WO2018198869A1 - Heating monitoring system of stored product, heating monitoring method of stored product, and silo - Google Patents

Heating monitoring system of stored product, heating monitoring method of stored product, and silo Download PDF

Info

Publication number
WO2018198869A1
WO2018198869A1 PCT/JP2018/015759 JP2018015759W WO2018198869A1 WO 2018198869 A1 WO2018198869 A1 WO 2018198869A1 JP 2018015759 W JP2018015759 W JP 2018015759W WO 2018198869 A1 WO2018198869 A1 WO 2018198869A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction hose
coal
silo
stored
heat generation
Prior art date
Application number
PCT/JP2018/015759
Other languages
French (fr)
Japanese (ja)
Inventor
裕晶 鈴木
輝夫 日置
前田 守彦
大介 甲斐
理 桑野
敦 糸川
秀成 西浦
Original Assignee
千代田化工建設株式会社
関西電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社, 関西電力株式会社 filed Critical 千代田化工建設株式会社
Publication of WO2018198869A1 publication Critical patent/WO2018198869A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/04Fire prevention, containment or extinguishing specially adapted for particular objects or places for dust or loosely-baled or loosely-piled materials, e.g. in silos, in chimneys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state

Definitions

  • the present invention relates to a heat generation monitoring system and a heat generation monitoring method for stored items stored in a silo.
  • thermocouple in order to monitor the heat generation of coal stored in a coal silo, a method for monitoring the heat generation of coal by embedding a thermocouple in the stored coal and detecting a signal from the thermocouple is known.
  • Patent Document 1 a method for monitoring the heat generation of coal by embedding a thermocouple in the stored coal and detecting a signal from the thermocouple is known.
  • thermocouple As described above, it may take a long time to detect heat generated at a location away from the thermocouple, or the detection may not be possible.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technology capable of quickly detecting the heat generated in the storage stored in the silo.
  • a storage heat generation monitoring system is based on a suction hose suspended from the top of a silo and height information of the storage stored in the silo.
  • a suction hose length adjusting device for adjusting the length of the suction hose so that the suction port of the suction hose is positioned near the surface of the object, and a gas sensor for detecting the concentration of a predetermined component in the gas sucked by the suction hose.
  • the suction hose length adjusting device may include a winding drum for winding the suction hose and a rotation driving device for rotationally driving the winding drum.
  • a dust filter provided at the suction port of the suction hose may be further provided.
  • the gas sensor may be configured to detect the concentration of carbon monoxide, carbon dioxide or odor in the gas sucked by the suction hose.
  • the suction hose may be suspended near the side wall of the silo.
  • Another aspect of the present invention is a silo equipped with the above-described storage heat generation monitoring system.
  • Another aspect of the present invention is a method for monitoring heat generation of stored items.
  • the suction hose is suspended from the top of the silo, and the suction port of the suction hose is positioned near the surface of the storage based on the height information of the storage stored in the silo. And a step of detecting the concentration of a predetermined component in the gas sucked by the suction hose.
  • FIG. 1 is a diagram for explaining a configuration of a coal silo 100 to which a coal heat generation monitoring system 10 according to an embodiment of the present invention is applied.
  • the coal silo 100 may be, for example, a large one having an inner diameter of 60 m, a height of 75 m, and a coal capacity of 100,000 tons.
  • the coal silo 100 includes a base 102, a side wall 104 standing on the base 102, and a roof 106 formed on the side wall 104.
  • Coal 120 is stored in the coal silo 100.
  • the side wall 104 includes a substantially cylindrical lower side wall 104a and a substantially truncated cone-shaped upper side wall 104b formed on the lower side wall 104a.
  • a loading station stage 108 is provided at the top of the coal silo 100.
  • the loading station stage 108 is provided with a carry-in conveyor 110 for carrying coal. Coal carried by the carry-in conveyor 110 is dropped from the loading station stage 108 and stored in the coal silo 100.
  • a plurality of small cones (small partition plates, small partition walls) 112 and a plurality of large cones (large partition plates, large partition walls) 114 are provided.
  • a carry-out conveyor 116 is provided below the small cone 112. The coal 120 stored in the coal silo 100 is discharged to the carry-out conveyor 116 from the opening provided at the bottom, and is carried out of the coal silo 100 by the carry-out conveyor 116.
  • the coal silo 100 includes a heat generation monitoring system 10 for detecting the heat generation of the stored coal 120.
  • FIG. 2 is a diagram for explaining the coal heat generation monitoring system 10.
  • the heat generation monitoring system 10 includes a suction hose 12, a dust filter 14, a suction hose length adjusting device 16, and a gas sensor 18.
  • the suction hose 12 is suspended from the upper part of the coal silo 100.
  • the suction hose 12 may be a rubber hose, for example.
  • the diameter of the suction hose 12 may be about 1 cm, for example.
  • the length of the suction hose 12 may be set according to the height of the coal silo 100.
  • the dust filter 14 is provided so as to cover the suction port 12 a at the tip of the suction hose 12.
  • the dust filter 14 prevents coal dust from entering the suction hose 12.
  • the dust filter 14 may be backwashed by periodically blowing air from the inside to the outside of the filter.
  • the suction hose length adjusting device 16 is installed on the loading stage 108.
  • the suction hose length adjusting device 16 adjusts the suspension length H of the suction hose 12.
  • the suction hose length adjusting device 16 includes a winding drum 20 for winding the suction hose 12 and a rotation driving device 22 for rotationally driving the winding drum 20.
  • the rotary drive device 22 acquires the height information of the coal 120 stored in the coal silo 100, and the suction port 12a of the suction hose 12 near the surface of the stored coal 120 based on the height information of the coal.
