WO2018198734A1 - Motor drive device, motor drive method, recording medium, and engine cooling device - Google Patents

Motor drive device, motor drive method, recording medium, and engine cooling device Download PDF

Info

Publication number
WO2018198734A1
WO2018198734A1 PCT/JP2018/014848 JP2018014848W WO2018198734A1 WO 2018198734 A1 WO2018198734 A1 WO 2018198734A1 JP 2018014848 W JP2018014848 W JP 2018014848W WO 2018198734 A1 WO2018198734 A1 WO 2018198734A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
driving
drive
rotational speed
value
Prior art date
Application number
PCT/JP2018/014848
Other languages
French (fr)
Japanese (ja)
Inventor
知幸 ▲高▼田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880026520.6A priority Critical patent/CN110574284B/en
Publication of WO2018198734A1 publication Critical patent/WO2018198734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the motor that drives the cooling fan is controlled by a motor drive device.
  • Electronic components constituting a circuit included in the motor drive device can be damaged by heat generated by driving the motor.
  • the motor drive device has a mechanism that monitors electric power for driving the motor and prevents damage to the electronic components. However, even if the motor is driven with low power, an excessive current may flow through the electronic component, and the electronic component may be damaged.
  • An object of the present invention is to provide a motor drive device that is advantageous in terms of safety of operation of electronic components, for example.
  • FIG. 1 is a schematic diagram of an engine cooling device 1 according to the present embodiment.
  • the engine cooling device 1 includes an engine 10, a water pipe unit 20, a radiator 30, a thermostat 40, a water pump 50, and a fan system 60.
  • the engine 10 includes a water cooling jacket to which cooling water is supplied from the water piping unit 20.
  • the engine 10 is cooled by the cooling water supplied to the water cooling jacket.
  • the heated water after cooling the engine 10 flows out from the cooling jacket to the water piping unit 20.
  • the radiator 30 is a device that radiates and cools the heat of the heated water by using the wind sent from the fan system 60.
  • the water heated by the engine 10 flows into the radiator 30 through the water piping unit 20 and is cooled, and then flows out from the water piping unit 20 toward the engine 10.
  • the thermostat 40 closes the water pump 50 side pipe and flows cooling water to a bypass pipe (not shown) to the engine 10. Prevent cooling water from flowing in.
  • the fan system 60 includes a fan blade 61, a motor 62, and a motor driving device 100.
  • the fan blade 61 is rotated by a motor 62 and sends wind toward the radiator 30.
  • a three-phase synchronous brushless motor is used as the motor 62, but a motor other than this may be used.
  • the motor drive device 100 includes a control unit and a drive unit, and has a function of protecting elements included in the drive unit.
  • the element to be protected in the present embodiment is, in particular, a smoothing electrolytic capacitor.
  • the motor driving device 100 is built in a common housing with the motor 62.
  • An output shaft such as a rotor of the motor 62 protrudes from the housing and is attached to the fan blade 61.
  • the motor driving device 100 is connected to a battery 70 that is an external power source and an engine ECU (Electronic Control Unit) 80.
  • the motor driving device 100 supplies driving current to the motor 62 using electric power obtained from the battery 70.
  • the engine ECU 80 is a control device that controls the engine 10 and is connected to the motor driving device 100 via a communication line.
  • the engine ECU 80 instructs the motor drive device 100 on the number of rotations of the motor 62.
  • Motor drive device 100 transmits a diagnostic message to engine ECU 80.
  • the diagnosis message is transmitted to the engine ECU 80 by the motor drive device 100 when the motor 62 does not rotate despite the command for rotating the motor 62 being output from the engine ECU 80.
  • Control unit 110 outputs a drive signal to drive unit 120 based on the rotational speed command output from engine ECU 80.
  • the control unit 110 for example, a computer having an arithmetic processing unit such as a CPU, a memory such as a RAM, and a storage unit such as a hard disk drive is used.
  • an electric circuit having an arithmetic device such as a microcontroller may be used instead of the computer.
  • the control unit 110 determines whether to limit the driving of the motor 62 using the current value of the current flowing through the driving unit 120 or the like. Details of the determination method will be described later.
  • the drive unit 120 includes an inverter circuit 121, an electrolytic capacitor 122, a field effect transistor 123 for reverse connection protection, and a shunt resistor 124.
  • the drive unit 120 supplies the current supplied from the battery 70 to the motor 62 based on the drive signal output from the control unit 110.
  • the electrolytic capacitor 122 is connected in parallel to the element 125A on one side and the element 125B on the other side of the pair of switching elements 125 constituting the inverter circuit 121.
  • the electrolytic capacitor 122 is a smoothing capacitor that suppresses a ripple current according to the switching frequency of the switching element 125.
  • the field effect transistor 123 is provided for the purpose of protecting the motor driving device 100 when the battery 70 is reversely connected.
  • the current detection unit 130 is an electric circuit for detecting a current flowing through the shunt resistor 124 connected to the inverter circuit 121, that is, a current flowing through the driving unit 120.
  • the current detection unit 130 generates a detection signal indicating a current flowing through the shunt resistor 124 by measuring a potential difference between both ends of the shunt resistor 124.
  • the generated detection signal is sent from the current detection unit 130 to the control unit 110.
  • FIG. 4 is a block diagram illustrating each function of the control unit 110.
  • the control unit 110 includes a calculation unit 111, a comparison unit 112, a drive amount determination unit 113, and a storage unit 114.
  • the control unit 110 monitors the torque generated by the motor 62 and determines whether to limit the driving of the motor 62 based on the monitoring result.
  • the calculation unit 111 generates the motor 62 from the current value of the current detected by the current detection unit 130 after the drive amount determination unit 113 outputs a drive signal for driving the motor 62 at the first rotation speed to the drive unit 120.
  • the torque and the rotational speed of the motor 62 are calculated.
  • the calculation unit 111 outputs the calculated torque value and the calculated rotation speed to the comparison unit 112.
  • the first rotational speed is the rotational speed of the motor 62 that the engine ECU 80 has commanded to the drive amount determination unit 113.
  • the rotation number calculated by the calculation unit 111 and the first rotation number do not necessarily match.
  • the comparison unit 112 compares the calculated torque value obtained by the calculation unit 111 with the torque limit value, and determines whether or not the calculated torque value is higher than the torque limit value.
  • the comparison unit 112 outputs the determination result to the drive amount determination unit 113.
  • the comparison unit 112 obtains the first rotational speed from the engine ECU 80.
  • the comparison unit 112 transmits a diagnostic message to the engine ECU 80 when the rotation number obtained by the calculation unit 111 is zero even though the first rotation number is not zero.
  • the comparison unit 112 refers to the association information stored in the storage unit 114 that associates the rotation number of the motor 62 with the torque limit value, and the torque corresponding to the rotation number obtained by the calculation unit 111 is stored. Determine the limit value. Details of the association information will be described later.
  • the drive amount determination unit 113 determines the drive amount of the motor 62 based on the command output from the engine ECU 80 or the determination result output from the comparison unit 112. The drive amount determination unit 113 outputs a drive signal corresponding to the determined drive amount to the drive unit 120.
  • the drive amount determination unit 113 sets the second rotation number that is lower than the first rotation number of the motor 62.
  • the drive amount for driving the motor 62 is determined as the drive amount for the motor 62.
  • the second rotational speed may be zero.
  • the drive amount is not particularly limited.
  • an allowable ripple current value that is a current value of a ripple current allowed for the electrolytic capacitor 122 to operate stably is calculated.
  • the electrolytic capacitor 122 generates heat due to the input current.
  • the electrolytic capacitor 122 is damaged or the life thereof is deteriorated. Therefore, in order to stably operate the electrolytic capacitor 122, it is important that the current value of the ripple current does not exceed the allowable ripple current value.
  • the allowable ripple current value is determined by conditions such as the heat generation characteristics of the electrolytic capacitor 122, the environmental temperature in which the electrolytic capacitor 122 is used, and the usage time.
  • the heat generation characteristic of the electrolytic capacitor 122 is determined by the magnitude of an equivalent series resistance (ESR) included in the electrolytic capacitor 122. This is because the electrolytic capacitor 122 generates heat due to the loss of power in the ESR, which is determined by the resistance value of the ESR and the ripple current flowing in the electrolytic capacitor 122.
  • ESR equivalent series resistance
  • the allowable ripple current value is calculated for each load on the electrolytic capacitor 122.
  • the magnitude of the load includes the number of rotations of the motor 62.
  • the permissible torque when the current value of the ripple current flowing through the electrolytic capacitor 122 reaches the permissible ripple current value is measured for each rotation speed of the motor 62.
  • a value smaller than the allowable torque is set as a torque limit value.
  • the torque limit value is set for each rotation speed of the motor 62.
  • the allowable torque varies depending on the rotation speed of the motor 62.
  • the amount of increase in the allowable torque with respect to the rotational speed of the motor 62 is small during low-speed to medium-speed rotational driving, and the allowable torque may increase rapidly as the rotational speed of the motor 62 increases during high-speed rotational driving.
  • the torque limit value may be a constant value regardless of the rotation speed of the motor 62, or may increase as the rotation speed of the motor 62 increases.
