WO2018199193A1 - Plate thickness control method by continuous rolling mill - Google Patents
Plate thickness control method by continuous rolling mill Download PDFInfo
- Publication number
- WO2018199193A1 WO2018199193A1 PCT/JP2018/016878 JP2018016878W WO2018199193A1 WO 2018199193 A1 WO2018199193 A1 WO 2018199193A1 JP 2018016878 W JP2018016878 W JP 2018016878W WO 2018199193 A1 WO2018199193 A1 WO 2018199193A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- plate thickness
- rolling
- load
- rolling mill
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
Definitions
- This disclosure is a sheet thickness control technique for controlling the exit side sheet thickness of each rolling mill so that a rolled material having a target product sheet thickness can be obtained in a continuous rolling mill having a plurality of rolling mills.
- the plate thickness is one of the important management items in terms of product quality.
- a target plate thickness is set for the outlet side plate thickness of each rolling mill, and the plate thickness control is performed.
- the load may be concentrated on a specific rolling mill during rolling depending on the rolling conditions and changes in material temperature.
- troubles such as a reduction in efficiency due to adjustment for reducing the rolling mill load and a suspension of rolling due to the load exceeding an allowable value may occur.
- the target plate is set with respect to the exit side plate thickness of each rolling mill so that all the differences between the rolling load of each rolling mill and the load upper limit value set for each rolling mill are equal.
- a technique for setting the thickness and suppressing overload is disclosed.
- the rolling load of each rolling mill is monitored, and when the rolling load exceeds the load upper limit value, the rolling load is one upstream so that the rolling load is less than or equal to the load upper limit value.
- a technique for correcting the target plate thickness of the side rolling mill is disclosed.
- the present inventor cannot set an appropriate target plate thickness by simply limiting the amount of change with respect to the target plate thickness set by applying the technique of Patent Document 1, but rather the load on the rolling mill. The problem was found to increase. Moreover, this inventor discovered the subject that the overload cannot be suppressed in the technique of patent document 2 when the load at the time of rolling in the most upstream rolling mill exceeds a load upper limit.
- One aspect of the present disclosure has been made in view of the above circumstances, and while suppressing the undesirable effect on the plate surface quality while reducing the overload of the rolling mill while achieving the target product plate thickness. It is desirable to be able to provide a technique for achieving stable operation of rolling.
- One aspect of the present disclosure is a sheet thickness control method using a continuous rolling mill that controls the exit side sheet thickness of each of the plurality of rolling mills in a continuous rolling mill having a plurality of rolling mills.
- the target thickness of the rolling mill is set.
- the load margin value is a difference between the rolling load and the load upper limit value.
- the target plate thickness is a target value of the outlet side plate thickness.
- the range of the change restriction is preset with respect to the target plate thickness. Then, in each of the other rolling mills, the roll rolling position of the corresponding rolling mill is adjusted so that the set target plate thickness is obtained.
- the target plate thickness is set so that the load margin values of the rolling mills are close to each other within the set change limit. At that time, since the rolling load in the most downstream rolling mill is adjusted by changing the target plate thickness in the upstream rolling mill, the roll reduction position of the most downstream rolling mill is not changed. That is, the target product thickness is achieved. Therefore, even when the rolling load in a specific rolling mill is increased, while achieving the desired product sheet thickness, the undesirable effect on the sheet surface quality is suppressed, the overload of the rolling mill is suppressed, and rolling is performed. Can stabilize the operation.
- a target load change amount in each of the plurality of rolling mills may be set so that the load margin value is equal among the plurality of rolling mills.
- the target load change amount is a target value of the change amount of the rolling load.
- one of the selected rolling mills or one of the selected rolling mills is selected so as to realize the target load change amount of the selected rolling mill by selecting any of the rolling mills from the other rolling mills.
- You may calculate the change amount of the said target board thickness of the said rolling mill of the upstream. When the calculated change amount of the target plate thickness exceeds the change limit range, the target plate thickness change amount may be corrected so as to be within the change limit range.
- a target unreached portion generated by correcting the change amount of the target plate thickness of the target load change amount of the selected rolling mill may be calculated.
- the calculated target unreached portion is distributed to the target load change amount of the rolling mill not yet selected from the plurality of rolling mills, and the distributed target unreached portion is added.
- the target load change amount of the rolling mill that has not yet been selected may be corrected. The steps from selection of the rolling mill to correction of the target load fluctuation amount may be repeated until all the target plate thicknesses of the other rolling mills are set.
- the change amount of the target plate thickness is limited within the change limit range. . Therefore, an undesirable influence on the plate surface quality can be suppressed.
- the target unreached amount of the target load change amount generated by limiting the calculated target plate thickness change amount is distributed to the target load change amount of the rolling mill not yet selected. Therefore, it is possible to make the load margin values of the rolling mills close to each other while limiting the change amount of the target plate thickness.
- the continuous rolling mill 100 includes four rolling mills 80 (# 1) to 80 (# 4), four thickness control devices 10 (# 1) to 10 (# 4), a thickness gauge 35, and a motor load. And a control device 60.
- the four rolling mills 80 (# 1) to 80 (# 4) are arranged in the order of # 1, # 2, # 3, and # 4 from # 1 on the most upstream side to # 4 on the most downstream side.
- the rolling mills 80 (# 1) to 80 (# 4) are collectively referred to as the rolling mill 80.
- the continuous rolling mill 100 is configured to obtain a desired product sheet thickness on the exit side of the rolling mill 80 (# 4) by sequentially rolling the rolled material 5 by each rolling mill 80.
- Each rolling mill 80 includes a rolling roll 30, a reduction device 20, a motor 40, and a load meter 50.
- Each rolling roll 30 is rolled with the rolling material 5 interposed therebetween.
- Each reduction device 20 applies a reduction force to the rolling roll 30.
- the roll reduction position of the rolling roll 30, that is, the outlet side plate thickness is set.
- Each motor 40 drives the rolling roll 30.
- Each load meter 50 measures a rolling load.
- Each plate thickness control device 10 controls the reduction screw of the reduction device 20 based on the exit side plate thickness obtained by a gauge meter type or an actual measurement value so that the target plate thickness set in each rolling mill 80 can be obtained. It adjusts and the roll reduction position of the rolling roll 30 is adjusted.
- the plate thickness meter 35 measures the exit side plate thickness of the rolling mill 80 (# 4), that is, the product plate thickness. In the continuous rolling mill 100, feedback control of the outlet side plate thickness is performed using the measured value of the product plate thickness measured by the plate thickness meter 35.
- the motor load control device 60 is a control device that includes a microcomputer including a CPU, a ROM, a RAM, a semiconductor memory, and the like, and executes load control of each motor 40.
- the motor load control device 60 executes a program stored in a non-transitional tangible recording medium such as a semiconductor memory, thereby executing a target load change amount calculation unit 61, a target change amount calculation unit 62, and a target plate thickness setting unit. 63 functions are realized. Further, the motor load control device 60 executes a method corresponding to the program.
- the motor load control device 60 distributes the rolling load among the four rolling mills 80 so that the rolling load of the motor 40 does not exceed the load upper limit value.
- the target plate thickness is a target value of the exit side plate thickness of the rolling mills 80 (# 1) to 80 (# 3).
- the motor load control device 60 sets the initial value of the target plate thickness or the amount of change from the target plate thickness at the time of the previous load control in each rolling mill 80 to be within a preset change limit range. Set the target plate thickness so that
- the motor load control device 60 allows the load margin value for each rolling mill 80 to approach each other between the rolling mills 80 (# 1) to 80 (# 4), and the change amount of the target plate thickness is within the range of the change limit.
- the target plate thicknesses of the rolling mills 80 (# 1) to 80 (# 3) are set so as to be within the range.
- the load margin value is the difference between the rolling load of the rolling mill 80 and the load upper limit value. Since the target plate thickness of the rolling mill 80 (# 4) is determined as the target product plate thickness, the target plate thickness of the rolling mill 80 (# 4) is not changed.
- K 4
- the predicted motor power value Pw est i is calculated as the load evaluation value Pwi.
- the predicted motor power value Pw est i is the actual motor power value of each rolling mill 80, the mean square value of the actual motor power value for a certain period, or the actual motor power value until the start of control in the current control cycle. Based on this, the future load value is predicted.
- the predicted motor power value Pw est i is calculated by the following equation (1).
- pwik is a motor power actual value for every sampling period (for example, 10 seconds) before the control start time.
- pwif is a motor power actual value after the control start time, and the same value is adopted on the assumption that the motor power actual value at the control start time is continued.
- m is the number of sampling points (for example, 30 points) used for evaluating the load value, and j is the number of sampling points after the control start time.
- each load upper limit value Pw max i of the rolling mill 80 is set. Specifically, the smaller one of the load limit value Pw maxmi and the load limit value Pw maxpi is set as the load upper limit value Pw max i.
- the load limit value Pw maxmi is determined by the limitation on the specifications of the motor 40 in each of the rolling mills 80.
- the load limit value Pw maxpi is determined from the rolling load limit in each of the rolling mills 80.
- the target load change amount ⁇ Pwi of each rolling mill 80 is calculated so that the load margin value for each rolling mill 80 becomes equal among all the rolling mills 80.
- the load margin value is a difference between the load upper limit value Pw max i and the load evaluation value Pwi.
- the target load change amount ⁇ Pwi is a target value of the amount of change in rolling load from the load evaluation value Pwi.
- the target load change amount ⁇ Pwi is calculated using Expression (2).
- a target plate thickness change amount ⁇ h1 that is a change amount of the target plate thickness for realizing the target load change amount ⁇ Pw1 is calculated for the rolling mill 80 (# 1).
- the load evaluation value Pwi of the motor 40 is approximately proportional to the difference between the entry-side thickness Hi of the i-th rolling mill 80 and the exit-side thickness hi of the i-th rolling mill 80 and inversely proportional to the exit-side thickness hi. it can. Therefore, the load evaluation value Pwi can be expressed by Expression (3).
- the target thickness change amount ⁇ h1 of the rolling mill 80 (# 1) is expressed by Expression (4).
- target board thickness change amount (DELTA) h1 is calculated by Formula (5).
- the target plate thickness change amount ⁇ h1 calculated in S50 is too large, it may have an undesirable effect on the plate surface quality. Undesirable effects include changes in color tone and occurrence of abnormalities such as pickup inclusion. Therefore, in S60, it is determined whether or not the target plate thickness change amount ⁇ h1 calculated in S50 is within the change restriction range ⁇ h1 ll to ⁇ h1 ul .
- the range of change limitation ⁇ h1 ll to ⁇ h1 ul is a range that is empirically set in advance with respect to the target plate thickness of the rolling mill 80 (# 1) and does not adversely affect the plate surface quality. is there. If the target plate thickness change amount ⁇ h1 is within the change limit range ⁇ h1 ll to ⁇ h1 ul in S50, the process proceeds to S120 without limiting the target plate thickness change amount ⁇ h1.
- the process proceeds to S70, and the target plate thickness change amount ⁇ h1 falls within the change limit range ⁇ h1 ll to ⁇ h1 ul .
