WO2018198459A1 - Compressor system - Google Patents

Compressor system Download PDF

Info

Publication number
WO2018198459A1
WO2018198459A1 PCT/JP2018/002843 JP2018002843W WO2018198459A1 WO 2018198459 A1 WO2018198459 A1 WO 2018198459A1 JP 2018002843 W JP2018002843 W JP 2018002843W WO 2018198459 A1 WO2018198459 A1 WO 2018198459A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
exhaust
control device
compressor system
exhaust air
Prior art date
Application number
PCT/JP2018/002843
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 高野
善平 竹内
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2019515097A priority Critical patent/JP6808823B2/en
Publication of WO2018198459A1 publication Critical patent/WO2018198459A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/08Actuation of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Definitions

  • the present invention relates to a compressor system, and relates to a compressor system that uses exhaust heat from a fluid machine that compresses gas.
  • a compressor that compresses gas and discharges compressed gas
  • an expander that expands compressed gas to generate rotational power, and the like are known.
  • a gas compressor includes a compressor body that compresses a gas such as air, a cooling system that absorbs heat generated by compression, a motor that is a driving force source of the compressor, and the like.
  • a gas compressor if the motor input power is 100%, the amount of heat absorbed in the cooling system is equivalent to 90% or more of that, and usually the amount of heat is released to the outside air, and a great deal of energy is consumed. It is discharged to the outside of the compressor body and gas compressor. In order to increase energy efficiency, higher efficiency of the compressor body and the motor is being promoted, but the ratio of the released heat energy is still large, and effective use of exhaust heat is desired.
  • Patent Document 1 uses a steam to drive a compressor and uses heat generated by the compressor to preheat water (feed water) supplied to the boiler to reduce energy consumption in the boiler. Is disclosed.
  • Patent Document 2 discloses that in an air compressor in which a main body case, a compressor main body, a cooler, and a cooler fan are accommodated, air that is blown through the cooler and passes through the air is heated in the main body case.
  • a configuration is disclosed that includes an exhaust duct that leads upward, and includes a door that covers the opening of the side wall of the exhaust duct so as to be freely opened and closed.
  • the technique of utilizing an air compressor as a heating apparatus by opening a door at the time of cold is disclosed.
  • the heat of the warm air discharged from the compressor to the outside generally reaches a high temperature of, for example, 60 ° C. or more.
  • the thing of patent document 2 utilizes a compressor exhaust heat as a warm air, but the exhaust heat which generate
  • the structure is opened to the outside of the body case. Therefore, the temperature of the hot air discharged from the opening is as high as 60 ° C. or higher, and in order to use such high-temperature exhaust heat directly as heating, the installation environment of the compressor is adjusted to an appropriate temperature by the high-temperature exhaust hot air. It is limited to a space that can sufficiently rise. That is, when the discharge destination space is narrower than the amount of discharged exhaust hot air, hot air cannot be directly discharged into the space. If this is used as heating heat by reducing it to an appropriate temperature, there remains a problem that the exhaust heat utilization efficiency is significantly reduced.
  • Patent Document 2 does not disclose controlling the amount of exhaust heat from the exhaust heat utilization side. That is, in Patent Document 2, for example, when more heat is required at the use destination of the exhaust hot air, it is necessary to operate the compressor that is the source of heat accordingly, but more exhaust hot air (thermal energy) is required. Increasing the operating energy of the compressor to produce is far from the idea of using exhaust heat. Similarly, when the operating energy of the compressor is not affected, it is not possible to flexibly meet the heat demand of the waste heat utilization destination. A technique that efficiently uses exhaust heat without affecting the operating efficiency of the compressor is desired.
  • a compressor comprising a compressor body, a drive source for driving the compressor, a heat exchanger for exchanging heat with the compressed gas discharged from the compressor body, and a fan device for generating cooling air flowing in the heat exchanger;
  • a compressor system having a heat exchange with the heat exchanger, and an exhaust passage through which exhausted air scavenged from the compressor flows, wherein the exhaust passage is branched into at least two,
  • the first branch path communicates with the first space and the second branch path communicates with a second space different from the first space, and at least one of the first branch path and the second branch path
  • the exhaust gas control device that circulates the cooling air through the exhaust air passage, the temperature sensor that detects the temperature of the first space, and the temperature of the compressed gas at a predetermined temperature by the fan device. Control to a predetermined temperature and based on the temperature detected by the temperature sensor , Compressor system and a control device for controlling the amount of exhaust air flowing through
  • exhaust heat can be used efficiently without affecting the operating efficiency of the compressor.
  • Other problems, configurations, and effects of the present invention will become apparent from the following description.
  • FIG. 1 is a block diagram schematically illustrating a configuration of a compressor according to Embodiment 1.
  • FIG. It is a flowchart which shows the process of the compressor system by Example 1.
  • FIG. It is a block diagram which shows typically the structure of the compressor system by Example 2 to which this invention is applied.
  • FIG. 1 schematically shows a configuration example of a gas compressor system 100 to which the present invention is applied.
  • the gas compressor system 1 includes a compressor 1, a duct 2 connected to a cooling air exhaust port of the compressor 1, and a plurality of exhaust hot air discharged through the exhaust port of the compressor 1 to the duct 2.
  • a fan device 3 and temperature sensors Ta, Tb, and Tc are provided.
  • the compressor 1 has a compressor main body 1 having a displacement type or turbo type compression mechanism, and compresses the sucked air or the like to discharge high-pressure compressed air.
  • the duct 2 includes a duct 2 a and a duct 2 b that are connected to the exhaust port of the compressor 1 on the upstream side and branch into a plurality on the downstream side.
  • the downstream outlet of the duct 2b communicates with another space (in this example, outdoors) different from the compression chamber A in which the compressor 1 is installed.
  • the downstream outlet of the duct 2a communicates with the compressor room A and another space different from the outside (in this example, a room B spatially partitioned from the compressor room A). That is, the chamber B is a space that can be said to communicate with the compressor 1 via the duct 2b, and the compression chamber A and the chamber B may be adjacent spaces as positions, or may be separated spaces. Good.
  • the ducts 2a and 2b have fan devices 3a and 3b for flowing exhaust hot air therein.
  • the fan devices 3a and 3b include turbo type or propeller type blades and an electric motor that rotationally drives the blades.
  • the fan devices 3a and 3b are connected to the control unit 30 of the compressor 1 via duct fan inverters 4a and 4b, and their driving is controlled.
  • the fan devices 3a and 3b are not limited to the rotary type fans, and the arrangement location is not limited to the inside of the ducts 2a and 2b, but may be arranged outside the outlet (outdoor side or room B side). Further, the fan devices 3a and 3b are not limited to rotary fans.
  • the temperature sensor Ta detects the temperature of the compressed air generated and discharged by the compressor 1. The detected value is used for various controls of the compressor 1.
  • the temperature sensor Tb is a temperature detection device that is disposed in the chamber B and detects the room temperature of the chamber B.
  • the temperature sensor Tb is connected to the control unit 30 or the like of the compressor 1 via a wired or wireless communication line, and transmits the detected temperature of the room B.
  • the temperature sensor Tc is a temperature detection device that is disposed in the compressor chamber A and detects the room temperature of the compressor chamber A.
  • the fan device 4 is a device that exhausts room air from the compressor chamber A to another space (in this example, the outside).
  • the gas in the other space flows into the compressor chamber A from the other space (in this example, the outside).
  • This inflow is caused by the compressor A becoming negative pressure due to the drive intake air of the compressor 1, but an unillustrated intake fan or the like is disposed so that the outside air flows into the compression chamber A from the outside. May be.
  • the compressor 1 compresses the sucked outside air by the compressor main body 12 and discharges it to the outside of the compressor 1 through a discharge pipe.
  • the exhaust hot air F ⁇ b> 1 is exhaust hot air that has undergone heat exchange with the discharged compressed air that has become hot due to compression through the heat exchanger and the fan device 10, and flows from the exhaust port of the compressor 1 to the duct 2 (F ⁇ b> 1, etc.).
  • the exhaust hot air F2 is exhaust heat air from the control unit 30 of the compressor 1 (or from the case where a dryer is installed), and from the exhaust port different from the exhaust port connected to the duct 2 to the outside of the compressor 1. It is the exhaust heat wind that is exhaled.
  • the exhaust hot air F2 is discharged to the outside together with a part of the outside air flowing into the compression chamber A from the outside by the fan device 4 that mainly exhausts the compressor chamber A.
  • the rotational speed of the fan device 4 is controlled based on the detected value of the temperature sensor Tc (including start / stop) so that the room temperature of the compressor room A becomes higher than the outdoor temperature that is the intake destination. It is supposed to be.
  • the control unit 30 controls the fan device 4 based on the detection value of the temperature sensor Tc.
  • FIG. 2 schematically shows the configuration of the compressor 1.
  • the compressor 1 is a screw compressor that supplies compressed oil to a compression working chamber to generate compressed air.
  • the compressor 1 is not limited to this.
  • a compressor that uses a gas other than air as the compression medium may be used, a liquid supply type that uses water or the like in addition to the lubricating oil, or a non-supply type that does not use liquid.
  • generates compressed air may be plural (a multistage structure is included).
  • the compressor 1 includes a compressor body 12 having a compression mechanism for compressing air, a main motor 11 as a drive source, a main motor inverter 31 that converts the power frequency of the main motor 11, a discharge pipe 15a through which discharged compressed air flows, 15b, 15c, a gas-liquid separator 21 arranged on these discharge piping systems, an air cooler 10, an oil cooler 18, a fan device 19 for generating cooling air to be supplied to these coolers, a control unit 30 for controlling the compressor 1, and A package housing 50 for storing these devices is mainly provided.
  • the control unit 30 is disposed on the discharge pipe 15 through which the compressed air discharged from the compressor body flows, and according to the detection value from the discharge temperature sensor Ta and the pressure sensor 25 that detects the temperature of the compressed air,
  • the main motor 11, the fan device 19, and the like are controlled so as to generate compressed air at a temperature and to control the efficient operation.
  • the discharge temperature sensor Ta can be installed in an arbitrary place of the discharge pipe 15.
  • the control unit 30 controls the operation of the fan device 19 (acceleration, deceleration, stop, etc.) or switches the switching valve via the fan inverter 20 according to the discharge temperature detected by the discharge temperature sensor Ta.
  • the amount of lubricating oil flowing into the oil cooler 18 is maintained in a predetermined temperature range.
  • control of the efficient operation performed by the control unit 30 for example, after starting, P, PI or PID control is performed based on the detection value of the pressure sensor 25 until the target pressure input and set in the control unit 30 is reached. This is control for controlling the rotational speed of the main motor 11 by changing the output frequency from the main motor inverter 31.
  • the main motor inverter It is possible to control the no-load operation for reducing the power by reducing the rotational speed of 31.
  • the no-load operation not only the rotation speed of the main motor 11 is reduced, but also the suction throttle valve 14 is “closed” to reduce the intake amount, and the air release valve 17 is “open” to release the compressed air from the discharge piping system. To do.
  • the control unit 30 performs load operation.
  • the load operation is an operation in which the pressure is increased again by setting the suction throttle valve 14 to “open” and / or the discharge valve to “close” in a state where the rotation speed of the main motor 11 is decreasing.
  • the control unit 30 switches to the no-load operation again.
  • control unit 30 repeats the no-load operation and the load operation to reduce the power of the compressor 1.
  • control unit 30 switches to operation by control such as PID.
  • control unit 30 is connected to the above-described temperature sensors Tb and Tc and the fan devices 3a and 3b via a wired or wireless communication line, and performs communication and control with these.
  • the temperature sensor Tb, the fan device 3a, and the like may be connected to and controlled by another control system other than the control unit 30.
  • a temperature sensor or a fan device is connected to a remote control device 65 via a wired / wireless communication line (network) 60, and can be communicated with the control device 65 or a wired / wireless communication line 61.
  • You may comprise so that it may control remotely by the input from the connected terminal 66 or the portable terminal 67.
  • the detection value of the discharge temperature sensor Ta may also be output to the control device 65 via the control unit 30.
  • the package housing 50 includes intake ports 40a and 40b for intake from the outside.
  • the intake port 40 a is an opening that mainly takes in outside air flowing into the drive system region such as the main motor 11 and the compressor main body 12, and the intake port 40 b is mainly in the region of the cooler system such as the air cooler 10 and the oil cooler 11. It is an opening for taking in outside air.
  • the package housing 50 includes, for example, exhaust ports 45a and 45b on the upper surface.
  • the exhaust port 45a is an exhaust port through which an airflow that is sucked from the intake port 40a and that cools the drive system such as the main motor 11 and the compressor body 12 is mainly exhausted.
  • the exhaust port 45 b is connected to the duct 2.
  • the exhaust port 45b is an exhaust port through which an airflow that is sucked from the intake port 40b and has cooled a cooler system such as the air cooler 10 is mainly exhausted.
  • the exhaust port 45a is not connected to the duct 2 and scavenges exhaust hot air into the compressor chamber A (see FIG. 1).