  • association information in which the rotation speed of the motor 62 is associated with the torque limit value is obtained. Since the torque limit value is determined in consideration of the heat generation characteristics of the electrolytic capacitor 122, the torque limit value is set too low when the motor 62 is driven under the condition that the electrolytic capacitor 122 generates a small amount of heat. There is no end. That is, it is possible to prevent excessive drive restriction of the motor 62.
  • the torque limit value is set for each rotation speed of the motor 62, excessive drive limitation of the motor 62 can be prevented, and the accuracy of the protection control can be improved.
  • FIG. 5 is a flowchart illustrating a process of determining a driving amount in the motor driving method according to the first embodiment.
  • the drive amount determination unit 113 determines the drive amount to be output to the drive unit 120 based on the rotational speed command of the motor 62 output from the engine ECU 80. As described above, the rotation speed of the commanded motor 62 output from the engine ECU 80 to the drive amount determination unit 113 is set as the first rotation speed.
  • step S12 the calculation unit 111 calculates the torque generated by the motor 62 and the rotation speed of the motor 62 from the current value of the current detected by the current detection unit 130.
  • the calculation unit 111 outputs the calculated torque value and the calculated rotation speed to the comparison unit 112.
  • step S ⁇ b> 13 the comparison unit 112 determines a torque limit value with reference to the association information stored in the storage unit 114 based on the calculated value of the rotation speed obtained from the calculation unit 111.
  • the torque is monitored.
  • the power for driving the motor 62 is monitored before the torque is monitored. Thereby, the precision which prevents destruction of the element contained in the drive part 120 can be improved.
  • the calculation unit 111 is obtained based on the voltage of the battery 70 and the current value of the current detected by the current detection unit 130 after the drive amount determination unit 113 outputs a drive signal for driving the motor 62 at the first rotation speed.
  • the calculated value is calculated as electric power for driving the motor 62.
  • the calculation unit 111 outputs the calculated power value of the power to the comparison unit 112.
  • the drive amount determination unit 113 determines the drive amount of the motor 62 based on the determination result output from the comparison unit 112. In the case of the determination result that the power value at the time of driving the motor 62 at the first rotation speed is higher than the power limit value, the drive amount determination unit 113 uses the motor 62 at the second rotation speed that is lower than the first rotation speed. Is determined as the driving amount of the motor 62. The second rotational speed may be zero. When the determination result indicates that the power value is equal to or less than the power limit value, the drive amount determination unit 113 keeps the drive amount as the drive amount for driving the motor 62 at the first rotation speed.
  • FIG. 6 is a flowchart illustrating a process of determining a drive amount in the motor drive method according to the second embodiment. Step S11 is the same as in the first embodiment.
  • step S23 the comparison unit 112 obtains a power limit value from the storage unit 114, and determines whether or not the calculated power value calculated in step S22 is higher than the power limit value. If the comparison unit 112 determines that the calculated value is greater than the limit value, the process proceeds to step S24. When the comparison unit 112 determines that the calculated value ⁇ the limit value, the process proceeds to step S12 of the first embodiment.
  • step S ⁇ b> 24 the drive amount determination unit 113 determines the drive amount for restricting the motor 62. Specifically, the drive amount determination unit 113 determines the drive amount for driving the motor 62 at the second rotation number that is lower than the first rotation number as the drive amount of the motor 62. Step S24 and subsequent steps are the same as steps S12 to S15 of the first embodiment.
  • torque is monitored
  • power is further monitored before torque is monitored.
  • the temperature is also monitored after the torque is monitored.
  • FIG. 7 is a block diagram showing a configuration of the motor drive device 200 according to the present embodiment. As shown in FIG. 7, the motor drive device 200 has a configuration in which a temperature sensor 140 is added to the motor drive device 100 shown in FIG. 3.
  • the control unit 110 monitors the temperature of the drive unit 120 with the temperature sensor 140 and determines whether to limit the drive of the motor 62 based on the monitoring result. By monitoring the temperature of the drive unit 120 together, it is possible to improve the accuracy of control for preventing the elements included in the drive unit 120 from being destroyed.
  • the comparison unit 112 compares the temperature detected by the temperature sensor 140 with a predetermined threshold value, and determines whether or not the detected temperature is higher than the predetermined threshold value.
  • the comparison unit 112 outputs the determination result to the drive amount determination unit 113.
  • the predetermined threshold is an allowable temperature at which an element such as the electrolytic capacitor 122 included in the driving unit 120 operates stably, and is stored in the storage unit 114.
  • FIG. 8 is a flowchart illustrating a process of determining a drive amount in the motor drive method according to the third embodiment. Steps S11 to S13 are the same as those in the first embodiment or the second embodiment.
  • step S31 the comparison unit 112 obtains a predetermined threshold value from the storage unit 114, and determines whether or not the detected temperature detected by the temperature sensor 140 is higher than the predetermined threshold value. If the comparison unit 112 determines that the detected temperature> the predetermined threshold value, the process proceeds to step S32. If the comparison unit 112 determines that the detected temperature ⁇ the predetermined threshold value, the process returns to step S11.
  • step S ⁇ b> 32 the drive amount determination unit 113 determines a drive amount for restricting the motor 62. Specifically, the drive amount determination unit 113 determines a drive amount for driving the motor 62 at a rotational speed lower than the rotational speed after monitoring the torque as the drive amount of the motor 62.
  • the control unit 110 performs the motor at the third rotational speed that is higher than the second rotational speed.
  • a drive signal for driving the motor 62 is output, and the motor 62 is driven again.
  • the predetermined time until re-driving may be determined in advance.
  • the predetermined time determined in advance is stored in the storage unit 114.
  • the comparison unit 112 can determine whether or not the predetermined time has elapsed.
  • the comparison unit 112 obtains a predetermined time from the storage unit 114, and outputs a determination result to the drive amount determination unit 113 and outputs a signal instructing the drive amount determination unit 113 to re-drive when the predetermined time has elapsed. .
  • the driving of the motor 62 can be automatically controlled. Further, since the predetermined time is determined based on the actual measured value of the temperature of the drive unit 120, the control accuracy can be improved.
  • the temperature sensor 140 When the temperature sensor 140 is not used, it is not necessary to provide the temperature sensor 140. For example, it can be advantageous in terms of space and cost in the motor driving device 100.
  • the motor 62 When the motor 62 is driven by the motor driving device 200 having the temperature sensor 140, the motor 62 is not set at the time when the detection result by the temperature sensor 140 is equal to or less than a predetermined threshold value, instead of setting the time until re-driving. May be re-driven. Thereby, the re-driving can be automatically controlled based on the measured value of the temperature of the driving unit 120.
  • the re-drive instruction is performed by the comparison unit 112, for example.
  • the comparison unit 112 obtains a predetermined threshold value from the storage unit 114, obtains a detection temperature from the temperature sensor 140, and outputs a signal instructing the drive amount determination unit 113 to re-drive when the detection temperature becomes equal to or less than the predetermined threshold value. Output.
  • FIG. 9 is a flowchart showing steps of a motor re-driving method according to the fourth embodiment.
  • the re-driving step is performed after step S15 in the first embodiment or the second embodiment. You may perform after process S32 of 3rd Embodiment.
  • step S41 the comparison unit 112 determines whether or not it is time to start redrive as described above. If it is determined that it is time to re-drive, the process returns to step S11, and the drive amount for driving the motor 62 at the third rotational speed higher than the rotational speed that the drive amount determination unit 113 performs the limit drive is driven. Determine as quantity. If it is determined that it is not time for re-driving, the process returns to step S41 with the limited driving.
  • Providing the motor drive device 100 or the motor drive device 200 according to each of the above embodiments in the engine cooling device 1 improves the stable drive performance of the engine cooling device 1 in which a high current may flow with low power drive. Can do.
  • a program that causes a computer to execute the driving method described above may be stored in a computer-readable recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and the recording medium may be accessed by a computer to execute the program. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Provided is a motor drive device for driving a motor, wherein: the motor drive device includes a control unit for outputting a drive signal that causes the motor to be driven, a drive unit for supplying the motor with a current supplied from an external power source on the basis of the drive signal outputted from the control unit, and a current detection unit for detecting the current flowing through the drive unit; and the control unit, after having outputted a drive signal for causing the motor to be driven at a first rotational speed, calculates the torque generated in the motor and the rotational speed of the motor from the current value of the current detected by the current detection unit, compares the calculated value of the calculated torque with a limit value for the torque at the calculated rotational speed, and outputs a drive signal that causes the motor to be driven at a second rotational speed lower than the first rotational speed if the calculated value is higher than the limit value.