- the target plate thickness change amount ⁇ h1 falls within the change limit range ⁇ h1 ll to ⁇ h1 ul .
- the target plate thickness change amount ⁇ h1 is set to the upper limit value ⁇ h1 ul.
- the target plate thickness change amount ⁇ h1 is corrected to the lower limit value ⁇ h1 ll .
- the target unreached amount ⁇ Pw rem 1 generated by limiting the target plate thickness change amount ⁇ h1 among the target load change amounts ⁇ Pw1 calculated in S30 is calculated.
- the target unreachable amount ⁇ Pw rem 1 is the difference between the target load change amount ⁇ Pw1 calculated in S40 and the load change amount ⁇ Pw cal 1 calculated in S90, as shown in Expression (8).
- the target unreachable amount ⁇ Pw rem 1 has not yet been selected as a target for calculating the target plate thickness change amount in the current control cycle, that is, rolling downstream of the rolling mill 80 (# 1).
- Distribute to the target load change amount ⁇ Pwi (i 2 to 4) of the machines 80 (# 2) to (# 4).
- the value obtained by adding rem 1 divided into three equal parts is corrected.
- a target plate thickness in the rolling mill 80 (# 1) is set. Specifically, a value obtained by adding the target plate thickness change amount ⁇ h1 calculated in S50 or the target plate thickness change amount ⁇ h1 corrected in S70 to the initial value of the target plate thickness is set as the target plate thickness.
- the target plate thickness set in the previous load control may be used instead of the initial value.
- the target plate thickness change amount ⁇ h2 of the rolling mill 80 (# 2) is calculated by the equation (10) in the same manner as the target plate thickness change amount ⁇ h1 of the rolling mill 80 (# 1).
- the entry side thickness H2 of the rolling mill 80 (# 2) is corrected to H2 + ⁇ h1.
- the corrected target load change amount ⁇ Pw2 is used.
- the target plate thickness change amount ⁇ h2 is within the change limit range ⁇ h2 ll to ⁇ h2 ul .
- range target thickness change amount [Delta] h2 change limit ⁇ h2 ll ⁇ ⁇ h2 ul Correct to fit within.
- the change restriction ranges ⁇ h2 ll to ⁇ h2 ul are preset ranges with respect to the target plate thickness of the rolling mill 80 (# 2).
- the target non-reaching amount ⁇ Pw rem 2 generated by limiting the target plate thickness change amount ⁇ h2 is calculated from the equation (13).
- the target unreached portion ⁇ Pw rem 2 has not yet been selected as a target for calculating the target plate thickness change amount in the current control cycle.
- Distribute to the target load change amount ⁇ Pwi (i 3 to 4) of the machines 80 (# 3) to 80 (# 4).
- the target plate thickness change amount ⁇ h3 of the rolling mill 80 (# 3) is calculated by the equation (15) in the same manner as the target plate thickness change amount ⁇ h2 of the rolling mill 80 (# 2).
- the entry side plate thickness H3 of the rolling mill 80 (# 3) is corrected to H3 + ⁇ h2 by using the target thickness update amount ⁇ h2 calculated for the rolling mill 80 (# 2).
- the target plate thickness change amount ⁇ h3 is within the change limit range ⁇ h3 ll to ⁇ h3 ul .
- range target thickness change amount? H3 change limit ⁇ h3 ll ⁇ ⁇ h3 ul Correct to fit within.
- the change restriction ranges ⁇ h3 ll to ⁇ h3 ul are preset ranges with respect to the target plate thickness of the rolling mill 80 (# 3).
- the process proceeds to S120. Since the target plate thickness of the rolling mill 80 (# 4) is determined as the target product plate thickness, it is not a target for calculating the target plate thickness change amount. Therefore, it is not necessary to perform the processing of S90 to S110.
- the target load change amount ⁇ Pw4 is a value corresponding to the target plate thickness and the product plate thickness of the rolling mill 80 (# 3).
- Each plate thickness control device 10 is determined as a set target plate thickness and product plate thickness of the rolling mills 80 (# 1) to 80 (# 3) based on the outlet side plate thickness of each rolling mill 80.
- the reduction position of each rolling roll 30 is adjusted so as to realize the target thickness of the rolling mill 80 (# 4).
- the exit side plate thickness of each rolling mill 80 is obtained by a gauge meter type or an actual measurement value.
- the range of change limitation is set for the target plate thickness change amount per process, but also the total of the target plate thickness change amount in the processing for a predetermined number of times or a predetermined period.
- the change limit range may be set. That is, for each rolling mill 80, both the target plate thickness change amount per load control and the total of the target plate thickness change amount in the load control for a predetermined number of times or a predetermined period may be limited.
- the rolling mills 80 (# 1) to 80 (# 4) are within the range of the change restriction set for the target plate thickness change amounts ⁇ h1 to ⁇ h3 of the rolling mills 80 (# 1) to 80 (# 3).
- the target plate thicknesses of the rolling mills 80 (# 1) to 80 (# 3) are adjusted so that the load margin values of Thereby, each load of the rolling mill 80 can be appropriately distributed while achieving an intended product sheet thickness and suppressing an undesirable influence on the sheet surface quality. As a result, troubles due to overload can be prevented in advance, and the rolling operation can be stabilized.
- FIGS. 3 shows a state in which the target plate thicknesses of the rolling mills 80 (# 1) to 80 (# 3) are set so that the load margin values of the rolling mills 80 become equal, as described in Patent Document 1. It is a simulation result at the time of restrict
- FIG. 4 shows a simulation result according to the present embodiment. In these simulations, it is assumed that the motor power exceeds the load upper limit value in the most downstream rolling mill 80 (# 4), and the motor load control is performed 30 seconds after the simulation starts. did.
- the rolling mills 80 (# 1) to 80 (# 3) are controlled toward the target plate thickness with the exit side plate thickness changed, so that the rolling mills 80 (# 1) to (80)
- the 80 (# 3) load margin values change so as to approach each other.
- the rolling mill 80 (# 4) is in spite of exceeding the load upper limit from the beginning. Further, it can be seen that the load changes in the increasing direction.
- the rolling mills 80 (# 1) to 80 (# 3) are controlled toward the target plate thickness whose outlet side plate thickness is changed.
- the outlet side plate thickness is controlled toward the target product plate thickness.
- the target plate thickness is set sequentially from the upstream from the rolling mill 80 (# 1) to the rolling mill 80 (# 3), but the target plate thickness is not necessarily set sequentially from the upstream. There is no need.
- the target plate thickness may be set by sequentially selecting from any of the rolling mills 80 (# 1) to 80 (# 3).
- the target plate thickness may be set sequentially from the downstream side.
- the target plate thickness change amount ⁇ h1 is calculated so as to realize the target load change amount ⁇ Pw1.
- the rolling mill 80 (# 4) is configured so as to realize the target load change amount ⁇ Pw4 using the equations (17) and (18).
- the change amount ⁇ H4 of the entry side plate thickness is calculated.
- the inlet side plate thickness of the rolling mill 80 (# 4) is the outlet side plate thickness of the one upstream rolling mill 80 (# 3)
- the change amount ⁇ H4 of the inlet side plate thickness is equal to the rolling mill 80 (# 3 )
- the load change amount ⁇ Pw cal 4 corresponding to the restricted entry side plate thickness change amount ⁇ H4 is calculated and the target unreachable amount ⁇ Pw rem 4 is calculated, and the target load change amounts ⁇ Pw1 to ⁇ Pw3 of the upstream rolling mill 80 are calculated.
- the upstream target plate thickness change amounts ⁇ h2 and ⁇ h1 may be calculated sequentially.
- the target plate thickness change amount ⁇ hi may be calculated in an arbitrary order without calculating the target plate thickness change amount ⁇ hi in order from upstream to downstream or from downstream to upstream.
- the target plate thickness change amount ⁇ hi is calculated in an arbitrary order.
- the target thickness change amount ⁇ h1 to the rolling mills 80 (# 1) to 80 (# 3) This is an example of a method for setting the target plate thickness of the rolling mills 80 (# 1) to (# 3) so that ⁇ h3 falls within the range of each change restriction, and the method for setting the target plate thickness is limited to the above embodiment. Is not to be done. For example, without considering the change limitation of the target plate thickness change amounts ⁇ h1 to ⁇ h3, the rolling mills 80 (# 1) other than the most downstream so that the load margin values of the rolling mills 80 (# 1) to 80 (# 4) are equal.
- Target plate thickness change amounts ⁇ h1 to ⁇ h3 for 80 (# 3). If any of the target plate thickness change amounts ⁇ h1 to ⁇ h3 exceeds the change limit range, the target plate thickness change amount ⁇ h1 is maintained while maintaining the ratio ⁇ h1: ⁇ h2: ⁇ h3 of all target plate thickness change amounts. All the target plate thickness change amounts ⁇ h1 to ⁇ h3 may be reduced as a whole so that .about. ⁇ h3 falls within the range of change restriction. Even in this case, the target plate thickness change amounts ⁇ h1 to ⁇ h3 of the rolling mills 80 (# 1) to 80 (# 3) are set while the load margin values of the rolling mills 80 (# 1) to (# 4) are made close to each other. Each change can be kept within the limits.
- the target plate thickness change amount ⁇ hi when the target plate thickness change amount ⁇ hi is outside the change limit range, the target plate thickness change amount ⁇ hi is corrected to the upper limit value or the lower limit value of the change limit range. It is not limited. The target plate thickness change amount ⁇ hi may be corrected to a value other than the upper limit value and the lower limit value as long as the value is within the change limit range.
- the continuous rolling mill 100 includes the four rolling mills 80, but the number of rolling mills 80 is not limited to four.
- the continuous rolling mill 100 may include any number of rolling mills 80 as long as it includes two or more rolling mills 80.
- a plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or a single function of one constituent element may be realized by a plurality of constituent elements. . Further, a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may abbreviate
- at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment.
- all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this indication.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
In a plate thickness control method by a continuous rolling mill according to one aspect of the present disclosure, in order that load margin values which are differences between loads at the time of rolling and load upper limit values, for respective rolling mills in a continuous rolling mill are brought closer to each other, target plate thicknesses are adjusted within a change limitation range, and target plate thicknesses of other rolling mills, except the most downstream rolling mill of a plurality of rolling mills, are set. Each of the load margin values is a difference between a load at the time of rolling and a load upper limit value. Each of the target plate thicknesses is a target value for an exit-side plate thickness. The change limitation range is set in advance with respect to the target plate thicknesses.
Description
本国際出願は、日本国特許庁に出願された日本国特許出願第2017-086112号に基づく優先権を主張するものであり、日本国特許出願第2017-086112号の全内容を本国際出願に参照により援用する。
This international application claims priority based on Japanese Patent Application No. 2017-086112 filed with the Japan Patent Office. The entire contents of Japanese Patent Application No. 2017-086112 are incorporated herein by reference. Incorporated by reference.