  • the control system such as the control unit 30 may be configured as an independent intake port that directly intakes air from outside, and may be scavenged from the exhaust port 45a. When a dryer is disposed, the intake / exhaust system thereof may be independent or may be partially used.
  • the airflow between the intake / exhaust ports 40a-45a and 40b-45b is mainly generated by driving the fan device 19 and the fan devices 3a and 3b. Further, when the main motor 11 is provided with a self-excited (or separately excited) fan, this can also be an element of airflow generation.
  • the operation of the compressor 1 thus configured is as follows.
  • the compressor main body 1 sucks outside air through an intake pipe 13a from an intake port 40a opened in a part of the package housing.
  • the sucked air flows into the intake portion of the compressor body through the air filter 13b, and flows into the compression working chamber through the suction throttle valve 14 that controls the intake amount.
  • the compressor main body 1 is a compression working chamber formed by the tooth space of the screw rotor and the bore wall surface of the compression main body, and compresses air by reducing the volume of the working chamber together with the supplied lubricating oil.
  • High-temperature (for example, about 110 ° C.) mixed compressed air is discharged to the discharge pipe 15a.
  • the discharge pipe 15a is connected to a centrifugal or collision type gas-liquid separator 21, in which the mixed compressed air is separated into air and lubricating oil.
  • the separated compressed air flows into the discharge pipe 15b through the pressure regulating check valve.
  • the lubricating oil separated by the gas-liquid separator 21 flows to the oil cooler 18 constituted by a heat exchanger via the lubricating oil pipe 16a.
  • the discharge pipe 15b is connected to the air cooler 10 composed of a heat exchanger, and the compressed air flowing from the gas-liquid separator 21 exchanges heat with the cooling air generated by the fan device 19 to obtain a desired temperature (for example, , About 70 ° C.) and is eventually supplied to the user side of the compressed air through the discharge pipe 15c.
  • a secondary filter that further removes oil may be disposed upstream of the air cooler 10.
  • the lubricating oil that has flowed from the lubricating oil pipe 16 a to the oil cooler 18 is cooled by cooling air and heat generated by the fan device 19 a.
  • the refrigerant is returned to the compressor body 12 through the lubricating oil pipe 16b and the oil filter 22.
  • the middle of the lubricating oil pipe 16a branches via a switching valve, one communicating with the oil cooler 18, and the other communicating directly with the lubricating oil pipe 16b.
  • the control unit 30 switches over the switching valve to prevent overcooling.
  • the output frequency of the inverter 21 is changed by a control command corresponding to the temperature of the mixed compressed air detected by the temperature sensor Ta by the control unit 30, and the final discharged compressed air temperature is set to a predetermined temperature (for example, , About 70 ° C.).
  • control of the temperature sensors Tb and Tc and the fan devices 3a and 3b by the control unit 30 will be described.
  • the control unit 30 usually operates the fan device 3b and scavenges all exhaust heat air flowing through the duct 2 from the duct 2b to the outside.
  • the exhaust hot air F1 of the compressor 1 is used for heating the B room, etc.
  • the operation of the fan device 3b that scavenges outdoors is limited (including deceleration and stop), and instead of the room B.
  • the fan device 3a is driven (including startup and acceleration) until the temperature sensor Tb disposed in the chamber B detects a predetermined temperature.
  • the predetermined temperature is, for example, a room temperature targeted by the room B (hereinafter, may be referred to as “B room set temperature”).
  • the room B set temperature can be arbitrarily set by the user using the input means.
  • a temperature setting device may be mounted as a controller in the B room together with the temperature sensor Tb, a temperature setting device may be mounted so as to be set from the control operation panel of the compressor 1, or the management device 65 or the terminal You may implement so that it can set remotely from 66.
  • the control unit 30 receives the detection signal of the room B set temperature from the temperature sensor Tb, the control of the fan device 3a is limited (including deceleration and stop), and instead, the fan device 3b is driven (starting and speeding up). (Including).
  • the specification is such that the maximum air volume of the fan device 19 of the compressor 1 and the maximum air volume of the fan device 3a or 3b of the duct 2 are at least equal to or greater. Furthermore, the sum of the air volume generated by the fan device 19 of the compressor 1 and the fan device 3a (and / or 3b) for the duct is more than an output that can secure at least an air volume sufficient for cooling the compressor 1. It is supposed to drive in.
  • the exhaust hot air F1 when the exhaust hot air F1 is not circulated through the duct 2a, in order to ensure the cooling performance of the compressor 1, it is necessary to exhaust all the exhaust hot air F1 of the fan device 19 to the outdoors by the fan device 3b. Is preferably set to be equal to or greater than the maximum air volume of the fan device 19. On the contrary, when the exhaust hot air F ⁇ b> 1 is circulated only through the duct 2 a, it is preferable that the maximum air volume of the fan device 3 a is set to be equal to or greater than the maximum air volume of the fan device 19. When the exhaust hot air F1 is dispersed in the ducts 2a and 2b, it is preferable that the sum of the blown air amounts of the fan devices 3a and 3b be equal to or greater than the swept air amount of the fan device 19.
  • the relationship between the air volumes generated by the fan devices 19, 3a, and 3b is preferably the following [Equation 1].
  • a processing flow of the compressor system 100 having the above configuration will be described with reference to FIG.
  • the following processing is executed by the control unit 30 in cooperation with the program and the arithmetic device.
  • control unit 30 controls the rotational speed of the electric motor 11 based on PID control in S103, and generates compressed air having a preset target discharge pressure.
  • the control unit 30 compares the detected temperature of the discharge temperature sensor Ta with the threshold temperature, and if the detected temperature exceeds the threshold (S105: Y), the fan device 19 and the fan device 3b are driven.
  • the number of rotations of the fan device is controlled according to the discharge temperature. For example, when the detected temperature of the discharge temperature sensor Ta is 110 ° C., the control unit 30 causes the air cooler 10 and the oil cooler 18 so that the compressed air temperature supplied to the user side of the compressed air becomes about 70 ° C. Controls the amount of cooling air to exchange heat with.
  • the rotation of the fan devices 19 and 3b is stopped (S115).
  • the control unit 30 checks whether the exhaust heat utilization setting set in the memory of the control unit 30 is ON or OFF. If it is ON (S107: Y), the process proceeds to S109, and if it is OFF Advances to (S107: N). When the exhaust heat utilization setting is OFF, all the cooling air (exhaust heat air) discharged from the compressor 1 through the duct 2 is discharged to the outdoors from the duct 2b.
  • the control unit 30 checks whether the temperature detected by the temperature sensor Tb in the room B is equal to or higher than the room B set temperature. If the detected temperature is equal to or higher than the room B set temperature (S109: Y), the process proceeds to S111. If the temperature is lower than the room B set temperature (S109: N), the process proceeds to S113.
  • the control unit 30 determines the number of rotations of the fan device 3a and the fan device 3b according to the difference between the detected temperature of the temperature sensor Tb of the chamber B and the set temperature of the chamber B, and becomes the number of rotations.
  • the drive of the fan device 3a is started, and the drive of the fan device 3b is limited.
  • the control unit 30 sets the rotation speed of the fan device 3a to the maximum rotation and stops the rotation of the fan device 3b.
  • all the exhaust hot air discharged from the compressor 1 to the duct 2 is caused to flow to the duct 2a.
  • the amount of exhaust heat air flowing through the duct 2a is determined by PID control according to the difference between the detection value of the temperature sensor Tb and the set temperature of the B room, so that if the difference is large, the fan devices 2a and 2b If the fan device 2a has a high rotational speed ratio and the difference is small, the rotational speed ratio of the fan device 2b becomes high. In some cases, the rotation speed ratio is the same.
  • the control unit 30 decreases the rotation speed of the fan device 3a (including stoppage), and conversely, the fan device 3b.
  • the rotation speed is increased (including start-up).
  • the sum of the air volumes generated by the fan devices 2a and 2b is equal to or greater than the air volume generated by the fan device 19.
  • the control unit 30 executes the process of S111 or S113 and then returns to S105 again to check the rotational speed of the fan device 19, and then sequentially executes the above-described processes. Therefore, the cooling performance of the compressor 1 is not affected, and the heat energy of the exhaust hot air can be used efficiently.
  • the first embodiment it is possible to dynamically control the amount of exhausted hot air used by the compressor 1. Furthermore, it is possible to efficiently use thermal energy without affecting the cooling performance of the compressor 1.
  • the balance of the air volume generated by the fan devices 3a and 3b is changed according to the detected temperature value of the B room.
  • Thermal energy can be used flexibly. For example, when the cooling demand of the compressor 1 decreases and the air volume generated by the fan device 19 is small, all the exhaust hot air in the duct 2a circulates to the B room side. Tends to be relatively maintained.
  • cooling air for cooling the compressor 1 is generated by a plurality of fan devices including the fan device 19 and the fan device 3a (and / or 3b). Therefore, the output and size of the fan device 19 mounted on the compressor 1 can be reduced. Reduction in power of the fan device 19 can be expected for a decrease in output, and downsizing of the compressor 1 can be expected for a reduction in size.
  • Example 1 was demonstrated, this invention is not limited to the said various structure and operation
  • the first embodiment has been described on the assumption that the air volumes generated by the fan devices 19, 3 a, and 3 b are equal, a combination of different maximum air volumes generated may be used.
  • a combination in which the maximum air volume of the fan device 3b is smaller than the maximum air volume of the fan device 3a is also possible.
  • the maximum amount of exhaust heat air required at the maximum on the use side of the exhaust heat air (for example, the space volume of the room B) may not be required.
  • the fan device 19 is variable speed by inverter control, but may be a constant speed fan device. This is because an efficient use effect of the exhaust hot air can be expected by the variable speed control of the fan devices 3a and 3b. Furthermore, it is possible to expect the above-mentioned effect by combining the fan device 19 with a variable speed and the fan device 3a or 3b with a variable speed.
  • the fan devices 2a and 2b have been described as PID control according to the temperature detected by the temperature sensor Tb. However, ON / OFF control based on the set temperature is also possible.
  • the duct 2 is branched into two, and one of the discharge destinations is outdoor and the other is indoor.
  • the number of branching of the duct is not limited to this, and both of the discharge destinations are indoors. There may be.
  • the discharge destination of the duct 2b is not necessarily indoor, and the duct 2b may pass through the B room, the discharge destination may be outdoor, and heat may be used in the B room as radiant heat of the duct 2b itself. .
  • Example 1 was the structure which controls the amount of exhaust heat air which flows through the ducts 2a and 2b which are each branch path of the duct 2 with the fan apparatuses 3a and 3b.
  • the second embodiment is different from the first embodiment in that a fan device controls the amount of exhaust heat airflow in one branch path, and that a dedicated fan device is not used to control the amount of exhaust heat airflow in another branch path.
  • the second embodiment is different from the first embodiment in that one or both of the branch paths are provided with a control device (shielding plate 7) that makes the opening degree of the flow path variable.
  • FIG. 4 schematically shows the configuration of the compressor system 200 according to the second embodiment.
  • FIG. 4 (a) shows that a dedicated fan device 3a for controlling the exhaust heat flow rate of the duct 2a communicating with the B room is not provided, and a dedicated fan device for controlling the exhaust heat flow rate of the duct 2b communicating with the outside is not arranged. It is the structure to arrange.
  • the shielding plate 7 is disposed in the duct 2b as a control device that controls the opening degree of the flow path in the duct and can control the amount of exhausted hot air flowing.
  • the shielding plate 7 includes an electric drive device (such as a motor or a solenoid) (not shown), and is configured to change the opening of the duct 2b flow path by making the tilt angle adjustable.
  • the opening degree of the shielding plate 7 is dynamically controlled by the control unit 30 of the compressor 1 (or the control device 65 that enables external communication). For example, when all the exhaust hot air in the duct 2 is circulated to the B room side, the shielding plate 7 is fully closed. On the other hand, when discharging all outdoors, the shielding plate 7 is fully opened.
  • the opening degree of the shielding board 7 shall be 50%.
  • the relationship between the flow rate of the duct 2b and the opening is a design value determined by the duct diameter, the duct length, the air volume of the fan device 3a, and the like.
  • FIG. 4B conversely to FIG. 4A, a configuration example in which the shielding plate 7 is disposed in the duct 2a communicating with the B room side and the fan device 3b is disposed on the duct 2b side communicating with the outdoors. It is.
  • the fan device 3b and the shielding plate 7 are operated in reverse to the relationship between the fan device 3a and the shielding plate 7 in FIG.
  • the second embodiment it is possible to reduce the number of dedicated fan devices (3a or 3b) that mainly control the exhaust heat flow rate of the duct 2.
  • the opening degree of the shielding plate 7 is a dynamic configuration using a driving device, but it can also be a separately excited type that is tilted by the wind of exhaust heat air in the duct.
  • the structure which applies the shielding board 7 to the duct 2a, 2b of Example 1, or both is naturally possible.
  • the fan devices 3a and 3b may be set at a constant speed, and the exhaust hot air flow rate of the ducts 2a and 2b may be controlled by adjusting the opening degree by the shielding plate 7.
  • Pressure sensor 30 ... Control part, 31 ... Main motor inverter, 40a, 40b ... Intake port, 45a, 45b ... exhaust port, 50 ... package housing, 60/61 ... network, 65 ... control device, 66 ... terminal, 67 ... portable terminal, 100/200 ... compressor system, A ... compressor room, B ... B room, Ta ... discharge temperature sensor, Tb / Tc ... temperature sensor, F1 / F2 ... exhaust hot air

