WO2018198826A1 - Solar cell module and terminal box for solar cell module - Google Patents

Solar cell module and terminal box for solar cell module Download PDF

Info

Publication number
WO2018198826A1
WO2018198826A1 PCT/JP2018/015521 JP2018015521W WO2018198826A1 WO 2018198826 A1 WO2018198826 A1 WO 2018198826A1 JP 2018015521 W JP2018015521 W JP 2018015521W WO 2018198826 A1 WO2018198826 A1 WO 2018198826A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
solar cell
contact member
main body
cell module
Prior art date
Application number
PCT/JP2018/015521
Other languages
French (fr)
Japanese (ja)
Inventor
山下 満雄
健一郎 隅田
典保 河北
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019514387A priority Critical patent/JP6893551B2/en
Publication of WO2018198826A1 publication Critical patent/WO2018198826A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a solar cell module and a terminal box for the solar cell module.
  • Some solar cell modules have a terminal box attached to the back side of the solar cell panel (see, for example, JP-A-2007-115915).
  • a solar cell module and a terminal box for the solar cell module are disclosed.
  • the solar cell module includes a solar cell panel and a terminal box located on the surface of the solar cell panel.
  • the terminal box has a base portion and a main body portion.
  • the base portion is located on the surface.
  • the main body portion is positioned on the base portion in a state attached to the base portion.
  • the base portion includes a plate portion, a hooked portion, and an engaged portion.
  • the said board part is located on the said surface, and has a hole part located so that the conducting wire which exists from the inside of the said solar cell panel to the area
  • the said covering part exists in the state which protrudes from the 1st part of the said board part.
  • the engaged portion exists in a state of protruding from a second portion of the plate portion that is separated from the first portion.
  • the main body portion includes a covering portion, a hanging portion, and an engaging portion.
  • the said covering part has the opening located in the said board part side, and exists in the state which forms internal space with the said board part.
  • the hanging portion is present in a state of protruding from the third portion of the annular side portion located in a state of surrounding the opening of the covering portion, and is virtual with respect to the covered portion. It is located in a state where it is hung so as to be rotatable about the rotation axis.
  • the engaging portion exists in a fourth portion of the annular side portion that is separated from the third portion, and is positioned in a state of being engaged with the engaged portion.
  • the third portion and the fourth portion are located in a state in which the third portion and the fourth portion are separated from each other in a direction perpendicular to the virtual rotation axis and along the surface.
  • a terminal box for a solar cell module includes a base portion and a main body portion that can be attached to the base portion.
  • the base portion includes a plate portion, a hooked portion, and an engaged portion.
  • the said board part has a hole part for positioning so that the conducting wire which exists from the inside of a solar cell panel to the area
  • the said covering part exists in the state which protrudes from the 1st part of the said board part.
  • the engaged portion exists in a state of protruding from a second portion of the plate portion that is separated from the first portion.
  • the main body portion includes a covering portion, a hanging portion, and an engaging portion.
  • the covering portion has an opening that can be positioned on the plate portion side by mounting the main body portion on the base portion, and can form an internal space together with the plate portion.
  • the hanging portion is present in a state of protruding from the third portion of the annular side portion located in a state of surrounding the opening of the covering portion, and the main body portion is located with respect to the base portion. When being mounted, it is in a state of being rotatable around a virtual rotation axis with respect to the hooked portion while being hooked on the hooked portion.
  • the engaging portion is present in a fourth portion of the annular side portion that is separated from the third portion, and is engageable with the engaged portion.
  • FIG. 1 is a perspective view showing an appearance of an example of the solar cell module according to the first embodiment.
  • FIG. 2 is a plan view showing an appearance of an example of the solar cell module according to the first embodiment viewed from the front side.
  • FIG. 3 is a plan view showing an appearance of an example of the solar cell module according to the first embodiment viewed from the back side.
  • FIG. 4 is an exploded cross-sectional view showing a cross section of an example of the terminal box according to the first embodiment taken along line IV-IV in FIG.
  • FIG. 5 is an exploded perspective view showing a configuration of an example of a terminal box according to the first embodiment.
  • FIG. 6A is a cross-sectional view showing a state during the assembly of the terminal box according to the first embodiment corresponding to the cross section taken along line IV-IV in FIG.
  • FIG. 6B is a cross-sectional view of the terminal box along line IV-IV in FIG.
  • FIG. 7 is an exploded perspective view showing a configuration of an example of a terminal box according to the second embodiment.
  • FIG. 8A is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the third embodiment corresponding to a cross section taken along line IV-IV in FIG.
  • FIG. 8B is a cross-sectional view showing a cross section of an example of the terminal box according to the third embodiment corresponding to the cross section taken along line IV-IV in FIG.
  • FIG. 9A is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the fourth embodiment corresponding to a cross section taken along line IV-IV in FIG.
  • FIG. 9B is a cross-sectional view showing a cross section of an example of the terminal box according to the fourth embodiment corresponding to the cross section taken along line IV-IV in FIG.
  • FIG. 10 is a plan view showing an appearance of an example of the solar cell module according to the fifth embodiment viewed from the back side.
  • FIG. 11 is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the fifth embodiment along the line XI-XI in FIG. FIG.
  • FIG. 12A is a plan view showing a configuration of an example of a base body part constituting the terminal box according to the fifth embodiment.
  • FIG. 12B is a back view showing the configuration of an example of the main body portion configuring the terminal box according to the fifth embodiment.
  • FIG. 13 is an exploded perspective view showing a configuration of an example of a terminal box according to the fifth embodiment.
  • FIG. 14A is a cross-sectional view showing a state in the middle of assembly of the terminal box according to the fifth embodiment corresponding to the cross section taken along the line XI-XI in FIG.
  • FIG. 14B is a cross-sectional view of the terminal box according to the fifth embodiment corresponding to the cross section taken along line XI-XI in FIG.
  • FIG. 15 is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the sixth embodiment corresponding to a cross section taken along line XI-XI in FIG.
  • FIG. 16A is a cross-sectional view showing a state during the assembly of the terminal box according to the seventh embodiment corresponding to the cross section taken along the line XI-XI in FIG.
  • FIG. 16B is a cross-sectional view of the terminal box according to the seventh embodiment corresponding to the cross section taken along line XI-XI in FIG.
  • a resin terminal box is generally attached to the back surface of the solar cell panel in order to output electricity obtained by photoelectric conversion to the outside.
  • a lead wire electrically connected to the photoelectric conversion unit and a cable in which an electric wire for outputting electricity is covered with a resin are connected to the terminal box.
  • a bypass diode is accommodated in the terminal box. This bypass diode has an internal resistance due to a decrease in the amount of received light when a plurality of solar cell groups each including a plurality of solar cells connected in series are further connected in series. Current can be passed to avoid specific solar cell groups that are rising. Thereby, the heat_generation
  • the solar cell module is required to have improved durability so that it can be used for a long time. For this reason, for example, it is conceivable to increase the moisture resistance of the solar cell panel by sandwiching the photoelectric conversion portion between two glass substrates from both the front side and the back side.
  • a base portion that is bonded to the surface of the solar cell panel and protrudes in a direction away from the surface, and has a claw portion in all directions, and a main body portion that is firmly engaged with the base portion by these claw portions.
  • a terminal box having: Furthermore, in order to realize the adhesion between the base portion and the main body portion, a case where a packing member for enhancing water stoppage such as an O-ring is positioned between the base portion and the main body portion can be considered.
  • the solar cell module and the terminal box for the solar cell module have room for improvement in terms of facilitating the attachment of the terminal box to the solar cell panel.
  • the inventors of the present application have created a technology for easily attaching the terminal box to the solar cell panel with respect to the solar cell module and the terminal box for the solar cell module.
  • the solar cell panel 2 includes, for example, a surface protection member 21, a surface side sealing material 22, a photoelectric conversion unit 23, a back surface side sealing material 24, And a back surface protection member 25.
  • the surface on the + Z direction side of the surface protection member 21 is a surface (also referred to as a front surface) Sf1 to which external light such as sunlight is irradiated.
  • the surface on the ⁇ Z direction side of the back surface protection member 25 is a surface (also referred to as a back surface) Sf2 located on the opposite side of the front surface Sf1.
  • a frame may or may not be attached to the outer peripheral portion in a state where the front surface Sf1 and the back surface Sf2 of the solar cell panel 2 are connected.
  • the surface protection member 21 can protect the photoelectric conversion unit 23 from the front surface Sf1 side, for example.
  • the surface protection member 21 has translucency with respect to light with a wavelength in a specific range, for example.
  • a wavelength of light with high intensity included in light irradiated on the solar cell module 1 and a wavelength of light that can be photoelectrically converted by the photoelectric conversion unit 23 is employed.
  • a plate-like member also referred to as a first plate-like member
  • the surface protection member 21 having water shielding properties and translucency for light in a specific range of wavelengths is realized.
  • the surface protection member 21 for example, a flat plate member having a rectangular shape on both the front surface and the back surface and a thickness of about 1 mm to 5 mm is employed.
  • the back surface protection member 25 is positioned so as to face the front surface protection member 21, for example.
  • the photoelectric conversion unit 23 exists in a region G ⁇ b> 2 (also referred to as a gap region) between the front surface protection member 21 and the back surface protection member 25.
  • the back surface protection member 25 can protect the photoelectric conversion part 23 from the back surface Sf2 side.
  • the back surface protection member 25 may have a light-transmitting property with respect to light having a specific range of wavelengths, or may not have a light-transmitting property with respect to light having a specific range of wavelengths.
  • a flexible sheet-like member also referred to as a sheet member
  • a plate-like member also referred to as a second plate-like member
  • resin is applied to the material of the sheet member.
  • a shape, and thickness of a 2nd plate-shaped member the thing similar to the raw material, shape, and thickness of a 1st plate-shaped member can be employ
  • the front surface side sealing material 22 is located, for example, in a state of covering the photoelectric conversion unit 23 from the surface protection member 21 side, and is in a state of being filled between the surface protection member 21 and the photoelectric conversion unit 23.
  • Examples of the material of the surface side sealing material 22 include polyester resins such as ethylene vinyl acetate copolymer (EVA), triacetyl cellulose (TAC), and polyethylene naphthalate, which are excellent in translucency for light in a specific range of wavelengths. Etc. apply.
  • the back surface side sealing material 24 is located in the state which covers the photoelectric conversion part 23 from the back surface protection member 25 side, for example, and is in the state with which it was filled between the back surface protection member 25 and the photoelectric conversion part 23.
  • the gap region G2 located between the front surface protection member 21 and the back surface protection member 25 is in a state of being filled with a sealing material so as to cover the photoelectric conversion unit 23, for example.
  • a sealing material so as to cover the photoelectric conversion unit 23, for example.
  • a material similar to the material of the front surface side sealing material 22 can be applied to the material of the back surface side sealing material 24.
  • the photoelectric conversion unit 23 includes N (N is an integer of 1 or more) solar cells CE2 that can convert incident sunlight into electricity.
  • the solar cell CE2 for example, a crystalline solar cell or a thin film solar cell can be adopted.
  • a solar cell of crystalline silicon is adopted as the solar cell CE2.
  • 24 solar cells CE2 are positioned in a state where they are electrically connected in series by the connecting conductor T1.
  • the photoelectric conversion unit 23 includes four solar battery cell groups Sg1, Sg2, Sg3, and Sg4.
  • the six solar cells CE2 arranged along the + X direction are positioned in a state of being electrically connected in series by the connection conductor T1.
  • the four solar cell groups Sg1, Sg2, Sg3, Sg4 are positioned in a state where they are electrically connected in series by the connection conductor T1 in a state where they are arranged in the + Y direction.
  • the conducting wires W1a, W1b, W1c, W1d, W1e, and W1f exist from the solar cell panel 2 to the region on the surface of the solar cell panel 2, respectively.
  • each of the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f is located in a state of being electrically connected to the solar battery cell CE2, and the solar battery panel 2 It is located from the inside to the region on the surface of the solar cell panel 2.
  • Each of the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f is made of a material having excellent conductivity such as copper.
  • each conducting wire W1a, W1b, W1c, W1d, W1e, W1f for example, a copper foil is employed. Further, for example, if a copper foil coated with solder is adopted as each of the conductive wires W1a, W1b, W1c, W1d, W1e, W1f, it is easy to solder the conductive wires W1a, W1b, W1c, W1d, W1e, W1f. It is.
  • Each conducting wire W1a, W1b, W1c, W1d, W1e, W1f is positioned in a state where it is connected to the terminal box 3 located on the back surface Sf2 through the first hole Th0 of the back surface protection member 25, for example.
  • insulating sheets I1a, I1b, I1c, and I1d may be positioned between the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f and the photoelectric conversion unit 23. Thereby, the short circuit by contact with each electrode W1a, W1b, W1c, W1d, W1e, W1f and the electrode of the photovoltaic cell CE2 does not arise easily.
  • the first conductive wire W1a and the second conductive wire W1b are electrically connected to the solar cell group Sg1. It is located in a state where the third conductor W1c is electrically connected to the solar cell group Sg2, and is located in a state where the fourth conductor W1d is electrically connected to the solar cell group Sg3. Yes. Furthermore, the conducting wire W1c and the conducting wire W1d are located in a state where they are electrically connected via the connecting conductor T1. Further, for example, an insulator such as polyethylene terephthalate (PET) is sandwiched between the intersection of the conductive wire W1b and the connection conductor T1 and the intersection of the conductive wire W1e and the connection conductor T1.
  • PET polyethylene terephthalate
  • the conductors W1b, W1e and the connection conductor T1 are insulated.
  • the fifth conductive wire W1e and the sixth conductive wire W1f are electrically connected to the solar cell group Sg4.
  • the six conductors W1a, W1b, W1c, W1d, W1e, and W1f may be positioned in a state where they are inserted through different first holes Th0. Further, two or more of the six conductors W1a, W1b, W1c, W1d, W1e, and W1f may be positioned in a state of being inserted through one first hole Th0.
  • Each first hole Th0 is sealed with a sealing material such as a butyl resin or a polyisopropylene resin in a state where the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f are inserted. Located in the state.
  • a sealing material such as a butyl resin or a polyisopropylene resin
  • the terminal box 3 is a so-called junction box.
  • the terminal box 3 is positioned on the surface of the solar cell panel 2 as shown in FIG.
  • the four terminal boxes 3 a, 3 b, 3 c, 3 d are positioned in a state where they are fixed on the back surface Sf 2 of the solar cell panel 2.
  • Each terminal box 3a, 3b, 3c, 3d can be fixed to the back surface Sf2 by adhesion using, for example, a silicon-based adhesive.
  • the output cables C ⁇ b> 1 for outputting electricity generated in the photoelectric conversion unit 23 are positioned in the terminal boxes 3 a and 3 d in a state where they are electrically connected.
  • FIG. 1 the output cables C ⁇ b> 1 for outputting electricity generated in the photoelectric conversion unit 23 are positioned in the terminal boxes 3 a and 3 d in a state where they are electrically connected.
  • the output cable C1a is located in the terminal box 3a in a state where it is electrically connected.
  • the output cable C1a and the conductive wire W1a are located in an electrically connected state.
  • the terminal box 3d is positioned in a state where the output cable C1b is electrically connected.
  • the output cable C1b and the conducting wire W1f are located in an electrically connected state.
  • the output cable C1a is a positive cable
  • the output cable C1b is a negative cable.
  • the output cable C1b is a positive cable.
  • Terminal box> The terminal boxes 3b and 3c will be described with reference to FIGS. 4, 5, 6A, and 6B.
  • the terminal box 3b and the terminal box 3c have the same structure. For this reason, here, the terminal box 3b will be described as an example.
  • the terminal box 3 b has a base portion 31 and a main body portion 32. Further, the terminal box 3b has a packing part Pk1 located between the base part 31 and the main body part 32.
  • the base portion 31 is located on the surface of the solar cell panel 2. As shown in FIGS. 4, 5, 6 (a) and 6 (b), the base portion 31 includes a plate portion Pl 1, a hooked portion Fk 1, an engaged portion En 1, and a first contact member. J1.
  • the plate portion Pl1 is located on the surface of the solar cell panel 2.
  • the plate portion Pl ⁇ b> 1 is a portion for being positioned on the surface of the solar cell panel 2.
  • the plate portion Pl1 is a flat plate-like portion having a rectangular front and back surface.
  • the plate portion Pl1 is positioned in a state of being fixed to the back surface Sf2 of the solar cell panel 2 with the adhesive Ad1 so as to cover the first hole Th0 of the back surface protection member 25 in the solar cell panel 2.
  • a silicon-based adhesive is applied to the adhesive Ad1.
  • the plate portion Pl1 has a second hole portion Th1.
  • the second hole portion Th1 is located in a state of penetrating the plate portion Pl1 in the thickness direction of the plate portion Pl1.
  • the second hole Th1 is positioned so that the conductive wires W1b and W1c pass through.
  • the second hole Th ⁇ b> 1 of the plate part Pl ⁇ b> 1 is located on the first hole Th ⁇ b> 0 of the back surface protection member 25.
  • the covered portion Fk1 exists in a state of protruding from the first portion Pn1 of the plate portion Pl1.
  • the first portion Pn1 is located on the ⁇ X direction side of the plate portion Pl1.
  • the covered portion Fk1 is located in a state of protruding from the first portion Pn1 in the direction away from the back surface Sf2 (here, the ⁇ Z direction).
  • the hook portion Fk1 has a substantially L-shaped cross section and is positioned in a state extending in the + Y direction, for example.
  • the hook portion Fk1 includes a portion located in a state of projecting in the ⁇ Z direction from the first portion Pn1, and a portion located in a state of projecting in the + X direction from this portion. ,have.
  • the hooked portion Fk1 forms a groove Gr1 that is recessed in the ⁇ X direction and located in the + Y direction.
  • the engaged portion En1 exists in a state protruding from the second portion Pn2 of the plate portion Pl1.
  • the second part Pn2 is located in a state of being separated from the first part Pn1.
  • the second portion Pn2 is located on the + X direction side of the plate portion Pl1.
  • the engaged portion En1 is located in a state of protruding from the second portion Pn2 in a direction away from the back surface Sf2 (here, the ⁇ Z direction).
  • a plate-like portion having a third hole H11 located in a state of penetrating in the thickness direction (here, the + X direction) is applied to the engaged portion En1.
  • a configuration having a front and back surfaces of a rectangular outer edge that is substantially parallel to the YZ plane is applied to the plate-like portion.
  • the plate part Pl1, the hooked part Fk1, and the engaged part En1 may have an integral configuration. Resin etc. are applied to the material of these plate part Pl1, the hook part Fk1, and the to-be-engaged part En1, for example.
  • the plate part Pl1, the hooked part Fk1, and the engaged part En1 can be manufactured by, for example, integral molding and cutting of resin.
  • FIGS. 4, 5, 6 (a) and 6 (b) from the viewpoint of easy manufacture of the base portion 31 and easy attachment of the main body portion 32 to be described later to the base portion 31.
  • the plate part Pl1 has a through hole Hl2 in a portion facing the groove part Gr1 of the hooked part Fk1.
  • the first contact member J1 is positioned in a state where the conductive wires W1b and W1c are electrically connected.
  • the first contact member J1 is a portion for being electrically connected to the conducting wires W1b and W1c.
  • the conductive wires W1b and W1c can be connected to the first contact member J1, and the base portion 31 can be attached on the surface of the solar cell panel 2.
  • the first contact member J1 can be made of a conductive material such as metal, for example. In the examples of FIGS.
  • the first contact member J1 is fixed on the surface opposite to the back surface Sf2 (the ⁇ Z direction side) of the plate portion Pl1. It is located in the state that has been.
  • the first contact member J1 is positioned in a state in which the conductive wires W1b and W1c are electrically connected by, for example, a method such as soldering, caulking, or sandwiching.
  • Main unit The main body 32 is positioned on the base body 31 in a state of being attached to the base body 31.
  • the main body portion 32 is a portion that can be attached to the base body portion 31.
  • the main body portion 32 includes a covering portion Cv 2, a hook portion Fk 2, and an engaging portion En 2.
  • the covering portion Cv2 has an opening Op2 located on the plate portion Pl1 side of the base portion 31, and exists in a state of forming an internal space Is2 together with the plate portion Pl1.
  • the covering part Cv2 can form the internal space Is2 together with the plate part Pl1 by positioning the opening Op2 on the plate part Pl1 side by attaching the main body part 32 to the base part 31.
  • the covering portion Cv2 includes, for example, an annular side portion Sp2 positioned so as to surround the opening Op2, and a bottom portion Bp2 positioned in a state where one end side of the side portion Sp2 is closed. It has a box-like or cup-like shape.
  • the annular side portion Sp2 has a cylindrical shape.
  • the bottom Bp2 closes the end of the side Sp2 on the ⁇ Z direction side.
  • the second contact member J2 and the diode B2 are accommodated.
  • the second contact member J2 and the diode B2 are positioned in a fixed state on the surface of the bottom Bp2 on the base portion 31 side.
  • the second contact member J2 is positioned in a state of being electrically connected to the diode B2.
  • the second contact member J2 and the diode B2 are positioned in a state where they are electrically connected by the wiring Ln2.
  • the second contact member J2 is made of a conductive material such as metal, for example, like the first contact member J1.
  • the second contact member J2 is in contact with the first contact member J1.
  • the 1st contact member J1 and the 2nd contact member J2 are located in the state connected electrically.
  • the first contact member J1 is positioned in a state of protruding toward the main body portion 32 side.
  • the second contact member J ⁇ b> 2 is positioned in a state of protruding toward the base portion 31 side and recessed in a direction away from the base portion 31.
  • the second contact member J2 is a U-shaped portion that protrudes toward the base portion 31 and is open in the base portion 31 side.
  • the first contact member J1 and the second contact member J2 can be connected by inserting the first contact member J1 into the gap of the recessed portion of the second contact member J2.
  • the diode B2 is a so-called bypass diode.
  • a decrease in the amount of received light The internal resistance may increase due to the above.
  • the diode B2 in order to avoid the heat generation of the solar battery cell CE2, the diode B2 can pass a current so as to avoid a group of solar battery cells having a high internal resistance.
  • the hanging portion Fk2 exists in a state of protruding from the third portion Pn3 of the annular side portion Sp2.
  • the hook portion Fk2 is positioned in a state of being hooked on the hook portion Fk1 of the base portion 31 in a state of being rotatable around a virtual rotation axis Ax1.
  • the virtual rotation axis Ax1 here is generated at the contact portion between the hook portion Fk2 and the hook portion Fk1.
  • the hook portion Fk2 is virtually attached to the hook portion Fk1 while being hooked on the hook portion Fk1. It will be in the state which can be rotated centering on the rotation axis Ax1. For example, as shown in FIG.
  • the body portion 32 is centered on a virtual rotation axis Ax1 near the tip of the hook portion Fk2 in a state where the hook portion Fk2 is inserted into the groove portion Gr1 of the hook portion Fk1. Can be rotated with respect to the base portion 31.
  • the engaging portion En2 exists in a state of protruding from the fourth portion Pn4 of the annular side portion Sp2.
  • the fourth portion Pn4 is located in a region away from the third portion Pn3 in the side portion Sp2.
  • the third portion Pn3 and the fourth portion Pn4 are located in a state in which the third portion Pn3 and the fourth portion Pn4 are separated in the direction perpendicular to the virtual rotation axis Ax1 and along the back surface Sf2.
  • the hook portion Fk 2 and the engaging portion En 2 are located on the opposite sides of the main body portion 32.
  • the hook portion Fk2 and the engaging portion En2 are located on the opposite side across the internal space Is2. Then, the hook portion Fk2 is located in a state of protruding from the third portion Pn3 in the ⁇ X direction, and the engaging portion En2 is protruded from the fourth portion Pn4 in the + X direction.
  • the engaging portion En2 is positioned in a state of being engaged with the engaged portion En1 of the base portion 31. If it says from another viewpoint, when the main-body part 32 is mounted
  • the covering portion Cv2, the hook portion Fk2, and the engaging portion En2 may have an integral configuration.
  • a resin or the like is applied to the material of the covering portion Cv2, the hook portion Fk2, and the engaging portion En2.
  • the covering portion Cv2, the hooking portion Fk2, and the engaging portion En2 can be manufactured by, for example, integral molding and cutting of resin.
  • the terminal box 3b will be attached. Can be completed.
  • the main body part 32 is rotated with respect to the base body part 31 about the virtual rotation axis Ax1 in a state where the hook part Fk1 of the base body part 31 is hung on the hook part Fk2 of the main body part 32.
  • the engaging part En2 of the main body part 32 can be engaged with the engaged part En1 of the base part 31.
  • the main body 32 can be easily attached to the base body 31. Therefore, for example, the terminal box 3 b can be easily attached to the solar cell panel 2.
  • the engaging portion En2 is detachably engaged with the engaged portion En1
  • the engagement between the engaged portion En1 and the engaging portion En2 is canceled, and the virtual
  • the main body part 32 can be easily detached from the base body part 31 by rotating the main body part 32 about a typical rotation axis Ax1.
  • the main-body part 32 of the terminal box 3b can be replaced
  • the first contact member J1 and the second contact member J2 so that the second contact member J2 is connected to the first contact member J1. Can be easily attached to the solar battery panel 2.
  • the packing part Pk1 is located so as to close the gap between the base part 31 and the main body part 32. This packing part Pk1 is located in the state which has produced the elastic deformation in the compression direction between the base
  • FIG. The packing part Pk1 is located so as to surround the opening Op2. From another viewpoint, for example, when the terminal box 3b is seen through the plane toward the back surface Sf2 of the solar cell panel 2, the packing portion Pk1 is positioned so as to surround the second hole Th1.
  • the material of the packing part Pk1 for example, a material that can be elastically deformed like rubber such as butyl rubber and has excellent weather resistance is adopted.
  • the hook portion Fk2 of the main body portion 32 is replaced with the hook portion Fk1 of the base portion 31.
  • the main body 32 is rotated in a state where it is hung.
  • the packing part Pk1 is compressed by the moment generated by the rotation of the main body part 32.
  • the terminal box 3b can be attached to the solar cell panel 2 more easily than a mode in which the main body 32 is attached to the base 31 in a horizontal state.
  • the attachment position of the main body 32 with respect to the base body 31 is not easily displaced.
  • the packing part Pk1 can be easily adhered to the base part 31 and the main body part 32. Therefore, for example, the main body 32 is firmly attached to the base body 31, and the waterproofness of the terminal box 3b can be improved.
  • the packing portion Pk 1 is located on the surface of the plate portion Pl 1 of the base portion 31 on the body portion 32 side. And the edge part by the side of the base
  • the base portion 31 is attached on the back surface Sf2 of the solar cell panel 2.
  • the main body part 32 can be easily attached to the base body part 31 by rotating the main body part 32 in a state where the hanging part Fk2 of the main body part 32 is hung on the hooked part Fk1 of the base body part 31.
  • the terminal boxes 3b and 3c can be easily attached to the solar cell panel 2, for example.
  • the engaging portion En2 is detachably engaged with the engaged portion En1
  • the engagement between the engaged portion En1 and the engaging portion En2 is released, and the main body 32 is rotated.
  • the main body 32 can be easily detached from the base body 31.
  • the main-body part 32 of the terminal box 3b can be replaced
  • FIG. Thereby, for example, the life of the solar cell module 1 and the terminal boxes 3b and 3c for the solar cell module 1 can be easily extended.
  • the hook portion Fk2 and the engaging portion En2 do not have to be positioned on the opposite sides of the main body portion 32.
  • the terminal box 3b as a basic configuration, a base portion 31A having a hooked portion Fk1A and an engaged portion En1A, and a main body portion 32A having a hooked portion Fk2A and an engaging portion En2A ,
  • the terminal box 3bA may be changed.
  • the base portion 31A has the base portion 31 as a basic configuration, and has two hooked portions Fk1A that are located apart on the + Y direction side and the ⁇ Y direction side instead of the hooked portion Fk1. You may do it. Further, for example, the base portion 31A has the base portion 31 as a basic configuration, and has an engaged portion En1A located at two locations on the + Y direction side and the ⁇ Y direction side instead of the engaged portion En1. May be. Each covered portion Fk1A has a substantially L-shaped cross section and is positioned in the + Y direction, like the covered portion Fk1.
  • a plate-like portion having a third hole H11A penetrating in the thickness direction (here, the + Y direction) is applied to each engaged portion En1A.
  • a configuration having front and back surfaces substantially parallel to the XZ plane and having a rectangular outer edge is applied to the plate-like portion.
  • the main body portion 32A has the main body portion 32 as a basic configuration, and instead of the hook portion Fk2, in the + Y direction side portion and the ⁇ Y direction side portion of the side portion Sp2 of the covering portion Cv2, You may have two hook part Fk2A located in the state which protruded from the part of the edge part vicinity of a X direction.
  • the main body 32A has the main body 32 as a basic configuration, and instead of the engaging portion En2, a portion on the + Y direction side and a portion on the ⁇ Y direction side of the side portion Sp2 of the covering portion Cv2 It may have two engaging parts En2A located in the state which protrudes in each.
  • the terminal box 3bB may include a main body 32B including an annular fitting part Pr2B.
  • the covered portion Fk1B can be regarded as being in a state of protruding from the first portion Pn1 of the plate portion Pl1 when viewed from the groove portion Gr1B.
  • the base portion 31B further includes, for example, an annular fitted portion Re1B located on the main body portion 32B side of the plate portion Pl1 with the base portion 31 as a basic configuration.
  • an annular fitted portion Re1B located on the main body portion 32B side of the plate portion Pl1 with the base portion 31 as a basic configuration.
  • the annular fitted portion Re1B is positioned so as to surround the second hole portion Th1.
  • the base portion 31B is a groove Gr1B that is positioned in a state of being recessed in the + X direction and extending in the + Y direction, instead of the hooked portion Fk1.
  • the cover part Fk1B in the state which forms is included.
  • the main body part 32B further includes, for example, an annular fitting part Pr2B located on the base part 31B side, with the main body part 32 as a basic configuration.
  • the annular fitting part Pr2B is located so as to surround the opening Op2, for example.
  • the annular fitting part Pr2B is located in the state fitted to the to-be-fitted part Re1B, for example.
  • the main body portion 32B includes a hook-shaped hook portion Fk2B that hooks on the hook portion Fk1B instead of the hook portion Fk2.
  • the combination of the annular fitting portion Re1B and the annular fitting portion Pr2B includes, for example, an annular concave portion (also referred to as an annular concave portion) and an annular convex portion (annular convex portion) that are fitted to each other.
  • annular concave portion also referred to as an annular concave portion
  • annular convex portion annular convex portion
  • the annular fitted portion Re1B is an annular concave portion
  • the annular fitting portion Pr2B is an annular convex portion.
  • the annular fitted portion Re1B as the annular recess is recessed toward the solar cell panel 2 side on the surface of the main body portion 32B side of the plate portion Pl1, and extends annularly along the XY plane.
  • the annular fitting part Pr2B as the annular convex part is located in a state of projecting from the end face on the base part 31 side of the side part Sp2 toward the solar cell panel 2 side and extending annularly along the XY plane. ing. And the packing part Pk1B located in the to-be-fitted part Re1B as an annular recessed part is employ
  • the body portion 32B is rotated with respect to the base portion 31B in a state where the hook portion Fk1B is hooked with the hook portion Fk1B, and the fitting portion Pr2B which is an annular convex portion is a fitting portion which is an annular concave portion. If fitted in Re1B, the engaging portion En2 can be engaged with the engaged portion En1. Thereby, for example, the main body 32B can be easily attached to the correct position of the base body 31B. As a result, for example, waterproofness in the terminal box 3bB can be easily increased.
  • a terminal box 3bC in which the annular protrusion and the annular recess are replaced with the terminal box 3bB as a basic configuration is provided. It may be adopted.
  • the base portion 31C is, for example, an annular protrusion located in a state of protruding toward the main body portion 32C instead of the annular fitting portion Re1B as an annular recess, with the base portion 31B as a basic configuration.
  • An annular fitted part Pr1C as a part is included.
  • the annular fitted portion Pr1C as the annular convex portion is directed away from the solar cell panel 2 from the surface of the plate portion Pl1 on the main body portion 32C side. Projecting and extending in an annular shape along the XY plane.
  • the main body 32C has, for example, the above-described main body 32B as a basic configuration, instead of the annular fitting portion Pr2B as an annular convex portion, and an annular concave portion that is recessed in a direction away from the base portion 31C.
  • the annular fitting portion Re2C is located so as to surround the opening Op2, for example.
  • the annular fitting part Re2C is located in the state fitted to the to-be-fitted part Pr1C, for example.
  • the annular fitting portion Re2C as the annular recess is, for example, directed toward the direction in which the end surface on the base portion 31C side of the side portion Sp2 moves away from the solar cell panel 2. It is recessed and located in a state extending annularly along the XY plane. And packing part Pk2C is located in fitting part Re2C as an annular recessed part.
  • the body portion 32C is rotated with respect to the base portion 31C in a state where the hook portion Fk1B is hooked with the hook portion Fk1B, and the fitted portion that is an annular convex portion in the fitting portion Re2C that is an annular concave portion.
  • the engaging portion En2 can be engaged with the engaged portion En1.
  • the main body 32C can be easily attached to the correct position of the base 31C.
  • the waterproofness of the terminal box 3bC can be easily increased.
  • the main body portion 32C can be replaced with the base portion 31C.
  • the packing portion Pk2C located in the fitting portion Re2C as the annular concave portion of the main body portion 32C can also be replaced.
  • work which takes out the packing part Pk2C deteriorated by the long-term use of the solar cell module 1 from an annular recessed part is reduced. Therefore, for example, the packing part Pk2C can be easily replaced by replacing the main body part 32C.
  • the solar cell module 1 is a basic configuration.
  • the solar cell module 1D including the terminal box 3D may be changed.
  • This terminal box 3D has the functions of four terminal boxes 3a, 3b (3bA, 3bB, 3bC), 3c, 3d.
  • solar cell module 1D is equipped with conducting wire W1D, W2D, W3D instead of conducting wire W1a, W1b, W1c, W1d, W1e, W1f.
  • the first conductive wire W1D is positioned in a state where it is electrically connected to the solar cell group Sg1.
  • the second conductor W2D is electrically connected to the two solar cell groups Sg2 and Sg3
  • the third conductor W3D is electrically connected to the solar cell group Sg4.
  • an insulator such as PET is sandwiched between the intersections of the conductive wires W1D and W3D and the connection conductor T1. Thereby, between the conducting wire W1D and W3D and the connection conductor T1 is insulated.
  • the three conducting wires W1D, W2D, and W3D may be positioned in a state where they are inserted through different first hole portions Th0.
  • two or more of the three conductive wires W1D, W2D, and W3D may be positioned in a state of being inserted through one first hole Th0.
  • Each first hole Th0 is sealed with a sealing material such as a butyl resin or a polyisopropylene resin in a state where the conductive wires W1D, W2D, and W3D are inserted.
  • a sealing material such as a butyl resin or a polyisopropylene resin
  • an insulating sheet I1D may be positioned between the conductive wires W1D, W2D, W3D and the photoelectric conversion unit 23.
  • the terminal box 3D is positioned in a fixed state on the front surface (here, the back surface Sf2) of the solar cell panel 2, as shown in FIG.
  • the terminal box 3D can be fixed to the back surface Sf2 by adhesion using, for example, a silicon-based adhesive.
  • the terminal box 3 ⁇ / b> D is positioned in a state where an output cable C ⁇ b> 1 for outputting electricity generated in the photoelectric conversion unit 23 is electrically connected.
  • the output cables C1a, C1b and the conductive wires W1D, W2D, W3D are positioned in the terminal box 3D in an electrically connected state.
  • the terminal box 3 ⁇ / b> D has a base portion 31 ⁇ / b> D instead of the base portion 31, with the terminal box 3 b as a basic configuration, instead of the main body portion 32.
  • the main body 32D is provided.
  • the terminal box 3D has a packing part Pk2C located between the base part 31D and the main body part 32D.
  • the base portion 31D includes the base portion 31 as a basic configuration, includes an engaged portion En1D instead of the engaged portion En1, includes three first contact members J1D instead of the two first contact members J1, An annular mated portion Pr1C is included.
  • the conductors W1D, W2D, and W3D are positioned so as to pass through the second hole Th1 of the base portion 31D.
  • the first portion Pn1 in the state in which the hooked portion Fk1 of the plate portion Pl1 protrudes is located on the + X direction side of the plate portion Pl1.
  • the hook portion Fk1 has a substantially L-shaped cross section and is positioned in a state extending in the + Y direction, for example. More specifically, the hook portion Fk1 has a portion that protrudes in the ⁇ Z direction from the first portion Pn1, and a portion that protrudes in the ⁇ X direction from this portion. Yes. As a result, the hook portion Fk1 is in a state of forming a groove portion Gr1 that is recessed in the + X direction and positioned in the + Y direction.
  • the engaged portion En1D exists in a state of projecting from the second portion Pn2 of the plate portion Pl1, similarly to the engaged portion En1.
  • the second part Pn2 is located in a state of being separated from the first part Pn1.
  • the second portion Pn2 is located on the ⁇ X direction side of the plate portion Pl1.
  • the engaged portion En1D is located in a state of protruding from the second portion Pn2 in a direction away from the back surface Sf2 (here, the ⁇ Z direction).
  • the engaged portion En1D has a hook-shaped portion at the tip in the ⁇ Z direction.
  • the annular fitted portion Pr1C is an annular convex portion.
  • the plate part Pl1, the hooked part Fk1, and the engaged part En1D may have an integral configuration.
  • resin or the like is applied to the material of the plate part Pl1, the hooked part Fk1, and the engaged part En1D.
  • the plate part Pl1, the hooked part Fk1, and the engaged part En1D can be manufactured by, for example, integral molding and cutting of resin.
  • the three first contact members J1D include, for example, a first first contact member J11D, a second first contact member J12D, and a third first contact member J13D.
  • the first first contact member J11D, the second first contact member J12D, and the third first contact member J13D are arranged in the + Y direction in this order. It is located in a row facing toward you.
  • the first first contact member J11D is positioned in a state where the conducting wire W1D is electrically connected.
  • the second first contact member J12D is positioned in a state where the conductive wire W2D is electrically connected.
  • the third first contact member J13D is positioned in a state where the conductive wire W3D is electrically connected.
  • the conductor W1D is connected to the first first contact member J11D
  • the conductor W2D is connected to the second first contact member J12D
  • the third first contact is made.
  • the base member 31D can be mounted on the surface of the solar cell panel 2 by connecting the conductor W3D to the member J13D.
  • the first contact member J1D is made of a conductor such as metal, for example.
  • each first contact member J1D is fixed on the surface opposite to the back surface Sf2 of the plate portion Pl1 (on the ⁇ Z direction side).
  • the first contact member J1D is positioned in a state where the conductive wires W1D, W2D, and W3D are electrically connected by a method such as soldering, caulking, or sandwiching.
  • the main body portion 32D includes the main body portion 32 as a basic configuration, includes an engagement portion En2D instead of the engagement portion En2, includes three second contact members J2D instead of the two second contact members J2, and includes a diode B2. Instead of two diodes B2D, and further includes three connecting portions C1D and an annular fitting portion Re2C.
  • the engagement portion En2D has a plate-like flexible portion F11D and an engagement portion F12D.
  • the plate-like flexible part F11D is located in a state where it is connected by the connecting part Pc2D to the side part Sp2 on the ⁇ X direction side of the covering part Cv2.
  • This plate-like flexible part F11D is located in a state of extending toward the base part 31D along the side part Sp2 of the covering part Cv2.
  • the plate-like flexible portion F11D is a plate-like portion having flexibility.
  • the engaging portion F12D is positioned in a state of being engaged with the engaged portion En1D on the base portion 31D side of the plate-like flexible portion F11D.
  • the engaged portion En1D does not require flexibility.
  • the engaged portion En1D of the base portion 31D that is difficult to replace is less likely to deteriorate.
  • the main body portion 32D can be easily replaced. Thereby, reproduction
  • the three second contact members J2D include, for example, a first second contact member J21D, a second second contact member J22D, and a third third contact member J23D.
  • the first second contact member J21D, the second second contact member J22D, and the third third contact member J23D are arranged in a row in the + Y direction in this order. It is located in a state of being in love.
  • the two diodes B2D include, for example, a first diode B21D and a second diode B22D.
  • the first diode B21D and the second diode B22D are positioned in a state in which they are aligned in the + Y direction in this order.
  • the three connection parts C1D include a first connection part C11D, a second connection part C12D, and a third connection part C13D.
  • the first connection portion C11D, the second connection portion C12D, and the third connection portion C13D are positioned in a state in which they are aligned in the + Y direction in this order.
  • a conductive material is applied to the material of each connection portion C1D.
  • Each connection part C1D should just be a plate-shaped member, for example.
  • the first connection portion C11D, the second connection portion C12D, and the third connection portion C13D are fixed on the surface of the bottom portion Bp2 on the base portion 31D side.
  • the first connecting portion C11D is located in a state where the first second contact member J21D is connected and is located in a state where the cable C1a is connected.
  • the second connecting portion C12D is positioned in a state where the second second contact member J22D is connected.
  • the third connecting portion C13D is located in a state where the third second contact member J23D is connected and is located in a state where the cable C1b is connected.
  • a portion of the terminal box 3D in which the cables C1a and C1b are penetrating may be sealed with, for example, a packing member. Further, the first connection portion C11D and the second connection portion C12D are located in a state where they are connected via the first diode B21D. The second connecting portion C12D and the third connecting portion C13D are located in a state where they are connected via the second diode B22D.
  • FIG. 14A and FIG. 14B in a state where the hook portion Fk2 is inserted into the groove portion Gr1 of the hook portion Fk1, a virtual rotation axis Ax1 near the tip of the hook portion Fk2.
  • the main body portion 32D is rotated with respect to the base portion 31D.
  • the engaging portion En2D can be engaged with the engaged portion En1D.
  • the engaging portion En2D is engaged with the engaged portion En1D by the hook portion of the engaging portion En2D being hooked on the flange portion of the engaged portion En1D.
  • the terminal box 3D is completed.
  • the terminal box 3D for example, in a portion where the first contact member J1D and the second contact member J2D are in contact, at least one of the first contact member J1D and the second contact member J2D is elastically deformed. It exists in the state which has produced. Specifically, for example, in the portion where the X-th (X is an integer of 1, 2, 3) first contact member J1XD and the X-th second contact member J2XD are in contact with each other, At least one of the first contact member J1XD and the Xth second contact member J2XD exists in a state where elastic deformation occurs.
  • the first contact member J1D and the second contact member J2D come into contact with each other.
  • the force by which the second contact member J2D is pressed against the first contact member J1D is a moment.
  • the operator can operate according to the principle of lever. Can press the second contact member J2D against the first contact member J1D with a large force with a small force.
  • a position that is two times or more away from the virtual rotation axis Ax1 than the contact point between the first contact member J1D and the second contact member J2D may be pushed.
  • a conductor having a low electrical resistance and a large thickness can be applied to the first contact member J1D and the second contact member J2D.
  • the second contact member J2D is pressed against the first contact member J1D with a large force, the contact failure between the first contact member J1D and the second contact member J2D is unlikely to occur and is caused by the contact failure. Arcs are also unlikely to occur.
  • the first contact member J1D and the second contact member J2D are in contact with each other in a wider area. Can do. Thereby, for example, the contact resistance between the first contact member J1D and the second contact member J2D decreases. As a result, the power generation efficiency in the solar cell module 1 can be improved.
  • the amount of elastic deformation of the first contact member J1D along the direction in which the second contact member J2D pushes the first contact member J1D is defined as the first elastic deformation amount.
  • the first elastic deformation amount for example, a displacement amount generated in a portion of the first contact member J1D that is in contact with the second contact member J2D is employed.
  • the amount of elastic deformation of the second contact member J2D along the direction in which the first contact member J1D pushes the second contact member J2D is defined as the second elastic deformation amount.
  • the second elastic deformation amount for example, a displacement amount generated in a portion of the second contact member J2D that is in contact with the first contact member J1D is employed.
  • the first contact member J1D on the base portion 31D side that is difficult to replace due to long-term use of the solar cell module 1 is more suitable.
  • the elastic deterioration is less likely to occur than the second contact member J2D on the main body part 32D side, which is easy to replace. Therefore, for example, the solar cell module 1D and the terminal box 3D for the solar cell module 1D can be easily regenerated and extended in life by detaching and replacing the main body portion 32D with respect to the base portion 31D.
  • the spring constant of the first contact member J1D in the base portion 31D along the direction in which the second contact member J2D pushes the first contact member J1D is defined as the first spring constant.
  • the first spring constant here is the spring constant of the first contact member J1D in a state of being fixed to the base portion 31D.
  • the first contact member J1D is positioned along the plate part Pl1 of the base part 31D, the first contact member J1D is supported and reinforced by the plate part Pl1 from the solar cell panel 2 side. .
  • the spring constant of the first contact member J1D is a value that also takes into account the reinforcement by the plate portion Pl1.
  • the spring constant of the second contact member J2D in the main body portion 32D along the direction in which the first contact member J1D pushes the second contact member J2D is defined as the second spring constant.
  • the second spring constant here is a spring constant of the second contact member J2D in a state of being fixed to the main body portion 32D.
  • the second contact member J2D is positioned along the bottom Bp2 of the main body 32D, the second contact member J2D is supported and reinforced by the bottom Bp2.
  • the spring constant of the second contact member J2D is set to a value in consideration of reinforcement by the bottom portion Bp2.
  • the solar cell module 1D and the terminal box 3D for the solar cell module 1D can be easily regenerated and extended in life by detaching and replacing the main body portion 32D with respect to the base portion 31D.
  • the materials of the first contact member J1D and the second contact member J2D include, for example, phosphor bronze, brass, copper alloys such as copper-nickel-silicon alloys, silver alloys, aluminum alloys, silver alloys or An aluminum alloy that has been subjected to solder plating, silver plating or gold plating is used.
  • the first contact member J1D may have a rounded contact surface that comes into contact with the second contact member J2D.
  • the second contact member J2D may have a planar contact surface that contacts the first contact member J1D.
  • the second contact member J2D may have a rounded contact surface that comes into contact with the first contact member J1D.
  • the first contact member J1D may have a planar contact surface that contacts the second contact member J2D. If these contact surfaces are employed, the first contact member J1D and the second contact member J2D can easily come into contact with each other, and the contact resistance between the first contact member J1D and the second contact member J2D can be reduced.
  • the first contact member J1D and the second contact member J2D have the same material and the same shape.
  • the second spring constant is smaller than the first spring constant.
  • both the first contact member J1D and the second contact member J2D have a shape like a cantilever.
  • the cantilever deflection ⁇ is expressed by the following equation (1)
  • the spring constant K is expressed by the following equation (2).
  • the action / reaction force when the first contact member J1D and the second contact member J2D contact each other is indicated by P
  • the Young's modulus is indicated by E
  • the cross-sectional secondary moment is indicated by I.
  • the distance from the fulcrum of the cantilever to the point of action is indicated by L.
  • the distance L for example, the distance of the first contact member J1D is also expressed as L1
  • the distance of the second contact member J2D is also expressed as L2.
  • the Young's modulus E of the first contact member J1D is made larger than the Young's modulus E of the second contact member J2D.
  • a copper-nickel-silicon alloy having a Young's modulus of 131 GPa may be used as the material of the first contact member J1D
  • brass having a Young's modulus of 110 GPa may be used as the material of the second contact member J2D.
  • the cross-sectional secondary moment I of the first contact member J1D is made larger than the cross-sectional secondary moment I of the second contact member J2D.
  • the cross-sectional secondary moment is expressed by the following equation (3), assuming that the cross sections of the first contact member J1D and the second contact member J2D are rectangular for convenience.
  • the width of the cross section is indicated by b
  • the height of the cross section is indicated by h.
  • the height h of the cross section corresponds to the thickness of the first contact member J1D and the second contact member J2D.
  • the width b of the cross section for example, the width of the first contact member J1D is also expressed as b1, and the width of the second contact member J2D is also expressed as b2.
  • the thickness of the first contact member J1D is also expressed as h1
  • the thickness of the second contact member J2D is also expressed as h2.
  • the width (b1) of the first contact member J1D may be larger than the width (b2) of the second contact member J2D
  • the thickness (h1) of the first contact member J1D may be set to the second contact member J2D. It may be larger than the thickness (h2).
  • the cross-sectional shape of the first contact member J1D is a shape other than a rectangle, for example, an I-type, H-type, U-type, T-type, or an annular shape, the cross-sectional secondary moment of the first contact member J1D Can increase.
  • the spring constant of the second contact member J2D is reduced by reducing the thickness (h2) of the second contact member J2D on the main body portion 32D side, the replacement on the main body portion 32D side is easy.
  • the amount of material used can be reduced.
  • the engaged portion En1D and the engaged portion En2D are engaged with another configuration such as a hinge using the terminal box 3D as a basic configuration.
  • a terminal box 3E replaced with the joint portion En1E and the engaging portion En2E may be employed.
  • a main body 32E having an engaging portion En2E instead of the engaging portion En2D is employed with the main body 32D as a basic configuration.
  • the engaging portion En2E is in a state of being connected to the portion of the side portion Sp2 on the ⁇ X direction side of the covering portion Cv2 by the connecting portion Pc2E.
  • the engaging portion En2E is a plate-like portion having a fourth hole H13E that penetrates in the thickness direction and is rotatable about the rotation axis Ax2E.
  • the base portion 31D is a basic configuration, and the engaged portion having an L-shape that engages with the fourth hole Hl3E of the engaging portion En2E instead of the engaged portion En1D.
  • a base portion 31E having En1E is employed.
  • the terminal box 3D has a basic configuration.
  • the base portion 31D is changed to the base portion 31F including the first contact member J1F instead of the first contact member J1D, and the main body portion 32D includes the second contact member J2F instead of the second contact member J2D.
  • the terminal box 3F changed to the part 32F is employed.
  • FIGS. 16A and 16B in a state where the hook portion Fk2 is inserted into the groove portion Gr1 of the hook portion Fk1, a virtual rotation axis Ax1 in the vicinity of the tip of the hook portion Fk2.
  • the main body 32F is rotated with respect to the base 31F.
  • the second contact member J2F located in a protruding state is pressed against each other.
  • the terminal box 3F can be completed.
  • main body portions 32, 32A, 32B, 32C, 32D, 32E, and 32F are not detached from the base portions 31, 31A, 31B, 31C, 31D, 31E, and 31F, for example, the packing portions Pk1, Pk1B, and Pk2C are used.
  • a thermosetting or photocurable adhesive may be employed.
  • a protrusion that protrudes in the direction toward the main body portion 32 is located instead of the third hole portions H11 and H11A, and the main body portions 32, 32A, and 32B are located.
  • 32C a recess that can accommodate the above-described protrusions instead of the engaging portions En2 and En2A may be positioned as the engaging portion. That is, it is only necessary that the engaging portion exists in the fourth portion Pn4.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