本開示は、複数の圧延機を有する連続圧延機において、目標とする製品板厚の圧延材を得られるように、各圧延機の出側板厚を制御する板厚制御の技術である。
This disclosure is a sheet thickness control technique for controlling the exit side sheet thickness of each rolling mill so that a rolled material having a target product sheet thickness can be obtained in a continuous rolling mill having a plurality of rolling mills.
圧延工程において、板厚は製品の品質上で重要な管理項目の1つである。2機以上の圧延機群を含む連続圧延機においては、各圧延機の出側板厚に対して目標板厚が設定され、板厚制御が行われている。
In the rolling process, the plate thickness is one of the important management items in terms of product quality. In a continuous rolling mill including a group of two or more rolling mills, a target plate thickness is set for the outlet side plate thickness of each rolling mill, and the plate thickness control is performed.
しかしながら、圧延状況や材料温度の変化などによって、圧延中に特定の圧延機に負荷が集中する場合がある。特定の圧延機に負荷が集中すると、圧延機の負荷を軽減するための調整による効率の低下や、負荷が許容値を超えることによる圧延の中止などのトラブルが発生することがあった。
However, the load may be concentrated on a specific rolling mill during rolling depending on the rolling conditions and changes in material temperature. When the load is concentrated on a specific rolling mill, troubles such as a reduction in efficiency due to adjustment for reducing the rolling mill load and a suspension of rolling due to the load exceeding an allowable value may occur.
下記の特許文献1には、各圧延機の圧延時負荷と各圧延機に対して設定された負荷上限値との差がすべて等しくなるように、各圧延機の出側板厚に対して目標板厚を設定して、過負荷を抑制する技術が開示されている。また、下記の特許文献2には、各圧延機の圧延時負荷を監視し、圧延時負荷が負荷上限値を超える場合には、圧延時負荷が負荷上限値以下になるように、一つ上流側の圧延機の目標板厚を補正する技術が開示されている。
In the following Patent Document 1, the target plate is set with respect to the exit side plate thickness of each rolling mill so that all the differences between the rolling load of each rolling mill and the load upper limit value set for each rolling mill are equal. A technique for setting the thickness and suppressing overload is disclosed. Further, in Patent Document 2 below, the rolling load of each rolling mill is monitored, and when the rolling load exceeds the load upper limit value, the rolling load is one upstream so that the rolling load is less than or equal to the load upper limit value. A technique for correcting the target plate thickness of the side rolling mill is disclosed.
ところで、目標板厚の変更量が大きすぎると、板面品質へ望ましくない影響を及ぼすため、目標板厚の変更量に制限を加えることが望まれる。しかしながら、本発明者は、特許文献1の技術を適用して設定された目標板厚に対して、単に変更量を制限するだけでは、適切な目標板厚が設定できず、かえって圧延機の負荷を増大させることがあるとの課題を見出した。また、本発明者は、特許文献2の技術には、最上流の圧延機における圧延時負荷が負荷上限値を超えた場合に、過負荷を抑制できないという課題を見出した。
By the way, if the change amount of the target plate thickness is too large, the plate surface quality is undesirably affected. Therefore, it is desirable to limit the change amount of the target plate thickness. However, the present inventor cannot set an appropriate target plate thickness by simply limiting the amount of change with respect to the target plate thickness set by applying the technique of Patent Document 1, but rather the load on the rolling mill. The problem was found to increase. Moreover, this inventor discovered the subject that the overload cannot be suppressed in the technique of patent document 2 when the load at the time of rolling in the most upstream rolling mill exceeds a load upper limit.
本開示の一局面では、上記実情に鑑みてなされたものであり、目的とする製品板厚を達成しながら、板面品質への望ましくない影響を抑制しつつ圧延機の過負荷を抑制して、圧延の操業安定化を達成する技術を提供できることが望ましい。
One aspect of the present disclosure has been made in view of the above circumstances, and while suppressing the undesirable effect on the plate surface quality while reducing the overload of the rolling mill while achieving the target product plate thickness. It is desirable to be able to provide a technique for achieving stable operation of rolling.
本開示の一局面は、複数の圧延機を有する連続圧延機において前記複数の圧延機の各々の出側板厚を制御する、連続圧延機による板厚制御方法であって、前記複数の圧延機の各々の負荷余裕値が、互いに近づくように、前記複数の圧延機の各々の目標板厚を変更制限の範囲内で調整して、前記複数の圧延機のうちの最下流の圧延機を除く他の圧延機の前記目標板厚を設定する。前記負荷余裕値は、圧延時負荷と負荷上限値との差である。前記目標板厚は、前記出側板厚の目標値である。前記変更制限の範囲は、前記目標板厚に対して予め設定されている。そして、前記他の圧延機の各々において、設定された前記目標板厚が得られるように、対応する前記圧延機のロール圧下位置を調整する。
One aspect of the present disclosure is a sheet thickness control method using a continuous rolling mill that controls the exit side sheet thickness of each of the plurality of rolling mills in a continuous rolling mill having a plurality of rolling mills. Other than adjusting the target plate thickness of each of the plurality of rolling mills within the range of change restriction so that the respective load margin values approach each other, excluding the most downstream rolling mill of the plurality of rolling mills The target thickness of the rolling mill is set. The load margin value is a difference between the rolling load and the load upper limit value. The target plate thickness is a target value of the outlet side plate thickness. The range of the change restriction is preset with respect to the target plate thickness. Then, in each of the other rolling mills, the roll rolling position of the corresponding rolling mill is adjusted so that the set target plate thickness is obtained.
本開示の一局面によれば、設定された変更制限の範囲内で、各圧延機の負荷余裕値が互いに近づくように目標板厚が設定される。その際、最下流の圧延機における圧延時負荷は、上流の圧延機における目標板厚を変更することにより調整されるため、最下流の圧延機のロール圧下位置は変更されない。つまり、目標とする製品板厚が達成される。したがって、特定の圧延機における圧延時負荷が増大した場合でも、目的とする製品板厚を達成しながら、板面品質への望ましくない影響を抑制しつつ圧延機の過負荷を抑制して、圧延の操業安定化を実現することができる。
According to one aspect of the present disclosure, the target plate thickness is set so that the load margin values of the rolling mills are close to each other within the set change limit. At that time, since the rolling load in the most downstream rolling mill is adjusted by changing the target plate thickness in the upstream rolling mill, the roll reduction position of the most downstream rolling mill is not changed. That is, the target product thickness is achieved. Therefore, even when the rolling load in a specific rolling mill is increased, while achieving the desired product sheet thickness, the undesirable effect on the sheet surface quality is suppressed, the overload of the rolling mill is suppressed, and rolling is performed. Can stabilize the operation.
上述の方法では、前記負荷余裕値が前記複数の圧延機の間で等しくなるように、前記複数の圧延機の各々における目標負荷変更量を設定してもよい。前記目標負荷変更量は、前記圧延時負荷の変更量の目標値である。そして、前記他の圧延機の中からいずれかの前記圧延機を選択し、選択した前記圧延機の前記目標負荷変更量を実現するように、選択した前記圧延機または選択した前記圧延機の1つ上流の前記圧延機の前記目標板厚の変更量を算出してもよい。算出した前記目標板厚の変更量が前記変更制限の範囲を超える場合に、前記目標板厚の変更量を前記変更制限の範囲内に収まるように補正してもよい。そして、前記目標板厚の変更量に基づいて、対応する前記圧延機の前記目標板厚を設定してもよい。前記目標板厚の変更量を補正した場合に、前記選択した圧延機の前記目標負荷変更量のうちの前記目標板厚の変更量を補正したことによって生じる目標未到達分を算出してもよい。算出した前記目標未到達分を、前記複数の圧延機のうちのまだ選択していない前記圧延機の前記目標負荷変更量に対して分配して、分配した前記目標未到達分を付加するように前記まだ選択していない圧延機の目標負荷変更量を補正してもよい。前記他の圧延機のすべての前記目標板厚を設定するまで、前記圧延機の選択から前記目標負荷変動量を補正するまでの工程を繰り返してもよい。
In the above-described method, a target load change amount in each of the plurality of rolling mills may be set so that the load margin value is equal among the plurality of rolling mills. The target load change amount is a target value of the change amount of the rolling load. Then, one of the selected rolling mills or one of the selected rolling mills is selected so as to realize the target load change amount of the selected rolling mill by selecting any of the rolling mills from the other rolling mills. You may calculate the change amount of the said target board thickness of the said rolling mill of the upstream. When the calculated change amount of the target plate thickness exceeds the change limit range, the target plate thickness change amount may be corrected so as to be within the change limit range. And based on the change amount of the said target board thickness, you may set the said target board thickness of the said said rolling mill. When the change amount of the target plate thickness is corrected, a target unreached portion generated by correcting the change amount of the target plate thickness of the target load change amount of the selected rolling mill may be calculated. . The calculated target unreached portion is distributed to the target load change amount of the rolling mill not yet selected from the plurality of rolling mills, and the distributed target unreached portion is added. The target load change amount of the rolling mill that has not yet been selected may be corrected. The steps from selection of the rolling mill to correction of the target load fluctuation amount may be repeated until all the target plate thicknesses of the other rolling mills are set.
このような方法によれば、選択した圧延機において、算出した目標板厚の変更量が変更制限の範囲を超えた場合には、目標板厚の変更量が変更制限の範囲内に制限される。そのため、板面品質への望ましくない影響を抑制することができる。また、算出された目標板厚の変更量が制限されたことによって生じる目標負荷変更量の目標未到達分が、まだ選択されていない圧延機の目標負荷変更量に対して分配される。したがって、目標板厚の変更量を制限しつつ、各圧延機の負荷余裕値を互いに近づけることができる。
According to such a method, in the selected rolling mill, when the calculated change amount of the target plate thickness exceeds the change limit range, the change amount of the target plate thickness is limited within the change limit range. . Therefore, an undesirable influence on the plate surface quality can be suppressed. Moreover, the target unreached amount of the target load change amount generated by limiting the calculated target plate thickness change amount is distributed to the target load change amount of the rolling mill not yet selected. Therefore, it is possible to make the load margin values of the rolling mills close to each other while limiting the change amount of the target plate thickness.
5…圧延材、10…板厚制御装置、20…圧下装置、30…圧延ロール、40…モータ、60…モータ負荷制御装置、80…圧延機、100…連続圧延機。
DESCRIPTION OF SYMBOLS 5 ... Rolled material, 10 ... Sheet thickness control apparatus, 20 ... Rolling-down apparatus, 30 ... Roll, 40 ... Motor, 60 ... Motor load control apparatus, 80 ... Rolling mill, 100 ... Continuous rolling mill.