Abstract

The purpose of the present invention is to efficiently use exhaust heat without affecting the operating efficiency of a compressor. Provided is a compressor system comprising the following: a compressor including a compressor body, a drive source to drive the compressor body, a heat exchanger that exchanges heat with compressed air discharged by the compressor body, and a fan device that generates cooling air that flows to the heat exchanger; and an exhaust passage through which flows exhaust that has exchanged heat with the heat exchanger and that has been scavenged to the outside of the compressor. The exhaust passage branches into at least two passages with a first branched passage being connected to a first space, and a second branched passage being connected to a second space differing from the first space. The compressor system is provided with the following: an exhaust control device that is disposed in at least one of the first branched passage and the second branched passage, and causes cooling air to flow in the exhaust passage; a temperature sensor that detects the temperature of the first space; and a control device that controls the temperature of the compressed air by a fan device so as to be a prescribed temperature, and controls the amount of exhaust passing through the first branched passage by the exhaust control device on the basis of the temperature detected by the temperature sensor.

Description

圧縮機システムCompressor system
 本発明は圧縮機システムに係り、気体を圧縮する流体機械からの排風熱を利用する圧縮機システムに関する The present invention relates to a compressor system, and relates to a compressor system that uses exhaust heat from a fluid machine that compresses gas.
 流体機械システムとしては、気体を圧縮して圧縮気体を吐き出す圧縮機や圧縮気体を膨張して回転動力等を生成する膨張機等が知られている。 As a fluid mechanical system, a compressor that compresses gas and discharges compressed gas, an expander that expands compressed gas to generate rotational power, and the like are known.
 例えば、気体圧縮機は、空気などの気体を圧縮する圧縮機本体、圧縮により発生する熱を吸収する冷却系統、圧縮機の駆動力源であるモータなどにより構成される。また、気体圧縮機では、モータ入力電力を100%とすると、冷却系統において吸収される熱量はそのうちの90%以上にも相当し、通常、その熱量は外気に放出され、非常に多くのエネルギが圧縮機本体や気体圧縮機の外部に放出されている。エネルギ効率を高めるために、圧縮機本体やモータの高効率化が推進されているが、依然として放出される熱エネルギの割合は多く、排熱の有効利用が望まれる。 For example, a gas compressor includes a compressor body that compresses a gas such as air, a cooling system that absorbs heat generated by compression, a motor that is a driving force source of the compressor, and the like. Also, in a gas compressor, if the motor input power is 100%, the amount of heat absorbed in the cooling system is equivalent to 90% or more of that, and usually the amount of heat is released to the outside air, and a great deal of energy is consumed. It is discharged to the outside of the compressor body and gas compressor. In order to increase energy efficiency, higher efficiency of the compressor body and the motor is being promoted, but the ratio of the released heat energy is still large, and effective use of exhaust heat is desired.
 気体圧縮機からの排熱の有効利用に関しては、例えば、暖房への利用、温水活用、ボイラの給水予熱への活用などがある。例えば、特許文献1は、蒸気を用いて圧縮機を駆動すると共に、圧縮機で発生する熱を、ボイラに供給する水(給水)の予熱に利用して、ボイラでの消費エネルギを削減させる技術を開示する。 The effective use of exhaust heat from the gas compressor includes, for example, utilization for heating, utilization of hot water, utilization for preheating boiler water. For example, Patent Document 1 uses a steam to drive a compressor and uses heat generated by the compressor to preheat water (feed water) supplied to the boiler to reduce energy consumption in the boiler. Is disclosed.
 また、特許文献2は、本体ケース内に圧縮機本体と、クーラと、クーラ用ファンとを収容した空気圧縮機において、クーラに送風されてこれを通過することで温度上昇した空気を本体ケースの上方に導く排気ダクトを有し、この排気ダクトの側面外壁の開口を開閉自在に覆う扉を備える構成を開示する。そして、寒冷時には扉を開けることで空気圧縮機を暖房装置として利用する技術を開示する。 Further, Patent Document 2 discloses that in an air compressor in which a main body case, a compressor main body, a cooler, and a cooler fan are accommodated, air that is blown through the cooler and passes through the air is heated in the main body case. A configuration is disclosed that includes an exhaust duct that leads upward, and includes a door that covers the opening of the side wall of the exhaust duct so as to be freely opened and closed. And the technique of utilizing an air compressor as a heating apparatus by opening a door at the time of cold is disclosed.
特許第4329875号公報Japanese Patent No. 4329875 国際公開WO2012/026317A1International Publication WO2012 / 026317A1
 ここで、圧縮機から外部に放出される温風の熱は、例えば60℃以上の高温に達するのが一般的である。特許文献2のものは圧縮機排熱を温風として活用するものであるが、圧縮機本体等を格納する本体ケース内の温風流路途中の側面外壁の開口から圧縮機内部で発生した排熱を本体ケース外部に開放する構成を開示するに留まる。従って、当該開口から放出される温風の温度は60℃以上と高温であり、このような高温排熱を直接暖房として利用するには、圧縮機の設置環境が当該高温の排熱風によって適温まで十分に上昇し得る空間等に制限される。即ち吐出排熱風の風量に対して、吐出先の空間が狭小である場合には直接温風を当該空間に吐出すことはできない。これを暖房熱として適温にまで低下させて利用するとすれば、排熱利用効率が著しく低下するという課題が残る。 Here, the heat of the warm air discharged from the compressor to the outside generally reaches a high temperature of, for example, 60 ° C. or more. The thing of patent document 2 utilizes a compressor exhaust heat as a warm air, but the exhaust heat which generate | occur | produced inside the compressor from the opening of the side wall in the middle of the warm air flow path in the main body case which stores a compressor main body etc. However, it is only disclosed that the structure is opened to the outside of the body case. Therefore, the temperature of the hot air discharged from the opening is as high as 60 ° C. or higher, and in order to use such high-temperature exhaust heat directly as heating, the installation environment of the compressor is adjusted to an appropriate temperature by the high-temperature exhaust hot air. It is limited to a space that can sufficiently rise. That is, when the discharge destination space is narrower than the amount of discharged exhaust hot air, hot air cannot be directly discharged into the space. If this is used as heating heat by reducing it to an appropriate temperature, there remains a problem that the exhaust heat utilization efficiency is significantly reduced.
 更に、特許文献2は、排熱の利用側から排熱量を制御することについて開示が無い。即ち特許文献2は、例えば、排熱風の利用先でより熱量を必要とする場合、その分、熱の発生源である圧縮機をより稼働させる必要があるが、より排熱風(熱エネルギ)を生成するために圧縮機の稼働エネルギを増加させることは排熱利用の思想からは離れるものである。同様に、圧縮機の稼働エネルギに影響を与えないようにする場合には、排熱利用先の熱需要に柔軟に対応することはできない。
  圧縮機の稼働効率に影響を与えずに、排風熱を効率よく利用する技術が望まれる。
Furthermore, Patent Document 2 does not disclose controlling the amount of exhaust heat from the exhaust heat utilization side. That is, in Patent Document 2, for example, when more heat is required at the use destination of the exhaust hot air, it is necessary to operate the compressor that is the source of heat accordingly, but more exhaust hot air (thermal energy) is required. Increasing the operating energy of the compressor to produce is far from the idea of using exhaust heat. Similarly, when the operating energy of the compressor is not affected, it is not possible to flexibly meet the heat demand of the waste heat utilization destination.
A technique that efficiently uses exhaust heat without affecting the operating efficiency of the compressor is desired.
 上記課題を解決するために、例えば、特許請求の範囲に記載の構成を適用する。即ち圧縮機本体と、これを駆動する駆動源と、前記圧縮機本体が吐き出す圧縮気体と熱交換する熱交換器と、前記熱交換器に流れる冷却風を生成するファン装置とを備える圧縮機と、前記熱交換器と熱交換し、前記圧縮機から外部に掃気された排風が流通する排風路とを有する圧縮機システムであって、前記排風路が少なくとも2つに分岐して、第1の分岐路が第1空間と、第2の分岐路が該第1空間とは異なる第2空間とに連通するものであり、前記第1の分岐路及び第2の分岐路の少なくともいずれかに配置して、前記排風路に前記冷却風を流通させる排風制御装置と、前記第1の空間の温度を検出する温度センサと、前記ファン装置により所定温度の前記圧縮気体の温度を所定温度に制御するとともに、前記温度センサの検出温度に基づいて、前記排風制御装置によって前記第1の分岐路を流通する排風の量を制御する制御装置とを備える圧縮機システム。 In order to solve the above problems, for example, the configuration described in the claims is applied. That is, a compressor comprising a compressor body, a drive source for driving the compressor, a heat exchanger for exchanging heat with the compressed gas discharged from the compressor body, and a fan device for generating cooling air flowing in the heat exchanger; , A compressor system having a heat exchange with the heat exchanger, and an exhaust passage through which exhausted air scavenged from the compressor flows, wherein the exhaust passage is branched into at least two, The first branch path communicates with the first space and the second branch path communicates with a second space different from the first space, and at least one of the first branch path and the second branch path The exhaust gas control device that circulates the cooling air through the exhaust air passage, the temperature sensor that detects the temperature of the first space, and the temperature of the compressed gas at a predetermined temperature by the fan device. Control to a predetermined temperature and based on the temperature detected by the temperature sensor , Compressor system and a control device for controlling the amount of exhaust air flowing through the first branch passage by the exhaust air control device.
 本発明によれば、圧縮機の稼働効率に影響を与えずに、排風熱を効率よく利用できる。本発明の他の課題、構成、効果は、以下の記載から明らかになる。 According to the present invention, exhaust heat can be used efficiently without affecting the operating efficiency of the compressor. Other problems, configurations, and effects of the present invention will become apparent from the following description.
本発明を適用した実施例1による圧縮機システムの構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the compressor system by Example 1 to which this invention is applied. 実施例1による圧縮機の構成を模式的に示すブロック図である。1 is a block diagram schematically illustrating a configuration of a compressor according to Embodiment 1. FIG. 実施例1による圧縮機システムの処理を示すフロー図である。It is a flowchart which shows the process of the compressor system by Example 1. FIG. 本発明を適用した実施例2による圧縮機システムの構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the compressor system by Example 2 to which this invention is applied.
 以下、本発明の気体圧縮機システムの実施例を、図面を用いて説明する。 Hereinafter, embodiments of the gas compressor system of the present invention will be described with reference to the drawings.
 図1に、本発明を適用した気体圧縮機システム100の構成例を模式的に示す。気体圧縮機システム1は、圧縮機1と、圧縮機1の冷却風排気口と接続するダクト2と、ダクト2に、圧縮機1の排気口を介して吐き出された排熱風を流通させる複数のファン装置3と、温度センサTa、Tb及びTcとを備える。 FIG. 1 schematically shows a configuration example of a gas compressor system 100 to which the present invention is applied. The gas compressor system 1 includes a compressor 1, a duct 2 connected to a cooling air exhaust port of the compressor 1, and a plurality of exhaust hot air discharged through the exhaust port of the compressor 1 to the duct 2. A fan device 3 and temperature sensors Ta, Tb, and Tc are provided.
 圧縮機1は、容積型やターボ型の圧縮機構を有する圧縮機本体1を有し、吸い込んだ空気等を圧縮して高圧の圧縮空気を吐き出す。ダクト2は、上流側が圧縮機1の排気口と接続され、下流側で複数に分岐するダクト2a及びダクト2bを有する。ダクト2bの下流側出口は、圧縮機1を設置する圧縮室Aと異なる他の空間(本例では屋外)と連通する。ダクト2aの下流側出口は、圧縮機室A及び屋外とも異なる他の空間(本例では、圧縮機室Aとは空間的に仕切られた室B)と連通する。即ち室Bは、ダクト2bを介して圧縮機1と連通するとも言える空間であり、圧縮室Aと、室Bとは位置として隣接する空間であってもよいし、離間する空間であってもよい。 The compressor 1 has a compressor main body 1 having a displacement type or turbo type compression mechanism, and compresses the sucked air or the like to discharge high-pressure compressed air. The duct 2 includes a duct 2 a and a duct 2 b that are connected to the exhaust port of the compressor 1 on the upstream side and branch into a plurality on the downstream side. The downstream outlet of the duct 2b communicates with another space (in this example, outdoors) different from the compression chamber A in which the compressor 1 is installed. The downstream outlet of the duct 2a communicates with the compressor room A and another space different from the outside (in this example, a room B spatially partitioned from the compressor room A). That is, the chamber B is a space that can be said to communicate with the compressor 1 via the duct 2b, and the compression chamber A and the chamber B may be adjacent spaces as positions, or may be separated spaces. Good.
 ダクト2a及び2bは、その内部に、排熱風を流す為のファン装置3a及び3bを有する。ファン装置3a及び3bは、ターボ型やプロペラ型の翼と、これを回転駆動する電動機とからなる。ファン装置3a及び3bは、ダクトファンインバータ4aや4bを介して圧縮機1の制御部30と接続され、その駆動が制御されるようになっている。なお、ファン装置3a及び3b回転型のファンに限定するものではなく又その配置場所もダクト2aや2bの内部に限らず、出口の外側(屋外側や室B側)に配置してもよい。また、ファン装置3a及び3bは回転型のファンに限定するものではない。 The ducts 2a and 2b have fan devices 3a and 3b for flowing exhaust hot air therein. The fan devices 3a and 3b include turbo type or propeller type blades and an electric motor that rotationally drives the blades. The fan devices 3a and 3b are connected to the control unit 30 of the compressor 1 via duct fan inverters 4a and 4b, and their driving is controlled. The fan devices 3a and 3b are not limited to the rotary type fans, and the arrangement location is not limited to the inside of the ducts 2a and 2b, but may be arranged outside the outlet (outdoor side or room B side). Further, the fan devices 3a and 3b are not limited to rotary fans.