This solar cell module is provided with a solar cell panel and a terminal box. The terminal box has a base body part and a main body part. The base body part is located on the solar cell panel, and includes a plate section, a hooked section, and an engaged section. The plate section is located on the solar cell panel and has a hole portion in which a wire is located. The hooked section is in a state protruding from a first portion of the plate section. The engaged section is in a state protruding from a second portion separated from the first portion in the plate section. The main body part includes a covering section, a hooking section, and an engaging section. The covering section has an opening toward the plate section side and is in a state forming an inner space together with the plate section. The engaging section is in a state protruding from a third portion of an annular side portion surrounding the opening of the covering section, and is in a state hooked to the hooked section in a state rotatable around a virtual rotation axis. The engaging section is present at a fourth portion separated from the third portion of the annular side portion, and is in a state of engagement with the engaged section.

Description

太陽電池モジュールおよび太陽電池モジュール用の端子ボックスSolar cell module and terminal box for solar cell module
 本開示は、太陽電池モジュールおよび太陽電池モジュール用の端子ボックスに関する。 The present disclosure relates to a solar cell module and a terminal box for the solar cell module.
 太陽電池モジュールには、太陽電池パネルの裏面側に端子ボックスが取り付けられているものがある(例えば、特開2007-115915号公報などを参照)。 Some solar cell modules have a terminal box attached to the back side of the solar cell panel (see, for example, JP-A-2007-115915).
 太陽電池モジュールおよび太陽電池モジュール用の端子ボックスが開示される。 A solar cell module and a terminal box for the solar cell module are disclosed.
 太陽電池モジュールの一態様は、太陽電池パネルと、該太陽電池パネルの表面上に位置している端子ボックスと、を備える。該端子ボックスは、基体部と、本体部と、を有する。前記基体部は、前記表面上に位置している。前記本体部は、前記基体部上で前記基体部に取り付けられた状態で位置している。前記基体部は、板部と、被掛かり部と、被係合部と、を含む。前記板部は、前記表面上に位置し、前記太陽電池パネル内から前記表面上の領域まで存在している導線が通過するように位置している孔部を有する。前記被掛かり部は、前記板部の第1部分から突出している状態で存在している。前記被係合部は、前記板部のうちの前記第1部分から離れた第2部分から突出している状態で存在している。前記本体部は、被覆部と、掛かり部と、係合部と、を含む。前記被覆部は、前記板部側に位置している開口を有し、前記板部とともに内部空間を形成している状態で存在している。前記掛かり部は、前記被覆部のうちの前記開口を囲んでいる状態で位置している環状の側部の第3部分から突出している状態で存在し、前記被掛かり部に対して仮想的な回転軸を中心として回転可能な状態で掛かっている状態で位置している。前記係合部は、前記環状の側部のうちの前記第3部分から離れた第4部分に存在し、前記被係合部と係合している状態で位置している。前記仮想的な回転軸に垂直な方向であり且つ前記表面に沿った方向において、前記第3部分と前記第4部分とが離れている状態で位置している。 One aspect of the solar cell module includes a solar cell panel and a terminal box located on the surface of the solar cell panel. The terminal box has a base portion and a main body portion. The base portion is located on the surface. The main body portion is positioned on the base portion in a state attached to the base portion. The base portion includes a plate portion, a hooked portion, and an engaged portion. The said board part is located on the said surface, and has a hole part located so that the conducting wire which exists from the inside of the said solar cell panel to the area | region on the said surface may pass. The said covering part exists in the state which protrudes from the 1st part of the said board part. The engaged portion exists in a state of protruding from a second portion of the plate portion that is separated from the first portion. The main body portion includes a covering portion, a hanging portion, and an engaging portion. The said covering part has the opening located in the said board part side, and exists in the state which forms internal space with the said board part. The hanging portion is present in a state of protruding from the third portion of the annular side portion located in a state of surrounding the opening of the covering portion, and is virtual with respect to the covered portion. It is located in a state where it is hung so as to be rotatable about the rotation axis. The engaging portion exists in a fourth portion of the annular side portion that is separated from the third portion, and is positioned in a state of being engaged with the engaged portion. The third portion and the fourth portion are located in a state in which the third portion and the fourth portion are separated from each other in a direction perpendicular to the virtual rotation axis and along the surface.
 太陽電池モジュール用の端子ボックスの一態様は、基体部と、該基体部に対して取り付け可能な本体部と、を備える。前記基体部は、板部と、被掛かり部と、被係合部と、を含む。前記板部は、太陽電池パネル内から該太陽電池パネルの表面上の領域まで存在している導線が通過するように位置するための孔部を有し、前記表面上に位置することができる。前記被掛かり部は、前記板部の第1部分から突出している状態で存在している。前記被係合部は、前記板部のうちの前記第1部分から離れた第2部分から突出している状態で存在している。前記本体部は、被覆部と、掛かり部と、係合部と、を含む。前記被覆部は、前記基体部に対して前記本体部が装着されることで、前記板部側に位置することが可能な開口を有し、前記板部とともに内部空間を形成可能である。前記掛かり部は、前記被覆部のうちの前記開口を囲んでいる状態で位置している環状の側部の第3部分から突出している状態で存在し、前記基体部に対して前記本体部が装着される際に、前記被掛かり部に掛かっている状態で前記被掛かり部に対して仮想的な回転軸を中心として回転可能な状態となる。前記係合部は、前記環状の側部のうちの前記第3部分から離れた第4部分に存在し、前記被係合部に係合可能である。 One aspect of a terminal box for a solar cell module includes a base portion and a main body portion that can be attached to the base portion. The base portion includes a plate portion, a hooked portion, and an engaged portion. The said board part has a hole part for positioning so that the conducting wire which exists from the inside of a solar cell panel to the area | region on the surface of this solar cell panel may pass, and can be located on the said surface. The said covering part exists in the state which protrudes from the 1st part of the said board part. The engaged portion exists in a state of protruding from a second portion of the plate portion that is separated from the first portion. The main body portion includes a covering portion, a hanging portion, and an engaging portion. The covering portion has an opening that can be positioned on the plate portion side by mounting the main body portion on the base portion, and can form an internal space together with the plate portion. The hanging portion is present in a state of protruding from the third portion of the annular side portion located in a state of surrounding the opening of the covering portion, and the main body portion is located with respect to the base portion. When being mounted, it is in a state of being rotatable around a virtual rotation axis with respect to the hooked portion while being hooked on the hooked portion. The engaging portion is present in a fourth portion of the annular side portion that is separated from the third portion, and is engageable with the engaged portion.
図1は、第1実施形態に係る太陽電池モジュールの一例の外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of an example of the solar cell module according to the first embodiment. 図2は、第1実施形態に係る太陽電池モジュールの一例の前面側から見た外観を示す平面図である。FIG. 2 is a plan view showing an appearance of an example of the solar cell module according to the first embodiment viewed from the front side. 図3は、第1実施形態に係る太陽電池モジュールの一例の裏面側から見た外観を示す平面図である。FIG. 3 is a plan view showing an appearance of an example of the solar cell module according to the first embodiment viewed from the back side. 図4は、図3のIV-IV線に沿った第1実施形態に係る端子ボックスの一例の断面を示す分解断面図である。FIG. 4 is an exploded cross-sectional view showing a cross section of an example of the terminal box according to the first embodiment taken along line IV-IV in FIG. 図5は、第1実施形態に係る端子ボックスの一例の構成を示す分解斜視図である。FIG. 5 is an exploded perspective view showing a configuration of an example of a terminal box according to the first embodiment. 図6(a)は、図3のIV-IV線に沿った断面に対応する第1実施形態に係る端子ボックスの組み立て途中の状態を示す断面図である。図6(b)は、図3のIV-IV線に沿った端子ボックスの断面図である。FIG. 6A is a cross-sectional view showing a state during the assembly of the terminal box according to the first embodiment corresponding to the cross section taken along line IV-IV in FIG. FIG. 6B is a cross-sectional view of the terminal box along line IV-IV in FIG. 図7は、第2実施形態に係る端子ボックスの一例の構成を示す分解斜視図である。FIG. 7 is an exploded perspective view showing a configuration of an example of a terminal box according to the second embodiment. 図8(a)は、図3のIV-IV線に沿った断面に対応する第3実施形態に係る端子ボックスの一例の断面を示す分解断面図である。図8(b)は、図3のIV-IV線に沿った断面に対応する第3実施形態に係る端子ボックスの一例の断面を示す断面図である。FIG. 8A is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the third embodiment corresponding to a cross section taken along line IV-IV in FIG. FIG. 8B is a cross-sectional view showing a cross section of an example of the terminal box according to the third embodiment corresponding to the cross section taken along line IV-IV in FIG. 図9(a)は、図3のIV-IV線に沿った断面に対応する第4実施形態に係る端子ボックスの一例の断面を示す分解断面図である。図9(b)は、図3のIV-IV線に沿った断面に対応する第4実施形態に係る端子ボックスの一例の断面を示す断面図である。FIG. 9A is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the fourth embodiment corresponding to a cross section taken along line IV-IV in FIG. FIG. 9B is a cross-sectional view showing a cross section of an example of the terminal box according to the fourth embodiment corresponding to the cross section taken along line IV-IV in FIG. 図10は、第5実施形態に係る太陽電池モジュールの一例の裏面側から見た外観を示す平面図である。FIG. 10 is a plan view showing an appearance of an example of the solar cell module according to the fifth embodiment viewed from the back side. 図11は、図10のXI-XI線に沿った第5実施形態に係る端子ボックスの一例の断面を示す分解断面図である。FIG. 11 is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the fifth embodiment along the line XI-XI in FIG. 図12(a)は、第5実施形態に係る端子ボックスを構成する基体部の一例の構成を示す平面図である。図12(b)は、第5実施形態に係る端子ボックスを構成する本体部の一例の構成を示す裏面図である。FIG. 12A is a plan view showing a configuration of an example of a base body part constituting the terminal box according to the fifth embodiment. FIG. 12B is a back view showing the configuration of an example of the main body portion configuring the terminal box according to the fifth embodiment. 図13は、第5実施形態に係る端子ボックスの一例の構成を示す分解斜視図である。FIG. 13 is an exploded perspective view showing a configuration of an example of a terminal box according to the fifth embodiment. 図14(a)は、図10のXI-XI線に沿った断面に対応する第5実施形態に係る端子ボックスの組み立て途中の状態を示す断面図である。図14(b)は、図10のXI-XI線に沿った断面に対応する第5実施形態に係る端子ボックスの断面図である。FIG. 14A is a cross-sectional view showing a state in the middle of assembly of the terminal box according to the fifth embodiment corresponding to the cross section taken along the line XI-XI in FIG. FIG. 14B is a cross-sectional view of the terminal box according to the fifth embodiment corresponding to the cross section taken along line XI-XI in FIG. 図15は、図10のXI-XI線に沿った断面に対応する第6実施形態に係る端子ボックスの一例の断面を示す分解断面図である。FIG. 15 is an exploded cross-sectional view showing a cross section of an example of a terminal box according to the sixth embodiment corresponding to a cross section taken along line XI-XI in FIG. 図16(a)は、図10のXI-XI線に沿った断面に対応する第7実施形態に係る端子ボックスの組み立て途中の状態を示す断面図である。図16(b)は、図10のXI-XI線に沿った断面に対応する第7実施形態に係る端子ボックスの断面図である。FIG. 16A is a cross-sectional view showing a state during the assembly of the terminal box according to the seventh embodiment corresponding to the cross section taken along the line XI-XI in FIG. FIG. 16B is a cross-sectional view of the terminal box according to the seventh embodiment corresponding to the cross section taken along line XI-XI in FIG.
 太陽電池モジュールでは、一般に光電変換で得られた電気を外部に出力するために樹脂製の端子ボックスが太陽電池パネルの裏面に取り付けられている。この端子ボックスには、例えば、光電変換部に電気的に接続された導線、および電気を出力するための電線を樹脂で被覆したケーブル、のそれぞれが接続されている。また、端子ボックスには、例えば、バイパスダイオードが収容されている。このバイパスダイオードは、直列接続された複数の太陽電池セルをそれぞれ含む太陽電池セル群の複数がさらに直列接続されている状態で位置している場合に、受光量の低下に起因して内部抵抗が上昇している特定の太陽電池セル群を避けるように電流を流すことができる。これにより、太陽電池セルの発熱が低減され得る。 In the solar cell module, a resin terminal box is generally attached to the back surface of the solar cell panel in order to output electricity obtained by photoelectric conversion to the outside. For example, a lead wire electrically connected to the photoelectric conversion unit and a cable in which an electric wire for outputting electricity is covered with a resin are connected to the terminal box. Further, for example, a bypass diode is accommodated in the terminal box. This bypass diode has an internal resistance due to a decrease in the amount of received light when a plurality of solar cell groups each including a plurality of solar cells connected in series are further connected in series. Current can be passed to avoid specific solar cell groups that are rising. Thereby, the heat_generation | fever of a photovoltaic cell can be reduced.
 ところで、太陽電池モジュールには、長期間の使用が可能となるように耐久性を高めることが求められている。このため、例えば、光電変換部を表側および裏側の両側から2枚のガラス基板で挟むことで、太陽電池パネルの耐湿性を高めることが考えられる。 By the way, the solar cell module is required to have improved durability so that it can be used for a long time. For this reason, for example, it is conceivable to increase the moisture resistance of the solar cell panel by sandwiching the photoelectric conversion portion between two glass substrates from both the front side and the back side.
 そして、太陽電池モジュールの耐久性を高めるためには、太陽電池パネルの耐久性の向上に合わせて、太陽電池パネルに対する端子ボックスの固定強度、および端子ボックス内の部材の長期間にわたる保護性能、を向上させる必要がある。 And in order to improve the durability of the solar cell module, in accordance with the improvement of the durability of the solar cell panel, the fixing strength of the terminal box with respect to the solar cell panel, and the long-term protection performance of the members in the terminal box, There is a need to improve.
 そこで、太陽電池パネルの表面に接着され、この表面から離れる方向に突起している、爪部を四方に有する基体部と、これらの爪部によって基体部に対して強固に係合される本体部と、を有する端子ボックスが考えられる。さらに、基体部と本体部との密着性を実現するために、基体部と本体部との間にOリングなどの止水性を高めるためのパッキング部材を位置させる場合が考えられる。 Therefore, a base portion that is bonded to the surface of the solar cell panel and protrudes in a direction away from the surface, and has a claw portion in all directions, and a main body portion that is firmly engaged with the base portion by these claw portions. And a terminal box having: Furthermore, in order to realize the adhesion between the base portion and the main body portion, a case where a packing member for enhancing water stoppage such as an O-ring is positioned between the base portion and the main body portion can be considered.
 しかしながら、四方に位置している爪部を押し広げながら、基体部に本体部を取り付ける作業は容易ではない。さらに、これらの爪部を押し広げながら、パッキング部材に対して均等に圧縮力が付与されるように、基体部に本体部を取り付ける作業は容易ではない。 However, it is not easy to attach the main body part to the base part while expanding the claw parts located in the four directions. Further, it is not easy to attach the main body portion to the base portion so that the compressive force is evenly applied to the packing member while spreading the claw portions.
 すなわち、太陽電池モジュールおよび太陽電池モジュール用の端子ボックスについては、太陽電池パネルへの端子ボックスの取り付けを容易にする点で改善の余地がある。 That is, the solar cell module and the terminal box for the solar cell module have room for improvement in terms of facilitating the attachment of the terminal box to the solar cell panel.
 そこで、本願発明者らは、太陽電池モジュールおよび太陽電池モジュール用の端子ボックスについて、太陽電池パネルに端子ボックスを容易に取り付けることができる技術を創出した。 Therefore, the inventors of the present application have created a technology for easily attaching the terminal box to the solar cell panel with respect to the solar cell module and the terminal box for the solar cell module.
 これについて、以下、各種実施形態を図面に基づいて説明する。図面においては同様な構成および機能を有する部分に同じ符号が付されており、下記説明では重複説明が省略される。また、図面は模式的に示されたものである。図1から図16(b)には、右手系のXYZ座標系が付されている。このXYZ座標系では、後述する太陽電池モジュール1の裏面Sf2における長手方向が+X方向とされ、この裏面Sf2における短手方向が+Y方向とされ、後述する太陽電池モジュール1の前面Sf1の法線方向が+Z方向とされている。 In the following, various embodiments will be described with reference to the drawings. In the drawings, parts having similar configurations and functions are denoted by the same reference numerals, and redundant description is omitted in the following description. The drawings are schematically shown. 1 to 16 (b), a right-handed XYZ coordinate system is attached. In this XYZ coordinate system, the longitudinal direction on the back surface Sf2 of the solar cell module 1 to be described later is the + X direction, the short direction on the back surface Sf2 is the + Y direction, and the normal direction of the front surface Sf1 of the solar cell module 1 to be described later Is the + Z direction.
 <1.第1実施形態>
  <1-1.太陽電池モジュールの構成>
 第1実施形態に係る太陽電池モジュール1について、図1から図6(b)に基づいて説明する。図1から図3で示されるように、太陽電池モジュール1は、例えば、太陽電池パネル2と、端子ボックス3と、を備えている。また、太陽電池モジュール1は、導線W1a,W1b,W1c,W1d,W1e,W1fを備えている。
<1. First Embodiment>
<1-1. Configuration of solar cell module>
The solar cell module 1 according to the first embodiment will be described with reference to FIGS. 1 to 6B. As shown in FIGS. 1 to 3, the solar cell module 1 includes, for example, a solar cell panel 2 and a terminal box 3. Moreover, the solar cell module 1 is provided with conducting wires W1a, W1b, W1c, W1d, W1e, and W1f.
 図1から図6(b)で示されるように、太陽電池パネル2は、例えば、表面保護部材21と、表面側封止材22と、光電変換部23と、裏面側封止材24と、裏面保護部材25と、を含んでいる。図1から図6(b)の例では、表面保護部材21の+Z方向の側の表面が、太陽光などの外光が照射される表面(前面ともいう)Sf1とされている。また、裏面保護部材25の-Z方向の側の表面が、前面Sf1の逆側に位置している表面(裏面ともいう)Sf2とされている。太陽電池パネル2の前面Sf1と裏面Sf2とを接続している状態にある外周部には、フレームが取り付けられていてもよいし、フレームが取り付けられていなくてもよい。 As shown in FIGS. 1 to 6B, the solar cell panel 2 includes, for example, a surface protection member 21, a surface side sealing material 22, a photoelectric conversion unit 23, a back surface side sealing material 24, And a back surface protection member 25. In the example of FIGS. 1 to 6B, the surface on the + Z direction side of the surface protection member 21 is a surface (also referred to as a front surface) Sf1 to which external light such as sunlight is irradiated. Further, the surface on the −Z direction side of the back surface protection member 25 is a surface (also referred to as a back surface) Sf2 located on the opposite side of the front surface Sf1. A frame may or may not be attached to the outer peripheral portion in a state where the front surface Sf1 and the back surface Sf2 of the solar cell panel 2 are connected.
 表面保護部材21は、例えば、光電変換部23を前面Sf1側から保護することができる。表面保護部材21は、例えば、特定範囲の波長の光に対する透光性を有している。特定範囲の波長としては、例えば、太陽電池モジュール1に照射される光に含まれる強度が高い光の波長であって、光電変換部23が光電変換し得る光の波長が採用される。表面保護部材21として、例えば、板状の部材(第1板状部材ともいう)などが採用される。この第1板状部材の素材に、例えば、ガラス、またはアクリルもしくはポリカーボネートなどの樹脂が適用されれば、遮水性と特定範囲の波長の光に対する透光性とを有する表面保護部材21が実現される。具体的には、表面保護部材21として、例えば、表面および裏面の双方が長方形を有し、厚さが1mmから5mm程度の平板状の部材が採用される。 The surface protection member 21 can protect the photoelectric conversion unit 23 from the front surface Sf1 side, for example. The surface protection member 21 has translucency with respect to light with a wavelength in a specific range, for example. As the wavelength in the specific range, for example, a wavelength of light with high intensity included in light irradiated on the solar cell module 1 and a wavelength of light that can be photoelectrically converted by the photoelectric conversion unit 23 is employed. As the surface protection member 21, for example, a plate-like member (also referred to as a first plate-like member) is used. If, for example, glass or a resin such as acrylic or polycarbonate is applied to the material of the first plate-like member, the surface protection member 21 having water shielding properties and translucency for light in a specific range of wavelengths is realized. The Specifically, as the surface protection member 21, for example, a flat plate member having a rectangular shape on both the front surface and the back surface and a thickness of about 1 mm to 5 mm is employed.
 裏面保護部材25は、例えば、表面保護部材21と対向する状態で位置している。表面保護部材21と裏面保護部材25との間の領域(間隙領域ともいう)G2には、光電変換部23が存在している。このため、裏面保護部材25は、光電変換部23を裏面Sf2側から保護することができる。裏面保護部材25は、例えば、特定範囲の波長の光に対する透光性を有していてもよいし、特定範囲の波長の光に対する透光性を有していなくてもよい。裏面保護部材25として、例えば、柔軟性を有するシート状の部材(シート部材ともいう)あるいは板状の部材(第2板状部材ともいう)などが採用される。シート部材の素材には、例えば、樹脂が適用される。また、第2板状部材の素材、形状および厚さとしては、例えば、第1板状部材の素材、形状および厚さと同様なものが採用され得る。 The back surface protection member 25 is positioned so as to face the front surface protection member 21, for example. The photoelectric conversion unit 23 exists in a region G <b> 2 (also referred to as a gap region) between the front surface protection member 21 and the back surface protection member 25. For this reason, the back surface protection member 25 can protect the photoelectric conversion part 23 from the back surface Sf2 side. For example, the back surface protection member 25 may have a light-transmitting property with respect to light having a specific range of wavelengths, or may not have a light-transmitting property with respect to light having a specific range of wavelengths. As the back surface protection member 25, for example, a flexible sheet-like member (also referred to as a sheet member) or a plate-like member (also referred to as a second plate-like member) is employed. For example, resin is applied to the material of the sheet member. Moreover, as a raw material, a shape, and thickness of a 2nd plate-shaped member, the thing similar to the raw material, shape, and thickness of a 1st plate-shaped member can be employ | adopted, for example.
 表面側封止材22は、例えば、表面保護部材21側から光電変換部23を覆う状態で位置し、表面保護部材21と光電変換部23との間に充填されている状態にある。表面側封止材22の素材には、例えば、特定範囲の波長の光に対する透光性が優れたエチレン酢酸ビニル共重合体(EVA)、トリアセチルセルロース(TAC)またはポリエチレンナフタレートなどのポリエステル樹脂などが適用される。また、裏面側封止材24は、例えば、裏面保護部材25側から光電変換部23を覆う状態で位置し、裏面保護部材25と光電変換部23との間に充填されている状態にある。すなわち、表面保護部材21と裏面保護部材25との間に位置している間隙領域G2には、例えば、光電変換部23を覆う状態で封止材が充填されている状態にある。裏面側封止材24の素材には、例えば、表面側封止材22の素材と同様な素材が適用され得る。 The front surface side sealing material 22 is located, for example, in a state of covering the photoelectric conversion unit 23 from the surface protection member 21 side, and is in a state of being filled between the surface protection member 21 and the photoelectric conversion unit 23. Examples of the material of the surface side sealing material 22 include polyester resins such as ethylene vinyl acetate copolymer (EVA), triacetyl cellulose (TAC), and polyethylene naphthalate, which are excellent in translucency for light in a specific range of wavelengths. Etc. apply. Moreover, the back surface side sealing material 24 is located in the state which covers the photoelectric conversion part 23 from the back surface protection member 25 side, for example, and is in the state with which it was filled between the back surface protection member 25 and the photoelectric conversion part 23. That is, the gap region G2 located between the front surface protection member 21 and the back surface protection member 25 is in a state of being filled with a sealing material so as to cover the photoelectric conversion unit 23, for example. For example, a material similar to the material of the front surface side sealing material 22 can be applied to the material of the back surface side sealing material 24.
