WO2018199016A1 - Ball bearing - Google Patents

Ball bearing Download PDF

Info

Publication number
WO2018199016A1
WO2018199016A1 PCT/JP2018/016445 JP2018016445W WO2018199016A1 WO 2018199016 A1 WO2018199016 A1 WO 2018199016A1 JP 2018016445 W JP2018016445 W JP 2018016445W WO 2018199016 A1 WO2018199016 A1 WO 2018199016A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
ball bearing
cam
ring
diameter
Prior art date
Application number
PCT/JP2018/016445
Other languages
French (fr)
Japanese (ja)
Inventor
康由 林
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018199016A1 publication Critical patent/WO2018199016A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • F16C43/06Placing rolling bodies in cages or bearings
    • F16C43/08Placing rolling bodies in cages or bearings by deforming the cages or the races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention relates to a ball bearing, and more particularly, to a ball bearing interposed between an elliptical cam and a flexspline provided in a wave gear device.
  • the wave gear device includes a circular spline, a flexspline, a cam, and a ball bearing interposed between the flexspline and the cam.
  • the cam has an elliptical outer peripheral surface.
  • Ball bearings have thin inner and outer rings.
  • the ball bearing is elastically deformed into an elliptical shape by being fitted to the outer peripheral surface of the cam.
  • the flexspline has a cup shape having a cylindrical portion and a bottom portion. The cylindrical portion is elastically deformed into an elliptical shape by an outer ring of an elliptical ball bearing.
  • the flexspline is meshed with the circular spline at two points in the elliptical long axis direction.
  • the cam and the ball bearing constitute a so-called wave generator. That is, when the elliptical ball bearing rotates in unison with the rotation of the cam, the direction of the major axis of the ellipse changes in the direction of rotation, and the meshing position of the circular spline and flexspline moves in the rotational direction. And a relative rotation occurs between the circular spline.
  • the relative rotation is taken out as a deceleration rotation (for example, Patent Documents 1 and 2 below).
  • Non-Patent Document 1 When using a wave gear device, a thrust force acts on the wave generator due to the elastic deformation of the flexspline. This thrust force acts on the ball bearing. When the wave gear device is used as a speed reducer, the thrust force acts in the direction of pushing the ball bearing toward the bottom side of the flexspline (Non-Patent Document 1 below).
  • the problem to be solved by the present invention is to prevent the ball bearing from shifting due to the thrust force acting on the ball bearing interposed between the flexspline and the cam when the wave gear device is used.
  • the inner ring is prevented from cracking due to the tightening allowance between the inner ring and the cam.
  • the present invention provides an inner ring having an inner diameter surface that fits into a cam of a wave gear device, an outer ring having an outer diameter surface that fits inside a flexspline of the wave gear device, a plurality of balls interposed between the inner ring and the outer ring, the ball bearing with a, an oval peripheral length of the outer peripheral surface formed into an elliptical shape with the cam and L 1, the circumferential length of the inner ring inner diameter surface when was the L 2, the value of L 1 / L 2 is obtained by employing the structure is 1.0001 or more 1.0007 or less.
  • the value of the circumferential length ratio L 1 / L 2 between the elliptical circumferential length of the outer circumferential surface of the cam and the circumferential length of the inner circumferential surface of the inner ring is set to 1.0001 or more.
  • the inner ring can be prevented from moving in the axial direction with respect to the cam by the thrust force acting on the ball bearing.
  • the value of the circumference ratio L 1 / L 2 is set to 1.0007 or less, it is possible to prevent the inner ring from being cracked due to the tightening allowance between the inner ring and the cam.
  • T / T where t is the inner ring wall thickness that is the difference between the inner diameter and outer diameter of the inner ring, and T is the bearing cross-sectional height that is the difference in diameter between the inner diameter surface of the inner ring and the outer diameter surface of the outer ring. Is preferably 0.109 or more and 0.448 or less. This numerical range of t / T is suitable for preventing the inner ring from shifting and cracking.
  • B / T is 0.789 or more and 1.579, where B is the width of the inner ring and T is the bearing cross-sectional height, which is the difference in diameter between the inner diameter surface of the inner ring and the outer diameter surface of the outer ring. It may be the following. This numerical value range of B / T is suitable for preventing the displacement of the inner ring.
  • the present invention eliminates the movement of the ball bearing due to the thrust force acting on the ball bearing interposed between the flexspline and the cam when the wave gear device is used, and tightens the inner ring and the cam. It is possible to prevent the inner ring from cracking due to the bill.
  • FIG. 2 is a partially enlarged view showing the cam shown in FIG.
  • a longitudinal front view showing a ball bearing according to an embodiment of the present invention The side view which shows the inner ring
  • this ball bearing 1 is for a wave gear device.
  • the wave gear device includes a circular spline 2, a flexspline 3, a cam 4, and a ball bearing 1 interposed between the flexspline 3 and the cam 4.
  • the ball bearing 1 includes an inner ring 5, an outer ring 6, a row of balls 9 interposed between the raceway groove 7 of the inner ring 5 and the raceway groove 8 of the outer ring 6, and a cage that maintains a circumferential interval between these balls 9. 10.
  • an odd number of balls 9 are arranged between the raceway grooves 7 and 8.
  • the “axial direction” refers to a direction along the bearing central axis (not shown) of the ball bearing 1.
  • the bearing central axis of the ball bearing 1 is designed to be coaxial with the central axes of the race rings of the inner ring 5 and the outer ring 6 and designed to be coaxial with the rotational axis of the wave gear device.
  • a direction perpendicular to the bearing central axis is referred to as a “radial direction”
  • a circumferential direction around the bearing central axis is referred to as a “circumferential direction”.
  • the cam 4 is rotatable in the circumferential direction integrally with the first shaft S1.
  • the flexspline 3 is rotatable in the circumferential direction integrally with the second shaft S2 disposed coaxially with the first shaft S1.
  • a predetermined number of teeth 11 are provided in the circumferential direction on the inner periphery of the circular spline 2.
  • the flex spline 3 has a cup shape formed by a cylindrical portion 12 and a bottom portion 13 continuous with one axial end of the cylindrical portion 12.
  • the inside of the cylinder part 12 is formed in a cylindrical surface shape.
  • the tip of the cylinder part 12 in the axial direction is an opening edge 14 of the flexspline 3.
  • teeth 15 that mesh with the teeth 11 of the circular spline 2 are provided on the outer periphery of the cylindrical portion 12.
  • the number of teeth 15 of the flexspline 3 is two less than the number of teeth 11 of the circular spline 2.
  • the second shaft S ⁇ b> 2 is connected to the center portion of the bottom portion 13.
  • the cam 4 has an outer peripheral surface 4a formed in an elliptical shape.
  • the outer peripheral surface 4a of the cam 4 has an oval peripheral length L 1.
  • the elliptical circumferential length L1 is the length of one round at an arbitrary axial position of the outer peripheral surface 4a.
  • FIG. 4 shows a cross section when the ball bearing 1 is in a natural state.
  • the inner ring 5 is composed of a bearing ring having a raceway groove 7 on the outer periphery.
  • the outer ring 6 is a race ring having a race groove 8 on the inner periphery.
  • the inner ring 5 and the outer ring 6 are each composed of one annular part made of bearing steel.
  • bearing steel refers to high carbon chromium steel containing 0.9% to 1.1% carbon and 0.9% to 1.6% chromium.
  • bearing steel for example, a high carbon chromium bearing steel material defined by JIS standard (G4805: 2008) can be mentioned.
  • FIG. 5 shows a side view of the inner ring 5.
  • the inner ring 5 has an inner diameter surface 5a formed in a cylindrical surface shape.
  • An inner diameter surface 5 a of the inner ring 5 defines an inner diameter d of the inner ring 5.
  • the inner diameter d of the inner ring 5 matches the bearing inner diameter of the ball bearing 1.
  • the outer diameter Di of the inner ring 5 corresponds to the diameter of a virtual cylindrical surface that circumscribes the inner ring 5.
  • the outer diameter Di of the inner ring 5 is defined by the shoulder outer diameter of the inner ring 5.
  • the inner ring wall thickness t is the difference between the inner diameter d and the outer diameter Di of the inner ring 5.
  • the value of the inner ring wall thickness t corresponds to the difference between the outer diameter Di and the inner diameter d of the inner ring 5.
  • Inner surface 5a of the inner ring 5 has a circumferential length L 2.
  • Circumferential length L 2 is the length of one round at any axial position of the inner surface 5a.
  • the inner ring 5 has a width B.
  • the width B corresponds to the distance between two parallel virtual planes that contact the inner ring 5 from both sides in the axial direction.
  • the outer ring 6 has an outer diameter surface 6a formed in a cylindrical surface shape.
  • the outer diameter surface 6 a of the outer ring 6 defines the outer diameter Do of the outer ring 6.
  • the outer diameter Do of the outer ring 6 matches the bearing outer diameter of the ball bearing 1.
  • the bearing cross-sectional height T of the ball bearing 1 is a diameter difference between the inner diameter surface 5 a of the inner ring 5 and the outer diameter surface 6 a of the outer ring 6.
  • the value of T corresponds to the difference between the outer diameter Do of the outer ring 6 and the inner diameter d of the inner ring 5.
  • t / T The value of t / T is set to 0.109 or more and 0.448 or less.
  • the value of B / T is set to 0.789 or more and 1.579 or less.
  • the inner ring 5 of the ball bearing 1 is elastically deformed into an elliptical shape by being fitted to the outer peripheral surface 4a of the cam 4 at the inner diameter surface 5a.
  • the ball bearing 1 is fixed to the outer peripheral surface 4 a of the cam 4.
  • the outer ring 6 is elastically deformed into an elliptical shape by being pushed through the ball 9.
  • the cam 4 and the ball bearing 1 fitted together constitute a wave generator. That is, when the first shaft S1 rotates and the elliptical ball bearing 1 rotates integrally with the rotation of the cam 4 fixed to the first shaft S1, the direction of the elliptical major axis direction is changed in the rotational direction. As a result, the meshing position of the teeth 11 of the circular spline 2 and the teeth 15 of the flexspline 3 moves in the rotation direction, and relative rotation of two teeth occurs between the flexspline 3 and the circular spline 2 in one rotation. . The relative rotation is extracted as a deceleration rotation. During this use, a thrust force F acts on the wave generator due to the elastic deformation of the flexspline 3. This thrust force F acts on the wave generator from the contact portion (on the long axis) between the outer ring 6 of the ball bearing 1 and the flex spline 3.
  • the fastening allowance between the outer peripheral surface 4a of the cam 4 and the inner diameter surface 5a of the inner ring 5 includes a virtual outer diameter surface 4av (see FIG. 3) when the outer peripheral surface 4a is virtualized and an inner diameter surface 5a (see FIG. 3). 5)).
  • the virtual circle is that of a circle having an oval peripheral length L 1 the same circumference and the outer peripheral surface 4a.
  • the relationship between the virtual outer diameter surface 4av of the outer peripheral surface 4a of the cam 4 and the inner diameter d of the inner diameter surface 5a of the inner ring 5 corresponds to L 1 / L 2 .
  • the fitting surface pressure between the virtual outer diameter surface 4av and the inner diameter surface 5a can be obtained.
  • the pulling force of the inner ring 5 necessary for pulling out the inner ring 5 from 4 is also known.
  • the obtained pulling force of the inner ring 5 is larger than the above-described thrust force F, the inner ring 5 does not move in the axial direction with respect to the cam 4 due to the thrust force F. Therefore, you are possible to determine a virtual outside diameter surface 4av the outer peripheral surface 4a of the cam 4, interference of the lower limit of the inner diameter surface 5a of the inner ring 5, i.e. the lower limit of the value of L 1 / L 2.
  • the value of L 1 / L 2 is 1.0001 or more, it is possible to prevent the ball bearing 1 from moving with respect to the cam 4 due to the thrust force F in practical use of the wave gear device.
  • the tensile stress applied to the cross-sectional area of the inner ring 5 is known. If this tensile stress exceeds the allowable value, the inner ring 5 may break and break.
  • the upper limit value of the tightening allowance that allows the ball bearing 1 to be used stably without breaking the inner ring 5 is that the maximum value of the tangential stress of the inner ring 5 is approximately 13 kgf / mm. The value should not exceed 2 (127 MPa).
  • the ball bearing 1 is interposed between the flex spline 3 and the cam 4 when the wave gear device is used. As a result, the thrust force F acting on the ball bearing 1 prevents the ball bearing 1 from being displaced relative to the cam 4, and the inner ring 5 can be prevented from cracking due to the interference between the inner ring 5 and the cam 4.
  • the ball bearing 1 has a t / T value of 0.109 or more and 0.448 or less and a B / T value of 0.789 or more and 1.579 or less. It is suitable for preventing cracking.
  • Examples are oval peripheral length L 1 of the outer peripheral surface 4a of the cam 4 is 78.66Mm (hereinafter, referring to FIGS. 1, 3, 5).
  • the generated thrust force F is 10 kgf (however, the maximum output torque is 46 Nm at the moment). This example is based on the HDS model number 14 on page 052 of Non-Patent Document 1.
  • the thrust force F can be obtained by 2 ⁇ T / D ⁇ 0.07 ⁇ tan 30 ° (where T: output torque, D: HDS model number ⁇ 0.00256).
  • the pulling force of the inner ring 5 can be obtained by 0.12 ⁇ P ⁇ ⁇ ⁇ d ⁇ B (where P: surface pressure of the outer surface of the inner ring, d: inner diameter of the inner ring, B: width of the inner ring).
  • Table 1 shows the results of calculating the maximum stress of the inner ring 5 (the maximum value of the tangential stress) together with the values of t / T and B / T.
  • Table 2 shows the results of calculating the maximum stress of the inner ring 5 (the maximum value of the tangential stress) together with the values of t / T and B / T.