以下、図面を参照しながら、本開示を実施するための例示的な実施形態を説明する。
<1.構成>
まず、本実施形態に係る連続圧延機100の構成について、図1を参照して説明する。連続圧延機100は、4つの圧延機80(#1)~80(#4)と、4つの板厚制御装置10(#1)~10(#4)と、板厚計35と、モータ負荷制御装置60と、を備える。4つの圧延機80(#1)~80(#4)は、最上流の#1から最下流の#4へ、#1,#2,#3,#4の順に配置されている。以下では、圧延機80(#1)~80(#4)を総称して、圧延機80とする。同様に、他の符号についても、(#1)~(#4)を外した符号を総称とする。連続圧延機100は、圧延材5が各圧延機80で順次圧延されることで、圧延機80(#4)の出側にて目的とする製品板厚を得るようになっている。 Hereinafter, exemplary embodiments for carrying out the present disclosure will be described with reference to the drawings.
<1. Configuration>
First, the structure of the continuous rollingmill 100 which concerns on this embodiment is demonstrated with reference to FIG. The continuous rolling mill 100 includes four rolling mills 80 (# 1) to 80 (# 4), four thickness control devices 10 (# 1) to 10 (# 4), a thickness gauge 35, and a motor load. And a control device 60. The four rolling mills 80 (# 1) to 80 (# 4) are arranged in the order of # 1, # 2, # 3, and # 4 from # 1 on the most upstream side to # 4 on the most downstream side. Hereinafter, the rolling mills 80 (# 1) to 80 (# 4) are collectively referred to as the rolling mill 80. Similarly, for other codes, the codes from which (# 1) to (# 4) are removed are generic names. The continuous rolling mill 100 is configured to obtain a desired product sheet thickness on the exit side of the rolling mill 80 (# 4) by sequentially rolling the rolled material 5 by each rolling mill 80.
<1.構成>
まず、本実施形態に係る連続圧延機100の構成について、図1を参照して説明する。連続圧延機100は、4つの圧延機80(#1)~80(#4)と、4つの板厚制御装置10(#1)~10(#4)と、板厚計35と、モータ負荷制御装置60と、を備える。4つの圧延機80(#1)~80(#4)は、最上流の#1から最下流の#4へ、#1,#2,#3,#4の順に配置されている。以下では、圧延機80(#1)~80(#4)を総称して、圧延機80とする。同様に、他の符号についても、(#1)~(#4)を外した符号を総称とする。連続圧延機100は、圧延材5が各圧延機80で順次圧延されることで、圧延機80(#4)の出側にて目的とする製品板厚を得るようになっている。 Hereinafter, exemplary embodiments for carrying out the present disclosure will be described with reference to the drawings.
<1. Configuration>
First, the structure of the continuous rolling
各圧延機80は、圧延ロール30と、圧下装置20と、モータ40と、荷重計50と、を備える。各圧延ロール30は、圧延材5を挟んで圧延する。各圧下装置20は、圧延ロール30に対して圧下力を付与する。圧下装置20の圧下スクリュが調整されることで、圧延ロール30のロール圧下位置、すなわち出側板厚が設定される。各モータ40は、圧延ロール30を駆動する。各荷重計50は、圧延荷重を計測する。
Each rolling mill 80 includes a rolling roll 30, a reduction device 20, a motor 40, and a load meter 50. Each rolling roll 30 is rolled with the rolling material 5 interposed therebetween. Each reduction device 20 applies a reduction force to the rolling roll 30. By adjusting the reduction screw of the reduction device 20, the roll reduction position of the rolling roll 30, that is, the outlet side plate thickness is set. Each motor 40 drives the rolling roll 30. Each load meter 50 measures a rolling load.
各板厚制御装置10は、各圧延機80で設定された目標板厚が得られるように、ゲージメータ式や実測値などにより得られた出側板厚に基づいて、圧下装置20の圧下スクリュを調整して、圧延ロール30のロール圧下位置を調整する。板厚計35は、圧延機80(#4)の出側板厚すなわち製品板厚を計測する。連続圧延機100では、板厚計35で計測された製品板厚の実測値を用いて、出側板厚のフィードバック制御が行われる。
Each plate thickness control device 10 controls the reduction screw of the reduction device 20 based on the exit side plate thickness obtained by a gauge meter type or an actual measurement value so that the target plate thickness set in each rolling mill 80 can be obtained. It adjusts and the roll reduction position of the rolling roll 30 is adjusted. The plate thickness meter 35 measures the exit side plate thickness of the rolling mill 80 (# 4), that is, the product plate thickness. In the continuous rolling mill 100, feedback control of the outlet side plate thickness is performed using the measured value of the product plate thickness measured by the plate thickness meter 35.
モータ負荷制御装置60は、CPU、ROM、RAM、半導体メモリなどを備えるマイクロコンピュータを含み、各モータ40の負荷制御を実行する制御装置である。モータ負荷制御装置60は、半導体メモリなどの非遷移的実体的記録媒体に格納されたプログラムを実行することにより、目標負荷変更量演算部61、目標変更量演算部62、及び目標板厚設定部63の機能を実現する。また、モータ負荷制御装置60は、プログラムに対応する方法を実行する。
The motor load control device 60 is a control device that includes a microcomputer including a CPU, a ROM, a RAM, a semiconductor memory, and the like, and executes load control of each motor 40. The motor load control device 60 executes a program stored in a non-transitional tangible recording medium such as a semiconductor memory, thereby executing a target load change amount calculation unit 61, a target change amount calculation unit 62, and a target plate thickness setting unit. 63 functions are realized. Further, the motor load control device 60 executes a method corresponding to the program.
モータ負荷制御装置60は、モータ40の負荷制御として、モータ40の圧延時負荷が負荷上限値を超えないように、4つの圧延機80の間で圧延時負荷を分散させて、それぞれの目標板厚を設定する。目標板厚は、圧延機80(#1)~80(#3)の出側板厚の目標値である。その際、モータ負荷制御装置60は、各圧延機80において、目標板厚の初期値または前回の負荷制御時点での目標板厚からの変更量が、予め設定されている変更制限の範囲内となるように目標板厚を設定する。
As a load control of the motor 40, the motor load control device 60 distributes the rolling load among the four rolling mills 80 so that the rolling load of the motor 40 does not exceed the load upper limit value. Set the thickness. The target plate thickness is a target value of the exit side plate thickness of the rolling mills 80 (# 1) to 80 (# 3). At that time, the motor load control device 60 sets the initial value of the target plate thickness or the amount of change from the target plate thickness at the time of the previous load control in each rolling mill 80 to be within a preset change limit range. Set the target plate thickness so that
つまり、モータ負荷制御装置60は、圧延機80ごとの負荷余裕値が圧延機80(#1)~80(#4)の間で互いに近づき、且つ、目標板厚の変更量が変更制限の範囲内に収まるように、圧延機80(#1)~80(#3)の目標板厚を設定する。負荷余裕値は、圧延機80の圧延時負荷と負荷上限値との差である。なお、圧延機80(#4)の目標板厚は、目的とする製品板厚として決まっているため、圧延機80(#4)の目標板厚は変更しない。
In other words, the motor load control device 60 allows the load margin value for each rolling mill 80 to approach each other between the rolling mills 80 (# 1) to 80 (# 4), and the change amount of the target plate thickness is within the range of the change limit. The target plate thicknesses of the rolling mills 80 (# 1) to 80 (# 3) are set so as to be within the range. The load margin value is the difference between the rolling load of the rolling mill 80 and the load upper limit value. Since the target plate thickness of the rolling mill 80 (# 4) is determined as the target product plate thickness, the target plate thickness of the rolling mill 80 (# 4) is not changed.
<2.処理>
次に、モータ負荷制御装置60が、モータ40の負荷制御を実行する処理手順について、図2のフローチャートを参照して説明する。モータ負荷制御装置60は、本処理手順を所定の時間間隔で繰り返し実行する。 <2. Processing>
Next, a processing procedure in which the motorload control device 60 executes load control of the motor 40 will be described with reference to the flowchart of FIG. The motor load control device 60 repeatedly executes this processing procedure at predetermined time intervals.
次に、モータ負荷制御装置60が、モータ40の負荷制御を実行する処理手順について、図2のフローチャートを参照して説明する。モータ負荷制御装置60は、本処理手順を所定の時間間隔で繰り返し実行する。 <2. Processing>
Next, a processing procedure in which the motor
まず、S10では、各圧延機80の圧延時の負荷値として、各圧延機80の負荷評価値Pwi(i=1~K)を算出する。本実施形態では、圧延機80は4つあるので、K=4とする。具体的には、モータパワー予測値Pwestiを、負荷評価値Pwiとして算出する。モータパワー予測値Pwestiは、各圧延機80のモータパワー実績値や、一定期間のモータパワー実績値の二乗平均値、あるいは、今回の制御周期での制御開始時点までのモータパワー実績値に基づいて、将来の負荷値を予測した値である。モータパワー予測値Pwestiは、次の式(1)により算出される。ここで、pwikは、制御開始時点以前のサンプリング周期(例えば10秒)ごとのモータパワー実績値である。pwifは、制御開始時点以降のモータパワー実績値であり、制御開始時点のモータパワー実績値が継続されるものと仮定して、同一の値が採用される。また、mは負荷値の評価に用いるサンプリング点の数(例えば30点)であり、jは制御開始時点以降のサンプリング点の数である。
First, in S10, the load evaluation value Pwi (i = 1 to K) of each rolling mill 80 is calculated as the load value during rolling of each rolling mill 80. In the present embodiment, since there are four rolling mills 80, K = 4. Specifically, the predicted motor power value Pw est i is calculated as the load evaluation value Pwi. The predicted motor power value Pw est i is the actual motor power value of each rolling mill 80, the mean square value of the actual motor power value for a certain period, or the actual motor power value until the start of control in the current control cycle. Based on this, the future load value is predicted. The predicted motor power value Pw est i is calculated by the following equation (1). Here, pwik is a motor power actual value for every sampling period (for example, 10 seconds) before the control start time. pwif is a motor power actual value after the control start time, and the same value is adopted on the assumption that the motor power actual value at the control start time is continued. Further, m is the number of sampling points (for example, 30 points) used for evaluating the load value, and j is the number of sampling points after the control start time.
続いて、S20では、圧延機80の各々の負荷上限値Pwmaxiを設定する。具体的には、負荷制限値Pwmaxmiと、負荷制限値Pwmaxpiのうちの小さい方を、負荷上限値Pwmaxiとして設定する。負荷制限値Pwmaxmiは、圧延機80の各々におけるモータ40の仕様上の制限により定められている。負荷制限値Pwmaxpiは、圧延機80の各々における圧延荷重制限から決定される。
Subsequently, in S20, each load upper limit value Pw max i of the rolling mill 80 is set. Specifically, the smaller one of the load limit value Pw maxmi and the load limit value Pw maxpi is set as the load upper limit value Pw max i. The load limit value Pw maxmi is determined by the limitation on the specifications of the motor 40 in each of the rolling mills 80. The load limit value Pw maxpi is determined from the rolling load limit in each of the rolling mills 80.