 光電変換部23は、入射される太陽光を電気に変換することが可能なN個(Nは1以上の整数)の太陽電池セルCE2を含んでいる。太陽電池セルCE2としては、例えば、結晶系の太陽電池セルまたは薄膜系の太陽電池セルが採用され得る。図2および図3の例では、太陽電池セルCE2として結晶シリコンの太陽電池セルが採用されている。そして、24枚の太陽電池セルCE2が接続導体T1によって電気的に直列に接続されている状態で位置している。具体的には、光電変換部23は、4つの太陽電池セル群Sg1,Sg2,Sg3,Sg4を有している。各太陽電池セル群Sg1,Sg2,Sg3,Sg4では、+X方向に沿ってならべられた6枚の太陽電池セルCE2が接続導体T1で電気的に直列に接続されている状態で位置している。さらに、4つの太陽電池セル群Sg1,Sg2,Sg3,Sg4が、+Y方向にならべられた状態で、接続導体T1によって電気的に直列に接続されている状態で位置している。 The photoelectric conversion unit 23 includes N (N is an integer of 1 or more) solar cells CE2 that can convert incident sunlight into electricity. As the solar cell CE2, for example, a crystalline solar cell or a thin film solar cell can be adopted. In the example of FIGS. 2 and 3, a solar cell of crystalline silicon is adopted as the solar cell CE2. And 24 solar cells CE2 are positioned in a state where they are electrically connected in series by the connecting conductor T1. Specifically, the photoelectric conversion unit 23 includes four solar battery cell groups Sg1, Sg2, Sg3, and Sg4. In each solar cell group Sg1, Sg2, Sg3, Sg4, the six solar cells CE2 arranged along the + X direction are positioned in a state of being electrically connected in series by the connection conductor T1. Furthermore, the four solar cell groups Sg1, Sg2, Sg3, Sg4 are positioned in a state where they are electrically connected in series by the connection conductor T1 in a state where they are arranged in the + Y direction.
 導線W1a,W1b,W1c,W1d,W1e,W1fは、それぞれ太陽電池パネル2内から太陽電池パネル2の表面上の領域まで存在している。図2から図6(b)の例では、各導線W1a,W1b,W1c,W1d,W1e,W1fは、太陽電池セルCE2に電気的に接続されている状態で位置しており、太陽電池パネル2内から太陽電池パネル2の表面上の領域まで位置している。各導線W1a,W1b,W1c,W1d,W1e,W1fは、銅などの導電性に優れた素材によって構成されている。各導線W1a,W1b,W1c,W1d,W1e,W1fとしては、例えば、銅箔が採用される。また、例えば、各導線W1a,W1b,W1c,W1d,W1e,W1fとして、はんだが被覆された銅箔が採用されれば、各導線W1a,W1b,W1c,W1d,W1e,W1fのはんだ付けが容易である。各導線W1a,W1b,W1c,W1d,W1e,W1fは、例えば、裏面保護部材25の第1孔部Th0を介して、裏面Sf2上に位置している端子ボックス3に接続している状態で位置している。ここで、例えば、導線W1a,W1b,W1c,W1d,W1e,W1fと光電変換部23との間に、絶縁体のシートI1a,I1b,I1c,I1dが位置していてもよい。これにより、各導線W1a,W1b,W1c,W1d,W1e,W1fと太陽電池セルCE2の電極との接触による短絡が生じにくい。 The conducting wires W1a, W1b, W1c, W1d, W1e, and W1f exist from the solar cell panel 2 to the region on the surface of the solar cell panel 2, respectively. In the example of FIG. 2 to FIG. 6B, each of the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f is located in a state of being electrically connected to the solar battery cell CE2, and the solar battery panel 2 It is located from the inside to the region on the surface of the solar cell panel 2. Each of the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f is made of a material having excellent conductivity such as copper. As each conducting wire W1a, W1b, W1c, W1d, W1e, W1f, for example, a copper foil is employed. Further, for example, if a copper foil coated with solder is adopted as each of the conductive wires W1a, W1b, W1c, W1d, W1e, W1f, it is easy to solder the conductive wires W1a, W1b, W1c, W1d, W1e, W1f. It is. Each conducting wire W1a, W1b, W1c, W1d, W1e, W1f is positioned in a state where it is connected to the terminal box 3 located on the back surface Sf2 through the first hole Th0 of the back surface protection member 25, for example. is doing. Here, for example, insulating sheets I1a, I1b, I1c, and I1d may be positioned between the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f and the photoelectric conversion unit 23. Thereby, the short circuit by contact with each electrode W1a, W1b, W1c, W1d, W1e, W1f and the electrode of the photovoltaic cell CE2 does not arise easily.
 図2および図3の例では、太陽電池セル群Sg1に1本目の導線W1aおよび2本目の導線W1bが電気的に接続している状態で位置している。太陽電池セル群Sg2に3本目の導線W1cが電気的に接続している状態で位置しており、太陽電池セル群Sg3に4本目の導線W1dが電気的に接続している状態で位置している。さらに、導線W1cと導線W1dとが接続導体T1を介して電気的に接続している状態で位置している。また、例えば、導線W1bと接続導体T1との交差部、および導線W1eと接続導体T1との交差部のそれぞれには、ポリエチレンテレフタレート(PET)などの絶縁体が挟まれている状態で存在している。これにより、導線W1b,W1eと接続導体T1との間が絶縁されている状態にある。太陽電池セル群Sg4に5本目の導線W1eおよび6本目の導線W1fが電気的に接続している状態で位置している。6本の導線W1a,W1b,W1c,W1d,W1e,W1fは、それぞれ別々の第1孔部Th0を挿通している状態で位置していてもよい。また、6本の導線W1a,W1b,W1c,W1d,W1e,W1fのうちの2本以上の導線が1つの第1孔部Th0を挿通している状態で位置していてもよい。各第1孔部Th0は、導線W1a,W1b,W1c,W1d,W1e,W1fが挿通されている状態で、例えば、ブチル系の樹脂またはポリイソプロピレン系の樹脂などの封止材によって封止されている状態で位置している。 In the example of FIGS. 2 and 3, the first conductive wire W1a and the second conductive wire W1b are electrically connected to the solar cell group Sg1. It is located in a state where the third conductor W1c is electrically connected to the solar cell group Sg2, and is located in a state where the fourth conductor W1d is electrically connected to the solar cell group Sg3. Yes. Furthermore, the conducting wire W1c and the conducting wire W1d are located in a state where they are electrically connected via the connecting conductor T1. Further, for example, an insulator such as polyethylene terephthalate (PET) is sandwiched between the intersection of the conductive wire W1b and the connection conductor T1 and the intersection of the conductive wire W1e and the connection conductor T1. Yes. As a result, the conductors W1b, W1e and the connection conductor T1 are insulated. The fifth conductive wire W1e and the sixth conductive wire W1f are electrically connected to the solar cell group Sg4. The six conductors W1a, W1b, W1c, W1d, W1e, and W1f may be positioned in a state where they are inserted through different first holes Th0. Further, two or more of the six conductors W1a, W1b, W1c, W1d, W1e, and W1f may be positioned in a state of being inserted through one first hole Th0. Each first hole Th0 is sealed with a sealing material such as a butyl resin or a polyisopropylene resin in a state where the conductive wires W1a, W1b, W1c, W1d, W1e, and W1f are inserted. Located in the state.
 端子ボックス3は、いわゆるジャンクションボックスと称されるものである。端子ボックス3は、図1などで示されるように、太陽電池パネル2の表面上に固定されている状態で位置している。図1から図6(b)の例では、4つの端子ボックス3a,3b,3c,3dが、太陽電池パネル2の裏面Sf2上に固定されている状態で位置している。各端子ボックス3a,3b,3c,3dは、例えば、シリコン系の接着剤などを用いた接着によって裏面Sf2に固定され得る。図1で示されるように、端子ボックス3a,3dには、光電変換部23で生じた電気を出力するための出力用のケーブルC1が電気的に接続されている状態で位置している。図1の例では、端子ボックス3aには、出力用のケーブルC1aが電気的に接続されている状態で位置している。端子ボックス3aでは、出力用のケーブルC1aと導線W1aとが電気的に接続している状態で位置している。端子ボックス3dには、出力用のケーブルC1bが電気的に接続されている状態で位置している。端子ボックス3dでは、出力用のケーブルC1bと導線W1fとが電気的に接続している状態で位置している。例えば、出力用のケーブルC1aが正極用のケーブルである場合には、出力用のケーブルC1bが負極用のケーブルである。また、例えば、出力用のケーブルC1aが負極用のケーブルである場合には、出力用のケーブルC1bが正極用のケーブルである。 The terminal box 3 is a so-called junction box. The terminal box 3 is positioned on the surface of the solar cell panel 2 as shown in FIG. In the example of FIG. 1 to FIG. 6B, the four terminal boxes 3 a, 3 b, 3 c, 3 d are positioned in a state where they are fixed on the back surface Sf 2 of the solar cell panel 2. Each terminal box 3a, 3b, 3c, 3d can be fixed to the back surface Sf2 by adhesion using, for example, a silicon-based adhesive. As shown in FIG. 1, the output cables C <b> 1 for outputting electricity generated in the photoelectric conversion unit 23 are positioned in the terminal boxes 3 a and 3 d in a state where they are electrically connected. In the example of FIG. 1, the output cable C1a is located in the terminal box 3a in a state where it is electrically connected. In the terminal box 3a, the output cable C1a and the conductive wire W1a are located in an electrically connected state. The terminal box 3d is positioned in a state where the output cable C1b is electrically connected. In the terminal box 3d, the output cable C1b and the conducting wire W1f are located in an electrically connected state. For example, when the output cable C1a is a positive cable, the output cable C1b is a negative cable. For example, when the output cable C1a is a negative cable, the output cable C1b is a positive cable.
  <1-2.端子ボックス>
 端子ボックス3b,3cについて、図4、図5、図6(a)および図6(b)に基づいて説明する。端子ボックス3bと端子ボックス3cとは、同様な構造を有している。このため、ここでは、端子ボックス3bを例に挙げて説明する。
<1-2. Terminal box>
The terminal boxes 3b and 3c will be described with reference to FIGS. 4, 5, 6A, and 6B. The terminal box 3b and the terminal box 3c have the same structure. For this reason, here, the terminal box 3b will be described as an example.
 図4、図5、図6(a)および図6(b)で示されるように、端子ボックス3bは、基体部31と、本体部32と、を有している。さらに、端子ボックス3bは、基体部31と本体部32との間に位置しているパッキング部Pk1、を有している。 As shown in FIGS. 4, 5, 6 (a) and 6 (b), the terminal box 3 b has a base portion 31 and a main body portion 32. Further, the terminal box 3b has a packing part Pk1 located between the base part 31 and the main body part 32.
  <1-3.基体部>
 基体部31は、太陽電池パネル2の表面上に位置している。図4、図5、図6(a)および図6(b)で示されるように、基体部31は、板部Pl1と、被掛かり部Fk1と、被係合部En1と、第1接点部材J1と、を含んでいる。
<1-3. Base part>
The base portion 31 is located on the surface of the solar cell panel 2. As shown in FIGS. 4, 5, 6 (a) and 6 (b), the base portion 31 includes a plate portion Pl 1, a hooked portion Fk 1, an engaged portion En 1, and a first contact member. J1.
 板部Pl1は、太陽電池パネル2の表面上に位置している。ここで、例えば、太陽電池パネル2に端子ボックス3bが固定される前の状態では、板部Pl1は、太陽電池パネル2の表面上に位置されるための部分である。図4、図5、図6(a)および図6(b)の例では、板部Pl1は、矩形状の表裏面を有する平板状の部分である。この板部Pl1は、太陽電池パネル2における裏面保護部材25の第1孔部Th0を覆うように、太陽電池パネル2の裏面Sf2に接着剤Ad1で固定されている状態で位置している。接着剤Ad1には、例えば、シリコン系の接着剤などが適用される。また、板部Pl1は、第2孔部Th1を有している。第2孔部Th1は、板部Pl1の厚さ方向において板部Pl1を貫通している状態で位置している。第2孔部Th1は、導線W1b,W1cが通過するように位置している。図4、図6(a)および図6(b)の例では、板部Pl1の第2孔部Th1は、裏面保護部材25の第1孔部Th0上に位置している。 The plate portion Pl1 is located on the surface of the solar cell panel 2. Here, for example, in a state before the terminal box 3 b is fixed to the solar cell panel 2, the plate portion Pl <b> 1 is a portion for being positioned on the surface of the solar cell panel 2. In the examples of FIGS. 4, 5, 6A and 6B, the plate portion Pl1 is a flat plate-like portion having a rectangular front and back surface. The plate portion Pl1 is positioned in a state of being fixed to the back surface Sf2 of the solar cell panel 2 with the adhesive Ad1 so as to cover the first hole Th0 of the back surface protection member 25 in the solar cell panel 2. For example, a silicon-based adhesive is applied to the adhesive Ad1. The plate portion Pl1 has a second hole portion Th1. The second hole portion Th1 is located in a state of penetrating the plate portion Pl1 in the thickness direction of the plate portion Pl1. The second hole Th1 is positioned so that the conductive wires W1b and W1c pass through. In the example of FIGS. 4, 6 </ b> A, and 6 </ b> B, the second hole Th <b> 1 of the plate part Pl <b> 1 is located on the first hole Th <b> 0 of the back surface protection member 25.
 被掛かり部Fk1は、板部Pl1のうちの第1部分Pn1から突出している状態で存在している。図4、図6(a)および図6(b)の例では、第1部分Pn1は、板部Pl1のうちの-X方向の側に位置している。被掛かり部Fk1は、裏面Sf2から遠ざかる方向(ここでは-Z方向)に第1部分Pn1から突出している状態で位置している。また、被掛かり部Fk1は、例えば、略L字状の断面を有し且つ+Y方向に延びている状態で位置している。より具体的には、被掛かり部Fk1は、第1部分Pn1から-Z方向に突出している状態で位置している部分と、この部分から+X方向に突出している状態で位置している部分と、を有している。これにより、被掛かり部Fk1は、-X方向に凹んでおり且つ+Y方向に延びている状態で位置している溝部Gr1を形成している。 The covered portion Fk1 exists in a state of protruding from the first portion Pn1 of the plate portion Pl1. In the example of FIGS. 4, 6A, and 6B, the first portion Pn1 is located on the −X direction side of the plate portion Pl1. The covered portion Fk1 is located in a state of protruding from the first portion Pn1 in the direction away from the back surface Sf2 (here, the −Z direction). Further, the hook portion Fk1 has a substantially L-shaped cross section and is positioned in a state extending in the + Y direction, for example. More specifically, the hook portion Fk1 includes a portion located in a state of projecting in the −Z direction from the first portion Pn1, and a portion located in a state of projecting in the + X direction from this portion. ,have. As a result, the hooked portion Fk1 forms a groove Gr1 that is recessed in the −X direction and located in the + Y direction.
 被係合部En1は、板部Pl1のうちの第2部分Pn2から突出している状態で存在している。第2部分Pn2は、第1部分Pn1から離れている状態で位置している。図4、図6(a)および図6(b)の例では、第2部分Pn2は、板部Pl1のうちの+X方向の側に位置している。被係合部En1は、裏面Sf2から遠ざかる方向(ここでは-Z方向)に第2部分Pn2から突出している状態で位置している。この被係合部En1には、厚さ方向(ここでは+X方向)に貫通している状態で位置している第3孔部Hl1を有する板状の部分が適用されている。この板状の部分には、例えば、YZ平面に略平行であり且つ矩形状の外縁の表裏面を有する構成が適用される。 The engaged portion En1 exists in a state protruding from the second portion Pn2 of the plate portion Pl1. The second part Pn2 is located in a state of being separated from the first part Pn1. In the example of FIGS. 4, 6A, and 6B, the second portion Pn2 is located on the + X direction side of the plate portion Pl1. The engaged portion En1 is located in a state of protruding from the second portion Pn2 in a direction away from the back surface Sf2 (here, the −Z direction). A plate-like portion having a third hole H11 located in a state of penetrating in the thickness direction (here, the + X direction) is applied to the engaged portion En1. For example, a configuration having a front and back surfaces of a rectangular outer edge that is substantially parallel to the YZ plane is applied to the plate-like portion.
 第1実施形態では、例えば、板部Pl1と、被掛かり部Fk1と、被係合部En1と、が一体的な構成を有していてもよい。これらの板部Pl1、被掛かり部Fk1および被係合部En1の素材には、例えば、樹脂などが適用される。この場合、板部Pl1、被掛かり部Fk1および被係合部En1は、例えば、樹脂の一体成形および切削加工などで製作され得る。図4、図5、図6(a)および図6(b)の例では、基体部31の製作の容易性、および後述する本体部32の基体部31への取り付けの容易性の観点から、板部Pl1には、被掛かり部Fk1の溝部Gr1に面している部分に貫通孔Hl2が存在している。 In the first embodiment, for example, the plate part Pl1, the hooked part Fk1, and the engaged part En1 may have an integral configuration. Resin etc. are applied to the material of these plate part Pl1, the hook part Fk1, and the to-be-engaged part En1, for example. In this case, the plate part Pl1, the hooked part Fk1, and the engaged part En1 can be manufactured by, for example, integral molding and cutting of resin. In the examples of FIGS. 4, 5, 6 (a) and 6 (b), from the viewpoint of easy manufacture of the base portion 31 and easy attachment of the main body portion 32 to be described later to the base portion 31. The plate part Pl1 has a through hole Hl2 in a portion facing the groove part Gr1 of the hooked part Fk1.
 第1接点部材J1には、導線W1b,W1cが電気的に接続されている状態で位置している。ここで、例えば、太陽電池パネル2に端子ボックス3bが固定される前の状態では、第1接点部材J1は、導線W1b,W1cに電気的に接続されるための部分である。このため、例えば、太陽電池パネル2を製作した後に、第1接点部材J1に導線W1b,W1cを接続させ、太陽電池パネル2の表面上に基体部31を取り付けることができる。第1接点部材J1は、例えば、金属などの導電性を有する素材によって構成され得る。図4、図5、図6(a)および図6(b)の例では、第1接点部材J1は、板部Pl1の裏面Sf2とは逆側(-Z方向の側)の面上に固定されている状態で位置している。そして、第1接点部材J1には、例えば、はんだ付け、かしめ、または挟み込みなどの方法によって、導線W1b,W1cが電気的に接続されている状態で位置している。 The first contact member J1 is positioned in a state where the conductive wires W1b and W1c are electrically connected. Here, for example, in a state before the terminal box 3b is fixed to the solar cell panel 2, the first contact member J1 is a portion for being electrically connected to the conducting wires W1b and W1c. For this reason, for example, after the solar cell panel 2 is manufactured, the conductive wires W1b and W1c can be connected to the first contact member J1, and the base portion 31 can be attached on the surface of the solar cell panel 2. The first contact member J1 can be made of a conductive material such as metal, for example. In the examples of FIGS. 4, 5, 6A and 6B, the first contact member J1 is fixed on the surface opposite to the back surface Sf2 (the −Z direction side) of the plate portion Pl1. It is located in the state that has been. The first contact member J1 is positioned in a state in which the conductive wires W1b and W1c are electrically connected by, for example, a method such as soldering, caulking, or sandwiching.
  <1-4.本体部>
 本体部32は、基体部31上においてこの基体部31に取り付けられた状態で位置している。ここで、例えば、基体部31に本体部32が取り付けられる前の状態では、本体部32は、基体部31に対して取り付け可能な部分である。図4、図5、図6(a)および図6(b)で示されるように、本体部32は、被覆部Cv2と、掛かり部Fk2と、係合部En2と、を有している。
<1-4. Main unit>
The main body 32 is positioned on the base body 31 in a state of being attached to the base body 31. Here, for example, in a state before the main body portion 32 is attached to the base body portion 31, the main body portion 32 is a portion that can be attached to the base body portion 31. As shown in FIGS. 4, 5, 6 (a), and 6 (b), the main body portion 32 includes a covering portion Cv 2, a hook portion Fk 2, and an engaging portion En 2.
 被覆部Cv2は、基体部31の板部Pl1側に位置している開口Op2を有し、板部Pl1とともに内部空間Is2を形成している状態で存在している。換言すれば、被覆部Cv2は、基体部31に対して本体部32が装着されることで、板部Pl1側に開口Op2を位置させ、板部Pl1とともに内部空間Is2を形成することができる。例えば、内部空間Is2が密閉空間であれば、内部空間Is2内の各部の保護が促進され得る。被覆部Cv2は、例えば、開口Op2を囲むように位置している環状の側部Sp2と、この側部Sp2の一方の端部側を閉鎖している状態で位置している底部Bp2と、を有する、箱状あるいはカップ状の形状を有している。図4、図5、図6(a)および図6(b)の例では、環状の側部Sp2は、筒状の形状を有している。底部Bp2は、側部Sp2の-Z方向の側の端部を閉鎖している。 The covering portion Cv2 has an opening Op2 located on the plate portion Pl1 side of the base portion 31, and exists in a state of forming an internal space Is2 together with the plate portion Pl1. In other words, the covering part Cv2 can form the internal space Is2 together with the plate part Pl1 by positioning the opening Op2 on the plate part Pl1 side by attaching the main body part 32 to the base part 31. For example, if the internal space Is2 is a sealed space, protection of each part in the internal space Is2 can be promoted. The covering portion Cv2 includes, for example, an annular side portion Sp2 positioned so as to surround the opening Op2, and a bottom portion Bp2 positioned in a state where one end side of the side portion Sp2 is closed. It has a box-like or cup-like shape. In the examples of FIGS. 4, 5, 6A and 6B, the annular side portion Sp2 has a cylindrical shape. The bottom Bp2 closes the end of the side Sp2 on the −Z direction side.
 内部空間Is2には、例えば、第2接点部材J2と、ダイオードB2と、が収容されている状態にある。図4、図6(a)および図6(b)の例では、底部Bp2の基体部31側の面上に、第2接点部材J2とダイオードB2とが固定されている状態で位置している。また、例えば、第2接点部材J2は、ダイオードB2と電気的に接続している状態で位置している。図5の例では、第2接点部材J2と、ダイオードB2と、が配線Ln2によって電気的に接続されている状態で位置している。第2接点部材J2は、例えば、第1接点部材J1と同様に、金属などの導電性を有する素材によって構成されている。また、内部空間Is2内において、第2接点部材J2は、第1接点部材J1に接触している。これにより、第1接点部材J1と第2接点部材J2とが電気的に接続されている状態で位置している。図5の例では、第1接点部材J1は、本体部32側に向けて突出している状態で位置している。第2接点部材J2は、基体部31側に向けて突出し且つ基体部31から離れる方向に凹んでいる状態で位置している。具体的には、第2接点部材J2は、基体部31側に向けて突出し且つ基体部31側に開口している状態で位置しているU字状の部分である。そして、例えば、第2接点部材J2の凹んでいる部分の間隙に第1接点部材J1が挿入されることで、第1接点部材J1と第2接点部材J2とが接続されている状態となり得る。 In the internal space Is2, for example, the second contact member J2 and the diode B2 are accommodated. In the example of FIGS. 4, 6A and 6B, the second contact member J2 and the diode B2 are positioned in a fixed state on the surface of the bottom Bp2 on the base portion 31 side. . For example, the second contact member J2 is positioned in a state of being electrically connected to the diode B2. In the example of FIG. 5, the second contact member J2 and the diode B2 are positioned in a state where they are electrically connected by the wiring Ln2. The second contact member J2 is made of a conductive material such as metal, for example, like the first contact member J1. Further, in the internal space Is2, the second contact member J2 is in contact with the first contact member J1. Thereby, the 1st contact member J1 and the 2nd contact member J2 are located in the state connected electrically. In the example of FIG. 5, the first contact member J1 is positioned in a state of protruding toward the main body portion 32 side. The second contact member J <b> 2 is positioned in a state of protruding toward the base portion 31 side and recessed in a direction away from the base portion 31. Specifically, the second contact member J2 is a U-shaped portion that protrudes toward the base portion 31 and is open in the base portion 31 side. For example, the first contact member J1 and the second contact member J2 can be connected by inserting the first contact member J1 into the gap of the recessed portion of the second contact member J2.
 ダイオードB2は、いわゆるバイパスダイオードと称されるものである。例えば、直列接続されている状態にある一組の太陽電池セル群Sg1,Sg2および直列接続されている状態にある一組の太陽電池セル群Sg3,Sg4のうちの何れかにおいて、受光量の低下に起因して内部抵抗が上昇する場合がある。このような場合に、ダイオードB2は、太陽電池セルCE2の発熱を避けるために、内部抵抗が高い組の太陽電池セル群を避けるように電流を流すことができる。 The diode B2 is a so-called bypass diode. For example, in one of the set of solar cell groups Sg1, Sg2 in a state of being connected in series and the set of solar cell groups Sg3, Sg4 in a state of being connected in series, a decrease in the amount of received light The internal resistance may increase due to the above. In such a case, in order to avoid the heat generation of the solar battery cell CE2, the diode B2 can pass a current so as to avoid a group of solar battery cells having a high internal resistance.