Description

モータ駆動装置、モータ駆動方法、記録媒体、およびエンジン冷却装置Motor driving device, motor driving method, recording medium, and engine cooling device
 本発明は、モータ駆動装置、モータ駆動方法、記録媒体、およびエンジン冷却装置に関する。 The present invention relates to a motor drive device, a motor drive method, a recording medium, and an engine cooling device.
 車両に備えられるエンジン冷却装置は、ラジエータからエンジンに冷却水を循環供給することでエンジンを冷却する。エンジン冷却装置は、ラジエータに風を送る冷却ファンを有する。ラジエータには、エンジンで加熱された水が戻り、加熱された水は、冷却ファンからの風により冷却される。 The engine cooling device provided in the vehicle cools the engine by circulating and supplying cooling water from the radiator to the engine. The engine cooling device has a cooling fan that sends air to the radiator. The water heated by the engine returns to the radiator, and the heated water is cooled by the wind from the cooling fan.
 冷却ファンを駆動するモータは、モータ駆動装置により制御される。モータ駆動装置が有する回路を構成する電子部品は、モータの駆動に伴う発熱により破損しうる。モータ駆動装置は、モータを駆動する電力を監視して、電子部品の破損を防ぐ機構を有する。しかしながら、低電力でモータを駆動していても電子部品に過大な電流が流れて、電子部品が破損する場合があり得る。 The motor that drives the cooling fan is controlled by a motor drive device. Electronic components constituting a circuit included in the motor drive device can be damaged by heat generated by driving the motor. The motor drive device has a mechanism that monitors electric power for driving the motor and prevents damage to the electronic components. However, even if the motor is driven with low power, an excessive current may flow through the electronic component, and the electronic component may be damaged.
 特許文献1は、回路に含まれる平滑用コンデンサなどの電子部品の温度を監視して、電子部品の温度が耐熱許容温度を上回った場合に駆動電流を制限することで電子部品の破損を防ぐ負荷駆動装置を開示している。 Patent Document 1 monitors the temperature of an electronic component such as a smoothing capacitor included in a circuit, and restricts the drive current when the temperature of the electronic component exceeds a heat-resistant allowable temperature, thereby preventing damage to the electronic component. A drive device is disclosed.
特開2011-98625号公報JP2011-98625A
 特許文献1の負荷駆動装置は、電子部品の温度を監視しているものの電流の監視はしていない。電子部品は、入力電流により発熱するが、電子部品が耐熱許容温度に達する過程で、破損または寿命劣化を招く電流が電子部品に流れる場合もある。この場合、特許文献1の負荷駆動装置では、電子部品の保護が不十分となりうる。 The load driving device of Patent Document 1 monitors the temperature of the electronic component but does not monitor the current. An electronic component generates heat due to an input current, but a current that may cause damage or deterioration of life may flow to the electronic component in the process of reaching the allowable temperature limit for the electronic component. In this case, the load driving device disclosed in Patent Document 1 may have insufficient protection of electronic components.
 本発明は、例えば、電子部品の動作の安全性の点で有利なモータ駆動装置を提供することを目的とする。 An object of the present invention is to provide a motor drive device that is advantageous in terms of safety of operation of electronic components, for example.
 本願の例示的な第1発明は、モータを駆動するモータ駆動装置であって、モータを駆動させる駆動信号を出力する制御部と、制御部から出力された駆動信号に基づいて、外部電源から供給された電流をモータに供給する駆動部と、駆動部を流れる電流を検出する電流検出部と、を有し、制御部は、モータを第1回転数で駆動させる駆動信号を出力した後、電流検出部により検出された電流の電流値からモータで発生するトルクおよびモータの回転数を算出し、算出した回転数におけるトルクの制限値と、算出したトルクの算出値とを比較し、算出値が制限値よりも高い場合、第1回転数よりも低い回転数の第2回転数でモータを駆動させる駆動信号を出力する、ことを特徴とする。 An exemplary first invention of the present application is a motor drive device for driving a motor, which is supplied from an external power source based on a control unit that outputs a drive signal for driving the motor and a drive signal output from the control unit. A drive unit that supplies the generated current to the motor, and a current detection unit that detects a current flowing through the drive unit, and the control unit outputs a drive signal for driving the motor at the first rotation speed, Calculate the torque generated in the motor and the rotation speed of the motor from the current value of the current detected by the detection unit, and compare the calculated torque limit value at the calculated rotation speed with the calculated torque value. When the value is higher than the limit value, a drive signal for driving the motor at a second rotational speed lower than the first rotational speed is output.
 本願の例示的な第1発明によれば、電子部品の動作の安全性の点で有利なモータ駆動装置を提供することができる。 According to the first exemplary invention of the present application, it is possible to provide a motor drive device that is advantageous in terms of safety of operation of electronic components.
図1は、エンジン冷却装置の概略図である。FIG. 1 is a schematic view of an engine cooling device. 図2は、ファンシステムの構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of the fan system. 図3は、モータ駆動装置の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the motor drive device. 図4は、制御部の各機能を示すブロック図である。FIG. 4 is a block diagram illustrating each function of the control unit. 図5は、第1実施形態に係るモータ駆動方法のうち、駆動量を決定する工程を示すフローチャートである。FIG. 5 is a flowchart illustrating a process of determining a driving amount in the motor driving method according to the first embodiment. 図6は、第2実施形態に係るモータ駆動方法のうち、駆動量を決定する工程を示すフローチャートである。FIG. 6 is a flowchart illustrating a process of determining a drive amount in the motor drive method according to the second embodiment. 図7は、第3実施形態に係るモータ駆動装置の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the motor drive device according to the third embodiment. 図8は、第3実施形態に係るモータ駆動方法のうち、駆動量を決定する工程を示すフローチャートである。FIG. 8 is a flowchart illustrating a process of determining a drive amount in the motor drive method according to the third embodiment. 図9は、第4実施形態に係るモータ再駆動方法の工程を示すフローチャートである。FIG. 9 is a flowchart showing steps of a motor re-driving method according to the fourth embodiment.
 以下、本発明を実施するための形態について図面などを参照して説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
[第1実施形態]
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention.
[First Embodiment]
  <エンジン冷却装置>
 図1は、本実施形態に係るエンジン冷却装置1の概略図である。エンジン冷却装置1は、エンジン10と、水配管部20と、ラジエータ30と、サーモスタット40と、ウォータポンプ50と、ファンシステム60と、を有する。
<Engine cooling device>
FIG. 1 is a schematic diagram of an engine cooling device 1 according to the present embodiment. The engine cooling device 1 includes an engine 10, a water pipe unit 20, a radiator 30, a thermostat 40, a water pump 50, and a fan system 60.
  (エンジン)
 エンジン10は、水配管部20から冷却水が供給される水冷ジャケットを備える。水冷ジャケットに供給された冷却水によってエンジン10が冷却される。エンジン10の冷却後の加熱された水は、冷却ジャケットから水配管部20へ流れ出す。
(engine)
The engine 10 includes a water cooling jacket to which cooling water is supplied from the water piping unit 20. The engine 10 is cooled by the cooling water supplied to the water cooling jacket. The heated water after cooling the engine 10 flows out from the cooling jacket to the water piping unit 20.
  (水配管部)
 水配管部20は、エンジン10とラジエータ30とを接続して、冷却水を循環させるための配管である。
(Water piping)
The water pipe unit 20 is a pipe for connecting the engine 10 and the radiator 30 to circulate cooling water.
  (ラジエータ)
 ラジエータ30は、加熱された水の熱を、ファンシステム60から送られた風を利用して放熱して冷却する装置である。エンジン10により加熱された水は、水配管部20を介してラジエータ30に流入し、冷却された後、水配管部20からエンジン10へ向かって流出する。
(Radiator)
The radiator 30 is a device that radiates and cools the heat of the heated water by using the wind sent from the fan system 60. The water heated by the engine 10 flows into the radiator 30 through the water piping unit 20 and is cooled, and then flows out from the water piping unit 20 toward the engine 10.
  (サーモスタット)
 サーモスタット40は、冷却水の温度に応じて冷却水の循環経路を変化させる。環境温度が高く、エンジン10を冷却する必要があるとき、サーモスタット40は、ラジエータ30から流出した冷却水の温度が設定温度より低い場合にウォータポンプ50側の管路を開放する。冷却水の温度が設定温度以上の場合、サーモスタット40は、ウォータポンプ50側の管路は開放せず、不図示のバイパス管路へ水を流す。バイパス管路は、例えば、ラジエータ30と接続され、冷却が不十分な水をラジエータ30に流す。
(thermostat)
The thermostat 40 changes the circulation path of the cooling water according to the temperature of the cooling water. When the environmental temperature is high and the engine 10 needs to be cooled, the thermostat 40 opens the pipe on the water pump 50 side when the temperature of the cooling water flowing out of the radiator 30 is lower than the set temperature. When the temperature of the cooling water is equal to or higher than the set temperature, the thermostat 40 does not open the pipe on the water pump 50 side, and allows water to flow to a bypass pipe (not shown). For example, the bypass pipe is connected to the radiator 30, and allows water that is not sufficiently cooled to flow through the radiator 30.
 なお、環境温度が低く、エンジン10を暖機運転させる必要がある場合、サーモスタット40は、ウォータポンプ50側の管路を閉鎖して不図示のバイパス管路へ冷却水を流して、エンジン10へ冷却水が流れ込まないようにする。 When the environmental temperature is low and the engine 10 needs to be warmed up, the thermostat 40 closes the water pump 50 side pipe and flows cooling water to a bypass pipe (not shown) to the engine 10. Prevent cooling water from flowing in.
  (ウォータポンプ)
 ウォータポンプ50は、サーモスタット40を通過した冷却水をエンジン10へ循環させる。ウォータポンプ50の吸入口はサーモスタット40側に配置され、吐出口はエンジン10側に配置される。
(Water pump)
The water pump 50 circulates the cooling water that has passed through the thermostat 40 to the engine 10. The suction port of the water pump 50 is disposed on the thermostat 40 side, and the discharge port is disposed on the engine 10 side.
  (ファンシステム)
 ファンシステム60は、ファンブレード61と、モータ62と、モータ駆動装置100と、を有する。ファンブレード61はモータ62によって回転され、ラジエータ30に向かって風を送る。本実施形態では、モータ62として三相同期ブラシレスモータを用いるが、これ以外のモータを用いてもよい。
(Fan system)
The fan system 60 includes a fan blade 61, a motor 62, and a motor driving device 100. The fan blade 61 is rotated by a motor 62 and sends wind toward the radiator 30. In the present embodiment, a three-phase synchronous brushless motor is used as the motor 62, but a motor other than this may be used.
 図2は、ファンシステム60の構成を示す概略図である。ファンブレード61とモータ駆動装置100およびモータ62とは、シュラウド63に固定される。 FIG. 2 is a schematic diagram showing the configuration of the fan system 60. Fan blade 61, motor driving device 100 and motor 62 are fixed to shroud 63.