  • the suspension drum 20 is controlled to rotate so as to adjust the suspension length H of the suction hose 12.
  • the surface of the coal 120 is the uppermost surface of the coal layer stored in the coal silo 100.
  • the coal height information may be acquired from an existing coal height detection device in the coal silo 100 or may be acquired from a separately provided coal height detection device. Controlling the rotation of the take-up drum 20 can, for example, adjust the amount of rotation of the take-up drum 20 by rotating a motor (not shown).
  • the adjustment of the suspension length H of the suction hose 12 is performed, for example, by previously storing the height from the bottom of the coal silo 100 to the loading station stage 108 as the maximum height, and setting the height of the acquired coal 120 to the maximum.
  • the height obtained by subtracting a slight margin from the height obtained by subtracting from the height is calculated as the target length, and the rotation of the winding drum 20 is controlled (rotation) so that the actual suspension length H becomes the target length.
  • the suspension length H can be adjusted by adjusting the amount).
  • the gas sensor 18 detects the concentration of a predetermined component in the gas sucked by the suction hose 12.
  • a predetermined component in the gas sucked by the suction hose 12.
  • steam is generated from coal at a coal temperature of about 30 ° C.
  • a paraffinic odor is generated at 50 to 60 ° C.
  • carbon monoxide (CO) and carbon dioxide (CO 2 ) are generated.
  • carbon-based gas such as methane is generated when it is generated and further exceeds 100 ° C.
  • the gas sensor 18 may be configured to detect the concentration of CO, CO 2 or odor in the gas sucked by the suction hose 12. By detecting the concentration of CO, CO 2 , or odor in the gas sucked by the suction hose 12, it is possible to detect natural heat of coal early.
  • the control device of the coal silo 100 connected to the gas sensor 18 determines that the coal is in an abnormal heat generation state when the concentration of the predetermined component exceeds a predetermined threshold value, and performs discharging and discharging of the coal to Cooling can be performed.
  • CO gas sensor a constant potential electrolytic type can be suitably used. Further, as the CO 2 gas sensor, a galvanic cell type can be suitably used.
  • the suspension length H of the suction hose 12 is adjusted so that the suction port 12a of the suction hose 12 is positioned near the surface of the stored coal 120.
  • the gas sensor suction port is located near the loading station stage 108, because there is a distance from the stored coal bed surface to the gas sensor suction port, the gas generated in the coal bed diffuses, There is a possibility that gas cannot be detected by the gas sensor, or it may take time to detect.
  • the suction port 12a of the suction hose 12 since the suction port 12a of the suction hose 12 is located near the surface of the stored coal 120, the suction port before the gas generated in the coal layer diffuses. Suction is performed at 12a and can be detected by the gas sensor 18. Thereby, the heat_generation
  • FIG. 3 shows an example of the coal temperature distribution when coal is stored in the coal silo 100 for a long period of time.
  • the temperature of coal is represented by hatching.
  • the suction hose 12 may be suspended near the side wall 104 (lower side wall 104a) of the coal silo 100.
  • the suction hose 12 extends obliquely downward along the upper side wall 104b from the suction hose length adjusting device 16 installed on the loading place stage 108, and is a pulley 30 provided near the boundary between the upper side wall 104b and the lower side wall 104a. Is suspended in the vicinity of the lower side wall 104a.
  • the length of the suction hose 12 is adjusted so that the suction port of the suction hose 12 is positioned near the surface of the stored coal 120. In this manner, by suspending the suction hose 12 near the side wall 104 of the coal silo 100, it is possible to more quickly detect the heat generation of the coal 120 stored in the coal silo 100.
  • the coal height information may be acquired from an existing coal height detection device in the coal silo 100 or may be acquired from a separately provided coal height detection device.
  • the height information of the coal is obtained by using contact sensors suspended from the loading stage 108 (for example, a plurality of sensors attached to a plurality of locations of one cable or wire, that is, level meters). It is possible to acquire or to obtain information on the height of coal calculated from the amount of coal carried in and out.
  • the coal silo 100 includes the lower side wall 104a having the substantially cylindrical shape and the upper side wall 104b having the substantially truncated cone shape, but the coal silo may have any shape.
  • it may be a substantially cuboidal coal silo whose longitudinal direction is the coal loading / unloading direction by the carry-in conveyor or the carry-out conveyor.
  • four carry-out conveyors 116 are provided in parallel, but one or two carry-out conveyors 116 may be provided.
  • one heat generation monitoring system 10 is described as being fixed to the coal silo 100.
  • a plurality of heat generation monitoring systems may be provided for the coal silo 100, or a heat generation monitoring system may be provided.
  • the suction hose may be suspended from a desired position by making it possible to select the suspension position of the suction hose.
  • the present invention has been described by taking the heat generation monitoring system for coal stored in the coal silo as an example.
  • the present invention is not limited to a coal heat generation monitoring system, and can be applied to other silo storage heat generation monitoring systems such as grains, biomass, and recycled solid fuel.
  • the present invention can be used for silos that store coal or the like.

Abstract

This heating monitoring system 10 of coal is provided with: a suction hose 12 suspended from the top of a coal silo 100; a suction hose length adjusting apparatus 16 which adjusts the length of the suction hose 12 on the basis of height information of coal 120 stored in the coal silo 100 such that the suction port of the suction hose 12 is positioned near the surface of the stored coal 120, and a gas sensor 18 which detects the concentration of a prescribed component in the gas suctioned by the suction hose 12.

