a state in which a preset failure code is generated in the streaming data processing system 130, but also all information on a state in which a failure code is not preset.
  • the streaming data processing system 130 Even when the streaming data processing system 130 outputs a failure code, the data processing speed of the streaming data processing system 130 may not be changed at all. In other words, failure and performance degradation in the streaming data processing system 130 are separate problems. For example, if the data processing result of the streaming data processing system 130 violates the SLO (Service Level Objective) preset in the streaming data processing system 130, the streaming data processing system 130 may output a failure code.
  • the SLO means a predetermined criterion required for the processing result of the streaming data processing system 130, and the criterion may be a criterion irrelevant to the data processing speed of the streaming data processing system 130.
  • the failure occurrence information may include reference failure information when a predetermined reference failure code is generated and non-reference failure information when a point other than the time when the reference failure code is generated.
  • a time point other than the time point of occurrence of the reference failure code includes both a time point of occurrence of a failure code other than the reference failure code and a time of no failure code generation.
  • the failure occurrence information is information output from the streaming data processing system 130 at a unit time, but a failure corresponding to a failure code preset in the streaming data processing system 130 is not generated every time.
  • Reference failure information and non-reference failure information are included.
  • the reference failure information may be expressed as 1 and the non-reference failure information may be expressed as 0.
  • the database 210 may store in advance a comparison code for distinguishing whether a failure code output from the system is a reference failure code.
  • the database 210 analyzes the data processing result output from the streaming data processing system 130 to determine whether there is a reference failure code that matches the comparison code, and controls to store the reference failure information or non-reference failure information. It may also include a processor. For example, if fault code F6009 is output from the streaming data processing system 130 at time t1 and F6009 is included in the comparison code, the failure occurrence information at time t1 stored in the database 210 includes reference failure information. Done.
  • Equation 1 shows an example of failure occurrence information from 0 second to t seconds. As shown in Equation 1, fault occurrence information from 0 second to t seconds may be expressed as a vector of t + 1 dimension.
  • Both the processing speed information and the failure occurrence information are recorded in unit time.
  • the unit time is not limited to a specific time, it may be a unit of 10 seconds, 1 minute, 10 minutes, one hour, or the like. Since both the processing speed information and the failure occurrence information are recorded for each unit time, the database 210 may map and store the processing speed information and the failure occurrence information. For example, assuming that the unit time is 1 minute and streaming data continues to be processed from 12:00 pm on January 1, the database 210 displays processing speed information and failure occurrence information at 12:01 pm on January 1st. Each may be stored correspondingly. When the database 210 is searched at 12:01 pm on January 1, the database 210 may output processing speed information and failure occurrence information accordingly.
  • the speed underspeed information detecting unit 230 grasps the speed underspeed information at the time of processing the data slower than the first reference speed from the processing speed information stored in the database 210.
  • the first reference speed is a speed value previously stored in the underspeed information detecting unit 230 or stored in the database 210 and then transmitted to the underspeed information detecting unit 230.
  • the first reference speed is compared with the data processing speed for each unit time included in the processing speed information. If the data processing speed of the processing speed information at a specific point in time is slower than the first reference speed, the speed undershooting information detecting unit 230 recognizes the processing speed information as the speed falling information.
  • the processing speed information includes all the information on the processing time, processing data, and processing speed of the streaming data processing system 130. If the data processing speed of the processing speed information is slower than the first reference speed, the processing is performed. All information included in the speed information becomes information included in the speed underspeed information. That is, the first reference speed is a criterion for the underspeed information detecting unit 230 to determine how much the speed of processing the data by the streaming data processing system 130 occurs due to a decrease in performance in the streaming data processing system 130. to be.
  • the first reference speed may be set differently for each unit time.
  • the first reference speed from 0 to t may be expressed as Equation 2.
  • the processing speed of the streaming data different for each unit time is different.
  • the monitoring device 200 can minimize the determination that the performance is uniformly reduced.
  • the processing speed of the data of the streaming data processing system 130 may vary with time, and even if the processing speed becomes slow at a specific time point, it may be only a temporary delay caused by factors other than performance degradation. According to the monitoring device 200 according to the present invention, the system administrator can determine whether or not the performance of the system in consideration of such factors.
  • the speed shortening information detecting unit 230 can distinguish the speed speed information from the speed short information and the speed short information by using the above-described process, and based on the speed short information and the speed achievement information, Information on underspeed can be calculated for each unit time.
  • Equation 3 shows an example of information on whether the speed falls from 0 to t seconds.
  • y (1) which is speed inferiority information at one second when data is processed slower than the first reference speed
  • Y (2) which is information on underspeed of, becomes 0.
  • 0 and 1 may be reversely applied according to a preset value in the speed undertaking detecting unit 230.
  • FIG. 2 will be described subsequently.
  • the relationship information calculation unit 250 calculates correlation information between the processing speed information and the failure occurrence information.
  • Correlation information refers to information that expresses a correlation between processing speed information and failure occurrence information. Since the streaming data processing system 130 processes the data until the first point of time, there are many results, and the failure occurrence information has binary variable characteristics (whether or not a preset failure code has occurred). It is possible to approximate the correlation with fault occurrence information with one formula.
  • Table 1 is a table showing the ratio of the data processing result output from the streaming data processing system 130. Since the data processing result output from the streaming data processing system 130 may be any one of the four types in Table 1, the sum of x, y, u, and v results in 1.
  • Equation 4 to 7 may be defined using x, y, u, and v of Table 1.
  • PPV Physical Predictive Value
  • cPPV complementary PPV
  • NPV Negative Predictive Value
  • cNPV complementary NPV
  • the exemplary PPV is such that the calculated PPV and the NPV become the specific values desired by the system administrator.
  • NPV are set in advance.
  • alpha (alpha) and beta (beta) alpha and beta (beta)
  • the PPV and NPV calculated from the data processing result of the streaming data processing system 130 converge to alpha and beta, respectively, as time passes. That is, when the PPV and NPV of the data processing result output from the streaming data processing system 130 become alpha and beta, respectively, the system administrator operates the streaming data processing system 130 for a sufficiently long time and lasts for a long time in a stable state. It can be seen that the system has a monotonicity that becomes.
  • the present invention proposes a method for calculating a second reference speed that can be compared with the data processing speed of the streaming data processing system 130 at a time after the forging is established as described above, and further description of the second reference speed will be described later. Let's do it.
  • the relationship information calculation unit 250 may normalize the processing speed information to a relational expression based on the failure occurrence information and the first reference speed.
  • Equation 8 shows a linear relation based on the processing speed information on the occurrence information of the failure and the first reference speed.
  • Y (t) is a vector for processing speed information
  • ⁇ (t) is a vector for first reference speed
  • a (t) is a vector for failure occurrence information
  • x (t) is a processing. Refers to a composite vector of velocity information and fault occurrence information.
  • the processing speed information means under speed information.
  • the underspeed information is information on whether data processing speeds of different streaming data processing systems 130 are faster or slower than the first reference speed for each unit time, and can be represented by binary variables.
  • the speed under whether information is included in the processing speed information, or according to the embodiment, after the relationship information calculation unit 250 receives the processing speed information, based on the processing speed information and the first reference speed, the speed under Whether or not information can also be calculated.
  • the failure occurrence information may also be represented as a binary variable.
  • the first reference speed may have a fixed constant value, it has been described through Equation 2 that the first reference speed may have a different value every time according to an embodiment.
  • Equation 8 When regression modeling is applied to a linear equation such as Equation 8, the unknown values of b1, b2, and c can be found. However, in the present invention, since Y (t) is a binary variable, Equation 8 and The same general linear equation is not available.
  • Equation 8 cannot be used when X (t) has a sufficiently large value in Equation 8, Y (t) may exceed one.
  • the second reason why Equation 8 cannot be used is that Y (t) does not satisfy the precondition for using linear regression because Y (t) is only 0 or 1.
  • a prerequisite for using a linear regression equation is that the residuals, which are the tests of significance, must follow a normal distribution.
  • a (t) is also a binary variable of 0 or 1
  • ⁇ (t) is a variable that can be various values, so in the present invention, a linear regression equation such as Equation 8 cannot be used, and logistic regression ( Logistic Regression should be used.
  • Equation 9 shows a vector p (x) for using a regression equation of logit transformation.
  • p (x) is defined as the probability that the data processing speed of the streaming data processing system 130 is slower than the first reference speed when the vector x is defined as the first reference speed and the failure occurrence information.
  • Equation 10 is a regression equation calculated by applying a logit transform to Equation 9. Since each term is defined as a vector of the same dimension, the regression coefficients b1, b2, and c can be obtained using the Maximum Likelihood Estimation.
  • the maximum likelihood estimation method is an effective estimation method when a nonlinear statistical model is analyzed based on binary data when the number of samples is sufficiently secured, and since the maximum likelihood estimation method is widely known, the maximum likelihood estimation method is used. The calculation process will be omitted.
  • Table 2 shows Y (t), A (t) and ⁇ (t) from 1 second to 15 seconds.
  • b1 is 0.8445968
  • b2 is -0.01878321
  • c is 1.507379. Since Table 2 is an exemplary value, when Y (t), A (t), and ⁇ (t) for each unit time are different from those in Table 2, b1, b2, and c may also vary.
  • the second reference speed calculator 270 receives the ratio information between the speed underspeed information and the failure occurrence information, and based on the correlation information calculated by the ratio information and the relationship information calculator 250 after the first time point. The second reference speed at the second time point is calculated.
  • the ratio information between the speed underspeed information and the failure occurrence information refers to the ratio information of a value representing the speed underspeed information and a value representing the failure occurrence information.
  • may be ratio information between speed underspeed information and failure occurrence information.
  • is a data processing speed of the streaming data processing system 130 is slower than the first reference speed among the data processing results outputted by the streaming data processing system 130 when time t has elapsed, and outputs a preset fault code. This is because it is defined as information on the ratio of the time.
  • ⁇ , PPV, cPPV, NPV, cNPV at a specific time point may also be the ratio information between the underspeed information and the failure occurrence information.
  • the second reference speed calculator 270 may receive a ratio information between the speed underspeed information and the failure occurrence information from the system manager or use a value previously stored in the database 210.
  • the correlation information received from the relationship information calculation unit 250 means information indicating the relationship between the processing speed information and the failure occurrence information
  • the correlation information b1, b2, and c are not only correlation information.
  • the second reference speed calculation unit 270 calculates the second reference speed based on the regression coefficients b1, b2, c, which are examples of correlation information, and ⁇ and ⁇ , which are examples of ratio information, will be described. Do it.
  • Equation 10 is expressed as Equation 11 with respect to the vector p (x).
  • Equation 8 by replacing the vector x by the combination of ⁇ (t) and a (t), the same result as in Equation 12 can be obtained.
  • Equation 12 a (t + 1) is 0 or 1 as a binary variable. That is, a (t + 1) is 1 when a preset fault code is output, and a (t + 1) is 0 when a preset fault code is output.
  • Equation 13 is a probability at time t + 1 at which a preset failure code is output
  • Equation 14 is a probability at time t + 1 at which a preset failure code is not output.
  • Equation 15 shows the result of combining Equations 13 and 14 together. That is, the second reference speed compared with the data processing speed of the streaming data processing system 130 at the time t + 1 may be calculated if all values of ⁇ , ⁇ , and regression coefficients b1, b2, and c are present.
  • Computing the second reference speed by deriving the equation 15 from Equations 11 to 14 is an example of a method of calculating the second reference speed, and thus, calculates the second reference speed based on the ratio information and the correlation information. If it is calculated, it may be included in the scope of the present invention even if the same equation as in Equations 11 to 15 is not used.
  • FIG. 3 is a diagram schematically showing a second reference speed calculated according to the present invention.
  • FIG. 3 represents a first reference speed, speed failure information, and fault occurrence information according to Table 2 as vectors, respectively, and is calculated by substituting Equation 15 together with ratio information ( ⁇ and ⁇ ).
  • the second reference speed at the time point is shown in graph form.
  • Equation 15 the values of b1, b2 and c in Equation 15 are used in b1, b2 and c according to Table 2, and ⁇ is 0.95 and ⁇ is 0.9.
  • b1 is 0.8445968
  • b2 is -0.01878321
  • c is 1.507379.
  • the streaming data processing system 130 has a monotony at the time t is 15, and the second reference speed is 165.6873, about 166, at the time t is 16.
  • the streaming data processing system 130 may be interpreted by the system manager as having no performance degradation when the data processing speed is faster than 166 at the time t is 16.
  • the first reference speed continues to change with time, and the second reference speed at the time t is 16 is the cumulative first reference speed at the time t from 0 to 15. It can be understood that the value is calculated by the characteristic. If the reference speed at time t is 17 is assumed to be the third reference speed, the third reference speed is the first reference speed at time t from 0 to 15 and the second reference speed at time t is 16. It is calculated in consideration of all the characteristics, and by repeating the above method, the reference speed of the time after the point t + 2 can also be calculated.
  • ⁇ and ⁇ are set to 0.95 and 0.9, respectively, and it can be seen that the first reference speed at the time t is 0 is also assigned a preset value.
  • ⁇ (t) denotes a data processing speed of the streaming data processing system 130, and other remaining variables are the same as those used in the above description.
  • the second reference speed calculation unit 270 repeats the calculation until the PPV and the NPV at the present time have sufficiently monotonous time, and is the next time point after the time t. It can be seen that the second reference speed for the time t + 1 is calculated.
  • 'isViolated' is assumed to be a function of receiving an SLO value as an input and returning a value of 0 or 1, and has already been described while explaining the database 210 that the SLO value is an example of failure information.
  • the final equation means (15).
  • the second reference speed at time t + 1 calculated through Equation 15 becomes the first reference speed when calculating the second reference speed at time t + 2.
  • the alarm output unit 290 outputs a performance abnormality alarm when the data processing speed at the second time point of the streaming data processing system 130 is slower than the second reference speed.
  • the second time point refers to a time point (time) after the first time point, and refers to a time point after the streaming data processing system 130 shows monotony after sufficient time has elapsed. That is, the second time may be immediately after the unit time of one unit has elapsed after the first time. For example, if data of the data processed by the streaming data processing system 130 for 60 seconds is stored in the database 210 and the unit time is 1 second, the 61 second time point may be the second time point.
  • Performance abnormality alarm is information that the monitoring device 200 according to the present invention directly to the system administrator that the performance degradation occurred in the streaming data processing system 130, the system administrator checks the performance abnormality alarm, If necessary, the streaming data processing system 130 may be checked.
  • FIG. 5 is a flowchart illustrating an example of a method for monitoring a streaming data high speed processing system according to the present invention.
  • the method according to FIG. 5 may be implemented by the monitoring apparatus 200 for monitoring the streaming data high speed processing system according to FIG. 2, it will be described with reference to FIG. 2, and a redundant description will be omitted. Let's do it.
  • the speed shortening information detecting unit 230 refers to the database 210 to grasp the speed shortening information at the time when data is processed slower than the first reference speed in the processing speed information (S510).
  • the database 210 stores processing speed information and failure occurrence information of the data processed at the first time point for each unit time.
  • the first reference speed may be set differently for each unit time.
  • the failure occurrence information stored in the database 210 in step S510 may include reference failure information at the time when the preset reference failure code occurs and non-reference failure information at the time when only the failure code other than the reference failure code occurs.
  • the relationship information calculation unit 250 calculates correlation information between the processing speed information and the failure occurrence information (S530).
  • the relationship information calculation unit 250 may calculate correlation information by using a maximum likelihood method.
  • the relationship information calculator 250 may calculate correlation information by using logit transformation.
  • the second reference speed calculator 270 receives the ratio information between the speed underspeed information and the failure occurrence information and calculates a second reference speed at a second time after the first time based on the correlation information and the rate information. (S550).
  • the ratio information received by the second reference speed calculator 270 may be information about a ratio between the speed fail information and the reference failure information.
  • the alarm output unit 290 compares the data processing speed of the streaming data processing system 130 with the second reference speed at the second time point (S570). If the data processing speed of the streaming data processing system 130 at the second time is slower than the second reference speed, the alarm output unit 290 outputs a performance abnormality alarm (S590).
  • the abnormality occurrence alarm output by the alarm output unit 290 is information that directly informs the system administrator that the performance decrease has occurred in the streaming data processing system 130, and the system administrator reports the abnormality occurrence alarm.
  • the reporting streaming data processing system 130 may be checked.
  • a second reference speed which is a threshold value compared with a processing result of a streaming data processing system that processes big streaming data
  • a second reference speed is actively calculated and applied without the need for an administrator to intervene with a change in time.
  • the performance change state of the streaming data processing system can be monitored with minimal intervention by the system administrator, thereby reducing the burden on the system administrator.
  • the monitoring device according to the present invention when applied to the streaming data processing system, it is possible to achieve the same or more system monitoring effect as before even with less manpower and time.
  • Embodiments according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, such a computer program may be recorded in a computer-readable medium.
  • the media may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and ROMs.
  • the computer program may be specially designed and configured for the present invention, or may be known and available to those skilled in the computer software field.
  • Examples of computer programs may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter or the like.
  • connection or connection members of the lines between the components shown in the drawings by way of example shows a functional connection and / or physical or circuit connections, in the actual device replaceable or additional various functional connections, physical It may be represented as a connection, or circuit connections.
  • such as "essential”, “important” may not be a necessary component for the application of the present invention.