 掛かり部Fk2は、環状の側部Sp2の第3部分Pn3から突出している状態で存在している。この掛かり部Fk2は、基体部31の被掛かり部Fk1に対して仮想的な回転軸Ax1を中心として回転可能な状態で掛かっている状態で位置している。ここでいう仮想的な回転軸Ax1は、掛かり部Fk2と被掛かり部Fk1との接触部に生じるものである。別の観点から言えば、基体部31に対して本体部32が装着される際には、掛かり部Fk2は、被掛かり部Fk1に掛かっている状態で、この被掛かり部Fk1に対して仮想的な回転軸Ax1を中心として回転することができる状態となる。例えば、図6(a)で示されるように、被掛かり部Fk1の溝部Gr1に掛かり部Fk2を挿入した状態で、掛かり部Fk2の先端付近における仮想的な回転軸Ax1を中心として、本体部32を基体部31に対して回転させることができる。 The hanging portion Fk2 exists in a state of protruding from the third portion Pn3 of the annular side portion Sp2. The hook portion Fk2 is positioned in a state of being hooked on the hook portion Fk1 of the base portion 31 in a state of being rotatable around a virtual rotation axis Ax1. The virtual rotation axis Ax1 here is generated at the contact portion between the hook portion Fk2 and the hook portion Fk1. From another viewpoint, when the main body portion 32 is mounted on the base body portion 31, the hook portion Fk2 is virtually attached to the hook portion Fk1 while being hooked on the hook portion Fk1. It will be in the state which can be rotated centering on the rotation axis Ax1. For example, as shown in FIG. 6 (a), the body portion 32 is centered on a virtual rotation axis Ax1 near the tip of the hook portion Fk2 in a state where the hook portion Fk2 is inserted into the groove portion Gr1 of the hook portion Fk1. Can be rotated with respect to the base portion 31.
 係合部En2は、環状の側部Sp2の第4部分Pn4から突出している状態で存在している。第4部分Pn4は、側部Sp2のうちの第3部分Pn3から離れている領域に位置している。具体的には、例えば、第3部分Pn3と、第4部分Pn4と、が仮想的な回転軸Ax1に垂直な方向であり且つ裏面Sf2に沿った方向において離れている状態で位置している。図4、図5、図6(a)および図6(b)の例では、本体部32において、掛かり部Fk2と係合部En2とが互いに逆側に位置している。換言すれば、本体部32を平面透視した場合に、掛かり部Fk2と係合部En2とが、内部空間Is2を挟んだ逆側に位置している。そして、掛かり部Fk2が第3部分Pn3から-X方向の突出し、係合部En2が第4部分Pn4から+X方向に突出している状態で位置している。 The engaging portion En2 exists in a state of protruding from the fourth portion Pn4 of the annular side portion Sp2. The fourth portion Pn4 is located in a region away from the third portion Pn3 in the side portion Sp2. Specifically, for example, the third portion Pn3 and the fourth portion Pn4 are located in a state in which the third portion Pn3 and the fourth portion Pn4 are separated in the direction perpendicular to the virtual rotation axis Ax1 and along the back surface Sf2. In the example of FIGS. 4, 5, 6 (a), and 6 (b), the hook portion Fk 2 and the engaging portion En 2 are located on the opposite sides of the main body portion 32. In other words, when the main body portion 32 is seen through, the hook portion Fk2 and the engaging portion En2 are located on the opposite side across the internal space Is2. Then, the hook portion Fk2 is located in a state of protruding from the third portion Pn3 in the −X direction, and the engaging portion En2 is protruded from the fourth portion Pn4 in the + X direction.
 そして、係合部En2は、基体部31の被係合部En1と係合している状態で位置している。別の観点から言えば、基体部31に対して本体部32が装着される際には、係合部En2を、被係合部En1に係合させることができる。そして、例えば、図6(a)で示されるように、被掛かり部Fk1の溝部Gr1に掛かり部Fk2を挿入した状態で、仮想的な回転軸Ax1を中心として本体部32を基体部31に対して回転させる。これにより、例えば、図6(b)で示されるように、係合部En2を被係合部En1に係合させることができる。具体的には、図6(b)の例では、係合部En2が被係合部En1の第3孔部Hl1内に入り込むことで、係合部En2が被係合部En1に係合する。 The engaging portion En2 is positioned in a state of being engaged with the engaged portion En1 of the base portion 31. If it says from another viewpoint, when the main-body part 32 is mounted | worn with respect to the base | substrate part 31, the engaging part En2 can be engaged with the to-be-engaged part En1. Then, for example, as shown in FIG. 6A, the main body portion 32 is moved with respect to the base portion 31 with the virtual rotation axis Ax1 as the center with the hook portion Fk2 inserted into the groove portion Gr1 of the hook portion Fk1. Rotate. Thereby, for example, as shown in FIG. 6B, the engaging portion En2 can be engaged with the engaged portion En1. Specifically, in the example of FIG. 6B, the engaging portion En2 engages with the engaged portion En1 when the engaging portion En2 enters the third hole H11 of the engaged portion En1. .
 第1実施形態では、例えば、被覆部Cv2と、掛かり部Fk2と、係合部En2と、が一体的な構成を有していてもよい。これらの被覆部Cv2、掛かり部Fk2および係合部En2の素材には、例えば、樹脂などが適用される。この場合、被覆部Cv2、掛かり部Fk2および係合部En2は、例えば、樹脂の一体成形および切削加工などで製作され得る。 In the first embodiment, for example, the covering portion Cv2, the hook portion Fk2, and the engaging portion En2 may have an integral configuration. For example, a resin or the like is applied to the material of the covering portion Cv2, the hook portion Fk2, and the engaging portion En2. In this case, the covering portion Cv2, the hooking portion Fk2, and the engaging portion En2 can be manufactured by, for example, integral molding and cutting of resin.
 上記構成が採用されれば、例えば、太陽電池パネル2を製作した後に、太陽電池パネル2の表面上に基体部31を取り付け、この基体部31に本体部32を取り付けることで、端子ボックス3bを完成させることができる。このとき、例えば、基体部31の被掛かり部Fk1に本体部32の掛かり部Fk2を掛けた状態で、仮想的な回転軸Ax1を中心として本体部32を基体部31に対して回転させる。これにより、本体部32の係合部En2を基体部31の被係合部En1に係合させることができる。このため、例えば、基体部31に対して本体部32を容易に取り付けることができる。したがって、例えば、太陽電池パネル2に対して端子ボックス3bを容易に取り付けることができる。 If the said structure is employ | adopted, for example, after manufacturing the solar cell panel 2, attaching the base | substrate part 31 on the surface of the solar cell panel 2, and attaching the main-body part 32 to this base | substrate part 31, the terminal box 3b will be attached. Can be completed. At this time, for example, the main body part 32 is rotated with respect to the base body part 31 about the virtual rotation axis Ax1 in a state where the hook part Fk1 of the base body part 31 is hung on the hook part Fk2 of the main body part 32. Thereby, the engaging part En2 of the main body part 32 can be engaged with the engaged part En1 of the base part 31. For this reason, for example, the main body 32 can be easily attached to the base body 31. Therefore, for example, the terminal box 3 b can be easily attached to the solar cell panel 2.
 ここで、例えば、係合部En2が被係合部En1に対して脱着可能に係合している状態にあれば、被係合部En1と係合部En2との係合を解消し、仮想的な回転軸Ax1を中心として本体部32を回転させることで、基体部31から本体部32を容易に取り外すことができる。そして、基体部31に別の本体部32を取り付けることで、端子ボックス3bの本体部32を容易に交換することができる。これにより、太陽電池モジュール1および太陽電池モジュール用の端子ボックス3bの再生および長寿命化を容易に図ることができる。 Here, for example, if the engaging portion En2 is detachably engaged with the engaged portion En1, the engagement between the engaged portion En1 and the engaging portion En2 is canceled, and the virtual The main body part 32 can be easily detached from the base body part 31 by rotating the main body part 32 about a typical rotation axis Ax1. And the main-body part 32 of the terminal box 3b can be replaced | exchanged easily by attaching another main-body part 32 to the base | substrate part 31. FIG. Thereby, the reproduction | regeneration and lifetime extension of the solar cell module 1 and the terminal box 3b for solar cell modules can be achieved easily.
 また、ここで、例えば、基体部31に対して本体部32を取り付ける際に、第1接点部材J1に第2接点部材J2が接続されるように、第1接点部材J1と第2接点部材J2とが位置していれば、太陽電池パネル2にダイオードB2も容易に取り付けられ得る。 Also, here, for example, when the main body portion 32 is attached to the base portion 31, the first contact member J1 and the second contact member J2 so that the second contact member J2 is connected to the first contact member J1. Can be easily attached to the solar battery panel 2.
  <1-5.パッキング部>
 パッキング部Pk1は、基体部31と本体部32との隙間を塞ぐように位置している。このパッキング部Pk1は、基体部31と本体部32との間で、圧縮方向に弾性変形を生じている状態で位置している。パッキング部Pk1は、開口Op2を囲むように位置している。別の観点から言えば、例えば、太陽電池パネル2の裏面Sf2に向けて端子ボックス3bを平面透視した場合に、パッキング部Pk1は、第2孔部Th1を囲むように位置している。パッキング部Pk1の素材としては、例えば、ブチルゴムなどのゴム状の弾性変形が可能であり且つ耐候性に優れた素材が採用される。このような構成が採用されれば、例えば、基体部31と本体部32との間隙から端子ボックス3b内に水分が浸入しにくくなる。すなわち、例えば、端子ボックス3bにおける防水性が高まり得る。その結果、例えば、端子ボックス3の内部空間Is2内に収容された状態にある各部の劣化が低減され得る。また、例えば、外部から端子ボックス3bを介した太陽電池パネル2内への水分の浸入が抑制され得る。
<1-5. Packing part>
The packing part Pk1 is located so as to close the gap between the base part 31 and the main body part 32. This packing part Pk1 is located in the state which has produced the elastic deformation in the compression direction between the base | substrate part 31 and the main-body part 32. FIG. The packing part Pk1 is located so as to surround the opening Op2. From another viewpoint, for example, when the terminal box 3b is seen through the plane toward the back surface Sf2 of the solar cell panel 2, the packing portion Pk1 is positioned so as to surround the second hole Th1. As the material of the packing part Pk1, for example, a material that can be elastically deformed like rubber such as butyl rubber and has excellent weather resistance is adopted. If such a configuration is adopted, for example, it becomes difficult for moisture to enter the terminal box 3 b from the gap between the base portion 31 and the main body portion 32. That is, for example, the waterproofness of the terminal box 3b can be improved. As a result, for example, the deterioration of each part in the state accommodated in the internal space Is2 of the terminal box 3 can be reduced. Moreover, for example, moisture can be prevented from entering the solar cell panel 2 from the outside via the terminal box 3b.
 また、図6(a)および図6(b)で示されたように、例えば、基体部31に本体部32を取り付ける際に、本体部32の掛かり部Fk2を基体部31の被掛かり部Fk1に掛けた状態で本体部32を回転させる。このとき、本体部32の回転で生じるモーメントによってパッキング部Pk1が圧縮される。これにより、例えば、仮に本体部32を水平な状態で基体部31に対して取り付ける態様よりも、太陽電池パネル2に端子ボックス3bを容易に取り付けることができる。さらに、このとき、例えば、基体部31に対する本体部32の取り付け位置がずれにくい。このため、パッキング部Pk1が基体部31と本体部32とに容易に密着され得る。したがって、例えば、基体部31に対して本体部32が強固に取り付けられ、端子ボックス3bにおける防水性が高まり得る。 6A and 6B, for example, when the main body portion 32 is attached to the base portion 31, the hook portion Fk2 of the main body portion 32 is replaced with the hook portion Fk1 of the base portion 31. The main body 32 is rotated in a state where it is hung. At this time, the packing part Pk1 is compressed by the moment generated by the rotation of the main body part 32. Thereby, for example, the terminal box 3b can be attached to the solar cell panel 2 more easily than a mode in which the main body 32 is attached to the base 31 in a horizontal state. Furthermore, at this time, for example, the attachment position of the main body 32 with respect to the base body 31 is not easily displaced. For this reason, the packing part Pk1 can be easily adhered to the base part 31 and the main body part 32. Therefore, for example, the main body 32 is firmly attached to the base body 31, and the waterproofness of the terminal box 3b can be improved.
 図4、図5、図6(a)および図6(b)の例では、パッキング部Pk1は、基体部31の板部Pl1における本体部32側の面上に位置している。そして、本体部32の側部Sp2の基体部31側の端部が、パッキング部Pk1を押圧している状態にある。 4, 5, 6 (a), and 6 (b), the packing portion Pk 1 is located on the surface of the plate portion Pl 1 of the base portion 31 on the body portion 32 side. And the edge part by the side of the base | substrate part 31 of the side part Sp2 of the main-body part 32 exists in the state which is pressing the packing part Pk1.
  <1-6.第1実施形態のまとめ>
 第1実施形態に係る太陽電池モジュール1および端子ボックス3b,3cでは、例えば、太陽電池パネル2を製作した後に、太陽電池パネル2の裏面Sf2上に基体部31を取り付ける。そして、例えば、基体部31の被掛かり部Fk1に本体部32の掛かり部Fk2を掛けた状態で本体部32を回転させて、基体部31に本体部32を容易に取り付けることができる。これにより、例えば、太陽電池パネル2に端子ボックス3b,3cを容易に取り付けることができる。また、例えば、係合部En2が被係合部En1に対して脱着可能に係合していれば、被係合部En1と係合部En2との係合を解消し、本体部32を回転させることで、基体部31から本体部32を容易に取り外すことができる。そして、基体部31に別の本体部32を取り付けることで、端子ボックス3bの本体部32を容易に交換することができる。これにより、例えば、太陽電池モジュール1およびこの太陽電池モジュール1用の端子ボックス3b,3cについては、長寿命化を容易に図ることができる。
<1-6. Summary of First Embodiment>
In the solar cell module 1 and the terminal boxes 3b and 3c according to the first embodiment, for example, after the solar cell panel 2 is manufactured, the base portion 31 is attached on the back surface Sf2 of the solar cell panel 2. For example, the main body part 32 can be easily attached to the base body part 31 by rotating the main body part 32 in a state where the hanging part Fk2 of the main body part 32 is hung on the hooked part Fk1 of the base body part 31. Thereby, the terminal boxes 3b and 3c can be easily attached to the solar cell panel 2, for example. Further, for example, if the engaging portion En2 is detachably engaged with the engaged portion En1, the engagement between the engaged portion En1 and the engaging portion En2 is released, and the main body 32 is rotated. By doing so, the main body 32 can be easily detached from the base body 31. And the main-body part 32 of the terminal box 3b can be replaced | exchanged easily by attaching another main-body part 32 to the base | substrate part 31. FIG. Thereby, for example, the life of the solar cell module 1 and the terminal boxes 3b and 3c for the solar cell module 1 can be easily extended.
 <2.他の実施形態>
 本開示は上述の第1実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良などが可能である。
<2. Other embodiments>
The present disclosure is not limited to the first embodiment described above, and various modifications and improvements can be made without departing from the scope of the present disclosure.
  <2-1.第2実施形態>
 上記第1実施形態において、例えば、掛かり部Fk2と係合部En2とが本体部32において相互に逆側に位置していなくてもよい。例えば、図7で示されるように、上記端子ボックス3bを基本構成として、被掛かり部Fk1Aおよび被係合部En1Aを有する基体部31Aと、掛かり部Fk2Aおよび係合部En2Aを有する本体部32Aと、を有する端子ボックス3bAに変更されてもよい。
<2-1. Second Embodiment>
In the first embodiment, for example, the hook portion Fk2 and the engaging portion En2 do not have to be positioned on the opposite sides of the main body portion 32. For example, as shown in FIG. 7, with the terminal box 3b as a basic configuration, a base portion 31A having a hooked portion Fk1A and an engaged portion En1A, and a main body portion 32A having a hooked portion Fk2A and an engaging portion En2A , The terminal box 3bA may be changed.
 ここで、例えば、基体部31Aは、上記基体部31を基本構成として、被掛かり部Fk1の代わりに、+Y方向の側および-Y方向の側に離れて位置する2つの被掛かり部Fk1Aを有していてもよい。また、例えば、基体部31Aは、上記基体部31を基本構成として、被係合部En1の代わりに、+Y方向の側および-Y方向の側の2箇所に位置する被係合部En1Aを有してもよい。各被掛かり部Fk1Aは、被掛かり部Fk1と同様に、略L字状の断面を有し且つ+Y方向に延びている状態で位置している。各被係合部En1Aには、厚さ方向(ここでは+Y方向)に貫通している第3孔部Hl1Aを有する板状の部分が適用されている。この板状の部分には、例えば、XZ平面に略平行であり且つ矩形状の外縁を有する表裏面を有する構成が適用される。 Here, for example, the base portion 31A has the base portion 31 as a basic configuration, and has two hooked portions Fk1A that are located apart on the + Y direction side and the −Y direction side instead of the hooked portion Fk1. You may do it. Further, for example, the base portion 31A has the base portion 31 as a basic configuration, and has an engaged portion En1A located at two locations on the + Y direction side and the −Y direction side instead of the engaged portion En1. May be. Each covered portion Fk1A has a substantially L-shaped cross section and is positioned in the + Y direction, like the covered portion Fk1. A plate-like portion having a third hole H11A penetrating in the thickness direction (here, the + Y direction) is applied to each engaged portion En1A. For example, a configuration having front and back surfaces substantially parallel to the XZ plane and having a rectangular outer edge is applied to the plate-like portion.
 例えば、本体部32Aは、上記本体部32を基本構成として、掛かり部Fk2の代わりに、被覆部Cv2の側部Sp2の+Y方向の側の部分および-Y方向の側の部分のそれぞれにおいて、-X方向の端部付近の部分から突出している状態で位置している2つの掛かり部Fk2Aを有していてもよい。また、例えば、本体部32Aは、上記本体部32を基本構成として、係合部En2の代わりに、被覆部Cv2の側部Sp2のうちの+Y方向の側の部分および-Y方向の側の部分のそれぞれにおいて突出している状態で位置している2つの係合部En2Aを有していてもよい。 For example, the main body portion 32A has the main body portion 32 as a basic configuration, and instead of the hook portion Fk2, in the + Y direction side portion and the −Y direction side portion of the side portion Sp2 of the covering portion Cv2, You may have two hook part Fk2A located in the state which protruded from the part of the edge part vicinity of a X direction. Further, for example, the main body 32A has the main body 32 as a basic configuration, and instead of the engaging portion En2, a portion on the + Y direction side and a portion on the −Y direction side of the side portion Sp2 of the covering portion Cv2 It may have two engaging parts En2A located in the state which protrudes in each.
  <2-2.第3実施形態>
 上記各実施形態において、例えば、図8(a)および図8(b)で示されるように、上記端子ボックス3b,3bAを基本構成として、環状の被嵌合部Re1Bを含む基体部31Bと、環状の嵌合部Pr2Bを含む本体部32Bと、を有する端子ボックス3bBに変更されてもよい。被掛かり部Fk1Bは、溝部Gr1Bを基準としてみたときに板部Pl1の第1部分Pn1から突出している状態にあるものとみなすことができる。
<2-2. Third Embodiment>
In each of the above embodiments, for example, as shown in FIG. 8A and FIG. 8B, the base portion 31B including the annular fitting portion Re1B, with the terminal boxes 3b and 3bA as a basic configuration, The terminal box 3bB may include a main body 32B including an annular fitting part Pr2B. The covered portion Fk1B can be regarded as being in a state of protruding from the first portion Pn1 of the plate portion Pl1 when viewed from the groove portion Gr1B.
 ここで、基体部31Bは、例えば、上記基体部31を基本構成として、板部Pl1の本体部32B側に位置している環状の被嵌合部Re1Bをさらに含む。環状の被嵌合部Re1Bは、例えば、太陽電池パネル2の裏面Sf2に向けて端子ボックス3bBを平面透視した場合に、第2孔部Th1を囲むように位置している。また、図8(a)および図8(b)の例では、基体部31Bは、上記被掛かり部Fk1の代わりに、+X方向に凹み且つ+Y方向に延びている状態で位置している溝部Gr1Bを形成している状態にある被掛かり部Fk1Bを含む。 Here, the base portion 31B further includes, for example, an annular fitted portion Re1B located on the main body portion 32B side of the plate portion Pl1 with the base portion 31 as a basic configuration. For example, when the terminal box 3bB is seen through the terminal box 3bB in a plan view toward the back surface Sf2 of the solar cell panel 2, the annular fitted portion Re1B is positioned so as to surround the second hole portion Th1. Further, in the example of FIGS. 8A and 8B, the base portion 31B is a groove Gr1B that is positioned in a state of being recessed in the + X direction and extending in the + Y direction, instead of the hooked portion Fk1. The cover part Fk1B in the state which forms is included.
 本体部32Bは、例えば、上記本体部32を基本構成として、基体部31B側に位置している環状の嵌合部Pr2Bをさらに含む。この環状の嵌合部Pr2Bは、例えば、開口Op2を囲むように位置している。そして、環状の嵌合部Pr2Bは、例えば、被嵌合部Re1Bに嵌合している状態で位置している。図8(a)および図8(b)の例では、本体部32Bは、上記掛かり部Fk2の代わりに、被掛かり部Fk1Bに掛かる鉤状の掛かり部Fk2Bを含む。 The main body part 32B further includes, for example, an annular fitting part Pr2B located on the base part 31B side, with the main body part 32 as a basic configuration. The annular fitting part Pr2B is located so as to surround the opening Op2, for example. And the annular fitting part Pr2B is located in the state fitted to the to-be-fitted part Re1B, for example. In the example of FIGS. 8A and 8B, the main body portion 32B includes a hook-shaped hook portion Fk2B that hooks on the hook portion Fk1B instead of the hook portion Fk2.
 さらに、ここで、環状の被嵌合部Re1Bと環状の嵌合部Pr2Bとの組合せには、例えば、互いに嵌合している環状の凹部(環状凹部ともいう)と環状の凸部(環状凸部ともいう)との組合せが適用される。図8(a)および図8(b)の例では、環状の被嵌合部Re1Bが環状凹部であり、環状の嵌合部Pr2Bが環状凸部である。このとき、環状凹部としての環状の被嵌合部Re1Bは、板部Pl1の本体部32B側の面において太陽電池パネル2側に向けて凹んでおり且つXY平面に沿って環状に延びている状態で位置している部分である。環状凸部としての環状の嵌合部Pr2Bは、側部Sp2の基体部31側の端面から太陽電池パネル2側に向けて突出しており且つXY平面に沿って環状に延びている状態で位置している。そして、パッキング部Pk1の代わりに、環状凹部としての被嵌合部Re1B内に位置しているパッキング部Pk1Bが採用されている。 Further, here, the combination of the annular fitting portion Re1B and the annular fitting portion Pr2B includes, for example, an annular concave portion (also referred to as an annular concave portion) and an annular convex portion (annular convex portion) that are fitted to each other. The combination with the above is also applied. In the examples of FIGS. 8A and 8B, the annular fitted portion Re1B is an annular concave portion, and the annular fitting portion Pr2B is an annular convex portion. At this time, the annular fitted portion Re1B as the annular recess is recessed toward the solar cell panel 2 side on the surface of the main body portion 32B side of the plate portion Pl1, and extends annularly along the XY plane. It is the part that is located at. The annular fitting part Pr2B as the annular convex part is located in a state of projecting from the end face on the base part 31 side of the side part Sp2 toward the solar cell panel 2 side and extending annularly along the XY plane. ing. And the packing part Pk1B located in the to-be-fitted part Re1B as an annular recessed part is employ | adopted instead of the packing part Pk1.
 上記構成では、例えば、被掛かり部Fk1Bに掛かり部Fk2Bを掛けた状態で基体部31Bに対して本体部32Bを回転させ、環状凸部である嵌合部Pr2Bを環状凹部である被嵌合部Re1B内に嵌め込めば、被係合部En1に係合部En2を係合させることができる。これにより、例えば、基体部31Bの正しい位置に本体部32Bを容易に取り付けることができる。その結果、例えば、端子ボックス3bBにおける防水性が容易に高まり得る。 In the above configuration, for example, the body portion 32B is rotated with respect to the base portion 31B in a state where the hook portion Fk1B is hooked with the hook portion Fk1B, and the fitting portion Pr2B which is an annular convex portion is a fitting portion which is an annular concave portion. If fitted in Re1B, the engaging portion En2 can be engaged with the engaged portion En1. Thereby, for example, the main body 32B can be easily attached to the correct position of the base body 31B. As a result, for example, waterproofness in the terminal box 3bB can be easily increased.
  <2-3.第4実施形態>
 上記第3実施形態において、例えば、図9(a)および図9(b)で示されるように、上記端子ボックス3bBを基本構成として、環状凸部と環状凹部とが入れ替えられた端子ボックス3bCが採用されてもよい。
<2-3. Fourth Embodiment>
In the third embodiment, for example, as shown in FIGS. 9A and 9B, a terminal box 3bC in which the annular protrusion and the annular recess are replaced with the terminal box 3bB as a basic configuration is provided. It may be adopted.
 ここで、基体部31Cは、例えば、上記基体部31Bを基本構成として、環状凹部としての環状の被嵌合部Re1Bの代わりに、本体部32C側に突出している状態で位置している環状凸部としての環状の被嵌合部Pr1Cを含む。この環状の被嵌合部Pr1Cは、例えば、太陽電池パネル2の裏面Sf2に向けて端子ボックス3bCを平面透視した場合に、第2孔部Th1を囲むように位置している。図9(a)および図9(b)の例では、環状凸部としての環状の被嵌合部Pr1Cは、板部Pl1の本体部32C側の面から、太陽電池パネル2から遠ざかる方向に向けて突出しており且つXY平面に沿って環状に延びている状態で位置している。 Here, the base portion 31C is, for example, an annular protrusion located in a state of protruding toward the main body portion 32C instead of the annular fitting portion Re1B as an annular recess, with the base portion 31B as a basic configuration. An annular fitted part Pr1C as a part is included. For example, when the terminal box 3bC is seen through the plane of the terminal box 3bC toward the back surface Sf2 of the solar cell panel 2, the annular mated portion Pr1C is positioned so as to surround the second hole Th1. In the example of FIG. 9A and FIG. 9B, the annular fitted portion Pr1C as the annular convex portion is directed away from the solar cell panel 2 from the surface of the plate portion Pl1 on the main body portion 32C side. Projecting and extending in an annular shape along the XY plane.