Description

貯蔵物の発熱監視システム、貯蔵物の発熱監視方法、およびサイロStorage heat generation monitoring system, storage heat generation monitoring method, and silo
 本発明は、サイロ内に貯蔵された貯蔵物の発熱監視システムおよび発熱監視方法に関する。 The present invention relates to a heat generation monitoring system and a heat generation monitoring method for stored items stored in a silo.
 石炭火力発電所等に設置される石炭サイロでは、石炭の貯蔵期間が長くなると石炭サイロ内で石炭が酸化発熱して自然発火が生じる場合がある。そこで、石炭サイロ内に貯蔵された石炭の発熱を監視し、発熱が発生した場合には石炭の払い出しや放水を行って発熱箇所の冷却を行っている。 In a coal silo installed in a coal-fired power plant, etc., if the coal storage period is long, the coal may oxidize and generate heat in the coal silo, resulting in spontaneous ignition. Therefore, the heat generation of the coal stored in the coal silo is monitored, and when the heat generation occurs, the coal is discharged or discharged to cool the heat generation portion.
 従来、石炭サイロ内に貯蔵された石炭の発熱を監視するために、貯蔵石炭中に熱電対を埋め込み、該熱電対からの信号を検出することにより、石炭の発熱を監視する方法が知られている(例えば特許文献1参照)。 Conventionally, in order to monitor the heat generation of coal stored in a coal silo, a method for monitoring the heat generation of coal by embedding a thermocouple in the stored coal and detecting a signal from the thermocouple is known. (For example, refer to Patent Document 1).
特開2009-68954号公報JP 2009-68954 A
 しかしながら、上記のような熱電対を用いた発熱監視方法の場合、熱電対から離れた箇所で生じた発熱の検知に時間がかかる可能性や検知ができない可能性がある。 However, in the case of the heat generation monitoring method using a thermocouple as described above, it may take a long time to detect heat generated at a location away from the thermocouple, or the detection may not be possible.
 本発明は、こうした状況を鑑みてなされたものであり、その目的は、サイロ内に貯蔵された貯蔵物の発熱を迅速に検知できる技術を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technology capable of quickly detecting the heat generated in the storage stored in the silo.
 上記課題を解決するために、本発明のある態様の貯蔵物の発熱監視システムは、サイロの上部から垂下される吸引ホースと、サイロ内に貯蔵された貯蔵物の高さ情報に基づいて、貯蔵物の表面近傍に吸引ホースの吸引口が位置するよう、吸引ホースの長さを調整する吸引ホース長調整装置と、吸引ホースで吸引されたガス中の所定の成分の濃度を検知するガスセンサとを備える。 In order to solve the above-described problems, a storage heat generation monitoring system according to an aspect of the present invention is based on a suction hose suspended from the top of a silo and height information of the storage stored in the silo. A suction hose length adjusting device for adjusting the length of the suction hose so that the suction port of the suction hose is positioned near the surface of the object, and a gas sensor for detecting the concentration of a predetermined component in the gas sucked by the suction hose. Prepare.
 吸引ホース長調整装置は、吸引ホースを巻き取るための巻き取りドラムと、巻き取りドラムを回転駆動するための回転駆動装置とを備えてもよい。 The suction hose length adjusting device may include a winding drum for winding the suction hose and a rotation driving device for rotationally driving the winding drum.
 吸引ホースの吸引口に設けられた粉塵フィルタをさらに備えてもよい。 A dust filter provided at the suction port of the suction hose may be further provided.
 ガスセンサは、吸引ホースで吸引されたガス中の一酸化炭素、二酸化炭素または臭気の濃度を検知するよう構成されてもよい。 The gas sensor may be configured to detect the concentration of carbon monoxide, carbon dioxide or odor in the gas sucked by the suction hose.
 吸引ホースは、サイロの側壁近傍に垂下されてもよい。 The suction hose may be suspended near the side wall of the silo.
 本発明の別の態様は、上記の貯蔵物の発熱監視システムを備えるサイロである。 Another aspect of the present invention is a silo equipped with the above-described storage heat generation monitoring system.
 本発明の別の態様は、貯蔵物の発熱監視方法である。この方法は、サイロの上部から吸引ホースを垂下させるステップと、サイロ内に貯蔵された貯蔵物の高さ情報に基づいて、貯蔵物の表面近傍に吸引ホースの吸引口が位置するよう、吸引ホースの長さを調整するステップと、吸引ホースで吸引されたガス中の所定の成分の濃度を検知するステップとを備える。 Another aspect of the present invention is a method for monitoring heat generation of stored items. In this method, the suction hose is suspended from the top of the silo, and the suction port of the suction hose is positioned near the surface of the storage based on the height information of the storage stored in the silo. And a step of detecting the concentration of a predetermined component in the gas sucked by the suction hose.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between a method, an apparatus, a system, a recording medium, a computer program, and the like are also effective as an aspect of the present invention.
 本発明によれば、サイロ内に貯蔵された貯蔵物の発熱を迅速に検知できる。 According to the present invention, it is possible to quickly detect the heat generation of the stored material stored in the silo.
本発明の実施形態に係る石炭の発熱監視システムが適用される石炭サイロの構成を説明するための図である。It is a figure for demonstrating the structure of the coal silo to which the heat generation monitoring system of coal which concerns on embodiment of this invention is applied. 石炭の発熱監視システムを説明するための図である。It is a figure for demonstrating the heat_generation | fever monitoring system of coal. 石炭サイロ内に石炭を長期間貯蔵したときの石炭温度分布の一例を示す図である。It is a figure which shows an example of coal temperature distribution when coal is stored in a coal silo for a long period of time.
 図1は、本発明の実施形態に係る石炭の発熱監視システム10が適用される石炭サイロ100の構成を説明するための図である。 FIG. 1 is a diagram for explaining a configuration of a coal silo 100 to which a coal heat generation monitoring system 10 according to an embodiment of the present invention is applied.