  <モータ駆動装置>
 モータ駆動装置100は、後述の通り、制御部と駆動部とを有し、駆動部が有する素子を保護する機能を有する。本実施形態において保護する素子は、特に、平滑用の電解コンデンサである。モータ駆動装置100は、モータ62と共通の筐体に内蔵される。モータ62のロータ等の出力軸は、筐体から突出しており、ファンブレード61に取り付けられる。モータ62とモータ駆動装置100とをいわゆる機電一体型とすることで、例えば、ファンシステム60を小型化することができる。
<Motor drive device>
As will be described later, the motor drive device 100 includes a control unit and a drive unit, and has a function of protecting elements included in the drive unit. The element to be protected in the present embodiment is, in particular, a smoothing electrolytic capacitor. The motor driving device 100 is built in a common housing with the motor 62. An output shaft such as a rotor of the motor 62 protrudes from the housing and is attached to the fan blade 61. By making the motor 62 and the motor drive device 100 into a so-called electromechanical integrated type, for example, the fan system 60 can be downsized.
 図1に示す通り、モータ駆動装置100は、外部電源であるバッテリー70とエンジンECU(Electronic Control Unit)80と接続されている。モータ駆動装置100は、バッテリー70から得られる電力を利用して、モータ62に駆動電流を供給する。エンジンECU80は、エンジン10を制御する制御装置であり、モータ駆動装置100とは通信線で接続される。エンジンECU80は、モータ駆動装置100にモータ62の回転数を指令する。モータ駆動装置100は、エンジンECU80に診断メッセージを送信する。診断メッセージは、エンジンECU80からモータ62を回転させる指令が出力されているにもかかわらず、モータ62が回転しない場合にモータ駆動装置100によりエンジンECU80へ送信される。 As shown in FIG. 1, the motor driving device 100 is connected to a battery 70 that is an external power source and an engine ECU (Electronic Control Unit) 80. The motor driving device 100 supplies driving current to the motor 62 using electric power obtained from the battery 70. The engine ECU 80 is a control device that controls the engine 10 and is connected to the motor driving device 100 via a communication line. The engine ECU 80 instructs the motor drive device 100 on the number of rotations of the motor 62. Motor drive device 100 transmits a diagnostic message to engine ECU 80. The diagnosis message is transmitted to the engine ECU 80 by the motor drive device 100 when the motor 62 does not rotate despite the command for rotating the motor 62 being output from the engine ECU 80.
 診断メッセージは、例えば、故障情報および製品情報を含む。故障情報は、例えば、ロック故障、短絡故障および過熱検出など故障の種類に関する情報である。製品情報は、例えば、400W、600Wなどモータの出力数に関する情報である。 Diagnostic message includes, for example, failure information and product information. The failure information is information relating to the type of failure such as a lock failure, a short-circuit failure, and an overheat detection. Product information is information regarding the number of motor outputs, such as 400 W and 600 W, for example.
 図3は、モータ駆動装置100の構成を示すブロック図である。図3に示すように、モータ駆動装置100は、制御部110と、駆動部120と、電流検出部130と、を有する。 FIG. 3 is a block diagram showing the configuration of the motor drive device 100. As shown in FIG. As shown in FIG. 3, the motor drive device 100 includes a control unit 110, a drive unit 120, and a current detection unit 130.
  (制御部)
 制御部110は、エンジンECU80から出力された回転数の指令に基づいて、駆動信号を駆動部120へ出力する。制御部110は、例えば、CPU等の演算処理部、RAM等のメモリ、およびハードディスクドライブ等の記憶部を有するコンピュータが用いられる。ただし、コンピュータに代えて、マイクロコントローラ等の演算装置を有する電気回路が用いられていてもよい。制御部110は、駆動部120を流れる電流の電流値などを用いて、モータ62の駆動を制限するか否かを判断する。判断方法の詳細は後述する。
(Control part)
Control unit 110 outputs a drive signal to drive unit 120 based on the rotational speed command output from engine ECU 80. As the control unit 110, for example, a computer having an arithmetic processing unit such as a CPU, a memory such as a RAM, and a storage unit such as a hard disk drive is used. However, an electric circuit having an arithmetic device such as a microcontroller may be used instead of the computer. The control unit 110 determines whether to limit the driving of the motor 62 using the current value of the current flowing through the driving unit 120 or the like. Details of the determination method will be described later.
  (駆動部)
 駆動部120は、インバータ回路121と、電解コンデンサ122と、逆接保護用の電界効果トランジスタ123と、シャント抵抗124と、を有する。駆動部120は、制御部110から出力された駆動信号に基づいて、バッテリー70から供給された電流をモータ62に供給する。
(Drive part)
The drive unit 120 includes an inverter circuit 121, an electrolytic capacitor 122, a field effect transistor 123 for reverse connection protection, and a shunt resistor 124. The drive unit 120 supplies the current supplied from the battery 70 to the motor 62 based on the drive signal output from the control unit 110.
  (インバータ回路)
 インバータ回路121は、バッテリー70から供給された電流をモータ62に供給する電気回路である。インバータ回路121は、モータ62の相ごとに直列に接続された一対のスイッチング素子125を有する。スイッチング素子125としては、例えば、電界効果トランジスタなどのトランジスタが用いられ、本実施形態では、金属酸化膜半導体電界効果トランジスタ(MOSFET)を用いる。制御部110から出力された駆動信号に基づいた、スイッチング素子125のスイッチング動作によって、モータ62を駆動するための電力が得られる。本実施形態において、制御部110が出力する駆動信号は、パルス幅変調方式(PWM方式)のPWM駆動信号である。
(Inverter circuit)
The inverter circuit 121 is an electric circuit that supplies the current supplied from the battery 70 to the motor 62. Inverter circuit 121 has a pair of switching elements 125 connected in series for each phase of motor 62. As the switching element 125, for example, a transistor such as a field effect transistor is used. In the present embodiment, a metal oxide semiconductor field effect transistor (MOSFET) is used. Electric power for driving the motor 62 is obtained by the switching operation of the switching element 125 based on the drive signal output from the control unit 110. In the present embodiment, the drive signal output from the control unit 110 is a pulse width modulation (PWM) PWM drive signal.
  (電解コンデンサ)
 電解コンデンサ122は、インバータ回路121を構成する一対のスイッチング素子125の一方の側の素子125Aと他方の側の素子125Bとに対して並列に接続される。電解コンデンサ122は、スイッチング素子125のスイッチング周波数に応じたリップル電流を抑制する平滑用コンデンサである。
(Electrolytic capacitor)
The electrolytic capacitor 122 is connected in parallel to the element 125A on one side and the element 125B on the other side of the pair of switching elements 125 constituting the inverter circuit 121. The electrolytic capacitor 122 is a smoothing capacitor that suppresses a ripple current according to the switching frequency of the switching element 125.
  (電界効果トランジスタ)
 電界効果トランジスタ123は、バッテリー70が逆接続された場合にモータ駆動装置100を保護する目的で設けられる。
(Field effect transistor)
The field effect transistor 123 is provided for the purpose of protecting the motor driving device 100 when the battery 70 is reversely connected.
  (電流検出部)
 電流検出部130は、インバータ回路121に接続されたシャント抵抗124に流れる電流、すなわち、駆動部120を流れる電流を検出するための電気回路である。電流検出部130は、シャント抵抗124の両端の電位差を計測することによって、シャント抵抗124に流れる電流を示す検出信号を生成する。生成された検出信号は、電流検出部130から制御部110へ送られる。
(Current detector)
The current detection unit 130 is an electric circuit for detecting a current flowing through the shunt resistor 124 connected to the inverter circuit 121, that is, a current flowing through the driving unit 120. The current detection unit 130 generates a detection signal indicating a current flowing through the shunt resistor 124 by measuring a potential difference between both ends of the shunt resistor 124. The generated detection signal is sent from the current detection unit 130 to the control unit 110.
  (制御部の機能)
 図4は、制御部110の各機能を示すブロック図である。制御部110は、算出部111と、比較部112と、駆動量決定部113と、格納部114と、を有する。本実施形態において、制御部110は、モータ62で発生するトルクを監視して、監視結果に基づいてモータ62の駆動を制限するか否かを判断する。
(Function of control unit)
FIG. 4 is a block diagram illustrating each function of the control unit 110. The control unit 110 includes a calculation unit 111, a comparison unit 112, a drive amount determination unit 113, and a storage unit 114. In the present embodiment, the control unit 110 monitors the torque generated by the motor 62 and determines whether to limit the driving of the motor 62 based on the monitoring result.
  (算出部)
 算出部111は、駆動量決定部113が駆動部120へモータ62を第1回転数で駆動させる駆動信号を出力した後、電流検出部130により検出された電流の電流値からモータ62で発生するトルクおよびモータ62の回転数を算出する。算出部111は、トルクの算出値および回転数の算出値を比較部112に出力する。ここで、第1回転数は、エンジンECU80が駆動量決定部113へ指令したモータ62の回転数である。算出部111が算出した回転数と第1回転数とは必ずしも一致しない。
(Calculation unit)
The calculation unit 111 generates the motor 62 from the current value of the current detected by the current detection unit 130 after the drive amount determination unit 113 outputs a drive signal for driving the motor 62 at the first rotation speed to the drive unit 120. The torque and the rotational speed of the motor 62 are calculated. The calculation unit 111 outputs the calculated torque value and the calculated rotation speed to the comparison unit 112. Here, the first rotational speed is the rotational speed of the motor 62 that the engine ECU 80 has commanded to the drive amount determination unit 113. The rotation number calculated by the calculation unit 111 and the first rotation number do not necessarily match.
  (比較部)
 比較部112は、算出部111で求められたトルクの算出値とトルクの制限値とを比較して、トルクの算出値がトルクの制限値よりも高いか否かを判定する。比較部112は、判定結果を駆動量決定部113へ出力する。
(Comparison part)
The comparison unit 112 compares the calculated torque value obtained by the calculation unit 111 with the torque limit value, and determines whether or not the calculated torque value is higher than the torque limit value. The comparison unit 112 outputs the determination result to the drive amount determination unit 113.
 また、比較部112は、エンジンECU80から第1回転数を得る。比較部112は、第1回転数がゼロでないのにもかかわらず、算出部111で求められた回転数がゼロとなる場合に、エンジンECU80に診断メッセージを送信する。 Further, the comparison unit 112 obtains the first rotational speed from the engine ECU 80. The comparison unit 112 transmits a diagnostic message to the engine ECU 80 when the rotation number obtained by the calculation unit 111 is zero even though the first rotation number is not zero.
 比較部112は、格納部114に格納された、モータ62の回転数とトルクの制限値とを対応付けた対応付け情報を参照して、算出部111で求められた回転数に対応するトルクの制限値を決定する。対応付け情報の詳細は、後述する。 The comparison unit 112 refers to the association information stored in the storage unit 114 that associates the rotation number of the motor 62 with the torque limit value, and the torque corresponding to the rotation number obtained by the calculation unit 111 is stored. Determine the limit value. Details of the association information will be described later.
