WO2018199263A1 - Medical substrate - Google Patents

Medical substrate Download PDF

Info

Publication number
WO2018199263A1
WO2018199263A1 PCT/JP2018/017074 JP2018017074W WO2018199263A1 WO 2018199263 A1 WO2018199263 A1 WO 2018199263A1 JP 2018017074 W JP2018017074 W JP 2018017074W WO 2018199263 A1 WO2018199263 A1 WO 2018199263A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
fiber
inner layer
layer
measured
Prior art date
Application number
PCT/JP2018/017074
Other languages
French (fr)
Japanese (ja)
Inventor
明郎 萩原
Original Assignee
明郎 萩原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明郎 萩原 filed Critical 明郎 萩原
Publication of WO2018199263A1 publication Critical patent/WO2018199263A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits

Definitions

  • the present invention relates to a medical base material, and more particularly to a medical base material suitable for regeneration of relatively thin blood vessels in the circulatory system.
  • the most important function in blood vessels is anticoagulation. And this anticoagulant property is preventing blood from coagulating in a blood vessel and damaging the blood flow. In addition, this anticoagulant property is maintained by the intimal layer present in the outermost surface layer of the luminal surface of the blood vessel, and this intimal layer is stably formed.
  • non-bioabsorbable materials such as polyester, nylon, silk thread, etc.
  • biodegradable materials such as polylactic acid, caprolactone, PGA, gelatin, collagen, etc.
  • non-bioabsorbable materials and biodegradable materials Even if it is made of a combination of the two, when it is transplanted as an artery in a living body, the state where the intimal layer is stably formed and maintained on the lumen surface cannot be maintained.
  • JP2013-031595A Japanese Unexamined Patent Publication No. 2016-158765
  • the present invention is a medical substrate suitable for the regeneration of the circulatory system, and is exposed to high pressure from a lumen such as a blood vessel that is prone to thrombus, such as a venous blood vessel or an artery, and has a lumen diameter. It is an object to provide a medical base material suitable for relatively thin artificial blood vessels of 6 to 8 mm or less.
  • an intimal layer is formed and stably maintained in an artificial blood vessel, and a part or all of the layers constituting the wall of the artificial blood vessel have a specific strength described below. It has a layer made of a material having a deterioration period (this portion is described as an outer layer below), and the outer layer has a certain range of rigidity (in other words, appropriate elasticity), and constitutes the outer layer It has been determined that the fiber spacing of the fabric needs to be wider than a certain range. And when the outer layer has a certain range of rigidity and fiber spacing, it has an inner membrane layer similar to that of natural blood vessels and an inner portion of the inner membrane that touches the outer side (viewed from the lumen side). It was confirmed that a similar structure was formed in the lumen of the artificial blood vessel, and stable anticoagulability could be maintained for a long time. And when satisfy
  • the material having a specific strength deterioration period that constitutes the outer layer is stereocomplex polylactic acid, a bioabsorbable polymer that has a slower strength deterioration in vivo, or a non-absorbable polymer (that is, an infinite strength deterioration period). Large polymer).
  • a specific strength deterioration period specifically, (When an artificial blood vessel made of stereocomplex PLA is transplanted into an artery, it takes at least 6 months to 10 months or more to deteriorate its strength. When normal PLLA is used in the same way, it refers to the period of strength deterioration of 6 months or more to 10 months or more (based on our experimental results where strength deterioration was observed from less than 6 months).
  • the medical substrate of the present invention has a sheet shape, a tube shape, or a combination thereof, and is a medical substrate used for regeneration of a circulatory system by transplanting into the body,
  • the outer layer is formed in a porous shape so that the vegetative blood vessels reach the inner layer or enter the vicinity of the inner layer, and a tube-shaped medical substrate is used for the stiffness index a determined by the following method.
  • the medical base material has a ratio of the stiffness index a of the outer layer of the material / the stiffness index a of the blood vessel to be transplanted within 7.5.
  • the ratio of the rigidity index a of the medical base material / the rigidity index a of the blood vessel to be transplanted is within 5.5.
  • the fabric constituting the outer layer is preferably a woven fabric or a knitted fabric when it is desired to make the diameter, arrangement, and distribution of the holes into which the nutrient blood vessels enter as uniform as possible.
  • the inner layer of the medical base material of the present invention is composed of polyglycolic acid, a copolymer of lactic acid and caprolactone, L-polylactic acid, D-polylactic acid, a copolymer of glycolic acid and lactic acid, gelatin, collagen, and elastin. You may be comprised by the at least 1 sort (s) of material chosen more.
  • the inner layer may be made of a cloth made of a fiber material.
  • the cloth constituting the inner layer may be a nonwoven fabric, a woven fabric, or a knitted fabric.
  • the medical base material of the present invention can be used for regeneration of a circulatory system such as blood vessels such as arteries and veins, heart, and lymphatic vessels because the outer layer has appropriate rigidity.
  • a circulatory system such as blood vessels such as arteries and veins, heart, and lymphatic vessels because the outer layer has appropriate rigidity.
  • FIG. 1 is an external perspective view (a) and a cross-sectional view (b) of a medical base material according to the present invention.
  • FIG. 2 is a diagram for explaining a method for determining the rigidity index a of the outer layer constituting the medical base material according to the present invention.
  • FIG. 3 is an external perspective view (a) and a sectional view (b) of another medical base material according to the present invention.
  • FIG. 4 is a drawing-substituting photograph showing the result of transplanting the medical substrate (Example 1) according to the present invention into a dog.
  • FIG. 5 is a drawing-substituting photograph showing the result of transplanting a medical substrate (Example 2) according to the present invention into a dog.
  • FIG. 1 is an external perspective view (a) and a cross-sectional view (b) of a medical base material according to the present invention.
  • FIG. 2 is a diagram for explaining a method for determining the rigidity index a of the outer layer constituting the medical
  • FIG. 6 is a drawing-substituting photograph showing the result of transplanting a medical substrate (Example 3) according to the present invention into a dog.
  • FIG. 7 is a drawing-substituting photograph showing the result of transplanting a medical substrate (Example 4) according to the present invention into a dog.
  • FIG. 8 is a drawing-substituting photograph showing the result of transplanting the medical substrate (Example 5) according to the present invention into a dog.
  • FIG. 9 is a drawing-substituting photograph showing the result of transplanting a conventional medical substrate (Comparative Example 1) to a dog.
  • FIG. 10 is a drawing-substituting photograph showing the result of observing the aortic wall of a dog not implanted with a medical substrate.
  • Medical base material The medical base material of the present invention has a sheet shape, a tube shape, or a combination of these, and is treated by a procedure such as a surgical operation such as an artificial blood vessel, an intravascular stent or an intravascular stent graft. It is transplanted into the body and used to regenerate the circulatory system.
  • the medical base material of the present invention is used as an artificial blood vessel.
  • the use of the medical base material of the present invention is not limited to an artificial blood vessel.
  • FIG. 1 is an external perspective view (a) and a cross-sectional view (b) of a medical substrate 1 according to the present invention.
  • the medical base material 1 includes an outer layer 11 and an inner layer 12 disposed on the inner side.
  • the inner layer 12 may be integrated with the outer layer 11, or may be installed in multiple layers.
  • such a medical base material 1 can be manufactured by, for example, manufacturing each layer separately and then fitting them by hand or a known machine.
  • the outer layer 11 constituting the medical base material 1 of the present invention is a hollow cylindrical cloth made of a non-bioabsorbable material, a biodegradable material, or a combination thereof, and has a constant stiffness index a described later. It falls within the range.
  • the outer layer refers to a layer made of a material having a specific strength deterioration period described below, which is a part or the whole of the artificial blood vessel wall.
  • the material having a specific strength deterioration period constituting the outer layer is a stereocomplex polylactic acid or a bioabsorbable polymer having a slower strength deterioration in vivo or a non-absorbable polymer (that is, the strength deterioration period is Infinite polymer).
  • Non-bioabsorbable material biodegradable material All non-bioabsorbable materials can be used for the outer layer.
  • Biodegradable materials include polybutylene succinate, polyesteramide, copolyester, modified polyester, polyethylene succinate, polybutylene succinate, polyhydroxybutyrate, polyvinyl other than stereocomplex polylactic acid. Alcohol, copolymers containing these, bacterial cellulose, and the like can be used.
  • polyurethane does not cause deterioration in strength in vivo
  • in practice it has been observed that the deterioration in strength due to hydrolysis is observed after one year of observation. Included in bioabsorbable polymers with slow strength degradation in vivo.
  • a cloth is a material obtained by processing a large number of fibers into a thin and wide plate shape, and the cloth is classified into a woven fabric, a knitted fabric, and a non-woven fabric.
  • the fiber constituting the outer layer 11 a single fiber may be used, or a plurality of fibers may be blended and used.
  • a fiber which comprises cloth although a monofilament, twisted yarn, and roving yarn may be sufficient, twisted yarn is preferable.
  • the cloth constituting the outer layer 11 is not particularly limited, and can be manufactured from a non-bioabsorbable material, a biodegradable material, or the like by a known method. Specifically, it may be produced as a woven fabric or a knitted fabric (including mesh-like ones, hereinafter the same unless otherwise specified) by a known loom or knitting machine, and known electrospinning method, melt blowing method, etc. You may manufacture as a nonwoven fabric by the method of.
  • the stiffness index a is an index representing the stiffness of the outer layer 11 and blood vessels, and is a value measured by a method described later.
  • the index a of the rigidity of the outer layer portion of the artificial blood vessel is 1.0 to 30 mmHg, and preferably 1.2 to 12 mmHg. Further, the ratio between the stiffness index a of the outer layer portion of the artificial blood vessel and the stiffness index a of the blood vessel to be transplanted is within 7.5, and preferably within 5.5.
  • FIG. 2 is a diagram for explaining a method for determining the stiffness index a.
  • the artificial blood vessel and the rigidity index a of the blood vessel are determined by the following procedures 1) to 5).
  • the unit of the constant a obtained is millimeter of mercury (mmHg).
  • the fabric constituting the outer layer 11 is a fabric made of a fiber material such as woven fabric, knitted fabric, or nonwoven fabric
  • the fiber length, fiber diameter, fiber of the fibers constituting the fabric The ratio between the diameter and the length is not particularly limited as long as the strength condition is satisfied.
  • the fiber diameter is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m in terms of median value.
  • it is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more.
  • the distance from any one of the fiber stumps recognized in the cross section of the fabric to the stump of the adjacent fiber (hereinafter abbreviated as fiber spacing) varies depending on the fabric structure and the thickness of the blood vessel.
  • the median value is preferably 5 ⁇ m to 1000 ⁇ m, more preferably 15 ⁇ m to 500 ⁇ m. If it is smaller than 5 ⁇ m, it becomes difficult for cells and particularly vegetative blood vessels to enter and settle, and it is difficult for the cloth to self-organize including blood vessels to stably regenerate and maintain the vascular wall structure.
  • the fiber spacing is preferably 15 ⁇ m to 2000 ⁇ m, more preferably 30 ⁇ m to 1500 ⁇ m.
  • the fiber spacing is in the range between 20 ⁇ m and 1/4 of the outer circumference of the blood vessel, preferably between 100 ⁇ m and 1/6 of the outer circumference of the blood vessel, and 250 ⁇ m to the outer circumference of the blood vessel. It is more preferable that the length is 1/8.
  • the fiber spacing of the fibers constituting the outer layer may be 1 mm to 4 mm.
  • the fiber length, the fiber diameter, the ratio between the fiber diameter and the length, and the fiber interval of the fibers constituting the cloth may be single, but it is preferable that there is variation. This is because (a) it is advantageous for cell proliferation and tissue regeneration by following the fibers constituting the extracellular structure in the living body. (B) If the deterioration rate differs according to the variation, the strength change of the regenerated tissue is changed. This is because it gradually changes, so that there is less risk of abnormalities in the shape of regenerated tissue (abnormal dilation, rupture, stenosis, occlusion) and component abnormalities (scarring, calcification, etc.).
  • the fiber diameter and fiber interval of the fibers constituting the cloth shown in (5) are the median values measured as follows.
  • the median value is one of the representative values, and is a value located at the center when a finite number of data are arranged in order of size. When the number of data is an even number, the arithmetic average value of two values close to the center is obtained.
  • the woven fabric and the knitted fabric are bundled with a plurality of monofilament fibers to form a single woven or knitted yarn. Therefore, the fiber diameter of 50 monofilaments with a round cross section selected at random is measured, and the median value is taken as the fiber diameter of the cloth.
  • interval The fiber space
  • the woven fabric and the knitted fabric are bundled with a plurality of monofilament fibers to form a single woven or knitted yarn. Therefore, the fiber interval is determined based on the size of the stitch (knitting) formed between the edges of the adjacent weaving yarn (or knitting yarn) and the weaving yarn (or knitting yarn). Since this weave (knitting) has a substantially triangular shape, a quadrangular shape, or a pseudo-circular shape, how to obtain the fiber spacing in each case will be described below. In addition, description is each described in the case where there are a plurality of shapes and sizes of textures (knitting).
  • the maximum value and the minimum value of the distance between a pair of opposing two sides and the maximum value and minimum value of the distance between another pair of opposing sides Find the average value of. Then, the weighted average of these four numerical values is defined as the fiber spacing of this square. And the median value of the fiber intervals of 30 squares selected at random is set as the fiber interval of the cloth.
  • the weave is a pseudo circle
  • this is regarded as a circle
  • the diameter of the circle is defined as the fiber interval of this circle.
  • the median of the fiber intervals of 30 randomly selected pseudo circles is set as the fiber interval of the cloth.
  • (B) Fiber interval The fiber interval of a nonwoven fabric is calculated
  • Inner layer The inner layer 12 which comprises the medical base material 1 of this invention is comprised by the easily biocompatible cloth, and does not maintain the external shape of the medical base material 1, but promotes engraftment of endothelial cells etc. Thus, the self-renewal of the circulatory system such as the aorta is promoted, and finally replaced with vascular endothelial cells.
  • the easy biocompatibility means that it has a higher affinity than the material of the outer layer 11. For this reason, the inner layer 12 is rapidly absorbed by the living body, and is preferably absorbed by the living body in about 1 to 12 months, for example.
  • the material of the easy biocompatible fabric constituting the inner layer 12 can be used without particular limitation as long as it is rich in biocompatibility.
  • polyglycolic acid, lactic acid and caprolactone And known bioabsorbable polymers such as L-polylactic acid, D-polylactic acid, copolymers of glycolic acid and lactic acid, gelatin, collagen, and elastin.
  • the weight ratio of the monomers constituting the bioabsorbable polymer is not particularly limited as long as the biocompatibility is satisfied.
  • one kind of bioabsorbable polymer may be used alone, or two or more kinds of bioabsorbable polymers may be mixed and used as long as easy biocompatibility is satisfied.
  • the readily biocompatible fabric constituting the inner layer 12 can be produced by a known method without particular limitation as long as it satisfies the easily biocompatible property. Specifically, it may be produced as a woven fabric or a knitted fabric by a known loom or knitting machine, and may be produced as a nonwoven fabric by a known method such as an electrospinning method or a melt blow method.
  • the fiber length of the fibers constituting the inner layer 12 is easily biocompatible.
  • the fiber diameter is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, in terms of the median value. The reason is that if the fiber diameter is too large, blood turbulence is likely to occur, and the risk of closure of the blood vessel lumen due to thrombus formation increases.
  • the fiber spacing of the fibers of the readily biocompatible fabric constituting the inner layer 22 is preferably 100 ⁇ m or less, and more preferably 60 ⁇ m or less, in terms of the median value. Further, when the inner layer 22 is a porous body, the fiber interval (pore diameter) is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, as indicated by its median value. When the fiber interval (pore diameter) is large, there is a high risk that the blood vessel will be blocked by thrombus formation when used for blood vessel regeneration, and it will not be possible to prevent leakage of liquid such as blood from the blood vessel wall.
  • the fiber length, the fiber diameter, the ratio between the fiber diameter and the length, and the fiber interval of the fibers constituting the easy biocompatible fabric may be single, but it is preferable that there is variation. The reason is the same as that of the outer layer 11. Further, the measurement method of the fiber diameter and the fiber interval of the fibers constituting the readily biocompatible fabric is the same as that of the outer layer 11.
  • FIG. 3 is an external perspective view (a) and a cross-sectional view (b) of another medical base material 2 according to the present invention.
  • the medical substrate 2 includes an outer layer 21, an inner layer 22, and an intermediate layer 23 disposed between the outer layer and the inner layer.
  • such a medical base material 2 can be manufactured by, for example, manufacturing each layer separately and then fitting them by hand or a known machine.
  • outer layer 21 and the inner layer 22 are the same structures as the outer layer 11 and the inner layer 12 of the medical base material 1, respectively, description is abbreviate
  • the intermediate layer 23 is composed of a biodegradable cloth, and while maintaining the outer shape of the medical base material 2 together with the outer layer 21, helps the regeneration of nutrient blood vessels and media, and is finally absorbed by the body. (Hereinafter, abbreviated as absorption conditions).
  • any known material can be used without particular limitation as long as the absorption condition is satisfied.
  • known bioabsorbable polymers such as polyglycolic acid, a copolymer of lactic acid and caprolactone, L-polylactic acid, D-polylactic acid, a copolymer of glycolic acid and lactic acid, gelatin, collagen, and elastin. Can be mentioned.
  • the weight ratio of the monomers constituting the bioabsorbable polymer is not particularly limited as long as the absorption condition is satisfied. If the absorption condition is satisfied, one type of bioabsorbable polymer may be used alone, or two or more types of bioabsorbable polymers may be mixed and used.
  • the cloth constituting the intermediate layer 23 can be manufactured by a known method without particular limitation as long as the absorption condition is satisfied. Specifically, it may be produced as a woven fabric or a knitted fabric by a known loom or knitting machine, and may be produced as a nonwoven fabric by a known method such as an electrospinning method or a melt blow method.
  • the fiber length of the fibers constituting the cloth, the fiber diameter, and the ratio of the fiber diameter to the length are the absorption conditions. If it satisfies, there is no particular limitation.
  • the fiber diameter of the fibers constituting the cloth constituting the intermediate layer 23 is preferably 50 ⁇ m or less, and more preferably 20 ⁇ m or less, as indicated by its median value.
  • the fiber spacing of the cloth constituting the intermediate layer 23 is preferably 3 to 300 ⁇ m, more preferably 5 to 100 ⁇ m, as indicated by its median value.
  • the median value is preferably 15 ⁇ m to 1000 ⁇ m, more preferably 30 ⁇ m to 300 ⁇ m.
  • the fiber length, the fiber diameter, the ratio between the fiber diameter and the length, and the fiber interval of the fabric fibers constituting the intermediate layer 23 may be single, but it is preferable that there is variation. The reason is the same as that of the outer layer 11 described above. Further, the measurement method of the fiber diameter and the fiber interval of the fibers constituting the cloth is the same as that of the outer layer 11.
  • the medical base material of the present invention may be in the form of a sheet, for example, in addition to the tube shape shown in FIGS.
  • the sheet-like medical base material is wound around an affected area and used for regeneration thereof.
  • the inner layer (innermost layer) arranged on the innermost side of the affected part promotes regeneration of the affected part by engraftment of endothelial cells and the like.
  • the outer layer of the innermost layer that is, the layer disposed on the outer membrane side of the circulatory system maintains the strength of the medical base material until the affected part is regenerated, and reaches the innermost layer or the feeding blood vessels reach the innermost layer. Since it is formed in a porous shape so as to penetrate into the vicinity, it helps the growth of vegetative blood vessels and the growth of engrafted endothelial cells and promotes the regeneration of the affected area.
  • the medical base material of the present invention may include other layers as necessary in addition to the outer layer, the inner layer, and the intermediate layer shown in FIGS.
  • a protective layer may be provided to protect the anastomosis when the medical substrate is anastomosed to the aorta.
  • the outer layer may be overlapped a plurality of times around the inner layer.
  • the outer layer, the inner layer, and the intermediate layer may be thin porous bodies other than cloth, and when they are porous bodies, they can be produced by a known method without any particular limitation.
  • the cloth may be manufactured in advance by a manufacturing method such as electrospinning or a flat knitting machine.
  • mice Female beagle dogs of around 1 year old who were not pregnant and purchased from Shimizu Experimental Animals Co., Ltd. were used as experimental animals (hereinafter abbreviated as dogs). During the experimental period, dogs were individually bred, kept under standard conditions for at least one week before the experiment, and were allowed free access to standard dog food and water.
  • Example 1 The outer layer and the intermediate layer fabric were overlapped, the overlapped fabric and the inner layer fabric were each rolled into a cylindrical shape, and the wall was sewn with 6-0 polypropylene single thread suture to produce a tube. These tubes were fitted together by hand to produce an artificial blood vessel (length 24 mm, inner diameter 5 mm to 6 mm). Finally, the stump of the artificial blood vessel was treated by heat melting, and the artificial blood vessel was further reinforced by applying a polylactic acid / caprolactone copolymer solution. The artificial blood vessel was sterilized with ethylene oxide gas before use.
  • Non-run knitted fabric which is a commercial pantyhose fabric, support yarn in which monofilament nylon yarn is entangled with elastomer yarn
  • Fiber spacing approx. 300 to 700 ⁇ m (because the mesh is irregular)
  • Middle layer PLLA / CL (75% / 25%) copolymer fiber electrospun non-woven fabric Fiber spacing: 32 ⁇ m (using spacers to extend the fiber spacing) Thickness: 200 (140 to 260, depending on the part) ⁇ m Number of fabric rolls: 3 times
  • Inner layer Polylactic acid electrospun nonwoven fiber spacing (average): 30 ⁇ m, Fiber diameter (average): 3.9 ⁇ m Thickness: 200 ⁇ m
  • Example 2 In the same manner as in Example 1, an artificial blood vessel (length 30 mm, inner diameter 6 mm) was produced.
  • Outer layer Stereocomplex polylactic acid fiber knitted fabric Molecular weight of stereocomplex polylactic acid: approx. 200,000 Crystal melting point of stereocomplex polylactic acid: 200-230 ° C Monofilament diameter: 16-20 ⁇ m, Number of monofilaments / twisted yarn: 78 Uses false twisted yarn Interval between twisted yarns: There is a width due to irregular stitches, but average 400-1000 ⁇ m Number of fabric turns: 3 times Stiffness index a: 12mmHg
  • Middle layer PLA / CL (75% / 25%) electrospun non-woven fabric of copolymer fiber Fiber spacing: 32 ⁇ m (use spacer) Thickness: 200 (140 to 260, depending on the part) ⁇ m Number of fabric rolls: 3 times
  • Inner layer PLA / CL (50% / 50%) copolymer fiber electrospun nonwoven fabric Electrospun nonwoven fabric Fiber spacing: 11 ⁇ m Fiber diameter: 0.8 ⁇ m Thickness: about 200 ⁇ m
  • Example 3 In the same manner as in Example 1, an artificial blood vessel (length 30 mm, inner diameter 6 mm) was produced.
  • Outer layer Stereocomplex polylactic acid fiber knitted fabric (plain knitting) Stereocomplex polylactic acid molecular weight: about 200,000 Crystalline melting point of stereocomplex polylactic acid: 200-230 ° C Monofilament diameter: 16-20 ⁇ m Number of monofilaments / twisted yarn: 42, Twist yarn interval: approx. Number of fabric turns: 3 times Stiffness index a: 8.5mmHg
  • Middle layer PLA / CL (75% / 25%) electrospun non-woven fabric of copolymer fiber Fiber spacing: 32 ⁇ m (use spacer) Thickness: 200 (140 to 260, depending on the part) ⁇ m Number of fabric rolls: 3 times
  • Inner layer PLA / CL (50% / 50%) electrospun nonwoven fabric of copolymer fibers Fiber spacing: 6.5 ⁇ m Fiber diameter: 0.8 ⁇ m Thickness: about 200 ⁇ m
  • Example 4 In the same manner as in Example 1, an artificial blood vessel (length 30 mm, inner diameter 6 mm) was produced.
  • Stereocomplex polylactic acid fiber knitted fabric plain
  • Stereocomplex polylactic acid molecular weight about 200,000
  • Monofilament diameter 16-20 ⁇ m
  • Middle layer PLA / CL (75% / 25%) electrospun non-woven fabric of copolymer fibers Fiber spacing: 32 ⁇ m (use spacer) Thickness: 200 (140 to 260, depending on the part) ⁇ m Number of fabric turns: 2
  • Inner layer PLA / CL (50% / 50%) copolymer fiber electrospun non-woven fabric Fiber spacing: 6.5 ⁇ m Fiber diameter: 0.8 ⁇ m Thickness: about 200 ⁇ m
  • Example 5 An artificial blood vessel (length: 34 mm, inner diameter: 7 mm) was produced by covering a commercially available tube-shaped artificial blood vessel with a soft shape processed as it was on the inner layer. Finally, the stump of the artificial blood vessel was treated by heat melting, and the artificial blood vessel was reinforced by applying a polylactic acid / caprolactone copolymer solution. The artificial blood vessel was sterilized with ethylene oxide gas before use.
  • Outer layer Cloth made by adding tanning to a commercially available artificial blood vessel (polyester cloth, manufactured by Terumo Corp.) Fiber spacing: 10.6 ⁇ m Number of rolls of fabric: 1 time Stiffness index a: 27mmHg
  • Inner layer PLA / CL (75% / 25%) copolymer fiber electrospun nonwoven fabric Fiber spacing: 32 ⁇ m Fiber diameter: 4.8 ⁇ m Thickness: 300-350 ⁇ m
  • Outer layer A commercially available artificial blood vessel (made of polyester, Terumo Corp., inner diameter: 7 mm) was used as an outer layer in a hard state as it was. Fiber spacing: 7.0 ⁇ m or less Stiffness index a: 53mmHg
  • Inner layer PLA electrospun nonwoven fabric Fiber spacing: 30 ⁇ m Fiber diameter: 3.9 ⁇ m Thickness: 440 ⁇ m (use spacer)
  • Outer layer Commercially available artificial blood vessels (made of polytetrafluoroethylene, with outer wall reinforcement, manufactured by Nippon Gore Co., Ltd.) are used in the hard state as they are. Space between gaps of walls: 30 ⁇ m or less Stiffness index a: 147 mmHg
  • Inner layer PLA electrospun nonwoven fiber spacing: 30 ⁇ m Fiber diameter: 3.9 ⁇ m Thickness: 200 ⁇ m (use spacer)
  • a 15 cm open wound was placed in the midline of the abdomen, and the retroperitoneum was incised.
  • the peripheral abdominal aorta from the renal artery bifurcation was exposed to the common iliac bifurcation.
  • the lumbar artery was ligated and disconnected.
  • the connective tissue around the artery was removed.
  • the aorta was grasped with two forceps.
  • the aorta was excised over a length of 10 mm between the two forceps.
  • dogs were euthanized by intravenous injection of 100 mg / kg pentobarbital.
  • the abdomen was resumed, and surgically resected in a lump including the aorta in the part where the artificial blood vessel was implanted and the surrounding tissue, and the resected specimen was examined macroscopically and microscopically.
  • this excised specimen After the macroscopic evaluation of this excised specimen, it is fixed in 10% neutral formalin solution, made into a microscopically sliced specimen with a thickness of 4 ⁇ m using standard techniques, and hematoxylin / eosin staining (HE staining) is applied to the optical microscope. Observed at. For comparison, the aortic wall of a dog (natural) to which an artificial blood vessel was not transplanted was also observed with an optical microscope.
  • HE staining hematoxylin / eosin staining
  • Example 1 results of Example 1 After 12 months, the dog was euthanized, and the artery where the artificial blood vessel was implanted was collected and observed. Visual observation showed no abnormal findings such as thrombus formation, aneurysm or stenosis. Further, in the microscopic observation (FIG. 4), the formation of the inner part of the intima and the media was already stable and good at 6 months and was very similar to the natural aortic structure shown in FIG. Thus, the overall evaluation of Example 1 was good.
  • Example 2 Results of Example 2 After 10 months, the dog was euthanized, and the artery where the artificial blood vessel was implanted was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Further, in the microscopic observation (FIG. 5), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 2 was good.
  • Example 3 Results of Example 3 After 17 months, the dog was euthanized, and the arterial portion of the grafted artificial blood vessel was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Further, in the microscopic observation (FIG. 6), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 3 was good.
  • Example 4 Results of Example 4 After 10 months, the dog was euthanized, and the artery where the artery scaffold was transplanted was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Moreover, in the microscopic observation (FIG. 7), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 4 was good.
  • Example 5 Results of Example 5 After 10 months, the dog was euthanized, and the artery where the artery scaffold was transplanted was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Moreover, in the microscopic observation (FIG. 8), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 5 was good.
  • the artificial blood vessel of the example after transplanting the artificial blood vessel of the example, when the transplanted part was observed with the naked eye, it was confirmed that it functions as a regenerating aorta. That is, it was confirmed that the aorta blood flowed in the transplanted portion and had a lumen without a thrombus. On the other hand, when the artificial blood vessel of the comparative example was transplanted, it was confirmed that the transplanted portion was blocked by a thrombus.
  • the inner membrane layer and the inner portion of the media were regenerated, and the structure was very similar to the structure of the natural aorta. Moreover, even if some of the artificial blood vessels remained, the regeneration of part of these intima layers and media layers was good, and thrombus formation, abnormal tissue growth, stenosis / occlusion were not observed. On the other hand, when the artificial blood vessel of the comparative example was transplanted, the formation of the intima and media in the transplanted part was unstable, and the artificial blood vessel was also exposed in a part of the lumen of the transplanted part. .
  • Table 1 summarizes the stiffness index a and its performance for the examples and comparative examples.
  • the stiffness index a of Examples 1 to 4 was 1.2 to 12, and was distributed between 1/5 and 5.5 times the stiffness index a of the aorta to be transplanted.
  • the stiffness index a in Example 5 was 27, 4.5 to 24 times the stiffness index a of the aorta to be transplanted.
  • the stiffness index a of Comparative Examples 1 and 2 was 53 and 147, which was 8.8 to 67 times the stiffness index a of the aorta to be transplanted.
  • the ratio of the stiffness index a of the artificial blood vessel and the stiffness index a of the portion to be transplanted may be within an average of 7.5 times (Example 5). It has been found that double (Examples 1 to 4 are all within this range) is more preferable. On the contrary, it was found that it is not preferable that the ratio is 8.8 times or more (Comparative Examples 1 and 2).
  • Example 1 (average 300 to 700 ⁇ m), Example 2 (average 400 to 1000 ⁇ m), Example 3 (about 100 to 200 ⁇ m), and Example 4 (700 to 1300 ⁇ m) have sufficiently large fiber intervals. ) Had a good evaluation.
  • Example 5 the evaluation result of Example 5 in which the fiber spacing was only 10.6 ⁇ m at the maximum was slightly good, and the evaluation result of Comparative Example 1 in which the maximum fiber spacing was only 7.0 ⁇ m was poor.
  • the large fiber spacing is also related to the favorable evaluation results.
  • an artificial blood vessel having various configurations was prepared by combining the outer layer fabric described in Table 2, the intermediate layer fabric described in Table 3, and the inner layer fabric described in Table 4. Then, it was transplanted into a dog, and the change over time was observed with an ultrasonic diagnostic apparatus over 6 months (20 months at the longest). The observation results are summarized in Table 5.
  • the artificial blood vessels of the examples are arteries with abnormal progress such as arteriosclerosis, stenosis / occlusion, rupture, aneurysmization, etc. during the observation period of 6 to 20 months. Only 4 reproductions were recognized. In contrast, 15 artificial blood vessels in the comparative example (18 in total) were abnormal within the observation period (of which 4 were abnormal within 2 months).
  • the aorta could be regenerated with a high probability by transplanting the artificial blood vessel of the present invention.
  • an artificial blood vessel (comparative example) having an outer layer with the stiffness index a deviating from a certain range could not properly regenerate the aorta. That is, it was found that the stiffness index a of the outer layer is related to aortic regeneration.
  • the medical base material of the present invention is a medical base material suitable for regeneration of the circulatory system, and in particular, when exposed to a high pressure from the lumen like an artery, a lumen diameter that easily forms a thrombus Is suitable for relatively thin artificial blood vessels of 6 to 8 mm or less, venous and portal vein systems that tend to form thrombus even when thick, and blood vessels for artificial dialysis shunts.