 石炭サイロ100は、例えば、内径60m、高さ75m、石炭容量10万トンの大型のものであってよい。 The coal silo 100 may be, for example, a large one having an inner diameter of 60 m, a height of 75 m, and a coal capacity of 100,000 tons.
 図1に示すように、石炭サイロ100は、基礎102と、基礎102上に立設された側壁104と、側壁104の上に形成された屋根106とを備える。石炭サイロ100内には石炭120が貯蔵される。側壁104は、略円筒形状の下部側壁104aと、下部側壁104aの上に形成された略円錐台形状の上部側壁104bとから成る。 As shown in FIG. 1, the coal silo 100 includes a base 102, a side wall 104 standing on the base 102, and a roof 106 formed on the side wall 104. Coal 120 is stored in the coal silo 100. The side wall 104 includes a substantially cylindrical lower side wall 104a and a substantially truncated cone-shaped upper side wall 104b formed on the lower side wall 104a.
 石炭サイロ100の上部には積付所ステージ108が設けられている。積付所ステージ108には、石炭を搬入するための搬入コンベヤ110が設けられている。搬入コンベヤ110によって運ばれた石炭は、積付所ステージ108から落下されて石炭サイロ100内に貯蔵される。 A loading station stage 108 is provided at the top of the coal silo 100. The loading station stage 108 is provided with a carry-in conveyor 110 for carrying coal. Coal carried by the carry-in conveyor 110 is dropped from the loading station stage 108 and stored in the coal silo 100.
 石炭サイロ100の底部には、複数の小コーン(小仕切板、小仕切壁)112と、複数の大コーン(大仕切板、大仕切壁)114が設けられている。小コーン112の下方には、搬出コンベヤ116が設けられている。石炭サイロ100内に貯蔵された石炭120は、底部に設けられた開口部から搬出コンベヤ116に払い出され、搬出コンベヤ116によって石炭サイロ100の外に搬出される。 At the bottom of the coal silo 100, a plurality of small cones (small partition plates, small partition walls) 112 and a plurality of large cones (large partition plates, large partition walls) 114 are provided. A carry-out conveyor 116 is provided below the small cone 112. The coal 120 stored in the coal silo 100 is discharged to the carry-out conveyor 116 from the opening provided at the bottom, and is carried out of the coal silo 100 by the carry-out conveyor 116.
 石炭サイロ100は、貯蔵された石炭120の発熱を検出するための発熱監視システム10を備える。 The coal silo 100 includes a heat generation monitoring system 10 for detecting the heat generation of the stored coal 120.
 図2は、石炭の発熱監視システム10を説明するための図である。図2に示すように、発熱監視システム10は、吸引ホース12と、粉塵フィルタ14と、吸引ホース長調整装置16と、ガスセンサ18とを備える。 FIG. 2 is a diagram for explaining the coal heat generation monitoring system 10. As shown in FIG. 2, the heat generation monitoring system 10 includes a suction hose 12, a dust filter 14, a suction hose length adjusting device 16, and a gas sensor 18.
 吸引ホース12は、石炭サイロ100の上部から垂下されるものである。吸引ホース12は、例えばゴム製のホースであってよい。吸引ホース12の直径は、例えば1cm程度であってよい。吸引ホース12の長さは、石炭サイロ100の高さに応じて設定されてよい。 The suction hose 12 is suspended from the upper part of the coal silo 100. The suction hose 12 may be a rubber hose, for example. The diameter of the suction hose 12 may be about 1 cm, for example. The length of the suction hose 12 may be set according to the height of the coal silo 100.
 粉塵フィルタ14は、吸引ホース12の先端の吸引口12aを覆うように設けられる。この粉塵フィルタ14は、吸引ホース12内に石炭の粉塵が入るのを防止する。なお、粉塵フィルタ14が粉塵で目詰まりするのを防止するためには、定期的にエアをフィルタ内側から外側に吹くことで、粉塵フィルタ14を逆洗すればよい。 The dust filter 14 is provided so as to cover the suction port 12 a at the tip of the suction hose 12. The dust filter 14 prevents coal dust from entering the suction hose 12. In order to prevent the dust filter 14 from being clogged with dust, the dust filter 14 may be backwashed by periodically blowing air from the inside to the outside of the filter.
 吸引ホース長調整装置16は、積付所ステージ108上に設置される。吸引ホース長調整装置16は、吸引ホース12の吊り下げ長さHを調整する。吸引ホース長調整装置16は、吸引ホース12を巻き取るための巻き取りドラム20と、巻き取りドラム20を回転駆動するための回転駆動装置22とを備える。 The suction hose length adjusting device 16 is installed on the loading stage 108. The suction hose length adjusting device 16 adjusts the suspension length H of the suction hose 12. The suction hose length adjusting device 16 includes a winding drum 20 for winding the suction hose 12 and a rotation driving device 22 for rotationally driving the winding drum 20.
 回転駆動装置22は、石炭サイロ100内に貯蔵された石炭120の高さ情報を取得し、該石炭の高さ情報に基づいて、貯蔵された石炭120の表面近傍に吸引ホース12の吸引口12aが位置するよう、巻き取りドラム20の回転を制御して吸引ホース12の吊り下げ長さHを調整する。石炭120の表面とは、石炭サイロ100に貯蔵された石炭層の最上部の表面である。石炭の高さ情報は、石炭サイロ100に既存の石炭高さ検出装置から取得してもよいし、別途設けた石炭高さ検出装置から取得してもよい。巻き取りドラム20の回転を制御するとは、例えば、図示しないモータを回転駆動させることにより巻き取りドラム20の回転量を調整するものとすることができる。吸引ホース12の吊り下げ長さHの調整は、例えば、石炭サイロ100内の底部から積付所ステージ108までの高さを最大高として予め記憶しておき、取得した石炭120の高さを最大高から減じて得られる長さから更に若干の余裕代を減じた高さを目標長として算出し、実際の吊り下げ長さHが目標長となるように巻き取りドラム20の回転を制御(回転量を調整)することによって吊り下げ長さHを調整する、などとすることができる。 The rotary drive device 22 acquires the height information of the coal 120 stored in the coal silo 100, and the suction port 12a of the suction hose 12 near the surface of the stored coal 120 based on the height information of the coal. The suspension drum 20 is controlled to rotate so as to adjust the suspension length H of the suction hose 12. The surface of the coal 120 is the uppermost surface of the coal layer stored in the coal silo 100. The coal height information may be acquired from an existing coal height detection device in the coal silo 100 or may be acquired from a separately provided coal height detection device. Controlling the rotation of the take-up drum 20 can, for example, adjust the amount of rotation of the take-up drum 20 by rotating a motor (not shown). The adjustment of the suspension length H of the suction hose 12 is performed, for example, by previously storing the height from the bottom of the coal silo 100 to the loading station stage 108 as the maximum height, and setting the height of the acquired coal 120 to the maximum. The height obtained by subtracting a slight margin from the height obtained by subtracting from the height is calculated as the target length, and the rotation of the winding drum 20 is controlled (rotation) so that the actual suspension length H becomes the target length. The suspension length H can be adjusted by adjusting the amount).