続いて、S30では、圧延機80ごとの負荷余裕値が、すべての圧延機80の間で等しくなるように、各圧延機80の目標負荷変更量ΔPwiを算出する。負荷余裕値は、負荷上限値Pwmaxiと負荷評価値Pwiとの差である。目標負荷変更量ΔPwiは、負荷評価値Pwiからの圧延時負荷の変更量の目標値である。具体的には、式(2)を用いて、目標負荷変更量ΔPwiを算出する。S10で算出した負荷評価値Pwiが、ここで算出した目標負荷変更量ΔPwiの分だけ変更されると、モータ40の各々の負荷が適当に調整され、すべての圧延機80の負荷余裕値が等しくなる。
Subsequently, in S <b> 30, the target load change amount ΔPwi of each rolling mill 80 is calculated so that the load margin value for each rolling mill 80 becomes equal among all the rolling mills 80. The load margin value is a difference between the load upper limit value Pw max i and the load evaluation value Pwi. The target load change amount ΔPwi is a target value of the amount of change in rolling load from the load evaluation value Pwi. Specifically, the target load change amount ΔPwi is calculated using Expression (2). When the load evaluation value Pwi calculated in S10 is changed by the target load change amount ΔPwi calculated here, each load of the motor 40 is appropriately adjusted, and the load margin values of all the rolling mills 80 are equal. Become.
続いて、S40では、変数nに1を設定する。
続いて、S50では、圧延機80(#1)について、目標負荷変更量ΔPw1を実現するための目標板厚の変更量である目標板厚変更量Δh1を算出する。ここで、モータ40の負荷評価値Pwiは、i番目の圧延機80の入側板厚Hiとi番目の圧延機80の出側板厚hiとの差に比例し、出側板厚hiに反比例すると近似できる。よって、負荷評価値Pwiは、式(3)で表すことができる。 Subsequently, in S40, 1 is set to the variable n.
Subsequently, in S50, a target plate thickness change amount Δh1 that is a change amount of the target plate thickness for realizing the target load change amount ΔPw1 is calculated for the rolling mill 80 (# 1). Here, the load evaluation value Pwi of themotor 40 is approximately proportional to the difference between the entry-side thickness Hi of the i-th rolling mill 80 and the exit-side thickness hi of the i-th rolling mill 80 and inversely proportional to the exit-side thickness hi. it can. Therefore, the load evaluation value Pwi can be expressed by Expression (3).
続いて、S50では、圧延機80(#1)について、目標負荷変更量ΔPw1を実現するための目標板厚の変更量である目標板厚変更量Δh1を算出する。ここで、モータ40の負荷評価値Pwiは、i番目の圧延機80の入側板厚Hiとi番目の圧延機80の出側板厚hiとの差に比例し、出側板厚hiに反比例すると近似できる。よって、負荷評価値Pwiは、式(3)で表すことができる。 Subsequently, in S40, 1 is set to the variable n.
Subsequently, in S50, a target plate thickness change amount Δh1 that is a change amount of the target plate thickness for realizing the target load change amount ΔPw1 is calculated for the rolling mill 80 (# 1). Here, the load evaluation value Pwi of the
さらに、式(3)に基づいて、圧延機80(#1)の目標板厚変更量Δh1は、式(4)により表される。そして、式(4)に基づいて、目標板厚変更量Δh1は、式(5)により算出される。
Furthermore, based on Expression (3), the target thickness change amount Δh1 of the rolling mill 80 (# 1) is expressed by Expression (4). And based on Formula (4), target board thickness change amount (DELTA) h1 is calculated by Formula (5).
S50で算出した目標板厚変更量Δh1の大きさが大きすぎると、板面品質に望ましくない影響を及ぼす可能性がある。望ましくない影響とは、色調の変化やピックアップインクルージョンなどの異常の発生などである。よって、S60では、S50で算出した目標板厚変更量Δh1が、変更制限の範囲Δh1ll~Δh1ul内か否か判定する。変更制限の範囲Δh1ll~Δh1ulは、圧延機80(#1)の目標板厚に対して、経験的に予め設定されている範囲であり、板面品質に望ましくない影響を与えない範囲である。S50において、目標板厚変更量Δh1が変更制限の範囲Δh1ll~Δh1ul内である場合には、目標板厚変更量Δh1を制限することなく、S120へ進む。
If the target plate thickness change amount Δh1 calculated in S50 is too large, it may have an undesirable effect on the plate surface quality. Undesirable effects include changes in color tone and occurrence of abnormalities such as pickup inclusion. Therefore, in S60, it is determined whether or not the target plate thickness change amount Δh1 calculated in S50 is within the change restriction range Δh1 ll to Δh1 ul . The range of change limitation Δh1 ll to Δh1 ul is a range that is empirically set in advance with respect to the target plate thickness of the rolling mill 80 (# 1) and does not adversely affect the plate surface quality. is there. If the target plate thickness change amount Δh1 is within the change limit range Δh1 ll to Δh1 ul in S50, the process proceeds to S120 without limiting the target plate thickness change amount Δh1.
一方、S60において、目標板厚変更量Δh1が変更制限の範囲Δh1ll~Δh1ul外の場合には、S70へ進み、目標板厚変更量Δh1を変更制限の範囲Δh1ll~Δh1ul内に収まるように制限する。具体的には、S70において、式(6)に示すように、目標板厚変更量Δh1が変更制限の範囲の上限値Δh1ulよりも大きい場合は、目標板厚変更量Δh1を上限値Δh1ulに補正する。また、目標板厚変更量Δh1が変更制限の範囲の下限値Δh1llよりも小さい場合は、目標板厚変更量Δh1を下限値Δh1llに補正する。
On the other hand, if the target plate thickness change amount Δh1 is outside the change limit range Δh1 ll to Δh1 ul in S60, the process proceeds to S70, and the target plate thickness change amount Δh1 falls within the change limit range Δh1 ll to Δh1 ul . To be limited. Specifically, in S70, as shown in Expression (6), when the target plate thickness change amount Δh1 is larger than the upper limit value Δh1 ul of the change limit range, the target plate thickness change amount Δh1 is set to the upper limit value Δh1 ul. To correct. When the target plate thickness change amount Δh1 is smaller than the lower limit value Δh1 ll of the change limit range, the target plate thickness change amount Δh1 is corrected to the lower limit value Δh1 ll .
続いて、S80では、n=K-1か否か判定する。S80において、n=K-1である場合は、S120へ進み、n=K-1でない場合は、S90へ進む。ここでは、n=1であるため、S90へ進む。
Subsequently, in S80, it is determined whether n = K-1. In S80, if n = K−1, the process proceeds to S120, and if n = K−1, the process proceeds to S90. Here, since n = 1, the process proceeds to S90.
S90では、S70で制限した目標板厚変更量Δh1に対応した負荷変化量ΔPwcal1を式(7)から算出する。
In S90, the load change amount ΔPw cal 1 corresponding to the target plate thickness change amount Δh1 limited in S70 is calculated from the equation (7).
続いて、S100では、S30で算出した目標負荷変更量ΔPw1のうち、目標板厚変更量Δh1を制限したことによって生じる目標未到達分ΔPwrem1を算出する。目標未到達分ΔPwrem1は、式(8)に示すように、S40で算出した目標負荷変更量ΔPw1と、S90で算出した負荷変化量ΔPwcal1の差となる。
Subsequently, in S100, the target unreached amount ΔPw rem 1 generated by limiting the target plate thickness change amount Δh1 among the target load change amounts ΔPw1 calculated in S30 is calculated. The target unreachable amount ΔPw rem 1 is the difference between the target load change amount ΔPw1 calculated in S40 and the load change amount ΔPw cal 1 calculated in S90, as shown in Expression (8).
続いて、S110では、目標未到達分ΔPwrem1を、今回の制御周期で目標板厚変更量を算出する対象としてまだ選択していない、つまり、圧延機80(#1)よりも下流の圧延機80(#2)~(#4)の目標負荷変更量ΔPwi(i=2~4)に対して分配する。具体的には、式(9)で示すように、目標負荷変更量ΔPwi(i=2~4)を、S30で算出した目標負荷変化量ΔPwi(i=2~4)に目標未到達分ΔPwrem1を3等分した値を付加した値に補正する。
Subsequently, in S110, the target unreachable amount ΔPw rem 1 has not yet been selected as a target for calculating the target plate thickness change amount in the current control cycle, that is, rolling downstream of the rolling mill 80 (# 1). Distribute to the target load change amount ΔPwi (i = 2 to 4) of the machines 80 (# 2) to (# 4). Specifically, as shown in Expression (9), the target load change amount ΔPwi (i = 2 to 4) is changed from the target load change amount ΔPwi (i = 2 to 4) calculated in S30 to the target unreached amount ΔPw. The value obtained by adding rem 1 divided into three equal parts is corrected.
続いて、S120において、圧延機80(#1)における目標板厚を設定する。具体的には、目標板厚の初期値に、S50で算出した目標板厚変更量Δh1、または、S70で補正した目標板厚変更量Δh1を付加した値を目標板厚とする。今回の制御周期以前に負荷制御を実施している場合には、初期値の代わりに前回の負荷制御で設定した目標板厚を用いてもよい。
Subsequently, in S120, a target plate thickness in the rolling mill 80 (# 1) is set. Specifically, a value obtained by adding the target plate thickness change amount Δh1 calculated in S50 or the target plate thickness change amount Δh1 corrected in S70 to the initial value of the target plate thickness is set as the target plate thickness. When the load control is performed before the current control cycle, the target plate thickness set in the previous load control may be used instead of the initial value.
続いて、S130において、n=n+1とする。
続いて、S140において、n=Kか否か判定する。S140において、n=Kの場合は本処理を終了し、n=Kでない場合はS50へ戻る。ここでは、n=2であるためS50へ戻る。 Subsequently, in S130, n = n + 1 is set.
Subsequently, in S140, it is determined whether n = K. In S140, if n = K, this process is terminated, and if n = K, the process returns to S50. Here, since n = 2, the process returns to S50.
続いて、S140において、n=Kか否か判定する。S140において、n=Kの場合は本処理を終了し、n=Kでない場合はS50へ戻る。ここでは、n=2であるためS50へ戻る。 Subsequently, in S130, n = n + 1 is set.
Subsequently, in S140, it is determined whether n = K. In S140, if n = K, this process is terminated, and if n = K, the process returns to S50. Here, since n = 2, the process returns to S50.
そして、S50に戻ると、圧延機80(#1)の目標板厚変更量Δh1と同様にして、式(10)により圧延機80(#2)の目標板厚変更量Δh2を算出する。ただし、式(10)では、圧延機80(#1)について算出した目標板厚更量Δh1を用いて、圧延機80(#2)の入側板厚H2をH2+Δh1に補正する。また、S110で目標負荷変更量ΔPw2を補正している場合、補正した目標負荷変更量ΔPw2を用いる。
Then, when returning to S50, the target plate thickness change amount Δh2 of the rolling mill 80 (# 2) is calculated by the equation (10) in the same manner as the target plate thickness change amount Δh1 of the rolling mill 80 (# 1). However, in the equation (10), using the target thickness update amount Δh1 calculated for the rolling mill 80 (# 1), the entry side thickness H2 of the rolling mill 80 (# 2) is corrected to H2 + Δh1. When the target load change amount ΔPw2 is corrected in S110, the corrected target load change amount ΔPw2 is used.