Abstract

The present invention prevents, when strain wave gearing is used, the occurrence of displacement of a ball bearing (1) that is interposed between a flexspline (3) and a cam (4), the displacement being caused by a thrust force acting on the ball bearing (1), and also prevents an inner ring (5) from being cracked due to interference between the inner ring (5) and the cam (4). The ball bearing (1) is configured such that, when the ellipse circumferential length of an outer periphery (4a) formed into an elliptical shape on the cam (4) is L1, and the circumferential length of an inner surface (5a) of the inner ring (5) is L2, the value of L1/L2 falls within the range from 1.0001 to 1.0007.

Description

玉軸受Ball bearing
 この発明は、玉軸受に関し、特に、波動歯車装置に備わる楕円状カムとフレクスプラインとの間に介在するものに関する。 The present invention relates to a ball bearing, and more particularly, to a ball bearing interposed between an elliptical cam and a flexspline provided in a wave gear device.
 従来、産業用ロボットの関節部など、減速機構が必要な箇所で、波動歯車装置が利用されている。波動歯車装置は、サーキュラスプラインと、フレクスプラインと、カムと、フレクスプラインとカムとの間に介在する玉軸受を備える。カムは、楕円状の外周面を有する。玉軸受は、薄い内輪及び外輪を有する。玉軸受は、カムの外周面に嵌合されることにより楕円状に弾性変形させられる。フレクスプラインは、筒部と底部とを有するカップ状になっている。その筒部は、楕円状の玉軸受の外輪によって楕円状に弾性変形させられる。フレクスプラインは、その楕円状の長軸方向の二箇所でサーキュラスプラインに噛み合わされている。カムと玉軸受は、いわゆるウェーブジェネレータを構成する。すなわち、カムの回転と一体に楕円状の玉軸受が回転すると、その回転方向へ楕円状の長軸方向の向きが変わり、サーキュラスプラインとフレクスプラインの噛み合う位置が回転方向に移動して、フレクスプラインとサーキュラスプラインとの間に相対回転が発生する。その相対回転が減速回転として取り出される(例えば、下記特許文献1、2)。 Conventionally, wave gear devices are used in places where a speed reduction mechanism is required, such as a joint part of an industrial robot. The wave gear device includes a circular spline, a flexspline, a cam, and a ball bearing interposed between the flexspline and the cam. The cam has an elliptical outer peripheral surface. Ball bearings have thin inner and outer rings. The ball bearing is elastically deformed into an elliptical shape by being fitted to the outer peripheral surface of the cam. The flexspline has a cup shape having a cylindrical portion and a bottom portion. The cylindrical portion is elastically deformed into an elliptical shape by an outer ring of an elliptical ball bearing. The flexspline is meshed with the circular spline at two points in the elliptical long axis direction. The cam and the ball bearing constitute a so-called wave generator. That is, when the elliptical ball bearing rotates in unison with the rotation of the cam, the direction of the major axis of the ellipse changes in the direction of rotation, and the meshing position of the circular spline and flexspline moves in the rotational direction. And a relative rotation occurs between the circular spline. The relative rotation is taken out as a deceleration rotation (for example, Patent Documents 1 and 2 below).
 波動歯車装置の使用時、フレクスプラインの弾性変形により、ウェーブジェネレータにスラスト力が働く。このスラスト力は、玉軸受に作用する。波動歯車装置を減速機として使用する場合、そのスラスト力は、フレクスプラインの底部側に向かって玉軸受を押す方向に作用する(下記非特許文献1)。 When using a wave gear device, a thrust force acts on the wave generator due to the elastic deformation of the flexspline. This thrust force acts on the ball bearing. When the wave gear device is used as a speed reducer, the thrust force acts in the direction of pushing the ball bearing toward the bottom side of the flexspline (Non-Patent Document 1 below).
特開2015-209931号公報Japanese Patent Laid-Open No. 2015-209931 特開2016-121724号公報JP 2016-121724 A
 玉軸受の内輪とカム間の嵌合部において、内輪に形成された円筒面状の内径面と、カムの楕円状の外周面との締め代が小さい場合、前述のスラスト力により、カムの外周面に対して内輪の内径面が相対的に軸方向に変位する可能性がある。波動歯車装置を減速機として使用した場合、玉軸受は、カムに対してフレクスプラインの底部側へずれ動く可能性がある。これにより、フレクスプラインの筒部に過大な引っ張り応力が発生し、その筒部に割れが生じる可能性がある。また、前述の締め代が大きい場合、内輪が薄肉形状であることから、内輪に発生する引張り応力が大きくなり、内輪に割れが発生する可能性がある。 In the fitting part between the inner ring of the ball bearing and the cam, when the tightening margin between the cylindrical inner surface formed on the inner ring and the elliptical outer surface of the cam is small, the thrust force causes the outer periphery of the cam There is a possibility that the inner diameter surface of the inner ring is displaced in the axial direction relative to the surface. When the wave gear device is used as a speed reducer, the ball bearing may move to the bottom side of the flexspline with respect to the cam. Thereby, an excessive tensile stress is generated in the tube portion of the flexspline, and the tube portion may be cracked. Further, when the above-described tightening allowance is large, since the inner ring is thin, the tensile stress generated in the inner ring is increased, and the inner ring may be cracked.
 内輪に円筒面状に形成された内径面と、相手部材に円筒面状に形成された外径面との嵌合によって玉軸受を固定する一般的な軸受固定構造では、それら内径面と外径面との締め代を選定する方法が確立されている。ところが、内輪に円筒面状に形成された内径面と、波動歯車装置のカムに楕円状に形成された外周面との嵌合によって玉軸受をカムに固定する軸受固定構造においては、それら内径面と外周面との締め代を選定する方法が確立されていない。 In a general bearing fixing structure in which a ball bearing is fixed by fitting an inner diameter surface formed in a cylindrical surface shape on the inner ring and an outer diameter surface formed in a cylindrical surface shape on the counterpart member, the inner diameter surface and the outer diameter A method has been established for selecting the tightening allowance with the surface. However, in a bearing fixing structure in which a ball bearing is fixed to a cam by fitting an inner diameter surface formed in a cylindrical surface shape on an inner ring and an outer peripheral surface formed in an elliptic shape in a cam of a wave gear device, these inner diameter surfaces A method for selecting the tightening allowance between the outer peripheral surface and the outer peripheral surface has not been established.
 上述の背景に鑑み、この発明が解決しようとする課題は、波動歯車装置の使用時、フレクスプラインとカムとの間に介在する玉軸受に作用するスラスト力による玉軸受のずれ動きが生じないようにすると共に、内輪とカム間の締め代による内輪の割れを防ぐことにある。 In view of the above-mentioned background, the problem to be solved by the present invention is to prevent the ball bearing from shifting due to the thrust force acting on the ball bearing interposed between the flexspline and the cam when the wave gear device is used. In addition, the inner ring is prevented from cracking due to the tightening allowance between the inner ring and the cam.