 ガスセンサ18は、吸引ホース12で吸引されたガス中の所定の成分の濃度を検知する。一般的に、石炭温度が約30℃で石炭から水蒸気が発生し、50~60℃でパラフィン系の臭気が発生し、60℃を超えると一酸化炭素(CO)、二酸化炭素(CO)が発生し、さらに100℃を超えるとメタンなどの炭素系ガスが発生することが知られている。 The gas sensor 18 detects the concentration of a predetermined component in the gas sucked by the suction hose 12. Generally, steam is generated from coal at a coal temperature of about 30 ° C., and a paraffinic odor is generated at 50 to 60 ° C. When the temperature exceeds 60 ° C., carbon monoxide (CO) and carbon dioxide (CO 2 ) are generated. It is known that carbon-based gas such as methane is generated when it is generated and further exceeds 100 ° C.
 従って、ガスセンサ18は、吸引ホース12で吸引されたガス中のCO、CO、または臭気の濃度を検知するよう構成されてよい。吸引ホース12で吸引されたガス中のCO、CO、または臭気の濃度を検知することで、早期に石炭の自然発熱を検出することができる。ガスセンサ18に接続された石炭サイロ100の制御装置は、所定の成分の濃度が所定の閾値を超えた場合に石炭が異常発熱状態であると判定し、石炭の払い出しや放水を行って発熱箇所の冷却を行うことができる。 Accordingly, the gas sensor 18 may be configured to detect the concentration of CO, CO 2 or odor in the gas sucked by the suction hose 12. By detecting the concentration of CO, CO 2 , or odor in the gas sucked by the suction hose 12, it is possible to detect natural heat of coal early. The control device of the coal silo 100 connected to the gas sensor 18 determines that the coal is in an abnormal heat generation state when the concentration of the predetermined component exceeds a predetermined threshold value, and performs discharging and discharging of the coal to Cooling can be performed.
 COのガスセンサとしては、定電位電解式のものを好適に用いることができる。また、COのガスセンサとしては、ガルバニ電池式のものを好適に用いることができる。 As the CO gas sensor, a constant potential electrolytic type can be suitably used. Further, as the CO 2 gas sensor, a galvanic cell type can be suitably used.
 本実施形態に係る発熱監視システム10では、上記のように、貯蔵された石炭120の表面近傍に吸引ホース12の吸引口12aが位置するよう吸引ホース12の吊り下げ長さHが調整される。例えば積付所ステージ108付近にガスセンサの吸引口が位置している場合、貯蔵された石炭層の表面からガスセンサの吸引口まで距離があるため、石炭層内で発生したガスが拡散してしまい、ガスセンサでガスを検知できないか、あるいは検知までに時間がかかる可能性がある。一方、本実施形態に係る発熱監視システム10では、貯蔵された石炭120の表面近傍に吸引ホース12の吸引口12aが位置しているので、石炭層内で発生したガスが拡散する前に吸引口12aで吸引し、ガスセンサ18で検知できる。これにより、石炭サイロ100内に貯蔵された石炭120の発熱を迅速に検知できる。 In the heat generation monitoring system 10 according to this embodiment, as described above, the suspension length H of the suction hose 12 is adjusted so that the suction port 12a of the suction hose 12 is positioned near the surface of the stored coal 120. For example, when the gas sensor suction port is located near the loading station stage 108, because there is a distance from the stored coal bed surface to the gas sensor suction port, the gas generated in the coal bed diffuses, There is a possibility that gas cannot be detected by the gas sensor, or it may take time to detect. On the other hand, in the heat generation monitoring system 10 according to the present embodiment, since the suction port 12a of the suction hose 12 is located near the surface of the stored coal 120, the suction port before the gas generated in the coal layer diffuses. Suction is performed at 12a and can be detected by the gas sensor 18. Thereby, the heat_generation | fever of the coal 120 stored in the coal silo 100 can be detected rapidly.
 図3は、石炭サイロ100内に石炭を長期間貯蔵したときの石炭温度分布の一例を示す。図3ではハッチングにより石炭の温度を表している。 FIG. 3 shows an example of the coal temperature distribution when coal is stored in the coal silo 100 for a long period of time. In FIG. 3, the temperature of coal is represented by hatching.
 図3から、石炭サイロ100の側壁104(下部側壁104a)の近傍に位置する石炭に発熱が生じやすいことが分かる。石炭サイロ100では、石炭を搬出コンベヤ116に払い出すために底部に設けられた開口部から空気が上方に流れ、この空気により石炭が酸化されて発熱が生じる(図3において矢印は空気の流れを表す)。石炭サイロ100で上方から石炭を落下させて貯蔵する場合、側壁104の近傍には大きな石炭塊が偏って位置しやすいため、側壁104の近傍は空隙が多く空気の流れが速くなる。その結果、側壁104の近傍に位置する石炭は酸化反応が促進されやすく、発熱が生じやすい。これは、側壁104の近傍に位置する石炭からガスが生じやすいことを意味する。 3 that heat is likely to be generated in the coal located in the vicinity of the side wall 104 (lower side wall 104a) of the coal silo 100. In the coal silo 100, air flows upward from an opening provided at the bottom for discharging the coal to the carry-out conveyor 116, and this air oxidizes the coal to generate heat (in FIG. 3, arrows indicate the flow of air). To express). When coal is dropped from above and stored in the coal silo 100, a large coal lump is likely to be biased near the side wall 104, so that there are many gaps in the vicinity of the side wall 104 and the air flow is faster. As a result, the coal located in the vicinity of the side wall 104 is likely to promote the oxidation reaction and easily generate heat. This means that gas is likely to be generated from coal located in the vicinity of the side wall 104.