 また、本体部32Cは、例えば、上記本体部32Bを基本構成として、環状凸部としての環状の嵌合部Pr2Bの代わりに、基体部31Cから離れる方向に凹んでいる環状の凹部としての環状の嵌合部Re2Cを含む。この環状の嵌合部Re2Cは、例えば、開口Op2を囲むように位置している。そして、環状の嵌合部Re2Cは、例えば、被嵌合部Pr1Cに嵌合している状態で位置している。図9(a)および図9(b)の例では、環状凹部としての環状の嵌合部Re2Cは、例えば、側部Sp2の基体部31C側の端面が太陽電池パネル2から遠ざかる方向に向けて凹んでおり且つXY平面に沿って環状に延びている状態で位置している。そして、パッキング部Pk2Cが、環状凹部としての嵌合部Re2C内に位置している。 The main body 32C has, for example, the above-described main body 32B as a basic configuration, instead of the annular fitting portion Pr2B as an annular convex portion, and an annular concave portion that is recessed in a direction away from the base portion 31C. Includes a fitting portion Re2C. The annular fitting portion Re2C is located so as to surround the opening Op2, for example. And the annular fitting part Re2C is located in the state fitted to the to-be-fitted part Pr1C, for example. In the example of FIG. 9A and FIG. 9B, the annular fitting portion Re2C as the annular recess is, for example, directed toward the direction in which the end surface on the base portion 31C side of the side portion Sp2 moves away from the solar cell panel 2. It is recessed and located in a state extending annularly along the XY plane. And packing part Pk2C is located in fitting part Re2C as an annular recessed part.
 ここでも、例えば、被掛かり部Fk1Bに掛かり部Fk2Bを掛けた状態で基体部31Cに対して本体部32Cを回転させ、環状凹部である嵌合部Re2C内に環状凸部である被嵌合部Pr1Cを嵌め込めば、被係合部En1に係合部En2を係合させることができる。このため、例えば、基体部31Cの正しい位置に本体部32Cを容易に取り付けることができる。その結果、例えば、端子ボックス3bCにおける防水性が容易に高まり得る。 Also here, for example, the body portion 32C is rotated with respect to the base portion 31C in a state where the hook portion Fk1B is hooked with the hook portion Fk1B, and the fitted portion that is an annular convex portion in the fitting portion Re2C that is an annular concave portion. When Pr1C is fitted, the engaging portion En2 can be engaged with the engaged portion En1. For this reason, for example, the main body 32C can be easily attached to the correct position of the base 31C. As a result, for example, the waterproofness of the terminal box 3bC can be easily increased.
 また、ここで、例えば、係合部En2が、被係合部En1に対して脱着可能に係合していれば、基体部31Cに対する本体部32Cの交換が可能である。そして、例えば、本体部32Cの交換によって、この本体部32Cの環状凹部としての嵌合部Re2Cに位置しているパッキング部Pk2Cも交換することができる。これにより、太陽電池モジュール1の長期間の使用によって劣化したパッキング部Pk2Cを環状凹部から取り出す煩雑な作業が低減される。したがって、例えば、本体部32Cの交換によってパッキング部Pk2Cを容易に交換することができる。 Here, for example, if the engaging portion En2 is detachably engaged with the engaged portion En1, the main body portion 32C can be replaced with the base portion 31C. For example, by replacing the main body portion 32C, the packing portion Pk2C located in the fitting portion Re2C as the annular concave portion of the main body portion 32C can also be replaced. Thereby, the complicated operation | work which takes out the packing part Pk2C deteriorated by the long-term use of the solar cell module 1 from an annular recessed part is reduced. Therefore, for example, the packing part Pk2C can be easily replaced by replacing the main body part 32C.
  <2-4.第5実施形態>
 上記各実施形態において、例えば、図10で示されるように、上記太陽電池モジュール1を基本構成として、上記の4つの端子ボックス3a,3b(3bA,3bB,3bC),3c,3dの代わりに、端子ボックス3Dを備えた太陽電池モジュール1Dに変更されてもよい。この端子ボックス3Dは、4つの端子ボックス3a,3b(3bA,3bB,3bC),3c,3dの機能を併せ持つ。そして、図10で示されるように、太陽電池モジュール1Dは、導線W1a,W1b,W1c,W1d,W1e,W1fの代わりに,導線W1D,W2D,W3Dを備えている。
<2-4. Fifth Embodiment>
In each of the above embodiments, for example, as shown in FIG. 10, instead of the above four terminal boxes 3a, 3b (3bA, 3bB, 3bC), 3c, 3d, the solar cell module 1 is a basic configuration. The solar cell module 1D including the terminal box 3D may be changed. This terminal box 3D has the functions of four terminal boxes 3a, 3b (3bA, 3bB, 3bC), 3c, 3d. And as FIG. 10 shows, solar cell module 1D is equipped with conducting wire W1D, W2D, W3D instead of conducting wire W1a, W1b, W1c, W1d, W1e, W1f.
 図10の例では、太陽電池セル群Sg1に1本目の導線W1Dが電気的に接続している状態で位置している。2つの太陽電池セル群Sg2,Sg3に2本目の導線W2Dが電気的に接続して状態で位置しており、太陽電池セル群Sg4に3本目の導線W3Dが電気的に接続している状態で位置している。また、例えば、導線W1D,W3Dと接続導体T1との交差部のそれぞれには、PETなどの絶縁体が挟まれている状態にある。これにより、導線W1D,W3Dと接続導体T1との間が絶縁されている。3本の導線W1D,W2D,W3Dは、それぞれ別々の第1孔部Th0を挿通している状態で位置していてもよい。また、3本の導線W1D,W2D,W3Dのうちの2本以上の導線が1つの第1孔部Th0を挿通している状態で位置していてもよい。各第1孔部Th0は、導線W1D,W2D,W3Dが挿通されている状態で、例えば、ブチル系の樹脂またはポリイソプロピレン系の樹脂などの封止材によって封止される。ここで、例えば、導線W1D,W2D,W3Dと光電変換部23との間に、絶縁体のシートI1Dが位置していてもよい。 In the example of FIG. 10, the first conductive wire W1D is positioned in a state where it is electrically connected to the solar cell group Sg1. In the state where the second conductor W2D is electrically connected to the two solar cell groups Sg2 and Sg3, and the third conductor W3D is electrically connected to the solar cell group Sg4. positioned. Further, for example, an insulator such as PET is sandwiched between the intersections of the conductive wires W1D and W3D and the connection conductor T1. Thereby, between the conducting wire W1D and W3D and the connection conductor T1 is insulated. The three conducting wires W1D, W2D, and W3D may be positioned in a state where they are inserted through different first hole portions Th0. Further, two or more of the three conductive wires W1D, W2D, and W3D may be positioned in a state of being inserted through one first hole Th0. Each first hole Th0 is sealed with a sealing material such as a butyl resin or a polyisopropylene resin in a state where the conductive wires W1D, W2D, and W3D are inserted. Here, for example, an insulating sheet I1D may be positioned between the conductive wires W1D, W2D, W3D and the photoelectric conversion unit 23.
 端子ボックス3Dは、図10などで示されるように、太陽電池パネル2の表面(ここでは裏面Sf2)上に固定されている状態で位置している。端子ボックス3Dは、例えば、シリコン系の接着剤などを用いた接着によって裏面Sf2に固定され得る。図10で示されるように、端子ボックス3Dには、光電変換部23で生じた電気を出力するための出力用のケーブルC1が電気的に接続されている状態で位置している。図10の例では、端子ボックス3Dに、出力用のケーブルC1a,C1bおよび導線W1D,W2D,W3Dが電気的に接続されている状態で位置している。 The terminal box 3D is positioned in a fixed state on the front surface (here, the back surface Sf2) of the solar cell panel 2, as shown in FIG. The terminal box 3D can be fixed to the back surface Sf2 by adhesion using, for example, a silicon-based adhesive. As shown in FIG. 10, the terminal box 3 </ b> D is positioned in a state where an output cable C <b> 1 for outputting electricity generated in the photoelectric conversion unit 23 is electrically connected. In the example of FIG. 10, the output cables C1a, C1b and the conductive wires W1D, W2D, W3D are positioned in the terminal box 3D in an electrically connected state.
 端子ボックス3Dは、例えば、図11から図14(b)で示されるように、上記端子ボックス3bを基本構成として、基体部31の代わりに、基体部31Dを有し、本体部32の代わりに、本体部32Dを有している。また、端子ボックス3Dは、基体部31Dと本体部32Dとの間に位置しているパッキング部Pk2C、を有している。 For example, as shown in FIG. 11 to FIG. 14B, the terminal box 3 </ b> D has a base portion 31 </ b> D instead of the base portion 31, with the terminal box 3 b as a basic configuration, instead of the main body portion 32. The main body 32D is provided. The terminal box 3D has a packing part Pk2C located between the base part 31D and the main body part 32D.
 基体部31Dは、上記基体部31を基本構成として、被係合部En1の代わりに被係合部En1Dを含み、2つの第1接点部材J1の代わりに3つの第1接点部材J1Dを含み、環状の被嵌合部Pr1Cを含む。また、基体部31Dの第2孔部Th1には、導線W1D,W2D,W3Dが通過するように位置している。 The base portion 31D includes the base portion 31 as a basic configuration, includes an engaged portion En1D instead of the engaged portion En1, includes three first contact members J1D instead of the two first contact members J1, An annular mated portion Pr1C is included. The conductors W1D, W2D, and W3D are positioned so as to pass through the second hole Th1 of the base portion 31D.
 図11から図14(b)の例では、板部Pl1のうちの被掛かり部Fk1が突出している状態にある第1部分Pn1は、板部Pl1のうちの+X方向の側に位置している。そして、被掛かり部Fk1は、例えば、略L字状の断面を有し且つ+Y方向に延びている状態で位置している。より具体的には、被掛かり部Fk1は、第1部分Pn1から-Z方向に突出している状態にある部分と、この部分から-X方向に突出している状態にある部分と、を有している。これにより、被掛かり部Fk1は、+X方向に凹んでおり且つ+Y方向に延びている状態で位置している溝部Gr1を形成している状態にある。 In the example of FIGS. 11 to 14B, the first portion Pn1 in the state in which the hooked portion Fk1 of the plate portion Pl1 protrudes is located on the + X direction side of the plate portion Pl1. . The hook portion Fk1 has a substantially L-shaped cross section and is positioned in a state extending in the + Y direction, for example. More specifically, the hook portion Fk1 has a portion that protrudes in the −Z direction from the first portion Pn1, and a portion that protrudes in the −X direction from this portion. Yes. As a result, the hook portion Fk1 is in a state of forming a groove portion Gr1 that is recessed in the + X direction and positioned in the + Y direction.
 被係合部En1Dは、上記被係合部En1と同様に、板部Pl1のうちの第2部分Pn2から突出している状態で存在している。第2部分Pn2は、第1部分Pn1から離れている状態で位置している。図11から図14(b)の例では、第2部分Pn2は、板部Pl1のうちの-X方向の側に位置している。被係合部En1Dは、上記被係合部En1と同様に、裏面Sf2から遠ざかる方向(ここでは-Z方向)に第2部分Pn2から突出している状態で位置している。この被係合部En1Dは、-Z方向の先端に鉤状の部分を有している。 The engaged portion En1D exists in a state of projecting from the second portion Pn2 of the plate portion Pl1, similarly to the engaged portion En1. The second part Pn2 is located in a state of being separated from the first part Pn1. In the example of FIGS. 11 to 14B, the second portion Pn2 is located on the −X direction side of the plate portion Pl1. Similarly to the engaged portion En1, the engaged portion En1D is located in a state of protruding from the second portion Pn2 in a direction away from the back surface Sf2 (here, the −Z direction). The engaged portion En1D has a hook-shaped portion at the tip in the −Z direction.
 また、図11から図14(b)の例では、環状の被嵌合部Pr1Cは、環状凸部である。 Further, in the example of FIGS. 11 to 14B, the annular fitted portion Pr1C is an annular convex portion.
 第5実施形態では、例えば、板部Pl1と、被掛かり部Fk1と、被係合部En1Dと、が一体的な構成を有していてもよい。これらの板部Pl1、被掛かり部Fk1および被係合部En1Dの素材には、例えば、樹脂などが適用される。この場合、板部Pl1、被掛かり部Fk1および被係合部En1Dは、例えば、樹脂の一体成形および切削加工などで製作され得る。 In the fifth embodiment, for example, the plate part Pl1, the hooked part Fk1, and the engaged part En1D may have an integral configuration. For example, resin or the like is applied to the material of the plate part Pl1, the hooked part Fk1, and the engaged part En1D. In this case, the plate part Pl1, the hooked part Fk1, and the engaged part En1D can be manufactured by, for example, integral molding and cutting of resin.
 3つの第1接点部材J1Dには、例えば、1番目の第1接点部材J11Dと、2番目の第1接点部材J12Dと、3番目の第1接点部材J13Dと、が含まれている。図12(a)および図13の例では、1番目の第1接点部材J11Dと、2番目の第1接点部材J12Dと、3番目の第1接点部材J13Dとが、この記載の順に+Y方向に向けて一列にならんでいる状態で位置している。1番目の第1接点部材J11Dには、導線W1Dが電気的に接続されている状態で位置している。2番目の第1接点部材J12Dには、導線W2Dが電気的に接続されている状態で位置している。3番目の第1接点部材J13Dには、導線W3Dが電気的に接続されている状態で位置している。ここでは、例えば、太陽電池パネル2を製作した後に、1番目の第1接点部材J11Dに導線W1Dを接続し、2番目の第1接点部材J12Dに導線W2Dを接続し、3番目の第1接点部材J13Dに導線W3Dを接続して、太陽電池パネル2の表面上に基体部31Dを取り付けることができる。第1接点部材J1Dは、例えば、金属などの導電体によって構成されている。図11から図14(b)の例では、各第1接点部材J1Dは、板部Pl1の裏面Sf2とは逆側(-Z方向の側)の面上に固定されている。そして、第1接点部材J1Dには、例えば、はんだ付け、かしめ、または挟み込みなどの方法によって、導線W1D,W2D,W3Dが電気的に接続されている状態で位置している。 The three first contact members J1D include, for example, a first first contact member J11D, a second first contact member J12D, and a third first contact member J13D. In the example of FIG. 12A and FIG. 13, the first first contact member J11D, the second first contact member J12D, and the third first contact member J13D are arranged in the + Y direction in this order. It is located in a row facing toward you. The first first contact member J11D is positioned in a state where the conducting wire W1D is electrically connected. The second first contact member J12D is positioned in a state where the conductive wire W2D is electrically connected. The third first contact member J13D is positioned in a state where the conductive wire W3D is electrically connected. Here, for example, after the solar cell panel 2 is manufactured, the conductor W1D is connected to the first first contact member J11D, the conductor W2D is connected to the second first contact member J12D, and the third first contact is made. The base member 31D can be mounted on the surface of the solar cell panel 2 by connecting the conductor W3D to the member J13D. The first contact member J1D is made of a conductor such as metal, for example. In the example of FIGS. 11 to 14B, each first contact member J1D is fixed on the surface opposite to the back surface Sf2 of the plate portion Pl1 (on the −Z direction side). The first contact member J1D is positioned in a state where the conductive wires W1D, W2D, and W3D are electrically connected by a method such as soldering, caulking, or sandwiching.
 本体部32Dは、上記本体部32を基本構成として、係合部En2の代わりに係合部En2Dを含み、2つの第2接点部材J2の代わりに3つの第2接点部材J2Dを含み、ダイオードB2の代わりに2つのダイオードB2Dを含み、さらに、3つの接続部C1Dおよび環状の嵌合部Re2Cを含む。 The main body portion 32D includes the main body portion 32 as a basic configuration, includes an engagement portion En2D instead of the engagement portion En2, includes three second contact members J2D instead of the two second contact members J2, and includes a diode B2. Instead of two diodes B2D, and further includes three connecting portions C1D and an annular fitting portion Re2C.
 図11から図14(b)の例では、係合部En2Dは、板状可撓部F11Dと、係合部分F12Dと、を有している。板状可撓部F11Dは、被覆部Cv2の-X方向の側の側部Sp2の部分に対して接続部Pc2Dによって接続されている状態で位置している。この板状可撓部F11Dは、被覆部Cv2の側部Sp2に沿って基体部31Dに向けて延びている状態で位置している。この板状可撓部F11Dは、可撓性を有する板状の部分である。係合部分F12Dは、板状可撓部F11Dの基体部31D側において被係合部En1Dと係合している状態で位置している。このように、例えば、基体部31Dと本体部32Dとが係合し合う部分において、本体部32D側の係合部En2Dに、撓みを生じる板状可撓部F11Dを適用すると、被係合部En1Dには可撓性が不要となる。このため、例えば、交換しにくい基体部31Dの被係合部En1Dが劣化しにくくなる。その結果、例えば、仮に、端子ボックス3Dの長期間の使用によって、本体部32Dの板状可撓部F11Dの弾性が劣化したとしても、本体部32Dを容易に交換することができる。これにより、太陽電池モジュール1および太陽電池モジュール1用の端子ボックス3Dの再生および長寿命化を容易に図ることができる。 11 to 14B, the engagement portion En2D has a plate-like flexible portion F11D and an engagement portion F12D. The plate-like flexible part F11D is located in a state where it is connected by the connecting part Pc2D to the side part Sp2 on the −X direction side of the covering part Cv2. This plate-like flexible part F11D is located in a state of extending toward the base part 31D along the side part Sp2 of the covering part Cv2. The plate-like flexible portion F11D is a plate-like portion having flexibility. The engaging portion F12D is positioned in a state of being engaged with the engaged portion En1D on the base portion 31D side of the plate-like flexible portion F11D. Thus, for example, when the plate-like flexible portion F11D that causes bending is applied to the engaging portion En2D on the main body portion 32D side in the portion where the base portion 31D and the main body portion 32D engage with each other, the engaged portion En1D does not require flexibility. For this reason, for example, the engaged portion En1D of the base portion 31D that is difficult to replace is less likely to deteriorate. As a result, for example, even if the elasticity of the plate-like flexible portion F11D of the main body portion 32D deteriorates due to long-term use of the terminal box 3D, the main body portion 32D can be easily replaced. Thereby, reproduction | regeneration of the solar cell module 1 and terminal box 3D for solar cell modules 1 and lifetime extension can be achieved easily.
 3つの第2接点部材J2Dには、例えば、1番目の第2接点部材J21Dと、2番目の第2接点部材J22Dと、3番目の第3接点部材J23Dと、が含まれている。図12(b)の例では、1番目の第2接点部材J21Dと、2番目の第2接点部材J22Dと、3番目の第3接点部材J23Dとが、この記載の順に+Y方向に向けて一列にならんでいる状態で位置している。2つのダイオードB2Dには、例えば、1番目のダイオードB21Dと、2番目のダイオードB22Dと、が含まれている。図12(b)の例では、1番目のダイオードB21Dと、2番目のダイオードB22Dとが、この記載の順に+Y方向にならんでいる状態で位置している。3つの接続部C1Dには、1番目の接続部C11Dと、2番目の接続部C12Dと、3番目の接続部C13Dと、が含まれている。図12(b)の例では、1番目の接続部C11Dと、2番目の接続部C12Dと、3番目の接続部C13Dとが、この記載の順に+Y方向にならんでいる状態で位置している。各接続部C1Dの素材には、導電性を有する材料が適用される。各接続部C1Dは、例えば、板状の部材であればよい。 The three second contact members J2D include, for example, a first second contact member J21D, a second second contact member J22D, and a third third contact member J23D. In the example of FIG. 12B, the first second contact member J21D, the second second contact member J22D, and the third third contact member J23D are arranged in a row in the + Y direction in this order. It is located in a state of being in love. The two diodes B2D include, for example, a first diode B21D and a second diode B22D. In the example of FIG. 12B, the first diode B21D and the second diode B22D are positioned in a state in which they are aligned in the + Y direction in this order. The three connection parts C1D include a first connection part C11D, a second connection part C12D, and a third connection part C13D. In the example of FIG. 12B, the first connection portion C11D, the second connection portion C12D, and the third connection portion C13D are positioned in a state in which they are aligned in the + Y direction in this order. . A conductive material is applied to the material of each connection portion C1D. Each connection part C1D should just be a plate-shaped member, for example.
 図12(b)の例では、1番目の接続部C11Dと、2番目の接続部C12Dと、3番目の接続部C13Dとが、底部Bp2の基体部31D側の面上に固定されている。1番目の接続部C11Dには、1番目の第2接点部材J21Dが接続されている状態で位置しているとともに、ケーブルC1aが接続されている状態で位置している。2番目の接続部C12Dには、2番目の第2接点部材J22Dが接続されている状態で位置している。3番目の接続部C13Dには、3番目の第2接点部材J23Dが接続されている状態で位置しているとともに、ケーブルC1bが接続されている状態で位置している。端子ボックス3DのうちのケーブルC1a,C1bが貫通している状態にある部分は、例えば、パッキング部材などで封止されればよい。また、1番目の接続部C11Dと2番目の接続部C12Dとが1番目のダイオードB21Dを介して接続されている状態で位置している。2番目の接続部C12Dと3番目の接続部C13Dとが2番目のダイオードB22Dを介して接続されている状態で位置している。 In the example of FIG. 12B, the first connection portion C11D, the second connection portion C12D, and the third connection portion C13D are fixed on the surface of the bottom portion Bp2 on the base portion 31D side. The first connecting portion C11D is located in a state where the first second contact member J21D is connected and is located in a state where the cable C1a is connected. The second connecting portion C12D is positioned in a state where the second second contact member J22D is connected. The third connecting portion C13D is located in a state where the third second contact member J23D is connected and is located in a state where the cable C1b is connected. A portion of the terminal box 3D in which the cables C1a and C1b are penetrating may be sealed with, for example, a packing member. Further, the first connection portion C11D and the second connection portion C12D are located in a state where they are connected via the first diode B21D. The second connecting portion C12D and the third connecting portion C13D are located in a state where they are connected via the second diode B22D.
 ここで、図14(a)および図14(b)で示されるように、被掛かり部Fk1の溝部Gr1に掛かり部Fk2を挿入した状態で、掛かり部Fk2の先端付近における仮想的な回転軸Ax1を中心として、本体部32Dを基体部31Dに対して回転させる。これにより、例えば、図14(b)で示されるように、係合部En2Dを被係合部En1Dに係合させることができる。具体的には、図14(b)の例では、係合部En2Dの鉤部が被係合部En1Dの鉤部に引っ掛かることで、係合部En2Dが被係合部En1Dに係合する。これにより、端子ボックス3Dが完成する。 Here, as shown in FIG. 14A and FIG. 14B, in a state where the hook portion Fk2 is inserted into the groove portion Gr1 of the hook portion Fk1, a virtual rotation axis Ax1 near the tip of the hook portion Fk2. The main body portion 32D is rotated with respect to the base portion 31D. Thereby, for example, as shown in FIG. 14B, the engaging portion En2D can be engaged with the engaged portion En1D. Specifically, in the example of FIG. 14B, the engaging portion En2D is engaged with the engaged portion En1D by the hook portion of the engaging portion En2D being hooked on the flange portion of the engaged portion En1D. Thereby, the terminal box 3D is completed.
 この端子ボックス3Dでは、例えば、第1接点部材J1Dと第2接点部材J2Dとが接触している部分において、第1接点部材J1Dおよび第2接点部材J2Dのうちの少なくとも一方の部材が、弾性変形を生じている状態で存在している。具体的には、例えば、X番目(Xは1,2,3の何れかの整数)の第1接点部材J1XDとX番目の第2接点部材J2XDとが接触している部分において、X番目の第1接点部材J1XDおよびX番目の第2接点部材J2XDの少なくとも一方の部材が、弾性変形を生じている状態で存在している。 In the terminal box 3D, for example, in a portion where the first contact member J1D and the second contact member J2D are in contact, at least one of the first contact member J1D and the second contact member J2D is elastically deformed. It exists in the state which has produced. Specifically, for example, in the portion where the X-th (X is an integer of 1, 2, 3) first contact member J1XD and the X-th second contact member J2XD are in contact with each other, At least one of the first contact member J1XD and the Xth second contact member J2XD exists in a state where elastic deformation occurs.
 上記構成が採用されれば、例えば、仮想的な回転軸Ax1を中心として基体部31Dに対して本体部32Dを回転させることで、第1接点部材J1Dと第2接点部材J2Dとが当接する際に、第2接点部材J2Dが第1接点部材J1Dに押し付けられる力がモーメントである。このとき、例えば、本体部32Dのうち、第1接点部材J1Dと第2接点部材J2Dとの接触箇所よりも仮想的な回転軸Ax1から離れた位置を押すことで、梃子の原理によって、作業者は小さな力で、第2接点部材J2Dを、第1接点部材J1Dに対して大きな力で押し付けることができる。ここで、例えば、本体部32Dのうち、第1接点部材J1Dと第2接点部材J2Dとの接触箇所よりも仮想的な回転軸Ax1から2倍以上離れた位置を押すようにしてもよい。これにより、例えば、第1接点部材J1Dおよび第2接点部材J2Dに、電気抵抗が低くかつ大きな厚みを有する導電体を適用することができる。また、例えば、第2接点部材J2Dが第1接点部材J1Dに対して大きな力で押し付けられることで、第1接点部材J1Dと第2接点部材J2Dとの接触不良が生じにくく、接触不良に起因するアークも発生しにくい。このとき、例えば、第1接点部材J1Dおよび第2接点部材J2Dの少なくとも一方の部材が弾性変形を含む変形を生じることで、第1接点部材J1Dと第2接点部材J2Dとがより広い面積で接触し得る。これにより、例えば、第1接点部材J1Dと第2接点部材J2Dとの間における接触抵抗が低下する。その結果、太陽電池モジュール1における発電効率が向上し得る。 If the above configuration is adopted, for example, when the main body portion 32D is rotated with respect to the base portion 31D around the virtual rotation axis Ax1, the first contact member J1D and the second contact member J2D come into contact with each other. In addition, the force by which the second contact member J2D is pressed against the first contact member J1D is a moment. At this time, for example, by pressing a position away from the virtual rotation axis Ax1 with respect to the contact portion between the first contact member J1D and the second contact member J2D in the main body portion 32D, the operator can operate according to the principle of lever. Can press the second contact member J2D against the first contact member J1D with a large force with a small force. Here, for example, in the main body portion 32D, a position that is two times or more away from the virtual rotation axis Ax1 than the contact point between the first contact member J1D and the second contact member J2D may be pushed. Thereby, for example, a conductor having a low electrical resistance and a large thickness can be applied to the first contact member J1D and the second contact member J2D. Further, for example, when the second contact member J2D is pressed against the first contact member J1D with a large force, the contact failure between the first contact member J1D and the second contact member J2D is unlikely to occur and is caused by the contact failure. Arcs are also unlikely to occur. At this time, for example, when at least one of the first contact member J1D and the second contact member J2D is deformed including elastic deformation, the first contact member J1D and the second contact member J2D are in contact with each other in a wider area. Can do. Thereby, for example, the contact resistance between the first contact member J1D and the second contact member J2D decreases. As a result, the power generation efficiency in the solar cell module 1 can be improved.