 上記の課題を達成するため、この発明は、波動歯車装置のカムに嵌合する内径面を有する内輪と、前記波動歯車装置のフレクスプラインの内側に嵌合する外径面を有する外輪と、前記内輪と前記外輪との間に介在する複数の玉と、を備える玉軸受において、前記カムに楕円状に形成された外周面の楕円周長をLとし、前記内輪の内径面の円周長をLとしたとき、L/Lの値が、1.0001以上1.0007以下である構成を採用したものである。 To achieve the above object, the present invention provides an inner ring having an inner diameter surface that fits into a cam of a wave gear device, an outer ring having an outer diameter surface that fits inside a flexspline of the wave gear device, a plurality of balls interposed between the inner ring and the outer ring, the ball bearing with a, an oval peripheral length of the outer peripheral surface formed into an elliptical shape with the cam and L 1, the circumferential length of the inner ring inner diameter surface when was the L 2, the value of L 1 / L 2 is obtained by employing the structure is 1.0001 or more 1.0007 or less.
 上記構成によれば、カムの外周面の楕円周長と内輪の内径面の円周長の周長比L/Lの値が1.0001以上に設定されているので、波動歯車装置の使用時、玉軸受に作用するスラスト力によって内輪がカムに対して軸方向にずれ動かないようにすることができる。また、周長比L/Lの値が1.0007以下に設定されているので、内輪とカム間の締め代による内輪の割れを防ぐことができる。 According to the above configuration, the value of the circumferential length ratio L 1 / L 2 between the elliptical circumferential length of the outer circumferential surface of the cam and the circumferential length of the inner circumferential surface of the inner ring is set to 1.0001 or more. In use, the inner ring can be prevented from moving in the axial direction with respect to the cam by the thrust force acting on the ball bearing. Further, since the value of the circumference ratio L 1 / L 2 is set to 1.0007 or less, it is possible to prevent the inner ring from being cracked due to the tightening allowance between the inner ring and the cam.
 前記内輪の内径と外径の径差である内輪肉厚をtとし、前記内輪の内径面と前記外輪の外径面との径差である軸受断面高さをTとしたとき、t/Tの値が、0.109以上0.448以下であるとよい。このt/Tの数値範囲は、内輪のずれ動きと割れを防ぐのに適する。 T / T, where t is the inner ring wall thickness that is the difference between the inner diameter and outer diameter of the inner ring, and T is the bearing cross-sectional height that is the difference in diameter between the inner diameter surface of the inner ring and the outer diameter surface of the outer ring. Is preferably 0.109 or more and 0.448 or less. This numerical range of t / T is suitable for preventing the inner ring from shifting and cracking.
 前記内輪の幅をBとし、前記内輪の内径面と前記外輪の外径面との径差である軸受断面高さをTとしたとき、B/Tの値が、0.789以上1.579以下であるとよい。このB/Tの数値範囲は、内輪のずれ動きを防ぐのに適する。 The value of B / T is 0.789 or more and 1.579, where B is the width of the inner ring and T is the bearing cross-sectional height, which is the difference in diameter between the inner diameter surface of the inner ring and the outer diameter surface of the outer ring. It may be the following. This numerical value range of B / T is suitable for preventing the displacement of the inner ring.
 この発明は、上記構成の採用により、波動歯車装置の使用時、フレクスプラインとカムとの間に介在する玉軸受に作用するスラスト力による玉軸受のずれ動きを無くすと共に、内輪とカム間の締め代による内輪の割れを防ぐことができる。 By adopting the above configuration, the present invention eliminates the movement of the ball bearing due to the thrust force acting on the ball bearing interposed between the flexspline and the cam when the wave gear device is used, and tightens the inner ring and the cam. It is possible to prevent the inner ring from cracking due to the bill.
この発明の実施形態に係る玉軸受を備える波動歯車装置を示す縦断正面図A longitudinal front view showing a wave gear device provided with a ball bearing according to an embodiment of the present invention この発明の実施形態に係る玉軸受を備える波動歯車装置の横断面図Cross-sectional view of a wave gear device including a ball bearing according to an embodiment of the present invention 図2のカムを抜き出して示す部分拡大図FIG. 2 is a partially enlarged view showing the cam shown in FIG. この発明の実施形態に係る玉軸受を示す縦断正面図A longitudinal front view showing a ball bearing according to an embodiment of the present invention 図4の内輪を軸方向から示す側面図The side view which shows the inner ring | wheel of FIG. 4 from an axial direction
 この発明の一例としての実施形態を添付図面に基づいて説明する。図1、2に示すように、この玉軸受1は、波動歯車装置用のものである。この波動歯車装置は、サーキュラスプライン2と、フレクスプライン3と、カム4と、フレクスプライン3とカム4との間に介在する玉軸受1とを備える。 Embodiments of the present invention will be described with reference to the accompanying drawings. As shown in FIGS. 1 and 2, this ball bearing 1 is for a wave gear device. The wave gear device includes a circular spline 2, a flexspline 3, a cam 4, and a ball bearing 1 interposed between the flexspline 3 and the cam 4.
 玉軸受1は、内輪5と、外輪6と、内輪5の軌道溝7と外輪6の軌道溝8との間に介在する一列の玉9と、これら玉9間の周方向間隔を保つ保持器10とを備える。両軌道溝7、8間には、通常、奇数個の玉9が配置されている。 The ball bearing 1 includes an inner ring 5, an outer ring 6, a row of balls 9 interposed between the raceway groove 7 of the inner ring 5 and the raceway groove 8 of the outer ring 6, and a cage that maintains a circumferential interval between these balls 9. 10. In general, an odd number of balls 9 are arranged between the raceway grooves 7 and 8.
 以下、「軸方向」は、玉軸受1の軸受中心軸(図示省略)に沿った方向のことをいう。玉軸受1の軸受中心軸は、設計上、内輪5、外輪6の各軌道輪の中心軸と同軸に設定され、また、波動歯車装置の回転軸線と同軸に設定されている。以下、その軸受中心軸に対して直角な方向のことを「径方向」といい、その軸受中心軸回りの円周方向のことを「周方向」という。 Hereinafter, the “axial direction” refers to a direction along the bearing central axis (not shown) of the ball bearing 1. The bearing central axis of the ball bearing 1 is designed to be coaxial with the central axes of the race rings of the inner ring 5 and the outer ring 6 and designed to be coaxial with the rotational axis of the wave gear device. Hereinafter, a direction perpendicular to the bearing central axis is referred to as a “radial direction”, and a circumferential direction around the bearing central axis is referred to as a “circumferential direction”.