 温度センサTaは、圧縮機1が生成し、吐き出す圧縮空気の温度を検出する。検出値は圧縮機1の種々の制御に利用される。温度センサTbは、室Bに配置して室Bの室温を検出する温度検出装置である。温度センサTbは、有線又は無線の通信線で圧縮機1の制御部30等と接続され、検出した室Bの温度を送信するようになっている。温度センサTcは、圧縮機室Aに配置し、圧縮機室Aの室温を検出する温度検出装置である。また、ファン装置4は、圧縮機室Aから他の空間(本例では、屋外とする。)に室内空気を排気する装置である。 The temperature sensor Ta detects the temperature of the compressed air generated and discharged by the compressor 1. The detected value is used for various controls of the compressor 1. The temperature sensor Tb is a temperature detection device that is disposed in the chamber B and detects the room temperature of the chamber B. The temperature sensor Tb is connected to the control unit 30 or the like of the compressor 1 via a wired or wireless communication line, and transmits the detected temperature of the room B. The temperature sensor Tc is a temperature detection device that is disposed in the compressor chamber A and detects the room temperature of the compressor chamber A. The fan device 4 is a device that exhausts room air from the compressor chamber A to another space (in this example, the outside).
 図1において、圧縮機室Aには、他の空間(本例では、屋外とする。)から、圧縮室Aに当該他の空間の気体(本例では、外気とする。)が流入する。この流入は、圧縮機1の駆動吸気によって圧縮機Aが負圧となることにより流入するものであるが、不図示の吸気ファン等を配置して屋外から圧縮室Aに外気を流入させるようにしてもよい。 In FIG. 1, the gas in the other space (in this example, outside air) flows into the compressor chamber A from the other space (in this example, the outside). This inflow is caused by the compressor A becoming negative pressure due to the drive intake air of the compressor 1, but an unillustrated intake fan or the like is disposed so that the outside air flows into the compression chamber A from the outside. May be.
 圧縮機1は、吸い込んだ外気を圧縮機本体12で圧縮し、これを吐出配管を介して圧縮機1外部に吐出す。排熱風F1は、圧縮によって高温となった吐出圧縮空気と、熱交換器及びファン装置10を介して熱交換した排熱風であり、圧縮機1の排気口からダクト2に流れる(F1等)。 The compressor 1 compresses the sucked outside air by the compressor main body 12 and discharges it to the outside of the compressor 1 through a discharge pipe. The exhaust hot air F <b> 1 is exhaust hot air that has undergone heat exchange with the discharged compressed air that has become hot due to compression through the heat exchanger and the fan device 10, and flows from the exhaust port of the compressor 1 to the duct 2 (F <b> 1, etc.).
 また、排熱風F2は、圧縮機1の制御部30や(ドライヤを装備する場合にはそれからも)の排熱風であり、ダクト2と接続した排気口とは異なる排気口から圧縮機1の外部に吐き出される排熱風である。排熱風F2は、主に圧縮機室Aの排気を行うファン装置4によって、外部から圧縮室Aに流入した外気の一部とともに屋外に排出されるようになっている。本実施例では、圧縮機室Aの室温が吸気先である屋外温度よりも高くなるように、温度センサTcの検出値に基づいてファン装置4の回転数を制御(起動・停止を含む。)するようになっている。即ち屋外温度が低い場合には、圧縮機1の圧縮空気からドレンが発生する虞があることから、ファン装置4の駆動を低減させ、排熱風F2によって圧縮機室Aの温度が高くなるように(例えば、屋外温度に対して+5℃程度等)する。逆に、屋外温度が高い場合には、機器への熱影響や使用者側に提供する吐出圧縮空気が十分に冷却されない虞があることからファン装置4の駆動を増加させ、排熱風F2によって圧縮機室Aの室温を低くするようになっている。本実施例では、温度センサTcの検出値に基づくファン装置4の制御を制御部30等が行うようになっている。 Further, the exhaust hot air F2 is exhaust heat air from the control unit 30 of the compressor 1 (or from the case where a dryer is installed), and from the exhaust port different from the exhaust port connected to the duct 2 to the outside of the compressor 1. It is the exhaust heat wind that is exhaled. The exhaust hot air F2 is discharged to the outside together with a part of the outside air flowing into the compression chamber A from the outside by the fan device 4 that mainly exhausts the compressor chamber A. In the present embodiment, the rotational speed of the fan device 4 is controlled based on the detected value of the temperature sensor Tc (including start / stop) so that the room temperature of the compressor room A becomes higher than the outdoor temperature that is the intake destination. It is supposed to be. That is, when the outdoor temperature is low, there is a possibility that drain is generated from the compressed air of the compressor 1, so that the drive of the fan device 4 is reduced and the temperature of the compressor chamber A is increased by the exhaust hot air F2. (For example, about + 5 ° C. with respect to the outdoor temperature). On the contrary, when the outdoor temperature is high, there is a risk that the compressed air supplied to the user side and the heat effect on the equipment may not be sufficiently cooled, so the drive of the fan device 4 is increased and compressed by the exhaust hot air F2. The room temperature of the machine room A is lowered. In the present embodiment, the control unit 30 or the like controls the fan device 4 based on the detection value of the temperature sensor Tc.
 図2に、圧縮機1の構成を模式的に示す。
  圧縮機1は、圧縮作動室に潤滑油を供給して圧縮空気を生成するスクリュー圧縮機である。なお、圧縮機1はこれに限定するものではない。圧縮媒体として空気以外の気体を用いる圧縮機であってもよいし、潤滑油以外に水等を用いる給液式であってもよいし、液体を使用しない無給液式であってもよい。更に、圧縮空気を生成する圧縮機本体12が複数(多段構成を含む。)であってもよい。
FIG. 2 schematically shows the configuration of the compressor 1.
The compressor 1 is a screw compressor that supplies compressed oil to a compression working chamber to generate compressed air. The compressor 1 is not limited to this. A compressor that uses a gas other than air as the compression medium may be used, a liquid supply type that uses water or the like in addition to the lubricating oil, or a non-supply type that does not use liquid. Furthermore, the compressor main body 12 which produces | generates compressed air may be plural (a multistage structure is included).
 圧縮機1は、空気を圧縮する圧縮機構を有する圧縮機本体12、駆動源としての主モータ11、主モータ11の電力周波数を変換する主モータインバータ31、吐出圧縮空気が流通する吐出配管15a、15b、15c、これら吐出配管系統上に配置する気液分離機21、エアクーラ10、オイルクーラ18、これらクーラに供給する冷却風を生成するファン装置19、圧縮機1の制御を行う制御部30及びこれらの機器を格納するパッケージ筐体50を主に備える。 The compressor 1 includes a compressor body 12 having a compression mechanism for compressing air, a main motor 11 as a drive source, a main motor inverter 31 that converts the power frequency of the main motor 11, a discharge pipe 15a through which discharged compressed air flows, 15b, 15c, a gas-liquid separator 21 arranged on these discharge piping systems, an air cooler 10, an oil cooler 18, a fan device 19 for generating cooling air to be supplied to these coolers, a control unit 30 for controlling the compressor 1, and A package housing 50 for storing these devices is mainly provided.
 制御部30は、圧縮機本体が吐き出す圧縮空気が流通する吐出配管15上に配置して、圧縮空気の温度を検出する吐出温度センサTaや圧力センサ25からの検出値に応じて、所定圧力及び温度の圧縮空気を生成したり、効率運転の制御をしたりするように主モータ11やファン装置19等を制御するようになっている。なお、吐出温度センサTaは、吐出配管15の任意の場所に設置することができる。 The control unit 30 is disposed on the discharge pipe 15 through which the compressed air discharged from the compressor body flows, and according to the detection value from the discharge temperature sensor Ta and the pressure sensor 25 that detects the temperature of the compressed air, The main motor 11, the fan device 19, and the like are controlled so as to generate compressed air at a temperature and to control the efficient operation. In addition, the discharge temperature sensor Ta can be installed in an arbitrary place of the discharge pipe 15.
 制御部30は、吐出温度センサTaが検出する吐出温度に応じて、ファン用インバータ20を介してファン装置19の運転を制御(増速・減速・停止等)したり、切替弁を切り替えたりすることでオイルクーラ18に流入する潤滑油量を制御することにより、使用者側に提供する圧縮空気を所定の温度範囲に維持するようになっている。 The control unit 30 controls the operation of the fan device 19 (acceleration, deceleration, stop, etc.) or switches the switching valve via the fan inverter 20 according to the discharge temperature detected by the discharge temperature sensor Ta. Thus, by controlling the amount of lubricating oil flowing into the oil cooler 18, the compressed air provided to the user side is maintained in a predetermined temperature range.
 制御部30が実行する効率運転の制御例としては、例えば、起動後、制御部30に入力設定された目標圧力に達するまでは、圧力センサ25の検出値に基づいてP、PI乃至PID制御を行い、主モータインバータ31からの出力周波数を変更させることで主モータ11の回転数を制御する制御である。 As an example of control of the efficient operation performed by the control unit 30, for example, after starting, P, PI or PID control is performed based on the detection value of the pressure sensor 25 until the target pressure input and set in the control unit 30 is reached. This is control for controlling the rotational speed of the main motor 11 by changing the output frequency from the main motor inverter 31.
 また他の制御例としては、PID等の制御運転により吐出圧力が目標圧力に達した後、圧縮空気の使用量が減少する等により、これよりも高い所定の上限圧力に達すると、主モータインバータ31の回転数を低下させて動力の低減を図る無負荷運転を制御することが上げられる。無負荷運転では、主モータ11の回転数を低下させるのみならず、吸込絞り弁14を「閉」として吸気量を減らす、放気弁17を「開」として圧縮空気を吐出配管系から放気する等を行う。 As another control example, when the discharge pressure reaches the target pressure by the control operation such as PID, and the amount of compressed air used decreases, the main motor inverter It is possible to control the no-load operation for reducing the power by reducing the rotational speed of 31. In the no-load operation, not only the rotation speed of the main motor 11 is reduced, but also the suction throttle valve 14 is “closed” to reduce the intake amount, and the air release valve 17 is “open” to release the compressed air from the discharge piping system. To do.
 更に制御例を上げれば、無負荷運転時に、徐々に圧縮空気の仕様が増加する等して目標圧力以上の所定の圧力(下限圧力)まで吐出圧力が低下すると、制御部30は、負荷運転に切り替える。負荷運転とは、主モータ11の回転数が低下している状態で、吸込絞り弁14を「開」及び/又は放気弁を「閉」とすることで、再昇圧を行う運転である。負荷運転によって吐出圧力が再度上限圧力に達すると、制御部30は、再度無負荷運転に切り替えるようになっている。このように、目標圧力より高い圧力帯域で圧縮空気の消費量が少ない状況では、制御部30は、無負荷運転と負荷運転を繰り返し、圧縮機1の動力を低減するようになっている。
  なお、圧縮空気の消費量が増加し、吐出圧力が無負荷運転から負荷運転に切り替える下限圧力を下回る場合には、制御部30はPID等の制御による運転に切り替えるようになっている。
If the control example is further increased, when the discharge pressure decreases to a predetermined pressure (lower limit pressure) that is equal to or higher than the target pressure due to a gradual increase in compressed air specifications during no-load operation, the control unit 30 performs load operation. Switch. The load operation is an operation in which the pressure is increased again by setting the suction throttle valve 14 to “open” and / or the discharge valve to “close” in a state where the rotation speed of the main motor 11 is decreasing. When the discharge pressure reaches the upper limit pressure again by the load operation, the control unit 30 switches to the no-load operation again. As described above, in a situation where the amount of compressed air consumption is small in a pressure band higher than the target pressure, the control unit 30 repeats the no-load operation and the load operation to reduce the power of the compressor 1.
In addition, when the consumption of compressed air increases and the discharge pressure falls below the lower limit pressure for switching from no-load operation to load operation, the control unit 30 switches to operation by control such as PID.
 また、制御部30は、上述の温度センサTb、Tc、ファン装置3a、3bと有線又は無線による通信線を介して接続し、これらとの通信及び制御を行うようになっている。 Further, the control unit 30 is connected to the above-described temperature sensors Tb and Tc and the fan devices 3a and 3b via a wired or wireless communication line, and performs communication and control with these.
 なお、温度センサTbやファン装置3a等を、制御部30以外に、他の制御系と接続し、制御するように構成してもよい。例えば、温度センサやファン装置を、有線・無線の通信線(ネットワーク)60を介して遠隔の制御装置65と接続し、制御装置65やこれと通信可能に有線・無線の通信線61を介して接続された端末66や可搬端末67からの入力によって遠隔から制御するように構成してもよい。また、吐出温度センサTaの検出値も、制御部30を介して制御装置65に出力するようにしてもよい。 It should be noted that the temperature sensor Tb, the fan device 3a, and the like may be connected to and controlled by another control system other than the control unit 30. For example, a temperature sensor or a fan device is connected to a remote control device 65 via a wired / wireless communication line (network) 60, and can be communicated with the control device 65 or a wired / wireless communication line 61. You may comprise so that it may control remotely by the input from the connected terminal 66 or the portable terminal 67. FIG. Further, the detection value of the discharge temperature sensor Ta may also be output to the control device 65 via the control unit 30.
 パッケージ筐体50は、外部からの吸気用として、吸気口40a、40bを備える。吸気口40aは、主に、主モータ11、圧縮機本体12等の駆動系の領域に流す外気を取り入れる開口であり、吸気口40bは、エアクーラ10やオイルクーラ11といった冷却器系統の領域に主に外気を取り入れる開口である。また、パッケージ筐体50は、例えば、上面に排気口45a及び45bを備える。排気口45aは、吸気口40aから吸気され、主モータ11や圧縮機本体12等の駆動系を冷却した気流が主として排気される排気口である。本実施例において、排気口45bは、ダクト2と接続する。排気口45bは、吸気口40bから吸気され、エアクーラ10等の冷却器系統を冷却した気流が主として排気される排気口である。本実施例において、排気口45aは、ダクト2とは接続せずに、圧縮機室A(図1参照)に排熱風を掃気するようになっている。制御部30等の制御系は、外部から直接吸気する独立した吸気口として構成し、排気口45aから掃気するようにしてもよい。また、ドライヤを配置する場合には、これの吸排気系も独立にしてもよいし、一部供用としてもよい。 The package housing 50 includes intake ports 40a and 40b for intake from the outside. The intake port 40 a is an opening that mainly takes in outside air flowing into the drive system region such as the main motor 11 and the compressor main body 12, and the intake port 40 b is mainly in the region of the cooler system such as the air cooler 10 and the oil cooler 11. It is an opening for taking in outside air. The package housing 50 includes, for example, exhaust ports 45a and 45b on the upper surface. The exhaust port 45a is an exhaust port through which an airflow that is sucked from the intake port 40a and that cools the drive system such as the main motor 11 and the compressor body 12 is mainly exhausted. In the present embodiment, the exhaust port 45 b is connected to the duct 2. The exhaust port 45b is an exhaust port through which an airflow that is sucked from the intake port 40b and has cooled a cooler system such as the air cooler 10 is mainly exhausted. In the present embodiment, the exhaust port 45a is not connected to the duct 2 and scavenges exhaust hot air into the compressor chamber A (see FIG. 1). The control system such as the control unit 30 may be configured as an independent intake port that directly intakes air from outside, and may be scavenged from the exhaust port 45a. When a dryer is disposed, the intake / exhaust system thereof may be independent or may be partially used.