続いて、S60及びS70では、目標板厚変更量Δh1と同様に、目標板厚変更量Δh2が、変更制限の範囲Δh2ll~Δh2ul内か否か判定する。そして、目標板厚変更量Δh2が変更制限の範囲Δh2ll~Δh2ul外である場合には、式(11)に示すように、目標板厚変更量Δh2を変更制限の範囲Δh2ll~Δh2ul内に収まるように補正する。変更制限の範囲Δh2ll~Δh2ulは、圧延機80(#2)の目標板厚に対して予め設定されている範囲である。
Subsequently, in S60 and S70, similarly to the target plate thickness change amount Δh1, it is determined whether or not the target plate thickness change amount Δh2 is within the change limit range Δh2 ll to Δh2 ul . When the target thickness change amount [Delta] h2 is in the range Δh2 ll ~ Δh2 ul outside changes limit, as shown in equation (11), range target thickness change amount [Delta] h2 change limit Δh2 ll ~ Δh2 ul Correct to fit within. The change restriction ranges Δh2 ll to Δh2 ul are preset ranges with respect to the target plate thickness of the rolling mill 80 (# 2).
続いて、S80では、n=2であるためS90へ進む。
続いて、S90では、負荷変化量ΔPwcal1と同様に、S70で制限した目標板厚変更量Δh2に対応した負荷変化量ΔPwcal2を式(12)から算出する。ただし、式(12)では、圧延機80(#2)の入側板厚H2をH2+Δh1に補正する。 Subsequently, in S80, since n = 2, the process proceeds to S90.
Subsequently, in S90, similarly to the loadchange amount ΔPw cal 1, the load change amount ΔPw cal 2 corresponding to the target plate thickness change amount Δh2 limited in S70 is calculated from the equation (12). However, in Expression (12), the entry side plate thickness H2 of the rolling mill 80 (# 2) is corrected to H2 + Δh1.
続いて、S90では、負荷変化量ΔPwcal1と同様に、S70で制限した目標板厚変更量Δh2に対応した負荷変化量ΔPwcal2を式(12)から算出する。ただし、式(12)では、圧延機80(#2)の入側板厚H2をH2+Δh1に補正する。 Subsequently, in S80, since n = 2, the process proceeds to S90.
Subsequently, in S90, similarly to the load
続いて、S100では、目標未到達分ΔPwrem1と同様に、目標板厚変更量Δh2を制限したことによって生じる目標未到達分ΔPwrem2を式(13)から算出する。
Subsequently, in S100, similarly to the target non-reaching amount ΔPw rem 1, the target non-reaching amount ΔPw rem 2 generated by limiting the target plate thickness change amount Δh2 is calculated from the equation (13).
続いて、S110では、目標未到達分ΔPwrem1の分配と同様に、目標未到達分ΔPwrem2を、今回の制御周期で目標板厚変更量を算出する対象としてまだ選択していない、圧延機80(#3)~80(#4)の目標負荷変更量ΔPwi(i=3~4)に対して分配する。具体的には、式(14)に示すように、目標負荷変更量ΔPwi(i=3~4)を、現在の目標負荷変化量ΔPwi(i=3~4)に目標未到達分ΔPwrem2を2等分した値を付加した値に補正する。現在の目標負荷変化量ΔPwi(i=3~4)は、S30で算出された値、または、目標未到達分ΔPwrem1の分配分が付加されて補正された値である。
Subsequently, in S110, similarly to the distribution of the target unreached portion ΔPw rem 1, the target unreached portion ΔPw rem 2 has not yet been selected as a target for calculating the target plate thickness change amount in the current control cycle. Distribute to the target load change amount ΔPwi (i = 3 to 4) of the machines 80 (# 3) to 80 (# 4). Specifically, as shown in Expression (14), the target load change amount ΔPwi (i = 3 to 4) is changed from the current target load change amount ΔPwi (i = 3 to 4) to the target unreachable amount ΔPw rem 2 Is corrected to a value obtained by adding a value obtained by dividing the value into two equal parts. The current target load change amount ΔPwi (i = 3 to 4) is a value calculated in S30 or a value corrected by adding a distribution of the target unreachable amount ΔPw rem 1.
続いて、S120で圧延機80(#2)における目標板厚を設定し、S130でn=n+1とする。
続いて、S140では、n=3であるためS50へ戻る。 Subsequently, a target plate thickness in the rolling mill 80 (# 2) is set in S120, and n = n + 1 is set in S130.
Subsequently, in S140, since n = 3, the process returns to S50.
続いて、S140では、n=3であるためS50へ戻る。 Subsequently, a target plate thickness in the rolling mill 80 (# 2) is set in S120, and n = n + 1 is set in S130.
Subsequently, in S140, since n = 3, the process returns to S50.
そして、S50に戻ると、圧延機80(#2)の目標板厚変更量Δh2と同様にして、式(15)により圧延機80(#3)の目標板厚変更量Δh3を算出する。ただし、式(15)では、圧延機80(#2)について算出した目標板厚更量Δh2を用いて、圧延機80(#3)の入側板厚H3をH3+Δh2に補正する。
Then, when returning to S50, the target plate thickness change amount Δh3 of the rolling mill 80 (# 3) is calculated by the equation (15) in the same manner as the target plate thickness change amount Δh2 of the rolling mill 80 (# 2). However, in the equation (15), the entry side plate thickness H3 of the rolling mill 80 (# 3) is corrected to H3 + Δh2 by using the target thickness update amount Δh2 calculated for the rolling mill 80 (# 2).
続いて、S60及びS70では、目標板厚変更量Δh1と同様に、目標板厚変更量Δh3が、変更制限の範囲Δh3ll~Δh3ul内か否か判定する。そして、目標板厚変更量Δh3が変更制限の範囲Δh3ll~Δh3ul外である場合には、式(16)に示すように、目標板厚変更量Δh3を変更制限の範囲Δh3ll~Δh3ul内に収まるように補正する。変更制限の範囲Δh3ll~Δh3ulは、圧延機80(#3)の目標板厚に対して予め設定されている範囲である。
Subsequently, in S60 and S70, similarly to the target plate thickness change amount Δh1, it is determined whether or not the target plate thickness change amount Δh3 is within the change limit range Δh3 ll to Δh3 ul . When the target thickness change amount? H3 is in the range Δh3 ll ~ Δh3 ul outside changes limit, as shown in equation (16), range target thickness change amount? H3 change limit Δh3 ll ~ Δh3 ul Correct to fit within. The change restriction ranges Δh3 ll to Δh3 ul are preset ranges with respect to the target plate thickness of the rolling mill 80 (# 3).
続いて、S80では、n=3であるためS120へ進む。圧延機80(#4)の目標板厚は、目的とする製品板厚として決まっているため、目標板厚変更量を算出する対象とはならない。よって、S90~S110の処理を行う必要はない。目標負荷変更量ΔPw4は、圧延機80(#3)の目標板厚と製品板厚とに応じた値となる。
Subsequently, in S80, since n = 3, the process proceeds to S120. Since the target plate thickness of the rolling mill 80 (# 4) is determined as the target product plate thickness, it is not a target for calculating the target plate thickness change amount. Therefore, it is not necessary to perform the processing of S90 to S110. The target load change amount ΔPw4 is a value corresponding to the target plate thickness and the product plate thickness of the rolling mill 80 (# 3).
続いて、S120で圧延機80(#3)における目標板厚を設定し、S130でn=n+1とする。
続いて、S140では、n=4であるため本処理を終了する。 Subsequently, a target plate thickness in the rolling mill 80 (# 3) is set in S120, and n = n + 1 is set in S130.
Subsequently, in S140, since n = 4, this process ends.
続いて、S140では、n=4であるため本処理を終了する。 Subsequently, a target plate thickness in the rolling mill 80 (# 3) is set in S120, and n = n + 1 is set in S130.
Subsequently, in S140, since n = 4, this process ends.
各板厚制御装置10は、各圧延機80の出側板厚に基づいて、設定された圧延機80(#1)~80(#3)の目標板厚、及び、製品板厚として決められている圧延機80(#4)の目標板厚を実現するように、各圧延ロール30の圧下位置を調整する。各圧延機80の出側板厚は、ゲージメータ式や実測値などにより得られる。
Each plate thickness control device 10 is determined as a set target plate thickness and product plate thickness of the rolling mills 80 (# 1) to 80 (# 3) based on the outlet side plate thickness of each rolling mill 80. The reduction position of each rolling roll 30 is adjusted so as to realize the target thickness of the rolling mill 80 (# 4). The exit side plate thickness of each rolling mill 80 is obtained by a gauge meter type or an actual measurement value.
なお、圧延機80ごとに、1回の処理あたりの目標板厚変更量に対して変更制限の範囲を設定するだけでなく、所定回数または所定期間の処理における目標板厚変更量の合計に対して変更制限の範囲を設定してもよい。つまり、圧延機80ごとに、1回の負荷制御あたりの目標板厚変更量と、所定回数または所定期間の負荷制御における目標板厚変更量の合計の両方を制限するようにしてもよい。
In addition, for each rolling mill 80, not only the range of change limitation is set for the target plate thickness change amount per process, but also the total of the target plate thickness change amount in the processing for a predetermined number of times or a predetermined period. The change limit range may be set. That is, for each rolling mill 80, both the target plate thickness change amount per load control and the total of the target plate thickness change amount in the load control for a predetermined number of times or a predetermined period may be limited.
<3.効果>
以上説明した本実施形態によれば、以下の効果が得られる。
(1)圧延機80(#1)~80(#3)の目標板厚変更量Δh1~Δh3に対して設定された変更制限の範囲内で、圧延機80(#1)~80(#4)の負荷余裕値が互いに近づくように、圧延機80(#1)~80(#3)の目標板厚が調整される。これにより、目的とする製品板厚を達成しながら、板面品質への望ましくない影響を抑制しつつ、圧延機80の各々の負荷を適切に分配することができる。ひいては、過負荷によるトラブル発生などを未然に防ぎ、圧延の操業安定化を実現することができる。 <3. Effect>
According to the embodiment described above, the following effects can be obtained.
(1) The rolling mills 80 (# 1) to 80 (# 4) are within the range of the change restriction set for the target plate thickness change amounts Δh1 to Δh3 of the rolling mills 80 (# 1) to 80 (# 3). The target plate thicknesses of the rolling mills 80 (# 1) to 80 (# 3) are adjusted so that the load margin values of Thereby, each load of the rollingmill 80 can be appropriately distributed while achieving an intended product sheet thickness and suppressing an undesirable influence on the sheet surface quality. As a result, troubles due to overload can be prevented in advance, and the rolling operation can be stabilized.