Abstract

An embodiment of the present invention provides a monitoring apparatus for monitoring a high-speed streaming data processing system, the monitoring apparatus comprising: a database for storing, at unit time intervals, processing speed information and fault occurrence information of data processed until a first time point by the high-speed streaming data processing system; an underspeed information identifying unit for identifying, from the processing speed information, underspeed information at a time point when data is processed at a lower speed than a first reference speed; a relationship information calculating unit for calculating correlation information between the processing speed information and the fault occurrence information; a second reference speed calculating unit for receiving ratio information between the underspeed information and the fault occurrence information and calculating a second reference speed at a second time point after the first time point on the basis of the calculated correlation information and the received ratio information; and an alert issuing unit for, when a data processing speed at the second time point is lower than the second reference speed, outputting a performance anomaly occurrence alert.

Description

스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치 및 그 방법Monitoring device and method for monitoring streaming data processing system
본 발명은 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치 및 그 방법에 관한 것으로서, 보다 구체적으로는 스트리밍 데이터를 수집하여 고속으로 처리하는 시스템의 성능 저하 및 장애 발생을 정확하게 감지하기 위해 가변성이 있는 임계값을 산출하는 모니터링 장치 및 그 장치의 모니터링 방법에 관한 것이다.The present invention relates to a monitoring apparatus and a method for monitoring a streaming data high-speed processing system, and more particularly, a threshold value that is variable to accurately detect performance degradation and failure occurrence of a system that collects and processes streaming data at high speed. It relates to a monitoring device for calculating the and a monitoring method of the device.
인터넷상에서 동영상 데이터의 송수신량은 비약적으로 증가하고 있으며, 동영상 데이터를 이용하는 유저들은 동영상 데이터를 영구적으로 저장장치에 저장하여 재생하는 것보다는 스트리밍 방식을 통해 일회성으로 감상하는 것을 더 선호하는 특성을 갖고 있으므로, 스트리밍 데이터를 수집, 처리하는 시스템은 스트리밍 데이터(streaming data)에 대한 안정적인 고속처리능력을 필수적으로 갖추고 있어야 한다.The amount of transmission and reception of video data on the Internet has increased dramatically, and users who use video data prefer to watch the video data one-time via streaming rather than permanently storing and playing the video data. In addition, a system that collects and processes streaming data must have a stable, high-speed processing capability for streaming data.
스트리밍 데이터 처리시스템은 고속처리성능을 안정적으로 유지하기 위해서, 시스템의 성능저하나 장애발생을 모니터링하는 모니터링장치와 함께 운용하는 것이 일반적이며, 시스템 관리자(system administrator)는 모니터링장치를 통해서 스트리밍 데이터 처리시스템을 효율적으로 감시할 수 있다.In order to stably maintain high-speed processing performance, the streaming data processing system is generally operated in conjunction with a monitoring device that monitors the occurrence of failure or failure of the system, and the system administrator (system administrator) uses the streaming data processing system through the monitoring device. Can be monitored efficiently.
모니터링장치가 스트리밍 데이터 처리 시스템이 정상적으로 동작하고 있는 것을 판단하기 위해서는 기준이 필요한데, 그 기준이 되는 값을 시스템 관리자가 매번 지정하여 관리할 경우에는 스트리밍 데이터 처리량의 변화나 시스템 장애 상황에 효율적으로 대처하기 어렵고, 시스템 관리자의 부담이 과중한 문제점이 있다. In order for the monitoring device to determine whether the streaming data processing system is operating normally, a standard is required.If the system administrator assigns and manages the standard value every time, the monitoring device can effectively cope with changes in streaming data throughput or system failure. It is difficult and the burden of the system administrator is excessive.
위와 같은 문제점을 해결하기 위해서는, 모니터링장치가 스트리밍 데이터 처리 시스템의 정상 동작 여부를 판단하는 기준값을 시간의 흐름 및 시스템의 상황에 따라 능동적으로 조절함으로써, 시스템 관리자의 불필요한 개입을 최소화할 수 있는 모니터링 장치가 필요하다.In order to solve the above problems, the monitoring device actively adjusts the reference value for determining the normal operation of the streaming data processing system according to the passage of time and the system situation, the monitoring device that can minimize unnecessary intervention of the system administrator Is needed.
본 발명이 해결하고자 하는 기술적 과제는, 스트리밍 데이터를 처리하는 처리시스템의 성능저하를 판단하기 위한 기준값을 축적되어 온 성능지표를 통해 산출하고, 그 산출된 기준값을 통해 사람의 개입없이 처리시스템의 정상 동작 여부를 정확하게 판단할 수 있는 모니터링 장치 및 그 방법을 제공하는 데에 있다.The technical problem to be solved by the present invention is to calculate the reference value for determining the performance degradation of the processing system for processing the streaming data through the accumulated performance indicators, the normal value of the processing system without human intervention through the calculated reference value The present invention provides a monitoring device and method for accurately determining whether or not to operate.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시 예에 따른 모니터링장치는, 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치에 있어서, 상기 스트리밍 데이터 고속처리시스템이 제1시점까지 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있는 데이터베이스; 상기 처리속도정보에서 제1기준속도보다 더 느리게 데이터가 처리된 시점의 속도미달정보를 파악하는 속도미달정보파악부; 상기 처리속도정보와 상기 장애발생정보간의 상관관계정보를 산출하는 관계정보산출부; 상기 속도미달정보와 상기 장애발생정보와의 비율정보를 수신하고, 상기 산출된 상관관계정보 및 상기 수신된 비율정보를 기초로 제1시점 이후의 제2시점에서의 제2기준속도를 산출하는 제2기준속도산출부; 및 상기 제2시점에서의 데이터처리속도가 상기 제2기준속도보다 더 느리면, 성능이상발생경보를 출력하는 경보출력부;를 포함한다.Monitoring device according to an embodiment of the present invention for monitoring the technical problem, in the monitoring device for monitoring the streaming data high-speed processing system, processing speed information of the data processed by the streaming data high-speed processing system to the first time point And a database storing failure occurrence information for each unit time. A speed shortening information detecting unit for grasping speed shortening information at a time when data is processed slower than a first reference speed in the processing speed information; A relationship information calculation unit for calculating correlation information between the processing speed information and the failure occurrence information; Receiving ratio information between the speed shortage information and the failure occurrence information and calculating a second reference speed at a second time after a first time based on the calculated correlation information and the received rate information; 2 standard speed calculation unit; And an alarm output unit configured to output a performance abnormality alarm when the data processing speed at the second time point is slower than the second reference speed.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 일 실시 예에 따른 모니터링방법은, 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법에 있어서, 제1시점까지 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있는 데이터베이스를 참조하여, 상기 처리속도정보에서 제1기준속도보다 더 느리게 데이터가 처리된 시점의 속도미달정보를 파악하는 속도미달정보파악단계; 상기 처리속도정보와 상기 장애발생정보간의 상관관계정보를 산출하는 관계정보산출단계; 상기 속도미달정보와 상기 장애발생정보와의 비율정보를 수신하고, 상기 산출된 상관관계정보 및 상기 수신된 비율정보를 기초로 제1시점 이후의 제2시점에서의 제2기준속도를 산출하는 제2기준속도산출단계; 및 상기 제2시점에서의 데이터처리속도가 상기 제2기준속도보다 더 느리면, 성능이상발생경보를 출력하는 경보출력단계;를 포함한다.Monitoring method according to another embodiment of the present invention for solving the technical problem, in the monitoring method for monitoring a streaming data high-speed processing system, the processing speed information and failure occurrence information of the data processed up to the first time point unit A speed shortening information identifying step of identifying speed shortening information at a time when data is processed slower than a first reference speed in the processing speed information by referring to a database stored for each time; Calculating relationship information between the processing speed information and the failure occurrence information; Receiving ratio information between the speed shortage information and the failure occurrence information and calculating a second reference speed at a second time after a first time based on the calculated correlation information and the received rate information; 2 standard speed calculation step; And an alarm output step of outputting a performance abnormality alarm if the data processing speed at the second time point is slower than the second reference speed.
본 발명에 따르면, 빅 스트리밍 데이터(big streaming data)를 처리하는 스트리밍 데이터 처리시스템의 처리결과와 비교되는 임계값인 제2기준속도가 시간의 변화에 따라 관리자가 개입할 필요 없이 능동적으로 산출되고 적용됨으로써, 스트리밍 데이터 처리 시스템의 성능변화상태를 시스템 관리자의 개입을 최소화하면서 감시할 수 있게 되어, 시스템 관리자의 업무 부담을 경감시킬 수 있다.According to the present invention, a second reference speed, which is a threshold value compared with a processing result of a streaming data processing system that processes big streaming data, is actively calculated and applied without the need for an administrator to intervene with a change in time. As a result, the performance change of the streaming data processing system can be monitored while minimizing the intervention of the system administrator, thereby reducing the burden on the system administrator.
또한, 스트리밍 데이터 처리시스템에 본 발명에 따른 모니터링 장치를 적용할 경우, 보다 적은 운용 인력과 시간을 투입하고도 종전과 동일하거나 그 이상의 시스템 감시 효과를 달성할 수 있다.In addition, when the monitoring device according to the present invention is applied to the streaming data processing system, it is possible to achieve the same or more system monitoring effect as before even with less manpower and time.
도 1은 본 발명에 따른 모니터링 시스템의 전체 구성을 개략적으로 나타낸 도면이다. 1 is a view schematically showing the overall configuration of a monitoring system according to the present invention.
도 2는 본 발명에 따른 모니터링 장치의 일 예에 대한 블록도이다.2 is a block diagram of an example of a monitoring apparatus according to the present invention.
도 3은 본 발명에 따라 산출되는 제2기준속도를 도식적으로 나타낸 도면이다.3 is a diagram schematically showing a second reference speed calculated according to the present invention.
도 4는 본 발명에 따른 제2기준속도 산출방식을 수도코드(pseudo-code)로 구현한 일 예를 나타낸다.4 shows an example of implementing the second reference speed calculation method according to the present invention using pseudo-code.
도 5는 본 발명에 따른 스트리밍 데이터 고속처리시스템을 모니터링하는 방법의 일 예의 흐름도를 도시한 도면이다.5 is a flowchart illustrating an example of a method for monitoring a streaming data high speed processing system according to the present invention.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시 예에 따른 모니터링장치는, 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치에 있어서, 상기 스트리밍 데이터 고속처리시스템이 제1시점까지 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있는 데이터베이스; 상기 처리속도정보에서 제1기준속도보다 더 느리게 데이터가 처리된 시점의 속도미달정보를 파악하는 속도미달정보파악부; 상기 처리속도정보와 상기 장애발생정보간의 상관관계정보를 산출하는 관계정보산출부; 상기 속도미달정보와 상기 장애발생정보와의 비율정보를 수신하고, 상기 산출된 상관관계정보 및 상기 수신된 비율정보를 기초로 제1시점 이후의 제2시점에서의 제2기준속도를 산출하는 제2기준속도산출부; 및 상기 제2시점에서의 데이터처리속도가 상기 제2기준속도보다 더 느리면, 성능이상발생경보를 출력하는 경보출력부;를 포함한다.Monitoring device according to an embodiment of the present invention for monitoring the technical problem, in the monitoring device for monitoring the streaming data high-speed processing system, processing speed information of the data processed by the streaming data high-speed processing system to the first time point And a database storing failure occurrence information for each unit time. A speed shortening information detecting unit for grasping speed shortening information at a time when data is processed slower than a first reference speed in the processing speed information; A relationship information calculation unit for calculating correlation information between the processing speed information and the failure occurrence information; Receiving ratio information between the speed shortage information and the failure occurrence information and calculating a second reference speed at a second time after a first time based on the calculated correlation information and the received rate information; 2 standard speed calculation unit; And an alarm output unit configured to output a performance abnormality alarm when the data processing speed at the second time point is slower than the second reference speed.
상기 장치에 있어서, 상기 제1기준속도는, 상기 단위시각별로 서로 다르게 설정된 것을 특징으로 할 수 있다.In the apparatus, the first reference speed may be set differently for each unit time.
상기 장치에 있어서, 상기 장애발생정보는, 기설정된 기준장애코드가 발생한 시점의 기준장애정보 및 상기 기준장애코드가 발생한 시점을 제외한 시점의 비기준장애정보를 포함하는 것을 특징으로 할 수 있다.In the apparatus, the failure occurrence information may include reference failure information when a preset reference failure code occurs and non-reference failure information at a time except when the reference failure code occurs.
상기 장치에 있어서, 상기 수신된 비율정보는, 상기 속도미달정보 및 상기 기준장애정보간의 비율에 대한 정보인 것을 특징으로 할 수 있다.In the apparatus, the received ratio information may be information on a ratio between the speed shortage information and the reference failure information.
상기 장치에 있어서, 상기 관계정보산출부는 최우추정법(Maximum Likelihood Method)를 이용하여 상기 상관관계정보를 산출하는 것을 특징으로 할 수 있다.In the apparatus, the relationship information calculation unit may calculate the correlation information by using a maximum likelihood method.
상기 장치에 있어서, 상기 관계정보산출부는, 상기 상관관계정보를 산출하는 데에 있어서, 로짓변환((Logit Transformation)를 이용하는 것을 특징으로 할 수 있다.In the apparatus, the relationship information calculation unit may be configured to use logit transformation in calculating the correlation information.
상기 장치에 있어서, 상기 속도미달정보파악부는, 상기 처리속도정보에서 제1기준속도보다 더 빠르게 데이터가 처리된 시점의 속도달성정보를 상기 파악된 속도미달정보와 구분하기 위해 이진변수를 이용하는 것을 특징으로 할 수 있다.In the apparatus, the underspeed information detecting unit uses a binary variable to distinguish the speed achievement information at the time when data is processed faster than the first reference speed in the processing speed information from the determined underspeed information. You can do