 なお、これら吸排気口40a-45a間及び40b-45bの気流は、主にファン装置19、やファン装置3a・3bの駆動によって生成されるものである。また、主モータ11に自励(或いは他励)ファンを備える場合には、これも気流発生の要素となり得る。 Note that the airflow between the intake / exhaust ports 40a-45a and 40b-45b is mainly generated by driving the fan device 19 and the fan devices 3a and 3b. Further, when the main motor 11 is provided with a self-excited (or separately excited) fan, this can also be an element of airflow generation.
 このように構成した圧縮機1の動作は、以下となる。 The operation of the compressor 1 thus configured is as follows.
 圧縮機本体1は、パッケージ筐体の一部に開口する吸気口40aから吸気配管13aを介して外気を吸気する。吸気された空気は、エアフィルタ13bを介して圧縮機本体の吸気部に流れ込み、吸気量を制御する吸込絞り弁14を介して圧縮作動室に流入する。圧縮機本体1は、スクリューロータの歯溝及び圧縮本体のボア壁面によって形成された圧縮作動室で、供給された潤滑油とともに作動室の容積を小にすることで空気を圧縮し、やがて高圧・高温(例えば、110℃程度)の混合圧縮空気を吐出配管15aに吐き出すようになっている。 The compressor main body 1 sucks outside air through an intake pipe 13a from an intake port 40a opened in a part of the package housing. The sucked air flows into the intake portion of the compressor body through the air filter 13b, and flows into the compression working chamber through the suction throttle valve 14 that controls the intake amount. The compressor main body 1 is a compression working chamber formed by the tooth space of the screw rotor and the bore wall surface of the compression main body, and compresses air by reducing the volume of the working chamber together with the supplied lubricating oil. High-temperature (for example, about 110 ° C.) mixed compressed air is discharged to the discharge pipe 15a.
 吐出配管15aは、遠心分離型或いは衝突型の気液分離器21と接続し、この中で、混合圧縮空気が、空気と潤滑油に分離される。分離された圧縮空気は、調圧逆止弁を介して、吐出配管15bに流れる。気液分離器21で分離された潤滑油は、潤滑油配管16aを介して熱交換器から構成されるオイルクーラ18に流れる。 The discharge pipe 15a is connected to a centrifugal or collision type gas-liquid separator 21, in which the mixed compressed air is separated into air and lubricating oil. The separated compressed air flows into the discharge pipe 15b through the pressure regulating check valve. The lubricating oil separated by the gas-liquid separator 21 flows to the oil cooler 18 constituted by a heat exchanger via the lubricating oil pipe 16a.
 吐出配管15bは、熱交換器からなるエアクーラ10と接続し、気液分離器21から流れた圧縮空気は、ファン装置19によって生成された冷却風と熱交換をすることで、所望の温度(例えば、70℃程度)まで冷却され、やがて吐出配管15cを介して、圧縮空気の利用者側に供給されるようになっている。なお、エアクーラ10の上流に、油分を更に除去する二次フィルタが配置する場合もある
 同様に、潤滑油配管16aからオイルクーラ18に流れた潤滑油は、ファン装置19aが生成する冷却風と熱交換を行い、所定の温度まで冷却された後、潤滑油配管16b及びオイルフィルタ22を介して、圧縮機本体12に還流されるようになっている。なお、本実施例では、潤滑油配管16aの途中は切替弁を介して分岐し、一方がオイルクーラ18に連通し、他方が直接潤滑油配管16bと連通するようになっている。冷却を不要とする油温であるときには、制御部30が切替弁を切り替えることで、過冷却を防止する。
The discharge pipe 15b is connected to the air cooler 10 composed of a heat exchanger, and the compressed air flowing from the gas-liquid separator 21 exchanges heat with the cooling air generated by the fan device 19 to obtain a desired temperature (for example, , About 70 ° C.) and is eventually supplied to the user side of the compressed air through the discharge pipe 15c. In addition, a secondary filter that further removes oil may be disposed upstream of the air cooler 10. Similarly, the lubricating oil that has flowed from the lubricating oil pipe 16 a to the oil cooler 18 is cooled by cooling air and heat generated by the fan device 19 a. After the replacement and cooling to a predetermined temperature, the refrigerant is returned to the compressor body 12 through the lubricating oil pipe 16b and the oil filter 22. In the present embodiment, the middle of the lubricating oil pipe 16a branches via a switching valve, one communicating with the oil cooler 18, and the other communicating directly with the lubricating oil pipe 16b. When the oil temperature does not require cooling, the control unit 30 switches over the switching valve to prevent overcooling.
 ファン装置19は、制御部30による温度センサTaが検出する混合圧縮空気の温度に応じた制御指令により、インバータ21の出力周波数が変更され、最終的な吐出し圧縮空気の温度が所定温度(例えば、70℃程度)となるように生成する風量を制御する。 In the fan device 19, the output frequency of the inverter 21 is changed by a control command corresponding to the temperature of the mixed compressed air detected by the temperature sensor Ta by the control unit 30, and the final discharged compressed air temperature is set to a predetermined temperature (for example, , About 70 ° C.).
 次いで、制御部30による温度センサTb、Tcと、ファン装置3a・3bの制御について説明する。 Next, control of the temperature sensors Tb and Tc and the fan devices 3a and 3b by the control unit 30 will be described.
 制御部30は、通常は、ファン装置3bを運転させ、ダクト2を流通する排熱風を全てダクト2bから屋外に掃気する。これに対し、圧縮機1の排熱風F1をB室の暖房等として利用する場合には、屋外に掃気するファン装置3bの運転を制限(減速及び停止を含む。)し、代わりに室Bと連通するダクト2aに排熱風F1を流通させるために、室Bに配置する温度センサTbが所定の温度を検出するまで、ファン装置3aを駆動(起動及び増速を含む。)する。所定の温度とは、例えば、室Bが目標とする室内温度である(以下、「B室設定温度」と称する場合がある。)。B室設定温度は、入力手段によって使用者が任意に設定することができるようになっている。例えば、温度センサTbとともにB室にコントローラとして温度設定装置を実装してもよいし、圧縮機1の制御操作盤から設定できるように温度設定装置を実装してもよいし、管理装置65や端末66から遠隔で設定できるように実装してもよい。 The control unit 30 usually operates the fan device 3b and scavenges all exhaust heat air flowing through the duct 2 from the duct 2b to the outside. On the other hand, when the exhaust hot air F1 of the compressor 1 is used for heating the B room, etc., the operation of the fan device 3b that scavenges outdoors is limited (including deceleration and stop), and instead of the room B. In order to distribute the exhaust hot air F1 to the communicating duct 2a, the fan device 3a is driven (including startup and acceleration) until the temperature sensor Tb disposed in the chamber B detects a predetermined temperature. The predetermined temperature is, for example, a room temperature targeted by the room B (hereinafter, may be referred to as “B room set temperature”). The room B set temperature can be arbitrarily set by the user using the input means. For example, a temperature setting device may be mounted as a controller in the B room together with the temperature sensor Tb, a temperature setting device may be mounted so as to be set from the control operation panel of the compressor 1, or the management device 65 or the terminal You may implement so that it can set remotely from 66.
 やがて制御部30が、温度センサTbから室B設定温度の検出信号を受信すると、ファン装置3aの駆動を制限(減速及び停止を含む。)し、代わりにファン装置3bの駆動(起動及び増速を含む)を再開するようになっている。 Eventually, when the control unit 30 receives the detection signal of the room B set temperature from the temperature sensor Tb, the control of the fan device 3a is limited (including deceleration and stop), and instead, the fan device 3b is driven (starting and speeding up). (Including).
 次いで、本実施例の特徴の一つである、各ファン装置が生成する風量の関係について説明する。本実施例において、圧縮機1のファン装置19の最大風量と、ダクト2のファン装置3a又は3bとの最大風量とが少なくとも同等以上となる仕様となっている。
  更に、圧縮機1のファン装置19と、ダクト用のファン装置3a(及び/又は3b)とによって発生する風量の和が、少なくとも圧縮機1の冷却に十分となる風量を確保できる出力以上の関係で運転するようになっている。
Next, the relationship between the air volume generated by each fan device, which is one of the features of this embodiment, will be described. In this embodiment, the specification is such that the maximum air volume of the fan device 19 of the compressor 1 and the maximum air volume of the fan device 3a or 3b of the duct 2 are at least equal to or greater.
Furthermore, the sum of the air volume generated by the fan device 19 of the compressor 1 and the fan device 3a (and / or 3b) for the duct is more than an output that can secure at least an air volume sufficient for cooling the compressor 1. It is supposed to drive in.
 つまり、ダクト2aに排熱風F1を流通させないとき、圧縮機1の冷却性能を確保する為にファン装置19の排熱風F1をファン装置3bによって全て屋外に排気する必要があることから、ファン装置3bは、ファン装置19の最大風量と同等以上の掃出し風量とするのが好ましい。
  逆に、ダクト2aのみに排熱風F1を流通させるときには、ファン装置3aの最大風量は、ファン装置19の最大風量と同等以上の掃出し風量とするのが好ましい。
  ダクト2aと2bに排熱風F1を分散するときは、ファン装置3aと3bとの掃出し風量の和が、ファン装置19の掃出し風量と同等以上とするのが好ましい。
That is, when the exhaust hot air F1 is not circulated through the duct 2a, in order to ensure the cooling performance of the compressor 1, it is necessary to exhaust all the exhaust hot air F1 of the fan device 19 to the outdoors by the fan device 3b. Is preferably set to be equal to or greater than the maximum air volume of the fan device 19.
On the contrary, when the exhaust hot air F <b> 1 is circulated only through the duct 2 a, it is preferable that the maximum air volume of the fan device 3 a is set to be equal to or greater than the maximum air volume of the fan device 19.
When the exhaust hot air F1 is dispersed in the ducts 2a and 2b, it is preferable that the sum of the blown air amounts of the fan devices 3a and 3b be equal to or greater than the swept air amount of the fan device 19.
 以上のように、ファン装置19、3a及び3bが生成する風量の関係は、下記〔数1〕の関係にあるのが好ましい。 As described above, the relationship between the air volumes generated by the fan devices 19, 3a, and 3b is preferably the following [Equation 1].
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記、〔数1〕の関係を満たす風量となるように、各ファン装置のサイズや回転数を設定することで、圧縮機1の冷却性能と、それからの排熱風の利用効率を最大にすることができる。なお、ダクト2、2a及び2b等の排熱風F1の流路特性による圧損や流路抵抗を考慮する場合には、上記〔数1〕に圧損分や流路抵抗分を加味するようにしてもよい。 Maximizing the cooling performance of the compressor 1 and the utilization efficiency of the exhaust heat air therefrom by setting the size and rotation speed of each fan device so that the air volume satisfying the relationship of [Equation 1] is satisfied. Can do. In addition, when considering the pressure loss and flow resistance due to the flow characteristics of the exhaust hot air F1 such as the ducts 2, 2a and 2b, the pressure loss and flow resistance are added to the above [Equation 1]. Good.
 以上の構成を有する圧縮機システム100の処理の流れについて、図3を用いて説明する。以下の処理は、プログラムと演算装置の協働によって、制御部30によって実行される。 A processing flow of the compressor system 100 having the above configuration will be described with reference to FIG. The following processing is executed by the control unit 30 in cooperation with the program and the arithmetic device.
 S101で、制御部30は、圧縮機を起動すると、S103で、PID制御に基づいて電動機11の回転数を制御し、予め設定された目標吐出圧力の圧縮空気を生成する。 In S101, when the compressor is activated, the control unit 30 controls the rotational speed of the electric motor 11 based on PID control in S103, and generates compressed air having a preset target discharge pressure.
 S105で、制御部30は、吐出温度センサTaの検出温度と、閾値温度とを比較し、検出温度が閾値を超過していれば(S105:Y)、ファン装置19及びファン装置3bを駆動させ、吐出温度に応じてファン装置の回転数を制御する。例えば、吐出温度センサTaの検出温度が110℃である場合には、制御部30は、圧縮空気の使用者側に供給する圧縮空気温度が70℃程度になるように、エアクーラ10及びオイルクーラ18と熱交換する冷却風量を制御する。
  吐出温度センサTaの検出温度が、閾値以下である場合には、ファン装置19及び3bの回転を停止する(S115)。
In S105, the control unit 30 compares the detected temperature of the discharge temperature sensor Ta with the threshold temperature, and if the detected temperature exceeds the threshold (S105: Y), the fan device 19 and the fan device 3b are driven. The number of rotations of the fan device is controlled according to the discharge temperature. For example, when the detected temperature of the discharge temperature sensor Ta is 110 ° C., the control unit 30 causes the air cooler 10 and the oil cooler 18 so that the compressed air temperature supplied to the user side of the compressed air becomes about 70 ° C. Controls the amount of cooling air to exchange heat with.
When the detected temperature of the discharge temperature sensor Ta is equal to or lower than the threshold value, the rotation of the fan devices 19 and 3b is stopped (S115).
 S107で、制御部30は、制御部30のメモリに設定されている排熱利用設定がONかOFFかをチェックし、ONである場合(S107:Y)はS109に進み、OFFである場合には(S107:N)に進む。排熱利用設定がOFFの場合、圧縮機1からダクト2を介して排出される冷却風(排熱風)は、全てダクト2bから屋外に排出される。 In S107, the control unit 30 checks whether the exhaust heat utilization setting set in the memory of the control unit 30 is ON or OFF. If it is ON (S107: Y), the process proceeds to S109, and if it is OFF Advances to (S107: N). When the exhaust heat utilization setting is OFF, all the cooling air (exhaust heat air) discharged from the compressor 1 through the duct 2 is discharged to the outdoors from the duct 2b.
 S109で、制御部30は、室Bの温度センサTbの検出温度が、室B設定温度以上であるかをチェックし、検出温度が室B設定温度以上である場合(S109:Y)にはS111に進み、室B設定温度を下回る場合(S109:N)には、S113に進む。 In S109, the control unit 30 checks whether the temperature detected by the temperature sensor Tb in the room B is equal to or higher than the room B set temperature. If the detected temperature is equal to or higher than the room B set temperature (S109: Y), the process proceeds to S111. If the temperature is lower than the room B set temperature (S109: N), the process proceeds to S113.
 S111で、制御部30は、室Bの温度センサTbの検出温度と、室Bの設定温度との差に応じて、ファン装置3a及びファン装置3bの回転数を決定し、当該回転数となるようにファン装置3aの駆動を開始し、ファン装置3bの駆動を制限する。例えば、温度センサTbの検出温度が15℃であり、室B設定温度が20℃であるとき、制御部30は、ファン装置3aの回転数を最高回転とするとともにファン装置3bの回転を停止して、圧縮機1からダクト2に吐き出される排熱風が全てダクト2aに流れるようにする。 In S111, the control unit 30 determines the number of rotations of the fan device 3a and the fan device 3b according to the difference between the detected temperature of the temperature sensor Tb of the chamber B and the set temperature of the chamber B, and becomes the number of rotations. Thus, the drive of the fan device 3a is started, and the drive of the fan device 3b is limited. For example, when the temperature detected by the temperature sensor Tb is 15 ° C. and the room B set temperature is 20 ° C., the control unit 30 sets the rotation speed of the fan device 3a to the maximum rotation and stops the rotation of the fan device 3b. Thus, all the exhaust hot air discharged from the compressor 1 to the duct 2 is caused to flow to the duct 2a.