以上説明した本実施形態によれば、以下の効果が得られる。
(1)圧延機80(#1)~80(#3)の目標板厚変更量Δh1~Δh3に対して設定された変更制限の範囲内で、圧延機80(#1)~80(#4)の負荷余裕値が互いに近づくように、圧延機80(#1)~80(#3)の目標板厚が調整される。これにより、目的とする製品板厚を達成しながら、板面品質への望ましくない影響を抑制しつつ、圧延機80の各々の負荷を適切に分配することができる。ひいては、過負荷によるトラブル発生などを未然に防ぎ、圧延の操業安定化を実現することができる。 <3. Effect>
According to the embodiment described above, the following effects can be obtained.
(1) The rolling mills 80 (# 1) to 80 (# 4) are within the range of the change restriction set for the target plate thickness change amounts Δh1 to Δh3 of the rolling mills 80 (# 1) to 80 (# 3). The target plate thicknesses of the rolling mills 80 (# 1) to 80 (# 3) are adjusted so that the load margin values of Thereby, each load of the rolling
(2)算出した目標板厚変更量Δh1~Δh3が、変更制限の範囲を超えた場合に、目標板厚変更量Δh1~Δh3を変更制限の範囲内に制限することで、板面品質への望ましくない影響を抑制することができる。また、目標板厚変更量Δh1~Δh3を制限した場合ことによって生じる目標負荷変化量ΔPw1~ΔPw3の目標未到達分ΔPwrem1~ΔPwrem3を、下流の圧延機80に分配することで、目標板厚変更量を制限しつつ、圧延機80の各々の負荷余裕値を互いに近づけることができる。
(2) When the calculated target plate thickness change amount Δh1 to Δh3 exceeds the change limit range, by limiting the target plate thickness change amount Δh1 to Δh3 within the change limit range, Undesirable effects can be suppressed. Further, by distributing the target unreachable amount ΔPw rem 1 to ΔPw rem 3 of the target load change amounts ΔPw1 to ΔPw3 generated by limiting the target plate thickness change amounts Δh1 to Δh3 to the downstream rolling mill 80, the target Each load margin value of the rolling mill 80 can be made close to each other while limiting the thickness change amount.
<4.シミュレーション>
次に、4つの圧延機80を備えた連続圧延機100を用いたアルミニウム合金の熱間仕上げ板圧延モデルにおいて、表1に示された条件下でシミュレーションした結果を図3及び図4に示す。図3は、特許文献1に記載のように、圧延機80の各々の負荷余裕値が等しくなるように、圧延機80(#1)~80(#3)の目標板厚を設定した後、目標板厚変更量を制限した場合のシミュレーション結果である。また、図4は、本実施形態に係るシミュレーション結果である。なお、これらのシミュレーションでは、最下流の圧延機80(#4)においてモータパワーが負荷上限値をオーバーしている場合を想定しており、シミュレーション開始から30秒後にモータ負荷制御を実施するものとした。 <4. Simulation>
Next, in a hot finish plate rolling model of an aluminum alloy using acontinuous rolling mill 100 including four rolling mills 80, the results of simulation under the conditions shown in Table 1 are shown in FIGS. FIG. 3 shows a state in which the target plate thicknesses of the rolling mills 80 (# 1) to 80 (# 3) are set so that the load margin values of the rolling mills 80 become equal, as described in Patent Document 1. It is a simulation result at the time of restrict | limiting the target board thickness change amount. FIG. 4 shows a simulation result according to the present embodiment. In these simulations, it is assumed that the motor power exceeds the load upper limit value in the most downstream rolling mill 80 (# 4), and the motor load control is performed 30 seconds after the simulation starts. did.
次に、4つの圧延機80を備えた連続圧延機100を用いたアルミニウム合金の熱間仕上げ板圧延モデルにおいて、表1に示された条件下でシミュレーションした結果を図3及び図4に示す。図3は、特許文献1に記載のように、圧延機80の各々の負荷余裕値が等しくなるように、圧延機80(#1)~80(#3)の目標板厚を設定した後、目標板厚変更量を制限した場合のシミュレーション結果である。また、図4は、本実施形態に係るシミュレーション結果である。なお、これらのシミュレーションでは、最下流の圧延機80(#4)においてモータパワーが負荷上限値をオーバーしている場合を想定しており、シミュレーション開始から30秒後にモータ負荷制御を実施するものとした。 <4. Simulation>
Next, in a hot finish plate rolling model of an aluminum alloy using a
図3に示すように、圧延機80(#1)~80(#3)については、出側板厚が変更された目標板厚に向かって制御されることで、圧延機80(#1)~80(#3)の負荷余裕値が互いに近づくように変化している。しかしながら、目標板厚変更量を制限したことに伴う目標未到達分ΔPwremiを分配していないため、圧延機80(#4)については、最初から負荷上限値を超えているにもかかわらず、更に負荷が増加する方向に変化していることがわかる。
As shown in FIG. 3, the rolling mills 80 (# 1) to 80 (# 3) are controlled toward the target plate thickness with the exit side plate thickness changed, so that the rolling mills 80 (# 1) to (80) The 80 (# 3) load margin values change so as to approach each other. However, since the target unreachable amount ΔPw rem i associated with limiting the target plate thickness change amount is not distributed, the rolling mill 80 (# 4) is in spite of exceeding the load upper limit from the beginning. Further, it can be seen that the load changes in the increasing direction.
一方、図4に示すように、本実施形態に係る方法によれば、圧延機80(#1)~80(#3)については、出側板厚が変更された目標板厚に向かって制御され、圧延機80(#4)については、出側板厚が目的とする製品板厚に向かって制御される。その結果、圧延機80(#1)~80(#3)での目標板厚変更により、すべての圧延機80のモータパワーが負荷上限値を下回っていることがわかる。
On the other hand, as shown in FIG. 4, according to the method according to the present embodiment, the rolling mills 80 (# 1) to 80 (# 3) are controlled toward the target plate thickness whose outlet side plate thickness is changed. In the rolling mill 80 (# 4), the outlet side plate thickness is controlled toward the target product plate thickness. As a result, it is understood that the motor power of all the rolling mills 80 is lower than the load upper limit value by changing the target plate thickness in the rolling mills 80 (# 1) to 80 (# 3).
(他の実施形態)
以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。 (Other embodiments)
As mentioned above, although the form for implementing this indication was demonstrated, this indication is not limited to the above-mentioned embodiment, and can carry out various modifications.
以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。 (Other embodiments)
As mentioned above, although the form for implementing this indication was demonstrated, this indication is not limited to the above-mentioned embodiment, and can carry out various modifications.
(a)上記実施形態では、圧延機80(#1)から圧延機80(#3)まで、上流から順次、目標板厚を設定しているが、目標板厚は、必ずしも上流から順次設定する必要はない。圧延機80(#1)~80(#3)のうちの任意の圧延機80から順次選択して、目標板厚を設定してもよい。
(A) In the above embodiment, the target plate thickness is set sequentially from the upstream from the rolling mill 80 (# 1) to the rolling mill 80 (# 3), but the target plate thickness is not necessarily set sequentially from the upstream. There is no need. The target plate thickness may be set by sequentially selecting from any of the rolling mills 80 (# 1) to 80 (# 3).
例えば、下流側から順次目標板厚を設定してもよい。式(4)では、目標負荷変更量ΔPw1を実現するように、目標板厚変更量Δh1を算出した。これに対して、下流側から順次目標板厚を設定する場合は、式(17)及び式(18)を用いて、目標負荷変更量ΔPw4を実現するように、圧延機80(#4)の入側板厚の変更量ΔH4を算出する。
For example, the target plate thickness may be set sequentially from the downstream side. In Expression (4), the target plate thickness change amount Δh1 is calculated so as to realize the target load change amount ΔPw1. On the other hand, when the target plate thickness is set sequentially from the downstream side, the rolling mill 80 (# 4) is configured so as to realize the target load change amount ΔPw4 using the equations (17) and (18). The change amount ΔH4 of the entry side plate thickness is calculated.
ここで、圧延機80(#4)の入側板厚は、一つ上流の圧延機80(#3)の出側板厚であるため、入側板厚の変更量ΔH4は、圧延機80(#3)の目標板厚変更量Δh3となる。よって、目標板厚変更量Δh3が制限範囲を超える場合には、目標板厚変更量Δh3、すなわち入側板厚の変更量ΔH4を制限する。そして、制限した入側板厚の変更量ΔH4に対応した負荷変化量ΔPwcal4を算出するとともに目標未到達分ΔPwrem4を算出し、上流の圧延機80の目標負荷変更量ΔPw1~ΔPw3に対して目標未到達分ΔPwrem4を分配する。同様にして、順次上流の目標板厚変更量Δh2,Δh1を算出すればよい。また、上流から下流あるいは下流から上流へ順番に目標板厚変更量Δhiを算出してなくても、任意の順番で目標板厚変更量Δhiを算出してもよい。任意の順番で目標板厚変更量Δhiを算出する場合は、上述したように、目標負荷変更量ΔPwiを実現するように、入側板厚の変更量ΔHi及び目標板厚変更量Δhiのいずれかを算出すればよい。これにより、任意の順番で目標板厚変更量Δhiを算出することができる。
Here, since the inlet side plate thickness of the rolling mill 80 (# 4) is the outlet side plate thickness of the one upstream rolling mill 80 (# 3), the change amount ΔH4 of the inlet side plate thickness is equal to the rolling mill 80 (# 3 ) Target plate thickness change amount Δh3. Therefore, when the target plate thickness change amount Δh3 exceeds the limit range, the target plate thickness change amount Δh3, that is, the input plate thickness change amount ΔH4 is limited. Then, the load change amount ΔPw cal 4 corresponding to the restricted entry side plate thickness change amount ΔH4 is calculated and the target unreachable amount ΔPw rem 4 is calculated, and the target load change amounts ΔPw1 to ΔPw3 of the upstream rolling mill 80 are calculated. To distribute the target unreachable amount ΔPw rem 4. Similarly, the upstream target plate thickness change amounts Δh2 and Δh1 may be calculated sequentially. Further, the target plate thickness change amount Δhi may be calculated in an arbitrary order without calculating the target plate thickness change amount Δhi in order from upstream to downstream or from downstream to upstream. When calculating the target plate thickness change amount Δhi in an arbitrary order, as described above, either the input plate thickness change amount ΔHi or the target plate thickness change amount Δhi is set so as to realize the target load change amount ΔPwi. What is necessary is just to calculate. Thereby, the target plate thickness change amount Δhi can be calculated in an arbitrary order.