Abstract

Provided is a medical substrate suitable for reproduction of a circulatory system, the medical substrate being suitable for a blood vessel in which a clot readily forms, e.g., a relatively narrow artificial blood vessel that has a lumen diameter of 6-8 mm or less and is exposed to high pressure from the lumen, such as venous system blood vessel or an artery. The medical substrate according to the present invention is sheet-shaped, tube-shaped, or a combination of these shapes, and is transplanted into a body and used to reproduce a circulatory system, the medical substrate having a multilayer structure provided with at least an inner layer disposed on an inner membrane side of a circulatory system, and an outer layer disposed further toward an outer membrane side of the circulatory system than the inner layer, the layer disposed further toward the outer membrane side of the circulatory system than the inner layer being formed in a porous shape so that a feeding blood vessel reaches the inner layer or can penetrate to the vicinity of the inner layer, and with regard to a rigidity index a determined by a specific method, the ratio of the rigidity index a of the outer layer of the tube-shaped medical substrate to the rigidity index a of a transplanted blood vessel being 7.5 or less.

Description

医療用基材Medical substrate
 本発明は、医療用基材に関し、特に循環器系の比較的細い血管の再生に好適な医療用基材に関する。 The present invention relates to a medical base material, and more particularly to a medical base material suitable for regeneration of relatively thin blood vessels in the circulatory system.
 血管で最も重要な働きは、抗凝固性である。そして、この抗凝固性とは、血管内で血液が凝固して、血液の流れが損なわれることを防止することである。また、この抗凝固性は、血管の内腔面の一番表層に存在する内膜層が担っており、この内膜層が安定して形成されることによって維持される。 The most important function in blood vessels is anticoagulation. And this anticoagulant property is preventing blood from coagulating in a blood vessel and damaging the blood flow. In addition, this anticoagulant property is maintained by the intimal layer present in the outermost surface layer of the luminal surface of the blood vessel, and this intimal layer is stably formed.
 さて、従来からある人工血管は、それが生体内で永久的に残存する素材(いわゆる生体非吸収性素材と呼ばれ、例えば、ポリエステル、ナイロン、絹糸など)からできたもの、ある一定の期間に生体内で分解してしまう素材(生体内分解性素材と呼ばれ、例えば、ポリ乳酸、カプロラクトン、PGAやゼラチン、コラーゲンなど)でできたもの、又は生体非吸収性素材と生体内分解性素材とを組み合わせでできたものであれ、生体内に動脈として移植された場合、その内腔面に内膜層が安定して形成され維持されている状態を保つことができなかった。 Well, conventional artificial blood vessels are made of materials that remain permanently in the living body (so-called non-bioabsorbable materials, such as polyester, nylon, silk thread, etc.), for a certain period of time. Materials that decompose in vivo (called biodegradable materials, such as polylactic acid, caprolactone, PGA, gelatin, collagen, etc.), or non-bioabsorbable materials and biodegradable materials Even if it is made of a combination of the two, when it is transplanted as an artery in a living body, the state where the intimal layer is stably formed and maintained on the lumen surface cannot be maintained.
 そのため、従来の人工血管は、その壁の内腔面に血栓形成や組織の異常増殖、形態の異常などの様々な障害を引き起こし、動脈としての機能が比較的早期に悪化してしまう恐れがあった。特に内腔直径が6~8mm以下の比較的細い人工血管は、抗凝固性が不十分であり、動脈として移植した場合、6ヶ月以内に血栓形成や組織の異常増殖による血管機能の悪化が起こり易かった(特許文献1及び2、非特許文献1を参照。)。 For this reason, conventional artificial blood vessels cause various obstacles such as thrombus formation, abnormal tissue growth, and abnormal morphology on the lumen surface of the wall, and the function as an artery may be deteriorated relatively early. It was. In particular, relatively thin artificial blood vessels with a lumen diameter of 6 to 8 mm or less have insufficient anticoagulant properties. When transplanted as an artery, blood vessel function deteriorates due to thrombus formation or abnormal tissue growth within 6 months. It was easy (see Patent Documents 1 and 2, Non-Patent Document 1).
特開2013-031595号公報JP2013-031595A 特開2016-158765号公報Japanese Unexamined Patent Publication No. 2016-158765
 本発明は、循環器系の再生に好適な医療用基材であって、血栓の出来易い血管、例えば静脈系血管や、動脈のように内腔からの高い圧力に曝され、内腔直径が6~8mm以下の比較的細い人工血管に好適な医療用基材を提供することを課題とする。 The present invention is a medical substrate suitable for the regeneration of the circulatory system, and is exposed to high pressure from a lumen such as a blood vessel that is prone to thrombus, such as a venous blood vessel or an artery, and has a lumen diameter. It is an object to provide a medical base material suitable for relatively thin artificial blood vessels of 6 to 8 mm or less.
 発明者らは、鋭意検討の結果、人工血管に内膜層が形成され安定的に維持されるためには、その人工血管の壁を構成する一部あるいは全部の層が次に述べる特定の強度劣化期間を持つ素材からなる層を持ち(この部分を以下では外層と記載する)、その外層が一定の範囲の剛性(別の言い方をすれば適切な弾性)を有し、その外層を構成する布の繊維間隔が一定の範囲よりも広くなる必要があることを突き止めた。そして、その外層が一定範囲の剛性及び繊維間隔を有する場合、自然の血管の内膜層に類似した内膜層と、さらにその外側(内腔側から見て)に接する中膜の内側部分に類似する構造が人工血管の内腔に形成され、安定した抗凝固性を長期間保持できることを確認した。そして、これらの条件をみたす場合には、人工血管として良好な機能を果たすことを確認した。 As a result of intensive studies, the inventors have found that an intimal layer is formed and stably maintained in an artificial blood vessel, and a part or all of the layers constituting the wall of the artificial blood vessel have a specific strength described below. It has a layer made of a material having a deterioration period (this portion is described as an outer layer below), and the outer layer has a certain range of rigidity (in other words, appropriate elasticity), and constitutes the outer layer It has been determined that the fiber spacing of the fabric needs to be wider than a certain range. And when the outer layer has a certain range of rigidity and fiber spacing, it has an inner membrane layer similar to that of natural blood vessels and an inner portion of the inner membrane that touches the outer side (viewed from the lumen side). It was confirmed that a similar structure was formed in the lumen of the artificial blood vessel, and stable anticoagulability could be maintained for a long time. And when satisfy | filling these conditions, it confirmed that the favorable function as an artificial blood vessel was fulfilled.
 なおその外層を構成するある特定の強度劣化期間を持つ素材とは、ステレオコンプレックスポリ乳酸かそれより生体内での強度劣化が遅い生体内吸収性ポリマー、あるいは非吸収ポリマー(すなわち強度劣化期間が無限大のポリマー)を指す。ある特定の強度劣化期間を具体的に述べれば、(ステレオコンプレックスPLAで作成した人工血管を動脈に移植した場合、その強度が劣化するには少なくとも6ヶ月以上から10ヶ月以上が必要であるが、通常のPLLAを同じように用いた場合は6ヶ月未満から強度劣化が認められた我々の実験結果を基準とすれば、)6ヶ月以上から10ヶ月以上の強度劣化期間を指す。 Note that the material having a specific strength deterioration period that constitutes the outer layer is stereocomplex polylactic acid, a bioabsorbable polymer that has a slower strength deterioration in vivo, or a non-absorbable polymer (that is, an infinite strength deterioration period). Large polymer). To describe a specific strength deterioration period specifically, (When an artificial blood vessel made of stereocomplex PLA is transplanted into an artery, it takes at least 6 months to 10 months or more to deteriorate its strength. When normal PLLA is used in the same way, it refers to the period of strength deterioration of 6 months or more to 10 months or more (based on our experimental results where strength deterioration was observed from less than 6 months).
 すなわち、本発明の医療用基材は、シート形状、管形状、又はこれらを組み合わせた形状をしていて、体内に移植して循環器系の再生に使用される医療用基材であって、上記の外層が、栄養血管が内層に達するように又は内層近傍まで入り込めるように、多孔質形状に形成されているとともに、以下の方法で決定される剛性の指標aについて、管形状の医療用基材の外層の剛性の指標a/移植される血管の剛性の指標aの比が7.5以内である医療用基材である。 That is, the medical substrate of the present invention has a sheet shape, a tube shape, or a combination thereof, and is a medical substrate used for regeneration of a circulatory system by transplanting into the body, The outer layer is formed in a porous shape so that the vegetative blood vessels reach the inner layer or enter the vicinity of the inner layer, and a tube-shaped medical substrate is used for the stiffness index a determined by the following method. The medical base material has a ratio of the stiffness index a of the outer layer of the material / the stiffness index a of the blood vessel to be transplanted within 7.5.
[剛性の指標aの決定方法]
(1)引張試験機の上下のチャックにL字型の治具を挟み、管形状の被測定物を二つのL字型治具の間に通して、被測定物の断面が丸い円形を保っている状態から、一定の引っ張り速度で引っ張り、被測定物の向かい合う内壁が平行にはなるが、力がかかっていない状態にし、これを測定開始時点する、なお、測定開始時点における被測定物の引張方向の長さをD0、これと直行する被測定物の縦軸方向の長さをL0、被測定物の壁の厚さをT0 と定める、
(2)測定開始時点から、同じ引っ張り速度で引っ張りながら、張力Nx、引張方向の長さDx、被測定物の縦軸方向の長さLx、壁の厚さTxを複数回測定する、
(3)式X=(Dx-D0)/D0×100(%)により、伸び率Xを算出する、
(4)式(4a )により被測定物の内壁に掛かる引張方向の応力σxを算出し、式(4b)により、この応力が内半径Rxの被測定物の内圧によって生じていると仮定した場合に相当するチューブ内圧Yxを算出する、
 (4a )σx=Nx/(Tx×Lx×2)
 (4b)Yx=σx×Tx/Rx=π×Nx/2(Dx×Lx)
(5)得られた伸び率Xとそれに対応する内圧Yが、1次関数Y=aX+b(a,bは定数)に近似するように最小二乗法によって定数a,bを決定する。
[Method of determining stiffness index a]
(1) Hold an L-shaped jig between the upper and lower chucks of the tensile tester, and pass the tube-shaped object to be measured between the two L-shaped jigs to keep the section of the object to be measured round and circular. The inner wall of the object to be measured becomes parallel, but the force is not applied, and the measurement is started at the time when the measurement is started. D0 is the length in the tensile direction, L0 is the length in the vertical axis direction of the object to be measured, and T0 is the wall thickness of the object to be measured.
(2) Measure the tension Nx, the length Dx in the tensile direction, the length Lx in the vertical direction of the object to be measured, and the wall thickness Tx multiple times while pulling at the same pulling speed from the start of measurement.
(3) The elongation rate X is calculated by the formula X = (Dx−D0) / D0 × 100 (%).
(4) When the stress σx in the tensile direction applied to the inner wall of the object to be measured is calculated by equation (4a), and this stress is assumed to be caused by the internal pressure of the object to be measured having the inner radius Rx by equation (4b) Calculate the tube internal pressure Yx corresponding to
(4a) σx = Nx / (Tx × Lx × 2)
(4b) Yx = σx × Tx / Rx = π × Nx / 2 (Dx × Lx)
(5) Constants a and b are determined by the method of least squares so that the obtained elongation rate X and the corresponding internal pressure Y approximate a linear function Y = aX + b (a and b are constants).
 なお、前記の医療用基材の剛性の指標a/移植される血管の剛性の指標aの比は、5.5以内であるのが好ましい。また、外層を構成する布は、栄養血管が入り込む孔の径、配置、分布をできるだヶ均一としたい場合には、織物又は編物とすることが好ましい。 In addition, it is preferable that the ratio of the rigidity index a of the medical base material / the rigidity index a of the blood vessel to be transplanted is within 5.5. The fabric constituting the outer layer is preferably a woven fabric or a knitted fabric when it is desired to make the diameter, arrangement, and distribution of the holes into which the nutrient blood vessels enter as uniform as possible.
 本発明の医療用基材の内層は、ポリグリコール酸、乳酸とカプロラクトンの共重合体、L-ポリ乳酸、D-ポリ乳酸、グリコール酸と乳酸の共重合体、ゼラチン、コラーゲン、エラスチンからなる群より選ばれた少なくとも1種の材料によって構成されていてもよい。なお、内層は繊維素材からなる布によって構成されていてもよい。また、内層を構成する布は、不織布、織物又は編物であってもよい。 The inner layer of the medical base material of the present invention is composed of polyglycolic acid, a copolymer of lactic acid and caprolactone, L-polylactic acid, D-polylactic acid, a copolymer of glycolic acid and lactic acid, gelatin, collagen, and elastin. You may be comprised by the at least 1 sort (s) of material chosen more. The inner layer may be made of a cloth made of a fiber material. The cloth constituting the inner layer may be a nonwoven fabric, a woven fabric, or a knitted fabric.
 本発明の医療用基材は、外層が適切な剛性を備えているため、動脈、静脈等の血管、心臓、リンパ管などの循環器系の再生に使用でき、再生に長期間を要するとともに血圧が掛かる動脈(、特にその内膜や中膜を長期間に渡り)を安定して再生・維持できるとともに、血栓が形成されやすい血管、例えば静脈系の血管や内腔直径が6~8mm以下の細い動脈についても安定して再生・維持できる。 The medical base material of the present invention can be used for regeneration of a circulatory system such as blood vessels such as arteries and veins, heart, and lymphatic vessels because the outer layer has appropriate rigidity. Can stably regenerate and maintain arteries (especially over the intima and media) for a long time, and blood vessels that are prone to thrombus formation, such as venous blood vessels and lumen diameters of 6-8 mm or less Even small arteries can be stably regenerated and maintained.
図1は、本発明に係る医療用基材の外観斜視図(a)及び断面図(b)である。FIG. 1 is an external perspective view (a) and a cross-sectional view (b) of a medical base material according to the present invention. 図2は、本発明に係る医療用基材を構成する外層の剛性の指標aの決定方法を説明するための図である。FIG. 2 is a diagram for explaining a method for determining the rigidity index a of the outer layer constituting the medical base material according to the present invention. 図3は、本発明に係る別の医療用基材の外観斜視図(a)及び断面図(b)である。FIG. 3 is an external perspective view (a) and a sectional view (b) of another medical base material according to the present invention. 図4は、本発明に係る医療用基材(実施例1)をイヌに移植した結果を示す図面代用写真である。FIG. 4 is a drawing-substituting photograph showing the result of transplanting the medical substrate (Example 1) according to the present invention into a dog. 図5は、本発明に係る医療用基材(実施例2)をイヌに移植した結果を示す図面代用写真である。FIG. 5 is a drawing-substituting photograph showing the result of transplanting a medical substrate (Example 2) according to the present invention into a dog. 図6は、本発明に係る医療用基材(実施例3)をイヌに移植した結果を示す図面代用写真である。FIG. 6 is a drawing-substituting photograph showing the result of transplanting a medical substrate (Example 3) according to the present invention into a dog. 図7は、本発明に係る医療用基材(実施例4)をイヌに移植した結果を示す図面代用写真である。FIG. 7 is a drawing-substituting photograph showing the result of transplanting a medical substrate (Example 4) according to the present invention into a dog. 図8は、本発明に係る医療用基材(実施例5)をイヌに移植した結果を示す図面代用写真である。FIG. 8 is a drawing-substituting photograph showing the result of transplanting the medical substrate (Example 5) according to the present invention into a dog. 図9は、従来からある医療用基材(比較例1)をイヌに移植した結果を示す図面代用写真である。FIG. 9 is a drawing-substituting photograph showing the result of transplanting a conventional medical substrate (Comparative Example 1) to a dog. 図10は、医療用基材を移植していないイヌの大動脈壁を観察した結果を示す図面代用写真である。FIG. 10 is a drawing-substituting photograph showing the result of observing the aortic wall of a dog not implanted with a medical substrate.
1.医療用基材
 本発明の医療用基材は、シート形状、管形状、又はこれらを組み合わせた形状をしていて、人工血管、血管内ステントや血管内ステントグラフト等のように外科手術などの処置によって、体内に移植して循環器系の再生に使用されるものである。
1. Medical base material The medical base material of the present invention has a sheet shape, a tube shape, or a combination of these, and is treated by a procedure such as a surgical operation such as an artificial blood vessel, an intravascular stent or an intravascular stent graft. It is transplanted into the body and used to regenerate the circulatory system.