 ここで、例えば、第2接点部材J2Dが第1接点部材J1Dを押している方向に沿った第1接点部材J1Dの弾性変形の量を第1弾性変形量とする。第1弾性変形量としては、例えば、第1接点部材J1Dのうちの第2接点部材J2Dと接触している部分において生じる変位量が採用される。また、第1接点部材J1Dが第2接点部材J2Dを押している方向に沿った第2接点部材J2Dの弾性変形の量を第2弾性変形量とする。第2弾性変形量としては、例えば、第2接点部材J2Dのうちの第1接点部材J1Dと接触している部分において生じる変位量が採用される。ここで、例えば、第1弾性変形量よりも第2弾性変形量の方が大きければ、太陽電池モジュール1の長期間の使用によって、交換しにくい基体部31D側の第1接点部材J1Dの方が、交換しやすい本体部32D側の第2接点部材J2Dよりも弾性の劣化が生じにくい。このため、例えば、基体部31Dに対する本体部32Dの脱着および交換によって、太陽電池モジュール1Dおよび太陽電池モジュール1D用の端子ボックス3Dの再生および長寿命化を容易に図ることができる。 Here, for example, the amount of elastic deformation of the first contact member J1D along the direction in which the second contact member J2D pushes the first contact member J1D is defined as the first elastic deformation amount. As the first elastic deformation amount, for example, a displacement amount generated in a portion of the first contact member J1D that is in contact with the second contact member J2D is employed. The amount of elastic deformation of the second contact member J2D along the direction in which the first contact member J1D pushes the second contact member J2D is defined as the second elastic deformation amount. As the second elastic deformation amount, for example, a displacement amount generated in a portion of the second contact member J2D that is in contact with the first contact member J1D is employed. Here, for example, if the second elastic deformation amount is larger than the first elastic deformation amount, the first contact member J1D on the base portion 31D side that is difficult to replace due to long-term use of the solar cell module 1 is more suitable. The elastic deterioration is less likely to occur than the second contact member J2D on the main body part 32D side, which is easy to replace. Therefore, for example, the solar cell module 1D and the terminal box 3D for the solar cell module 1D can be easily regenerated and extended in life by detaching and replacing the main body portion 32D with respect to the base portion 31D.
 別の観点から、ここで、例えば、第2接点部材J2Dが第1接点部材J1Dを押している方向に沿った基体部31Dにおける第1接点部材J1Dのバネ定数を第1バネ定数とする。ここでいう第1バネ定数は、基体部31Dに固定されている状態における、第1接点部材J1Dのバネ定数である。例えば、第1接点部材J1Dが基体部31Dの板部Pl1上に沿って位置している場合には、第1接点部材J1Dは板部Pl1によって太陽電池パネル2側から支持されて補強されている。このとき、第1接点部材J1Dが太陽電池パネル2側に向けて第2接点部材J2Dで押されても、第1接点部材J1Dは弾性変形しにくい。したがって、このときには、第1接点部材J1Dのバネ定数は、板部Pl1による補強も加味した値とされる。 From another viewpoint, here, for example, the spring constant of the first contact member J1D in the base portion 31D along the direction in which the second contact member J2D pushes the first contact member J1D is defined as the first spring constant. The first spring constant here is the spring constant of the first contact member J1D in a state of being fixed to the base portion 31D. For example, when the first contact member J1D is positioned along the plate part Pl1 of the base part 31D, the first contact member J1D is supported and reinforced by the plate part Pl1 from the solar cell panel 2 side. . At this time, even if the first contact member J1D is pushed toward the solar cell panel 2 by the second contact member J2D, the first contact member J1D is hardly elastically deformed. Therefore, at this time, the spring constant of the first contact member J1D is a value that also takes into account the reinforcement by the plate portion Pl1.
 また、ここで、例えば、第1接点部材J1Dが第2接点部材J2Dを押している方向に沿った本体部32Dにおける第2接点部材J2Dのバネ定数を第2バネ定数とする。ここでいう第2バネ定数は、本体部32Dに固定されている状態における、第2接点部材J2Dのバネ定数である。例えば、第2接点部材J2Dが本体部32Dの底部Bp2上に沿って位置している場合には、第2接点部材J2Dは底部Bp2によって支持されて補強されている。このとき、第2接点部材J2Dが底部Bp2側に向けて第1接点部材J2Dで押されても、第2接点部材J2Dは弾性変形しにくい。したがって、このときには、第2接点部材J2Dのバネ定数は、底部Bp2による補強も加味した値とされる。 Here, for example, the spring constant of the second contact member J2D in the main body portion 32D along the direction in which the first contact member J1D pushes the second contact member J2D is defined as the second spring constant. The second spring constant here is a spring constant of the second contact member J2D in a state of being fixed to the main body portion 32D. For example, when the second contact member J2D is positioned along the bottom Bp2 of the main body 32D, the second contact member J2D is supported and reinforced by the bottom Bp2. At this time, even if the second contact member J2D is pushed by the first contact member J2D toward the bottom Bp2 side, the second contact member J2D is hardly elastically deformed. Therefore, at this time, the spring constant of the second contact member J2D is set to a value in consideration of reinforcement by the bottom portion Bp2.
 そして、例えば、第1バネ定数よりも第2バネ定数の方が小さければ、太陽電池モジュール1の長期間の使用によって、交換しにくい基体部31D側の第1接点部材J1Dの方が、交換しやすい本体部32D側の第2接点部材J2Dよりも弾性の劣化が生じにくい。このため、例えば、基体部31Dに対する本体部32Dの脱着および交換によって、太陽電池モジュール1Dおよび太陽電池モジュール1D用の端子ボックス3Dの再生および長寿命化を容易に図ることができる。 And, for example, if the second spring constant is smaller than the first spring constant, the first contact member J1D on the base portion 31D side that is difficult to replace due to long-term use of the solar cell module 1 is replaced. The deterioration of elasticity is less likely to occur than the second contact member J2D on the main body portion 32D side. Therefore, for example, the solar cell module 1D and the terminal box 3D for the solar cell module 1D can be easily regenerated and extended in life by detaching and replacing the main body portion 32D with respect to the base portion 31D.
 ところで、例えば、第1接点部材J1Dおよび第2接点部材J2Dの素材には、例えば、リン青銅、黄銅、銅-ニッケル-シリコン系合金などの銅合金、銀合金、アルミニム合金、あるいは、銀合金またはアルミニウム合金に半田メッキ、銀メッキもしくは金メッキの処理が施されたものが用いられる。また、例えば、第1接点部材J1Dは、第2接点部材J2Dと接触する丸みを帯びた接触面を有していてもよい。このとき、例えば、第2接点部材J2Dは、第1接点部材J1Dと接触する平面状の接触面を有していてもよい。また、例えば、第2接点部材J2Dが、第1接点部材J1Dと接触する丸みを帯びた接触面を有していてもよい。このとき、例えば、第1接点部材J1Dは、第2接点部材J2Dと接触する平面状の接触面を有していてもよい。これらの接触面が採用されれば、第1接点部材J1Dと第2接点部材J2Dとが接触しやすく、第1接点部材J1Dと第2接点部材J2Dとの接触抵抗が低減され得る。 By the way, for example, the materials of the first contact member J1D and the second contact member J2D include, for example, phosphor bronze, brass, copper alloys such as copper-nickel-silicon alloys, silver alloys, aluminum alloys, silver alloys or An aluminum alloy that has been subjected to solder plating, silver plating or gold plating is used. In addition, for example, the first contact member J1D may have a rounded contact surface that comes into contact with the second contact member J2D. At this time, for example, the second contact member J2D may have a planar contact surface that contacts the first contact member J1D. For example, the second contact member J2D may have a rounded contact surface that comes into contact with the first contact member J1D. At this time, for example, the first contact member J1D may have a planar contact surface that contacts the second contact member J2D. If these contact surfaces are employed, the first contact member J1D and the second contact member J2D can easily come into contact with each other, and the contact resistance between the first contact member J1D and the second contact member J2D can be reduced.
 ここで、例えば、第1接点部材J1Dと第2接点部材J2Dとが、同一の素材と同一の形状とを有している場合を想定する。この場合、例えば、第1接点部材J1Dが基体部31Dの板部Pl1によって第2接点部材J2Dの位置とは逆側から支持されれば、第1バネ定数よりも第2バネ定数の方が小さくなる。 Here, for example, it is assumed that the first contact member J1D and the second contact member J2D have the same material and the same shape. In this case, for example, if the first contact member J1D is supported from the side opposite to the position of the second contact member J2D by the plate portion Pl1 of the base portion 31D, the second spring constant is smaller than the first spring constant. Become.
 また、ここで、例えば、第1接点部材J1Dおよび第2接点部材J2Dの何れの部材も、片持ち梁のような形状を有している場合を想定する。この場合、片持ち梁の撓みδは、次の式(1)で示され、バネ定数Kは、次の式(2)で示される。 Further, here, for example, a case is assumed where both the first contact member J1D and the second contact member J2D have a shape like a cantilever. In this case, the cantilever deflection δ is expressed by the following equation (1), and the spring constant K is expressed by the following equation (2).
  δ=PL/(3EI)  ・・・(1)
  K=(3EI)/L  ・・・(2)。
δ = PL 3 / (3EI) (1)
K = (3EI) / L 3 (2).
 ここでは、第1接点部材J1Dと第2接点部材J2Dとが当接したときの作用・反作用の力がPで示され、ヤング率がEで示され、断面二次モーメントがIで示され、片持ち梁の支点から作用点までの距離がLで示されている。この距離Lについては、例えば、第1接点部材J1Dの距離をL1とも表し、第2接点部材J2Dの距離をL2とも表す。 Here, the action / reaction force when the first contact member J1D and the second contact member J2D contact each other is indicated by P, the Young's modulus is indicated by E, and the cross-sectional secondary moment is indicated by I. The distance from the fulcrum of the cantilever to the point of action is indicated by L. Regarding the distance L, for example, the distance of the first contact member J1D is also expressed as L1, and the distance of the second contact member J2D is also expressed as L2.
 ここで、第1バネ定数よりも第2バネ定数の方が小さくなるようにする方法としては、例えば、下記の方法1から方法3が考えられる。 Here, as a method of making the second spring constant smaller than the first spring constant, for example, the following method 1 to method 3 can be considered.
 [方法1]第2接点部材J2Dよりも硬い材料を第1接点部材J1Dに使用することで、第1接点部材J1Dのヤング率Eを第2接点部材J2Dのヤング率Eよりも大きくする。例えば、第1接点部材J1Dの素材に、ヤング率が131GPaの銅-ニッケル-珪素系合金を用い、第2接点部材J2Dの素材に、ヤング率が110GPaの黄銅を用いる場合が考えられる。 [Method 1] By using a material harder than the second contact member J2D for the first contact member J1D, the Young's modulus E of the first contact member J1D is made larger than the Young's modulus E of the second contact member J2D. For example, a copper-nickel-silicon alloy having a Young's modulus of 131 GPa may be used as the material of the first contact member J1D, and brass having a Young's modulus of 110 GPa may be used as the material of the second contact member J2D.
 [方法2]第1接点部材J1Dの断面二次モーメントIを、第2接点部材J2Dの断面二次モーメントIよりも大きくする。ここで、断面二次モーメントは、例えば、第1接点部材J1Dおよび第2接点部材J2Dの各断面を、便宜的に長方形と仮定すると、次の式(3)で示される。 [Method 2] The cross-sectional secondary moment I of the first contact member J1D is made larger than the cross-sectional secondary moment I of the second contact member J2D. Here, the cross-sectional secondary moment is expressed by the following equation (3), assuming that the cross sections of the first contact member J1D and the second contact member J2D are rectangular for convenience.
  I=bh/12  ・・・(3)。 I = bh 3/12 ··· ( 3).
 ここでは、断面の幅がbで示され、断面の高さがhで示されている。断面の高さhは、第1接点部材J1Dおよび第2接点部材J2Dの厚さに相当する。断面の幅bについては、例えば、第1接点部材J1Dの幅をb1とも表し、第2接点部材J2Dの幅をb2とも表す。また、断面の高さhについては、例えば、第1接点部材J1Dの厚さをh1とも表し、第2接点部材J2Dの厚さをh2とも表す。 Here, the width of the cross section is indicated by b, and the height of the cross section is indicated by h. The height h of the cross section corresponds to the thickness of the first contact member J1D and the second contact member J2D. Regarding the width b of the cross section, for example, the width of the first contact member J1D is also expressed as b1, and the width of the second contact member J2D is also expressed as b2. Regarding the height h of the cross section, for example, the thickness of the first contact member J1D is also expressed as h1, and the thickness of the second contact member J2D is also expressed as h2.
 ここで、第1接点部材J1Dの幅(b1)を第2接点部材J2Dの幅(b2)よりも大きくしてもよいし、第1接点部材J1Dの厚さ(h1)を第2接点部材J2Dの厚さ(h2)よりも大きくしてもよい。また、第1接点部材J1Dの断面形状が、長方形以外の、例えば、I型、H型、U型、T型または円環型などの形状であれば、第1接点部材J1Dの断面二次モーメントが高まり得る。また、ここで、例えば、本体部32D側の第2接点部材J2Dの厚さ(h2)を減少させることで第2接点部材J2Dのバネ定数を低下させれば、交換しやすい本体部32D側の素材の使用量が低減され得る。 Here, the width (b1) of the first contact member J1D may be larger than the width (b2) of the second contact member J2D, and the thickness (h1) of the first contact member J1D may be set to the second contact member J2D. It may be larger than the thickness (h2). Further, if the cross-sectional shape of the first contact member J1D is a shape other than a rectangle, for example, an I-type, H-type, U-type, T-type, or an annular shape, the cross-sectional secondary moment of the first contact member J1D Can increase. Here, for example, if the spring constant of the second contact member J2D is reduced by reducing the thickness (h2) of the second contact member J2D on the main body portion 32D side, the replacement on the main body portion 32D side is easy. The amount of material used can be reduced.
 [方法3]第1接点部材J1Dの距離(L1)を、第2接点部材J2Dの距離(L2)よりも短くする。 [Method 3] The distance (L1) of the first contact member J1D is made shorter than the distance (L2) of the second contact member J2D.
  <2-5.第6実施形態>
 上記各実施形態において、例えば、図15で示されるように、上記端子ボックス3Dを基本構成として、被係合部En1Dと係合部En2Dとが、蝶番などの他の構成で係合する被係合部En1Eと係合部En2Eとに置換された端子ボックス3Eが採用されてもよい。図15の例では、本体部32Dを基本構成として、係合部En2Dの代わりに係合部En2Eを有する本体部32Eが採用されている。係合部En2Eは、被覆部Cv2の-X方向の側の側部Sp2の部分に対して接続部Pc2Eによって接続されている状態で位置している状態にある。この係合部En2E、回転軸Ax2Eを中心として回転可能な状態にある、厚さ方向に貫通する第4孔部Hl3Eを有する板状の部分である。また、図15の例では、基体部31Dを基本構成として、被係合部En1Dの代わりに、係合部En2Eの第4孔部Hl3Eに係合するL字状の形状を有する被係合部En1Eを有する基体部31Eが採用されている。
<2-5. Sixth Embodiment>
In each of the above embodiments, for example, as shown in FIG. 15, the engaged portion En1D and the engaged portion En2D are engaged with another configuration such as a hinge using the terminal box 3D as a basic configuration. A terminal box 3E replaced with the joint portion En1E and the engaging portion En2E may be employed. In the example of FIG. 15, a main body 32E having an engaging portion En2E instead of the engaging portion En2D is employed with the main body 32D as a basic configuration. The engaging portion En2E is in a state of being connected to the portion of the side portion Sp2 on the −X direction side of the covering portion Cv2 by the connecting portion Pc2E. The engaging portion En2E is a plate-like portion having a fourth hole H13E that penetrates in the thickness direction and is rotatable about the rotation axis Ax2E. Further, in the example of FIG. 15, the base portion 31D is a basic configuration, and the engaged portion having an L-shape that engages with the fourth hole Hl3E of the engaging portion En2E instead of the engaged portion En1D. A base portion 31E having En1E is employed.
  <2-6.第7実施形態>
 上記各実施形態において、例えば、第1接点部材J1,J1Dと第2接点部材J2,J2Dとが押し合う方向が変更されてもよい。図16(a)および図16(b)の例では、上記端子ボックス3Dを基本構成としている。そして、基体部31Dが、第1接点部材J1Dの代わりに第1接点部材J1Fを含む基体部31Fに変更され、本体部32Dが、第2接点部材J2Dの代わりに第2接点部材J2Fを含む本体部32Fに変更された、端子ボックス3Fが採用されている。
<2-6. Seventh Embodiment>
In each of the above embodiments, for example, the direction in which the first contact members J1, J1D and the second contact members J2, J2D are pressed may be changed. In the example of FIGS. 16A and 16B, the terminal box 3D has a basic configuration. The base portion 31D is changed to the base portion 31F including the first contact member J1F instead of the first contact member J1D, and the main body portion 32D includes the second contact member J2F instead of the second contact member J2D. The terminal box 3F changed to the part 32F is employed.
 ここでは、図16(a)および図16(b)で示されるように、被掛かり部Fk1の溝部Gr1に掛かり部Fk2を挿入した状態で、掛かり部Fk2の先端付近における仮想的な回転軸Ax1を中心として、本体部32Fを基体部31Fに対して回転させる。このとき、板部Pl1の本体部32F側において本体部32F側に向かって突出している状態で位置している第1接点部材J1Fと、底部Bp2の基体部31F側において基体部31F側に向かって突出している状態で位置している第2接点部材J2Fと、が押し合う。これにより、第1接点部材J1Fと第2接点部材J2Fとが接触している部分において、第1接点部材J1Fおよび第2接点部材J2Fのうちの少なくとも一方の部材が、倒れるように弾性変形を生じる。そして、例えば、係合部En2Dを被係合部En1Dに係合させれば、端子ボックス3Fが完成し得る。 Here, as shown in FIGS. 16A and 16B, in a state where the hook portion Fk2 is inserted into the groove portion Gr1 of the hook portion Fk1, a virtual rotation axis Ax1 in the vicinity of the tip of the hook portion Fk2. The main body 32F is rotated with respect to the base 31F. At this time, the first contact member J1F located in a state of projecting toward the main body portion 32F side on the main body portion 32F side of the plate portion Pl1, and toward the base body portion 31F side on the base body portion 31F side of the bottom portion Bp2. The second contact member J2F located in a protruding state is pressed against each other. Thereby, in the part which the 1st contact member J1F and the 2nd contact member J2F are contacting, at least one member of the 1st contact member J1F and the 2nd contact member J2F produces elastic deformation so that it may fall. . For example, if the engaging portion En2D is engaged with the engaged portion En1D, the terminal box 3F can be completed.
 <3.その他>
 上記各実施形態では、例えば、基体部31,31A,31B,31C,31D,31E,31Fと本体部32,32A,32B,32C,32D,32E,32Fとが接触している箇所において、基体部31,31A,31B,31C,31D,31E,31Fおよび本体部32,32A,32B,32C,32D,32E,32Fの少なくとも一方の表面が弾性を有していれば、別体のパッキング部Pk1,Pk1B,Pk2Cが省略されてもよい。また、パッキング部Pk1,Pk1B,Pk2Cの素材として、例えば、金属などが採用されてもよい。また、基体部31,31A,31B,31C,31D,31E,31Fから本体部32,32A,32B,32C,32D,32E,32Fを脱着しない態様であれば、例えば、パッキング部Pk1,Pk1B,Pk2Cの代わりに熱硬化性あるいは光硬化性の接着剤が採用されてもよい。換言すれば、例えば、基体部31,31A,31B,31C,31D,31E,31Fと本体部32,32A,32B,32C,32D,32E,32Fとの隙間における止水を行う機能を有する部分が存在していればよい。また、基体部31の被係合部En1において、第3孔部Hl1,Hl1Aの代わりに、本体部32へ向かう方向に突起している状態にある突起が位置し、本体部32,32A,32B,32Cの側部Sp2において、係合部En2,En2Aの代わりに前述の突起を収容することができる窪みが係合部として位置していてもよい。すなわち、第4部分Pn4に係合部が存在していればよい。
<3. Other>
In each of the above-described embodiments, for example, at the place where the base portions 31, 31A, 31B, 31C, 31D, 31E, 31F and the main body portions 32, 32A, 32B, 32C, 32D, 32E, 32F are in contact, If at least one surface of 31, 31A, 31B, 31C, 31D, 31E, 31F and the main body portions 32, 32A, 32B, 32C, 32D, 32E, 32F has elasticity, separate packing portions Pk1, Pk1B and Pk2C may be omitted. Further, as the material of the packing parts Pk1, Pk1B, Pk2C, for example, a metal or the like may be employed. Further, if the main body portions 32, 32A, 32B, 32C, 32D, 32E, and 32F are not detached from the base portions 31, 31A, 31B, 31C, 31D, 31E, and 31F, for example, the packing portions Pk1, Pk1B, and Pk2C are used. Instead of this, a thermosetting or photocurable adhesive may be employed. In other words, for example, there is a portion having a function of stopping water in a gap between the base portion 31, 31A, 31B, 31C, 31D, 31E, 31F and the main body portion 32, 32A, 32B, 32C, 32D, 32E, 32F. It only has to exist. Further, in the engaged portion En1 of the base portion 31, a protrusion that protrudes in the direction toward the main body portion 32 is located instead of the third hole portions H11 and H11A, and the main body portions 32, 32A, and 32B are located. , 32C, a recess that can accommodate the above-described protrusions instead of the engaging portions En2 and En2A may be positioned as the engaging portion. That is, it is only necessary that the engaging portion exists in the fourth portion Pn4.
 上記各実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、いうまでもない。 It goes without saying that all or a part of each of the above embodiments and various modifications can be appropriately combined within a consistent range.
 1,1D 太陽電池モジュール
 2 太陽電池パネル
 3,3D,3E,3F,3a,3b,3bA,3bB,3bC,3c,3d 端子ボックス
 31,31A,31B,31C,31D,31E,31F 基体部
 32,32A,32B,32C,32D,32E,32F 本体部
 Ax1,Ax2E 回転軸
 B2,B2D,B21D,B22D ダイオード
 CE2 太陽電池セル
 Cv2 被覆部
 En1,En1A,En1D,En1E 被係合部
 En2,En2A,En2D,En2E 係合部
 F11D 板状可撓部
 F12D 係合部分
 Fk1,Fk1A,Fk1B 被掛かり部
 Fk2,Fk2A,Fk2B 掛かり部
 Gr1,Gr1B 溝部
 Hl1,Hl1A 第3孔部
 Hl2 貫通孔
 Hl3E 第4孔部
 Is2 内部空間
 J1,J1D,J11D,J12D,J13D,J1XD,J1F 第1接点部材
 J2,J2D,J21D,J22D,J23D,J2XD,J2F 第2接点部材
 Op2 開口
 Pk1,Pk1B,Pk2C パッキング部
 Pl1 板部
 Pn1 第1部分
 Pn2 第2部分
 Pn3 第3部分
 Pn4 第4部分
 Pr1C,Re1B 被嵌合部
 Pr2B,Re2C 嵌合部
 Sf2 裏面
 Sp2 側部
 Th0 第1孔部
 Th1 第2孔部
 W1a,W1b,W1c,W1d,W1e,W1f,W1D,W2D,W3D 導線
1, 1D Solar cell module 2 Solar cell panel 3, 3D, 3E, 3F, 3a, 3b, 3bA, 3bB, 3bC, 3c, 3d Terminal box 31, 31A, 31B, 31C, 31D, 31E, 31F Base part 32, 32A, 32B, 32C, 32D, 32E, 32F Body part Ax1, Ax2E Rotating shaft B2, B2D, B21D, B22D Diode CE2 Solar cell Cv2 Covering part En1, En1A, En1D, En1E Engaged part En2, En2A, En2D En2E Engagement part F11D Plate-like flexible part F12D Engagement part Fk1, Fk1A, Fk1B Engagement part Fk2, Fk2A, Fk2B Engagement part Gr1, Gr1B Groove part Hl1, Hl1A 3rd hole part Hl2 Through hole Hl3E 4th hole part Space J1, J1D, J11D, J12D , J13D, J1XD, J1F First contact member J2, J2D, J21D, J22D, J23D, J2XD, J2F Second contact member Op2 Opening Pk1, Pk1B, Pk2C Packing part Pl1 Plate part Pn1 First part Pn2 Second part Pn3 Third Part Pn4 Fourth part Pr1C, Re1B Fit part Pr2B, Re2C Fitting part Sf2 Back side Sp2 Side part Th0 First hole part Th1 Second hole part W1a, W1b, W1c, W1d, W1e, W1f, W1D, W2D, W3D Conductor