 なお、ダクト2aに流れる排熱風量は、温度センサTbの検出値と、B室設定温度との差分に応じたPID制御により決定されることから、差分が大であればファン装置2aと2bの回転数比はファン装置2aが高く、差分が小であれば、ファン装置2bの回転数比が高くなる。また、回転数比が同じの場合もある。 Note that the amount of exhaust heat air flowing through the duct 2a is determined by PID control according to the difference between the detection value of the temperature sensor Tb and the set temperature of the B room, so that if the difference is large, the fan devices 2a and 2b If the fan device 2a has a high rotational speed ratio and the difference is small, the rotational speed ratio of the fan device 2b becomes high. In some cases, the rotation speed ratio is the same.
 他方、S113で、制御部30は、温度センサTbの検出温度がB室の設定温度よりも低い場合、ファン装置3aの回転数を減少(停止を含む。)させ、逆に、ファン装置3bの回転数を増加(起動を含む。)させるようになっている。 On the other hand, in S113, when the temperature detected by the temperature sensor Tb is lower than the set temperature of the room B, the control unit 30 decreases the rotation speed of the fan device 3a (including stoppage), and conversely, the fan device 3b. The rotation speed is increased (including start-up).
 上記S111及びS113において、ファン装置2a及び2bが生成する風量の和は、ファン装置19によって生成される風量と同等乃至それ以上である。制御部30は、S111又はS113の処理を実行してから再度S105に戻り、ファン装置19の回転数確認を行い、その後、上述の処理を順次実行する。
  よって、圧縮機1の冷却性能には影響は与えず、更に、その排熱風の熱エネルギを効率的に利用することが可能となる。
In S111 and S113, the sum of the air volumes generated by the fan devices 2a and 2b is equal to or greater than the air volume generated by the fan device 19. The control unit 30 executes the process of S111 or S113 and then returns to S105 again to check the rotational speed of the fan device 19, and then sequentially executes the above-described processes.
Therefore, the cooling performance of the compressor 1 is not affected, and the heat energy of the exhaust hot air can be used efficiently.
 このように実施例1によれば、圧縮機1の排熱風の利用量を動的に制御することができる。更に、圧縮機1の冷却性能に影響することなく、熱エネルギを効率的に利用することができる。 Thus, according to the first embodiment, it is possible to dynamically control the amount of exhausted hot air used by the compressor 1. Furthermore, it is possible to efficiently use thermal energy without affecting the cooling performance of the compressor 1.
 特に、実施例1は、ファン装置3a及び3bが夫々生成する風量のバランスを、B室の検出温度値によって変化させるようになっていることから、ファン装置19が生成する風量変化に対しても熱エネルギを柔軟に利用することができる。例えば、圧縮機1の冷却需要が低下し、ファン装置19が生成する風量が少ない場合、ダクト2aの全ての排熱風は、B室側に流通するが、風量が低下する分、排熱風の温度は比較的維持される傾向となる。 In particular, in the first embodiment, the balance of the air volume generated by the fan devices 3a and 3b is changed according to the detected temperature value of the B room. Thermal energy can be used flexibly. For example, when the cooling demand of the compressor 1 decreases and the air volume generated by the fan device 19 is small, all the exhaust hot air in the duct 2a circulates to the B room side. Tends to be relatively maintained.
 また、実施例1は、ファン装置19とファン装置3a(及び/又は3b)という複数のファン装置によって圧縮機1を冷却するための冷却風を生成する。よって、圧縮機1に実装するファン装置19の出力やサイズを小さくすることができる。出力の低下にはファン装置19の動力削減が期待でき、サイズダウンには圧縮機1の小型化が期待できる。 Also, in the first embodiment, cooling air for cooling the compressor 1 is generated by a plurality of fan devices including the fan device 19 and the fan device 3a (and / or 3b). Therefore, the output and size of the fan device 19 mounted on the compressor 1 can be reduced. Reduction in power of the fan device 19 can be expected for a decrease in output, and downsizing of the compressor 1 can be expected for a reduction in size.
 以上、実施例1を説明したが、本発明は上記種々の構成や動作に限定されるものではない。例えば、実施例1では、ファン装置19、3a及び3bが生成する風量が同等であるとして説明したが、生成する最大風量が異なる組み合わせであってもよい。例えば、ファン装置3aの最大風量よりも、ファン装置3bの最大風量が小である組み合わせも可能である。即ち排熱風の利用側の都合(例えば、B室の空間容積等)によって、最大で必要とする排熱風の量が、ファン装置19の最大風量を必要としない場合等もある。よって、各ファン装置の出力(最大風量)が、上記数1の関係を満たす範囲にあれば、ファン装置の体格(サイズ)、数、定格が異なっていても、本発明の趣旨に適うものである。 As mentioned above, although Example 1 was demonstrated, this invention is not limited to the said various structure and operation | movement. For example, although the first embodiment has been described on the assumption that the air volumes generated by the fan devices 19, 3 a, and 3 b are equal, a combination of different maximum air volumes generated may be used. For example, a combination in which the maximum air volume of the fan device 3b is smaller than the maximum air volume of the fan device 3a is also possible. In other words, the maximum amount of exhaust heat air required at the maximum on the use side of the exhaust heat air (for example, the space volume of the room B) may not be required. Therefore, as long as the output (maximum airflow) of each fan device is in a range that satisfies the relationship of the above equation 1, even if the physique (size), number, and rating of the fan device are different, they are suitable for the purpose of the present invention. is there.
 また、実施例1は、ファン装置19がインバータ制御による可変速としたが、一定速のファン装置であってもよい。ファン装置3a、3bの可変速制御によって、排熱風の効率的な利用効果が期待できるためである。更には、ファン装置19が可変速で、ファン装置3a又は3bが可変速という組み合わせであって上記効果を期待することができる。 Further, in the first embodiment, the fan device 19 is variable speed by inverter control, but may be a constant speed fan device. This is because an efficient use effect of the exhaust hot air can be expected by the variable speed control of the fan devices 3a and 3b. Furthermore, it is possible to expect the above-mentioned effect by combining the fan device 19 with a variable speed and the fan device 3a or 3b with a variable speed.
 また、実施例1では、ファン装置2a及び2bを温度センサTbの検出温度等に応じたPID制御として説明したが、設定温度を基準としたON/OFF制御とするとも可能である。 In the first embodiment, the fan devices 2a and 2b have been described as PID control according to the temperature detected by the temperature sensor Tb. However, ON / OFF control based on the set temperature is also possible.
 また、実施例1では、ダクト2が2つに分岐し、排出先の一方が屋外、他方が屋内としたが、ダクトの分岐数はこれに限定するものではなく又排出先の両方が屋内であってもよい。更に、ダクト2bの排出先が必ずしも屋内とは限らず、ダクト2bがB室内を通過し、排出先を屋外とし、ダクト2b自体の輻射熱としてB室での熱利用をする態様であってもよい。 In the first embodiment, the duct 2 is branched into two, and one of the discharge destinations is outdoor and the other is indoor. However, the number of branching of the duct is not limited to this, and both of the discharge destinations are indoors. There may be. Further, the discharge destination of the duct 2b is not necessarily indoor, and the duct 2b may pass through the B room, the discharge destination may be outdoor, and heat may be used in the B room as radiant heat of the duct 2b itself. .
 実施例2の圧縮機システムについて説明する。実施例1は、ダクト2の各分岐路であるダクト2a及び2bを流れる排熱風量を、ファン装置3a、3bによって制御する構成であった。実施例2は、一の分岐路の排熱風量を制御するのがファン装置であり、他の分岐路の排熱風量の制御に、それ専用のファン装置を利用しない点が実施例1と異なる。また、実施例2は、分岐路の一方又は両方に、流路の開度を可変とする制御装置(遮蔽板7)を備える点で、実施例1と相違する。 The compressor system of Example 2 will be described. Example 1 was the structure which controls the amount of exhaust heat air which flows through the ducts 2a and 2b which are each branch path of the duct 2 with the fan apparatuses 3a and 3b. The second embodiment is different from the first embodiment in that a fan device controls the amount of exhaust heat airflow in one branch path, and that a dedicated fan device is not used to control the amount of exhaust heat airflow in another branch path. . The second embodiment is different from the first embodiment in that one or both of the branch paths are provided with a control device (shielding plate 7) that makes the opening degree of the flow path variable.
 図4に、実施例2の圧縮機システム200の構成を模式的に示す。図4(a)は、屋外に連通するダクト2bの排熱風量を制御する専用のファン装置は配置せず、B室と連通するダクト2aの排熱風量を制御するための専用ファン装置3aを配置する構成である。 FIG. 4 schematically shows the configuration of the compressor system 200 according to the second embodiment. FIG. 4 (a) shows that a dedicated fan device 3a for controlling the exhaust heat flow rate of the duct 2a communicating with the B room is not provided, and a dedicated fan device for controlling the exhaust heat flow rate of the duct 2b communicating with the outside is not arranged. It is the structure to arrange.
 ダクト2bには、ダクト内流路の開度を制御し、流通する排熱風量を制御可能とする制御装置として、遮蔽板7を配置する。遮蔽板7は不図示の電動駆動装置(モータやソレノイド等)を備え、傾倒角度を調整可能とすることで、ダクト2b流路の開度を変更するようになっている。また、遮蔽板7の開度は、圧縮機1の制御部30(或いは外部通信を可能とする制御装置65等)によって動的に制御されるようになっている。例えば、ダクト2の全ての排熱風をB室側に流通させる場合には、遮蔽板7を全閉とする。逆に屋外に全て吐き出す場合には、遮蔽板7を全開とする。また、B室側への流通量が1/2のときは、遮蔽板7の開度を50%とする。なお、ダクト2bの流通量と、開度との関係は、ダクト径、ダクト長、ファン装置3aの風量等によって定まる設計値である。 The shielding plate 7 is disposed in the duct 2b as a control device that controls the opening degree of the flow path in the duct and can control the amount of exhausted hot air flowing. The shielding plate 7 includes an electric drive device (such as a motor or a solenoid) (not shown), and is configured to change the opening of the duct 2b flow path by making the tilt angle adjustable. The opening degree of the shielding plate 7 is dynamically controlled by the control unit 30 of the compressor 1 (or the control device 65 that enables external communication). For example, when all the exhaust hot air in the duct 2 is circulated to the B room side, the shielding plate 7 is fully closed. On the other hand, when discharging all outdoors, the shielding plate 7 is fully opened. Moreover, when the flow volume to the B room side is 1/2, the opening degree of the shielding board 7 shall be 50%. The relationship between the flow rate of the duct 2b and the opening is a design value determined by the duct diameter, the duct length, the air volume of the fan device 3a, and the like.
 図4(b)は、図4(a)とは逆に、B室側に連通するダクト2aに遮蔽板7が配置し、屋外と連通するダクト2b側に、ファン装置3bが配置する構成例である。本構成では、図4(a)のファン装置3a、遮蔽板7の関係と逆に、ファン装置3b及び遮蔽板7が動作するようになっている。 In FIG. 4B, conversely to FIG. 4A, a configuration example in which the shielding plate 7 is disposed in the duct 2a communicating with the B room side and the fan device 3b is disposed on the duct 2b side communicating with the outdoors. It is. In this configuration, the fan device 3b and the shielding plate 7 are operated in reverse to the relationship between the fan device 3a and the shielding plate 7 in FIG.
 実施例2によれば、主にダクト2の排熱風量を制御する専用のファン装置(3a又は3b)の数を減らすことができる。 According to the second embodiment, it is possible to reduce the number of dedicated fan devices (3a or 3b) that mainly control the exhaust heat flow rate of the duct 2.
 また、遮蔽板7により開度を調節することで、排出側のダクトに向かって逆流する排風を規制することができる。例えば、図4(a)の構成で、排熱風をダクト2aに全て流通させる際、ファン装置3aが生成するダクト2aへの吸い込み気流に対して、ダクト2bを介した屋外からの逆流を防止することができる。この場合、屋外からの低温の逆流外気によって排熱風F1の熱が放熱することも防止でき、排熱エネルギをより効率的に利用することができる。 Further, by adjusting the opening degree by the shielding plate 7, it is possible to regulate the exhaust air flowing backward toward the duct on the discharge side. For example, in the configuration of FIG. 4A, when all the exhaust hot air is circulated through the duct 2a, the backflow from the outside through the duct 2b is prevented with respect to the airflow sucked into the duct 2a generated by the fan device 3a. be able to. In this case, it is possible to prevent the heat of the exhaust heat air F1 from being radiated by the low-temperature backflow outside air from outside, and the exhaust heat energy can be used more efficiently.
 以上、実施例2を説明したが、本発明は上記種々の例に限定されない。例えば、遮蔽板7の開度は駆動装置を用いた動的な構成としたが、ダクト内の排熱風の風力によって傾倒する他励式とすることもできる。また、遮蔽板7を実施例1のダクト2a、2b又は両方に適用する構成も当然に可能である。この場合、ファン装置3aや3bを一定速とし、遮蔽板7による開度調整で、ダクト2aや2bの排熱風流量を制御するようにしてもよい。 As mentioned above, although Example 2 was demonstrated, this invention is not limited to the said various examples. For example, the opening degree of the shielding plate 7 is a dynamic configuration using a driving device, but it can also be a separately excited type that is tilted by the wind of exhaust heat air in the duct. Moreover, the structure which applies the shielding board 7 to the duct 2a, 2b of Example 1, or both is naturally possible. In this case, the fan devices 3a and 3b may be set at a constant speed, and the exhaust hot air flow rate of the ducts 2a and 2b may be controlled by adjusting the opening degree by the shielding plate 7.
1…圧縮機、2・2a・2b…ダクト、3a・3b…ファン装置、4a・4b…ダクトファンインバータ、5…ファン装置、7…遮蔽板、10…エアクーラ、11…主モータ、12…圧縮機本体、13a…吸気配管、13b…吸気フィルタ、14…吸込絞弁、15a・15b・15C…吐出配管、16…潤滑油配管、17…放気弁、18…オイルクーラ、19…ファン装置、20…ファンインバータ、21…気液分離器、22…オイルフィルタ、25…圧力センサ、30…制御部、31…主モータインバータ、40a・40b…吸気口、
45a・45b…排気口、50…パッケージ筐体、60・61…ネットワーク、65…制御装置、66…端末、67…可搬端末、100・200…圧縮機システム、A…圧縮機室、B…B室、Ta…吐出温度センサ、Tb・Tc…温度センサ、F1・F2…排熱風
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 * 2a * 2b ... Duct, 3a * 3b ... Fan apparatus, 4a * 4b ... Duct fan inverter, 5 ... Fan apparatus, 7 ... Shield plate, 10 ... Air cooler, 11 ... Main motor, 12 ... Compression Machine body, 13a ... Intake pipe, 13b ... Intake filter, 14 ... Suction throttle valve, 15a, 15b, 15C ... Discharge pipe, 16 ... Lubricating oil pipe, 17 ... Air release valve, 18 ... Oil cooler, 19 ... Fan device, DESCRIPTION OF SYMBOLS 20 ... Fan inverter, 21 ... Gas-liquid separator, 22 ... Oil filter, 25 ... Pressure sensor, 30 ... Control part, 31 ... Main motor inverter, 40a, 40b ... Intake port,
45a, 45b ... exhaust port, 50 ... package housing, 60/61 ... network, 65 ... control device, 66 ... terminal, 67 ... portable terminal, 100/200 ... compressor system, A ... compressor room, B ... B room, Ta ... discharge temperature sensor, Tb / Tc ... temperature sensor, F1 / F2 ... exhaust hot air