상기 기술적 과제를 해결하기 위한 본 발명의 다른 일 실시 예에 따른 모니터링방법은, 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법에 있어서, 제1시점까지 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있는 데이터베이스를 참조하여, 상기 처리속도정보에서 제1기준속도보다 더 느리게 데이터가 처리된 시점의 속도미달정보를 파악하는 속도미달정보파악단계; 상기 처리속도정보와 상기 장애발생정보간의 상관관계정보를 산출하는 관계정보산출단계; 상기 속도미달정보와 상기 장애발생정보와의 비율정보를 수신하고, 상기 산출된 상관관계정보 및 상기 수신된 비율정보를 기초로 제1시점 이후의 제2시점에서의 제2기준속도를 산출하는 제2기준속도산출단계; 및 상기 제2시점에서의 데이터처리속도가 상기 제2기준속도보다 더 느리면, 성능이상발생경보를 출력하는 경보출력단계;를 포함한다.Monitoring method according to another embodiment of the present invention for solving the technical problem, in the monitoring method for monitoring a streaming data high-speed processing system, the processing speed information and failure occurrence information of the data processed up to the first time point unit A speed shortening information identifying step of identifying speed shortening information at a time when data is processed slower than a first reference speed in the processing speed information by referring to a database stored for each time; Calculating relationship information between the processing speed information and the failure occurrence information; Receiving ratio information between the speed shortage information and the failure occurrence information and calculating a second reference speed at a second time after a first time based on the calculated correlation information and the received rate information; 2 standard speed calculation step; And an alarm output step of outputting a performance abnormality alarm if the data processing speed at the second time point is slower than the second reference speed.
상기 방법에 있어서, 상기 제1기준속도는, 상기 단위시각별로 서로 다르게 설정된 것을 특징으로 할 수 있다.In the method, the first reference speed may be set differently for each unit time.
상기 방법에 있어서, 상기 장애발생정보는, 기설정된 기준장애코드가 발생한 시점의 기준장애정보 및 상기 기준장애코드가 발생한 시점을 제외한 시점의 비기준장애정보를 포함하는 것을 특징으로 할 수 있다.In the above method, the failure occurrence information may include reference failure information when a preset reference failure code occurs and non-reference failure information at a time except when the reference failure code occurs.
상기 방법에 있어서, 상기 수신된 비율정보는, 상기 속도미달정보 및 상기 기준장애정보간의 비율에 대한 정보인 것을 특징으로 할 수 있다.In the above method, the received ratio information may be information on a ratio between the speed shortage information and the reference failure information.
상기 방법에 있어서, 상기 관계정보산출단계는 최우추정법(Maximum Likelihood Method)를 이용하여 상기 상관관계정보를 산출하는 것을 특징으로 할 수 있다.In the method, the calculating of the relationship information may include calculating the correlation information by using a maximum likelihood method.
상기 방법에 있어서, 상기 관계정보산출단계는, 상기 상관관계정보를 산출하는 데에 있어서, 로짓변환(Logit Transformation)를 이용하는 것을 특징으로 할 수 있다.In the method, the calculating of the relationship information may include using logit transformation to calculate the correlation information.
상기 방법에 있어서, 상기 속도미달정보파악단계는, 상기 처리속도정보에서 제1기준속도보다 더 빠르게 데이터가 처리된 시점의 속도달성정보를 상기 파악된 속도미달정보와 구분하기 위해 이진변수를 이용하는 것을 특징으로 할 수 있다.In the method, the step of identifying the underspeed information may include using a binary variable to distinguish the speed achievement information at the time when data is processed faster than the first reference speed in the processing speed information from the determined underspeed information. It can be characterized.
본 발명은 상기 기술적 과제를 해결하기 위한 방법을 실행시키기 위한 프로그램을 기록하고 있는 컴퓨터 판독가능한 기록매체를 제공할 수 있다.The present invention can provide a computer readable recording medium having recorded thereon a program for executing a method for solving the above technical problem.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. Effects and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in detail with reference to the drawings. However, the present invention is not limited to the embodiments disclosed below but may be implemented in various forms.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals, and redundant description thereof will be omitted. .
이하의 실시 예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one component from other components rather than a restrictive meaning.
이하의 실시 예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following embodiments, the singular forms “a”, “an” and “the” include plural forms unless the context clearly indicates otherwise.
이하의 실시 예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징을 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as include or have means that the features or components described in the specification are present, and does not preclude the possibility of adding one or more other features or components in advance.
어떤 실시 예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.When a certain embodiment can be implemented differently, a specific process order may be performed differently from the described order. For example, two processes described in succession may be performed substantially simultaneously or in the reverse order of the described order.
도 1은 본 발명에 따른 모니터링 시스템의 전체 구성을 개략적으로 나타낸 도면이다. 1 is a view schematically showing the overall configuration of a monitoring system according to the present invention.
도 1을 참조하면, 본 발명에 따른 스트리밍 데이터 처리시스템의 모니터링 시스템(10)은, 스트리밍 데이터 송신시스템(110), 스트리밍 데이터 처리시스템(130) 및 모니터링장치(200)로 구성되어 있으며, 스트리밍 데이터 송신시스템(110) 및 스트리밍 데이터 처리시스템(130)은 통신망(150)을 통해 연결되어 각종 데이터를 송수신한다는 것을 알 수 있다.Referring to FIG. 1, the monitoring system 10 of the streaming data processing system according to the present invention includes a streaming data transmission system 110, a streaming data processing system 130, and a monitoring device 200. It can be seen that the transmission system 110 and the streaming data processing system 130 are connected through the communication network 150 to transmit and receive various data.
먼저, 스트리밍 데이터 송신시스템(110)은 스트리밍 데이터를 저장하고 있으며, 스트리밍 데이터 처리시스템(130)으로부터 스트리밍 데이터의 송신하라는 요청을 수신하면, 통신망(150)을 통해 스트리밍 데이터 처리시스템(130)에 스트리밍 데이터를 송신한다. 여기서, 스트리밍 데이터는 전체 데이터 중 일부만을 분할하여 송신될 수 있고, 그 스트리밍 데이터의 일부를 수신한 측에서 그 스트리밍 데이터의 일부를 재생(play)할 수 있는 각종 비디오 및 오디오 데이터를 의미한다.First, the streaming data transmission system 110 stores streaming data. When the streaming data transmission system 110 receives a request to transmit streaming data from the streaming data processing system 130, the streaming data transmission system 110 streams the streaming data to the streaming data processing system 130 through the communication network 150. Send the data. Here, the streaming data refers to various video and audio data that can be transmitted by dividing only a part of the entire data, and can play a part of the streaming data on the side receiving the part of the streaming data.
스트리밍 데이터 처리시스템(130)은 스트리밍 데이터 송신시스템(110)에 스트리밍 데이터 송신요청을 송신하고, 스트리밍 데이터를 수신 및 처리한다. 스트리밍 데이터 처리시스템(130)은 스트리밍 데이터 송신시스템(110)으로부터 수신한 스트리밍 데이터를 반영구적으로 저장할 수 있는 저장장치(storing device) 및 스트리밍 데이터를 처리하여 출력장치를 통해 출력시키는 그래픽제어장치, 오디오제어장치, 각종 프로세서를 모두 포함할 수 있다. 또한, 스트리밍 데이터 처리시스템(130)은 스트리밍 데이터를 처리한 내역(history)을 단위시각별 또는 이벤트별로 로그(log)에 기록하여 보관할 수 있다.The streaming data processing system 130 transmits a streaming data transmission request to the streaming data transmission system 110 and receives and processes the streaming data. The streaming data processing system 130 is a storage device capable of semi-permanently storing the streaming data received from the streaming data transmission system 110, and a graphics control device for processing the streaming data and outputting it through an output device, audio control. The device may include all kinds of processors. In addition, the streaming data processing system 130 may record and store a history of processing the streaming data in a log for each unit time or event.
본 발명에 따른 모니터링장치(200)는 스트리밍 데이터 처리시스템(130)의 성능저하 또는 장애코드(error code)의 발생여부를 감시하는 기능을 수행한다. 모니터링장치(200)는 스트리밍 데이터 처리시스템(130)으로부터 데이터 처리결과를 직접 수신하거나, 스트리밍 데이터 처리시스템(130)의 로그를 분석하여, 스트리밍 데이터 처리시스템(130)에 성능저하 또는 장애코드가 발생한 것을 감지한다.The monitoring device 200 according to the present invention performs a function of monitoring whether the performance of the streaming data processing system 130 or an error code is generated. The monitoring apparatus 200 directly receives the data processing result from the streaming data processing system 130 or analyzes the log of the streaming data processing system 130 to generate a performance degradation or failure code in the streaming data processing system 130. To detect that.
스트리밍 데이터 처리시스템(130)에 성능저하 또는 장애코드가 발생한 것을 감지하면, 그 감지한 결과를 시각적으로 출력할 수도 있다. 모니터링장치(200)는 스트리밍 데이터 처리시스템(130)과 유선으로 연결되거나, 스트리밍 데이터 처리시스템(130)에 물리적 또는 논리적으로 포함되어 동작할 수 있다.When the streaming data processing system 130 detects that a performance degradation or a failure code has occurred, the detected result may be visually output. The monitoring device 200 may be connected to the streaming data processing system 130 by wire or may be physically or logically included in the streaming data processing system 130 to operate.
스트리밍 데이터 송신시스템(110) 및 스트리밍 데이터 처리시스템(130)은 각종 데이터를 통신망(150)을 통해 송수신하게 되며, 여기서, 통신망(150)은 일반전화망, 데이터망, 이동통신망 등 각종 유무선 통신망을 포함한다.The streaming data transmission system 110 and the streaming data processing system 130 transmit and receive various data through the communication network 150, where the communication network 150 includes various wired and wireless communication networks such as a general telephone network, a data network, and a mobile communication network. do.
도 2는 본 발명에 따른 모니터링 장치의 일 예에 대한 블록도이다.2 is a block diagram of an example of a monitoring apparatus according to the present invention.
도 2를 참조하면, 본 발명에 따른 모니터링장치(200)는 데이터베이스(210), 속도미달정보파악부(230), 관계정보산출부(250), 제2기준속도산출부(270) 및 경보출력부(290)를 포함하고 있다는 것을 알 수 있으며, 설명의 편의를 위해서, 도 1을 참조하여 설명하기로 한다.Referring to FIG. 2, the monitoring device 200 according to the present invention includes a database 210, an underspeed information detecting unit 230, a relationship information calculating unit 250, a second reference speed calculating unit 270, and an alarm output. It can be seen that the unit 290 is included, and for convenience of description, it will be described with reference to FIG. 1.
데이터베이스(210)는 제1시점까지 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있다. 여기서, 제1시점은 스트리밍 데이터 처리시스템(130)이 스트리밍 데이터를 처리한 과거의 시점 중 현재와 가장 인접한 시간대를 의미한다. 예를 들어, 스트리밍 데이터 처리시스템(130)이 오후 2시부터 오후 3시까지 스트리밍 데이터를 처리했다면, 제1시점은 오후 3시 시점이 될 수 있다.The database 210 stores processing speed information and failure occurrence information of data processed up to a first time point for each unit time. Here, the first time point refers to a time zone closest to the present of the past time points when the streaming data processing system 130 processes the streaming data. For example, if the streaming data processing system 130 processes the streaming data from 2 pm to 3 pm, the first time point may be 3 pm.
처리속도정보는 스트리밍 데이터 처리시스템(130)이 데이터를 처리하는 속도의 값에 대한 정보를 의미한다. 처리속도정보는 스트리밍 데이터 처리시스템(130)의 로그에 단위시각별로 기록되는 정보를 기초로 하여 생성될 수 있다. 스트리밍 데이터 처리시스템(130)의 데이터 처리속도는 데이터를 처리할 때의 시스템의 보유 리소스량, 장애발생상태, 스트리밍 데이터의 용량, 스트리밍 데이터의 종류(데이터 포맷, 확장자 등을 의미)등에 따라 달라지며, 처리속도정보는 그런 다양한 데이터 처리속도를 포함한 여러 정보가 단위시각별로 기록된 정보이다. 일반적으로 시스템의 데이터 처리속도가 느려지는 것은 시스템의 성능 저하 상태로 해석된다.The processing speed information refers to information on a value of the speed at which the streaming data processing system 130 processes data. The processing speed information may be generated based on information recorded for each unit time in a log of the streaming data processing system 130. The data processing speed of the streaming data processing system 130 depends on the amount of resources held by the system when processing data, a failure state, the capacity of the streaming data, the type of streaming data (meaning the data format, extension, etc.), and the like. For example, the processing speed information is information in which various information including the various data processing speeds are recorded by unit time. In general, slowing down the data throughput of a system is interpreted as a performance degradation of the system.
장애발생정보는 스트리밍 데이터 처리시스템(130)이 데이터를 처리하는 과정에서 발생하는 각종 장애에 대한 정보를 의미한다. 여기서, 장애발생정보에는 스트리밍 데이터 처리시스템(130)에 미리 설정된 장애코드가 발생한 상태는 물론이고, 미리 설정되지 않은 장애코드가 발생한 상태에 대한 정보가 모두 포함된다. The failure occurrence information refers to information on various failures that occur while the streaming data processing system 130 processes the data. Here, the failure occurrence information includes not only a state in which a preset failure code is generated in the streaming data processing system 130, but also all information on a state in which a failure code is not preset.
스트리밍 데이터 처리시스템(130)이 장애코드를 출력하더라도, 스트리밍 데이터 처리시스템(130)의 데이터 처리속도가 전혀 달라지지 않을 수 있다. 즉, 스트리밍 데이터 처리시스템(130)에서 장애가 발생하는 것과 성능 저하가 발생하는 것은 별개의 문제이다. 예를 들어, 스트리밍 데이터 처리시스템(130)의 데이터 처리결과가 스트리밍 데이터 처리시스템(130)에 미리 설정된 SLO(Service Level Objective)을 위반할 경우, 스트리밍 데이터 처리시스템(130)은 장애코드를 출력할 수 있다. 이때, SLO는 스트리밍 데이터 처리시스템(130)의 처리결과에 요구되는 일정한 기준을 의미하고, 그 기준은 스트리밍 데이터 처리시스템(130)의 데이터 처리속도와 전혀 무관한 기준일 수도 있다.Even when the streaming data processing system 130 outputs a failure code, the data processing speed of the streaming data processing system 130 may not be changed at all. In other words, failure and performance degradation in the streaming data processing system 130 are separate problems. For example, if the data processing result of the streaming data processing system 130 violates the SLO (Service Level Objective) preset in the streaming data processing system 130, the streaming data processing system 130 may output a failure code. have. In this case, the SLO means a predetermined criterion required for the processing result of the streaming data processing system 130, and the criterion may be a criterion irrelevant to the data processing speed of the streaming data processing system 130.
선택적 일 실시 예로서, 장애발생정보는 기설정된 기준장애코드가 발생한 시점의 기준장애정보 및 기준장애코드가 발생한 시점 외의 시점의 비기준장애정보를 포함할 수도 있다. 기준장애코드가 발생한 시점 외의 시점에는 기준장애코드 외의 장애코드가 발생한 시점 및 장애코드가 발생하지 않은 시점이 모두 포함된다.As an optional embodiment, the failure occurrence information may include reference failure information when a predetermined reference failure code is generated and non-reference failure information when a point other than the time when the reference failure code is generated. A time point other than the time point of occurrence of the reference failure code includes both a time point of occurrence of a failure code other than the reference failure code and a time of no failure code generation.