  (駆動量決定部)
 駆動量決定部113は、エンジンECU80から出力された指令、または比較部112から出力された判定結果に基づいて、モータ62の駆動量を決定する。駆動量決定部113は、決定した駆動量に対応した駆動信号を駆動部120に出力する。
(Driving amount determination unit)
The drive amount determination unit 113 determines the drive amount of the motor 62 based on the command output from the engine ECU 80 or the determination result output from the comparison unit 112. The drive amount determination unit 113 outputs a drive signal corresponding to the determined drive amount to the drive unit 120.
 比較部112から出力された判定結果が、算出値が制限値よりも高い、という判定結果の場合、駆動量決定部113は、モータ62の第1回転数よりも低い回転数の第2回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。第2回転数はゼロとしてもよい。トルクの算出値がトルクの制限値以下という判定結果の場合、駆動量は特に制限されない。 When the determination result output from the comparison unit 112 is a determination result that the calculated value is higher than the limit value, the drive amount determination unit 113 sets the second rotation number that is lower than the first rotation number of the motor 62. Thus, the drive amount for driving the motor 62 is determined as the drive amount for the motor 62. The second rotational speed may be zero. When the calculated torque value is equal to or less than the torque limit value, the drive amount is not particularly limited.
  (格納部)
 格納部114は、モータ駆動装置100によるモータ62の駆動を開始する前に、モータ62の回転数とトルクの制限値とを対応付けた対応付け情報を予め格納する。対応付け情報は次のように求められる。
(Storage section)
The storage unit 114 stores in advance association information that associates the rotation speed of the motor 62 with the torque limit value before the motor driving device 100 starts driving the motor 62. The association information is obtained as follows.
  (対応付け情報)
 まず、電解コンデンサ122が安定して動作するために許容されるリプル電流の電流値である許容リプル電流値を算出する。電解コンデンサ122は、入力電流によって発熱する。電解コンデンサ122に熱が蓄積され、温度が上昇すると破損または寿命の劣化を招く。したがって、電解コンデンサ122を安定して動作させるためには、リプル電流の電流値が許容リプル電流値を超えないようにすることが重要となる。
(Association information)
First, an allowable ripple current value that is a current value of a ripple current allowed for the electrolytic capacitor 122 to operate stably is calculated. The electrolytic capacitor 122 generates heat due to the input current. When heat is accumulated in the electrolytic capacitor 122 and the temperature rises, the electrolytic capacitor 122 is damaged or the life thereof is deteriorated. Therefore, in order to stably operate the electrolytic capacitor 122, it is important that the current value of the ripple current does not exceed the allowable ripple current value.
 許容リプル電流値は、電解コンデンサ122の発熱特性、電解コンデンサ122が使用される環境温度、使用時間などの条件によって決まる。電解コンデンサ122の発熱特性は、電解コンデンサ122に含まれる等価直列抵抗(ESR:Equivalent Series Resistance)の大きさにより決定される。ESRの抵抗値および電解コンデンサ122に流れるリプル電流により決まる、ESRにおける電力の損失により電解コンデンサ122が発熱するからである。また、許容リプル電流値は、電解コンデンサ122への負荷の大きさごとに算出される。負荷の大きさには、モータ62の回転数が含まれる。 The allowable ripple current value is determined by conditions such as the heat generation characteristics of the electrolytic capacitor 122, the environmental temperature in which the electrolytic capacitor 122 is used, and the usage time. The heat generation characteristic of the electrolytic capacitor 122 is determined by the magnitude of an equivalent series resistance (ESR) included in the electrolytic capacitor 122. This is because the electrolytic capacitor 122 generates heat due to the loss of power in the ESR, which is determined by the resistance value of the ESR and the ripple current flowing in the electrolytic capacitor 122. The allowable ripple current value is calculated for each load on the electrolytic capacitor 122. The magnitude of the load includes the number of rotations of the motor 62.
 次に、モータ62の回転数ごとに、電解コンデンサ122に流れるリプル電流の電流値が許容リプル電流値に達する時の許容トルクを測定する。許容トルクよりも小さい値をトルクの制限値とする。トルクの制限値は、モータ62の回転数ごとに設定される。 Next, the permissible torque when the current value of the ripple current flowing through the electrolytic capacitor 122 reaches the permissible ripple current value is measured for each rotation speed of the motor 62. A value smaller than the allowable torque is set as a torque limit value. The torque limit value is set for each rotation speed of the motor 62.
 モータ62の回転数により、許容トルクの大きさが変わる。例えば、低速~中速回転駆動時において、モータ62の回転数に対する許容トルクの増加量が少なく、高速回転駆動時には、モータ62の回転数が高くなるに従い許容トルクが急激に増加することもありうる。したがって、トルクの制限値は、例えば、モータ62の回転数によらず一定値となる場合、または、モータ62の回転数が高くなるに従い高くなる場合がありうる。 ¡The allowable torque varies depending on the rotation speed of the motor 62. For example, the amount of increase in the allowable torque with respect to the rotational speed of the motor 62 is small during low-speed to medium-speed rotational driving, and the allowable torque may increase rapidly as the rotational speed of the motor 62 increases during high-speed rotational driving. . Therefore, for example, the torque limit value may be a constant value regardless of the rotation speed of the motor 62, or may increase as the rotation speed of the motor 62 increases.
 以上の手順により、モータ62の回転数とトルクの制限値とを対応付けた対応付け情報が得られる。トルクの制限値を電解コンデンサ122の発熱特性を考慮して決定しているため、電解コンデンサ122の発熱量が少ないリプル電流となる条件によるモータ62の駆動時に、トルクの制限値を低くしすぎてしまうことがない。すなわち、過剰なモータ62の駆動制限を防止することができる。 By the above procedure, association information in which the rotation speed of the motor 62 is associated with the torque limit value is obtained. Since the torque limit value is determined in consideration of the heat generation characteristics of the electrolytic capacitor 122, the torque limit value is set too low when the motor 62 is driven under the condition that the electrolytic capacitor 122 generates a small amount of heat. There is no end. That is, it is possible to prevent excessive drive restriction of the motor 62.
 また、電解コンデンサ122の発熱量が多いリプル電流となる条件によるモータ62の駆動時に、トルクの制限値を高くしすぎてしまうことがない。すなわち、電解コンデンサ122の破壊および寿命劣化を防止することができる。 Further, the torque limit value is not excessively increased when the motor 62 is driven under the condition that the ripple current generated by the electrolytic capacitor 122 is large. That is, it is possible to prevent the electrolytic capacitor 122 from being broken and the life deterioration.
 また、モータ62の回転数ごとにトルクの制限値を設定しているため、モータ62の過剰な駆動制限を防止し、また、保護制御の精度を向上させることができる。 Further, since the torque limit value is set for each rotation speed of the motor 62, excessive drive limitation of the motor 62 can be prevented, and the accuracy of the protection control can be improved.
  (駆動方法)
 図5は、第1実施形態に係るモータ駆動方法のうち、駆動量を決定する工程を示すフローチャートである。工程S11で、駆動量決定部113は、エンジンECU80から出力されたモータ62の回転数の指令に基づいて駆動部120へ出力する駆動量を決定する。上記説明の通り、エンジンECU80から駆動量決定部113へ出力された指令のモータ62の回転数を第1回転数とする。
(Driving method)
FIG. 5 is a flowchart illustrating a process of determining a driving amount in the motor driving method according to the first embodiment. In step S <b> 11, the drive amount determination unit 113 determines the drive amount to be output to the drive unit 120 based on the rotational speed command of the motor 62 output from the engine ECU 80. As described above, the rotation speed of the commanded motor 62 output from the engine ECU 80 to the drive amount determination unit 113 is set as the first rotation speed.
 工程S12で、算出部111は、電流検出部130により検出された電流の電流値からモータ62で発生するトルクおよびモータ62の回転数を算出する。算出部111は、トルクの算出値および回転数の算出値を比較部112に出力する。 In step S12, the calculation unit 111 calculates the torque generated by the motor 62 and the rotation speed of the motor 62 from the current value of the current detected by the current detection unit 130. The calculation unit 111 outputs the calculated torque value and the calculated rotation speed to the comparison unit 112.
 工程S13で、比較部112は、算出部111から得た回転数の算出値に基づいて、格納部114に格納された対応付け情報を参照してトルクの制限値を決定する。 In step S <b> 13, the comparison unit 112 determines a torque limit value with reference to the association information stored in the storage unit 114 based on the calculated value of the rotation speed obtained from the calculation unit 111.
 工程S14で、比較部112は、工程S12で算出されたトルクの算出値が工程S13で決定したトルクの制限値よりも高いか否かを判定する。比較部112により、算出値>制限値と判断された場合は、工程S15へ進む。比較部112により、算出値≦制限値と判断された場合は、工程S11へ戻る。 In step S14, the comparison unit 112 determines whether or not the calculated torque value calculated in step S12 is higher than the torque limit value determined in step S13. If the comparison unit 112 determines that the calculated value> the limit value, the process proceeds to step S15. If the comparison unit 112 determines that the calculated value ≦ the limit value, the process returns to step S11.
 工程S15で、駆動量決定部113は、モータ62を制限駆動する駆動量を決定する。具体的には、駆動量決定部113は、第1回転数よりも低い回転数の第2回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。 In step S <b> 15, the drive amount determination unit 113 determines a drive amount for restricting the motor 62. Specifically, the drive amount determination unit 113 determines the drive amount for driving the motor 62 at the second rotation number that is lower than the first rotation number as the drive amount of the motor 62.
 上記の通り、モータ62において発生するトルクに基づいてモータ駆動装置100を流れる電流を監視することで、電力の監視では素子の保護が不十分だった、例えば、低速回転でモータ62を駆動しているモータ駆動装置100に含まれる素子を保護しうる。
[第2実施形態]
As described above, by monitoring the current flowing through the motor driving device 100 based on the torque generated in the motor 62, the protection of the elements was insufficient in the power monitoring. For example, the motor 62 is driven at low speed rotation. The elements included in the motor driving device 100 can be protected.
[Second Embodiment]
  (電力の監視)