Claims (15)

  1.  圧縮機本体と、これを駆動する駆動源と、前記圧縮機本体が吐き出す圧縮気体と熱交換する熱交換器と、前記熱交換器に流れる冷却風を生成するファン装置とを備える圧縮機と、前記熱交換器と熱交換し、前記圧縮機から外部に掃気された排風が流通する排風路とを有する圧縮機システムであって、
     前記排風路が少なくとも2つに分岐して、第1の分岐路が第1空間と、第2の分岐路が該第1空間とは異なる第2空間とに連通するものであり、
     前記第1の分岐路及び第2の分岐路の少なくともいずれかに配置して、前記排風路に前記冷却風を流通させる排風制御装置と、
     前記第1の空間の温度を検出する温度センサと、
     前記ファン装置により前記圧縮気体の温度を所定温度に制御するとともに、前記温度センサの検出温度に基づいて、前記排風制御装置によって前記第1の分岐路を流通する排風の量を制御する制御装置とを備える圧縮機システム。
    A compressor including a compressor body, a drive source for driving the compressor, a heat exchanger for exchanging heat with the compressed gas discharged from the compressor body, and a fan device for generating cooling air flowing in the heat exchanger; A compressor system having an exhaust path through which exhaust air that is heat-exchanged with the heat exchanger and scavenged from the compressor flows to the outside;
    The exhaust path branches into at least two, the first branch path communicates with the first space, and the second branch path communicates with the second space different from the first space;
    An exhaust air control device that is disposed in at least one of the first branch path and the second branch path and causes the cooling air to flow through the exhaust path;
    A temperature sensor for detecting the temperature of the first space;
    Control that controls the temperature of the compressed gas to a predetermined temperature by the fan device, and controls the amount of exhaust air flowing through the first branch path by the exhaust air control device based on the temperature detected by the temperature sensor. A compressor system comprising the apparatus.
  2.  請求項1に記載の圧縮機システムであって、
     前記制御装置が、
     前記ファン装置が掃気する排風量と、前記排風制御装置が前記第1の分岐路及び前記第2の分岐路を流通する排風量とが同等以上となるように前記排風制御装置を制御するものである圧縮機システム。
    The compressor system according to claim 1,
    The control device is
    The exhaust air flow control device controls the exhaust air flow control device so that the exhaust air flow scavenged by the fan device and the exhaust air flow control device are equal to or greater than the exhaust air flow flowing through the first branch passage and the second branch passage. Compressor system that is what.
  3.  請求項1に記載の圧縮機システムであって、
     前記制御装置が、
     前記温度センサの検出値が所定値未満或いは以下であるときに、前記第1の分岐路を流通する排風量が、前記第2の分岐路を流通する排風量よりも大として前記排風制御装置を制御するものである圧縮機システム。
    The compressor system according to claim 1,
    The control device is
    When the detected value of the temperature sensor is less than or less than a predetermined value, it is assumed that the amount of exhaust air flowing through the first branch path is larger than the amount of exhaust air flowing through the second branch path. Compressor system that is to control.
  4.  請求項1に記載の圧縮機システムであって、
     前記制御装置が、
     前記温度センサの検出値が、所定値より大或いは以上であるときに、前記第1の分岐路を流通する排風量が、前記第2の分岐路を流通する排風量よりも小として、前記排風制御装置を制御するものである圧縮機システム。
    The compressor system according to claim 1,
    The control device is
    When the detected value of the temperature sensor is greater than or equal to a predetermined value, the amount of exhaust air flowing through the first branch path is set to be smaller than the amount of exhaust air flowing through the second branch path, and Compressor system that controls the wind control device.
  5.  請求項1に記載の圧縮機システムであって、
     前記制御装置が、
     前記温度センサの検出値に基づいて、前記第1の排風路を流通する排風量をP、PI又はPID制御により前記排風制御装置を制御するものである圧縮機システム。
    The compressor system according to claim 1,
    The control device is
    A compressor system that controls the exhaust air flow control device by P, PI, or PID control of an exhaust air amount that flows through the first exhaust air flow path based on a detection value of the temperature sensor.
  6.  請求項1に記載の圧縮機システムであって、
     前記排風制御装置が、電動ファンであり、
     前記制御装置が、前記電動ファンの回転数を制御することで、前記第1及び第2の排風路を流通する排風量を制御するものである圧縮機システム。
    The compressor system according to claim 1,
    The exhaust air control device is an electric fan,
    The compressor system in which the control device controls the amount of exhaust air flowing through the first and second exhaust air passages by controlling the rotational speed of the electric fan.
  7.  請求項1に記載の圧縮機システムであって、
     前記排風制御装置を、前記第1及び第2の排風路に備える圧縮機システム。
    The compressor system according to claim 1,
    A compressor system comprising the exhaust air control device in the first and second exhaust air passages.
  8.  請求項1に記載の圧縮機システムであって、
     前記排風制御装置が、前記第1又は第2の排風路の開度を制御する遮蔽体である圧縮機システム。
    The compressor system according to claim 1,
    The compressor system, wherein the exhaust air control device is a shield that controls an opening degree of the first or second exhaust air passage.
  9.  請求項8に記載の圧縮機システムであって、
     前記排風制御装置が、
     前記第1又は第2の排風路の一方に配置する電動ファンであり、
     前記電動ファンが配置する排風路と異なる他方の排風路に配置する遮蔽体である圧縮機。
    The compressor system according to claim 8, wherein
    The exhaust air control device is
    An electric fan disposed on one of the first or second exhaust path,
    The compressor which is a shielding body arrange | positioned in the other air exhaust path different from the air exhaust path which the said electric fan arrange | positions.
  10.  請求項1に記載の圧縮機システムであって、
     前記排風制御装置によって流通する排風量が、前記ファン装置によって流通する排風量と同等である圧縮機システム。
    The compressor system according to claim 1,
    A compressor system in which the amount of exhaust air circulated by the exhaust air control device is equal to the amount of air exhaust circulated by the fan device.
  11.  請求項1に記載の圧縮機システムであって、
     前記排風路に案内される排風以外の排熱が前記圧縮機の外部に案内される排熱流路と、
     前記圧縮機を配置する圧縮機設置空間から前記第1空間と異なる空間に前記排熱を掃気する換気ファン装置と、
     前記圧縮機設置空間の温度を検出する圧縮機室温度センサとを備え、
     前記制御装置が、
     前記圧縮機室温度センサの検出温度に基づいて、前記換気ファン装置を制御するものである圧縮機システム。
    The compressor system according to claim 1,
    An exhaust heat flow path in which exhaust heat other than exhaust air guided to the exhaust path is guided to the outside of the compressor;
    A ventilation fan device for scavenging the exhaust heat from a compressor installation space in which the compressor is disposed to a space different from the first space;
    A compressor room temperature sensor for detecting the temperature of the compressor installation space,
    The control device is
    The compressor system which controls the said ventilation fan apparatus based on the detected temperature of the said compressor room temperature sensor.
  12.  請求項1に記載の圧縮機システムであって、
     前記圧縮機が、空気を吸気し、圧縮空気を吐き出すものである圧縮機システム。
    The compressor system according to claim 1,
    A compressor system in which the compressor sucks air and discharges compressed air.
  13.  請求項1に記載の圧縮機システムであって、
     前記圧縮機本体が圧縮室に液体を供給して気体を圧縮する給液式圧縮機であり、
     前記圧縮機が、前記液体と熱交換を行う液体用熱交換器を備え、
     前記ファン装置が、前記液体用熱交換器に流通する冷却風も生成するものである圧縮機システム。
    The compressor system according to claim 1,
    The compressor main body is a liquid supply type compressor that supplies gas to a compression chamber and compresses gas,
    The compressor includes a liquid heat exchanger for exchanging heat with the liquid;
    The compressor system in which the fan device also generates cooling air flowing through the liquid heat exchanger.
  14.  請求項1に記載の圧縮機システムであって、
     前記圧縮機本体が単段又は複数段からなる無給液式圧縮機である圧縮機システム。
    The compressor system according to claim 1,
    The compressor system whose said compressor main body is a non-feed liquid type compressor which consists of a single stage or multiple stages.
  15.  請求項1に記載の圧縮機システムであって、
     前記制御装置が、
     有線又は無線の通信線を介して他の制御装置と通信可能に接続するものであり、
     前記他の制御装置からの制御指令によって、前記ファン装置及び前記排風制御装置の少なくとも一つを制御するものである圧縮機システム。
    The compressor system according to claim 1,
    The control device is
    It is connected so as to be communicable with another control device via a wired or wireless communication line,
    A compressor system that controls at least one of the fan device and the exhaust air control device in accordance with a control command from the other control device.
PCT/JP2018/002843 2017-04-24 2018-01-30 Compressor system WO2018198459A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515097A JP6808823B2 (en) 2017-04-24 2018-01-30 Compressor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017084985 2017-04-24
JP2017-084985 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018198459A1 true WO2018198459A1 (en) 2018-11-01