즉, 장애발생정보는 스트리밍 데이터 처리시스템(130)으로부터 단위시각별로 출력되는 정보이지만, 매순간마다 스트리밍 데이터 처리시스템(130)에 미리 설정된 장애코드에 대응되는 장애가 발생되는 것은 아니므로, 장애발생정보에는 기준장애정보 및 비기준장애정보가 포함된다. 본 선택적 실시 예에서, 기준장애정보는 1, 비기준장애정보는 0으로 표현될 수 있다.That is, the failure occurrence information is information output from the streaming data processing system 130 at a unit time, but a failure corresponding to a failure code preset in the streaming data processing system 130 is not generated every time. Reference failure information and non-reference failure information are included. In this optional embodiment, the reference failure information may be expressed as 1 and the non-reference failure information may be expressed as 0.
데이터베이스(210)는 시스템이 출력하는 장애코드가 기준장애코드인지 구별할 수 있는 비교코드를 미리 저장할 수도 있다. 데이터베이스(210)는 스트리밍 데이터 처리시스템(130)이 출력한 데이터 처리결과를 분석하여, 비교코드와 일치하는 기준장애코드가 있는지 여부를 파악하고, 기준장애정보 또는 비기준장애정보를 저장하도록 제어하는 프로세서(processor)를 포함할 수도 있다. 예를 들어, t1시점에 장애코드 F6009가 스트리밍 데이터 처리시스템(130)부터 출력되고, 비교코드에 F6009가 포함되어 있다면, 데이터베이스(210)에서 저장되는 t1시점의 장애발생정보는 기준장애정보를 포함하게 된다.The database 210 may store in advance a comparison code for distinguishing whether a failure code output from the system is a reference failure code. The database 210 analyzes the data processing result output from the streaming data processing system 130 to determine whether there is a reference failure code that matches the comparison code, and controls to store the reference failure information or non-reference failure information. It may also include a processor. For example, if fault code F6009 is output from the streaming data processing system 130 at time t1 and F6009 is included in the comparison code, the failure occurrence information at time t1 stored in the database 210 includes reference failure information. Done.
Figure PCTKR2017004718-appb-M000001
Figure PCTKR2017004718-appb-M000001
수학식 1은 0초에서 t초까지의 장애발생정보의 일 예를 나타낸다. 수학식 1과 같이 0초에서 t초까지의 장애발생정보는 t+1차원의 벡터로 표현될 수 있다. Equation 1 shows an example of failure occurrence information from 0 second to t seconds. As shown in Equation 1, fault occurrence information from 0 second to t seconds may be expressed as a vector of t + 1 dimension.
처리속도정보 및 장애발생정보는 모두 단위시각별로 기록된 정보이다. 여기서, 단위시각은 특정한 시각으로 한정되지 않으므로, 10초, 1분, 10분, 한 시간 등의 단위가 될 수 있다. 처리속도정보 및 장애발생정보가 둘 다 단위시각별로 기록된 정보이므로, 데이터베이스(210)는 처리속도정보 및 장애발생정보를 맵핑시켜 저장할 수 있다. 예를 들어, 단위시각이 1분이고, 1월 1일 오후 12시부터 스트리밍 데이터가 계속 처리되었다고 가정하면, 데이터베이스(210)에는 1월 1일 오후 12시 1분에 처리속도정보 및 장애발생정보가 각각 대응되어 저장될 수 있다. 데이터베이스(210)가 1월 1일 오후 12시 1분으로 검색되면, 데이터베이스(210)는 그에 따른 처리속도정보 및 장애발생정보를 한꺼번에 출력할 수 있다.Both the processing speed information and the failure occurrence information are recorded in unit time. Here, since the unit time is not limited to a specific time, it may be a unit of 10 seconds, 1 minute, 10 minutes, one hour, or the like. Since both the processing speed information and the failure occurrence information are recorded for each unit time, the database 210 may map and store the processing speed information and the failure occurrence information. For example, assuming that the unit time is 1 minute and streaming data continues to be processed from 12:00 pm on January 1, the database 210 displays processing speed information and failure occurrence information at 12:01 pm on January 1st. Each may be stored correspondingly. When the database 210 is searched at 12:01 pm on January 1, the database 210 may output processing speed information and failure occurrence information accordingly.
이어서, 속도미달정보파악부(230)는 데이터베이스(210)에 저장된 처리속도정보에서 제1기준속도보다 더 느리게 데이터를 처리한 시점의 속도미달정보를 파악한다.Subsequently, the speed underspeed information detecting unit 230 grasps the speed underspeed information at the time of processing the data slower than the first reference speed from the processing speed information stored in the database 210.
제1기준속도는 속도미달정보파악부(230)에 미리 저장되어 있거나, 데이터베이스(210)에 저장되어 있다가 속도미달정보파악부(230)에 전달되는 속도값이다. 제1기준속도는 처리속도정보에 포함되어 있는 단위시각별 데이터처리속도와 비교된다. 속도미달정보파악부(230)는 특정 시점의 처리속도정보의 데이터처리속도가 제1기준속도보다 더 느리다면, 그 처리속도정보를 속도미달정보로 파악한다. 처리속도정보에는 스트리밍 데이터 처리시스템(130)이 데이터를 처리한 시각, 처리한 데이터, 처리속도에 대한 정보가 모두 포함되므로, 처리속도정보의 데이터처리속도가 제1기준속도보다 느리다면, 그 처리속도정보의 포함된 모든 정보가 속도미달정보에 포함된 정보가 된다. 즉, 제1기준속도는 스트리밍 데이터 처리시스템(130)에 성능 저하가 발생하여, 스트리밍 데이터 처리시스템(130)이 데이터를 처리하는 속도가 얼마나 떨어졌는지 속도미달정보파악부(230)가 파악하기 위한 기준이다.The first reference speed is a speed value previously stored in the underspeed information detecting unit 230 or stored in the database 210 and then transmitted to the underspeed information detecting unit 230. The first reference speed is compared with the data processing speed for each unit time included in the processing speed information. If the data processing speed of the processing speed information at a specific point in time is slower than the first reference speed, the speed undershooting information detecting unit 230 recognizes the processing speed information as the speed falling information. The processing speed information includes all the information on the processing time, processing data, and processing speed of the streaming data processing system 130. If the data processing speed of the processing speed information is slower than the first reference speed, the processing is performed. All information included in the speed information becomes information included in the speed underspeed information. That is, the first reference speed is a criterion for the underspeed information detecting unit 230 to determine how much the speed of processing the data by the streaming data processing system 130 occurs due to a decrease in performance in the streaming data processing system 130. to be.
선택적 일 실시 예로서, 제1기준속도는 단위시각별로 서로 다르게 설정될 수도 있다. 예를 들어, 0에서 t까지의 제1기준속도는 수학식 2처럼 표현될 수 있다.Optionally, the first reference speed may be set differently for each unit time. For example, the first reference speed from 0 to t may be expressed as Equation 2.
Figure PCTKR2017004718-appb-M000002
Figure PCTKR2017004718-appb-M000002
본 선택적 실시 예에 따르면, 스트리밍 데이터가 스트리밍 데이터 처리시스템(130)에 의해 처리되는 시점에 따라 제1기준속도가, 수학식 2와 같이 가변성을 갖고 있으므로, 단위시각별로 서로 다른 스트리밍 데이터의 처리속도에 대해 모니터링장치(200)가 일률적으로 성능 저하라고 판정하는 일을 최소화할 수 있다. According to the present exemplary embodiment, since the first reference speed is variable as shown in Equation 2 according to the timing at which the streaming data is processed by the streaming data processing system 130, the processing speed of the streaming data different for each unit time is different. With respect to the monitoring device 200 can minimize the determination that the performance is uniformly reduced.
스트리밍 데이터 처리시스템(130)의 데이터의 처리속도는 시간의 흐름에 따라 다양하게 변화할 수 있으며, 처리속도가 특정 시점에서 느려지더라도 성능 저하가 아닌 다른 요인으로 인해 발생한 일시적 지연(temporary delay)에 불과할 수 있는데, 본 발명에 따른 모니터링장치(200)에 따르면, 시스템 관리자는 그러한 요인을 고려하여 시스템의 성능 저하 여부를 판단할 수 있게 된다.The processing speed of the data of the streaming data processing system 130 may vary with time, and even if the processing speed becomes slow at a specific time point, it may be only a temporary delay caused by factors other than performance degradation. According to the monitoring device 200 according to the present invention, the system administrator can determine whether or not the performance of the system in consideration of such factors.
이하에서는, 속도미달정보와 구분하기 위해, 처리속도정보 중 속도미달정보로 파악되지 않은 정보는 속도달성정보로 호칭하기로 한다. 속도미달정보파악부(230)는 전술한 과정을 통해 처리속도정보를 속도미달정보와 속도미달정보 외의 속도달성정보를 구분할 수 있고, 속도미달정보 및 속도달성정보를 기초로 하여, 이진변수 형태의 속도미달여부정보를 단위시각별로 산출할 수 있다.Hereinafter, in order to distinguish the speed underspeed information, information which is not identified as the speed underspeed information among the processing speed information will be referred to as speed achievement information. The speed shortening information detecting unit 230 can distinguish the speed speed information from the speed short information and the speed short information by using the above-described process, and based on the speed short information and the speed achievement information, Information on underspeed can be calculated for each unit time.
Figure PCTKR2017004718-appb-M000003
Figure PCTKR2017004718-appb-M000003
수학식 3은 0초에서 t초까지의 속도미달여부정보의 일 예를 나타낸다. 예를 들어, 수학식 3에서, 제1기준속도보다 더 느리게 데이터를 처리한 1초 시점의 속도미달여부정보인 y(1)는 1, 제1기준속도보다 더 빠르게 데이터를 처리한 2초 시점의 속도미달여부정보인 y(2)는 0이 된다. 이때, 속도미달정보파악부(230)에 미리 설정된 값에 따라 0과 1이 반대로 적용될 수도 있다. Equation 3 shows an example of information on whether the speed falls from 0 to t seconds. For example, in Equation 3, y (1), which is speed inferiority information at one second when data is processed slower than the first reference speed, is 1, at two second when data is processed faster than the first reference speed. Y (2), which is information on underspeed of, becomes 0. In this case, 0 and 1 may be reversely applied according to a preset value in the speed undertaking detecting unit 230.
이하에서는, 도 2를 이어서 설명하기로 한다.Hereinafter, FIG. 2 will be described subsequently.
관계정보산출부(250)는 처리속도정보와 장애발생정보간의 상관관계정보를 산출한다. The relationship information calculation unit 250 calculates correlation information between the processing speed information and the failure occurrence information.
상관관계정보는 처리속도정보와 장애발생정보가 어떠한 상관관계를 갖고 있는지 수식으로 나타낸 정보를 의미한다. 스트리밍 데이터 처리시스템(130)이 제1시점까지 데이터를 처리한 결과가 충분히 많고, 장애발생정보가 이진변수 특성(미리 설정된 장애코드가 발생하였는지 발생하지 않았는지 여부)을 가지므로, 처리속도정보와 장애발생정보와의 상관관계를 하나의 수식으로 근사화(approximation)시키는 것이 가능하다.Correlation information refers to information that expresses a correlation between processing speed information and failure occurrence information. Since the streaming data processing system 130 processes the data until the first point of time, there are many results, and the failure occurrence information has binary variable characteristics (whether or not a preset failure code has occurred). It is possible to approximate the correlation with fault occurrence information with one formula.
장애코드 출력Fault code output 장애코드 불출력Fault code not output
제1기준속도 미달Below 1st standard speed xx yy
제1기준속도 달성(초과)Achieved first reference speed uu vv
표 1은 스트리밍 데이터 처리시스템(130)에서 출력되는 데이터 처리결과의 비율을 나타내는 표이다. 스트리밍 데이터 처리시스템(130)이 출력하는 데이터 처리결과는 표 1의 네 가지 중 어느 하나일 수밖에 없으므로, x, y, u, v를 합산하면, 1이 된다.Table 1 is a table showing the ratio of the data processing result output from the streaming data processing system 130. Since the data processing result output from the streaming data processing system 130 may be any one of the four types in Table 1, the sum of x, y, u, and v results in 1.
표 1의 x, y, u, v를 이용하여 수학식 4 내지 7에 따른 정보를 정의할 수 있다.Information according to Equations 4 to 7 may be defined using x, y, u, and v of Table 1.
Figure PCTKR2017004718-appb-M000004
Figure PCTKR2017004718-appb-M000004
Figure PCTKR2017004718-appb-M000005
Figure PCTKR2017004718-appb-M000005
Figure PCTKR2017004718-appb-M000006
Figure PCTKR2017004718-appb-M000006
Figure PCTKR2017004718-appb-M000007
Figure PCTKR2017004718-appb-M000007
먼저, 수학식 4에서 PPV(Positive Predictive Value)는 0에서 t까지 스트리밍 데이터 처리시스템(130)이 출력한 데이터 처리결과 중에서, 제1기준속도보다 더 느리게 데이터를 처리하고, 장애코드도 출력한 시점의 정보의 비율을 의미한다. 수학식 5에서 cPPV(complementary PPV)는 0에서 t까지 스트리밍 데이터 처리시스템(130)이 출력한 데이터 처리결과 중에서, 제1기준속도보다 더 느리게 데이터를 처리했으나, 장애코드는 출력하지 않은 시점의 정보의 비율을 의미한다.First, in the equation 4, PPV (Positive Predictive Value) is a time point when processing the data slower than the first reference speed among the data processing results output from the streaming data processing system 130 from 0 to t, and outputs the fault code Means the proportion of information. In Equation 5, cPPV (complementary PPV) is a data processing result that is slower than the first reference speed among the data processing results output from the streaming data processing system 130 from 0 to t, but the error code does not output information Means the ratio.
수학식 6에서 NPV(Negative Predictive Value)는 0에서 t까지 스트리밍 데이터 처리시스템(130)이 출력한 데이터 처리결과 중에서, 제1기준속도보다 더 빠르게 데이터를 처리하고, 장애코드도 출력하지 않은 시점의 정보의 비율을 의미한다. 수학식 7에서 cNPV(complementary NPV)는 0에서 t까지 스트리밍 데이터 처리시스템(130)이 출력한 데이터 처리결과 중에서, 제1기준속도보다 더 빠르게 데이터를 처리하고, 장애코드를 출력한 시점의 정보의 비율을 의미한다.In Equation 6, NPV (Negative Predictive Value) is a data processing result output from the streaming data processing system 130 from 0 to t, the data processing faster than the first reference speed, and does not output the fault code The ratio of information. In Equation 7, cNPV (complementary NPV) is a data processing result output from the streaming data processing system 130 from 0 to t, processing the data faster than the first reference speed, and the information of the time when the error code is output Means percentage.
시스템 관리자는 시간이 충분히 경과한 후에, 스트리밍 데이터 처리시스템(130)이 출력하는 데이터 처리결과로부터 PPV 및 NPV가 산출되었을 때, 그 산출된 PPV 및 NPV가 시스템 관리자가 원하는 특정한 값이 되도록 예시적인 PPV 및 NPV을 미리 설정한다. 이하에서는, 시스템 관리자가 설정한 예시적인 PPV 및 NPV를 각각 α(알파), β(베타)라고 호칭하기로 한다. After sufficient time has elapsed, when the system manager calculates the PPV and the NPV from the data processing result outputted by the streaming data processing system 130, the exemplary PPV is such that the calculated PPV and the NPV become the specific values desired by the system administrator. And NPV are set in advance. In the following, exemplary PPV and NPV set by the system administrator will be referred to as alpha (alpha) and beta (beta), respectively.
시스템 관리자가 스트리밍 데이터 처리시스템(130)에 알파, 베타를 설정하면, 스트리밍 데이터 처리시스템(130)의 데이터 처리결과로부터 산출되는 PPV 및 NPV는 시간이 경과함에 따라 각각 알파 및 베타에 수렴하게 된다. 즉, 시스템 관리자가 스트리밍 데이터 처리시스템(130)으로부터 출력된 데이터 처리결과의 PPV 및 NPV가 각각 알파 및 베타가 되는 경우에는 스트리밍 데이터 처리시스템(130)이 충분히 긴 시간동안 동작하여 안정적인 상태로 장시간 지속되는 단조성(monotonicity)을 갖는 시스템이 되었다고 볼 수 있다. 본 발명은 위와 같이 단조성이 성립된 이후 시점에서 스트리밍 데이터 처리시스템(130)의 데이터 처리속도와 비교할 수 있는 제2기준속도를 산출하는 방법을 제안하며, 제2기준속도에 대한 추가적인 설명은 후술하기로 한다.When the system administrator sets alpha and beta in the streaming data processing system 130, the PPV and NPV calculated from the data processing result of the streaming data processing system 130 converge to alpha and beta, respectively, as time passes. That is, when the PPV and NPV of the data processing result output from the streaming data processing system 130 become alpha and beta, respectively, the system administrator operates the streaming data processing system 130 for a sufficiently long time and lasts for a long time in a stable state. It can be seen that the system has a monotonicity that becomes. The present invention proposes a method for calculating a second reference speed that can be compared with the data processing speed of the streaming data processing system 130 at a time after the forging is established as described above, and further description of the second reference speed will be described later. Let's do it.