(b)上記実施形態は、圧延機80(#1)~(#4)の負荷余裕値を互いに近づけつつ、圧延機80(#1)~80(#3)の目標板厚変更量Δh1~Δh3がそれぞれの変更制限の範囲に収まるように、圧延機80(#1)~(#3)の目標板厚を設定する方法の一例であり、目標板厚の設定方法は上記実施形態に限定されるものではない。例えば、目標板厚変更量Δh1~Δh3の変更制限を考慮せず、圧延機80(#1)~80(#4)の負荷余裕値が等しくなるように、最下流以外の圧延機80(#1)~80(#3)の目標板厚変更量Δh1~Δh3を算出する。そして、目標板厚変更量Δh1~Δh3のいずれかが変更制限の範囲を超えていた場合に、すべての目標板厚変更量の比率Δh1:Δh2:Δh3を維持したまま、目標板厚変更量Δh1~Δh3がそれぞれ変更制限の範囲に収まるように、すべての目標板厚変更量Δh1~Δh3を全体的に小さくしてもよい。このようにしても、圧延機80(#1)~(#4)の負荷余裕値を互いに近づけつつ、圧延機80(#1)~80(#3)の目標板厚変更量Δh1~Δh3をそれぞれの変更制限の範囲に収めることができる。
(B) In the above embodiment, while the load margin values of the rolling mills 80 (# 1) to (# 4) are made close to each other, the target thickness change amount Δh1 to the rolling mills 80 (# 1) to 80 (# 3) This is an example of a method for setting the target plate thickness of the rolling mills 80 (# 1) to (# 3) so that Δh3 falls within the range of each change restriction, and the method for setting the target plate thickness is limited to the above embodiment. Is not to be done. For example, without considering the change limitation of the target plate thickness change amounts Δh1 to Δh3, the rolling mills 80 (# 1) other than the most downstream so that the load margin values of the rolling mills 80 (# 1) to 80 (# 4) are equal. 1) Calculate target plate thickness change amounts Δh1 to Δh3 for 80 (# 3). If any of the target plate thickness change amounts Δh1 to Δh3 exceeds the change limit range, the target plate thickness change amount Δh1 is maintained while maintaining the ratio Δh1: Δh2: Δh3 of all target plate thickness change amounts. All the target plate thickness change amounts Δh1 to Δh3 may be reduced as a whole so that .about.Δh3 falls within the range of change restriction. Even in this case, the target plate thickness change amounts Δh1 to Δh3 of the rolling mills 80 (# 1) to 80 (# 3) are set while the load margin values of the rolling mills 80 (# 1) to (# 4) are made close to each other. Each change can be kept within the limits.
(c)上記実施形態では、目標板厚変更量Δhiが変更制限の範囲外の場合に、目標板厚変更量Δhiを変更制限の範囲の上限値または下限値に補正しているが、これに限定されるものではない。変更制限の範囲内の値であれば、上限値及び下限値以外の値に目標板厚変更量Δhiを補正してもよい。
(C) In the above embodiment, when the target plate thickness change amount Δhi is outside the change limit range, the target plate thickness change amount Δhi is corrected to the upper limit value or the lower limit value of the change limit range. It is not limited. The target plate thickness change amount Δhi may be corrected to a value other than the upper limit value and the lower limit value as long as the value is within the change limit range.
(d)上記実施形態では、連続圧延機100は4つの圧延機80を備えていたが、圧延機80の数は4つに限定されるものではない。連続圧延機100は、2つ以上の圧延機80を備えていれば、圧延機80をいくつ備えていてもよい。
(D) In the above embodiment, the continuous rolling mill 100 includes the four rolling mills 80, but the number of rolling mills 80 is not limited to four. The continuous rolling mill 100 may include any number of rolling mills 80 as long as it includes two or more rolling mills 80.
(e)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(E) A plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or a single function of one constituent element may be realized by a plurality of constituent elements. . Further, a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this indication.
(f)上述した連続圧延機における板厚制御方法の他、連続圧延機、モータ負荷制御装置を構成要素とするシステムなど、種々の形態で本開示を実現することもできる。
(F) In addition to the sheet thickness control method in the above-described continuous rolling mill, the present disclosure can be realized in various forms such as a system including a continuous rolling mill and a motor load control device as components.
Claims (2)
- 複数の圧延機を有する連続圧延機において前記複数の圧延機の各々の出側板厚を制御する、連続圧延機による板厚制御方法であって、
前記複数の圧延機の各々の負荷余裕値が、互いに近づくように、前記複数の圧延機の各々の目標板厚を変更制限の範囲内で調整して、前記複数の圧延機のうちの最下流の圧延機を除く他の圧延機の前記目標板厚を設定し、前記負荷余裕値は、圧延時負荷と負荷上限値との差であり、前記目標板厚は、前記出側板厚の目標値であり、前記変更制限の範囲は、前記目標板厚に対して予め設定されており、
前記他の圧延機の各々において、設定された前記目標板厚が得られるように、対応する前記圧延機のロール圧下位置を調整する、
連続圧延機による板厚制御方法。 In a continuous rolling mill having a plurality of rolling mills, a sheet thickness control method by a continuous rolling mill for controlling the exit side thickness of each of the plurality of rolling mills,
Adjusting the target plate thickness of each of the plurality of rolling mills within the range of the change limit so that the load margin values of the plurality of rolling mills are close to each other, the most downstream of the plurality of rolling mills The target plate thickness of other rolling mills other than the rolling mill is set, the load margin value is the difference between the rolling load and the load upper limit value, and the target plate thickness is the target value of the outlet side plate thickness And the range of the change restriction is preset with respect to the target plate thickness,
In each of the other rolling mills, adjust the roll reduction position of the corresponding rolling mill so that the set target plate thickness is obtained.
Thickness control method by continuous rolling mill. - 前記負荷余裕値が前記複数の圧延機の間で等しくなるように、前記複数の圧延機の各々における目標負荷変更量を設定し、前記目標負荷変更量は、前記圧延時負荷の変更量の目標値であり、
前記他の圧延機の中からいずれかの前記圧延機を選択し、選択した前記圧延機の前記目標負荷変更量を実現するように、選択した前記圧延機または選択した前記圧延機の1つ上流の前記圧延機の前記目標板厚の変更量を算出し、
算出した前記目標板厚の変更量が前記変更制限の範囲を超える場合に、前記目標板厚の変更量を前記変更制限の範囲内に収まるように補正し、
前記目標板厚の変更量に基づいて、対応する前記圧延機の前記目標板厚を設定し、
前記目標板厚の変更量を補正した場合に、前記選択した圧延機の前記目標負荷変更量のうちの前記目標板厚の変更量を補正したことによって生じる目標未到達分を算出し、
算出した前記目標未到達分を、前記複数の圧延機のうちのまだ選択していない前記圧延機の前記目標負荷変更量に対して分配して、分配した前記目標未到達分を付加するように前記まだ選択していない圧延機の目標負荷変動量を補正し、
前記他の圧延機のすべての前記目標板厚を設定するまで、前記圧延機の選択から前記目標負荷変更量を補正するまでの工程を繰り返す、
請求項1に記載の連続圧延機による板厚制御方法。 A target load change amount in each of the plurality of rolling mills is set so that the load margin value is equal among the plurality of rolling mills, and the target load change amount is a target of the load change amount during rolling. Value,
One of the rolling mills is selected from the other rolling mills, and the selected rolling mill or the selected rolling mill is upstream one by one so as to realize the target load change amount of the selected rolling mill. Calculating the amount of change in the target thickness of the rolling mill,
When the calculated change amount of the target plate thickness exceeds the change limit range, the change amount of the target plate thickness is corrected so as to be within the change limit range,
Based on the change amount of the target plate thickness, set the target plate thickness of the corresponding rolling mill,
When the change amount of the target plate thickness is corrected, a target unreached portion generated by correcting the change amount of the target plate thickness of the target load change amount of the selected rolling mill is calculated,
The calculated target unreached portion is distributed to the target load change amount of the rolling mill not yet selected from the plurality of rolling mills, and the distributed target unreached portion is added. Correct the target load fluctuation amount of the rolling mill not yet selected,
Until all the target plate thicknesses of the other rolling mills are set, the process from the selection of the rolling mill to the correction of the target load change amount is repeated.
A sheet thickness control method using the continuous rolling mill according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-086112 | 2017-04-25 | ||
JP2017086112A JP7186489B2 (en) | 2017-04-25 | 2017-04-25 | Strip thickness control method by continuous rolling mill |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018199193A1 true WO2018199193A1 (en) | 2018-11-01 |
Family
ID=63919942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/016878 WO2018199193A1 (en) | 2017-04-25 | 2018-04-25 | Plate thickness control method by continuous rolling mill |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7186489B2 (en) |
WO (1) | WO2018199193A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1177126A (en) * | 1997-09-04 | 1999-03-23 | Sumitomo Light Metal Ind Ltd | Method for controlling thickness in continuous rolling mill |
JP2013180323A (en) * | 2012-03-01 | 2013-09-12 | Jfe Steel Corp | Method for producing thin steel sheet |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6025553B2 (en) * | 2012-12-26 | 2016-11-16 | 株式会社日立製作所 | Rolling control device, rolling control method, and rolling control program |
-
2017
- 2017-04-25 JP JP2017086112A patent/JP7186489B2/en active Active
-
2018
- 2018-04-25 WO PCT/JP2018/016878 patent/WO2018199193A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1177126A (en) * | 1997-09-04 | 1999-03-23 | Sumitomo Light Metal Ind Ltd | Method for controlling thickness in continuous rolling mill |
JP2013180323A (en) * | 2012-03-01 | 2013-09-12 | Jfe Steel Corp | Method for producing thin steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP7186489B2 (en) | 2022-12-09 |
JP2018183791A (en) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106166566B (en) | Hot finisher goes out side temperature control equipment and its control method | |
US10639688B2 (en) | Strip profile control method of hot finishing tandem rolling mill and hot finishing tandem rolling mill | |
KR101419998B1 (en) | Method of flatness control of a strip and a control system therefor | |
RU2157284C1 (en) | Method for optimal distribution of strip width in end portions of rolled strip passing in rolling mill | |
WO2018199193A1 (en) | Plate thickness control method by continuous rolling mill | |
JP6346582B2 (en) | Control apparatus and control method | |
JP4323273B2 (en) | Load distribution control device for continuous rolling mill | |
KR100832971B1 (en) | Method for controlling bender power of rolling roll in continuous rolling equipment | |
JP5727865B2 (en) | Rolling model optimization device | |
CN104722584A (en) | Apparatus for controlling the width of multi-stand rolling mill and method for the same | |
KR20020004801A (en) | Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine | |
JP2007061864A (en) | Method for controlling rolling mill | |
JP2014117710A (en) | Control method and control device of tandem rolling mill | |
JP7546198B2 (en) | Control device | |
JP2018126779A (en) | Load distribution control method of continuous rolling mill and load distribution control device of continuous rolling mill | |
JP4466259B2 (en) | Load distribution control method and apparatus for continuous rolling mill | |
JP2013180323A (en) | Method for producing thin steel sheet | |
TWI670124B (en) | Steel strip thickness control method | |
JP6016715B2 (en) | Roll thickness control method | |
JP6365559B2 (en) | Control device and control method for temper rolling mill | |
KR20170117398A (en) | Plate width control device of rolled material | |
JP2022132093A (en) | Pass schedule calculation method of steel plate rolling process, pass schedule calculation device of the same, and rolling method of steel plate | |
JPH1058020A (en) | Method for setting roll gap of continuous rolling mill | |
JPH0857515A (en) | Method for controlling edge drop at time of cold rolling | |
JPH0724514A (en) | Method and device for controlling tension in tandem mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18791807 Country of ref document: EP Kind code of ref document: A1 |