 そこで、本発明の医療用基材を人工血管として使用する場合について、以下に図面に基づいて説明する。なお、本発明の医療用基材の用途は人工血管に限定されない。 Therefore, the case where the medical base material of the present invention is used as an artificial blood vessel will be described below with reference to the drawings. In addition, the use of the medical base material of the present invention is not limited to an artificial blood vessel.
 図1は、本発明に係る医療用基材1の外観斜視図(a)及び断面図(b)である。この図に示すように、医療用基材1は外層11とその内側に配置された内層12を備えている。ここで、内層12は、外層11と一体化してもよく、多層に重層して設置されていてもよい。なお、このような医療用基材1は、例えば、各層を別々に製造したのち、手や公知の機械により嵌め合わせることによって製造できる。 FIG. 1 is an external perspective view (a) and a cross-sectional view (b) of a medical substrate 1 according to the present invention. As shown in this figure, the medical base material 1 includes an outer layer 11 and an inner layer 12 disposed on the inner side. Here, the inner layer 12 may be integrated with the outer layer 11, or may be installed in multiple layers. In addition, such a medical base material 1 can be manufactured by, for example, manufacturing each layer separately and then fitting them by hand or a known machine.
2.外層
 本発明の医療用基材1を構成する外層11は、生体非吸収性素材、生体内分解性素材又はこれらの組合せからなる中空筒状の布であって、後述する剛性の指標aが一定の範囲に収まるものである。また、この外層とは、前記の人工血管の壁を構成する一部あるいは全部の層であって、次に述べるある特定の強度劣化期間を持つ素材からなる層を指す。
2. Outer layer The outer layer 11 constituting the medical base material 1 of the present invention is a hollow cylindrical cloth made of a non-bioabsorbable material, a biodegradable material, or a combination thereof, and has a constant stiffness index a described later. It falls within the range. The outer layer refers to a layer made of a material having a specific strength deterioration period described below, which is a part or the whole of the artificial blood vessel wall.
 なお、その外層を構成するある特定の強度劣化期間を持つ素材とは、ステレオコンプレックスポリ乳酸かそれより生体内での強度劣化が遅い生体内吸収性ポリマー、あるいは非吸収ポリマー(すなわち強度劣化期間が無限大のポリマー)を指す。 The material having a specific strength deterioration period constituting the outer layer is a stereocomplex polylactic acid or a bioabsorbable polymer having a slower strength deterioration in vivo or a non-absorbable polymer (that is, the strength deterioration period is Infinite polymer).
 ある特定の強度劣化期間を具体的に述べれば、(ステレオコンプレックスPLAで作成した人工血管を動脈に移植した場合、その強度が劣化するには少なくとも6ヶ月以上から10ヶ月以上が必要であるが、通常のPLLAを同じように用いた場合は6ヶ月未満から強度劣化が認められた我々の実験結果を基準とすれば、)6ヶ月以上から10ヶ月以上の強度劣化期間を指す。 To describe a specific strength deterioration period specifically, (When an artificial blood vessel made of stereocomplex PLA is transplanted into an artery, it takes at least 6 months to 10 months or more to deteriorate its strength. When normal PLLA is used in the same way, it refers to the period of strength deterioration of 6 months or more to 10 months or more (based on our experimental results where strength deterioration was observed from less than 6 months).
(1)生体非吸収性素材、生体内分解性素材
 外層には、すべての生体非吸収性素材が使用できる。また、生体内分解性素材としては、ステレオコンプレックスポリ乳酸以外に、ポリブチレンサクシネート、ポリエステルアミド、コポリエステル、改質ポリエステル、ポリエチレンサクシネート系、ポリブチレンサクシネート系、ポリヒドロキシブチレート系、ポリビニルアルコールやこれらを含むコポリマー、バクテリアセルロースなどが使用できる。なおポリウレタンは、医学的には生体内での強度劣化は生じないとされているが、実際には1年以上の観察では加水分解による強度劣化が認められるので、ここで述べたステレオコンプレックスPLAより生体内での強度劣化が遅い生体内吸収性ポリマーに含まれる。
(1) Non-bioabsorbable material, biodegradable material All non-bioabsorbable materials can be used for the outer layer. Biodegradable materials include polybutylene succinate, polyesteramide, copolyester, modified polyester, polyethylene succinate, polybutylene succinate, polyhydroxybutyrate, polyvinyl other than stereocomplex polylactic acid. Alcohol, copolymers containing these, bacterial cellulose, and the like can be used. In addition, although it is medically considered that polyurethane does not cause deterioration in strength in vivo, in practice, it has been observed that the deterioration in strength due to hydrolysis is observed after one year of observation. Included in bioabsorbable polymers with slow strength degradation in vivo.
 なお、生体内分解性素材又はそれを含む素材を外層11に使用する場合、医療用基材1を移植したのち、血管内膜細胞が置き換わるまでの一定期間(6ヶ月~10ヶ月以上)、前記剛性の指標aが一定の範囲に収まっている必要がある。そのため、生体内分解性素材を使用する場合には、血管の壁に使用されても強度劣化の時間が6ヶ月~10ヶ月以上と長いもの、例えばステレオコンプレックス乳酸の使用が好ましい。 In the case where a biodegradable material or a material containing the same is used for the outer layer 11, after transplanting the medical base material 1, a certain period (6 months to 10 months or more) until the endometrial cells are replaced, The stiffness index a needs to be within a certain range. Therefore, when a biodegradable material is used, it is preferable to use a material having a long strength deterioration time of 6 months to 10 months or more, for example, stereocomplex lactic acid, even if it is used for a blood vessel wall.
(2)布
 本明細書において布とは、多数の繊維を薄く広い板状に加工したもののことであり、布は織物、編物、不織布の何れかに分けられる。外層11を構成する繊維は、単独の繊維を使用してもよく、複数の繊維をブレンドして使用してもよい。また、布を構成する繊維としては、モノフィラメント、撚糸、ロービング糸でもよいが、撚糸が好ましい。
(2) Cloth In this specification, a cloth is a material obtained by processing a large number of fibers into a thin and wide plate shape, and the cloth is classified into a woven fabric, a knitted fabric, and a non-woven fabric. As the fiber constituting the outer layer 11, a single fiber may be used, or a plurality of fibers may be blended and used. Moreover, as a fiber which comprises cloth, although a monofilament, twisted yarn, and roving yarn may be sufficient, twisted yarn is preferable.
 外層11を構成する布は、特に限定することなく、生体非吸収性素材、生体内分解性素材等から公知の方法により製造できる。具体的には、公知の織機、編機によって織布や編物(網状のものも含む。以下、特別に記載しなければ同じ。)として製造してもよく、エレクトロスピニング法やメルトブロー法等の公知の方法によって不織布として製造してもよい。 The cloth constituting the outer layer 11 is not particularly limited, and can be manufactured from a non-bioabsorbable material, a biodegradable material, or the like by a known method. Specifically, it may be produced as a woven fabric or a knitted fabric (including mesh-like ones, hereinafter the same unless otherwise specified) by a known loom or knitting machine, and known electrospinning method, melt blowing method, etc. You may manufacture as a nonwoven fabric by the method of.
(3)剛性の指標a 
 剛性の指標aとは、外層11や血管などの剛性を表す指標であって、後述する方法で測定した値である。なお、人工血管の外層部分の剛性の指標aは、1.0~30 mmHgであり、1.2~12 mmHgが好ましい。また、人工血管の外層部分の剛性の指標aと移植対象となる血管の剛性の指標aとの比は、7.5以内であり、5.5以内が好ましい。
(3) Rigidity index a
The stiffness index a is an index representing the stiffness of the outer layer 11 and blood vessels, and is a value measured by a method described later. The index a of the rigidity of the outer layer portion of the artificial blood vessel is 1.0 to 30 mmHg, and preferably 1.2 to 12 mmHg. Further, the ratio between the stiffness index a of the outer layer portion of the artificial blood vessel and the stiffness index a of the blood vessel to be transplanted is within 7.5, and preferably within 5.5.
(4)剛性の指標aの決定方法
 図2は、剛性の指標aの決定方法を説明するための図である。この図を参考に、以下の1)~5)の手順で人工血管、血管の剛性の指標aを決定する。
(4) Method for Determining Stiffness Index a FIG. 2 is a diagram for explaining a method for determining the stiffness index a. With reference to this figure, the artificial blood vessel and the rigidity index a of the blood vessel are determined by the following procedures 1) to 5).
 1)引張試験機の上下のチャックにL字型の治具を挟む。人工血管の外層又は血管を縦軸方向の一定の充分に長い長さ(例えば100mm)に切って被測定物とする。被測定物を、二つのL字型治具の間に通す。被測定物の断面が丸い円形を保っている状態から、一定の引っ張り速度(例えば、10mm/分などの充分にゆっくりした速度)で引っ張り、図2(a)に示すように、向かい合う内壁は平行であるものの、力が事実上かかっていない状態にし、これを測定開始時点とした。なお、この状態での被測定物の縦軸方向の長さをL0(mm)、引張方向の長さをD0 (mm)、被測定物の壁の厚さをT0 (mm)と定める。 1) Insert an L-shaped jig between the upper and lower chucks of the tensile tester. The outer layer or blood vessel of the artificial blood vessel is cut into a constant and sufficiently long length (for example, 100 mm) in the vertical axis direction to be a measurement object. Pass the object to be measured between two L-shaped jigs. From the state in which the cross section of the object to be measured is maintained in a round and circular shape, it is pulled at a constant pulling speed (for example, a sufficiently slow speed such as 10 mm / min), and the inner walls facing each other are parallel as shown in FIG. However, the force was practically not applied, and this was set as the measurement start time. In this state, the length of the measured object in the vertical axis direction is defined as L0 (mm), the length in the tensile direction is defined as D0 mm (mm), and the thickness of the measured object wall is defined as T0 mm (mm).
 2)測定開始時点から、同じ引っ張り速度で引っ張りながら、図2(b)に示すように、張力Nx(N)、被測定物の引張方向の長さDx(mm)、これと直行する被測定物の縦軸方向の長さLx(mm)、被測定物の壁の厚さTx(mm)を複数回測定する。 2) From the start of measurement, while pulling at the same pulling speed, as shown in Fig. 2 (b), the tension Nx (N), the length Dx (mm) in the tensile direction of the object to be measured, and the object to be measured orthogonal to this The length Lx (mm) of the object in the vertical axis direction and the wall thickness Tx (mm) of the object to be measured are measured a plurality of times.
 3)式X=(Dx-D0)/D0×100(%)により、伸び率xを算出する。 3) The elongation rate x is calculated by the formula X = (Dx−D0) / D0 × 100 (%).
 4)式(4a )により被測定物の内壁に掛かる引張方向の応力σxを算出し、式(4b)により、この応力が内半径Rxの被測定物の内圧によって生じていると仮定した場合に相当するチューブ内圧Yx(mmHg)を算出する。
 (4a )σx=Nx/(Tx×Lx×2)
 (4b)Yx=σx×Tx/Rx=π×Nx/2(Dx×Lx)
4) When the stress σx in the tensile direction applied to the inner wall of the object to be measured is calculated by equation (4a), and this stress is assumed to be caused by the internal pressure of the object to be measured having the inner radius Rx by equation (4b). The corresponding tube internal pressure Yx (mmHg) is calculated.
(4a) σx = Nx / (Tx × Lx × 2)
(4b) Yx = σx × Tx / Rx = π × Nx / 2 (Dx × Lx)
 5)得られた伸び率Xとそれに対応する内圧Yが、1次関数Y=aX+b(a,bは定数)に近似するように最小二乗法によって定数a,bを決定する。なお、得られた定数aの単位は、水銀柱ミリメートル(mmHg)である。 5) Constants a and b are determined by the method of least squares so that the obtained elongation rate X and the corresponding internal pressure Y approximate the linear function Y = aX + b (a and b are constants). The unit of the constant a obtained is millimeter of mercury (mmHg).
(5)繊維長、繊維径、繊維間隔など
 外層11を構成する布が、織布、編布、不織布など繊維素材からなる布である場合、それを構成する繊維の繊維長、繊維径、繊維径と長さの比率は、強度条件を満たせば、特に限定する必要はない。ただ、強度条件を考慮すると、繊維径は、中央値で示すと0.1~50μmが好ましく、0.5~30μmがより好ましい。また血管ステントとして使用する場合には、50μm以上が好ましく、100μm以上がより好ましい。
(5) Fiber length, fiber diameter, fiber spacing, etc. When the fabric constituting the outer layer 11 is a fabric made of a fiber material such as woven fabric, knitted fabric, or nonwoven fabric, the fiber length, fiber diameter, fiber of the fibers constituting the fabric The ratio between the diameter and the length is not particularly limited as long as the strength condition is satisfied. However, considering the strength conditions, the fiber diameter is preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm in terms of median value. When used as a vascular stent, it is preferably 50 μm or more, more preferably 100 μm or more.
 布断面に認める繊維断端の任意の一本から隣り合う繊維の断端までの距離(以下、繊維間隔と省略する。)は、布の構造と血管の太ささによって異なる。具体的には、布の構造から言えば、不織布の場合、中央値で示すと5μm~1000μmが好ましく、15μm~500μmがより好ましい。5μmよりも小さいと、細胞や特に栄養血管の浸入・定着し難くなり、布が血管を含む自己組織化して血管壁構造を安定的に再生・維持することが困難であるからである。また、1000μmよりも大きいと、血圧等の内圧によって血液等が医療用基材1から漏れ出る可能性があるからである。同じ理由から、織布や編布の場合、繊維間隔は15μm~2000μmが好ましく、30μm~1500μmがより好ましい。血管の太さから言えば、20μmから血管の外周長の1/4の長さの間の範囲であり、100μmから血管外周長の1/6の長さの間が好ましく、250μmから血管外周長の長さの1/8の間がより好ましい。 The distance from any one of the fiber stumps recognized in the cross section of the fabric to the stump of the adjacent fiber (hereinafter abbreviated as fiber spacing) varies depending on the fabric structure and the thickness of the blood vessel. Specifically, in terms of the structure of the fabric, in the case of a nonwoven fabric, the median value is preferably 5 μm to 1000 μm, more preferably 15 μm to 500 μm. If it is smaller than 5 μm, it becomes difficult for cells and particularly vegetative blood vessels to enter and settle, and it is difficult for the cloth to self-organize including blood vessels to stably regenerate and maintain the vascular wall structure. In addition, if it is larger than 1000 μm, blood or the like may leak from the medical base material 1 due to internal pressure such as blood pressure. For the same reason, in the case of a woven fabric or a knitted fabric, the fiber spacing is preferably 15 μm to 2000 μm, more preferably 30 μm to 1500 μm. Speaking from the thickness of the blood vessel, it is in the range between 20 μm and 1/4 of the outer circumference of the blood vessel, preferably between 100 μm and 1/6 of the outer circumference of the blood vessel, and 250 μm to the outer circumference of the blood vessel. It is more preferable that the length is 1/8.
 なお、外層を内層の周りに複数回重層する場合、医療用基材が後述する中間層を備えている場合には、外層を構成する繊維の繊維間隔が1mm~4mmであってもよい。 When the outer layer is stacked several times around the inner layer, when the medical substrate includes an intermediate layer to be described later, the fiber spacing of the fibers constituting the outer layer may be 1 mm to 4 mm.
 布を構成する繊維の繊維長、繊維径、繊維径と長さの比率、繊維間隔は、単一であってもよいが、バラツキがある方が好ましい。これは、(a)生体内で細胞外構造を構成する繊維に倣うことによって、細胞増殖や組織再生に有利であり、(b)バラツキに応じて劣化速度が異なれば、再生組織の強度変化が徐々変化するので、再生組織の形状異常(異常拡張、破裂、狭窄、閉塞)や構成成分異常(瘢痕化、石灰化など)の危険が少なくなるため、である。 The fiber length, the fiber diameter, the ratio between the fiber diameter and the length, and the fiber interval of the fibers constituting the cloth may be single, but it is preferable that there is variation. This is because (a) it is advantageous for cell proliferation and tissue regeneration by following the fibers constituting the extracellular structure in the living body. (B) If the deterioration rate differs according to the variation, the strength change of the regenerated tissue is changed. This is because it gradually changes, so that there is less risk of abnormalities in the shape of regenerated tissue (abnormal dilation, rupture, stenosis, occlusion) and component abnormalities (scarring, calcification, etc.).
(6)繊維径、繊維間隔の測定方法
 (5)に示した布を構成する繊維の繊維径、繊維間隔は次のようにして測定した値の中央値である。なお、中央値とは、代表値の一つで、有限個のデータを大きさの順に並べたとき中央に位置する値である。また、データが偶数個の場合は、中央に近い2つの値の算術平均値である。
(6) Measuring method of fiber diameter and fiber interval The fiber diameter and fiber interval of the fibers constituting the cloth shown in (5) are the median values measured as follows. The median value is one of the representative values, and is a value located at the center when a finite number of data are arranged in order of size. When the number of data is an even number, the arithmetic average value of two values close to the center is obtained.
 1)編布、織布の場合
 (a)繊維径
 編布、織布の繊維径は、以下のようにして求める。まず、布を切断し、その切断面を光学顕微鏡(20倍~100倍)で撮影する。つぎに、撮影した画像をコンピュータ画像システムに取り込み、距離測定ソフト(理論上は0.01μmまで測定可能)を使用して繊維径を測定する。
1) In the case of knitted fabric and woven fabric (a) Fiber diameter The fiber diameter of the knitted fabric and woven fabric is obtained as follows. First, cut the cloth and photograph the cut surface with an optical microscope (20x to 100x). Next, the photographed image is taken into a computer image system, and the fiber diameter is measured using distance measurement software (theoretically, measurement is possible up to 0.01 μm).
 なお、織布及び編布は、複数本のモノフィラメントファイバーを束ねて1本の織糸又は編糸としている。そこで、無作為に選ばれた断面が真円形のモノフィラメント50個の繊維径を測定し、その中央値を布の繊維径とする。 In addition, the woven fabric and the knitted fabric are bundled with a plurality of monofilament fibers to form a single woven or knitted yarn. Therefore, the fiber diameter of 50 monofilaments with a round cross section selected at random is measured, and the median value is taken as the fiber diameter of the cloth.
 (b)繊維間隔
 編布、織布の繊維間隔は、次の方法で求める。まず、布の表面を実体顕微鏡(倍率10倍以下、表側と裏側の両側から光源照射)で撮影する。撮影した画像をコンピュータ画像システムに取り込み、取り込んだ画像を、距離測定ソフト(理論上は0.01μmまで測定可能)を使用して繊維間隔を測定する。
(B) Fiber space | interval The fiber space | interval of a knitted fabric and a woven fabric is calculated | required with the following method. First, the surface of the cloth is photographed with a stereomicroscope (magnification of 10x or less, light source irradiation from both the front and back sides). Captured images are captured into a computer image system, and the captured images are measured for fiber spacing using distance measurement software (theoretically, measurement is possible up to 0.01 μm).
 なお、織布及び編布は、複数本のモノフィラメントファイバーを束ねて1本の織糸又は編糸としている。そこで、繊維間隔は、隣接する織糸(又は編糸)と織糸(又は編糸)の縁と縁の間で形作られる織目(編目)の大きさに基づいて定める。この織目(編目)は、略三角形状、四角形状、又は疑似円形状があるので、それぞれの場合の繊維間隔の求め方を以下に説明する。なお、織目(編目)の形や大きさが複数ある複雑な場合は、それぞれ記載について記載する。 In addition, the woven fabric and the knitted fabric are bundled with a plurality of monofilament fibers to form a single woven or knitted yarn. Therefore, the fiber interval is determined based on the size of the stitch (knitting) formed between the edges of the adjacent weaving yarn (or knitting yarn) and the weaving yarn (or knitting yarn). Since this weave (knitting) has a substantially triangular shape, a quadrangular shape, or a pseudo-circular shape, how to obtain the fiber spacing in each case will be described below. In addition, description is each described in the case where there are a plurality of shapes and sizes of textures (knitting).
 織目(編目)が略三角形状の場合は、これを三角形とみなし、三角形の3つの高さの平均値をこの三角形の繊維間隔とする。そして、無作為に選んだ三角形30個の繊維間隔の中央値を布の繊維間隔とする。 When the weave (stitch) is substantially triangular, this is regarded as a triangle, and the average value of the three heights of the triangle is taken as the fiber spacing of this triangle. Then, the median value of the fiber intervals of 30 triangles selected at random is set as the fiber interval of the cloth.
 織目(編目)が略四角形状の場合は、対向する一対の二辺間の距離の最大値と最小値の平均値、及び対向する別の一対の二辺間の距離の最大値と最小値の平均値を求める。そして、これらの4つの数値の加重平均をこの四角形の繊維間隔とする。そして、無作為に選んだ四角形30個の繊維間隔の中央値を布の繊維間隔とする。 When the weave (stitch) is substantially square, the maximum value and the minimum value of the distance between a pair of opposing two sides and the maximum value and minimum value of the distance between another pair of opposing sides Find the average value of. Then, the weighted average of these four numerical values is defined as the fiber spacing of this square. And the median value of the fiber intervals of 30 squares selected at random is set as the fiber interval of the cloth.
 織目(編目)が疑似円形状の場合は、これを円とみなし、円の直径をこの円の繊維間隔とする。そして、無作為に選んだ疑似円形30個の繊維間隔の中央値を布の繊維間隔とする。 When the weave (stitch) is a pseudo circle, this is regarded as a circle, and the diameter of the circle is defined as the fiber interval of this circle. Then, the median of the fiber intervals of 30 randomly selected pseudo circles is set as the fiber interval of the cloth.
 2) 不織布の場合
 (a)繊維径
 不織布の繊維径は、以下のようにして求める。まず、被測定不織布を液体窒素で凍結・硬化したのち、切断する。つぎに、不織布の切断面を走査型電子顕微鏡で撮影する。そして、不織布の切断面に露出した多くの繊維断面の中から無作為に50本を選定し、繊維断端直径を測定する。測定した繊維径の中央値を不織布の繊維径とする。
2) In the case of a nonwoven fabric (a) Fiber diameter The fiber diameter of a nonwoven fabric is calculated | required as follows. First, the nonwoven fabric to be measured is frozen and cured with liquid nitrogen and then cut. Next, the cut surface of the nonwoven fabric is photographed with a scanning electron microscope. Then, 50 fibers are randomly selected from the many fiber cross sections exposed on the cut surface of the nonwoven fabric, and the fiber stump diameter is measured. The median value of the measured fiber diameter is defined as the fiber diameter of the nonwoven fabric.
 (b)繊維間隔
 不織布の繊維間隔は、次のようにして求める。まず、被測定不織布を液体窒素で凍結・硬化したのち、切断する。つぎに、不織布の切断面を走査型電子顕微鏡で撮影する。そして、不織布の切断面に露出した多くの繊維断面の中から無作為に一つの繊維を選定し、選定した繊維から距離が近い順番に他の繊維を30個選び、選定した繊維との繊維間隔を測定し、測定した繊維間隔の中央値を計算する。同様にして一つの不織布について3つの中央値を求め、求めた3つの中央値の中央値をその不織布の繊維間隔とする。
(B) Fiber interval The fiber interval of a nonwoven fabric is calculated | required as follows. First, the nonwoven fabric to be measured is frozen and cured with liquid nitrogen and then cut. Next, the cut surface of the nonwoven fabric is photographed with a scanning electron microscope. Then, randomly select one fiber from the many fiber cross sections exposed on the cut surface of the nonwoven fabric, select 30 other fibers in order of distance from the selected fiber, and the fiber spacing with the selected fiber. And the median of the measured fiber spacing is calculated. Similarly, three median values are obtained for one nonwoven fabric, and the median value of the obtained three median values is set as the fiber interval of the nonwoven fabric.
3.内層
 本発明の医療用基材1を構成する内層12は、易生体親和性布によって構成されており、医療用基材1の外形形状を維持するのではなく、内皮細胞などの生着を促進して大動脈などの循環器系の自己再生を促進し、最終的には血管内皮細胞等に置換される。なお、易生体親和性とは、外層11の材料と比べて親和性に富んでいるという意味である。そのため、内層12は、生体吸収が速く、例えば、1ヶ月から12ヶ月程度で生体に吸収されることが好ましい。
3. Inner layer The inner layer 12 which comprises the medical base material 1 of this invention is comprised by the easily biocompatible cloth, and does not maintain the external shape of the medical base material 1, but promotes engraftment of endothelial cells etc. Thus, the self-renewal of the circulatory system such as the aorta is promoted, and finally replaced with vascular endothelial cells. The easy biocompatibility means that it has a higher affinity than the material of the outer layer 11. For this reason, the inner layer 12 is rapidly absorbed by the living body, and is preferably absorbed by the living body in about 1 to 12 months, for example.
(1)易生体親和性布
 内層12を構成する易生体親和性布の材料には、生体親和性に富むものであれば、特に限定することなく使用でき、例えば、ポリグリコール酸、乳酸とカプロラクトンの共重合体、L-ポリ乳酸、D-ポリ乳酸、グリコール酸と乳酸の共重合体、ゼラチン、コラーゲン、エラスチン等の公知の生体吸収性ポリマーが挙げられる。
(1) Easy biocompatible fabric The material of the easy biocompatible fabric constituting the inner layer 12 can be used without particular limitation as long as it is rich in biocompatibility. For example, polyglycolic acid, lactic acid and caprolactone And known bioabsorbable polymers such as L-polylactic acid, D-polylactic acid, copolymers of glycolic acid and lactic acid, gelatin, collagen, and elastin.
 なお、生体吸収性ポリマーを構成するモノマーの重量比は、易生体親和性を満たすのであれば、特に限定されない。また、易生体親和性を満たすのであれば、1種類の生体吸収性ポリマーを単独で使用してもよく、2種以上の生体吸収性ポリマーを混合して使用してもよい。 Note that the weight ratio of the monomers constituting the bioabsorbable polymer is not particularly limited as long as the biocompatibility is satisfied. In addition, one kind of bioabsorbable polymer may be used alone, or two or more kinds of bioabsorbable polymers may be mixed and used as long as easy biocompatibility is satisfied.
 内層12を構成する易生体親和性布は、易生体親和性を満たすのであれば、特に限定することなく、公知の方法により製造できる。具体的には、公知の織機、編機によって織布や編物として製造してもよく、エレクトロスピニング法やメルトブロー法等の公知の方法によって不織布として製造してもよい。 The readily biocompatible fabric constituting the inner layer 12 can be produced by a known method without particular limitation as long as it satisfies the easily biocompatible property. Specifically, it may be produced as a woven fabric or a knitted fabric by a known loom or knitting machine, and may be produced as a nonwoven fabric by a known method such as an electrospinning method or a melt blow method.
 内層12を構成する布が、織布、編布、不織布など繊維素材からなるものである場合、それを構成する繊維の繊維長、繊維径、及び繊維径と長さの比率は、易生体親和性を満たせば、特に限定する必要はない。ただ、繊維径は、その中央値で示すと、20μm以下が好ましく、10μm以下がより好ましい。その理由は、余り太い繊維径では、血液の乱流などを引き起こし易く、血栓形成による血管内腔の閉鎖の危険が高くなるためである。 When the cloth constituting the inner layer 12 is made of a fiber material such as a woven cloth, a knitted cloth or a non-woven cloth, the fiber length of the fibers constituting the inner layer 12, the fiber diameter, and the ratio of the fiber diameter to the length are easily biocompatible. As long as the characteristics are satisfied, there is no particular limitation. However, the fiber diameter is preferably 20 μm or less, more preferably 10 μm or less, in terms of the median value. The reason is that if the fiber diameter is too large, blood turbulence is likely to occur, and the risk of closure of the blood vessel lumen due to thrombus formation increases.
 内層22を構成する易生体親和性布の繊維の繊維間隔は、その中央値で示すと、100μm以下が好ましく、60μm以下がより好ましい。また、内層22が多孔体の場合、繊維間隔(孔直径)は、その中央値で示すと200μm以下が好ましく、100μm以下がより好ましい。繊維間隔(孔直径)が大きいと、血管再生に使用した場合、血管が血栓形成によって閉塞するリスクが高くなり、血管壁からの血液等の液体が漏出するのを防げなくなる。 The fiber spacing of the fibers of the readily biocompatible fabric constituting the inner layer 22 is preferably 100 μm or less, and more preferably 60 μm or less, in terms of the median value. Further, when the inner layer 22 is a porous body, the fiber interval (pore diameter) is preferably 200 μm or less, more preferably 100 μm or less, as indicated by its median value. When the fiber interval (pore diameter) is large, there is a high risk that the blood vessel will be blocked by thrombus formation when used for blood vessel regeneration, and it will not be possible to prevent leakage of liquid such as blood from the blood vessel wall.
 易生体親和性布を構成する繊維の繊維長、繊維径、繊維径と長さの比率、繊維間隔は、単一であってもよいが、バラツキがある方が好ましい。その理由は、外層11と同じである。また、易生体親和性布を構成する繊維の繊維径、繊維間隔の測定方法は、外層11と同じである。 The fiber length, the fiber diameter, the ratio between the fiber diameter and the length, and the fiber interval of the fibers constituting the easy biocompatible fabric may be single, but it is preferable that there is variation. The reason is the same as that of the outer layer 11. Further, the measurement method of the fiber diameter and the fiber interval of the fibers constituting the readily biocompatible fabric is the same as that of the outer layer 11.
4.中間層
 本発明の医療用基材は、内層と外層との間に中間層を設けてもよい。図3は、本発明に係る別の医療用基材2の外観斜視図(a)及び断面図(b)である。この図に示すように、医療用基材2は外層21と、内層22と、外層と内層の間に配置される中間層23とを備えている。
4. Intermediate Layer The medical base material of the present invention may be provided with an intermediate layer between the inner layer and the outer layer. FIG. 3 is an external perspective view (a) and a cross-sectional view (b) of another medical base material 2 according to the present invention. As shown in this figure, the medical substrate 2 includes an outer layer 21, an inner layer 22, and an intermediate layer 23 disposed between the outer layer and the inner layer.
 なお、このような医療用基材2は、例えば、各層を別々に製造したのち、手や公知の機械で嵌め合わせることによって製造できる。また、外層21及び内層22は、それぞれ医療用基材1の外層11及び内層12と同じ構成であるので、記載を省略する。 In addition, such a medical base material 2 can be manufactured by, for example, manufacturing each layer separately and then fitting them by hand or a known machine. Moreover, since the outer layer 21 and the inner layer 22 are the same structures as the outer layer 11 and the inner layer 12 of the medical base material 1, respectively, description is abbreviate | omitted.
 中間層23は、生分解性の布によって構成されており、外層21とともに医療用基材2の外形形状を維持しつつ、栄養血管や中膜の再生を助け、最終的には生体吸収される(以下、吸収条件と省略する。)。 The intermediate layer 23 is composed of a biodegradable cloth, and while maintaining the outer shape of the medical base material 2 together with the outer layer 21, helps the regeneration of nutrient blood vessels and media, and is finally absorbed by the body. (Hereinafter, abbreviated as absorption conditions).
 中間層23を構成する布の材料には、吸収条件を満たすのであれば、特に限定することなく、公知のものが使用できる。具体的には、ポリグリコール酸、乳酸とカプロラクトンの共重合体、L-ポリ乳酸、D-ポリ乳酸、グリコール酸と乳酸の共重合体、ゼラチン、コラーゲン、エラスチン等の公知の生体吸収性ポリマーが挙げられる。 As the material of the cloth constituting the intermediate layer 23, any known material can be used without particular limitation as long as the absorption condition is satisfied. Specifically, known bioabsorbable polymers such as polyglycolic acid, a copolymer of lactic acid and caprolactone, L-polylactic acid, D-polylactic acid, a copolymer of glycolic acid and lactic acid, gelatin, collagen, and elastin. Can be mentioned.
 なお、生体吸収性ポリマーを構成するモノマーの重量比は、吸収条件を満たすのであれば、特に限定されない。また、吸収条件を満たすのであれば、1種類の生体吸収性ポリマーを単独で使用してもよく、2種以上の生体吸収性ポリマーを混合して使用してもよい。 In addition, the weight ratio of the monomers constituting the bioabsorbable polymer is not particularly limited as long as the absorption condition is satisfied. If the absorption condition is satisfied, one type of bioabsorbable polymer may be used alone, or two or more types of bioabsorbable polymers may be mixed and used.
 中間層23を構成する布は、吸収条件を満たすのであれば、特に限定することなく、公知の方法により製造できる。具体的には、公知の織機、編機によって織布や編物として製造してもよく、エレクトロスピニング法やメルトブロー法等の公知の方法によって不織布として製造してもよい。 The cloth constituting the intermediate layer 23 can be manufactured by a known method without particular limitation as long as the absorption condition is satisfied. Specifically, it may be produced as a woven fabric or a knitted fabric by a known loom or knitting machine, and may be produced as a nonwoven fabric by a known method such as an electrospinning method or a melt blow method.
 中間層23を構成する布が、織布、編布、不織布など繊維素材からなるものである場合、それを構成する繊維の繊維長、繊維径、及び繊維径と長さの比率は、吸収条件を満たせば、特に限定する必要はない。ただ、中間層23を構成する布を構成する繊維の繊維径は、その中央値で示すと50μm以下が好ましく、20μm以下がより好ましい。 When the cloth constituting the intermediate layer 23 is made of a fiber material such as a woven cloth, a knitted cloth, or a non-woven cloth, the fiber length of the fibers constituting the cloth, the fiber diameter, and the ratio of the fiber diameter to the length are the absorption conditions. If it satisfies, there is no particular limitation. However, the fiber diameter of the fibers constituting the cloth constituting the intermediate layer 23 is preferably 50 μm or less, and more preferably 20 μm or less, as indicated by its median value.
 中間層23を構成する布の繊維間隔は、不織布の場合には、その中央値で示すと3~300μmが好ましく、5~100μmがより好ましい。織布や編布の場合には、中央値で示すと15μm~1000μmが好ましく、30μm~300μmがより好ましい。 In the case of a nonwoven fabric, the fiber spacing of the cloth constituting the intermediate layer 23 is preferably 3 to 300 μm, more preferably 5 to 100 μm, as indicated by its median value. In the case of woven or knitted fabric, the median value is preferably 15 μm to 1000 μm, more preferably 30 μm to 300 μm.
 中間層23を構成する布の繊維の繊維長、繊維径、繊維径と長さの比率、繊維間隔は、単一であってもよいが、バラツキがある方が好ましい。その理由は、先述の外層11と同じである。また、布を構成する繊維の繊維径、繊維間隔の測定方法は、外層11と同じである。 The fiber length, the fiber diameter, the ratio between the fiber diameter and the length, and the fiber interval of the fabric fibers constituting the intermediate layer 23 may be single, but it is preferable that there is variation. The reason is the same as that of the outer layer 11 described above. Further, the measurement method of the fiber diameter and the fiber interval of the fibers constituting the cloth is the same as that of the outer layer 11.
 なお、本発明の医療用基材は、図1及び図3に示す管形状のほか、例えば、シート状のものであってもよい。シート状の医療用基材は、例えば、患部に巻きつけて、その再生に使用する。この医療用基材の場合、最も患部の内側に配置された内層(最内層)は、内皮細胞等が生着することによって、患部の再生を促進する。一方、最内層の外側の層、すなわち循環器系の外膜側に配置される層は、患部が再生するまで医療用基材の強度を維持するとともに、栄養血管を最内層に達する又は最内層近傍まで入り込むように多孔質形状に形成されているため、栄養血管の成長と生着した内皮細胞等の生育を助け、患部の再生を促進する。 In addition, the medical base material of the present invention may be in the form of a sheet, for example, in addition to the tube shape shown in FIGS. For example, the sheet-like medical base material is wound around an affected area and used for regeneration thereof. In the case of this medical base material, the inner layer (innermost layer) arranged on the innermost side of the affected part promotes regeneration of the affected part by engraftment of endothelial cells and the like. On the other hand, the outer layer of the innermost layer, that is, the layer disposed on the outer membrane side of the circulatory system maintains the strength of the medical base material until the affected part is regenerated, and reaches the innermost layer or the feeding blood vessels reach the innermost layer. Since it is formed in a porous shape so as to penetrate into the vicinity, it helps the growth of vegetative blood vessels and the growth of engrafted endothelial cells and promotes the regeneration of the affected area.
 また、本発明の医療用基材は、図1及び図3に示す外層、内層及び中間層を備えたもののほか、必要に応じて他の層を備えていてもよい。例えば、医療用基材を大動脈に吻合した際に、吻合部を保護するための保護層を設けてもよい。また、内層の周りに外層を複数回重ね合せてもよい。 Moreover, the medical base material of the present invention may include other layers as necessary in addition to the outer layer, the inner layer, and the intermediate layer shown in FIGS. For example, a protective layer may be provided to protect the anastomosis when the medical substrate is anastomosed to the aorta. Further, the outer layer may be overlapped a plurality of times around the inner layer.
 さらに、外層、内層、中間層は布以外の薄い多孔体であってもよく、多孔体である場合には、特に限定することなく、公知の方法により製造できる。 Furthermore, the outer layer, the inner layer, and the intermediate layer may be thin porous bodies other than cloth, and when they are porous bodies, they can be produced by a known method without any particular limitation.
 加えて、布を縫製して筒状するのではなく、エレクトロスピニング等の製造方法や横編機等により、予め筒状に製造してもよい。 In addition, instead of sewing the cloth into a cylinder, the cloth may be manufactured in advance by a manufacturing method such as electrospinning or a flat knitting machine.
 本発明について、実施例等に基づいて、以下より詳細に説明する。なお、本発明は、如何なる意味においても、以下の実施例等により限定されるものではない。 The present invention will be described in more detail below based on examples and the like. In addition, this invention is not limited by the following examples etc. in any meaning.
1.性能比較
 医療用基材を構成する材料の違いがその性能に与える影響を、人工血管を作製して実験動物の動脈に移植することによって、調べた。具体的には以下のように実験した。
1. Performance comparison The effect of the difference in the materials composing the medical substrate on its performance was investigated by preparing artificial blood vessels and transplanting them into the arteries of experimental animals. Specifically, the experiment was performed as follows.
(1)実験動物とその馴化
 清水実験動物社から購入した体重が7~10kg以下の妊娠していない1歳前後のメスのビーグル犬を実験動物(以下、イヌと省略する。)として使用した。実験期間中、イヌは個別に飼育し、実験前1週間以上は標準条件で飼育し、標準イヌ飼料と水を自由に摂取させた。
(1) Experimental animals and their acclimatization Female beagle dogs of around 1 year old who were not pregnant and purchased from Shimizu Experimental Animals Co., Ltd. were used as experimental animals (hereinafter abbreviated as dogs). During the experimental period, dogs were individually bred, kept under standard conditions for at least one week before the experiment, and were allowed free access to standard dog food and water.
(2)人工血管の作製
 外層の剛性の指標aが異なる人工血管、実施例1~実施例5、比較例1~2を作製した。以下に、作製した人工血管の詳細を説明する。
(2) Production of artificial blood vessel Artificial blood vessels, Examples 1 to 5 and Comparative Examples 1 and 2 having different outer layer stiffness indices a were produced. Below, the detail of the produced artificial blood vessel is demonstrated.
1)実施例1
 外層と中間層となる布を重ね合わせ、重ね合わせた布と内層となる布をそれぞれ筒状に丸めて、その壁を6-0ポリプロピレン単糸縫合糸で縫い合わせてチューブを作製した。これらのチューブを手で嵌め合わせて、人工血管(長さ24mm、内径5mm~6mm)を作製した。最後に、人工血管の断端を熱溶融で処理し、さらにポリ乳酸/カプロラクトンの共重合体液の塗布により人工血管を補強した。人工血管は、使用する前にエチレンオキサイドガスで滅菌した。
1) Example 1
The outer layer and the intermediate layer fabric were overlapped, the overlapped fabric and the inner layer fabric were each rolled into a cylindrical shape, and the wall was sewn with 6-0 polypropylene single thread suture to produce a tube. These tubes were fitted together by hand to produce an artificial blood vessel (length 24 mm, inner diameter 5 mm to 6 mm). Finally, the stump of the artificial blood vessel was treated by heat melting, and the artificial blood vessel was further reinforced by applying a polylactic acid / caprolactone copolymer solution. The artificial blood vessel was sterilized with ethylene oxide gas before use.
 外層:
  市販のパンスト布地でありノンラン編み
  モノフィラメントのナイロン糸をエラストマー糸に絡ませた支持糸
  繊維間隔:約300~700μm(網目が不整形のため)
  布の巻数:2重にしたものを3回(6回)
  剛性の指標a:3.3mmHg
Outer layer:
Non-run knitted fabric, which is a commercial pantyhose fabric, support yarn in which monofilament nylon yarn is entangled with elastomer yarn Fiber spacing: approx. 300 to 700 μm (because the mesh is irregular)
Number of fabric rolls: 3 times (6 times)
Stiffness index a: 3.3mmHg
 中間層:
  PLLA/CL(75%/25%)共重合体繊維のエレクトロスピニング不織布
  繊維間隔:32μm(繊維間隔を拡張するスペーサーを使用)
  厚さ:200(140~260、部分により差がある。)μm
  布の巻数:3回
Middle layer:
PLLA / CL (75% / 25%) copolymer fiber electrospun non-woven fabric Fiber spacing: 32μm (using spacers to extend the fiber spacing)
Thickness: 200 (140 to 260, depending on the part) μm
Number of fabric rolls: 3 times
 内層:
  ポリ乳酸のエレクトロスピニング不織布
  繊維間隔(平均):30μm、
  繊維径(平均):3.9μm
  厚さ:200μm
Inner layer:
Polylactic acid electrospun nonwoven fiber spacing (average): 30 μm,
Fiber diameter (average): 3.9μm
Thickness: 200μm
2)実施例2
 実施例1と同様にして、人工血管(長さ30mm、内径6mm)を作製した。
2) Example 2
In the same manner as in Example 1, an artificial blood vessel (length 30 mm, inner diameter 6 mm) was produced.
 外層:
  ステレオコンプレックスポリ乳酸繊維の編布
  ステレオコンプレックスポリ乳酸の分子量:約20万
  ステレオコンプレックスポリ乳酸の結晶融点:200~230℃
  モノフィラメント直径:16~20μm、
  モノフィラメント数/撚糸:78本
  仮撚り加工糸を使用
  撚糸の間隔:編み目が不整形のため幅があるが、平均400~1000μm
  布の巻数:3回
  剛性の指標a:12mmHg
Outer layer:
Stereocomplex polylactic acid fiber knitted fabric Molecular weight of stereocomplex polylactic acid: approx. 200,000 Crystal melting point of stereocomplex polylactic acid: 200-230 ° C
Monofilament diameter: 16-20μm,
Number of monofilaments / twisted yarn: 78 Uses false twisted yarn Interval between twisted yarns: There is a width due to irregular stitches, but average 400-1000μm
Number of fabric turns: 3 times Stiffness index a: 12mmHg
 中間層:
  PLA/CL(75%/25%)共重合体繊維のエレクトロスピニング不織布
  繊維間隔:32μm(スペーサーを使用)
  厚さ:200(140~260、部分により差がある。)μm
  布の巻数:3回
Middle layer:
PLA / CL (75% / 25%) electrospun non-woven fabric of copolymer fiber Fiber spacing: 32μm (use spacer)
Thickness: 200 (140 to 260, depending on the part) μm
Number of fabric rolls: 3 times
 内層:
  PLA/CL(50%/50%)共重合体繊維のエレクトロスピニング不織布
  エレクトロスピニング不織布
  繊維間隔:11μm
  繊維径:0.8μm
  厚さ:約200μm
Inner layer:
PLA / CL (50% / 50%) copolymer fiber electrospun nonwoven fabric Electrospun nonwoven fabric Fiber spacing: 11μm
Fiber diameter: 0.8μm
Thickness: about 200μm
3)実施例3
 実施例1と同様にして、人工血管(長さ30mm、内径6mm)を作製した。
3) Example 3
In the same manner as in Example 1, an artificial blood vessel (length 30 mm, inner diameter 6 mm) was produced.
 外層:
  ステレオコンプレックスポリ乳酸繊維の編布(プレーン編み)
  ステレオコンプレックスポリ乳酸の分子量:約20万
  ステレオコンプレックスポリ乳酸の結晶融点:200~230℃
  モノフィラメント直径:16~20μm
  モノフィラメント数/撚糸:42本、
  撚糸の間隔:約100~200μm
  布の巻数:3回
  剛性の指標a:8.5mmHg
Outer layer:
Stereocomplex polylactic acid fiber knitted fabric (plain knitting)
Stereocomplex polylactic acid molecular weight: about 200,000 Crystalline melting point of stereocomplex polylactic acid: 200-230 ° C
Monofilament diameter: 16-20μm
Number of monofilaments / twisted yarn: 42,
Twist yarn interval: approx.
Number of fabric turns: 3 times Stiffness index a: 8.5mmHg
 中間層:
  PLA/CL(75%/25%)共重合体繊維のエレクトロスピニング不織布
  繊維間隔:32μm(スペーサーを使用)
  厚さ:200(140~260、部分により差がある。)μm
  布の巻数:3回
Middle layer:
PLA / CL (75% / 25%) electrospun non-woven fabric of copolymer fiber Fiber spacing: 32μm (use spacer)
Thickness: 200 (140 to 260, depending on the part) μm
Number of fabric rolls: 3 times
 内層:
  PLA/CL(50%/50%)共重合体繊維のエレクトロスピニング不織布
  繊維間隔:6.5μm
  繊維径:0.8μm
  厚さ:約200μm
Inner layer:
PLA / CL (50% / 50%) electrospun nonwoven fabric of copolymer fibers Fiber spacing: 6.5μm
Fiber diameter: 0.8μm
Thickness: about 200μm
4)実施例4
 実施例1と同様にして、人工血管(長さ30mm、内径6mm)を作製した。
4) Example 4
In the same manner as in Example 1, an artificial blood vessel (length 30 mm, inner diameter 6 mm) was produced.
 外層:
  ステレオコンプレックスポリ乳酸繊維の編布(プレーン編)
  ステレオコンプレックスポリ乳酸の分子量:約20万
  ステレオコンプレックスポリ乳酸の分子量:結晶融点=200~230℃
  モノフィラメント直径:16~20μm
  モノフィラメント数/撚糸:42本、
  撚糸の間隔:700~1300μm
  布の巻数:2回
  剛性の指標a:1.2mmHg
Outer layer:
Stereocomplex polylactic acid fiber knitted fabric (plain)
Stereocomplex polylactic acid molecular weight: about 200,000 Stereocomplex polylactic acid molecular weight: Crystal melting point = 200-230 ° C
Monofilament diameter: 16-20μm
Number of monofilaments / twisted yarn: 42,
Twisted yarn spacing: 700-1300μm
Number of fabric turns: 2 times Stiffness index a: 1.2mmHg
 中間層:
  PLA/CL(75%/25%)共重合体繊維のエレクトロスピニング不織布
  繊維間隔:32μm(スペーサーを使用)
  厚さ:200(140~260、部分により差がある。)μm
  布の巻数:2回
Middle layer:
PLA / CL (75% / 25%) electrospun non-woven fabric of copolymer fibers Fiber spacing: 32μm (use spacer)
Thickness: 200 (140 to 260, depending on the part) μm
Number of fabric turns: 2
 内層:
  PLA/CL(50%/50%)共重合体繊維のエレクトロスピニング不織布
  繊維間隔:6.5μm
  繊維径:0.8μm
  厚さ:約200μm
Inner layer:
PLA / CL (50% / 50%) copolymer fiber electrospun non-woven fabric Fiber spacing: 6.5μm
Fiber diameter: 0.8μm
Thickness: about 200μm
5)実施例5
 市販のチューブ状の人工血管をそのままの形状で柔らかく加工したものを内層に被せて人工血管(長さ34mm、内径7mm)を作製した。最後に、人工血管の断端を、熱溶融で処理しさらにポリ乳酸/カプロラクトンの共重合体液の塗布により人工血管を補強した。人工血管は、使用する前にエチレンオキサイドガスで滅菌した。
5) Example 5
An artificial blood vessel (length: 34 mm, inner diameter: 7 mm) was produced by covering a commercially available tube-shaped artificial blood vessel with a soft shape processed as it was on the inner layer. Finally, the stump of the artificial blood vessel was treated by heat melting, and the artificial blood vessel was reinforced by applying a polylactic acid / caprolactone copolymer solution. The artificial blood vessel was sterilized with ethylene oxide gas before use.
 外層:
  市販の人工血管(ポリエステル布、テルモ社製)になめしを加えて柔らかく加工した布
  繊維間隔:10.6μm
  布の巻数:1回
  剛性の指標a:27mmHg
Outer layer:
Cloth made by adding tanning to a commercially available artificial blood vessel (polyester cloth, manufactured by Terumo Corp.) Fiber spacing: 10.6 μm
Number of rolls of fabric: 1 time Stiffness index a: 27mmHg
 中間層:
  なし。
Middle layer:
None.
 内層:
  PLA/CL(75%/25%)共重合体繊維のエレクトロスピニング不織布
  繊維間隔:32μm
  繊維径:4.8μm
  厚さ:300~350μm
Inner layer:
PLA / CL (75% / 25%) copolymer fiber electrospun nonwoven fabric Fiber spacing: 32μm
Fiber diameter: 4.8μm
Thickness: 300-350μm
6)比較例1
 人工血管(長さ20mm、内径6mm)を作製した。下記の市販の人工血管(ポリエステル製、内径7mm)を外層として使用し、それを内層(内径6mm)に被せて使用した。最後に、人工血管の断端を、熱溶融で処理しさらにポリ乳酸/カプロラクトンの共重合体液の塗布により人工血管を補強した。人工血管は、使用する前にエチレンオキサイドガスで滅菌した。
6) Comparative Example 1
An artificial blood vessel (length 20 mm, inner diameter 6 mm) was prepared. The following commercially available artificial blood vessel (made of polyester, 7 mm inner diameter) was used as an outer layer, and it was used by covering it with an inner layer (6 mm inner diameter). Finally, the stump of the artificial blood vessel was treated by heat melting, and the artificial blood vessel was reinforced by applying a polylactic acid / caprolactone copolymer solution. The artificial blood vessel was sterilized with ethylene oxide gas before use.
 外層:
  市販の人工血管(ポリエステル製、テルモ社製、内径7mm)をそのまま硬い状態で外層として使用した。
  繊維間隔:7.0μm以下
  剛性の指標a:53mmHg
Outer layer:
A commercially available artificial blood vessel (made of polyester, Terumo Corp., inner diameter: 7 mm) was used as an outer layer in a hard state as it was.
Fiber spacing: 7.0μm or less Stiffness index a: 53mmHg
 中間層:
  なし。
Middle layer:
None.
 内層:
  PLAのエレクトロスピニング不織布
  繊維間隔:30μm
  繊維径:3.9μm
  厚さ:440μm(スペーサーを使用)
Inner layer:
PLA electrospun nonwoven fabric Fiber spacing: 30μm
Fiber diameter: 3.9μm
Thickness: 440μm (use spacer)
7)比較例2
 人工血管(長さ25mm、内径6mm)を作製した。下記の市販の人工血管(ポリテトラフルオロエチレン製、内径7mm)をそのまま硬い状態で外側層とし、それを内層(内径6mm)に被せて使用した。最後に、人工血管の断端を、熱溶融で処理しさらにポリ乳酸/カプロラクトンの共重合体液の塗布により人工血管を補強した。人工血管は、使用する前にエチレンオキサイドガスで滅菌した。
7) Comparative Example 2
Artificial blood vessels (length 25 mm, inner diameter 6 mm) were prepared. The following commercially available artificial blood vessel (made of polytetrafluoroethylene, 7 mm inner diameter) was used as it was as an outer layer in a hard state, and this was put on the inner layer (6 mm inner diameter) for use. Finally, the stump of the artificial blood vessel was treated by heat melting, and the artificial blood vessel was reinforced by applying a polylactic acid / caprolactone copolymer solution. The artificial blood vessel was sterilized with ethylene oxide gas before use.
 外層:
  市販の人工血管(ポリテトラフルオロエチレン製、外壁補強あり、日本ゴア社製)をそのまま硬い状態で使用
  壁の隙間の間隔:最大30μm以下
  剛性の指標a:147mmHg
Outer layer:
Commercially available artificial blood vessels (made of polytetrafluoroethylene, with outer wall reinforcement, manufactured by Nippon Gore Co., Ltd.) are used in the hard state as they are. Space between gaps of walls: 30 μm or less Stiffness index a: 147 mmHg
 中間層:
  なし。
Middle layer:
None.
 内層:
  PLAエレクトロスピニング不織布
  繊維間隔:30μm
  繊維径:3.9μm
  厚さ:200μm(スペーサーを使用)
Inner layer:
PLA electrospun nonwoven fiber spacing: 30μm
Fiber diameter: 3.9μm
Thickness: 200μm (use spacer)
(3)実験方法
 以下のすべての外科的処置は、単一の外科チームにより無菌的条件で実施した。イヌを34mg/kgのペントバルビタール静脈内麻酔により基礎麻酔して、イヌの気管内に呼吸用チューブを挿管し、40%酸素とセボフルラン又はイソフルランの吸入麻酔で全身麻酔した。全身麻酔下で、イヌを仰臥位に固定し、腹部体毛を剃毛した。5%クロルヘキシジンを含む80%エタノール液で皮膚を清浄化し、10%ポビドンヨード液で消毒した。
(3) Experimental Method All the following surgical procedures were performed under aseptic conditions by a single surgical team. The dog was anaesthetized with 34 mg / kg intravenous anesthesia of pentobarbital, a respiratory tube was intubated into the trachea of the dog, and general anesthesia was performed with inhalation anesthesia of 40% oxygen and sevoflurane or isoflurane. Under general anesthesia, the dog was fixed in the supine position and the abdominal body hair was shaved. The skin was cleaned with 80% ethanol solution containing 5% chlorhexidine and disinfected with 10% povidone iodine solution.
 腹部正中に15cmの開腹創を置いて、後腹膜を切開した。腎動脈分岐部より末梢側の腹部大動脈を総腸骨動脈分岐部まで露出した。この剥離の間、腰動脈は結紮切離した。動脈周囲の結合組織を除いた。低分子へパリン1000単位/kg体重を静脈内注射した後に、大動脈を2つの鉗子で把持した。この2つの鉗子の間で大動脈を10mmの長さにわたって切除した。大動脈の2つの断端をヘパリン生食で洗浄し、長さ25mm、内直径5~7mmの人工血管を大動脈の2つの断端の間に間置し、大動脈とチューブを端々に吻合した。すなわち、チューブ断端と大動脈壁断端を6-0ポリプロピレン単糸縫合糸の12針縫合で縫い合わせた。腹膜切開縁を縫い合わせて、開腹創を2層縫合で閉鎖した。術後は、1日当たり2000単位の低分子へパリンと100mgアスピリン又は1mgワーファリンの抗凝固療法を行った。 A 15 cm open wound was placed in the midline of the abdomen, and the retroperitoneum was incised. The peripheral abdominal aorta from the renal artery bifurcation was exposed to the common iliac bifurcation. During this detachment, the lumbar artery was ligated and disconnected. The connective tissue around the artery was removed. After intravenous injection of 1000 units / kg body weight of low molecular heparin, the aorta was grasped with two forceps. The aorta was excised over a length of 10 mm between the two forceps. Two stumps of the aorta were washed with a heparin saline, an artificial blood vessel having a length of 25 mm and an inner diameter of 5 to 7 mm was interposed between the two stumps of the aorta, and the aorta and the tube were anastomosed to each other. That is, the tube stump and the aortic wall stump were sewn together with 12 needle sutures of 6-0 polypropylene single thread suture. The peritoneal incision edges were sewn together and the laparotomy wound was closed with a two-layer suture. After surgery, anticoagulant therapy with 2000 units of low molecular weight heparin and 100 mg aspirin or 1 mg warfarin was performed per day.
 手術後10ヶ月から18ヶ月後に、イヌを100mg/kgのペントバルビタール静脈内注射により安楽死させた。再開腹して、人工血管を移植した部分の大動脈とその周辺部の組織を含めて一塊となる状態で外科的に切除し、肉眼的、顕微鏡的に検査する切除標本とした。 10 to 18 months after surgery, dogs were euthanized by intravenous injection of 100 mg / kg pentobarbital. The abdomen was resumed, and surgically resected in a lump including the aorta in the part where the artificial blood vessel was implanted and the surrounding tissue, and the resected specimen was examined macroscopically and microscopically.
 この切除標本を肉眼的評価したのち、10%中性ホルマリン液中で固定して、標準的手法により厚さ4μmの顕微鏡的薄切標本とし、ヘマトキシリン・エオジン染色(HE染色)を施して光学顕微鏡で観察した。なお、比較のため、人工血管を移植していない(自然の)イヌの大動脈壁についても同様に光学顕微鏡で観察した。 After the macroscopic evaluation of this excised specimen, it is fixed in 10% neutral formalin solution, made into a microscopically sliced specimen with a thickness of 4μm using standard techniques, and hematoxylin / eosin staining (HE staining) is applied to the optical microscope. Observed at. For comparison, the aortic wall of a dog (natural) to which an artificial blood vessel was not transplanted was also observed with an optical microscope.
(4)実験結果
 イヌから採取した実施例1~実施例4及び比較例の人工血管を移植した部分を、肉眼観察した結果、及び切除標本を顕微鏡で観察した結果を以下に略記する。合わせて、顕微鏡で観察した結果を図4~図10に示す。
(4) Experimental Results The results of macroscopic observation of the parts transplanted with the artificial blood vessels of Examples 1 to 4 and Comparative Examples collected from dogs and the results of observation of the excised specimen with a microscope are briefly described below. In addition, the results of observation with a microscope are shown in FIGS.
1)実施例1の結果
 12ヶ月後にイヌを安楽死させて、人工血管を移植した部分の動脈を採取し、観察した。肉眼観察で、血栓形成、動脈瘤や狭窄などの異常所見は認められなかった。また、顕微鏡観察(図4)では、6ヶ月で既に内膜と中膜の内側部分の形成は安定で良好であるとともに、図10に示す自然の大動脈の構造と非常に類似していた。このように、実施例1の全体評価は良好だった。
1) Results of Example 1 After 12 months, the dog was euthanized, and the artery where the artificial blood vessel was implanted was collected and observed. Visual observation showed no abnormal findings such as thrombus formation, aneurysm or stenosis. Further, in the microscopic observation (FIG. 4), the formation of the inner part of the intima and the media was already stable and good at 6 months and was very similar to the natural aortic structure shown in FIG. Thus, the overall evaluation of Example 1 was good.
2)実施例2の結果
 10ヶ月後にイヌを安楽死させて、人工血管を移植した部分の動脈を採取し、観察した。肉眼観察で、血栓、動脈瘤や狭窄などの異常所見は認められなかった。また、顕微鏡観察(図5)では、内膜と中膜の内側部分の形成は安定で良好だった。このように、実施例2の全体評価は良好だった。
2) Results of Example 2 After 10 months, the dog was euthanized, and the artery where the artificial blood vessel was implanted was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Further, in the microscopic observation (FIG. 5), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 2 was good.
3)実施例3の結果
 17ヶ月後にイヌを安楽死させて、人工血管を移植した部分の動脈を採取し、観察した。肉眼観察で、血栓、動脈瘤や狭窄などの異常所見は認められなかった。また、顕微鏡観察(図6)では、内膜と中膜の内側部分の形成は安定で良好だった。このように、実施例3の全体評価は良好だった。
3) Results of Example 3 After 17 months, the dog was euthanized, and the arterial portion of the grafted artificial blood vessel was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Further, in the microscopic observation (FIG. 6), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 3 was good.
4)実施例4の結果
 10ヶ月後にイヌを安楽死させて、動脈足場を移植した部分の動脈を採取し、観察した。肉眼観察で、血栓、動脈瘤や狭窄などの異常所見は認められなかった。また、顕微鏡観察(図7)では、内膜と中膜の内側部分の形成は安定で良好だった。このように、実施例4の全体評価は良好だった。
4) Results of Example 4 After 10 months, the dog was euthanized, and the artery where the artery scaffold was transplanted was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Moreover, in the microscopic observation (FIG. 7), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 4 was good.
5)実施例5の結果
 10ヶ月後にイヌを安楽死させて、動脈足場を移植した部分の動脈を採取し、観察した。肉眼観察で、血栓、動脈瘤や狭窄などの異常所見は認められなかった。また、顕微鏡観察(図8)では、内膜と中膜の内側部分の形成は安定で良好だった。このように、実施例5の全体評価は良好だった。
5) Results of Example 5 After 10 months, the dog was euthanized, and the artery where the artery scaffold was transplanted was collected and observed. Visual observation showed no abnormal findings such as thrombus, aneurysm or stenosis. Moreover, in the microscopic observation (FIG. 8), the formation of the inner part of the inner membrane and the inner membrane was stable and good. Thus, the overall evaluation of Example 5 was good.
6)比較例1の結果
 10ヶ月後にイヌを安楽死させて、人工血管を移植した部分の動脈を採取し、観察した。肉眼観察で、内腔は器質化した血栓で完全に閉塞が認められた。また、顕微鏡観察(図9)では、内腔の器質化した血栓に接してポリエステル繊維とPLLA繊維が認められた。このように、比較例1の全体評価は不良だった。
6) Results of Comparative Example 1 After 10 months, the dog was euthanized, and the arterial portion of the grafted artificial blood vessel was collected and observed. Macroscopically, the lumen was completely obstructed with an organized thrombus. Further, in microscopic observation (FIG. 9), polyester fibers and PLLA fibers were found in contact with the organized thrombus in the lumen. Thus, the overall evaluation of Comparative Example 1 was poor.
7)比較例2の結果
 10ヶ月後にイヌを安楽死させて、人工血管を移植した部分の動脈を採取し、観察した。
 肉眼観察と実態顕微鏡観察の結果、内腔面の内膜と中膜の形成が不安定であり、内腔の一部では人工血管の露出も認められた。このように、比較例2の全体評価は不良だった。
7) Results of Comparative Example 2 After 10 months, the dog was euthanized, and the arterial portion of the grafted artificial blood vessel was collected and observed.
As a result of macroscopic observation and microscopic observation, formation of intima and media in the lumen surface was unstable, and artificial blood vessels were also exposed in part of the lumen. Thus, the overall evaluation of Comparative Example 2 was poor.
 まとめると、実施例の人工血管を移植後したのち、その移植部分を肉眼観察すると、再生大動脈として機能していることが確認できた。すなわち、移植部分は大動脈血が流れ、血栓のない内腔を持っていることが確認できた。これに対して、比較例の人工血管を移植した場合には、移植部分に血栓による閉塞などが確認できた。 In summary, after transplanting the artificial blood vessel of the example, when the transplanted part was observed with the naked eye, it was confirmed that it functions as a regenerating aorta. That is, it was confirmed that the aorta blood flowed in the transplanted portion and had a lumen without a thrombus. On the other hand, when the artificial blood vessel of the comparative example was transplanted, it was confirmed that the transplanted portion was blocked by a thrombus.
 また、実施例の人工血管を移植された大動脈を顕微鏡観察すると、内膜層と中膜の内側部分が再生されており、その構造は自然の大動脈の構造と非常に類似していた。また、人工血管の一部が残存していても、これら内膜層や中膜層の一部の再生は良好であり、血栓形成、組織の異常増殖や狭窄・閉塞は認められなかった。これに対して、比較例の人工血管を移植した場合には、移植部分の内膜と中膜の形成は不安定であり、移植部分の内腔の一部では人工血管の露出も認められた。 Also, when the aorta implanted with the artificial blood vessel of the example was observed with a microscope, the inner membrane layer and the inner portion of the media were regenerated, and the structure was very similar to the structure of the natural aorta. Moreover, even if some of the artificial blood vessels remained, the regeneration of part of these intima layers and media layers was good, and thrombus formation, abnormal tissue growth, stenosis / occlusion were not observed. On the other hand, when the artificial blood vessel of the comparative example was transplanted, the formation of the intima and media in the transplanted part was unstable, and the artificial blood vessel was also exposed in a part of the lumen of the transplanted part. .
 さらに、実施例と比較例について、剛性の指標aとその性能を表1に要約した。表1に示すように、実施例1~4の剛性の指標aは1.2~12であり、移植される大動脈の剛性の指標aの1/5から5.5倍倍の間に分布していた。また、実施例5の剛性の指標aは27であり移植される大動脈の剛性の指標aの4.5~24倍であった。一方、比較例1及び2の剛性の指標aは53、147であり、移植される大動脈の剛性の指標aの8.8倍~67倍であった。 Furthermore, Table 1 summarizes the stiffness index a and its performance for the examples and comparative examples. As shown in Table 1, the stiffness index a of Examples 1 to 4 was 1.2 to 12, and was distributed between 1/5 and 5.5 times the stiffness index a of the aorta to be transplanted. The stiffness index a in Example 5 was 27, 4.5 to 24 times the stiffness index a of the aorta to be transplanted. On the other hand, the stiffness index a of Comparative Examples 1 and 2 was 53 and 147, which was 8.8 to 67 times the stiffness index a of the aorta to be transplanted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、人工血管の剛性の指標aとそれが移植される部分(ここでは大動脈)の剛性の指標aの比が、平均で7.5倍(実施例5)以内であればよく、0.2~5.5倍(実施例1~4は全てこの範囲内に収まっている)がより好ましいことが分かった。反対に、前記比が8.8倍以上(比較例1と2)であるのは好ましくないことが分かった。 Thus, the ratio of the stiffness index a of the artificial blood vessel and the stiffness index a of the portion to be transplanted (here, the aorta) may be within an average of 7.5 times (Example 5). It has been found that double (Examples 1 to 4 are all within this range) is more preferable. On the contrary, it was found that it is not preferable that the ratio is 8.8 times or more (Comparative Examples 1 and 2).
 加えて、人工血管の外層を構成する布の繊維間隔の大きさが、移植結果に与える影響についても考察した。表1に示すように、繊維間隔が充分に大きい実施例1(平均300~700μm)、実施例2(平均400~1000μm)、実施例3(約100~200μm)、実施例4(700~1300μm)は評価が良好であった。 In addition, the effect of the fiber spacing of the fabric constituting the outer layer of the artificial blood vessel on the transplantation results was also considered. As shown in Table 1, Example 1 (average 300 to 700 μm), Example 2 (average 400 to 1000 μm), Example 3 (about 100 to 200 μm), and Example 4 (700 to 1300 μm) have sufficiently large fiber intervals. ) Had a good evaluation.
 一方、繊維間隔が最大値でも10.6μmに過ぎない実施例5の評価結果はやや良好であり、繊維間隔最大値でも7.0μmに過ぎない比較例1の評価結果は不良であった。このように繊維間隔が大きいことも、評価結果が良好になることと関係していることが分かった。 On the other hand, the evaluation result of Example 5 in which the fiber spacing was only 10.6 μm at the maximum was slightly good, and the evaluation result of Comparative Example 1 in which the maximum fiber spacing was only 7.0 μm was poor. Thus, it was found that the large fiber spacing is also related to the favorable evaluation results.
 なお、実施例1~実施例5のほか、表2に記載の外層の布、表3に記載の中間層の布、表4に記載の内層の布を組み合わせて様々な構成の人工血管を作製して、イヌに移植し、6ヶ月以上(最長は20ヶ月後)に渡って超音波診断装置により経時変化を観察した。そして、その観察結果を表5にまとめて示した。 In addition to Examples 1 to 5, an artificial blood vessel having various configurations was prepared by combining the outer layer fabric described in Table 2, the intermediate layer fabric described in Table 3, and the inner layer fabric described in Table 4. Then, it was transplanted into a dog, and the change over time was observed with an ultrasonic diagnostic apparatus over 6 months (20 months at the longest). The observation results are summarized in Table 5.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例の人工血管(合計38個)は、観察期間である6~20ヶ月の間に、動脈硬化、狭窄・閉塞、破裂、動脈瘤化などの異常な経過の動脈再生は4個しか認められなかった。反対に、比較例の人工血管(合計18個)は、15個に観察期間内に異常が認められた(このうち、4匹は2ヶ月以内に異常が認められた。)。 As shown in Table 5, the artificial blood vessels of the examples (total 38) are arteries with abnormal progress such as arteriosclerosis, stenosis / occlusion, rupture, aneurysmization, etc. during the observation period of 6 to 20 months. Only 4 reproductions were recognized. In contrast, 15 artificial blood vessels in the comparative example (18 in total) were abnormal within the observation period (of which 4 were abnormal within 2 months).
 このように、本発明の人工血管を移植することによって、大動脈を高い確率で再生することができた。これに対して、同じような構成ではあっても、剛性の指標aが一定の範囲から外れた外層を有する人工血管(比較例)は、大動脈を適切に再生できなかった。すなわち、外層の剛性の指標aが、大動脈の再生と関係していることが分かった。 Thus, the aorta could be regenerated with a high probability by transplanting the artificial blood vessel of the present invention. In contrast, even with the same configuration, an artificial blood vessel (comparative example) having an outer layer with the stiffness index a deviating from a certain range could not properly regenerate the aorta. That is, it was found that the stiffness index a of the outer layer is related to aortic regeneration.
 本発明の医療用基材は循環器系の再生に好適な医療用基材であって、中でも動脈のように内腔からの高い圧力に曝されている場合は血栓を形成しやすい内腔直径が6~8mm以下の比較的細い人工血管や、太くても血栓を形成しやすい静脈系や門脈系、さらに人工透析シャント用の血管に適している。 The medical base material of the present invention is a medical base material suitable for regeneration of the circulatory system, and in particular, when exposed to a high pressure from the lumen like an artery, a lumen diameter that easily forms a thrombus Is suitable for relatively thin artificial blood vessels of 6 to 8 mm or less, venous and portal vein systems that tend to form thrombus even when thick, and blood vessels for artificial dialysis shunts.
 1、2       医療用基材
 11、21     外層
 12、22     内層
 23        中間層
1, 2 Medical base material 11, 21 Outer layer 12, 22 Inner layer 23 Intermediate layer

Claims (5)

  1.  シート形状、管形状、又はこれらを組み合わせた形状をしていて、体内に移植して循環器系の再生に使用される医療用基材であって、循環器系の内膜側に配置される内層と、内層より循環器系の外膜側に配置される外層と、を少なくとも備える複層構造をしており、
     内層よりも循環器系の外膜側に配置される層が、栄養血管が内層に達するように又は内層近傍まで入り込めるように、多孔質形状に形成されているとともに、
     以下の方法で決定される剛性の指標aについて、管形状の医療用基材の外層の剛性の指標a/移植される血管の剛性の指標aの比が7.5以内である医療用基材、
    [剛性の指標aの決定方法]
    (1)引張試験機の上下のチャックにL字型の治具を挟み、管形状の被測定物を二つのL字型治具の間に通して、被測定物の断面が丸い円形を保っている状態から、一定の引っ張り速度で引っ張り、被測定物の向かい合う内壁が平行にはなるが、力がかかっていない状態にし、これを測定開始時点する、なお、測定開始時点における被測定物の引張方向の長さをD0、これと直行する被測定物の縦軸方向の長さをL0、被測定物の壁の厚さをT0 と定める、
    (2)測定開始時点から、同じ引っ張り速度で引っ張りながら、張力Nx、引張方向の長さDx、縦軸方向の長さLx、壁の厚さTxを複数回測定する、
    (3)式X=(Dx-D0)/D0×100(%)により、伸び率xを算出する、
    (4)式(4a )により被測定物の内壁に掛かる引張方向の応力σxを算出し、式(4b)により、この応力が内半径Rxの被測定物の内圧によって生じていると仮定した場合に相当するチューブ内圧Yxを算出する、
     (4a )σx=Nx/(Tx×Lx×2)
     (4b)Yx=σx×Tx/Rx=π×Nx/2(Dx×Lx)
    (5)得られた伸び率Xとそれに対応する内圧Yが、1次関数Y=aX+b(a,bは定数)に近似するように最小二乗法によって定数a,bを決定する。
    A medical base material that has a sheet shape, a tube shape, or a combination thereof, and is used for regeneration of the circulatory system by transplanting it into the body, and is disposed on the inner membrane side of the circulatory system It has a multilayer structure comprising at least an inner layer and an outer layer disposed on the outer membrane side of the circulatory system from the inner layer,
    The layer arranged on the outer membrane side of the circulatory system with respect to the inner layer is formed in a porous shape so that the nutrient blood vessels reach the inner layer or enter the vicinity of the inner layer,
    For the stiffness index a determined by the following method, the ratio of the stiffness index a of the outer layer of the tubular medical substrate to the stiffness index a of the grafted blood vessel is within 7.5,
    [Method of determining stiffness index a]
    (1) Hold an L-shaped jig between the upper and lower chucks of the tensile tester, and pass the tube-shaped object to be measured between the two L-shaped jigs to keep the section of the object to be measured round and circular. The inner wall of the object to be measured becomes parallel, but the force is not applied, and the measurement is started at the time when the measurement is started. D0 is the length in the tensile direction, L0 is the length in the vertical axis direction of the object to be measured, and T0 is the wall thickness of the object to be measured.
    (2) Measure the tension Nx, the length Dx in the tensile direction, the length Lx in the vertical direction, and the wall thickness Tx multiple times while pulling at the same pulling speed from the start of measurement.
    (3) The elongation rate x is calculated by the formula X = (Dx−D0) / D0 × 100 (%).
    (4) When the stress σx in the tensile direction applied to the inner wall of the object to be measured is calculated by equation (4a), and this stress is assumed to be caused by the internal pressure of the object to be measured having the inner radius Rx by equation (4b) Calculate the tube internal pressure Yx corresponding to
    (4a) σx = Nx / (Tx × Lx × 2)
    (4b) Yx = σx × Tx / Rx = π × Nx / 2 (Dx × Lx)
    (5) Constants a and b are determined by the method of least squares so that the obtained elongation rate X and the corresponding internal pressure Y approximate a linear function Y = aX + b (a and b are constants).
  2.  管形状の医療用基材の外層の剛性の指標a/移植される血管の剛性の指標aの比が、5.5以内である請求項1に記載の医療用基材。 2. The medical base material according to claim 1, wherein the ratio of the rigidity index a of the outer layer of the tubular medical base material / the rigidity index a of the grafted blood vessel is within 5.5.
  3.  布が、織物又は編物である請求項2に記載の医療用基材。 The medical substrate according to claim 2, wherein the cloth is a woven fabric or a knitted fabric.
  4.  内層が、ポリグリコール酸、乳酸とカプロラクトンの共重合体、L-ポリ乳酸、D-ポリ乳酸、グリコール酸と乳酸の共重合体、ゼラチン、コラーゲン、エラスチンからなる群より選ばれた少なくとも1種の材料によって構成されている請求項1~請求項3の何れかに記載の医療用基材。 The inner layer is at least one selected from the group consisting of polyglycolic acid, a copolymer of lactic acid and caprolactone, L-polylactic acid, D-polylactic acid, a copolymer of glycolic acid and lactic acid, gelatin, collagen, and elastin. The medical base material according to any one of claims 1 to 3, which is made of a material.
  5.  内層が、繊維素材からなる易生体親和性布によって構成されている請求項4に記載の医療用基材。 The medical base material according to claim 4, wherein the inner layer is composed of an easily biocompatible cloth made of a fiber material.
PCT/JP2018/017074 2017-04-28 2018-04-26 Medical substrate WO2018199263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089910 2017-04-28
JP2017089910A JP6967265B2 (en) 2017-04-28 2017-04-28 Evaluation method and manufacturing method of medical base material

Publications (1)

Publication Number Publication Date
WO2018199263A1 true WO2018199263A1 (en) 2018-11-01

Family

ID=63918495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017074 WO2018199263A1 (en) 2017-04-28 2018-04-26 Medical substrate

Country Status (2)

Country Link
JP (1) JP6967265B2 (en)
WO (1) WO2018199263A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141855A (en) * 2019-03-06 2020-09-10 グンゼ株式会社 Artificial blood vessel and manufacturing method of artificial blood vessel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147733A1 (en) * 2019-01-16 2020-07-23 武汉杨森生物技术有限公司 Method for preparing material for artificial blood vessel, artificial blood vessel prepared thereby and application thereof
JP2021097909A (en) * 2019-12-23 2021-07-01 グンゼ株式会社 Artificial blood vessel, and manufacturing method of artificial blood vessel
KR102546622B1 (en) * 2022-10-06 2023-06-22 주식회사 티엠디랩 Tensile strength measuring device for vascular outer wall support member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035990A2 (en) * 2000-10-31 2002-05-10 Prodesco, Inc. Supported lattice for cell cultivation
JP2010525898A (en) * 2007-05-04 2010-07-29 キプス ベイ メディカル、インコーポレイテッド Compliant vascular graft
JP2011512201A (en) * 2008-02-14 2011-04-21 テンジオン, インコーポレイテッド Tissue engineering scaffold
JP2017000320A (en) * 2015-06-08 2017-01-05 日本毛織株式会社 Artificial blood vessel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880342A (en) * 1994-09-13 1996-03-26 Seiren Co Ltd Tubular body for artificial blood vessel
CN108289977A (en) * 2015-10-30 2018-07-17 萩原明郎 Medical base material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035990A2 (en) * 2000-10-31 2002-05-10 Prodesco, Inc. Supported lattice for cell cultivation
JP2010525898A (en) * 2007-05-04 2010-07-29 キプス ベイ メディカル、インコーポレイテッド Compliant vascular graft
JP2011512201A (en) * 2008-02-14 2011-04-21 テンジオン, インコーポレイテッド Tissue engineering scaffold
JP2017000320A (en) * 2015-06-08 2017-01-05 日本毛織株式会社 Artificial blood vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141855A (en) * 2019-03-06 2020-09-10 グンゼ株式会社 Artificial blood vessel and manufacturing method of artificial blood vessel

Also Published As

Publication number Publication date
JP6967265B2 (en) 2021-11-17
JP2018186903A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2018199263A1 (en) Medical substrate
US20230063894A1 (en) Warp-knitted fabric and medical material
AU2011226695B2 (en) Scaffold system to repair cardiovascular conditions
US9539154B2 (en) Medical device
US10695464B2 (en) Medical base material
US20190321202A1 (en) Scaffold system for tissue repair
JP6406806B2 (en) Artificial fiber cloth
JP7324055B2 (en) Tissue reinforcing material and method for manufacturing tissue reinforcing material
JP7456104B2 (en) medical prosthetics
WO2023037861A1 (en) Blood vessel cover
Mankodi Application of textile materials in cardiovascular implants
Tyler et al. von Recum, AF (1986). Handbook of Biomaterials Evaluation, Macmillan Co., New York. Ward, RS (1989). Surface modifying additives for biomedical poly-mers. IEEE Eng. Med. Bio. June: 22-25. Wasserman, SR, Tao, Y.-T., and Whitesides, GM (1989). Structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792084

Country of ref document: EP

Kind code of ref document: A1