이어서, 관계정보산출부(250)는 처리속도정보와 장애발생정보간의 상관관계정보를 산출하기 위해서, 처리속도정보를 장애발생정보 및 제1기준속도를 기초로 하는 관계식으로 정규화할 수 있다.Subsequently, in order to calculate correlation information between the processing speed information and the failure occurrence information, the relationship information calculation unit 250 may normalize the processing speed information to a relational expression based on the failure occurrence information and the first reference speed.
Figure PCTKR2017004718-appb-M000008
Figure PCTKR2017004718-appb-M000008
수학식 8은 처리속도정보를 장애발생정보 및 제1기준속도를 기초로 하는 선형관계식(Linear Relation)을 나타낸다. 수학식 8에서 Y(t)는 처리속도정보에 대한 벡터, Γ(t)는 제1기준속도에 대한 벡터, A(t)는 장애발생정보에 대한 벡터로 표현되고, x(t)는 처리속도정보와 장애발생정보의 합성벡터를 의미한다. Equation 8 shows a linear relation based on the processing speed information on the occurrence information of the failure and the first reference speed. In Equation 8, Y (t) is a vector for processing speed information, Γ (t) is a vector for first reference speed, A (t) is a vector for failure occurrence information, and x (t) is a processing. Refers to a composite vector of velocity information and fault occurrence information.
이때, 처리속도정보는, 보다 더 구체적으로는, 속도미달여부정보를 의미한다. 속도미달여부정보란, 단위시각별로 서로 다른 스트리밍 데이터 처리시스템(130)의 데이터 처리속도가 제1기준속도보다 더 빠르거나 더 느린지에 대한 정보로서, 이진변수로 나타낼 수 있는 정보이다. 여기서, 속도미달여부정보는 처리속도정보에 포함되어 있거나, 실시 예에 따라서, 관계정보산출부(250)가 처리속도정보를 수신한 후, 처리속도정보 및 제1기준속도를 기초로 하여 속도미달여부정보를 산출할 수도 있다.At this time, the processing speed information, more specifically, means under speed information. The underspeed information is information on whether data processing speeds of different streaming data processing systems 130 are faster or slower than the first reference speed for each unit time, and can be represented by binary variables. Here, the speed under whether information is included in the processing speed information, or according to the embodiment, after the relationship information calculation unit 250 receives the processing speed information, based on the processing speed information and the first reference speed, the speed under Whether or not information can also be calculated.
전술한 것과 같이 장애발생정보도 이진변수로 나타낼 수 있는 정보이다. 제1기준속도는 고정된 상수값을 가질 수도 있지만, 실시 예에 따라 시간에 따라 매번 다른 값을 가질 수도 있다는 것을 수학식 2를 통해 설명한 바 있다.As described above, the failure occurrence information may also be represented as a binary variable. Although the first reference speed may have a fixed constant value, it has been described through Equation 2 that the first reference speed may have a different value every time according to an embodiment.
수학식 8과 같은 선형식에 회귀모델링(Regression Modeling)을 적용하면, 미지수 b1, b2, c의 값을 알아낼 수 있으나, 본 발명에서는 응답변수인 Y(t)가 이진변수이므로, 수학식 8과 같은 일반적인 선형식을 이용할 수 없다. When regression modeling is applied to a linear equation such as Equation 8, the unknown values of b1, b2, and c can be found. However, in the present invention, since Y (t) is a binary variable, Equation 8 and The same general linear equation is not available.
수학식 8을 이용할 수 없는 첫 번째 이유는, 수학식 8에서 x(t)가 충분히 큰 값을 가질 때에, Y(t)가 1을 초과할 수 있기 때문이다. 수학식 8을 이용할 수 없는 두 번째 이유는, Y(t)가 0 또는 1만 되므로, 선형회귀식을 사용하기 위한 전제조건을 만족하지 못하기 때문이다. 선형회귀식을 사용하기 위한 전제조건은, 회귀계수의 유의성검정(Tests of Significance)인 잔차(residual)가 정규분포를 따라야 한다는 것이다. The first reason why Equation 8 cannot be used is that when X (t) has a sufficiently large value in Equation 8, Y (t) may exceed one. The second reason why Equation 8 cannot be used is that Y (t) does not satisfy the precondition for using linear regression because Y (t) is only 0 or 1. A prerequisite for using a linear regression equation is that the residuals, which are the tests of significance, must follow a normal distribution.
또한, 마지막으로, A(t)도 0 또는 1인 이진변수이고, Γ(t)는 다양한 값이 될 수 있는 변수이므로, 본 발명에서 수학식 8과 같은 선형회귀식은 사용될 수 없고, 로지스틱 회귀(Logistic Regression)를 이용해야 한다.Also, finally, A (t) is also a binary variable of 0 or 1, and Γ (t) is a variable that can be various values, so in the present invention, a linear regression equation such as Equation 8 cannot be used, and logistic regression ( Logistic Regression should be used.
Figure PCTKR2017004718-appb-M000009
Figure PCTKR2017004718-appb-M000009
수학식 9는 로짓변환(Logit Transformation)의 회귀식을 사용하기 위한 벡터 p(x)를 나타낸다. 수학식 9에서 p(x)는 벡터 x가 제1기준속도 및 장애발생정보로 정의될 때, 스트리밍 데이터 처리시스템(130)의 데이터 처리속도가 제1기준속도보다 더 느린 확률로 정의된다. Equation 9 shows a vector p (x) for using a regression equation of logit transformation. In Equation 9, p (x) is defined as the probability that the data processing speed of the streaming data processing system 130 is slower than the first reference speed when the vector x is defined as the first reference speed and the failure occurrence information.
Figure PCTKR2017004718-appb-M000010
Figure PCTKR2017004718-appb-M000010
수학식 10은 수학식 9에 로짓변환을 적용하여 산출된 회귀식이다. 각 항은 동일한 차원의 벡터로 정의되어 있으므로, 회귀계수 b1, b2, c는 최우추정법(Maximal Likelihood Estimation)을 이용하여 구할 수 있다. 최우추정법은 표본의 수가 충분히 확보된 경우, 이산데이터(binary data)에 기초하여 비선형 통계 모델을 분석대상으로 할 때에 효과적인 추정방법이며, 최우추정법은 이미 널리 알려진 방법이므로, 최우추정법을 통해 회귀계수를 산출하는 과정은 생략하기로 한다. Equation 10 is a regression equation calculated by applying a logit transform to Equation 9. Since each term is defined as a vector of the same dimension, the regression coefficients b1, b2, and c can be obtained using the Maximum Likelihood Estimation. The maximum likelihood estimation method is an effective estimation method when a nonlinear statistical model is analyzed based on binary data when the number of samples is sufficiently secured, and since the maximum likelihood estimation method is widely known, the maximum likelihood estimation method is used. The calculation process will be omitted.
TimeTime A(t)A (t) Γ(t)Γ (t) Y(t)Y (t)
1One 00 5858 00
22 1One 109109 1One
33 1One 126126 00
44 00 6060 1One
55 1One 120120 1One
66 00 6969 00
77 1One 147147 1One
88 00 8585 1One
99 00 5858 00
1010 1One 116116 00
1111 1One 131131 00
1212 1One 104104 1One
1313 1One 149149 00
1414 00 6060 1One
1515 00 6464 1One
표 2는 1초부터 15초까지의 Y(t), A(t), Γ(t)를 나타낸다. 표 2와 같은 값을 동일 차원의 벡터로 정리하고, 그 정리된 벡터들을 수학식 10에 대입 후, 최우추정법을 적용하면, b1은 0.8445968, b2는 -0.01878321, c는 1.507379가 산출된다. 표 2는 예시적인 값이므로, 단위시각별 Y(t), A(t), Γ(t)가 표 2와 달라지면, b1, b2, c도 달라질 수 있다.Table 2 shows Y (t), A (t) and Γ (t) from 1 second to 15 seconds. By arranging the values shown in Table 2 as vectors of the same dimension, substituting the arranged vectors into Equation 10, and applying the maximum likelihood estimation method, b1 is 0.8445968, b2 is -0.01878321, and c is 1.507379. Since Table 2 is an exemplary value, when Y (t), A (t), and Γ (t) for each unit time are different from those in Table 2, b1, b2, and c may also vary.
제2기준속도산출부(270)는 속도미달정보와 장애발생정보간의 비율정보를 수신하고, 그 비율정보 및 관계정보산출부(250)가 산출한 상관관계정보를 기초로 하여 제1시점 이후의 제2시점에서의 제2기준속도를 산출한다.The second reference speed calculator 270 receives the ratio information between the speed underspeed information and the failure occurrence information, and based on the correlation information calculated by the ratio information and the relationship information calculator 250 after the first time point. The second reference speed at the second time point is calculated.
여기서, 속도미달정보와 장애발생정보와의 비율정보는 속도미달정보를 대표하는 값과 장애발생정보를 대표하는 값의 비율정보를 의미한다. 표 1을 통해 예를 들어 설명하면, α는 속도미달정보와 장애발생정보간의 비율정보가 될 수 있다.Here, the ratio information between the speed underspeed information and the failure occurrence information refers to the ratio information of a value representing the speed underspeed information and a value representing the failure occurrence information. For example, through Table 1, α may be ratio information between speed underspeed information and failure occurrence information.
α는 시간 t가 충분히 경과했을 때, 스트리밍 데이터 처리시스템(130)이 출력하는 데이터 처리결과 중에서, 스트리밍 데이터 처리시스템(130)의 데이터 처리속도가 제1기준속도보다 느리고, 미리 설정된 장애코드를 출력하였을 때의 비율에 대한 정보로 정의되기 때문이다. 위와 같은 논리로, β, 특정시점에서의 PPV, cPPV, NPV, cNPV도 속도미달정보와 장애발생정보와의 비율정보가 될 수 있다. 제2기준속도산출부(270)는 속도미달정보와 장애발생정보와의 비율정보를 시스템 관리자로부터 입력받거나, 데이터베이스(210)에 미리 저장되어 있는 값을 이용할 수 있다.α is a data processing speed of the streaming data processing system 130 is slower than the first reference speed among the data processing results outputted by the streaming data processing system 130 when time t has elapsed, and outputs a preset fault code. This is because it is defined as information on the ratio of the time. By the same logic as above, β, PPV, cPPV, NPV, cNPV at a specific time point may also be the ratio information between the underspeed information and the failure occurrence information. The second reference speed calculator 270 may receive a ratio information between the speed underspeed information and the failure occurrence information from the system manager or use a value previously stored in the database 210.
또한, 관계정보산출부(250)로부터 수신한 상관관계정보는 처리속도정보와 장애발생정보간의 관계성을 나타내는 정보를 의미하므로, 수학식 10뿐만 아니라, 회귀계수 b1, b2, c도 상관관계정보가 될 수 있다.In addition, since the correlation information received from the relationship information calculation unit 250 means information indicating the relationship between the processing speed information and the failure occurrence information, the correlation information b1, b2, and c are not only correlation information. Can be
이하에서는, 제2기준속도산출부(270)가 상관관계정보의 일 예인 회귀계수 b1, b2, c 및 비율정보의 일 예인 α 및 β를 기초로 하여 제2기준속도를 산출하는 일 예를 설명하도록 한다.Hereinafter, an example in which the second reference speed calculation unit 270 calculates the second reference speed based on the regression coefficients b1, b2, c, which are examples of correlation information, and α and β, which are examples of ratio information, will be described. Do it.
먼저, 수학식 10을 벡터 p(x)에 대해 나타내면 수학식 11과 같다.First, Equation 10 is expressed as Equation 11 with respect to the vector p (x).
Figure PCTKR2017004718-appb-M000011
Figure PCTKR2017004718-appb-M000011
이때, 수학식 8을 참조하여, 벡터 x를 γ(t)와 a(t)의 결합으로 치환하면, 수학식 12와 같은 결과를 얻을 수 있다.At this time, referring to Equation 8, by replacing the vector x by the combination of γ (t) and a (t), the same result as in Equation 12 can be obtained.
Figure PCTKR2017004718-appb-M000012
Figure PCTKR2017004718-appb-M000012
수학식 12에서, a(t+1)은 이진변수(binary variable)로서 0 또는 1이 된다. 즉, 미리 설정된 장애코드가 출력된 경우에는 a(t+1)이 1이 되고, 미리 설정된 장애코드가 출력된 경우가 아니면 a(t+1)은 0이 된다.In Equation 12, a (t + 1) is 0 or 1 as a binary variable. That is, a (t + 1) is 1 when a preset fault code is output, and a (t + 1) is 0 when a preset fault code is output.
Figure PCTKR2017004718-appb-M000013
Figure PCTKR2017004718-appb-M000013
Figure PCTKR2017004718-appb-M000014
Figure PCTKR2017004718-appb-M000014
수학식 13은 미리 설정된 장애코드가 출력된 t+1 시점에서의 확률이고, 수학식 14는 미리 설정된 장애코드가 출력되지 않은 t+1 시점에서의 확률이다. 전술한 바에 따르면, t+1 시점은 이미 스트리밍 데이터 처리시스템(130)이 충분히 긴 시간이 경과하여 단조성을 보이기 시작한 이후라고 가정한 바 있으므로, 수학식 13의 결과는 1-β, 수학식 14의 결과는 α와 같다. Equation 13 is a probability at time t + 1 at which a preset failure code is output, and Equation 14 is a probability at time t + 1 at which a preset failure code is not output. As described above, since the time t + 1 has already been assumed that the streaming data processing system 130 has started to show monotonism after a sufficiently long time, the result of Equation 13 is expressed as 1-β, Equation 14 The result is the same as α.
Figure PCTKR2017004718-appb-M000015
Figure PCTKR2017004718-appb-M000015
수학식 15는 수학식 13 및 수학식 14를 연립하여 정리한 결과를 나타내고 있다. 즉, t+1 시점에서 스트리밍 데이터 처리시스템(130)의 데이터 처리속도와 비교되는 제2기준속도는, α, β, 회귀계수(b1, b2, c)의 값이 모두 있으면 산출될 수 있다. 수학식 11 내지 14로부터 수학식 15를 유도하는 방식으로 제2기준속도를 산출하는 것은 제2기준속도를 산출하는 방법의 일 예이므로, 비율정보 및 상관관계정보를 기초로 하여 제2기준속도를 산출한다면, 수학식 11 내지 수학식 15와 동일한 식을 이용하지 않더라도 본 발명의 범주에 포함될 수 있다. Equation 15 shows the result of combining Equations 13 and 14 together. That is, the second reference speed compared with the data processing speed of the streaming data processing system 130 at the time t + 1 may be calculated if all values of α, β, and regression coefficients b1, b2, and c are present. Computing the second reference speed by deriving the equation 15 from Equations 11 to 14 is an example of a method of calculating the second reference speed, and thus, calculates the second reference speed based on the ratio information and the correlation information. If it is calculated, it may be included in the scope of the present invention even if the same equation as in Equations 11 to 15 is not used.
도 3은 본 발명에 따라 산출되는 제2기준속도를 도식적으로 나타낸 도면이다.3 is a diagram schematically showing a second reference speed calculated according to the present invention.
보다 구체적으로, 도 3은 표 2에 따른 제1기준속도, 속도미달여부정보, 장애발생정보를 각각 벡터로 표현하고, 비율정보(α 및 β)와 함께 수학식 15에 대입하여 산출된 제2시점에서의 제2기준속도를 그래프 형태로 나타내고 있다.More specifically, FIG. 3 represents a first reference speed, speed failure information, and fault occurrence information according to Table 2 as vectors, respectively, and is calculated by substituting Equation 15 together with ratio information (α and β). The second reference speed at the time point is shown in graph form.
이때, 수학식 15에서 b1, b2, c의 값은 표 2에 따른 b1, b2, c를 이용했고, α는 0.95, β는 0.9이었다고 가정한다. 표 2에 따른 데이터에 최우추정법을 적용하면, b1은 0.8445968, b2는 -0.01878321, c는 1.507379이 산출되는 것은 이미 설명한 바 있다.In this case, it is assumed that the values of b1, b2 and c in Equation 15 are used in b1, b2 and c according to Table 2, and α is 0.95 and β is 0.9. When the maximum likelihood estimation method is applied to the data according to Table 2, b1 is 0.8445968, b2 is -0.01878321, and c is 1.507379.
즉, t가 15인 시점에서 스트리밍 데이터 처리시스템(130)은 이미 단조성을 가진 것으로 가정되며, t가 16인 시점에서 제2기준속도는 165.6873, 약 166이 된다. 스트리밍 데이터 처리시스템(130)은 t가 16인 시점에서 데이터 처리속도가 166보다 빠른 경우에, 성능저하가 없는 것으로 시스템 관리자에 의해 해석될 수 있다. That is, it is assumed that the streaming data processing system 130 has a monotony at the time t is 15, and the second reference speed is 165.6873, about 166, at the time t is 16. The streaming data processing system 130 may be interpreted by the system manager as having no performance degradation when the data processing speed is faster than 166 at the time t is 16.