Claims (10)

  1.  太陽電池パネルと、
     該太陽電池パネルの表面上に位置している端子ボックスと、を備え、
     該端子ボックスは、
     前記表面上に位置している基体部と、
     該基体部に取り付けられた状態で位置している本体部と、を有し、
     前記基体部は、
     前記表面上に位置し、前記太陽電池パネル内から前記表面上の領域まで存在している導線が通過するように位置している孔部を有する板部と、
     前記板部の第1部分から突出している状態で存在している被掛かり部と、
     前記板部のうちの前記第1部分から離れた第2部分から突出している状態で存在している被係合部と、を含み、
     前記本体部は、
     前記板部側に位置している開口を有し、前記板部とともに内部空間を形成している状態で存在している被覆部と、
     前記被覆部のうちの前記開口を囲んでいる状態で位置している環状の側部の第3部分から突出している状態で存在し、前記被掛かり部に対して仮想的な回転軸を中心として回転可能な状態で掛かっている状態で位置している掛かり部と、
     前記環状の側部のうちの前記第3部分から離れた第4部分に存在し、前記被係合部と係合している状態で位置している係合部と、を含み、
     前記仮想的な回転軸に垂直な方向であり且つ前記表面に沿った方向において、前記第3部分と前記第4部分とが離れている状態で位置している、太陽電池モジュール。
    A solar panel,
    A terminal box located on the surface of the solar panel,
    The terminal box is
    A base portion located on the surface;
    A main body portion positioned in a state attached to the base body portion,
    The base portion is
    A plate portion having a hole portion located on the surface and positioned so that a conductor existing from the inside of the solar cell panel to the region on the surface passes through;
    A hooked portion that exists in a state of protruding from the first portion of the plate portion;
    An engaged portion that exists in a state of protruding from a second portion of the plate portion away from the first portion,
    The main body is
    A covering portion having an opening located on the plate portion side and existing in a state of forming an internal space together with the plate portion;
    It exists in the state which protrudes from the 3rd part of the cyclic | annular side part located in the state surrounding the said opening of the said coating | coated part, centering on a virtual rotating shaft with respect to the said covering part A hanging part that is positioned in a state of being able to rotate,
    An engagement portion that is present in a fourth portion of the annular side portion that is remote from the third portion and is positioned in a state of being engaged with the engaged portion;
    The solar cell module, which is located in a state in which the third portion and the fourth portion are separated from each other in a direction perpendicular to the virtual rotation axis and along the surface.
  2.  請求項1に記載の太陽電池モジュールであって、
     前記端子ボックスは、弾性変形可能なパッキング部、をさらに有し、
     前記パッキング部は、前記基体部と前記本体部との隙間を塞ぐように、前記基体部と前記本体部との間で圧縮方向に弾性変形を生じている状態で位置し、
     前記パッキング部は、前記開口を囲むように位置している、太陽電池モジュール。
    The solar cell module according to claim 1,
    The terminal box further includes an elastically deformable packing portion,
    The packing portion is located in a state where elastic deformation is generated in the compression direction between the base portion and the main body portion so as to close a gap between the base portion and the main body portion,
    The said packing part is a solar cell module located so that the said opening may be enclosed.
  3.  請求項2に記載の太陽電池モジュールであって、
     前記本体部は、前記基体部側に位置し、前記開口を囲むように位置している環状の嵌合部、をさらに含み、
     前記基体部は、前記本体部側に位置し、前記嵌合部に嵌合している状態で位置している環状の被嵌合部、をさらに含み、
     前記環状の嵌合部と前記環状の被嵌合部との組合せは、互いに嵌合している環状凹部と環状凸部との組合せであり、
     前記パッキング部は、前記環状凹部内に位置している、太陽電池モジュール。
    The solar cell module according to claim 2, wherein
    The main body part further includes an annular fitting part located on the base part side and located so as to surround the opening,
    The base portion further includes an annular fitted portion located on the main body portion side and located in a state of being fitted to the fitting portion,
    The combination of the annular fitting portion and the annular fitted portion is a combination of an annular concave portion and an annular convex portion that are fitted to each other,
    The packing part is a solar cell module located in the annular recess.
  4.  請求項3に記載の太陽電池モジュールであって、
     前記係合部は、前記被係合部に対して脱着可能に係合している状態で位置しており、
     前記本体部は、前記環状凹部を含み、
     前記基体部は、前記環状凸部を含んでいる、太陽電池モジュール。
    The solar cell module according to claim 3, wherein
    The engaging portion is positioned in a state where it is detachably engaged with the engaged portion,
    The main body includes the annular recess,
    The solar cell module, wherein the base portion includes the annular convex portion.
  5.  請求項1から請求項4の何れか1つの請求項に記載の太陽電池モジュールであって、
     前記基体部は、前記導線に接続された状態で位置している第1接点部材、を含み、
     前記本体部は、前記第1接点部材に押し付けられている状態で位置している第2接点部材、を含み、
     前記第1接点部材と前記第2接点部材とが接触している部分において、前記第1接点部材および前記第2接点部材のうちの少なくとも一方の部材は変形している状態で存在している、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 4, wherein
    The base portion includes a first contact member positioned in a state of being connected to the conducting wire,
    The main body includes a second contact member positioned in a state of being pressed against the first contact member,
    In the portion where the first contact member and the second contact member are in contact, at least one of the first contact member and the second contact member exists in a deformed state. Solar cell module.
  6.  請求項5に記載の太陽電池モジュールであって、
     前記本体部は、前記内部空間においてダイオードを収容している状態で位置し、
     前記第2接点部材は、前記ダイオードと電気的に接続されている状態で位置している、太陽電池モジュール。
    The solar cell module according to claim 5, wherein
    The main body is located in a state of accommodating a diode in the internal space,
    The said 2nd contact member is a solar cell module located in the state electrically connected with the said diode.
  7.  請求項5または請求項6に記載の太陽電池モジュールであって、
     前記第1接点部材が前記第2接点部材を押している方向に沿った前記本体部における前記第2接点部材のバネ定数は、前記第2接点部材が前記第1接点部材を押している方向に沿った前記基体部における前記第1接点部材のバネ定数よりも小さい、太陽電池モジュール。
    The solar cell module according to claim 5 or 6, wherein
    The spring constant of the second contact member in the main body along the direction in which the first contact member is pushing the second contact member is along the direction in which the second contact member is pushing the first contact member. The solar cell module which is smaller than the spring constant of the said 1st contact member in the said base | substrate part.
  8.  請求項5から請求項7の何れか1つの請求項に記載の太陽電池モジュールであって、
     前記第1接点部材が前記第2接点部材を押している方向に沿った前記第2接点部材の弾性変形量は、前記第2接点部材が前記第1接点部材を押している方向に沿った前記基体部における前記第1接点部材の弾性変形量よりも大きい、太陽電池モジュール。
    The solar cell module according to any one of claims 5 to 7,
    The amount of elastic deformation of the second contact member along the direction in which the first contact member pushes the second contact member is the base portion along the direction in which the second contact member pushes the first contact member. A solar cell module that is larger than an elastic deformation amount of the first contact member.
  9.  請求項1から請求項8の何れか1つの請求項に記載の太陽電池モジュールであって、
     前記係合部は、前記被覆部に沿って前記基体部に向けて延びている状態で位置している板状可撓部と、該板状可撓部の前記基体部側において前記被係合部と係合している状態で位置している係合部分と、を有する、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 8, wherein
    The engaging portion is a plate-like flexible portion located in a state of extending toward the base portion along the covering portion, and the engaged portion on the base portion side of the plate-like flexible portion. A solar cell module comprising: an engaging portion positioned in engagement with the portion.
  10.  基体部と、該基体部に対して取り付け可能な本体部と、を備え、
     前記基体部は、
     太陽電池パネル内から該太陽電池パネルの表面上の領域まで存在している導線が通過するように位置するための孔部を有し、前記表面上に位置するための板部と、
     該板部の第1部分から突出している状態で存在している被掛かり部と、
     前記板部のうちの前記第1部分から離れた第2部分から突出している状態で存在している被係合部と、を含み、
     前記本体部は、
     前記基体部に対して前記本体部が装着されることで、前記板部側に位置することが可能な開口を有し、前記板部とともに内部空間を形成可能な被覆部と、
     該被覆部のうちの前記開口を囲んでいる状態で位置している環状の側部の第3部分から突出している状態で存在し、前記基体部に対して前記本体部が装着される際に、前記被掛かり部に掛かっている状態で前記被掛かり部に対して仮想的な回転軸を中心として回転可能な状態となる掛かり部と、
     前記環状の側部のうちの前記第3部分から離れた第4部分に存在し、前記被係合部に係合可能な係合部と、を含む、太陽電池モジュール用の端子ボックス。
    A base portion, and a main body portion attachable to the base portion,
    The base portion is
    A hole for positioning the conductive wire existing from the inside of the solar cell panel to a region on the surface of the solar cell panel, and a plate for positioning on the surface;
    A hooked portion that exists in a state of protruding from the first portion of the plate portion;
    An engaged portion that exists in a state of protruding from a second portion of the plate portion away from the first portion,
    The main body is
    A cover portion that has an opening that can be positioned on the plate portion side by mounting the main body portion on the base portion and can form an internal space together with the plate portion;
    When the main body portion is mounted on the base body portion, it exists in a state of protruding from the third portion of the annular side portion located in a state surrounding the opening of the covering portion. A hanging portion that is rotatable about a virtual rotation axis with respect to the hanging portion in a state of hanging on the hanging portion;
    A terminal box for a solar cell module, comprising: an engaging portion that is present in a fourth portion of the annular side portion remote from the third portion and engageable with the engaged portion.
PCT/JP2018/015521 2017-04-26 2018-04-13 Solar cell module and terminal box for solar cell module WO2018198826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514387A JP6893551B2 (en) 2017-04-26 2018-04-13 Terminal boxes for solar modules and solar modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087352 2017-04-26
JP2017087352 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018198826A1 true WO2018198826A1 (en) 2018-11-01