 カム4は、第一軸S1と一体に周方向に回転可能となっている。フレクスプライン3は、第一軸S1と同軸に配置された第二軸S2と一体に周方向に回転可能となっている。 The cam 4 is rotatable in the circumferential direction integrally with the first shaft S1. The flexspline 3 is rotatable in the circumferential direction integrally with the second shaft S2 disposed coaxially with the first shaft S1.
 サーキュラスプライン2の内周には、周方向に所定数の歯11が設けられている。 A predetermined number of teeth 11 are provided in the circumferential direction on the inner periphery of the circular spline 2.
 フレクスプライン3は、筒部12と、筒部12の軸方向一端に連続する底部13とで形成されたカップ状になっている。筒部12の内側は、円筒面状に形成されている。筒部12の軸方向の先端は、フレクスプライン3の開口縁14になっている。筒部12の外周には、サーキュラスプライン2の歯11に噛み合う歯15が設けられている。フレクスプライン3の歯15の数は、サーキュラスプライン2の歯11の数よりも2つ少ない。底部13の中央部に第二軸S2が連結されている。 The flex spline 3 has a cup shape formed by a cylindrical portion 12 and a bottom portion 13 continuous with one axial end of the cylindrical portion 12. The inside of the cylinder part 12 is formed in a cylindrical surface shape. The tip of the cylinder part 12 in the axial direction is an opening edge 14 of the flexspline 3. On the outer periphery of the cylindrical portion 12, teeth 15 that mesh with the teeth 11 of the circular spline 2 are provided. The number of teeth 15 of the flexspline 3 is two less than the number of teeth 11 of the circular spline 2. The second shaft S <b> 2 is connected to the center portion of the bottom portion 13.
 図3に示すように、カム4は、楕円状に形成された外周面4aを有する。カム4の外周面4aは、楕円周長Lを有する。楕円周長Lは、外周面4aの任意の軸方向位置における一周の長さである。 As shown in FIG. 3, the cam 4 has an outer peripheral surface 4a formed in an elliptical shape. The outer peripheral surface 4a of the cam 4 has an oval peripheral length L 1. The elliptical circumferential length L1 is the length of one round at an arbitrary axial position of the outer peripheral surface 4a.
 図4に、玉軸受1が自然状態のときの断面を示す。同図に示すように、内輪5は、外周に軌道溝7を有する軌道輪からなる。外輪6は、内周に軌道溝8を有する軌道輪からなる。内輪5、外輪6は、それぞれ軸受鋼によって形成された円環状の一部品からなる。 FIG. 4 shows a cross section when the ball bearing 1 is in a natural state. As shown in the figure, the inner ring 5 is composed of a bearing ring having a raceway groove 7 on the outer periphery. The outer ring 6 is a race ring having a race groove 8 on the inner periphery. The inner ring 5 and the outer ring 6 are each composed of one annular part made of bearing steel.
 ここで、軸受鋼は、炭素0.9%以上1.1%以下、クロム0.9%以上1.6%以下を含有する高炭素クロム鋼のことをいう。軸受鋼としては、例えば、JIS規格(G4805:2008)で規定された高炭素クロム軸受鋼鋼材が挙げられる。 Here, bearing steel refers to high carbon chromium steel containing 0.9% to 1.1% carbon and 0.9% to 1.6% chromium. As the bearing steel, for example, a high carbon chromium bearing steel material defined by JIS standard (G4805: 2008) can be mentioned.
 図5に内輪5の側面視を示す。図4、図5に示すように、内輪5は、円筒面状に形成された内径面5aを有する。内輪5の内径面5aは、内輪5の内径dを規定する。内輪5の内径dは、玉軸受1の軸受内径に一致する。 FIG. 5 shows a side view of the inner ring 5. As shown in FIGS. 4 and 5, the inner ring 5 has an inner diameter surface 5a formed in a cylindrical surface shape. An inner diameter surface 5 a of the inner ring 5 defines an inner diameter d of the inner ring 5. The inner diameter d of the inner ring 5 matches the bearing inner diameter of the ball bearing 1.
 内輪5の外径Diは、内輪5に外接する仮想円筒面の直径に相当する。内輪5の外径Diは、内輪5の肩部外径で規定されている。内輪肉厚tは、内輪5の内径dと外径Diの径差である。内輪肉厚tの値は、内輪5の外径Diと内径dの差分に相当する。 The outer diameter Di of the inner ring 5 corresponds to the diameter of a virtual cylindrical surface that circumscribes the inner ring 5. The outer diameter Di of the inner ring 5 is defined by the shoulder outer diameter of the inner ring 5. The inner ring wall thickness t is the difference between the inner diameter d and the outer diameter Di of the inner ring 5. The value of the inner ring wall thickness t corresponds to the difference between the outer diameter Di and the inner diameter d of the inner ring 5.
 内輪5の内径面5aは、円周長Lを有する。円周長Lは、内径面5aの任意の軸方向位置における一周の長さである。 Inner surface 5a of the inner ring 5 has a circumferential length L 2. Circumferential length L 2 is the length of one round at any axial position of the inner surface 5a.
 図4に示すように、内輪5は、幅Bを有する。幅Bは、内輪5に軸方向両側から接する平行な仮想二平面間の距離に相当する。 As shown in FIG. 4, the inner ring 5 has a width B. The width B corresponds to the distance between two parallel virtual planes that contact the inner ring 5 from both sides in the axial direction.
 外輪6は、円筒面状に形成された外径面6aを有する。外輪6の外径面6aは、外輪6の外径Doを規定する。外輪6の外径Doは、玉軸受1の軸受外径に一致する。 The outer ring 6 has an outer diameter surface 6a formed in a cylindrical surface shape. The outer diameter surface 6 a of the outer ring 6 defines the outer diameter Do of the outer ring 6. The outer diameter Do of the outer ring 6 matches the bearing outer diameter of the ball bearing 1.
 玉軸受1の軸受断面高さTは、内輪5の内径面5aと外輪6の外径面6aとの径差である。Tの値は、外輪6の外径Doと内輪5の内径dの差分に相当する。 The bearing cross-sectional height T of the ball bearing 1 is a diameter difference between the inner diameter surface 5 a of the inner ring 5 and the outer diameter surface 6 a of the outer ring 6. The value of T corresponds to the difference between the outer diameter Do of the outer ring 6 and the inner diameter d of the inner ring 5.
 t/Tの値は、0.109以上0.448以下に設定されている。 The value of t / T is set to 0.109 or more and 0.448 or less.
 B/Tの値は、0.789以上1.579以下に設定されている。 The value of B / T is set to 0.789 or more and 1.579 or less.
 図1、図2に示すように、玉軸受1の内輪5は、この内径面5aにおいてカム4の外周面4aに嵌合されることにより、楕円状に弾性変形させられる。この嵌合により、玉軸受1がカム4の外周面4aに固定される。また、この際の内輪5の楕円状変形に伴い、外輪6が、玉9を介して押されることにより、楕円状に弾性変形させられる。この状態で玉軸受1の外輪6の外径面6aがフレクスプライン3の筒部12の内側に圧入されることにより、フレクスプライン3の筒部12も楕円状に弾性変形させられる。 As shown in FIGS. 1 and 2, the inner ring 5 of the ball bearing 1 is elastically deformed into an elliptical shape by being fitted to the outer peripheral surface 4a of the cam 4 at the inner diameter surface 5a. By this fitting, the ball bearing 1 is fixed to the outer peripheral surface 4 a of the cam 4. In addition, along with the elliptical deformation of the inner ring 5 at this time, the outer ring 6 is elastically deformed into an elliptical shape by being pushed through the ball 9. In this state, the outer diameter surface 6a of the outer ring 6 of the ball bearing 1 is press-fitted inside the cylindrical portion 12 of the flexspline 3, so that the cylindrical portion 12 of the flexspline 3 is also elastically deformed in an elliptical shape.