Family

ID=63918163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002843 WO2018198459A1 (en) 2017-04-24 2018-01-30 Compressor system

Country Status (2)

Country Link
JP (1) JP6808823B2 (en)
WO (1) WO2018198459A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708219A (en) * 2018-12-18 2019-05-03 海信(广东)空调有限公司 A kind of dehumidifier
JP2020133420A (en) * 2019-02-13 2020-08-31 山正機械株式会社 Air-conditioning adapter
JP7106691B1 (en) 2021-01-19 2022-07-26 株式会社日立産機システム Fluid mechanical system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276103B1 (en) * 2021-03-08 2021-07-12 한국에어로(주) An air-compressor system that is having a filter cleaning and heating function
KR102420570B1 (en) * 2021-10-27 2022-07-13 김수형 Compressor-Generated Thermal Circulation System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123840A (en) * 1974-08-23 1976-02-26 Hitachi Ltd REIDAN BOKI
JPS5818082U (en) * 1981-07-29 1983-02-03 株式会社日立製作所 Air-cooled package compressor
WO2012026317A1 (en) * 2010-08-27 2012-03-01 株式会社日立産機システム Oil-cooled gas compressor
WO2016031985A1 (en) * 2014-08-29 2016-03-03 ナブテスコオートモーティブ 株式会社 Oil separator and compressed air drying system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545184Y2 (en) * 1977-01-31 1980-10-23

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123840A (en) * 1974-08-23 1976-02-26 Hitachi Ltd REIDAN BOKI
JPS5818082U (en) * 1981-07-29 1983-02-03 株式会社日立製作所 Air-cooled package compressor
WO2012026317A1 (en) * 2010-08-27 2012-03-01 株式会社日立産機システム Oil-cooled gas compressor
WO2016031985A1 (en) * 2014-08-29 2016-03-03 ナブテスコオートモーティブ 株式会社 Oil separator and compressed air drying system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708219A (en) * 2018-12-18 2019-05-03 海信(广东)空调有限公司 A kind of dehumidifier
CN109708219B (en) * 2018-12-18 2021-02-02 海信(广东)空调有限公司 Dehumidifier
JP2020133420A (en) * 2019-02-13 2020-08-31 山正機械株式会社 Air-conditioning adapter
JP7112737B2 (en) 2019-02-13 2022-08-04 山正機械株式会社 air conditioning adapter
JP7106691B1 (en) 2021-01-19 2022-07-26 株式会社日立産機システム Fluid mechanical system
JP2022112530A (en) * 2021-01-19 2022-08-03 株式会社日立産機システム Fluid machine system

Also Published As

Publication number Publication date
JPWO2018198459A1 (en) 2020-01-16
JP6808823B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2018198459A1 (en) Compressor system
JP6414354B1 (en) Air conditioning system
EP2730862B1 (en) Air conditioner with an oil separator
KR100579576B1 (en) Steam supply and power generation system
JP6296364B2 (en) Air conditioner
EP1884727A2 (en) Cogeneration system
KR101783461B1 (en) Cooling structure for turbo compression system
KR100667517B1 (en) Air conditioner equipped with variable capacity type compressor
KR20140107821A (en) An accumulator and an air conditioner using thereof
RU2362946C2 (en) Method and device for energy regeneration
JP5053574B2 (en) Replacement ventilation system for electrical room
JP2006307857A (en) Cogeneration system
JP2017150689A (en) Air conditioner
KR100696718B1 (en) Air Conditioner System for Heating and Dehumidificaton
JP2019138626A (en) Air conditioner
KR20100128955A (en) Air conditioner and control process of the same
US10914487B2 (en) Low load mode of HVAC system
JP4169521B2 (en) Air conditioner
KR100790829B1 (en) Electric generation air condition system and the Control method for the Same
WO2023139701A1 (en) Air conditioner
KR20110004147A (en) Air conditioner
KR20070087542A (en) Cooling equipment using as the heat pump for water cooled
JP2003232577A (en) Air conditioner
JP2007057114A (en) Air conditioner
JP2002221370A (en) Air conditioner and its operation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515097

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790023

Country of ref document: EP

Kind code of ref document: A1