 第1実施形態では、トルクを監視していた。本実施形態では、トルクを監視する前に、モータ62を駆動する電力を監視する。これにより、駆動部120に含まれる素子の破壊を防止する精度を向上させることができる。
(Power monitoring)
In the first embodiment, the torque is monitored. In the present embodiment, the power for driving the motor 62 is monitored before the torque is monitored. Thereby, the precision which prevents destruction of the element contained in the drive part 120 can be improved.
  (算出部)
 算出部111は、駆動量決定部113がモータ62を第1回転数で駆動させる駆動信号を出力した後、バッテリー70の電圧および電流検出部130により検出された電流の電流値に基づいて得られた値を、モータ62を駆動する電力として算出する。算出部111は、算出した電力の電力値を比較部112に出力する。
(Calculation unit)
The calculation unit 111 is obtained based on the voltage of the battery 70 and the current value of the current detected by the current detection unit 130 after the drive amount determination unit 113 outputs a drive signal for driving the motor 62 at the first rotation speed. The calculated value is calculated as electric power for driving the motor 62. The calculation unit 111 outputs the calculated power value of the power to the comparison unit 112.
  (比較部)
 比較部112は、算出部111で求められた電力値と電力制限値とを比較して、電力値が電力制限値よりも高いか否かを判定する。比較部112は、判定結果を駆動量決定部113へ出力する。電力制限値は、MOSFETなどの素子の最大定格に基づいて決定され、格納部114に格納される。
(Comparison part)
The comparison unit 112 compares the power value obtained by the calculation unit 111 with the power limit value and determines whether or not the power value is higher than the power limit value. The comparison unit 112 outputs the determination result to the drive amount determination unit 113. The power limit value is determined based on the maximum rating of an element such as a MOSFET and stored in the storage unit 114.
  (駆動量決定部)
 駆動量決定部113は、比較部112から出力された判定結果に基づいて、モータ62の駆動量を決定する。第1回転数におけるモータ62の駆動時における電力値が電力制限値よりも高いという判定結果の場合、駆動量決定部113は、第1回転数よりも低い回転数の第2回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。第2回転数はゼロとしてもよい。電力値が電力制限値以下という判定結果の場合、駆動量決定部113は、駆動量を第1回転数でモータ62を駆動する駆動量のままとする。
(Driving amount determination unit)
The drive amount determination unit 113 determines the drive amount of the motor 62 based on the determination result output from the comparison unit 112. In the case of the determination result that the power value at the time of driving the motor 62 at the first rotation speed is higher than the power limit value, the drive amount determination unit 113 uses the motor 62 at the second rotation speed that is lower than the first rotation speed. Is determined as the driving amount of the motor 62. The second rotational speed may be zero. When the determination result indicates that the power value is equal to or less than the power limit value, the drive amount determination unit 113 keeps the drive amount as the drive amount for driving the motor 62 at the first rotation speed.
  (駆動方法)
 図6は、第2実施形態に係るモータ駆動方法のうち、駆動量を決定する工程を示すフローチャートである。工程S11は、第1実施形態と同様である。
(Driving method)
FIG. 6 is a flowchart illustrating a process of determining a drive amount in the motor drive method according to the second embodiment. Step S11 is the same as in the first embodiment.
 工程S22で、算出部111は、バッテリー70の電圧および電流検出部130により検出された電流の電流値に基づいてモータ62を駆動する電力を算出する。算出部111は、電力の算出値を比較部112に出力する。 In step S22, the calculation unit 111 calculates the power for driving the motor 62 based on the voltage of the battery 70 and the current value of the current detected by the current detection unit 130. The calculation unit 111 outputs the calculated power value to the comparison unit 112.
 工程S23で、比較部112は、格納部114から電力制限値を得て、工程S22で算出された電力の算出値が電力制限値よりも高いか否かを判定する。比較部112により、算出値>制限値と判断された場合は、工程S24へ進む。比較部112により、算出値≦制限値と判断された場合は、第1実施形態の工程S12へ進む。 In step S23, the comparison unit 112 obtains a power limit value from the storage unit 114, and determines whether or not the calculated power value calculated in step S22 is higher than the power limit value. If the comparison unit 112 determines that the calculated value is greater than the limit value, the process proceeds to step S24. When the comparison unit 112 determines that the calculated value ≦ the limit value, the process proceeds to step S12 of the first embodiment.
 工程S24で、駆動量決定部113は、モータ62を制限駆動する駆動量を決定する。具体的には、駆動量決定部113は、第1回転数よりも低い回転数の第2回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。工程S24以降は、第1実施形態の工程S12~工程S15と同様である。 In step S <b> 24, the drive amount determination unit 113 determines the drive amount for restricting the motor 62. Specifically, the drive amount determination unit 113 determines the drive amount for driving the motor 62 at the second rotation number that is lower than the first rotation number as the drive amount of the motor 62. Step S24 and subsequent steps are the same as steps S12 to S15 of the first embodiment.
 上記の通り、トルクを監視する前に、モータ62を駆動する電力を監視する工程を追加することで駆動部120に含まれる素子の破壊を防止する精度を向上させることができる。
[第3実施形態]
As described above, by adding a step of monitoring the power for driving the motor 62 before monitoring the torque, it is possible to improve the accuracy of preventing destruction of the elements included in the drive unit 120.
[Third Embodiment]
 第1実施形態では、トルクの監視をし、第2実施形態では、トルクの監視の前に電力の監視をさらに行った。本実施形態では、トルクの監視の後に温度の監視も行う。これにより、駆動部120に含まれる素子の破壊を防止する精度を向上させることができる。 In the first embodiment, torque is monitored, and in the second embodiment, power is further monitored before torque is monitored. In this embodiment, the temperature is also monitored after the torque is monitored. Thereby, the precision which prevents destruction of the element contained in the drive part 120 can be improved.
 図7は、本実施形態に係るモータ駆動装置200の構成を示すブロック図である。図7に示すように、モータ駆動装置200は、図3で示したモータ駆動装置100に温度センサ140が追加された構成を有する。 FIG. 7 is a block diagram showing a configuration of the motor drive device 200 according to the present embodiment. As shown in FIG. 7, the motor drive device 200 has a configuration in which a temperature sensor 140 is added to the motor drive device 100 shown in FIG. 3.
  (温度センサ)
 温度センサ140は、駆動部120の温度を検出する温度検出部である。本実施形態では、特に、電解コンデンサ122の温度が検出される。電解コンデンサ122は、低電力駆動時に流れうる高電流の影響を受けて破損し易いからである。
(Temperature sensor)
The temperature sensor 140 is a temperature detection unit that detects the temperature of the drive unit 120. In the present embodiment, in particular, the temperature of the electrolytic capacitor 122 is detected. This is because the electrolytic capacitor 122 is easily damaged under the influence of a high current that can flow during low power driving.
  (温度の監視)
 制御部110は、温度センサ140により駆動部120の温度を監視して、監視結果に基づいてモータ62の駆動を制限するか否かを判断する。駆動部120の温度も併せて監視することで駆動部120に含まれる素子の破壊を防止する制御の精度を向上させることができる。
(Temperature monitoring)
The control unit 110 monitors the temperature of the drive unit 120 with the temperature sensor 140 and determines whether to limit the drive of the motor 62 based on the monitoring result. By monitoring the temperature of the drive unit 120 together, it is possible to improve the accuracy of control for preventing the elements included in the drive unit 120 from being destroyed.
  (比較部)
 比較部112は、温度センサ140が検出した温度と所定の閾値とを比較して、検出温度が所定の閾値よりも高いか否かを判定する。比較部112は、判定結果を駆動量決定部113へ出力する。所定の閾値は、駆動部120に含まれる、電解コンデンサ122などの素子が安定して動作する許容温度であり、格納部114に格納される。
(Comparison part)
The comparison unit 112 compares the temperature detected by the temperature sensor 140 with a predetermined threshold value, and determines whether or not the detected temperature is higher than the predetermined threshold value. The comparison unit 112 outputs the determination result to the drive amount determination unit 113. The predetermined threshold is an allowable temperature at which an element such as the electrolytic capacitor 122 included in the driving unit 120 operates stably, and is stored in the storage unit 114.
  (駆動量決定部)
 駆動量決定部113は、比較部112から出力された判定結果に基づいて、モータ62の駆動量を決定する。トルクの監視後の回転数による駆動時に温度センサ140で検出された温度が所定の閾値よりも高いという判定結果の場合、駆動量決定部113は、トルクの監視後の回転数よりも低い回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。モータ62の回転を止めてもよい。検出された温度が所定の閾値以下という判定結果の場合、トルクの監視後の回転数を維持する。
(Driving amount determination unit)
The drive amount determination unit 113 determines the drive amount of the motor 62 based on the determination result output from the comparison unit 112. In the case of a determination result that the temperature detected by the temperature sensor 140 is higher than a predetermined threshold at the time of driving with the rotation speed after monitoring the torque, the drive amount determination unit 113 has a lower rotation speed than the rotation speed after monitoring the torque. Thus, the drive amount for driving the motor 62 is determined as the drive amount for the motor 62. The rotation of the motor 62 may be stopped. In the case of a determination result that the detected temperature is equal to or lower than a predetermined threshold value, the rotation speed after torque monitoring is maintained.
  (駆動方法)
 図8は、第3実施形態に係るモータ駆動方法のうち、駆動量を決定する工程を示すフローチャートである。工程S11~工程S13までは、第1実施形態または第2実施形態と同様である。
(Driving method)
FIG. 8 is a flowchart illustrating a process of determining a drive amount in the motor drive method according to the third embodiment. Steps S11 to S13 are the same as those in the first embodiment or the second embodiment.
 工程S14で、比較部112は、工程S12で算出されたトルクの算出値が工程S13で決定したトルクの制限値よりも高いか否かを判定する。比較部112により、算出値>制限値と判断された場合は、工程S15を経て工程S31へ進む。比較部112により、算出値≦制限値と判断された場合は、工程S31へ進む。 In step S14, the comparison unit 112 determines whether or not the calculated torque value calculated in step S12 is higher than the torque limit value determined in step S13. If the comparison unit 112 determines that the calculated value is greater than the limit value, the process proceeds to step S31 via step S15. If the comparison unit 112 determines that the calculated value ≦ the limit value, the process proceeds to step S31.