 嵌合されたカム4と玉軸受1は、ウェーブジェネレータを構成する。すなわち、第一軸S1が回転し、その第一軸S1に固定されているカム4の回転と一体に楕円状の玉軸受1が回転すると、その回転方向へ楕円状の長軸方向の向きが変わり、サーキュラスプライン2の歯11とフレクスプライン3の歯15の噛み合う位置が回転方向に移動して、フレクスプライン3とサーキュラスプライン2との間に1周で歯2つ分の相対回転が発生する。その相対回転が減速回転として取り出される。この使用中、フレクスプライン3の弾性変形により、ウェーブジェネレータにスラスト力Fが働く。このスラスト力Fは、玉軸受1の外輪6とフレクスプライン3との接触部(長軸上)からウェーブジェネレータに作用する。 The cam 4 and the ball bearing 1 fitted together constitute a wave generator. That is, when the first shaft S1 rotates and the elliptical ball bearing 1 rotates integrally with the rotation of the cam 4 fixed to the first shaft S1, the direction of the elliptical major axis direction is changed in the rotational direction. As a result, the meshing position of the teeth 11 of the circular spline 2 and the teeth 15 of the flexspline 3 moves in the rotation direction, and relative rotation of two teeth occurs between the flexspline 3 and the circular spline 2 in one rotation. . The relative rotation is extracted as a deceleration rotation. During this use, a thrust force F acts on the wave generator due to the elastic deformation of the flexspline 3. This thrust force F acts on the wave generator from the contact portion (on the long axis) between the outer ring 6 of the ball bearing 1 and the flex spline 3.
 ここで、図3に示すカム4の外周面4aと、図5に示す内輪5の内径面5aとを図1、図2に示すように嵌合したときの締め代を考えると、この締め代の最大値は、外周面4aの長軸長さと内径面5aの内径d(図4参照)との差分に相当する。また、この締め代の最小値は、外周面4aの短軸長さと内径面5aの内径dとの差分に相当する。 Here, considering the tightening allowance when the outer peripheral surface 4a of the cam 4 shown in FIG. 3 and the inner diameter surface 5a of the inner ring 5 shown in FIG. 5 are fitted as shown in FIGS. Is equivalent to the difference between the major axis length of the outer peripheral surface 4a and the inner diameter d (see FIG. 4) of the inner diameter surface 5a. The minimum value of the tightening allowance corresponds to the difference between the short axis length of the outer peripheral surface 4a and the inner diameter d of the inner diameter surface 5a.
 カム4の外周面4aと、内輪5の内径面5aとの締め代は、外周面4aを仮想円化したときの仮想外径面4av(図3参照)と、内輪5の内径面5a(図5参照)とで決めることができる。ここで、仮想円とは、外周面4aの楕円周長Lと同一の周長を有する円のことである。カム4の外周面4aの仮想外径面4avと、内輪5の内径面5aの内径dとの関係はL/Lに対応する。 The fastening allowance between the outer peripheral surface 4a of the cam 4 and the inner diameter surface 5a of the inner ring 5 includes a virtual outer diameter surface 4av (see FIG. 3) when the outer peripheral surface 4a is virtualized and an inner diameter surface 5a (see FIG. 3). 5)). Here, the virtual circle is that of a circle having an oval peripheral length L 1 the same circumference and the outer peripheral surface 4a. The relationship between the virtual outer diameter surface 4av of the outer peripheral surface 4a of the cam 4 and the inner diameter d of the inner diameter surface 5a of the inner ring 5 corresponds to L 1 / L 2 .
 カム4の外周面4aの仮想外径面4avと、内輪5の内径面5aとの締め代を決定すると、それら仮想外径面4avと内径面5aとのはめあい面圧を求めることができ、カム4から内輪5を引き抜くのに必要な内輪5の引抜き力も分かる。求めた内輪5の引抜き力が前述のスラスト力Fよりも大きい場合、スラスト力Fによって内輪5がカム4に対して軸方向にずれ動くことは、発生しなくなる。このことから、カム4の外周面4aの仮想外径面4avと、内輪5の内径面5aとの締め代の下限、すなわちL/Lの値の下限を決めることが可能である。このL/Lの値が1.0001以上である場合、この波動歯車装置の実用上、スラスト力Fによってカム4に対する玉軸受1のずれ動きが生じないようにすることが可能である。 When the fastening allowance between the virtual outer diameter surface 4av of the outer peripheral surface 4a of the cam 4 and the inner diameter surface 5a of the inner ring 5 is determined, the fitting surface pressure between the virtual outer diameter surface 4av and the inner diameter surface 5a can be obtained. The pulling force of the inner ring 5 necessary for pulling out the inner ring 5 from 4 is also known. When the obtained pulling force of the inner ring 5 is larger than the above-described thrust force F, the inner ring 5 does not move in the axial direction with respect to the cam 4 due to the thrust force F. Therefore, you are possible to determine a virtual outside diameter surface 4av the outer peripheral surface 4a of the cam 4, interference of the lower limit of the inner diameter surface 5a of the inner ring 5, i.e. the lower limit of the value of L 1 / L 2. When the value of L 1 / L 2 is 1.0001 or more, it is possible to prevent the ball bearing 1 from moving with respect to the cam 4 due to the thrust force F in practical use of the wave gear device.
 また、それら仮想外径面4avと内径面5aとの締め代及び前述の内輪肉厚tが分かると、内輪5の断面積に掛かる引張り応力が分かる。この引張り応力が許容値を超えると、内輪5が破断して割れる可能性がある。軸受鋼製の内輪5、外輪6の場合、内輪5が割れず、玉軸受1を安定して使用できるような当該締め代の上限値は、内輪5の接線応力の最大値が大凡13kgf/mm(127MPa)を超えない値とすればよい。このことから、カム4の外周面4aの仮想外径面4avと、内輪5の内径面5aとの締め代の上限、すなわちL/Lの値の上限を決めることが可能である。このL/Lの値が1.0007以下である場合、この波動歯車装置の実用上、内輪5とカム4間の締め代による内輪5の割れを防ぐことが可能である。 Further, when the tightening allowance between the virtual outer diameter surface 4av and the inner diameter surface 5a and the inner ring wall thickness t described above are known, the tensile stress applied to the cross-sectional area of the inner ring 5 is known. If this tensile stress exceeds the allowable value, the inner ring 5 may break and break. In the case of the inner ring 5 and the outer ring 6 made of bearing steel, the upper limit value of the tightening allowance that allows the ball bearing 1 to be used stably without breaking the inner ring 5 is that the maximum value of the tangential stress of the inner ring 5 is approximately 13 kgf / mm. The value should not exceed 2 (127 MPa). Therefore, it is possible to determine a virtual outside diameter surface 4av the outer peripheral surface 4a of the cam 4, interference of the upper limit of the inner diameter surface 5a of the inner ring 5, namely the upper limit of the value of L 1 / L 2. When the value of L 1 / L 2 is 1.0007 or less, the wave gear device can be practically prevented from cracking the inner ring 5 due to a tightening margin between the inner ring 5 and the cam 4.