도 3을 참조하면, 시간이 경과함에 따라서 제1기준속도는 계속 변화하고 있으며, t가 16인 시점에서의 제2기준속도는 t가 0에서 15까지의 시점에서의 제1기준속도의 누적된 특성에 의해 산출된 값이라는 것을 이해할 수 있다. 만약, t가 17인 시점에서의 기준속도를 제3기준속도라고 가정한다면, 제3기준속도는 t가 0에서 15시점에서의 제1기준속도 및 t가 16인 시점에서의 제2기준속도의 특성을 모두 고려하여 산출되며, 위와 같은 방식을 반복함으로써, t+2 시점 이후 시점의 기준속도도 산출될 수 있다.Referring to FIG. 3, the first reference speed continues to change with time, and the second reference speed at the time t is 16 is the cumulative first reference speed at the time t from 0 to 15. It can be understood that the value is calculated by the characteristic. If the reference speed at time t is 17 is assumed to be the third reference speed, the third reference speed is the first reference speed at time t from 0 to 15 and the second reference speed at time t is 16. It is calculated in consideration of all the characteristics, and by repeating the above method, the reference speed of the time after the point t + 2 can also be calculated.
도 4는 본 발명에 따른 제2기준속도 산출방식을 수도코드(pseudo-code)로 구현한 일 예를 나타낸다.4 shows an example of implementing the second reference speed calculation method according to the present invention using pseudo-code.
도 4를 참조하면, α 및 β는 각각 0.95, 0.9로 설정되었으며, t가 0인 시점에서의 제1기준속도도 미리 설정된 값이 할당되는 것을 알 수 있다. 도 4에서 μ(t)는 스트리밍 데이터 처리시스템(130)의 데이터 처리속도를 의미하고, 그 외의 나머지 변수들은 전술한 설명에서 사용한 것과 동일하다.Referring to FIG. 4, α and β are set to 0.95 and 0.9, respectively, and it can be seen that the first reference speed at the time t is 0 is also assigned a preset value. In FIG. 4, μ (t) denotes a data processing speed of the streaming data processing system 130, and other remaining variables are the same as those used in the above description.
도 4의 수도코드에 따르면, 제2기준속도산출부(270)는 현재 시점의 PPV 및 NPV가 시간이 충분히 경과하여 단조성을 가질 때까지 계산을 반복하면서, 현재 시점인 t시점의 바로 다음 시점인 t+1 시점에 대한 제2기준속도를 산출한다는 것을 알 수 있다. 이때, 'isViolated'는 SLO값을 입력으로 받아서 0 또는 1의 값을 리턴(return)하는 함수로 가정하며, SLO값은 장애발생정보의 일 예라는 것을 데이터베이스(210)를 설명하면서 이미 설명한 바 있다. 도 4의 수도코드에서, 최종식은 수학식 15를 의미한다. 수학식 15를 통해 산출되는 t+1 시점의 제2기준속도는 t+2 시점의 제2기준속도를 산출할 때에는 제1기준속도가 된다.According to the water code of FIG. 4, the second reference speed calculation unit 270 repeats the calculation until the PPV and the NPV at the present time have sufficiently monotonous time, and is the next time point after the time t. It can be seen that the second reference speed for the time t + 1 is calculated. In this case, 'isViolated' is assumed to be a function of receiving an SLO value as an input and returning a value of 0 or 1, and has already been described while explaining the database 210 that the SLO value is an example of failure information. . In the pseudo code of FIG. 4, the final equation means (15). The second reference speed at time t + 1 calculated through Equation 15 becomes the first reference speed when calculating the second reference speed at time t + 2.
경보출력부(290)는 스트리밍 데이터 처리시스템(130)의 제2시점에서의 데이터 처리속도가 제2기준속도보다 더 느리면, 성능이상발생경보를 출력한다. 여기서, 제2시점은 제1시점 이후의 시점(시각)을 의미하는 것으로서, 시간이 충분히 경과하여 스트리밍 데이터 처리시스템(130)이 단조성을 보인 이후의 시점을 의미한다. 즉, 제1시점 이후에 한 단위의 단위시각이 경과한 직후는 제2시점이 될 수 있다. 예를 들면, 데이터베이스(210)에 스트리밍 데이터 처리시스템(130)이 60초까지 처리한 데이터의 정보가 저장되어 있고 단위시각이 1초라면, 61초 시점이 제2시점이 될 수 있다.The alarm output unit 290 outputs a performance abnormality alarm when the data processing speed at the second time point of the streaming data processing system 130 is slower than the second reference speed. Here, the second time point refers to a time point (time) after the first time point, and refers to a time point after the streaming data processing system 130 shows monotony after sufficient time has elapsed. That is, the second time may be immediately after the unit time of one unit has elapsed after the first time. For example, if data of the data processed by the streaming data processing system 130 for 60 seconds is stored in the database 210 and the unit time is 1 second, the 61 second time point may be the second time point.
성능이상발생경보는 스트리밍 데이터 처리시스템(130)에 성능저하가 발생했다는 것을 본 발명에 따른 모니터링장치(200)가 시스템 관리자에게 직접적으로 알려주는 정보로서, 시스템 관리자는 성능이상발생경보를 확인한 후, 필요에 따라 스트리밍 데이터 처리시스템(130)을 점검할 수 있다.Performance abnormality alarm is information that the monitoring device 200 according to the present invention directly to the system administrator that the performance degradation occurred in the streaming data processing system 130, the system administrator checks the performance abnormality alarm, If necessary, the streaming data processing system 130 may be checked.
도 5는 본 발명에 따른 스트리밍 데이터 고속처리시스템을 모니터링하는 방법의 일 예의 흐름도를 도시한 도면이다.5 is a flowchart illustrating an example of a method for monitoring a streaming data high speed processing system according to the present invention.
도 5에 따른 방법은 도 2에 따른 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치(200)에 의해 구현될 수 있으므로, 도 2를 참조하여 설명하기로 하며, 도 2에서 설명한 것과 중복적인 설명은 생략하기로 한다.Since the method according to FIG. 5 may be implemented by the monitoring apparatus 200 for monitoring the streaming data high speed processing system according to FIG. 2, it will be described with reference to FIG. 2, and a redundant description will be omitted. Let's do it.
먼저, 속도미달정보파악부(230)는 데이터베이스(210)를 참조하여, 처리속도정보에서 제1기준속도보다 더 느리게 데이터가 처리된 시점의 속도미달정보를 파악한다(S510). 여기서, 데이터베이스(210)는 제1시점에서 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있다.First, the speed shortening information detecting unit 230 refers to the database 210 to grasp the speed shortening information at the time when data is processed slower than the first reference speed in the processing speed information (S510). Here, the database 210 stores processing speed information and failure occurrence information of the data processed at the first time point for each unit time.
단계 S510의 선택적 일 실시 예로서, 제1기준속도는 단위시각별로 서로 다르게 설정될 수도 있다. 또한, 단계 S510에서 데이터베이스(210)에 저장된 장애발생정보는 기설정된 기준장애코드가 발생한 시점의 기준장애정보 및 기준장애코드 외의 장애코드만 발생한 시점의 비기준장애정보를 포함할 수도 있다.As an optional embodiment of step S510, the first reference speed may be set differently for each unit time. In addition, the failure occurrence information stored in the database 210 in step S510 may include reference failure information at the time when the preset reference failure code occurs and non-reference failure information at the time when only the failure code other than the reference failure code occurs.
이어서, 관계정보산출부(250)는 처리속도정보와 장애발생정보간의 상관관계정보를 산출한다(S530).Subsequently, the relationship information calculation unit 250 calculates correlation information between the processing speed information and the failure occurrence information (S530).
단계 S530의 선택적 일 실시 예로서, 관계정보산출부(250)는 최우추정법(Maximum Likelihood Method)를 이용하여 상관관계정보를 산출할 수도 있다.As an optional embodiment of step S530, the relationship information calculation unit 250 may calculate correlation information by using a maximum likelihood method.
단계 S530의 다른 선택적 일 실시 예로서, 관계정보산출부(250)는 로짓변환(Logit Transformation)을 이용하여 상관관계정보를 산출할 수 있다.In another optional embodiment of step S530, the relationship information calculator 250 may calculate correlation information by using logit transformation.
제2기준속도산출부(270)는 속도미달정보와 장애발생정보와의 비율정보를 수신하고, 상관관계정보 및 비율정보를 기초로 제1시점 이후의 제2시점에서의 제2기준속도를 산출한다(S550).The second reference speed calculator 270 receives the ratio information between the speed underspeed information and the failure occurrence information and calculates a second reference speed at a second time after the first time based on the correlation information and the rate information. (S550).
단계 S550의 선택적 일 실시 예로서, 제2기준속도산출부(270)가 수신한 비율정보는 속도미달정보 및 기준장애정보간의 비율에 대한 정보일 수 있다.According to an exemplary embodiment of step S550, the ratio information received by the second reference speed calculator 270 may be information about a ratio between the speed fail information and the reference failure information.
경보출력부(290)는 제2시점에서의 스트리밍 데이터 처리시스템(130)의 데이터 처리속도를 제2기준속도와 비교한다(S570). 경보출력부(290)는 제2시점에서의 스트리밍 데이터 처리시스템(130)의 데이터 처리속도가 제2기준속도보다 더 느리면, 성능이상발생경보를 출력한다(S590). 단계 S590에서, 경보출력부(290)가 출력하는 성능이상발생경보는 스트리밍 데이터 처리시스템(130)에 성능저하가 발생했다는 것을 시스템 관리자에게 직접적으로 알려주는 정보로서, 시스템 관리자는 성능이상발생경보를 보고 스트리밍 데이터 처리시스템(130)을 점검할 수 있다.The alarm output unit 290 compares the data processing speed of the streaming data processing system 130 with the second reference speed at the second time point (S570). If the data processing speed of the streaming data processing system 130 at the second time is slower than the second reference speed, the alarm output unit 290 outputs a performance abnormality alarm (S590). In operation S590, the abnormality occurrence alarm output by the alarm output unit 290 is information that directly informs the system administrator that the performance decrease has occurred in the streaming data processing system 130, and the system administrator reports the abnormality occurrence alarm. The reporting streaming data processing system 130 may be checked.
본 발명에 따르면, 빅 스트리밍 데이터(big streaming data)를 처리하는 스트리밍 데이터 처리시스템의 처리결과와 비교되는 임계값인 제2기준속도가 시간의 변화에 따라 관리자가 개입할 필요 없이 능동적으로 산출되고 적용됨으로써, 스트리밍 데이터 처리 시스템의 성능변화상태를 시스템 관리자의 개입을 최소화하면서 감시할 수 있게 되어, 시스템 관리자의 업무부담을 경감시킬 수 있다.According to the present invention, a second reference speed, which is a threshold value compared with a processing result of a streaming data processing system that processes big streaming data, is actively calculated and applied without the need for an administrator to intervene with a change in time. As a result, the performance change state of the streaming data processing system can be monitored with minimal intervention by the system administrator, thereby reducing the burden on the system administrator.
또한, 스트리밍 데이터 처리시스템에 본 발명에 따른 모니터링 장치를 적용할 경우, 보다 적은 운용 인력과 시간을 투입하고도 종전과 동일하거나 그 이상의 시스템 감시 효과를 달성할 수 있다.In addition, when the monitoring device according to the present invention is applied to the streaming data processing system, it is possible to achieve the same or more system monitoring effect as before even with less manpower and time.
이상 설명된 본 발명에 따른 실시 예는 컴퓨터상에서 다양한 구성요소를 통하여 실행될 수 있는 컴퓨터 프로그램의 형태로 구현될 수 있으며, 이와 같은 컴퓨터 프로그램은 컴퓨터로 판독 가능한 매체에 기록될 수 있다. 이때, 매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치를 포함할 수 있다.Embodiments according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, such a computer program may be recorded in a computer-readable medium. At this time, the media may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and ROMs. Hardware devices specifically configured to store and execute program instructions, such as memory, RAM, flash memory, and the like.
한편, 상기 컴퓨터 프로그램은 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 프로그램의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함될 수 있다.On the other hand, the computer program may be specially designed and configured for the present invention, or may be known and available to those skilled in the computer software field. Examples of computer programs may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter or the like.
본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, “필수적인”, “중요하게” 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.Particular implementations described in the present invention are embodiments and do not limit the scope of the present invention in any way. For brevity of description, descriptions of conventional electronic configurations, control systems, software, and other functional aspects of the systems may be omitted. In addition, the connection or connection members of the lines between the components shown in the drawings by way of example shows a functional connection and / or physical or circuit connections, in the actual device replaceable or additional various functional connections, physical It may be represented as a connection, or circuit connections. In addition, unless specifically mentioned, such as "essential", "important" may not be a necessary component for the application of the present invention.
본 발명의 명세서(특히 특허청구범위에서)에서 “상기”의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 또한, 본 발명에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 상세한 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 마지막으로, 본 발명에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 본 발명이 한정되는 것은 아니다. 본 발명에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 본 발명을 상세히 설명하기 위한 것으로서 특허청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 본 발명의 범위가 한정되는 것은 아니다. 또한, 당업자는 다양한 수정, 조합 및 변경이 부가된 특허청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.In the specification (particularly in the claims) of the present invention, the use of the term “above” and similar indicating terminology may correspond to both the singular and the plural. In addition, in the present invention, when the range is described, it includes the invention to which the individual values belonging to the range are applied (if not stated to the contrary), and each individual value constituting the range is described in the detailed description of the invention. Same as Finally, if there is no explicit order or contrary to the steps constituting the method according to the invention, the steps may be performed in a suitable order. The present invention is not necessarily limited to the description order of the above steps. The use of all examples or exemplary terms (eg, etc.) in the present invention is merely for the purpose of describing the present invention in detail, and the scope of the present invention is limited by the examples or exemplary terms unless defined by the claims. It doesn't happen. In addition, one of ordinary skill in the art appreciates that various modifications, combinations and changes can be made depending on design conditions and factors within the scope of the appended claims or equivalents thereof.
전술한 본 발명의 실시 예들은, 고속으로 스트리밍 데이터를 처리하는 시스템을 모니터링하고, 이상을 감지하는 장치를 구현하는 데에 적용될 수 있다.The above-described embodiments of the present invention can be applied to implementing an apparatus for monitoring a system for processing streaming data at high speed and detecting an abnormality.