 そこで、図3に示すように、吸引ホース12を石炭サイロ100の側壁104(下部側壁104a)の近傍に垂下してもよい。吸引ホース12は、積付所ステージ108上に設置された吸引ホース長調整装置16から上部側壁104bに沿って斜め下方に延び、上部側壁104bと下部側壁104aの境界部付近に設けられた滑車30を介して下部側壁104aの近傍に垂下されている。この場合も、貯蔵された石炭120の表面近傍に吸引ホース12の吸引口が位置するよう吸引ホース12の長さが調整される。このように、吸引ホース12を石炭サイロ100の側壁104の近傍に垂下することにより、石炭サイロ100内に貯蔵された石炭120の発熱をより迅速に検知することが可能となる。 Therefore, as shown in FIG. 3, the suction hose 12 may be suspended near the side wall 104 (lower side wall 104a) of the coal silo 100. The suction hose 12 extends obliquely downward along the upper side wall 104b from the suction hose length adjusting device 16 installed on the loading place stage 108, and is a pulley 30 provided near the boundary between the upper side wall 104b and the lower side wall 104a. Is suspended in the vicinity of the lower side wall 104a. Also in this case, the length of the suction hose 12 is adjusted so that the suction port of the suction hose 12 is positioned near the surface of the stored coal 120. In this manner, by suspending the suction hose 12 near the side wall 104 of the coal silo 100, it is possible to more quickly detect the heat generation of the coal 120 stored in the coal silo 100.
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and such modifications are also within the scope of the present invention. .
 上述の実施形態の発熱監視システム10では、石炭の高さ情報は、石炭サイロ100に既存の石炭高さ検出装置から取得してもよいし、別途設けた石炭高さ検出装置から取得してもよいものとして説明した。この場合、例えば、積付所ステージ108から吊り下げられた接触センサ(例えば、1本のケーブル又はワイヤの複数個所に取り付けられた複数のセンサ、即ちレベル計)を用いて石炭の高さ情報を取得したり、石炭の搬入量と搬出量から算出された石炭の高さ情報を取得したりすることができる。 In the heat generation monitoring system 10 of the above-described embodiment, the coal height information may be acquired from an existing coal height detection device in the coal silo 100 or may be acquired from a separately provided coal height detection device. Explained as good. In this case, for example, the height information of the coal is obtained by using contact sensors suspended from the loading stage 108 (for example, a plurality of sensors attached to a plurality of locations of one cable or wire, that is, level meters). It is possible to acquire or to obtain information on the height of coal calculated from the amount of coal carried in and out.
 上述の実施形態では、石炭サイロ100は、側壁104が略円筒形状の下部側壁104aと略円錐台形状の上部側壁104bとから成るものとしたが、石炭サイロはいかなる形状としてもよい。例えば、搬入コンベヤや搬出コンベヤによる石炭の搬入出方向を長手方向とする略直方体形状の石炭サイロであってもよい。また、搬出コンベヤ116は、並列に4本設けられているものとしたが、1本や2本設けられているものとしても構わない。 In the above-described embodiment, the coal silo 100 includes the lower side wall 104a having the substantially cylindrical shape and the upper side wall 104b having the substantially truncated cone shape, but the coal silo may have any shape. For example, it may be a substantially cuboidal coal silo whose longitudinal direction is the coal loading / unloading direction by the carry-in conveyor or the carry-out conveyor. Further, four carry-out conveyors 116 are provided in parallel, but one or two carry-out conveyors 116 may be provided.
 上述の実施形態では、発熱監視システム10は石炭サイロ100に1台かつ固定されているものとして説明したが、石炭サイロ100に対し、発熱監視システムを複数台設けるものとしてもよいし、発熱監視システムを所望の位置(重点的に監視したい場所の上部位置やガス検知しやすい水平位置など)に移動可能に設置するものとしてもよい。また、吸引ホースの吊り下げ位置を選択可能とするなどにより、吸引ホースを所望の位置から吊り下げ可能としても構わない。 In the embodiment described above, one heat generation monitoring system 10 is described as being fixed to the coal silo 100. However, a plurality of heat generation monitoring systems may be provided for the coal silo 100, or a heat generation monitoring system may be provided. May be movably installed at a desired position (such as an upper position of a place where monitoring is to be focused on or a horizontal position where gas is easily detected). Also, the suction hose may be suspended from a desired position by making it possible to select the suspension position of the suction hose.
 上述の実施形態では、石炭サイロに貯蔵された石炭の発熱監視システムを例として本発明を説明した。しかしながら、本発明は石炭の発熱監視システムに限定されず、例えば、穀物、バイオマス、リサイクル固形燃料等の他のサイロの貯蔵物の発熱監視システムにも適用可能である。 In the above-described embodiment, the present invention has been described by taking the heat generation monitoring system for coal stored in the coal silo as an example. However, the present invention is not limited to a coal heat generation monitoring system, and can be applied to other silo storage heat generation monitoring systems such as grains, biomass, and recycled solid fuel.
 10 発熱監視システム、 12 吸引ホース、 14 粉塵フィルタ、 16 吸引ホース長調整装置、 18 ガスセンサ、 20 巻き取りドラム、 22 回転駆動装置、 30 滑車、 100 石炭サイロ、 102 基礎、 104 側壁、 106 屋根、 108 積付所ステージ、 110 搬入コンベヤ、 112 小コーン、 114 大コーン、 116 搬出コンベヤ、 120 石炭。 10 Heat generation monitoring system, 12 suction hose, 14 dust filter, 16 suction hose length adjustment device, 18 gas sensor, 20 take-up drum, 22 rotary drive device, 30 pulley, 100 coal silo, 102 foundation, 104 sidewall, 106 roof, 108 Loading station stage, 110 loading conveyor, 112 small cone, 114 large cone, 116 unloading conveyor, 120 coal.
 本発明は、石炭等を貯蔵するサイロに利用できる。 The present invention can be used for silos that store coal or the like.