 上述のように、この玉軸受1は、L/Lの値が1.0001以上1.0007以下であるので、この波動歯車装置の使用時、フレクスプライン3とカム4との間に介在する玉軸受1に作用するスラスト力Fによってカム4に対する玉軸受1のずれ動きが生じないようにすると共に、内輪5とカム4間の締め代による内輪5の割れを防ぐことができる。 As described above, since the value of L 1 / L 2 of the ball bearing 1 is 1.0001 or more and 1.0007 or less, the ball bearing 1 is interposed between the flex spline 3 and the cam 4 when the wave gear device is used. As a result, the thrust force F acting on the ball bearing 1 prevents the ball bearing 1 from being displaced relative to the cam 4, and the inner ring 5 can be prevented from cracking due to the interference between the inner ring 5 and the cam 4.
また、この玉軸受1は、t/Tの値が0.109以上0.448以下であって、B/Tの値が0.789以上1.579以下であるので、内輪5のずれ動きと割れを防ぐのに適したものである。 Further, the ball bearing 1 has a t / T value of 0.109 or more and 0.448 or less and a B / T value of 0.789 or more and 1.579 or less. It is suitable for preventing cracking.
 実施例は、カム4の外周面4aの楕円周長Lが78.66mmである(以下、適宜、図1、図3、図5を参照)。また、発生するスラスト力Fは、10kgfである(ただし、出力トルク瞬時最大46Nm時)。この実施例は、非特許文献1の第052頁におけるHDS型番14を前提にしている。そのスラスト力Fは、2×T/D×0.07×tan30°(ただし、T:出力トルク、D:HDS型番×0.00256)で求めることができる。 Examples are oval peripheral length L 1 of the outer peripheral surface 4a of the cam 4 is 78.66Mm (hereinafter, referring to FIGS. 1, 3, 5). The generated thrust force F is 10 kgf (however, the maximum output torque is 46 Nm at the moment). This example is based on the HDS model number 14 on page 052 of Non-Patent Document 1. The thrust force F can be obtained by 2 × T / D × 0.07 × tan 30 ° (where T: output torque, D: HDS model number × 0.00256).
 また、内輪5の引抜き力は、0.12×P×π×d×B (ただし、P:内輪の外径面の面圧 d:内輪の内径 B:内輪の幅)で求めることができる。 Further, the pulling force of the inner ring 5 can be obtained by 0.12 × P × π × d × B (where P: surface pressure of the outer surface of the inner ring, d: inner diameter of the inner ring, B: width of the inner ring).
 内輪5の外径Diを26mm、内輪5の幅Bを7mmに固定し、内輪5の内径dを変化させて周長比L/Lを異ならせた各例について、内輪5の引抜き力と、内輪5の最大応力(接線応力の最大値)とを算出した結果をt/T、B/Tの値と共に表1に示す。 For each example in which the outer ring Di is fixed to 26 mm, the inner ring 5 width B is fixed to 7 mm, and the inner diameter d of the inner ring 5 is varied to vary the circumferential ratio L 1 / L 2 , the pulling force of the inner ring 5 Table 1 shows the results of calculating the maximum stress of the inner ring 5 (the maximum value of the tangential stress) together with the values of t / T and B / T.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 内輪5の外径Diを29mm、内輪5の幅Bを3.5mmに固定し、内輪5の内径dを変化させてL/Lを異ならせた各例について、内輪5の引抜き力と、内輪5の最大応力(接線応力の最大値)とを算出した結果をt/T、B/Tの値と共に表2に示す。 For each example in which the outer diameter Di of the inner ring 5 is fixed to 29 mm, the width B of the inner ring 5 is fixed to 3.5 mm, and the inner diameter d of the inner ring 5 is changed to make L 1 / L 2 different, Table 2 shows the results of calculating the maximum stress of the inner ring 5 (the maximum value of the tangential stress) together with the values of t / T and B / T.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表1、表2における最大応力が13kgf/mmを超える場合、内輪5の割れが懸念される。したがって、表1、表2において、内輪の内径dが25.02mm(周長比L/Lが1.0008)の例は、適切な締め代とはならない。 When the maximum stress in Tables 1 and 2 exceeds 13 kgf / mm 2 , the inner ring 5 may be cracked. Therefore, in Tables 1 and 2, an example in which the inner diameter d of the inner ring is 25.02 mm (circumferential length ratio L 1 / L 2 is 1.0008) is not an appropriate fastening allowance.
 また、表1、表2における内輪5の引抜き力がスラスト力F:10kgf以下である場合、内輪5がカム4に対して軸方向にずれ動く。したがって、表1、表2において、内輪の内径dが25.038mm(L/Lが1.0001)未満の例は、適切な締め代とはならない。 Further, when the pulling force of the inner ring 5 in Tables 1 and 2 is a thrust force F: 10 kgf or less, the inner ring 5 moves in the axial direction with respect to the cam 4. Therefore, in Tables 1 and 2, an example in which the inner diameter d of the inner ring is less than 25.038 mm (L 1 / L 2 is 1.0001) is not an appropriate tightening allowance.
 すなわち、表1、表2からは、1.0001≦L/L≦1.0007であれば適切な締め代になることが分かる。 That is, it can be seen from Tables 1 and 2 that if 1.0001 ≦ L 1 / L 2 ≦ 1.0007, an appropriate margin is obtained.
 また、表1、表2からは、内輪5の引抜き力がスラスト力Fに勝る各例のt/Tに着目すると、0.109≦t/T≦0.448であれば、内輪5のずれ動きを防ぐのに適することが分かる。 Further, from Tables 1 and 2, focusing on the t / T of each example in which the pulling force of the inner ring 5 is superior to the thrust force F, if 0.109 ≦ t / T ≦ 0.448, the displacement of the inner ring 5 It turns out to be suitable for preventing movement.
 また、表1、表2からは、内輪5の引抜き力がスラスト力Fに勝る各例のB/Tに着目すると、0.789≦B/T≦1.579であれば、内輪5のずれ動きを防ぐのに適することが分かる。 Further, from Tables 1 and 2, focusing on the B / T in each example where the pulling force of the inner ring 5 exceeds the thrust force F, if 0.789 ≦ B / T ≦ 1.579, the displacement of the inner ring 5 It turns out to be suitable for preventing movement.
 また、表1、表2からは、最大応力が13kgf/mmを超えない各例のB/Tに着目すると、0.789≦B/T≦1.579であれば、内輪5の割れを防ぐのに適することが分かる。 Further, from Tables 1 and 2, when focusing on B / T in each example where the maximum stress does not exceed 13 kgf / mm 2 , if 0.789 ≦ B / T ≦ 1.579, the inner ring 5 is cracked. It turns out to be suitable for prevention.
 今回開示された実施形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. Therefore, the scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 玉軸受
2 サーキュラスプライン
3 フレクスプライン
4 カム
4a 外周面
5 内輪
5a 内径面
6 外輪
6a 外径面
9 玉
t 内輪肉厚
B 内輪の幅
 楕円周長
 円周長
T 軸受断面高さ
DESCRIPTION OF SYMBOLS 1 Ball bearing 2 Circular spline 3 Flex spline 4 Cam 4a Outer surface 5 Inner ring 5a Inner ring surface 6 Outer ring 6a Outer surface 9 Ball t Inner ring wall thickness B Inner ring width L 1 Elliptical circumference L 2 Circumference length T Bearing cross section height

Claims (4)

  1.  波動歯車装置のカムに嵌合する内径面を有する内輪と、前記波動歯車装置のフレクスプラインの内側に嵌合する外径面を有する外輪と、前記内輪と前記外輪との間に介在する複数の玉と、を備える玉軸受において、
     前記カムに楕円状に形成された外周面の楕円周長をLとし、前記内輪の内径面の円周長をLとしたとき、L/Lの値が、1.0001以上1.0007以下であることを特徴とする玉軸受。
    An inner ring having an inner diameter surface that fits into a cam of a wave gear device, an outer ring having an outer diameter surface that fits inside a flexspline of the wave gear device, and a plurality of intermediate rings interposed between the inner ring and the outer ring A ball bearing comprising a ball,
    An oval peripheral length of the outer peripheral surface formed into an elliptical shape with the cam and L 1, when the circumferential length of the inner ring of the inner surface was L 2, the value of L 1 / L 2 is 1.0001 or more 1 A ball bearing characterized by being no more than 0007.
  2.  前記内輪の内径と外径の径差である内輪肉厚をtとし、前記内輪の内径面と前記外輪の外径面との径差である軸受断面高さをTとしたとき、t/Tの値が、0.109以上0.448以下である請求項1に記載の玉軸受。 T / T, where t is the inner ring wall thickness that is the difference between the inner diameter and outer diameter of the inner ring, and T is the bearing cross-sectional height that is the difference in diameter between the inner diameter surface of the inner ring and the outer diameter surface of the outer ring. The ball bearing according to claim 1, wherein the value of is 0.109 or more and 0.448 or less.
  3.  前記内輪の幅をBとし、前記内輪の内径面と前記外輪の外径面との径差である軸受断面高さをTとしたとき、B/Tの値が、0.789以上1.579以下である請求項1又は2に記載の玉軸受。 The value of B / T is 0.789 or more and 1.579, where B is the width of the inner ring and T is the bearing cross-sectional height, which is the difference in diameter between the inner diameter surface of the inner ring and the outer diameter surface of the outer ring. The ball bearing according to claim 1 or 2, wherein:
  4.  前記内輪が軸受鋼によって形成されている請求項1から3のいずれか1項に記載の玉軸受。 The ball bearing according to any one of claims 1 to 3, wherein the inner ring is formed of bearing steel.
PCT/JP2018/016445 2017-04-26 2018-04-23 Ball bearing WO2018199016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087107A JP6846980B2 (en) 2017-04-26 2017-04-26 Ball bearing
JP2017-087107 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018199016A1 true WO2018199016A1 (en) 2018-11-01