Claims (15)

  1. 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치에 있어서, In the monitoring device for monitoring a streaming data high-speed processing system,
    상기 스트리밍 데이터 고속처리시스템이 제1시점까지 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있는 데이터베이스;A database storing processing speed information and failure occurrence information of data processed by the streaming data high speed processing system up to a first time point by unit time;
    상기 처리속도정보에서 제1기준속도보다 더 느리게 데이터가 처리된 시점의 속도미달정보를 파악하는 속도미달정보파악부;A speed shortening information detecting unit for grasping speed shortening information at a time when data is processed slower than a first reference speed in the processing speed information;
    상기 처리속도정보와 상기 장애발생정보간의 상관관계정보를 산출하는 관계정보산출부;A relationship information calculation unit for calculating correlation information between the processing speed information and the failure occurrence information;
    상기 속도미달정보와 상기 장애발생정보와의 비율정보를 수신하고, 상기 산출된 상관관계정보 및 상기 수신된 비율정보를 기초로 제1시점 이후의 제2시점에서의 제2기준속도를 산출하는 제2기준속도산출부; 및Receiving ratio information between the speed shortage information and the failure occurrence information and calculating a second reference speed at a second time after a first time based on the calculated correlation information and the received rate information; 2 standard speed calculation unit; And
    상기 제2시점에서의 데이터처리속도가 상기 제2기준속도보다 더 느리면, 성능이상발생경보를 출력하는 경보출력부;를 포함하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치.And an alarm output unit for outputting a performance abnormality alarm when the data processing speed at the second time point is slower than the second reference speed.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1기준속도는, The first reference speed is,
    상기 단위시각별로 서로 다르게 설정된 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치.Monitoring device for monitoring the streaming data high-speed processing system, characterized in that differently set by the unit time.
  3. 제1항에 있어서, The method of claim 1,
    상기 장애발생정보는,The failure occurrence information,
    기설정된 기준장애코드가 발생한 시점의 기준장애정보 및 상기 기준장애코드가 발생한 시점을 제외한 시점의 비기준장애정보를 포함하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치.And a reference failure information at a time point when a predetermined reference failure code occurs and non-reference failure information at a time except when the reference failure code occurs.
  4. 제3항에 있어서,The method of claim 3,
    상기 수신된 비율정보는,The received ratio information is,
    상기 속도미달정보 및 상기 기준장애정보간의 비율에 대한 정보인 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치.And monitoring the streaming data high speed processing system, wherein the information is on the ratio between the speed shortage information and the reference failure information.
  5. 제1항에 있어서,The method of claim 1,
    상기 관계정보산출부는 최우추정법(Maximum Likelihood Method)를 이용하여 상기 상관관계정보를 산출하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치.And the relationship information calculation unit calculates the correlation information by using a maximum likelihood method.
  6. 제1항에 있어서,The method of claim 1,
    상기 관계정보산출부는,The relationship information calculation unit,
    상기 상관관계정보를 산출하는 데에 있어서, 로짓변환(Logit Transformation)를 이용하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치.The monitoring device for monitoring the streaming data high-speed processing system, characterized in that using the Logit Transformation in calculating the correlation information.
  7. 제1항에 있어서,The method of claim 1,
    상기 속도미달정보파악부는,The underspeed information detecting unit,
    상기 처리속도정보에서 제1기준속도보다 더 빠르게 데이터가 처리된 시점의 속도달성정보를 상기 파악된 속도미달정보와 구분하기 위해 이진변수를 이용하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링장치.Monitoring device for monitoring the streaming data high-speed processing system, characterized in that for using the binary variable to distinguish the speed achievement information at the time the data is processed faster than the first reference speed in the processing speed information with the identified underspeed information .
  8. 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법에 있어서,In the monitoring method for monitoring a streaming data high-speed processing system,
    제1시점까지 처리한 데이터의 처리속도정보 및 장애발생정보를 단위시각별로 저장하고 있는 데이터베이스를 참조하여, 상기 처리속도정보에서 제1기준속도보다 더 느리게 데이터가 처리된 시점의 속도미달정보를 파악하는 속도미달정보파악단계;Determining the speed below information at the time when the data is processed slower than the first reference speed in the processing speed information by referring to a database storing processing speed information and failure occurrence information of data processed up to the first time point by unit time Grasping underspeed information information;
    상기 처리속도정보와 상기 장애발생정보간의 상관관계정보를 산출하는 관계정보산출단계;Calculating relationship information between the processing speed information and the failure occurrence information;
    상기 속도미달정보와 상기 장애발생정보와의 비율정보를 수신하고, 상기 산출된 상관관계정보 및 상기 수신된 비율정보를 기초로 제1시점 이후의 제2시점에서의 제2기준속도를 산출하는 제2기준속도산출단계; 및Receiving ratio information between the speed shortage information and the failure occurrence information and calculating a second reference speed at a second time after a first time based on the calculated correlation information and the received rate information; 2 standard speed calculation step; And
    상기 제2시점에서의 데이터처리속도가 상기 제2기준속도보다 더 느리면, 성능이상발생경보를 출력하는 경보출력단계;를 포함하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법.And an alarm output step of outputting an alarm for occurrence of a performance abnormality if the data processing speed at the second time point is slower than the second reference speed.
  9. 제8항에 있어서,The method of claim 8,
    상기 제1기준속도는, The first reference speed is,
    상기 단위시각별로 서로 다르게 설정된 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법.Monitoring method for monitoring a streaming data high-speed processing system, characterized in that differently set for each unit time.
  10. 제8항에 있어서, The method of claim 8,
    상기 장애발생정보는,The failure occurrence information,
    기설정된 기준장애코드가 발생한 시점의 기준장애정보 및 상기 기준장애코드가 발생한 시점을 제외한 시점의 비기준장애정보를 포함하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법.A monitoring method for monitoring a streaming data high-speed processing system, characterized in that it comprises the reference failure information of the time point when the predetermined reference failure code occurs and the non-reference failure information of the time except for the occurrence of the reference failure code.
  11. 제10항에 있어서,The method of claim 10,
    상기 수신된 비율정보는,The received ratio information is,
    상기 속도미달정보 및 상기 기준장애정보간의 비율에 대한 정보인 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법.And monitoring the streaming data high speed processing system, wherein the rate information is information on a ratio between the speed short information and the reference failure information.
  12. 제8항에 있어서,The method of claim 8,
    상기 관계정보산출단계는 최우추정법(Maximum Likelihood Method)를 이용하여 상기 상관관계정보를 산출하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법.The relationship information calculation step is a monitoring method for monitoring a streaming data high-speed processing system, characterized in that for calculating the correlation information using the Maximum Likelihood Method (Maximum Likelihood Method).
  13. 제8항에 있어서,The method of claim 8,
    상기 관계정보산출단계는,The relation information calculation step,
    상기 상관관계정보를 산출하는 데에 있어서, 로짓변환(Logit Transformation)를 이용하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법.The method for monitoring the streaming data high-speed processing system, characterized in that using the Logit Transformation in calculating the correlation information.
  14. 제8항에 있어서,The method of claim 8,
    상기 속도미달정보파악단계는,The underspeed information identifying step,
    상기 처리속도정보에서 제1기준속도보다 더 빠르게 데이터가 처리된 시점의 속도달성정보를 상기 파악된 속도미달정보와 구분하기 위해 이진변수를 이용하는 것을 특징으로 하는 스트리밍 데이터 고속처리시스템을 모니터링하는 모니터링방법.Monitoring method for monitoring the streaming data high-speed processing system, characterized in that using the binary variable to distinguish the speed achievement information at the time the data is processed faster than the first reference speed in the processing speed information with the identified speed under the information. .
  15. 제8항 내지 제14항에 따른 방법을 실행시키기 위한 프로그램을 기록하고 있는 컴퓨터판독가능한 기록매체.A computer-readable recording medium having recorded thereon a program for executing the method according to claim 8.
PCT/KR2017/004718 2017-04-24 2017-05-04 Monitoring apparatus for monitoring high-speed streaming data processing system, and method therefor WO2018199372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0052553 2017-04-24
KR1020170052553A KR101763394B1 (en) 2017-04-24 2017-04-24 Apparatus for monitoring streaming data processing system and method thereof