Claims (7)

  1.  サイロの上部から垂下される吸引ホースと、
     サイロ内に貯蔵された貯蔵物の高さ情報に基づいて、貯蔵物の表面近傍に前記吸引ホースの吸引口が位置するよう、前記吸引ホースの長さを調整する吸引ホース長調整装置と、
     前記吸引ホースで吸引されたガス中の所定の成分の濃度を検知するガスセンサと、
     を備えることを特徴とする貯蔵物の発熱監視システム。
    A suction hose hanging from the top of the silo;
    A suction hose length adjusting device that adjusts the length of the suction hose so that the suction port of the suction hose is positioned near the surface of the stored product based on the height information of the stored product stored in the silo;
    A gas sensor for detecting a concentration of a predetermined component in the gas sucked by the suction hose;
    A heat generation monitoring system for stored items, comprising:
  2.  前記吸引ホース長調整装置は、
     前記吸引ホースを巻き取るための巻き取りドラムと、
     前記巻き取りドラムを回転駆動するための回転駆動装置と、
     を備えることを特徴とする請求項1に記載の貯蔵物の発熱監視システム。
    The suction hose length adjusting device is:
    A winding drum for winding the suction hose;
    A rotational drive device for rotationally driving the winding drum;
    The heat generation monitoring system for stored items according to claim 1, comprising:
  3.  前記吸引ホースの吸引口に設けられた粉塵フィルタをさらに備えることを特徴とする請求項1または2に記載の貯蔵物の発熱監視システム。 The heat generation monitoring system for stored items according to claim 1 or 2, further comprising a dust filter provided at a suction port of the suction hose.
  4.  前記ガスセンサは、前記吸引ホースで吸引されたガス中の一酸化炭素、二酸化炭素または臭気の濃度を検知するよう構成されることを特徴とする請求項1から3のいずれかに記載の貯蔵物の発熱監視システム。 The said gas sensor is comprised so that the density | concentration of carbon monoxide, a carbon dioxide, or an odor in the gas suck | inhaled with the said suction hose may be detected, The stored goods of any one of Claim 1 to 3 characterized by the above-mentioned. Fever monitoring system.
  5.  前記吸引ホースは、前記サイロの側壁近傍に垂下されることを特徴とする請求項1から4のいずれかに記載の貯蔵物の発熱監視システム。 The storage heat generation monitoring system according to any one of claims 1 to 4, wherein the suction hose is suspended near the side wall of the silo.
  6.  請求項1から5のいずれかに記載の貯蔵物の発熱監視システムを備えることを特徴とするサイロ。 A silo comprising the storage heat generation monitoring system according to any one of claims 1 to 5.
  7.  サイロの上部から吸引ホースを垂下させるステップと、
     サイロ内に貯蔵された貯蔵物の高さ情報に基づいて、貯蔵物の表面近傍に吸引ホースの吸引口が位置するよう、吸引ホースの長さを調整するステップと、
     前記吸引ホースで吸引されたガス中の所定の成分の濃度を検知するステップと、
     を備えることを特徴とする貯蔵物の発熱監視方法。
    Dropping a suction hose from the top of the silo;
    Adjusting the length of the suction hose so that the suction port of the suction hose is located near the surface of the storage based on the height information of the storage stored in the silo;
    Detecting a concentration of a predetermined component in the gas sucked by the suction hose;
    A method for monitoring heat generation of stored items, comprising:
PCT/JP2018/015759 2017-04-27 2018-04-16 Heating monitoring system of stored product, heating monitoring method of stored product, and silo WO2018198869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088228A JP2018185264A (en) 2017-04-27 2017-04-27 Storage material heat generation monitoring system, method for monitoring heat generation of storage material, and silo
JP2017-088228 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198869A1 true WO2018198869A1 (en) 2018-11-01