Family

ID=63920441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016445 WO2018199016A1 (en) 2017-04-26 2018-04-23 Ball bearing

Country Status (2)

Country Link
JP (1) JP6846980B2 (en)
WO (1) WO2018199016A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172617A (en) * 2020-01-27 2021-07-27 精工爱普生株式会社 Gear device and robot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262368B2 (en) * 2019-10-23 2023-04-21 住友重機械工業株式会社 Gear device series, manufacturing method and design method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304274A (en) * 2000-04-20 2001-10-31 Nsk Ltd Non-round rolling bearing
JP2013249875A (en) * 2012-05-31 2013-12-12 Ntn Corp Friction drive-type wave transmission
JP2015209931A (en) * 2014-04-28 2015-11-24 キヤノン株式会社 Undulation gear device and robot arm
JP2016121724A (en) * 2014-12-24 2016-07-07 株式会社ジェイテクト Ball bearing for wave motion reduction gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304274A (en) * 2000-04-20 2001-10-31 Nsk Ltd Non-round rolling bearing
JP2013249875A (en) * 2012-05-31 2013-12-12 Ntn Corp Friction drive-type wave transmission
JP2015209931A (en) * 2014-04-28 2015-11-24 キヤノン株式会社 Undulation gear device and robot arm
JP2016121724A (en) * 2014-12-24 2016-07-07 株式会社ジェイテクト Ball bearing for wave motion reduction gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172617A (en) * 2020-01-27 2021-07-27 精工爱普生株式会社 Gear device and robot

Also Published As

Publication number Publication date
JP2018184996A (en) 2018-11-22
JP6846980B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
EP3205905B1 (en) Cup-shaped flexible externally toothed gear and cup-type strain wave gearing
US9360098B2 (en) Strain wave drive with improved performance
US10443657B2 (en) Power transmission device for vehicle
KR101743461B1 (en) Flat strain wave gearings
US20130247716A1 (en) Strain wave gear apparatus
EP2669540A1 (en) Rolling bearing cage consisting of a plurality of parts and rolling bearing with such a cage
WO2012165395A1 (en) Friction drive-type wave transmission
WO2018199016A1 (en) Ball bearing
US11035412B2 (en) Bearing assembly and method of installation
TWI724170B (en) Wave generator and strain wave gearing
CN110914574A (en) Wave gear device
JP2018115693A (en) Wave motion gear device
JP6192580B2 (en) Bending gear system
US20160025134A1 (en) Cage for angular ball bearing
JP6921469B2 (en) Strain wave gearing with roller bearing wave generator
JP2016121724A (en) Ball bearing for wave motion reduction gear
JP2017110705A (en) Wave gear transmission device
JP6604411B2 (en) Ball bearing for wave reducer
JP2017026021A (en) Wave motion reduction gear and ball bearing for wave motion reduction gear
JP2021055767A (en) Ball bearing
EP3940252A1 (en) Rolling bearing
WO2012086327A1 (en) Gear transmission device
JP6816304B2 (en) Strain wave gearing with unit structure
JP2003207004A (en) Deflection friction type transmission
JP2017122501A (en) Shaft connection structure of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792313

Country of ref document: EP

Kind code of ref document: A1