Family

ID=63919638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015521 WO2018198826A1 (en) 2017-04-26 2018-04-13 Solar cell module and terminal box for solar cell module

Country Status (2)

Country Link
JP (1) JP6893551B2 (en)
WO (1) WO2018198826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190146A (en) * 2019-07-05 2019-08-30 上海晶澳太阳能科技有限公司 Solar battery string group and solar cell module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272574A1 (en) * 2008-05-03 2009-11-05 Michael Richter Connection box for solar panel
JP2009542014A (en) * 2006-06-29 2009-11-26 フーバー + スーナー アーゲー Connection box
US20100039781A1 (en) * 2008-08-12 2010-02-18 Alltop Electronics (Su Zhou) Co., Ltd. Connecting box for a solar panel
JP2012059439A (en) * 2010-09-07 2012-03-22 Hirose Electric Co Ltd Terminal box

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542014A (en) * 2006-06-29 2009-11-26 フーバー + スーナー アーゲー Connection box
US20090272574A1 (en) * 2008-05-03 2009-11-05 Michael Richter Connection box for solar panel
US20100039781A1 (en) * 2008-08-12 2010-02-18 Alltop Electronics (Su Zhou) Co., Ltd. Connecting box for a solar panel
JP2012059439A (en) * 2010-09-07 2012-03-22 Hirose Electric Co Ltd Terminal box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190146A (en) * 2019-07-05 2019-08-30 上海晶澳太阳能科技有限公司 Solar battery string group and solar cell module

Also Published As

Publication number Publication date
JPWO2018198826A1 (en) 2020-02-20
JP6893551B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
US7824189B1 (en) Junction box for photovoltaic modules
JP5441716B2 (en) Connection box for photovoltaic modules
KR101063717B1 (en) Solar cell module and photovoltaic device including same
US20110114149A1 (en) Junction box and photovoltaic module having junction box
KR101283115B1 (en) Connector and solar cell module comprising the same
WO2010014941A1 (en) Solar modules, solar module junction boxes, and methods for mounting junction boxes to solar modules
US20110155456A1 (en) Junction box for solar panel
US10236823B2 (en) Solar battery module
JP5791309B2 (en) Connection module for building-integrated photovoltaic power generation system
KR101055013B1 (en) Solar cell module
JP2015022935A (en) Battery module
WO2011093213A1 (en) Terminal box for solar cell module, and solar cell module
US20110192442A1 (en) Photovoltaic module with embedded junction box and photovoltaic window with the same
WO2018198826A1 (en) Solar cell module and terminal box for solar cell module
US9780244B2 (en) Solar cell module
KR101305849B1 (en) Solar cell module
JPWO2010067466A1 (en) Solar cell module
KR101306441B1 (en) Solar cell module
US10193492B2 (en) Solar Cell Module
WO2018181289A1 (en) Solar cell module and terminal box for solar cell module
WO2010150173A1 (en) Junction module of building integrated photovoltaic system
CN204243058U (en) Solar module
KR101349521B1 (en) Solar cell module
KR20130070460A (en) Solar cell module
CN209982422U (en) Solar energy assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792062

Country of ref document: EP

Kind code of ref document: A1