 工程S31で、比較部112は、格納部114から所定の閾値を得て、温度センサ140が検出した検出温度が所定の閾値よりも高いか否かを判定する。比較部112により、検出温度>所定の閾値と判断された場合は、工程S32へ進む。比較部112により、検出温度≦所定の閾値と判断された場合は、工程S11へ戻る。 In step S31, the comparison unit 112 obtains a predetermined threshold value from the storage unit 114, and determines whether or not the detected temperature detected by the temperature sensor 140 is higher than the predetermined threshold value. If the comparison unit 112 determines that the detected temperature> the predetermined threshold value, the process proceeds to step S32. If the comparison unit 112 determines that the detected temperature ≦ the predetermined threshold value, the process returns to step S11.
 工程S32で、駆動量決定部113は、モータ62を制限駆動する駆動量を決定する。具体的には、駆動量決定部113は、トルクの監視後の回転数よりも低い回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。 In step S <b> 32, the drive amount determination unit 113 determines a drive amount for restricting the motor 62. Specifically, the drive amount determination unit 113 determines a drive amount for driving the motor 62 at a rotational speed lower than the rotational speed after monitoring the torque as the drive amount of the motor 62.
 上記の通り、トルクの監視後に、駆動部120の温度を監視する工程を追加することで駆動部120に含まれる素子の破壊を防止する精度を向上させることができる。
[第4実施形態]
As described above, by adding a step of monitoring the temperature of the drive unit 120 after monitoring the torque, it is possible to improve the accuracy of preventing the elements included in the drive unit 120 from being destroyed.
[Fourth Embodiment]
  (モータの再駆動)
 トルクが制限値を超える場合としては、ファンシステム60内に異物が入り、異物がファンブレード61の回転を阻害する場合等が考えられる。そして、トルクが制限値を超えて、モータ62の回転数を制限してしばらく時間が経過した後、ファンシステム60内に入った異物が外へ排出され、ファンブレード61が正常に回転するようになることもありうる。この場合にもモータ62を制限した回転数で駆動させることは過剰な駆動制限となる。
(Motor re-drive)
As a case where the torque exceeds the limit value, a case where a foreign matter enters the fan system 60 and the foreign matter impedes the rotation of the fan blade 61 may be considered. Then, after the torque exceeds the limit value and the rotational speed of the motor 62 is limited and after a while, the foreign matter that has entered the fan system 60 is discharged to the outside so that the fan blade 61 rotates normally. It can be. In this case as well, driving the motor 62 at a limited number of rotations is an excessive driving limit.
 そこで、本実施形態では、例えば、第2回転数で制限駆動を開始した後、所定の時間が経過した後に、制御部110が、第2回転数よりも高い回転数の第3回転数でモータ62を駆動させる駆動信号を出力して、モータ62を再駆動する。 Therefore, in the present embodiment, for example, after a predetermined time has elapsed after starting the limited drive at the second rotational speed, the control unit 110 performs the motor at the third rotational speed that is higher than the second rotational speed. A drive signal for driving the motor 62 is output, and the motor 62 is driven again.
  (再駆動の指示)
 再駆動までの所定の時間は、予め決定してもよい。予め決定した所定の時間は、格納部114に格納される。所定の時間が経過したか否かは、例えば、比較部112が判断しうる。比較部112は、格納部114から所定の時間を得て、駆動量決定部113へ判断結果を出力してから所定の時間が経過したら駆動量決定部113へ再駆動を指示する信号を出力する。
(Re-drive instruction)
The predetermined time until re-driving may be determined in advance. The predetermined time determined in advance is stored in the storage unit 114. For example, the comparison unit 112 can determine whether or not the predetermined time has elapsed. The comparison unit 112 obtains a predetermined time from the storage unit 114, and outputs a determination result to the drive amount determination unit 113 and outputs a signal instructing the drive amount determination unit 113 to re-drive when the predetermined time has elapsed. .
 駆動量決定部113は、再駆動を指示する信号を比較部112から受信したら、制限駆動している回転数よりも高い第3回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。 When the drive amount determination unit 113 receives a signal for instructing re-drive from the comparison unit 112, the drive amount for driving the motor 62 at the third rotational speed higher than the rotational speed at which the limit drive is performed is set as the drive amount of the motor 62. decide.
 温度センサ140を有するモータ駆動装置200によりモータ62の駆動をする場合は、駆動部120の温度が所定の閾値以下となる時間を推定して、推定した時間を所定の時間としてもよい。所定の閾値は第3実施形態と同様の温度であり、格納部114に格納される。所定の閾値以下となる時間の推定は、例えば、比較部112が行う。比較部112は、格納部114から所定の閾値を得て、温度センサ140から検出温度を得て、駆動部120の温度が所定の閾値以下となる時間を推定する。比較部112は、駆動量決定部113へ判断結果を出力してから推定した時間が経過したら。駆動量決定部113へ再駆動を指示する信号を出力する。 When the motor 62 is driven by the motor driving device 200 having the temperature sensor 140, a time when the temperature of the driving unit 120 is equal to or lower than a predetermined threshold is estimated, and the estimated time may be set as the predetermined time. The predetermined threshold is the same temperature as in the third embodiment, and is stored in the storage unit 114. For example, the comparison unit 112 estimates the time that is equal to or less than the predetermined threshold. The comparison unit 112 obtains a predetermined threshold value from the storage unit 114, obtains a detected temperature from the temperature sensor 140, and estimates a time during which the temperature of the drive unit 120 is equal to or lower than the predetermined threshold value. When the estimated time has elapsed after the comparison unit 112 outputs the determination result to the drive amount determination unit 113. A signal for instructing the drive amount determination unit 113 to re-drive is output.
 所定の時間の決定のために、温度センサ140を用いる場合は、モータ62の駆動を自動で制御できる。また、所定の時間を駆動部120の温度の実測値に基づいて決定するため、制御の精度を向上させることができる。 When the temperature sensor 140 is used for determining the predetermined time, the driving of the motor 62 can be automatically controlled. Further, since the predetermined time is determined based on the actual measured value of the temperature of the drive unit 120, the control accuracy can be improved.
 温度センサ140を用いない場合は、温度センサ140を備える必要がなくなり、例えば、モータ駆動装置100内のスペースおよびコストの点で有利となりうる。 When the temperature sensor 140 is not used, it is not necessary to provide the temperature sensor 140. For example, it can be advantageous in terms of space and cost in the motor driving device 100.
 また、温度センサ140を有するモータ駆動装置200によりモータ62の駆動をする場合は、再駆動までの時間を設定するのではなく、温度センサ140による検出結果が所定の閾値以下となる時点でモータ62を再駆動させてもよい。これにより、再駆動を駆動部120の温度の実測値に基づいて自動で制御することができる。 When the motor 62 is driven by the motor driving device 200 having the temperature sensor 140, the motor 62 is not set at the time when the detection result by the temperature sensor 140 is equal to or less than a predetermined threshold value, instead of setting the time until re-driving. May be re-driven. Thereby, the re-driving can be automatically controlled based on the measured value of the temperature of the driving unit 120.
 この場合、再駆動の指示は、例えば、比較部112により行われる。比較部112は、格納部114から所定の閾値を得て、温度センサ140から検出温度を得て、検出温度が所定の閾値以下となる時点で駆動量決定部113へ再駆動を指示する信号を出力する。 In this case, the re-drive instruction is performed by the comparison unit 112, for example. The comparison unit 112 obtains a predetermined threshold value from the storage unit 114, obtains a detection temperature from the temperature sensor 140, and outputs a signal instructing the drive amount determination unit 113 to re-drive when the detection temperature becomes equal to or less than the predetermined threshold value. Output.
  (再駆動方法)
 図9は、第4実施形態に係るモータ再駆動方法の工程を示すフローチャートである。再駆動の工程は、第1実施形態または第2実施形態における工程S15の後に行われる。第3実施形態の工程S32の後に行ってもよい。
(Re-drive method)
FIG. 9 is a flowchart showing steps of a motor re-driving method according to the fourth embodiment. The re-driving step is performed after step S15 in the first embodiment or the second embodiment. You may perform after process S32 of 3rd Embodiment.
 工程S15または工程S32に続く工程S41で、比較部112は、上記説明の通り、再駆動を開始する時間となったか否かを判断する。再駆動の時間となったと判断した場合は、工程S11に戻り、駆動量決定部113が制限駆動している回転数よりも高い第3回転数でモータ62を駆動させる駆動量をモータ62の駆動量として決定する。再駆動の時間となっていないと判断した場合は、制限駆動のまま工程S41に戻る。 In step S41 following step S15 or step S32, the comparison unit 112 determines whether or not it is time to start redrive as described above. If it is determined that it is time to re-drive, the process returns to step S11, and the drive amount for driving the motor 62 at the third rotational speed higher than the rotational speed that the drive amount determination unit 113 performs the limit drive is driven. Determine as quantity. If it is determined that it is not time for re-driving, the process returns to step S41 with the limited driving.
 以上の各実施形態に係るモータ駆動装置100またはモータ駆動装置200をエンジン冷却装置1に設けることで、低電力駆動で高電流が流れる場合が起こりうるエンジン冷却装置1の安定駆動性を向上させることができる。 Providing the motor drive device 100 or the motor drive device 200 according to each of the above embodiments in the engine cooling device 1 improves the stable drive performance of the engine cooling device 1 in which a high current may flow with low power drive. Can do.
 なお、上記説明した駆動方法をコンピュータに実行させるプログラムを、半導体メモリ、磁気ディスク、光ディスク等のコンピュータ読み取り可能な記録媒体に記憶させ、この記録媒体をコンピュータによりアクセスし上記プログラムを実行してもよい。 Note that a program that causes a computer to execute the driving method described above may be stored in a computer-readable recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and the recording medium may be accessed by a computer to execute the program. .
 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.
 本出願は、2017年4月28日に出願された日本特許出願である特願2017-89701号に基づく優先権を主張し、当該日本特許出願に記載されたすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2017-89701, which is a Japanese patent application filed on April 28, 2017, and uses all the contents described in the Japanese Patent Application.
 100  モータ駆動装置
 110  制御部
 111  算出部
 112  比較部
 113  駆動量決定部
 114  格納部
 120  駆動部
 130  電流検出部
 