Family

ID=63918292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015759 WO2018198869A1 (en) 2017-04-27 2018-04-16 Heating monitoring system of stored product, heating monitoring method of stored product, and silo

Country Status (2)

Country Link
JP (1) JP2018185264A (en)
WO (1) WO2018198869A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853304A (en) * 2019-11-11 2020-02-28 山东凤祥股份有限公司 Gas boiler leakage detection alarm system and method
CN113926123A (en) * 2021-11-10 2022-01-14 应急管理部天津消防研究所 Deep fire extinguishing equipment
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7343363B2 (en) * 2019-11-12 2023-09-12 千代田化工建設株式会社 Coal heat generation detection method and heat generation detection device
KR102496665B1 (en) * 2021-07-19 2023-02-07 한국전력기술 주식회사 Coal spontaneous ignition prevention system installed in coal storage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285801A (en) * 1995-04-14 1996-11-01 Mitsubishi Heavy Ind Ltd Method and apparatus for predicting spontaneous ignition of coal
JPH11263389A (en) * 1998-03-16 1999-09-28 Ishikawajima Harima Heavy Ind Co Ltd Coal storage facility
JP2005186024A (en) * 2003-12-26 2005-07-14 Teijin Eco Sci Kk Gas detecting system in waste disposal site
US20120013472A1 (en) * 2010-07-15 2012-01-19 General Electric Company Systems and Methods of Monitoring Combustible Gases in a Coal Supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285801A (en) * 1995-04-14 1996-11-01 Mitsubishi Heavy Ind Ltd Method and apparatus for predicting spontaneous ignition of coal
JPH11263389A (en) * 1998-03-16 1999-09-28 Ishikawajima Harima Heavy Ind Co Ltd Coal storage facility
JP2005186024A (en) * 2003-12-26 2005-07-14 Teijin Eco Sci Kk Gas detecting system in waste disposal site
US20120013472A1 (en) * 2010-07-15 2012-01-19 General Electric Company Systems and Methods of Monitoring Combustible Gases in a Coal Supply

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853304A (en) * 2019-11-11 2020-02-28 山东凤祥股份有限公司 Gas boiler leakage detection alarm system and method
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
CN113926123A (en) * 2021-11-10 2022-01-14 应急管理部天津消防研究所 Deep fire extinguishing equipment

Also Published As

Publication number Publication date
JP2018185264A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2018198869A1 (en) Heating monitoring system of stored product, heating monitoring method of stored product, and silo
JP6129299B2 (en) Method for operating a device with at least one rotating shaft
JP2014511905A5 (en)
CA2885751A1 (en) Grain drying and storage system
CN204896669U (en) Steam power plant is with preventing disconnected coal feeder
JP2019148592A (en) Method for expansion of sand grain-shaped raw material
CN105059871A (en) Anti-coal-interruption coal feeder for thermal power plant
CN108225608B (en) A kind of continuous drying process temperature zone measurement method of grain
AU2013298505B2 (en) Fire prevention in storage silos
JP6864540B2 (en) silo
WO2015087959A1 (en) Device for producing partially reduced iron
JP2012072974A (en) Fuel supply method of cement kiln
US20160117900A1 (en) Methods for detecting fires in biomass storage systems
JP6777616B2 (en) Solid fuel storage system and solid fuel storage method
JP5758696B2 (en) Dry coke manufacturing method and dry coke manufacturing apparatus
KR101185246B1 (en) Method for desulfurizing hot metal
JP4823567B2 (en) Spontaneous ignition prevention method and spontaneous ignition prevention device for coal storage silo
WO2020196000A1 (en) Granular material processing method and granular material processing device
JP5535868B2 (en) Slag discharge system and method of operating slag discharge system
CN220375367U (en) Feed bin for granulating
JP2018185262A (en) Coal heat generation monitoring system, method for monitoring heat generation of coal, and coal silo
JP2022073277A (en) Biomass storage device, its operation control method, and power generation system
JP6643088B2 (en) Waste treatment method and waste treatment device
CN204860863U (en) Anti -Vibration grain drying -machine
JP2002213876A (en) Grain throwing apparatus in rack-type drying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790596

Country of ref document: EP

Kind code of ref document: A1