Publications (1)

Publication Number Publication Date
WO2018199372A1 true WO2018199372A1 (en) 2018-11-01

Family

ID=59418905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004718 WO2018199372A1 (en) 2017-04-24 2017-05-04 Monitoring apparatus for monitoring high-speed streaming data processing system, and method therefor

Country Status (2)

Country Link
KR (1) KR101763394B1 (en)
WO (1) WO2018199372A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325771A (en) * 2021-05-28 2021-08-31 深圳市数存科技有限公司 System and method for safely storing data after equipment failure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110115447A (en) * 2010-04-15 2011-10-21 주식회사 원캐스트 System and method for redundancy broadcasting service
US20140006843A1 (en) * 2012-06-29 2014-01-02 Electronics And Telecommunications Research Institute Method and apparatus for managing connection path failure between data centers for cloud computing
KR20160069444A (en) * 2014-12-08 2016-06-16 엔트릭스 주식회사 Quality of service monitoring system and method for cloud streaming service, and computer readable medium having computer program recorded
KR101653898B1 (en) * 2012-03-13 2016-09-02 구글 인코포레이티드 Predictive adaptive media streaming
KR20160111023A (en) * 2014-01-15 2016-09-23 아비질론 코포레이션 Storage management of data streamed from a video source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110115447A (en) * 2010-04-15 2011-10-21 주식회사 원캐스트 System and method for redundancy broadcasting service
KR101653898B1 (en) * 2012-03-13 2016-09-02 구글 인코포레이티드 Predictive adaptive media streaming
US20140006843A1 (en) * 2012-06-29 2014-01-02 Electronics And Telecommunications Research Institute Method and apparatus for managing connection path failure between data centers for cloud computing
KR20160111023A (en) * 2014-01-15 2016-09-23 아비질론 코포레이션 Storage management of data streamed from a video source device
KR20160069444A (en) * 2014-12-08 2016-06-16 엔트릭스 주식회사 Quality of service monitoring system and method for cloud streaming service, and computer readable medium having computer program recorded

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325771A (en) * 2021-05-28 2021-08-31 深圳市数存科技有限公司 System and method for safely storing data after equipment failure
CN113325771B (en) * 2021-05-28 2023-02-10 深圳市数存科技有限公司 System and method for safely storing data after equipment failure

Also Published As

Publication number Publication date
KR101763394B1 (en) 2017-07-31

Similar Documents

Publication Publication Date Title
WO2016056708A1 (en) System and method for sensing and predicting abnormality through analysis of time-series data
WO2020119369A1 (en) Intelligent it operation and maintenance fault positioning method, apparatus and device, and readable storage medium
WO2020253116A1 (en) Batch data execution method, device, storage medium, and member host in cluster
WO2018036167A1 (en) Test task executor assignment method, device, server and storage medium
WO2015005688A1 (en) Methods and apparatuses for transmitting and receiving data and recording medium for executing the methods
WO2020119115A1 (en) Data verification method, device, apparatus, and storage medium
WO2020258672A1 (en) Network access anomaly detection method and device
WO2020155773A1 (en) Method of monitoring for suspicious text input, device, computer apparatus, and storage medium
WO2022182176A1 (en) Method and device for extracting feature value of time series data
WO2021012481A1 (en) System performance monitoring method and apparatus, device, and storage medium
WO2018199372A1 (en) Monitoring apparatus for monitoring high-speed streaming data processing system, and method therefor
WO2023106890A1 (en) Electronic apparatus and control method thereof
WO2016064024A1 (en) Abnormal connection detection device and method
WO2019168265A1 (en) Electronic device, task processing method of electronic device, and computer readable medium
WO2013122362A1 (en) Method, system and recording medium for applying load reduction policy in wireless network
WO2020186780A1 (en) User operation recording and restoring method and apparatus, device, and readable storage medium
WO2020171472A1 (en) Electronic device and control method thereof
WO2023146231A1 (en) Method for performing comprehensive performance evaluation of large-capacity system in real environment and apparatus for supporting same
WO2018221998A1 (en) Method for automatically analyzing bottleneck in real time and an apparatus for performing the method
WO2019124770A1 (en) Terminal apparatus and control method of terminal apparatus
WO2019231163A1 (en) Apparatus and method for managing message transmission delay
WO2020258658A1 (en) Abnormal operation identification method and apparatus, computer device and storage medium
WO2013154384A1 (en) Transmitting apparatus and receiving apparatus, and method for operating said transmitting apparatus
WO2019198900A1 (en) Electronic apparatus and control method thereof
WO2021132831A1 (en) Method for increasing or decreasing number of workers and inspectors in crowdsourcing-based project for creating artificial intelligence learning data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907755

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17907755

Country of ref document: EP

Kind code of ref document: A1