DESCRIPTION OF SYMBOLS 100 Motor drive device 110 Control part 111 Calculation part 112 Comparison part 113 Drive amount determination part 114 Storage part 120 Drive part 130 Current detection part

Claims (11)

  1.  モータを駆動するモータ駆動装置であって、
     前記モータを駆動させる駆動信号を出力する制御部と、
     前記制御部から出力された前記駆動信号に基づいて、外部電源から供給された電流を前記モータに供給する駆動部と、
     前記駆動部を流れる電流を検出する電流検出部と、を有し、
     前記制御部は、
     前記モータを第1回転数で駆動させる前記駆動信号を出力した後、前記電流検出部により検出された前記電流の電流値から前記モータで発生するトルクおよび前記モータの回転数を算出し、算出した前記回転数における前記トルクの制限値と、前記算出した前記トルクの算出値とを比較し、前記算出値が前記制限値よりも高い場合、前記第1回転数よりも低い回転数の第2回転数で前記モータを駆動させる前記駆動信号を出力する、
    ことを特徴とするモータ駆動装置。
    A motor driving device for driving a motor,
    A control unit for outputting a drive signal for driving the motor;
    Based on the drive signal output from the control unit, a drive unit that supplies current supplied from an external power source to the motor;
    A current detection unit for detecting a current flowing through the drive unit,
    The controller is
    After outputting the drive signal for driving the motor at the first rotation speed, the torque generated by the motor and the rotation speed of the motor are calculated from the current value of the current detected by the current detection unit, and calculated. The torque limit value at the rotation speed is compared with the calculated calculated value of the torque, and if the calculated value is higher than the limit value, the second rotation at a rotation speed lower than the first rotation speed Outputting the drive signal for driving the motor in number;
    A motor drive device characterized by that.
  2.  前記制限値は、前記駆動部に含まれる素子の入力電流に対する発熱特性に基づいて決定されることを特徴とする請求項1に記載のモータ駆動装置。 The motor drive device according to claim 1, wherein the limit value is determined based on a heat generation characteristic with respect to an input current of an element included in the drive unit.
  3.  前記制限値は、前記モータが駆動する回転数によらず一定値、または、前記回転数が高くなるに従い、高くなることを特徴とする請求項1または2に記載のモータ駆動装置。 3. The motor driving apparatus according to claim 1, wherein the limit value is a constant value regardless of the number of rotations driven by the motor, or increases as the number of rotations increases.
  4.  前記駆動部の温度を検出する温度検出部を有し、
     前記制御部は、前記第1回転数による前記モータの駆動時に、前記温度検出部により検出された前記温度が所定の閾値を超えている場合、前記第2回転数で前記モータを駆動させる前記駆動信号を出力する、ことを特徴とする請求項1乃至3のうちいずれか1項に記載のモータ駆動装置。
    A temperature detection unit for detecting the temperature of the drive unit;
    The controller is configured to drive the motor at the second rotational speed when the temperature detected by the temperature detection unit exceeds a predetermined threshold when the motor is driven at the first rotational speed. The motor driving device according to claim 1, wherein the motor driving device outputs a signal.
  5.  前記制御部は、前記第2回転数による前記モータの駆動時に、前記温度検出部により検出された前記温度が前記所定の閾値以下の場合、前記第2回転数よりも高い回転数の第3回転数で前記モータを駆動させる前記駆動信号を出力する、ことを特徴とする請求項4に記載のモータ駆動装置。 When the temperature detected by the temperature detection unit is equal to or lower than the predetermined threshold when the motor is driven at the second rotation number, the control unit performs a third rotation at a higher rotation number than the second rotation number. The motor driving apparatus according to claim 4, wherein the driving signal for driving the motor by a number is output.
  6.  前記制御部は、前記第2回転数による前記モータの駆動を開始してから所定の時間が経過した後に、前記第2回転数よりも高い回転数の第3回転数で前記モータを駆動させる前記駆動信号を出力し、前記所定の時間を前記温度検出部により検出された前記温度が所定の閾値以下となる時間とする、ことを特徴とする請求項4に記載のモータ駆動装置。 The controller drives the motor at a third rotational speed that is higher than the second rotational speed after a predetermined time has elapsed after starting the driving of the motor at the second rotational speed. 5. The motor drive device according to claim 4, wherein a drive signal is output, and the predetermined time is set to a time during which the temperature detected by the temperature detection unit is equal to or less than a predetermined threshold.
  7.  前記制御部は、前記第2回転数による前記モータの駆動を開始してから所定の時間が経過した後に、前記第2回転数よりも高い回転数の第3回転数で前記モータを駆動させる前記駆動信号を出力する、ことを特徴とする請求項1乃至4のうちいずれか1項に記載のモータ駆動装置。 The controller drives the motor at a third rotational speed that is higher than the second rotational speed after a predetermined time has elapsed after starting the driving of the motor at the second rotational speed. The motor driving apparatus according to claim 1, wherein a driving signal is output.
  8.  前記制御部は、前記第1回転数による前記モータの駆動時に、前記外部電源の電圧および前記電流値に基づいて得られた値が電力制限値を超えている場合、前記第2回転数で前記モータを駆動させる前記駆動信号を出力する、ことを特徴とする請求項1乃至7のうちいずれか1項に記載のモータ駆動装置。 When the value obtained based on the voltage of the external power source and the current value exceeds a power limit value when the motor is driven at the first rotation speed, the control unit is configured to rotate the motor at the second rotation speed. The motor driving apparatus according to claim 1, wherein the driving signal for driving the motor is output.
  9.  モータを駆動するモータ駆動方法であって、
     前記モータを第1回転数で駆動させる駆動信号を出力し、
     前記出力した前記駆動信号に基づいて前記モータに供給される電流を検出し、
     前記検出した前記電流の電流値から前記モータで発生するトルクおよび前記モータの回転数を算出し、
     前記第1回転数における前記トルクの制限値と、前記算出した前記トルクの算出値とを比較し、
     前記比較の結果、前記算出値が前記制限値よりも高い場合、前記第1回転数よりも低い回転数の第2回転数で前記モータを駆動させる前記駆動信号を出力する、
    ことを特徴とするモータ駆動方法。
    A motor driving method for driving a motor,
    Outputting a drive signal for driving the motor at a first rotational speed;
    Detecting a current supplied to the motor based on the output drive signal;
    Calculate the torque generated in the motor and the rotation speed of the motor from the detected current value of the current,
    Comparing the torque limit value at the first rotational speed with the calculated calculated value of the torque;
    As a result of the comparison, when the calculated value is higher than the limit value, the drive signal for driving the motor at a second rotational speed lower than the first rotational speed is output.
    The motor drive method characterized by the above-mentioned.
  10.  モータを駆動するモータ駆動方法をコンピュータに実行させるプログラムが記憶されたコンピュータ読み取り可能な記録媒体であって、
     前記モータ駆動方法は、
     前記モータを所定の回転数で駆動させる駆動信号を出力する工程と、
     前記出力した前記駆動信号に基づいて前記モータに供給される電流を検出する工程と、
     前記検出した前記電流の電流値からに基づいて前記モータで発生するトルクおよび前記モータの回転数を算出する工程と、
     前記所定の回転数における前記トルクの制限値と、前記算出した前記トルクの算出値とを比較する工程と、
     前記比較の結果、前記算出値が前記制限値よりも高い場合、前記所定の回転数よりも低い回転数で前記モータを駆動させる前記駆動信号を出力する工程と、を含む、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium storing a program for causing a computer to execute a motor driving method for driving a motor,
    The motor driving method is:
    Outputting a drive signal for driving the motor at a predetermined rotational speed;
    Detecting a current supplied to the motor based on the output drive signal;
    Calculating the torque generated in the motor and the rotational speed of the motor based on the detected current value of the current;
    Comparing the torque limit value at the predetermined rotational speed with the calculated calculated value of the torque;
    A step of outputting the drive signal for driving the motor at a rotational speed lower than the predetermined rotational speed when the calculated value is higher than the limit value as a result of the comparison;
    A computer-readable recording medium.
  11.  請求項1から8のいずれか1項に記載のモータ駆動装置により制御されるモータにより駆動されるファンを備えることを特徴とするエンジン冷却装置。

     
    An engine cooling apparatus comprising a fan driven by a motor controlled by the motor driving apparatus according to claim 1.

PCT/JP2018/014848 2017-04-28 2018-04-09 Motor drive device, motor drive method, recording medium, and engine cooling device WO2018198734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880026520.6A CN110574284B (en) 2017-04-28 2018-04-09 Motor driving device, motor driving method, recording medium, and engine cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089701 2017-04-28
JP2017-089701 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198734A1 true WO2018198734A1 (en) 2018-11-01

Family

ID=63918223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014848 WO2018198734A1 (en) 2017-04-28 2018-04-09 Motor drive device, motor drive method, recording medium, and engine cooling device

Country Status (2)

Country Link
CN (1) CN110574284B (en)
WO (1) WO2018198734A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111980951A (en) * 2019-05-23 2020-11-24 日本电产伺服有限公司 Drive control device and motor device
WO2021115076A1 (en) * 2019-12-13 2021-06-17 中国科学院深圳先进技术研究院 Motor function safety control method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287010A1 (en) * 2004-06-29 2005-12-29 Rix Industries Gaseous fluid compressor control system
JP2007225226A (en) * 2006-02-24 2007-09-06 Orion Mach Co Ltd Control method of cooling device
JP2010183796A (en) * 2009-02-09 2010-08-19 Calsonic Kansei Corp Controller for motor-driven compressor
JP2016052203A (en) * 2014-09-01 2016-04-11 アスモ株式会社 Motor controller for vehicle air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537904B2 (en) * 2005-07-27 2010-09-08 本田技研工業株式会社 Motor control method
JP2011217585A (en) * 2010-04-02 2011-10-27 Seiko Epson Corp Control device for electronic apparatus, method of limiting torque output of drive source, and electronic apparatus
US9323254B2 (en) * 2012-01-16 2016-04-26 Mitsubishi Electric Corporation Motor control apparatus
JP5802577B2 (en) * 2012-03-07 2015-10-28 日立オートモティブシステムズ株式会社 Rotating electrical machine control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287010A1 (en) * 2004-06-29 2005-12-29 Rix Industries Gaseous fluid compressor control system
JP2007225226A (en) * 2006-02-24 2007-09-06 Orion Mach Co Ltd Control method of cooling device
JP2010183796A (en) * 2009-02-09 2010-08-19 Calsonic Kansei Corp Controller for motor-driven compressor
JP2016052203A (en) * 2014-09-01 2016-04-11 アスモ株式会社 Motor controller for vehicle air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111980951A (en) * 2019-05-23 2020-11-24 日本电产伺服有限公司 Drive control device and motor device
CN111980951B (en) * 2019-05-23 2022-07-12 日本电产伺服有限公司 Drive control device and motor device
WO2021115076A1 (en) * 2019-12-13 2021-06-17 中国科学院深圳先进技术研究院 Motor function safety control method and device

Also Published As

Publication number Publication date
CN110574284B (en) 2023-06-20
CN110574284A (en) 2019-12-13

Similar Documents

Publication Publication Date Title
JP5239198B2 (en) Cooling system controller
JP5408136B2 (en) Inverter device, inverter control system, motor control system, and control method for inverter device
CN110067632B (en) Control method of electronic water pump of engine
JP5877856B2 (en) Numerical control device with heat dissipation characteristic estimation unit
EP1586160A2 (en) Brushless and sensorless dc motor control system with locked and stopped rotor detection
JP2021023037A (en) Motor control device, motor control method and program
US10199982B2 (en) Motor control apparatus
JP2017198079A (en) Electric oil pump light load abnormality determination method
EP2881582A1 (en) Pump condition monitoring and recording
JP2003087966A (en) Protective apparatus of power generator
WO2018198734A1 (en) Motor drive device, motor drive method, recording medium, and engine cooling device
KR20160068057A (en) Method for cooling water control of vehicle
JP5760865B2 (en) Vehicle motor temperature detection device
JP7308291B2 (en) COOLING CONTROL DEVICE, ELECTRIC SYSTEM, AND COOLING CONTROL METHOD
KR20130040179A (en) Method of controlling the function of restarting an automatic start/stop system for a vehicle combustion engine, and corresponding system
US20160160782A1 (en) Method of diagnosing electronic water pump of engine
EP4079564A1 (en) Control apparatus for electric motor and vehicle
JP5553097B2 (en) Rotating electrical machine system controller
JP4872906B2 (en) Fuel pump control device
US11063542B2 (en) Motor drive apparatus and electric power steering apparatus
JP6819551B2 (en) Cooling system
KR101988980B1 (en) Control method of cooling fan motor
JP4976240B2 (en) Compressor starting method for cooling device
CN110945733B (en) Method for protecting components of a power electronics module of a starter-alternator system and system for implementing the method
JP2023049154A (en) cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP