WO2018198450A1 - Vehicle maintenance plan device and vehicle maintenance plan evaluation method - Google Patents

Vehicle maintenance plan device and vehicle maintenance plan evaluation method Download PDF

Info

Publication number
WO2018198450A1
WO2018198450A1 PCT/JP2018/002068 JP2018002068W WO2018198450A1 WO 2018198450 A1 WO2018198450 A1 WO 2018198450A1 JP 2018002068 W JP2018002068 W JP 2018002068W WO 2018198450 A1 WO2018198450 A1 WO 2018198450A1
Authority
WO
WIPO (PCT)
Prior art keywords
maintenance
vehicle
information
company
transportation
Prior art date
Application number
PCT/JP2018/002068
Other languages
French (fr)
Japanese (ja)
Inventor
森澤 利浩
民則 冨田
藤城 孝宏
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018198450A1 publication Critical patent/WO2018198450A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry

Definitions

  • the present invention relates to a vehicle maintenance planning apparatus and a vehicle maintenance plan evaluation method.
  • the present invention claims the priority of Japanese Patent Application No. 2017-087225 filed on April 26, 2017, and for the designated countries where weaving by reference is allowed, the contents described in the application are as follows: Is incorporated into this application by reference.
  • Patent Document 1 discloses a technique related to a device diagnosis apparatus for work machines.
  • the data determination unit 101 determines whether the device information 121 has been input (S201). If the device information 121 has been input, the operation condition data storage unit 111a. In step S202, it is determined whether there is operation condition information that matches the operation condition information in the device information 121. If a match is detected, the input device information 121 is used as a status diagnosis unit.
  • the state diagnosis unit 103 performs diagnosis of the device information 121 with reference to the diagnosis database 111 (S203), and outputs the diagnosis result to an external display device or the like (S204). " . For example, in paragraph [0116] of the same document, “When the performance of the engine 40 decreases, the engine speed decreases. Therefore, the performance decrease (abnormality) of the engine 40 is diagnosed by monitoring the engine speed. Is possible. "
  • Vehicles used for transportation generate profits by operating, but at the same time deteriorate. It is desirable for shipping companies to simulate maintenance costs and revenues and evaluate maintenance plans. On the other hand, it is also desirable for vehicle maintenance companies to simulate revenues and expenses resulting from vehicle deterioration and use them in the evaluation of maintenance plans.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique for appropriately evaluating a business from an event accompanying operation of a vehicle.
  • the present application includes a plurality of means for solving at least a part of the above-described problems, and examples thereof are as follows.
  • a vehicle maintenance planning apparatus relates to a transportation company information that associates a transportation company with one or a plurality of vehicles, and a maintenance that associates the maintenance company with the vehicle that performs maintenance.
  • a condition information acquisition unit that acquires company information, vehicle information that associates the vehicle with one or more systems and maintenance methods of the vehicle, and a transport task generation that generates transport task information to be allocated to the transport company
  • a signal value acquisition unit that calculates a signal value for each system of the vehicle using the transport task information, and generates repair task information related to maintenance of the vehicle using the maintenance method and the signal value
  • a repair task generation unit to be assigned to a maintenance company, a calculation unit that calculates a transportation fee using the transportation task information, and calculates a maintenance fee using the repair task information;
  • Said transportation charge and the maintenance plan to generate a maintenance plan evaluation information including the maintenance fee evaluation unit, characterized in that it comprises an output unit for outputting the maintenance plan evaluation information.
  • a vehicle maintenance plan evaluation method is a vehicle maintenance plan evaluation method performed by a vehicle maintenance planning device, the vehicle maintenance planning device including a condition information acquisition unit, a transportation task generation unit, A signal value acquisition unit, a repair task generation unit, a total calculation unit, a maintenance plan evaluation unit, and an output unit, wherein the condition information acquisition unit associates the shipping company with one or more vehicles.
  • An acquisition procedure is executed, the transportation task generation unit executes a transportation task generation procedure for generating transportation task information assigned to the transportation company, and the signal value acquisition unit uses the transportation task information to
  • the repair task generation unit generates repair task information relating to the maintenance of the vehicle using the maintenance method and the signal value, and calculates the signal value acquisition procedure for calculating the signal value of the system to the maintenance company.
  • the repair task generation procedure to be allocated is executed, and the total calculation unit calculates a transportation fee using the transport task information, and executes a total calculation procedure for calculating a maintenance fee using the repair task information,
  • the plan evaluation unit executes a maintenance plan evaluation procedure for generating maintenance plan evaluation information including the transportation fee and the maintenance fee, and the output unit executes a display procedure for outputting the maintenance plan evaluation information.
  • FIG. (1) for demonstrating the outline
  • flowchart which shows an example of the scheduling process of the predictive maintenance performed by the repair task production
  • FIG. (2) for demonstrating the outline
  • FIG. (1) for demonstrating the outline
  • FIG. (2) for demonstrating the outline
  • FIG. (2) shows an example of the scheduling process of predictive maintenance.
  • a maintenance plan evaluation screen It is a figure which shows an example of the maintenance plan evaluation screen containing the schedule of the vehicle which a shipping company has.
  • FIG. 1 is a diagram for explaining an outline of a vehicle maintenance planning system.
  • the vehicle maintenance planning system is used to evaluate services mutually provided by business entities including a transportation company 201 having a vehicle 202, a maintenance company 203, and a service company 204.
  • the transportation company 201 is a company that undertakes transportation work, and has one or a plurality of vehicles 202.
  • the vehicle 202 belongs to one of the transportation companies 201 and performs transportation work.
  • the maintenance company 203 is a company that maintains the vehicle 202.
  • the service company 204 performs a service of monitoring the deterioration status of each vehicle 202 and notifying the shipping company 201 to which the vehicle 202 belongs.
  • the transportation business is assigned to one of the vehicles 202.
  • the transportation work performed by the vehicle 202 starts when the vehicle 202 leaves the transportation company 201, receives the package at the pick-up location (start point), transports it to the destination (end point), and ends by returning to the transportation company 201. .
  • the shipping company 201 employs at least one maintenance method among a plurality of maintenance methods for each vehicle 202.
  • the maintenance method is, for example, regular maintenance, predictive maintenance, or repair.
  • Periodic maintenance is a maintenance method in which the maintenance company 203 periodically maintains the vehicle 202.
  • Predictive maintenance is a maintenance method in which the maintenance company 203 performs maintenance when a contract is made with the service company 204 and the signal value calculated for the vehicle 202 of the transportation company 201 is greater than or equal to a predetermined value.
  • the repair is a maintenance method in which the maintenance company 203 repairs the failed vehicle 202 later.
  • the shipping company 201 specifies a maintenance method to be adopted for each vehicle 202, for example.
  • a vehicle maintenance planning apparatus receives an input of simulation conditions specifying a vehicle 202 possessed by the transportation company 201, a maintenance company 203 that maintains the vehicle 202, a maintenance method that is employed in the vehicle 202, and the like.
  • the vehicle maintenance planning device generates transport task information including information regarding the start point, the end point, and the weight of the load, and assigns it to each vehicle 202.
  • the vehicle maintenance planning device calculates the degree of deterioration of the vehicle 202 when each vehicle 202 executes the transportation task related to the transportation task information, and calculates the transportation fee and the maintenance fee.
  • the vehicle maintenance planning device outputs maintenance plan evaluation information including the transportation fee and the maintenance fee.
  • FIG. 2 is a diagram illustrating an example of a functional block diagram of the vehicle maintenance planning apparatus 1.
  • the vehicle maintenance planning device 1 is an information processing device such as a PC, a server computer, or a smartphone.
  • the vehicle maintenance planning device 1 is installed within a management range of a business provider that provides a service for performing a simulation.
  • the vehicle maintenance planning apparatus 1 includes a control unit 110, an input unit 120, an output unit 130, a communication unit 140, and a storage unit 150.
  • the control unit 110 comprehensively controls the entire vehicle maintenance planning apparatus 1.
  • the input unit 120 receives input of information via an input device described later such as a keyboard or a touch panel.
  • the output unit 130 outputs information via an output device described later. For example, the output unit 130 displays maintenance plan evaluation information on a display device such as a display.
  • the communication unit 140 receives and transmits information with other terminal devices connected via a network.
  • the control unit 110 includes a condition information acquisition unit 111, a transport task generation unit 112, a repair task generation unit 113, an abnormality detection unit 114, a signal value acquisition unit 115, a maintenance plan evaluation unit 116, and a total calculation unit 117. And comprising.
  • the condition information acquisition unit 111 acquires each information used for the simulation of the vehicle maintenance service from, for example, another terminal device connected via the communication unit 140.
  • the condition information acquisition unit 111 may acquire information via the input unit 120.
  • the condition information acquisition unit 111 stores the acquired information in the storage unit 150.
  • condition information acquisition unit 111 acquires simulation conditions input via the input unit 120 or the communication unit 140.
  • the simulation conditions will be described later.
  • the transportation task generation unit 112 generates transportation task information related to the transportation task assigned to each vehicle 202. Although details will be described later, in the transportation task information, for example, the collection location, the destination, and the weight of the package are specified. As an example, the transport task generation unit 112 generates transport task information using a uniform random number for at least one of a start point coordinate indicating a pick-up location, an end point coordinate indicating a destination, and the weight of a package.
  • information indicating the travel distance may be included in the transport task information instead of the information indicating the pickup location and the destination.
  • the destination, the pickup location, and the weight of the package included in the transport task information may be input via the input unit 120 or the communication unit 140.
  • the transportation task generation unit 112 stores the generated transportation task information in the storage unit 150.
  • the transportation task generation unit 112 assigns the generated transportation task information to the vehicle 202. Specifically, the transportation task generation unit 112 assigns transportation task information to an empty area of a vehicle calendar described later, and updates the vehicle calendar.
  • the repair task generation unit 113 generates repair task information that is information related to the maintenance of the vehicle 202.
  • the repair task generation unit 113 identifies a maintenance method input as a simulation condition for the vehicle 202, and generates repair task information corresponding to the maintenance method.
  • the repair task generation unit 113 stores the generated repair task information in the storage unit 150. In the repair task information, the maintenance target system and the maintenance time are specified.
  • the repair task generation unit 113 generates repair task information in which a maintenance time is set so as to periodically repair the vehicle 202 to which the maintenance method of the regular maintenance is input, and the vehicle calendar and the maintenance company calendar, which will be described later, are available. Assign to a region.
  • the repair task generation unit 113 specifies the system and the maintenance time of the vehicle 202 to be maintained using a signal value acquired by a signal value acquisition unit 115 described later. Then, repair task information specifying the system and maintenance time is generated and assigned to the vehicle calendar and the maintenance company calendar.
  • the system of the vehicle 202 is a plurality of components such as a prime mover, a steering system, and a braking system that constitute the vehicle 202, and is associated with each vehicle 202 in the vehicle maintenance planning device 1 and stored in advance.
  • the repair task generation unit 113 determines the vehicle 202 of the system whose signal value calculated using the deterioration degree exceeds a predetermined threshold (hereinafter referred to as “first threshold”) regardless of the maintenance method.
  • first threshold a predetermined threshold
  • the maintenance time and the maintenance target system are identified as a system failure, and repair task information is generated and assigned to the empty areas of the vehicle calendar and the maintenance company calendar.
  • the repair task generation unit 113 assigns the repair task information to the maintenance company 203 having the inventory of parts of the system.
  • repair task generation unit 113 updates the state quantity information to be described later by returning the state quantity to the value before assigning the transport task information, assuming that the maintenance has been completed when the maintenance time has passed in the simulation. .
  • the abnormality detection unit 114 specifies the state information of the system using the signal value calculated for each system of the vehicle 202.
  • the state information is information indicating the degree of malfunction of the system of the vehicle 202, and is determined in stages according to the signal value.
  • the status information is information indicating any one of four stages of “Normal”, “Alert”, “Urgent”, and “Critical”.
  • “abnormality detection” is not only detection of problems that have already appeared, such as vibration and abnormal noise, but also detection of signs of problems such as problems caused by tire deterioration after traveling 100 km, for example. Also means.
  • the signal value acquisition unit 115 calculates the degree of deterioration for each system of the vehicle 202 using the transport task information.
  • the signal value acquisition unit 115 calculates the degree of deterioration using the travel distance of the vehicle 202, for example.
  • the maintenance plan evaluation unit 116 generates maintenance plan evaluation information by using the transportation fee and the maintenance fee calculated by the aggregation calculation unit 117 described later.
  • the maintenance plan evaluation unit 116 calculates, for example, costs and revenues of a predetermined transportation company 201, and generates maintenance plan evaluation information including the costs and revenues. Further, the maintenance plan evaluation unit 116 may generate maintenance plan evaluation information including the operation rate of the vehicle 202.
  • the output unit 130 generates screen information including the maintenance plan evaluation information and displays it on an output device such as a display.
  • the maintenance plan evaluation unit 116 may generate maintenance plan evaluation information indicating a vehicle calendar of the vehicle 202 that the transportation company 201 has. Further, the maintenance plan evaluation unit 116 may generate maintenance plan evaluation information indicating the state of capacity consumption of the shipping company 201 or the maintenance company 203. The capacity consumption will be described later.
  • the total calculation unit 117 calculates the transportation fee using the transportation task information.
  • the total calculation unit 117 calculates the maintenance fee using the repair task information.
  • the transportation fee is handled as the profit of the transportation company 201.
  • the maintenance fee is handled as the revenue of the maintenance company 203 and the cost of the transportation company 201.
  • the total calculation unit 117 calculates the transportation fee using the travel distance, the weight of the luggage, and the like.
  • the total calculation unit 117 calculates the maintenance fee using the part fee, the work time required for the maintenance, and the like.
  • the totaling calculation unit 117 calculates the operating rate of the transportation company 201 and the vehicle 202 by totaling the time assigned to the transportation task with respect to the generation request period of the maintenance plan evaluation information to be simulated.
  • the total calculation unit 117 calculates an operation rate indicating the ratio of the number of maintenance units to the number of maintenance units in the maintenance company 203.
  • the storage unit 150 includes shipping company information 151, vehicle information 152, maintenance company information 153, management standard information 154, deterioration function information 155, a vehicle calendar 156, a maintenance company calendar 157, and transportation task information 158. Repair task information 159, maintenance content information 160, parts information 161, maintenance company parts inventory information 162, and state quantity information 163 are stored.
  • the shipping company information 151 is information that associates the identifier of the shipping company 201 with the identifiers of one or more vehicles 202 that the shipping company 201 has.
  • the shipping company information 151 may include information related to the transportation fee according to the travel distance or the weight of the luggage.
  • the shipping company information 151 is acquired during a simulation process described later. However, it may be stored in advance in the storage unit 150 before the simulation process is started.
  • the vehicle information 152 is information that associates the identifier of the vehicle 202, one or more systems of the vehicle 202, the maintenance method, and the weight of the vehicle body.
  • the vehicle information 152 includes information related to the remaining life of each system.
  • the system and the remaining life information of the vehicle 202 are stored in the storage unit 150 before starting a simulation process described later.
  • the remaining life means the length of time from the current time until the system fails.
  • the remaining life can be considered as the transportable time starting from the current time, but it may be the number of days, the number of transport tasks that can be transported, or the distance that can be traveled.
  • information on the maintenance method of the system and the vehicle body weight are acquired in the simulation process and included in the vehicle information 152.
  • these pieces of information may be included in the vehicle information 152 in advance before starting the simulation.
  • FIG. 3 is a diagram showing an example of a system.
  • the vehicle 202 includes a prime mover (engine), a steering device, an intake system, a battery, an electric device, a plug, a power transmission device (powertrain), a braking device (brake system), a traveling device (tires) that perform movement, energy conversion and consumption. Including a shock absorber, an exhaust system, and the like.
  • the interior parts used by the driver and the car body are also handled as a system.
  • strain may be defined further finely like the piston of a motor
  • the vehicle 202 having the function of an electric vehicle can also be managed as an electric motor system.
  • Various devices such as a truck bed and a mixer truck can also be a system.
  • the maintenance company information 153 is information that associates the identifier of the maintenance company 203 with the identifier of the vehicle 202 to be maintained (that is, the vehicle 202 that performs maintenance). Further, the maintenance company information 153 includes an upper limit value per unit time of the number of vehicles 202 that can be maintained, an actual work cost per unit time, and a menu price per unit time for each maintenance company 203.
  • the maintenance company information 153 may include information such as a list of parts to be handled and the price of the parts.
  • the maintenance company information 153 is acquired during a simulation process described later. However, it may be stored in advance in the storage unit 150 before the simulation process is started.
  • Management standard information 154 is information in which a threshold of a signal value used for determination of state information is associated with the system of the vehicle 202.
  • the threshold value of the signal value for which the state information is determined to be “emergency” and the threshold value of the signal value for which the state information is determined to be “failure” are associated with each other.
  • a threshold value included in the management reference information 154 is compared with the signal value, and state information regarding the system is specified.
  • the management reference information 154 is stored in the storage unit 150 in advance before starting the simulation process, for example.
  • the deterioration function information 155 is information including a function used for calculation of the deterioration degree and the signal value.
  • the deterioration function information 155 is stored in the storage unit 150 in advance before starting the simulation process, for example.
  • the vehicle calendar 156 is information related to the schedule of the vehicle 202, and includes information indicating whether the transportation task is scheduled to be executed or the repair task is scheduled to be executed in time series. .
  • the transportation task information 158 indicating the transportation task scheduled to be executed is associated with the empty area of the vehicle calendar 156.
  • repair task information 159 indicating a repair task scheduled to be executed is associated with an empty area of the vehicle calendar 156.
  • the maintenance company calendar 157 is information related to the schedule of the maintenance company 203, and includes information indicating the number of vehicles 202 related to the repair task to be executed in time series.
  • the vehicle calendar 156 and the maintenance company calendar 157 are created during the simulation process.
  • the repair task information 159 indicating the repair task to be executed is associated with the free area of the maintenance company calendar 157.
  • the transportation task information 158 is information related to the transportation task executed by the vehicle 202, and includes, for example, a package collection location, a destination, and a package weight.
  • the transport task information 158 is created during the simulation process.
  • the repair task information 159 is information relating to a repair task executed on the vehicle 202 by the maintenance company 203, and includes the vehicle 202 to be maintained, the maintenance company 203, and the maintenance time.
  • the repair task information 159 includes information for specifying the system.
  • the repair task information 159 is created during the simulation process.
  • the maintenance content information 160 includes information indicating a maintenance method.
  • the maintenance content information 160 is stored in the storage unit 150 in advance before starting the simulation process, for example.
  • the parts information 161 is information that associates parts used for maintenance with the charge of the parts for each system of the vehicle 202.
  • the maintenance company parts inventory information 162 is information related to the parts inventory of the maintenance company 203. In the present embodiment, the parts information 161 and the maintenance company parts inventory information 162 are stored in advance in the storage unit 150 before the simulation process is started.
  • the state quantity information 163 is information on the state quantity of each system, the degree of deterioration calculated using the state quantity, and the signal value. In the simulation process, the degree of deterioration at each detection time is calculated, and the state quantity information 163 is generated.
  • FIG. 4 is a diagram illustrating a hardware configuration example of the vehicle maintenance planning apparatus 1.
  • the vehicle maintenance planning device 1 includes a CPU (Central Processing Unit) 171, a RAM (Random Access Memory) 172, a ROM (Read Only Memory) 173, an auxiliary storage device 174, an output device 175, an input device 176, A media reading device 177 and a communication device 178 are included, and each component is connected by a bus.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • auxiliary storage device 174 an output device 175, an input device 176,
  • a media reading device 177 and a communication device 178 are included, and each component is connected by a bus.
  • the CPU 171 is a central processing unit, and executes processing according to a program recorded in the RAM 172, the RAM 173, or the auxiliary storage device 174.
  • Each processing unit constituting the control unit 110 realizes each function by the CPU 171 executing a program.
  • the RAM 172 is a main storage device and functions as a storage area from which programs and data are temporarily read.
  • the RAM 173 is a nonvolatile storage device that can read information.
  • the auxiliary storage device 174 is a storage device capable of writing and reading, such as an HDD (Hard Disk Drive), a flash memory, or an SSD (Solid Disk Drive).
  • the output device 175 is a device that performs an output process of data stored in the vehicle maintenance planning device 1, and includes, for example, an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, and the like. A display device or a printer.
  • the input device 176 is a device that receives an input operation from a user, and is, for example, a touch panel, a keyboard, a mouse, a microphone, or the like. Note that the input unit 120 can use the input device 176, and the output unit 130 can use the output device 175.
  • the media reader 177 is a device that inputs and outputs information from a portable medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the communication device 178 is a device for connecting the vehicle maintenance planning device 1 to a network (not shown), and is a communication device such as a NIC (Network Interface Card).
  • the function of the storage unit 150 is realized by the RAM 172, the RAM 173, or the auxiliary storage device 174.
  • the function of the storage unit 150 may be realized by a storage device on the network.
  • each component of the vehicle maintenance planning device 1 may be executed by one hardware or may be executed by a plurality of hardware.
  • the process of each component of the vehicle maintenance planning apparatus 1 may be realized by one program or may be realized by a plurality of programs.
  • FIG. 5 is a flowchart showing an example of the simulation process.
  • the vehicle maintenance planning device 1 starts the processing of this flowchart when receiving a simulation processing start instruction via the input unit 120, for example.
  • the condition information acquisition unit 111 acquires simulation conditions (step S301). Specifically, when the vehicle maintenance planning device 1 receives a simulation process start instruction, the output unit 130 causes the output device 175 to display a simulation condition input screen. The condition information acquisition unit 111 acquires information input to the simulation condition input screen.
  • FIG. 6 is a diagram illustrating an example of the simulation condition input screen 401.
  • the simulation condition input screen 401 includes a service company input area 402, a shipping company input area 403, a vehicle input area 404, a maintenance company input area 405, a period input area 406, a condition setting button 407, and a start button 408. , A cancel button 409.
  • the service company input area 402 is an area for receiving input of information for specifying the service company 204 to be subjected to simulation processing. As shown in FIG. 6, the service company input area 402 includes an add button, a delete button, a new button, and a detail button. When the selection of the add button is accepted, for example, the output unit 130 displays a list screen including a list (not shown) of service companies 204 stored in advance in the storage unit 150 and accepts the selection of the service company 204.
  • the delete button is a button for deleting the service company 204 displayed in the service company input area 402 from the area.
  • the check box corresponding to the service company 204 is checked and the delete button is selected, the checked service company 204 is hidden in the service company input area 402.
  • the new button is a button for registering a new service company 204 in the list of service companies 204 described above.
  • the detail button is a button for accepting editing of information included in the list of service companies 204.
  • the shipping company input area 403 is an area for receiving input of information for specifying the shipping company 201 to be subjected to simulation processing. As shown in FIG. 6, in the shipping company input area 403, information indicating the name of the shipping company 201, information indicating the number of transport tasks that can be executed by the shipping company 201, and maintenance requesting the maintenance of the vehicle 202 are performed. Information indicating the company 203 is displayed in association with the information.
  • the shipping company input area 403 includes an add button, a delete button, a new button, and a detail button.
  • the output unit 130 displays a list screen including a list (not shown) of the shipping company 201 stored in advance in the storage unit 150 and receives the selection of the shipping company 201.
  • the delete button is a button for deleting the shipping company 201 displayed in the shipping company input area 403 from the area.
  • the new button is a button for registering a new shipping company 201 in the list of shipping companies 201 described above.
  • the detail button is a button for accepting editing of information included in the list of the shipping company 201.
  • input screen not shown displayed by selecting the detail button, input of information related to the transportation fee according to the travel distance or the weight of the luggage may be accepted.
  • the condition information acquisition unit 111 generates the shipping company information 151 using the information input to the shipping company input area 403 and stores it in the storage unit 150.
  • the vehicle input area 404 is an area for accepting input of information for specifying the vehicle 202 to be subjected to simulation processing. As shown in FIG. 6, in the vehicle input area 404, information for specifying the vehicle 202, the transportation company 201 having the vehicle 202, the total weight of the vehicle 202, and the maintenance method of the vehicle 202 can be input in association with each other. Is displayed.
  • the total weight of the vehicle 202 is the sum of the weight of the vehicle body and the weight of the luggage.
  • the vehicle input area 404 may accept an input of an upper limit value of the weight of the vehicle body or the weight of the load that can be transported instead of the total weight of the vehicle 202.
  • the vehicle input area 404 includes an add button, a delete button, a new button, and a detail button.
  • the output unit 130 displays a list screen including a list of vehicles 202 (not shown) stored in advance in the storage unit 150 and receives the selection of the vehicle 202.
  • the delete button is a button for deleting the vehicle 202 displayed in the vehicle input area 404 from the area.
  • the new button is a button for registering a new vehicle 202 in the list of vehicles 202 described above.
  • the detail button is a button for accepting editing of information included in the list of vehicles 202.
  • the condition information acquisition unit 111 generates vehicle information 152 using information input to the vehicle input area 404 and stores the vehicle information 152 in the storage unit 150.
  • the maintenance company input area 405 is an area for receiving input of information for specifying the maintenance company 203 that is a target of the simulation process. As shown in FIG. 6, in the maintenance company input area 405, information specifying the maintenance company 203 and an upper limit value of the number of vehicles per unit time (for example, one day) that can be maintained by the maintenance company 203 are associated with each other. Input is displayed.
  • the maintenance company input area 405 includes an add button, a delete button, a new button, and a detail button.
  • the output unit 130 displays a list screen including a list of maintenance companies 203 (not shown) stored in advance in the storage unit 150, and accepts the selection of the maintenance company 203.
  • the delete button is a button for deleting the maintenance company 203 displayed in the maintenance company input area 405 from the area.
  • the new button is a button for registering a new maintenance company 203 in the list of maintenance companies 203 described above.
  • the detail button is a button for accepting editing of information included in the list of the maintenance company 203.
  • input screen not shown
  • input of a list of parts handled by the maintenance shop, the price of the parts, the maintenance fee, and information on a maintenance method that can be handled may be accepted.
  • the condition information acquisition unit 111 generates maintenance company information 153 using information input to the maintenance company input area 405 and stores it in the storage unit 150.
  • the period input area 406 is an area for receiving an input of a period for performing a simulation. As shown in FIG. 6, the period input area 406 receives, for example, an input of a simulation start time and an end time.
  • the period during which simulation is performed can also be referred to as a generation request period for maintenance plan evaluation information, and the vehicle maintenance planning apparatus 1 performs a simulation regarding a transportation task and a repair task executed during the input period to generate maintenance plan evaluation information. To do.
  • the condition setting button 407 is a button for receiving a display instruction for a setting screen (not shown) for controlling the operation of the program, such as outputting a log file as a simulation execution result.
  • the start button 408 is a button for confirming the contents of the simulation conditions input to each input area and receiving a simulation start instruction.
  • the cancel button 409 is a button for accepting a simulation cancel instruction. When the cancel button 409 is selected, the simulation condition input screen 401 is closed and the simulation process shown in FIG. 5 ends.
  • simulation condition input screen 401 illustrated in FIG. 5 is an example, and for example, the business entity or the vehicle 202 may be displayed as an icon using a graphical interface, and the simulation condition input may be received by selecting and arranging the icon. Further, for example, by receiving an input of the name of the business entity or the vehicle 202, information stored in the storage unit 150 in advance may be referred to and information associated with each name may be displayed.
  • the condition information acquisition unit 111 performs an initialization process (step S302). Specifically, the condition information acquisition unit 111 generates a vehicle calendar 156 for each vehicle 202 input as a simulation condition in step S ⁇ b> 301 and stores the vehicle calendar 156 in the storage unit 150. Similarly, the condition information acquisition unit 111 generates a maintenance company calendar 157 for each maintenance company 203 similarly input as a simulation condition, and stores the maintenance company calendar 157 in the storage unit 150.
  • the vehicle calendar 156 and the repair calendar include the generation request period input in the period input area 406, and the schedule in the period is empty at this point.
  • condition information acquisition unit 111 causes the storage unit 150 to store the service company 204 input to the service company input area 402 as a simulation condition.
  • condition information acquisition unit 111 generates the shipping company information 151 using information input to the shipping company input area 403 as a simulation condition, and stores it in the storage unit 150.
  • condition information acquisition unit 111 associates the maintenance method with the vehicle information 152 using the information input in the vehicle input area 404 and stores it in the storage unit 150.
  • condition information acquisition unit 111 generates maintenance company information 153 using information input to the shipping company input area 403 and the maintenance company input area 405 as simulation conditions, and stores the information in the storage unit 150.
  • the repair task generation unit 113 performs regular maintenance scheduling (step S303). Specifically, the repair task generation unit 113 refers to the maintenance method of each vehicle 202 in the vehicle information 152, and extracts the vehicle 202 associated with the maintenance method of the regular maintenance.
  • the vehicle information 152 includes a period for performing regular maintenance.
  • the repair task generation unit 113 performs the following process for each extracted vehicle 202 (hereinafter referred to as an extracted vehicle). First, the repair task generation unit 113 refers to a period for performing regular maintenance associated with the extracted vehicle, and identifies a maintenance candidate period for each period. The repair task generation unit 113 identifies the maintenance company 203 associated with the extracted vehicle in the maintenance company information 153 and the upper limit value of the number of vehicles 202 that can be maintained by the maintenance company 203, and the maintenance company calendar of the identified maintenance company 203 157 is referred to.
  • the repair task generation unit 113 sets the maintenance candidate period as the maintenance period when the number of vehicles 202 that perform maintenance at the maintenance candidate period is less than the upper limit in the maintenance company calendar 157, and sets the maintenance company calendar 157 and the vehicle calendar of the extracted vehicle. 156 is updated.
  • the repair task generation unit 113 has the number of vehicles 202 in the maintenance company calendar 157 less than the upper limit value. After the maintenance candidate time, a time closest to the maintenance candidate time (for example, the next day) is specified as a new maintenance candidate time. The repair task generation unit 113 updates the maintenance company calendar 157 and the vehicle calendar 156 with the new maintenance candidate time as the maintenance time.
  • the new maintenance candidate period the number of vehicles 202 to be maintained is less than the upper limit, and the period closest to the maintenance candidate period after the maintenance candidate period is set, but the present invention is not limited to this. For example, it does not have to be after the maintenance candidate time, and any new maintenance candidate time may be set at an appropriate time when the number of vehicles 202 is less than the upper limit.
  • the transport task generation unit 112 generates and schedules transport task information 158 for advance (step S304).
  • the generation of the transport task information 158 will be described in detail later.
  • the one or more transport task information 158 generated in this step includes travel calculated using at least information indicating the travel distance, information indicating the weight of the load, and a predetermined travel speed and travel distance. And information indicating time.
  • the transportation task generation unit 112 identifies the vehicle 202 related to the vehicle calendar 156 having an empty area in a predetermined period (for example, one day) from the simulation start time input as the simulation condition.
  • the transport task generation unit 112 specifies the weight of the load that can be transported by the vehicle 202 by using the total weight of the specified vehicle 202, and determines whether the weight of the load related to the generated transport task information 158 is transportable. judge.
  • the vehicle 202 that has a vacancy in the predetermined period from the simulation start time and can transport the package is identified as the vehicle 202 that can execute the transportation task.
  • the transportation task generation unit 112 identifies the vehicle 202 that can execute the transportation task for each of the generated transportation task information 158.
  • the transportation task generation unit 112 assigns a transportation task within the above-described predetermined period in the vehicle calendar 156 of the identified vehicle 202.
  • time is virtually advanced in the simulation, and scheduling is performed at predetermined intervals in the time series in the virtual time, that is, the transport task information 158 and the repair task information 159 are assigned.
  • transportation task information 158 is assigned in advance in this step. Processing is in progress. However, this process may be omitted, and the transport task information 158 may be assigned at the simulation start time in the following iterative process.
  • control unit 110 repeats the processing from step S306 to step S317 (step S305, step S318).
  • the control unit 110 advances a clock (hereinafter referred to as “virtual clock”) in the simulation, and performs time-series processing according to the clock.
  • a clock hereinafter referred to as “virtual clock”
  • control unit 110 determines whether it is a vehicle operating time (step S306). Specifically, control unit 110 determines whether or not the current time in the virtual timepiece is a predetermined vehicle operating time.
  • the maximum restraint time for car drivers is basically 13 hours per day. Therefore, in this embodiment, for example, the time from 8:00 to 21:00 is handled as the vehicle operating time. Note that the setting of the vehicle operating time is not essential in the present embodiment, and the following processing after step S307 may be performed regardless of the current time of the virtual clock.
  • the signal value acquisition unit 115 updates the state quantity of the vehicle 202 (step S307). Specifically, the signal value acquisition unit 115 specifies a state quantity that changes the state of the vehicle 202, such as a travel distance, for each of the systems of each vehicle 202 input as simulation conditions. The signal value acquisition unit 115 calculates the degree of degradation of the system using the state quantity. Although the calculation of the state quantity will be described later, in the present embodiment, since this process is performed every hour of the vehicle operating time in the virtual timepiece, the state quantity calculation unit calculates the degree of deterioration for one hour to calculate the state of each vehicle 202. The state quantity information 163 is stored for each system.
  • the state quantity calculation unit In the case where the degree of deterioration is stored in the state quantity information 163 in advance, that is, when the degree of deterioration is calculated at least one hour before in the virtual timepiece, the state quantity calculation unit newly calculates the degree of deterioration already calculated.
  • the state quantity information 163 is updated by adding the degree of deterioration.
  • the signal value acquisition unit 115 calculates a signal value for each system using the degree of deterioration. The calculation of the signal value will be described later.
  • the abnormality detection unit 114 performs a vehicle failure check (step S308). Specifically, the abnormality detection unit 114 refers to the management reference information 154 using the signal value calculated in step S307, and determines the presence or absence of the vehicle 202 having a system whose state information is “failure”. When there is a vehicle 202 having a system whose state information is “failure”, the abnormality detection unit 114 associates information indicating that there is a failure with the vehicle information 152 of the vehicle 202 having the system. Thereafter, the abnormality detection unit 114 shifts the process to step S309.
  • control unit 110 determines whether or not the current time of the virtual clock is noon. Determination is made (step S309).
  • the following processes should just be performed for every predetermined period (for example, 1 day) in a virtual clock, and it cannot be overemphasized that the timing which performs a process is not limited to noon of a virtual clock.
  • the repair task generation unit 113 performs regular maintenance (step S310). Specifically, the repair task generation unit 113 refers to the vehicle calendar 156 and extracts the vehicle 202 that performs regular maintenance at the current time of the virtual clock. The repair task generation unit 113 refers to the state quantity information 163 and specifies the maintenance content of the extracted vehicle 202.
  • the repair task generation unit 113 identifies a system having a signal value equal to or greater than a predetermined value as a maintenance target system.
  • the repair task generation unit 113 refers to the part information 161 and identifies a part required for maintenance.
  • the repair task generation unit 113 returns the state quantity of the system to a predetermined initial value, assuming that the maintenance target system has been maintained.
  • the initial value can be said to be a value before the transportation task information 158 is assigned to the vehicle 202.
  • the repair task generation unit 113 specifies the maintenance company 203 that performs maintenance of the extracted vehicle 202, and specifies maintenance company parts inventory information 162 related to the maintenance company 203. The repair task generation unit 113 subtracts the parts required for maintenance from the inventory of the maintenance company 203.
  • processing is not performed in this step for the vehicle 202 for which regular maintenance is not scheduled to be performed at the current time of the virtual clock. Further, the restoration of the state quantity and the subtraction of the part inventory quantity may be performed when the time of the virtual clock reaches the scheduled maintenance end time.
  • the repair task generation unit 113 performs repair (step S311). Specifically, the repair task generation unit 113 refers to the vehicle calendar 156 and extracts the vehicle 202 that performs repair at the current time of the virtual clock. Prior to the start of this process (step S314 described later), repair task information 159 indicating that repair is performed on the vehicle 202 having a system whose signal value is greater than or equal to the first threshold value is generated, and the vehicle calendar 156 and It is assigned to the maintenance company calendar 157. In the repair task information 159, the system to be repaired is specified.
  • the repair task generation unit 113 returns the state quantity of the system to a predetermined initial value, assuming that the repair target system has been repaired. Further, the repair task generation unit 113 specifies a maintenance company 203 that performs maintenance of the vehicle 202 to be repaired, and specifies maintenance company parts inventory information 162 related to the maintenance company 203. The repair task generation unit 113 subtracts the parts required for maintenance from the inventory of the maintenance company 203.
  • processing is not performed in this step for the vehicle 202 for which the current time of the virtual clock is not scheduled to be repaired.
  • the restoration of the state quantity and the subtraction of the part inventory quantity may be performed when the time of the virtual clock has reached the scheduled time for completion of the repair task.
  • the repair task generation unit 113 performs predictive maintenance (step S312). Specifically, the repair task generation unit 113 refers to the vehicle calendar 156 and extracts the vehicle 202 that performs predictive maintenance at the current time of the virtual clock. Before starting this processing (step S315 to be described later), repair task information 159 indicating that predictive maintenance is to be performed is generated for the vehicle 202 having a system whose signal value is greater than or equal to the second threshold value and less than the first threshold value. And assigned to the vehicle calendar 156 and the maintenance company calendar 157. In the repair task information 159, a system that is subject to predictive maintenance is specified.
  • the repair task generation unit 113 returns the state quantity of the system to a predetermined initial value, assuming that the system subject to predictive maintenance has been maintained. Further, the repair task generation unit 113 specifies the maintenance company 203 that performs maintenance of the vehicle 202 to be predicted maintenance, and specifies maintenance company parts inventory information 162 related to the maintenance company 203. The repair task generation unit 113 subtracts the parts required for maintenance from the inventory of the maintenance company 203.
  • processing is not performed in this step for the vehicle 202 for which predictive maintenance is not scheduled at the current time of the virtual clock. Further, as in the case of performing the periodic maintenance, the restoration of the state quantity and the subtraction of the inventory quantity of the parts may be performed when the time of the virtual clock has reached the scheduled end time of the repair task. .
  • the transport task generation unit 112 generates and schedules the transport task information 158 (step S313).
  • FIG. 7 is a diagram showing an example of the outline of the transportation task.
  • the transportation task generation unit 112 generates transportation task information 158 including coordinates that specify the transportation company 201, the start point, and the end point.
  • the arrow indicates the movement of the vehicle 202, taking the movement from the transportation company 201 to the starting point, carrying the movement from the starting point to the ending point, and returning from the movement from the ending point to the transportation company 201, and taking the respective distances. Distance, transportation distance, return distance.
  • the travel distance of the transport task can be specified by the sum of the take-up distance, the transport distance, and the return distance.
  • the time required for pick-up is taken as the pick-up time
  • the time required for transport is the transport time
  • the time required for return is the return time
  • the running time of the transport task is specified by the sum of the return time, transport time, and return time Yes.
  • the transportation task generation unit 112 sets the weight of the package using a random number so that the weight of the package varies depending on the transportation task.
  • the transport task generation unit 112 sets the weight of the standard load as 1 ton and generates an additional weight of 0 to 5 tons with a uniform random number. If the additional weight is 0 ton, the weight of the load is 1 ton, and the vehicle 202 having a gross vehicle weight of 2 tons or more can be transported. If the additional weight is 3 tons, the weight of the load is 4 tons, and the vehicle 202 having a gross vehicle weight of 8 tons or more can be transported.
  • the transport task generation unit 112 sets the start point and end point of the transport task using random numbers.
  • FIG. 8 is a diagram for explaining an example of a method for setting the start point and the end point.
  • This figure assumes a two-dimensional space, and in the present embodiment, the range of the entire region where the start point st and the end point en may occur is within a square region of one side length omt_range.
  • the start point and the end point are generated in a square region (hereinafter referred to as a frame region) having a side length of omf_frame in the entire region.
  • the lower left point lb (left) bottom) is the lower left point of the frame area
  • the lower left point lb may be generated from the origin 0 of the entire area within a square area of one side length omt_lbrange.
  • the length of each region has the following relationship.
  • the take-up distance D ta the transportation distance D tr , and the return distance D re can be obtained.
  • the process proceeds every hour, so the relationship between time and distance is obtained by calculation.
  • a standard moving speed S std standard speed of the vehicle 202 is determined in advance.
  • the take-off time T ta can be obtained by equation (3). The same applies to the transportation time T tr and the return time T re .
  • the speed per hour is the moving distance per hour.
  • the take-up speed S ta can be obtained by equation (4). The same applies to the transportation speed S tr and the return speed S re .
  • FIG. 9 shows an example of scheduling when one transport task information 158 is assigned in one day. This figure can also be said to be a vehicle calendar 156 of the vehicle 202 performing the transportation task.
  • the travel distance is 490 km, of which the take-up distance is 90 km, the transport distance is 270 km, and the return distance is 130 km.
  • the take-up time is about 2 hours
  • the transportation time is about 6 hours
  • the return time is about 3 hours.
  • the simulation is executed sequentially from 8 o'clock, and the collection 1001 is scheduled until 10 o'clock. Since a stop (break time) 1003 is scheduled for 1 hour from 12:00, transportation is scheduled for transportation 1002 from 10:00 to 12:00 and transportation 1004 from 13:00 to 17:00.
  • FIG. 10 shows an example of scheduling when one transportation task information 158 is assigned for three days.
  • the take-up time is 8 hours
  • the transportation time is 10 hours
  • the return time is 9 hours.
  • the transportation is interrupted at 21:00 on the first day, and transportation is resumed from 8:00 on the second day.
  • the next day is the same, and the task is completed at 14:00.
  • there is no plan to execute the transport task information 158 of the vehicle 202 and there is no plan to execute the repair task information 159. Therefore, from 14:00 to 21:00 on the third day, the vehicle 202 has no plan and is substantially stopped. From 0 o'clock to 8 o'clock and from 21 o'clock to 0 o'clock, no schedule is entered in relation to the transport task information 158, so the vehicle 202 is stopped.
  • the repair task generation unit 113 performs repair scheduling (step S314).
  • the repair task generation unit 113 is the vehicle 202 associated with information indicating that there is a failure in step S308 (that is, the vehicle 202 having a system whose signal value is equal to or greater than the first threshold value). The following processing is performed for each vehicle to be repaired.
  • the transport task generation unit 112 refers to the vehicle calendar 156 of the vehicle to be repaired, and deletes the transport task information 158 after the day following the date of the current time of the virtual clock.
  • the transport task generation unit 112 may identify another vehicle 202 that can execute the transport task assigned to the deleted date, and assign the transport task information 158 to the vehicle calendar 156 of the vehicle 202.
  • the repair task generation unit 113 refers to the part information 161 and identifies a part required for repairing a system whose signal value is equal to or greater than the first threshold value.
  • the repair task generation unit 113 refers to the maintenance company parts inventory information 162 and extracts the maintenance company 203 having the specified parts in stock.
  • the repair task generation unit 113 refers to the maintenance company calendar 157 for the extracted maintenance company 203, and the number of vehicles 202 to be repaired does not reach the upper limit in the schedule after the day following the current time of the virtual clock.
  • the maintenance company 203 having the free time closest to the date of the current time is identified as the maintenance company 203 that performs the repair.
  • the repair task generation unit 113 identifies the time as the maintenance time.
  • the repair task generation unit 113 assigns repair task information 159 to the specified maintenance time in the maintenance company calendar 157 of the maintenance company 203 that performs the repair. Further, the repair task generation unit 113 assigns the repair task information 159 to the specified maintenance time in the vehicle calendar 156 of the repair target vehicle 202.
  • the assigned repair task information 159 is associated with a system to be maintained.
  • the abnormality detection unit 114 performs abnormality detection (step S315).
  • FIG. 11 is a diagram showing an outline of the abnormality detection process and the predictive maintenance scheduling process. This figure is used to explain the concept of abnormality detection and predictive maintenance scheduling processing. This figure shows the actual situation in which the abnormality detection is performed by the service company 204 and the predictive maintenance is performed by the transport company 201 and the maintenance company 203.
  • the vehicle maintenance planning apparatus 1 simulates the processing in this figure in a simulated manner. . Processing performed in the vehicle maintenance planning device 1 will be described in detail later.
  • the service company 204 monitors the vehicle 202 of the transportation company 201 with which a contract is made in advance, and receives a signal value generated from a sensor installed to detect the state of each system of the vehicle 202 (step S1221). .
  • the service company 204 determines the status of each system using the signal value (step S1222).
  • the service company 204 refers to information corresponding to the management standard information 154 using the signal value, and determines which state information each system is. Further, when the signal value is greater than or equal to the second threshold value and less than the first threshold value, the service company 204 determines that the vehicle having the system is the object of predictive maintenance.
  • the second threshold value is associated with the status information “Warning” in the management standard information 154. That is, status information of “warning” or “emergency” is associated with a system whose signal value is greater than or equal to the second threshold value and less than the first threshold value.
  • the service company 204 outputs a notification specifying the system to be subject to predictive maintenance and the vehicle 202 having the system to the transportation company 201 (step S1223).
  • the shipping company 201 that has received the notification refers to the vehicle calendar 156 for the system specified by the notification, and determines that it is the first notification regarding the system when the schedule for repair or predictive maintenance is not included.
  • the shipping company 201 advances the processing to step S1225.
  • the service company 204 notifies the maintenance company 203 (step S1224).
  • the service company 204 refers to the maintenance company information 153, identifies the maintenance company 203 that is determined in advance as a company that performs maintenance of the vehicle 202 that is determined to be the subject of the predictive maintenance, and the second A notification specifying a system that has generated a signal value that is greater than or equal to the threshold and less than the first threshold is performed.
  • the transportation company 201 stores information indicating the remaining life for each system of the vehicle 202 that the transportation company 201 has.
  • the system that is subject to predictive maintenance does not immediately go into a failure state, but needs to be maintained until the remaining life is exhausted.
  • the shipping company 201 adjusts the schedule with the maintenance company 203 (step S1225).
  • the shipping company 201 refers to the maintenance company calendar 157 of the maintenance company 203, and identifies the vacant schedule closest to the end of the remaining life of the system subject to the predicted maintenance as the maintenance time of the predicted maintenance. .
  • the transportation company 201 When the transportation task is assigned to the vehicle 202 having the system subject to the predictive maintenance at the maintenance time, the transportation company 201 deletes the transportation task information 158 for the schedule including the maintenance time from the vehicle calendar 156 of the vehicle 202. The transportation company 201 may assign the transportation task to another vehicle 202 that can execute the deleted transportation task.
  • the shipping company 201 deletes the repair task information 159 for the regular maintenance from the vehicle calendar 156. Further, the shipping company 201 also deletes the repair task information 159 from the maintenance company calendar 157 of the maintenance company 203 scheduled for regular maintenance. The shipping company 201 generates repair task information 159 that identifies a system that is subject to predictive maintenance, and updates the vehicle calendar 156 so that the vehicle calendar 156 of the vehicle 202 having the system is repaired at the specified maintenance time. To do. Further, the shipping company 201 updates the maintenance company calendar 157 of the maintenance company 203 so as to perform a repair task at the specified maintenance time.
  • step S1223 when the predicted maintenance is already scheduled for the vehicle 202 having the system that is the target of the predicted maintenance, the system in which the scheduled maintenance maintenance time has generated the signal value in step S1221. It is determined whether it is within the remaining lifetime. When determining that it is within the remaining lifetime, the shipping company 201 adds information related to the system to the repair task information 159 for the predicted maintenance that has already been determined, and updates the vehicle calendar 156 and the maintenance company calendar 157.
  • the shipping company 201 schedules the predicted maintenance in the same manner as in step S1225.
  • the maintenance company 203 performs maintenance related to predictive maintenance (step S1226). Specifically, the shipping company 201 deletes the information regarding the signal value received in step S1221, and subtracts the inventory amount of the parts used for maintenance from the parts inventory information of the maintenance company 203 that has performed maintenance.
  • step S315 in order for the abnormality detection unit 114 to detect an abnormality, first, the signal value acquisition unit 115 calculates a deterioration degree for each system of each vehicle 202 specified under the simulation conditions.
  • State variables include travel distance, travel time, travel load, and fuel consumption.
  • the travel distance is the sum of the hourly speed values associated with the movement.
  • the running time is incremented by 1 for every hour of movement.
  • the travel load is the product of weight and travel distance (t ⁇ km) and is integrated every hour.
  • the weight is the weight of the car body itself (car body weight).
  • the vehicle body weight can be calculated by subtracting the weight of the load included in the transport task information 158 from the total vehicle weight that has been input as a simulation condition.
  • the vehicle body weight may be half of the total vehicle weight input as the simulation condition.
  • the fuel consumption is, for example, liters as a unit, which is the product of travel distance and fuel consumption (km / l, travel distance in 1 liter). Weight may be added.
  • the value of the state variable is the state quantity.
  • Degradation degree deterioration is defined as a function of state variable state_variable.
  • a function for obtaining the degree of deterioration is acquired from the deterioration function information 155.
  • the function f may take not only one variable but also multiple variables of a plurality of state variables, and can be adjusted by parameters.
  • the state variables are travel distance mileage, travel time travelling_time, travel load acc_travel_load, and fuel consumption fuel_consumption.
  • the deterioration degree of the prime mover may be determined by the following equation.
  • the signal value acquisition unit 115 stores the calculated deterioration level and signal value in the state quantity information 163.
  • Equation (8) shows an example of a calculation formula for the signal value signal.
  • a and b are real coefficients (coefficient) and intercepts
  • COEF_R and INTR_R are random number generation processes / functions for adding variation to the coefficients and intercepts.
  • a function that returns a constant 1 that does not introduce random numbers a uniform random number, a standard normal random number (a random number with a normal distribution with mean 0, standard deviation 1), one side (returns 0 or more), a standard normal random number , Exponential random numbers (random numbers having an exponential distribution as an occurrence probability), and the like.
  • the status information (AlarmStatus) is specified for each system.
  • the status information is defined in four stages from “Normal” of “Normal” to “Alert” of warning, “Urgent” of emergency, and “Critical” of fatal meaning failure. Rank determination is expressed by equation (9).
  • the status information (AlarmStatus) is determined by the corresponding range of the signal value, it has lower and upper threshold values threshould, that is, a lower limit value lower_limit and an upper limit value upper_limit. Since the signal value changes from the upper side to the lower side with a certain value as a reference, it has directions of upper upper and lower lower. If the signal value takes only a value greater than or equal to 0 and the reference value is 0, only the upper direction is sufficient. In the formula (9), the second stage is the upward direction, and the third stage is the downward direction.
  • the index i corresponds to each status information, Normal is 1, Alert is 2, Urgent is 3, and Critical is 4.
  • the state information of the vehicle 202 it is not always necessary to use the signal value, and the state information may be specified by referring to the management standard information 154 using the degree of deterioration. If the state such as normal, warning, emergency, or failure is determined, it is possible to determine whether to perform repair or predictive maintenance, that is, it is possible to generate repair task information 159. In this case, the signal value signal of Equation (9) may be set as the deterioration degree deterioration.
  • the signal value may be obtained directly from the state variable without calculating the deterioration degree. This corresponds to the fact that the sensor signal value directly corresponds to the mechanical deterioration, and thus the change of the sensor signal is directly acquired by performing the movement (running). In that case, the formula (5) may be substituted into the formula (8) for calculation.
  • the abnormality detection unit 114 stores the specified state information in the state amount information 163 for each system.
  • repair task generation unit 113 performs predictive maintenance scheduling (step S316).
  • FIG. 12 is a diagram (part 1) for explaining an outline of predictive maintenance.
  • FIG. 12A shows an example of scheduling when a system fails. Time elapses from the top to the bottom shown in FIG.
  • the vehicle 202 must stop the transportation, and if the transportation task is being performed, the transportation task is interrupted. The transportation task is canceled until the vehicle 202 is repaired. Canceling the transportation task results in a loss of the transportation company 201. If the transportation task cannot be quickly assigned to another vehicle 202 at the time of the failure of the vehicle 202, it will be an opportunity loss for the transportation company 201.
  • FIG. 12B shows an outline of the scheduling of the predictive maintenance performed for the vehicle 202 specified as the target of the predictive maintenance in step S315 shown in FIG.
  • the remaining life of the system in which the abnormality is detected is specified by referring to the vehicle information 152. The vehicle 202 having the system can travel until the remaining life is exhausted.
  • the vehicle maintenance planning device 1 it is confirmed whether or not there is a vacancy in the schedule of the maintenance company 203 that maintains the target vehicle in the travelable period of the target vehicle 202 specified by the remaining life.
  • the maintenance company 203 shown in FIG. 12B can maintain two vehicles 202 per day. Further, in the figure, a black-filled square indicates that there is already a maintenance plan, and a white square represents that there is a vacancy.
  • the vacant schedule of the maintenance company 203 during the travelable period of the vehicle 202 is extracted as a maintenance candidate time.
  • the vehicle maintenance planning device 1 determines whether or not there is another vehicle 202 that can execute the transportation task at the maintenance candidate time. If there is another vehicle 202 that can execute the transportation task at the maintenance candidate time, the transportation task is assigned to the other vehicle 202.
  • FIG. 13 is a flowchart showing an example of a predictive maintenance scheduling process executed by the repair task generation unit 113. This figure shows the details of the processing performed in step S316 shown in FIG. In step S315 illustrated in FIG. 5, when an abnormality is detected for a plurality of systems, the repair task generation unit 113 performs the following process for each system where the abnormality is detected. In addition, the system
  • the repair task generation unit 113 acquires the remaining life of the target system (step S1301). Specifically, the repair task generation unit 113 refers to the vehicle 202 information and acquires the remaining life of the system in which an abnormality has been detected.
  • the repair task generation unit 113 extracts the vacant time of the maintenance company 203 during the travelable period (step S1302). Specifically, the repair task generation unit 113 refers to the maintenance company information 153 and identifies the maintenance company 203 that maintains the target vehicle having the target system. The repair task generation unit 113 extracts the vacant time of the specified maintenance company 203 in the travelable period from the current time until the remaining life is exhausted by referring to the maintenance company calendar 157.
  • the repair task generation unit 113 extracts vacant times of the target vehicle 202 and other vehicles 202 (step S1303). Specifically, the repair task generation unit 113 extracts the vacant time of the target vehicle 202 in the travelable period by referring to the vehicle calendar 156 of the target vehicle 202. In addition, the repair task generation unit 113 refers to the vehicle calendar 156 of the other vehicle 202 and extracts the free time of the other vehicle 202 in the travelable period.
  • the free time of other vehicles 202 belonging to the same transportation company 201 as the target vehicle 202 is extracted.
  • the other vehicle 202 may be a vehicle 202 belonging to a transportation company 201 different from the target vehicle 202.
  • the repair task generation unit 113 extracts a combination of the vacant time of the maintenance company 203 and the vacant time of the target vehicle 202 or another vehicle (step S1304). Specifically, the repair task generation unit 113 extracts a time when the vacant time of the maintenance company 203 extracted in step S1302 matches the vacant time of the target vehicle 202 extracted in step S1303. In addition, the repair task generation unit 113 extracts a time when the vacant time of the maintenance company 203 extracted in step S1302 matches the vacant time of the other vehicle 202 extracted in step S1303.
  • the repair task generation unit 113 identifies the slowest combination among the combinations that have not yet been identified (step S1305). Specifically, the repair task generation unit 113 has not yet selected among the combination of the free times of the maintenance company 203 and the target vehicle 202 extracted in step S1304 and the free times of the maintenance company 203 and the other vehicles 202. A combination that is not specified and that is the latest is specified.
  • the repair task generation unit 113 determines whether or not the identified combination is a combination based on the vacant time of the target vehicle 202 (step S1306). Specifically, the repair task generation unit 113 advances the process to step S1307 when the combination identified in step S1305 is a combination of the free time of the target vehicle 202 and the free time of the maintenance company 203.
  • the repair task generation unit 113 determines that the combination is based on the availability time of the target vehicle 202 (in the case of “yes” in step S1306), the repair task generation unit 113 identifies the maintenance time and sets the repair task information 159. Generate (step S1307). Specifically, the repair task generation unit 113 specifies the time related to the combination as the maintenance time, and generates repair task information 159 specifying the maintenance time and the target system.
  • the repair task generation unit 113 does not reach the upper limit of the number of vehicles maintained by the maintenance company 203 for the vehicle 202 having the system for which the signal value equal to or greater than the second threshold value is calculated, and until the remaining life of the system is reached.
  • the repair task information 159 is generated by specifying the latest time of the virtual clock related to the calculation of the signal value and the time after the present time as the maintenance time.
  • the repair task generation unit 113 assigns repair task information 159 to the location indicating the maintenance time of the vehicle calendar 156 of the target vehicle 202. Further, the repair task generation unit 113 assigns repair task information 159 to a location indicating the maintenance time of the maintenance company calendar 157 of the maintenance company 203 related to the combination. Thereafter, the repair task generation unit 113 ends the process of this flowchart. That is, the process proceeds to step S317 shown in FIG.
  • the repair task generation unit 113 determines that the combination is not based on the vacant time of the target vehicle 202 (in the case of “no” in step S1306), the repair task generation unit 113 allows the other vehicle 202 to execute the transportation task. It is determined whether or not there is (step S1308).
  • the combination is a combination of vacant times between the maintenance company 203 and the other vehicles 202.
  • the repair task generation unit 113 refers to the vehicle calendar 156 of the target vehicle 202 at the time related to the combination, and specifies the transport task information 158 assigned to the target vehicle 202.
  • the repair task generation unit 113 identifies the weight of the package in the transport task information 158. Further, the repair task generation unit 113 identifies the vehicle body weight with reference to the vehicle information 152 of the other vehicle 202 related to the combination, and determines whether or not the other vehicle 202 can transport the specified weight. judge. The repair task generation unit 113 advances the process to step S1309 when the other vehicle 202 can transport the package.
  • repair task generation unit 113 determines that another vehicle 202 can execute the transportation task (in the case of “yes” in step S1308), the repair task generation unit 113 specifies the maintenance time, and repair task Information 159 is generated (step S1309). Since the process performed in this step is the same as the process performed in step S1307, description thereof is omitted.
  • FIG. 14 is a diagram (part 2) for explaining the outline of the predictive maintenance.
  • FIG. 14A shows an example of adjustment of the maintenance schedule. If the vehicle A is the target vehicle 202 and there is an empty schedule between the maintenance company 203 and the other vehicle 202 in the schedule close to the end of the remaining life, the transportation task of the target vehicle 202 is assigned to the other vehicle 202. As a result, the repair task of the vehicle A is executed during the free schedule.
  • the time near the end of the remaining life is specified as the maintenance time because the remaining life can be transported, so it is more economical to perform the maintenance as late as possible, and This is because the total number of maintenance times per vehicle can be reduced.
  • the transportation task generation unit 112 generates transportation task information 158 for the other vehicle 202 (step S1310). Specifically, the transportation task generation unit 112 identifies the transportation task information 158 that the target vehicle 202 was scheduled to execute at the maintenance time identified in step S1309, and the other related to the combination identified in step S1305. The vehicle 202 is stored in a location corresponding to the maintenance time of the vehicle calendar 156.
  • the transport task generation unit 112 deletes the transport task information 158 stored in the vehicle calendar 156 of the target vehicle 202 at the maintenance time.
  • the transport task generation unit 112 thereafter ends the process of this flowchart.
  • Fig. 14 (b) is a diagram showing an outline of adjustment of the transportation task.
  • the vehicle A is the target vehicle 202 and the vehicle B is another vehicle 202 related to the combination.
  • the transportation task of the vehicle A can be allocated to the vehicle B. That is, instead of the vehicle A, the vehicle B carries it.
  • step S1305. the repair task generation unit 113 determines that the other vehicle 202 cannot execute the transportation task (in the case of “no” in step S1308), the repair task generation unit 113 specifies the combination specified in step S1305. Is finished (step S1311). Thereafter, the repair task generation unit 113 returns the process to step S1305. As a result, among the combinations other than the combinations that have been identified in step S1311, the latest combination is identified in step S1305.
  • FIG. 15 is a diagram illustrating an example of a scheduling process for predictive maintenance.
  • the vehicle A is the target vehicle 202
  • the vehicle B is another vehicle 202 belonging to the same transportation company 201 as the vehicle A
  • the maintenance company C is a maintenance company information 153 in advance as a company that maintains the vehicle A. Is a maintenance company 203 stored in Maintenance company C can maintain up to two vehicles per day.
  • a period from when a signal value equal to or greater than the second threshold is calculated (that is, when an abnormality is detected) until the remaining life related to the signal value is exhausted is treated as a travelable period.
  • the repair task generation unit 113 extracts the vacant time of the maintenance company 203 during the travelable period. As a result, “r1”, “r2”, “r3”, “r4”, and “r5” are extracted as information indicating the maintenance candidate time.
  • the repair task generation unit 113 extracts the vacant time of the target vehicle 202 during the travelable period.
  • the square of the maintenance company 203 indicates the presence / absence of the maintenance planned vehicle 202 per day.
  • “T1” of the vehicle A is 1.5 times as large as one square of the maintenance company 203, which indicates that the transportation task “t1” takes 1.5 days.
  • the repair task generation unit 113 does not regard an empty time less than a predetermined period (for example, one day) as an empty time. In the example shown in FIG. 15, since the vehicle A does not have a free time of one day in the travelable period, the repair task generation unit 113 does not extract the free time of the target vehicle 202.
  • the repair task generation unit 113 extracts a free time of the other vehicle 202 during the travelable period.
  • the repair task generation unit 113 extracts “b1” and “b2” as information indicating the vacant time of the travelable period of the vehicle B.
  • the repair task generation unit 113 extracts a combination of a free time of the maintenance company 203 and a free time of the target vehicle 202 or another vehicle 202. As a result, a combination of “r1: b1”, “r4: b2”, and “r5: b2” is extracted.
  • the repair task generation unit 113 identifies the latest combination among the extracted combinations. As a result, the combination of “r5: b2” that is the latest combination is identified.
  • the transportation task of the vehicle A corresponding to the time according to the combination is “t4”.
  • the transportation task generation unit 112 refers to the transportation task information 158 of “t4” and determines whether or not the vehicle B can execute the transportation task.
  • the repair task generation unit 113 specifies the time corresponding to “r5: b2” as the maintenance time, generates repair task information 159, and the vehicle A Stored in the vehicle calendar 156 and the maintenance company calendar 157 of the maintenance company C.
  • the transportation task generation unit 112 generates transportation task information 158 so that the vehicle B executes the transportation task of “t4”, and stores it in the vehicle calendar 156 of the vehicle B.
  • step S317 the control unit 110 advances the virtual clock by one hour (step S317).
  • step S305 the process returns to step S305 in step S318, and the processes from step S306 to step S316 are repeated with the virtual clock advanced by one hour. Note that, as a result of repeated processing, when the simulation end time input as the simulation condition is reached, the control unit 110 advances the processing to step S319.
  • the tally calculation unit 117 performs tally calculation processing (step S319). Specifically, the total calculation unit 117 calculates the transportation fee using the transportation task information 158 and calculates the maintenance fee using the repair task information 159. Prior to the start of this process, the control unit 110 accepts designation of the shipping company 201 or the maintenance company 203 that is the target for generating maintenance plan evaluation information.
  • the aggregation calculation unit 117 performs the maintenance plan evaluation information generation request period in the vehicle calendar 156 of the vehicle 202 of the designated shipping company 201.
  • the designated transportation fee is calculated.
  • the total calculation unit 117 calculates a transportation fee according to, for example, the transportation distance and the load weight.
  • the total calculation unit 117 calculates a transportation fee by adding a weight addition fee of 100 yen per transportation distance of 1 km and 1 ton of luggage weight to a basic fee of 100 yen per transportation distance of 1 km.
  • the transport distance and the weight of the package can be specified by referring to the transport task information 158.
  • the transportation charge will be 100000 yen It becomes.
  • the calculated transportation fee is handled as revenue for the transportation company 201.
  • the total calculation unit 117 calculates the fuel consumption.
  • the fuel consumption is calculated using, for example, the fuel consumption, which is the travel distance per liter of fuel, and the price per liter of fuel.
  • the total calculation unit 117 may calculate a cost caused by using the expressway or the like. The fuel consumption is handled as an expense for the shipping company 201.
  • the total calculation unit 117 records the total operation cost of the driver obtained by multiplying the operation cost per unit time stored in the area (not shown) of the storage unit 150 by the operating time as an expense. May be. Moreover, the total calculation unit 117 may record a predetermined service fee as an expense for each piece of information specifying the service company 204 input as the simulation condition.
  • the transportation fee may be calculated by multiplying the average amount per unit quantity of transportation tasks by the amount of transportation tasks executed within the maintenance plan evaluation information generation request period.
  • the total calculation unit 117 calculates the maintenance fee by referring to the repair task information 159 assigned to the maintenance plan evaluation information generation request period in the maintenance company calendar 157.
  • the total calculation unit 117 specifies the menu price per unit time of the maintenance company 203 by referring to the maintenance company information 153, for example, and calculates the maintenance fee by multiplying the time required for the maintenance.
  • the maintenance fee is treated as an expense for the shipping company 201 and treated as a profit for the maintenance company 203.
  • the total calculation unit 117 calculates maintenance costs.
  • the total calculation unit 117 specifies the actual work cost per unit time of the maintenance company 203 by referring to the maintenance company information 153, for example, and calculates the total work cost by multiplying the time required for maintenance.
  • the total calculation unit 117 calculates the maintenance cost by adding the price of the parts required for the maintenance and the total work cost.
  • the maintenance cost is handled as a cost for the maintenance company 203.
  • the maintenance plan evaluation unit 116 performs maintenance plan evaluation information including the operation rate of the vehicle 202 and the maintenance company 203, maintenance plan evaluation information including the schedule of the vehicle 202, and transportation.
  • Maintenance plan evaluation information indicating the state of capacity consumption of the company 201 or the maintenance company 203 can be generated.
  • the maintenance plan evaluation unit 116 determines the type of maintenance plan evaluation information to be generated and the transportation company 201 or maintenance company to be subjected to the maintenance plan evaluation before the processing in step S319.
  • the display instruction specifying 203 is received.
  • the tabulation calculation unit 117 uses the travel time of the transportation task of the vehicle 202 possessed by the transportation company 201 specified in the display instruction in step S319. A certain operation time, a transportation time, a maintenance time that is a time required for maintenance, and a downtime that is a period during which the vehicle 202 cannot travel are calculated.
  • the total calculation unit 117 calculates the ratio of the number of maintenance units per unit time to the number of maintenance available in the maintenance company as the operation rate.
  • the total calculation unit 117 When the display instruction of the maintenance plan evaluation information indicating the state of capacity consumption of the shipping company 201 is received, the total calculation unit 117 indicates the operating state of the vehicle 202 of the shipping company 201 during the maintenance plan evaluation information generation request period. Calculate capacity consumption. The total calculation unit 117 calculates the number of operating vehicles per unit time (for example, one day) in the generation request period, for example.
  • the total calculation unit 117 calculates the capacity consumption indicating the operation state of the maintenance company 203 during the maintenance plan evaluation information generation request period. calculate. For example, the total calculation unit 117 calculates the number of maintenance vehicles (that is, the number of repair tasks) per unit time (for example, one day) in the generation request period.
  • the maintenance plan evaluation unit 116 causes the output unit 130 to output maintenance plan evaluation information (step S320). Specifically, the maintenance plan evaluation unit 116 generates display information of a maintenance plan evaluation screen that displays the transportation fee and the maintenance fee as the maintenance plan evaluation information, and causes the output unit 130 to output the display information. The maintenance plan evaluation unit 116 then ends the process of this flowchart.
  • FIG. 16 is a diagram showing an example of a maintenance plan evaluation screen.
  • FIG. 16A shows the case where the simulation conditions are input to the designated transportation company 201 so as to perform predictive maintenance on all of the vehicles 202 of the transportation company 201, and periodic maintenance is performed on the vehicle 202.
  • the maintenance plan evaluation screen including the cost and revenue is not limited to the cost and revenue of the shipping company 201.
  • the cost and revenue of the maintenance company 203 may be used.
  • FIG. 16B is a diagram illustrating an example of a maintenance plan evaluation screen when an instruction to display a maintenance plan evaluation screen indicating the operation rate of the vehicle 202 is received.
  • FIG. 16B shows a case where simulation conditions are input to the designated transportation company 201 so that all of the vehicles 202 of the transportation company 201 are subjected to predictive maintenance, and periodic maintenance is performed on the vehicle 202.
  • the simulation condition is input so as to be performed
  • the simulation condition is input so that the vehicle 202 is repaired without performing the regular maintenance and the predictive maintenance.
  • the maintenance plan evaluation screen which displays the operation rate which is the ratio with respect to the production
  • the operating rate may be displayed using a pie chart.
  • the operation rate may be a ratio of the operation time, the transportation time, the maintenance time, and the down time to the travelable period.
  • the maintenance plan evaluation unit 116 when a display instruction for maintenance plan evaluation information specifying the operation rate of the maintenance company 203 is received, the maintenance plan evaluation unit 116 generates maintenance plan evaluation information indicating the calculated operation rate of the maintenance company 203, and outputs an output unit. Output via.
  • FIG. 17 is a diagram illustrating an example of a maintenance plan evaluation screen including a schedule of the vehicle 202 possessed by the shipping company 201.
  • the maintenance plan evaluation unit 116 refers to the vehicle calendar 156 of the vehicle 202 possessed by the designated transportation company 201, and shows a maintenance plan indicating the execution status of the transportation task and the repair task of each vehicle 202 during the maintenance plan evaluation information generation request period. Generate an evaluation screen.
  • FIG. 17 is a diagram showing a Gantt chart of the vehicle 202, in which the horizontal axis represents the time axis and the vertical axis represents the vehicle 202.
  • the Gantt chart shows the operation schedule of the vehicle.
  • a black square 601 indicates the amount of the transportation task, and a white square 602 indicates the amount of the repair task.
  • FIG. 18 is a diagram showing an example of a maintenance plan evaluation screen showing the state of capacity consumption.
  • FIG. 18A is an example of a maintenance plan evaluation screen showing the capacity consumption state of the shipping company 201.
  • the horizontal axis represents the time axis
  • the vertical axis represents the amount of transportation tasks executed by the transportation company 201.
  • a black square 701 indicates a state where there is a transportation task.
  • the maintenance plan evaluation unit 116 uses the number of operating vehicles per unit time calculated by the total calculation unit 117 to generate a maintenance plan evaluation screen showing the capacity consumption state of the shipping company 201.
  • FIG. 18B is an example of a maintenance plan evaluation screen showing a state of capacity consumption of the maintenance company 203.
  • the horizontal axis is the time axis
  • the vertical axis is the amount of repair tasks executed by the maintenance company 203.
  • a black square 702 indicates a state where there is a repair task.
  • the maintenance plan evaluation unit 116 uses the repair task amount per unit time calculated by the total calculation unit 117 to generate a maintenance plan evaluation screen indicating the capacity consumption state of the maintenance company 203.
  • information indicating the upper limit value of the number of vehicles that can be maintained by the maintenance company 203 may be displayed on the maintenance plan evaluation screen that indicates the state of capacity consumption of the maintenance company 203.
  • the limitation due to the capability of the maintenance company 203 is not considered in the scheduling of the repair task. Therefore, the capacity of the maintenance company 203 required by the shipping company 201, that is, the amount of repair tasks per unit time required to be executed by the shipping company 201 can be recognized.
  • the difference in revenue and expense depending on the maintenance method of the vehicle 202 can be recognized from the maintenance plan evaluation information generated in the present embodiment. This makes it possible to appropriately perform maintenance plan evaluation by the maintenance method. Further, by generating maintenance plan evaluation information including the operation rate of the vehicle 202, it is possible to recognize a difference in required time depending on the maintenance method. In that case, if the maintenance plan evaluation information indicating the schedule of the vehicle 202 is displayed, the schedule of the vehicle 202 in the generation request period can be recognized.
  • the abnormality detection unit 114 of the vehicle maintenance planning apparatus 1 in the present modification generates erroneous state information by using a predetermined mathematical formula for the state information.
  • the repair task generation unit 113 generates repair task information 159 according to the combination of the state information and the erroneous state information.
  • FIG. 19 is a diagram for explaining the problem of error in abnormality detection.
  • FIG. 19A is a diagram related to the vehicle 202 having a system in which the state information indicating “emergency” is specified even though there is no malfunction. Since the status information indicating “emergency” has been identified, the repair task generation unit 113 generates repair task information 159 for which predictive maintenance is scheduled in the spare time of the maintenance company 203 by the remaining life of the system.
  • the transportation task generation unit 112 cancels the transportation task of the vehicle 202.
  • the notification indicating that the predictive maintenance is performed which is transmitted from the service company 204 to the shipping company 201, is considered to be “false information”.
  • the shipping company 201 cannot obtain a profit due to the execution of the transportation task for the vehicle 202 to be maintained, and an inspection cost is also generated for the maintenance company 203. Therefore, the loss caused by the false alarm cannot be overlooked.
  • FIG. 19B is a diagram related to the vehicle 202 having a system in which the state information indicating “emergency” is not specified in spite of a defect.
  • the system fails, and the transportation task assigned to the vehicle 202 having the system must be interrupted.
  • “predictive maintenance” was necessary, “emergency” status information was not generated, so it is considered that there was “missing” in abnormality detection.
  • the cost paid by the transportation company 201 becomes higher. Since the transportation company 201 cannot assign a transportation task to the vehicle 202 during the downtime, an opportunity loss of the transportation task execution due to oversight occurs. In addition, there is a possibility that an unexpected loss such as a fine may occur due to interruption of the carrying task being executed.
  • FIG. 20 is a diagram showing an outline of the false alarm missing error determination process. This figure is used to explain the concept of false alarm miss error determination. Although this figure has shown the actual condition which performs the false report miss error determination in the service company 204, the vehicle maintenance planning apparatus 1 simulates the process in this figure in simulation.
  • the service company 204 monitors the vehicle 202 of the transportation company 201 with which the contract is made in advance, and is generated from a sensor installed to detect the state of each system of the vehicle 202.
  • the received signal value is received (step S1301).
  • the service company 204 determines an abnormal state using the signal value (step S1302).
  • the abnormal state determination process in step S1302 includes a true determination process (step S1501) and an erroneous state information generation process (step S1502).
  • the true determination process is the same as the process performed in step S1222 shown in FIG.
  • the state information of each system of the target vehicle 202 is specified.
  • the state information specified as a result of the true determination process will be described as “true state information”.
  • the service company 204 In the erroneous state information generation process, the service company 204 generates erroneous state information using the true state information and notifies the shipping company 201 of the erroneous state information (step S1303). In addition, the service company 204 notifies the maintenance company 203 of erroneous state information (step S1304).
  • the processing performed in steps S1305 and S1306 is the same as the processing performed in steps S1225 and S1226 shown in FIG.
  • the abnormal state determination process (step S1302) in the service company 204 corresponds to the abnormality detection process (step S315 shown in FIG. 5) performed in the vehicle maintenance planning apparatus 1. Similar to the above-described embodiment, the abnormality detection unit 114 of the vehicle maintenance planning device 1 specifies the state information for each system using the signal value acquired by the signal value acquisition unit 115. The specified state information is handled as true state information.
  • Equation (11) is a matrix representation and satisfies Equation (12).
  • the index i of the lower right subscript is true state information
  • the index j of the upper right subscript is an index for specifying erroneous state information.
  • the value of the index j is an identification number that identifies erroneous state information.
  • false P i j means the cumulative error probability related to the erroneously abnormal state
  • false P i 4 1 as in equation (12).
  • FIG. 21 is a diagram illustrating an example of a correspondence table of meanings of abnormality detection and predictive maintenance for a combination of true state information and erroneous state information.
  • the true state information is “Critical”
  • the system is treated as a failure regardless of the erroneous state information.
  • the erroneous state information is “Critical”
  • it is not handled as a failure unless the true state information is “Critical”, and is handled as “Urgent”.
  • the true state information is “Normal” but the false state information is “Alert” or “Urgent”, it is considered to be a false alarm and no maintenance is required. And handle.
  • the true state information is “Alert” or “Urgent” but the erroneous state information is “Normal”, it is assumed that an oversight has occurred, and predictive maintenance is performed.
  • the true state information is “Alert” or “Urgent” and the erroneous state information matches the true state information, it is handled that the correct determination is made.
  • the maintenance task information 159 is generated by specifying the maintenance to be executed in accordance with the combination of the true state information and the erroneous state information, and stored in the corresponding vehicle calendar 156 and maintenance company calendar 157.
  • maintenance plan evaluation information that takes into account the effect of error determination on maintenance plan evaluation is generated by calculating a transportation fee and a maintenance fee for each error determination combination. Can do.
  • the functional configuration of the vehicle maintenance planning apparatus 1 is classified according to the main processing contents in order to facilitate understanding.
  • the present invention is not limited by the way of classification and names of the constituent elements.
  • the configuration of the vehicle maintenance planning apparatus 1 can be classified into more components depending on the processing content. Moreover, it can also classify
  • SYMBOLS 1 Vehicle maintenance plan apparatus, 110: Control part, 111: Condition information acquisition part, 112: Transportation task generation part, 113: Repair task generation part, 114: Abnormality detection part, 115: Signal value acquisition part, 116: Maintenance plan Evaluation unit, 117: Total calculation unit, 120: Input unit, 130: Output unit, 140: Communication unit, 150: Storage unit, 151: Transportation company information, 152: Vehicle information, 153: Maintenance company information, 154: Management standard Information: 155: Degradation function information, 156: Vehicle calendar, 157: Maintenance company calendar, 158: Transportation task information, 159: Repair task information, 160: Maintenance content information, 161: Parts information, 162: Maintenance company parts inventory information, 163: state quantity information, 171: CPU, 172: RAM, 173: ROM, 174: auxiliary storage device, 175: output device, 176: input device 177: Media reader 178: Communication device 201: Transportation company 202: Vehicle 203: Maintenance company 204: Service

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The purpose of the present invention is to provide a technology for appropriately evaluating a maintenance plan from an event associated with an operation of a vehicle. A vehicle maintenance plan device is characterized by being provided with: a condition information acquisition unit for acquiring transportation company information in which a transportation company and one or a plurality of vehicles are associated, servicing company information in which a servicing company and the vehicle are associated, and vehicle information in which the vehicle and one or a plurality of systems and servicing methods are associated; a transportation task generation unit for generating transportation task information to be allocated to the transportation company; a signal value acquisition unit for calculating a signal value for each system of the vehicle by using the transportation task information; a repair task generation unit for generating repair task information relating to the servicing of the vehicle by using the servicing method and the signal value, and allocating the repair task information to the servicing company; a sum calculation unit for calculating a transportation fee by using the transportation task information and a servicing fee by using the repair task information; a maintenance plan evaluation unit for generating maintenance plan evaluation information including the transportation fee and the servicing fee; and an output unit for outputting the maintenance plan evaluation information.

Description

車両保守計画装置、及び車両保守計画評価方法Vehicle maintenance plan device and vehicle maintenance plan evaluation method
 本発明は、車両保守計画装置、及び車両保守計画評価方法に関する。本発明は2017年4月26日に出願された日本国特許の出願番号2017-087225の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a vehicle maintenance planning apparatus and a vehicle maintenance plan evaluation method. The present invention claims the priority of Japanese Patent Application No. 2017-087225 filed on April 26, 2017, and for the designated countries where weaving by reference is allowed, the contents described in the application are as follows: Is incorporated into this application by reference.
 特許文献1には、作業機械の機器診断装置に関する技術が開示されている。同文献の段落[0031]には、「データ判定部101は、機器情報121が入力されているかを判定する(S201)。機器情報121が入力されている場合には、動作条件データ記憶部111aを参照して機器情報121の動作条件情報と一致する動作条件情報があるか否かを判定する(S202)。一致するものが検出された場合には、入力された機器情報121を状態診断部103に出力し、状態診断部103では、診断データベース111を参照して機器情報121の診断を行い(S203)、診断結果を外部の表示装置等に出力する(S204)。」と記載されている。なお、例えば同文献の段落[0116]には、「エンジン40の性能が低下すると、エンジン回転数が下がる。したがって、エンジン回転数を監視することによりエンジン40の性能低下(異常)を診断することができる。」と記載されている。 Patent Document 1 discloses a technique related to a device diagnosis apparatus for work machines. In paragraph [0031] of the document, “the data determination unit 101 determines whether the device information 121 has been input (S201). If the device information 121 has been input, the operation condition data storage unit 111a. In step S202, it is determined whether there is operation condition information that matches the operation condition information in the device information 121. If a match is detected, the input device information 121 is used as a status diagnosis unit. The state diagnosis unit 103 performs diagnosis of the device information 121 with reference to the diagnosis database 111 (S203), and outputs the diagnosis result to an external display device or the like (S204). " . For example, in paragraph [0116] of the same document, “When the performance of the engine 40 decreases, the engine speed decreases. Therefore, the performance decrease (abnormality) of the engine 40 is diagnosed by monitoring the engine speed. Is possible. "
特許第5227957号Patent No. 5227957
 運送に用いられる車両は、稼働することで利益を生むが、同時に劣化が生じる。運送会社にとって、稼働によって生じる費用と収益とをシミュレーションし、保守計画を評価することが望ましい。また他方において、車両の整備会社にとっても、車両の劣化から生じる収益や費用をシミュレーションし、保守計画の評価に用いることが望まれる。 Vehicles used for transportation generate profits by operating, but at the same time deteriorate. It is desirable for shipping companies to simulate maintenance costs and revenues and evaluate maintenance plans. On the other hand, it is also desirable for vehicle maintenance companies to simulate revenues and expenses resulting from vehicle deterioration and use them in the evaluation of maintenance plans.
 本発明は、上記の点に鑑みてなされたものであって、車両の稼働に伴う事象から適切にビジネスを評価する技術の提供を目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a technique for appropriately evaluating a business from an event accompanying operation of a vehicle.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。 The present application includes a plurality of means for solving at least a part of the above-described problems, and examples thereof are as follows.
 上記課題を解決するため、本発明の一態様に係る車両保守計画装置は、運送会社と1又は複数の車両とを関連付けた運送会社情報と、整備会社と整備を行う前記車両とを関連付けた整備会社情報と、前記車両と当該車両の有する1又は複数の系統及び整備方式とを関連付けた車両情報と、を取得する条件情報取得部と、前記運送会社に割り当てる運送タスク情報を生成する運送タスク生成部と、前記運送タスク情報を用いて前記車両の系統毎に信号値を算出する信号値取得部と、前記整備方式及び前記信号値を用いて前記車両の整備に関する修理タスク情報を生成し、前記整備会社に割り当てる修理タスク生成部と、前記運送タスク情報を用いて運送料金を算出するとともに、前記修理タスク情報を用いて整備料金を算出する集計計算部と、前記運送料金及び前記整備料金を含む保守計画評価情報を生成する保守計画評価部と、前記保守計画評価情報を出力する出力部と、を備えることを特徴とする。 In order to solve the above-described problem, a vehicle maintenance planning apparatus according to an aspect of the present invention relates to a transportation company information that associates a transportation company with one or a plurality of vehicles, and a maintenance that associates the maintenance company with the vehicle that performs maintenance. A condition information acquisition unit that acquires company information, vehicle information that associates the vehicle with one or more systems and maintenance methods of the vehicle, and a transport task generation that generates transport task information to be allocated to the transport company A signal value acquisition unit that calculates a signal value for each system of the vehicle using the transport task information, and generates repair task information related to maintenance of the vehicle using the maintenance method and the signal value, A repair task generation unit to be assigned to a maintenance company, a calculation unit that calculates a transportation fee using the transportation task information, and calculates a maintenance fee using the repair task information; Said transportation charge and the maintenance plan to generate a maintenance plan evaluation information including the maintenance fee evaluation unit, characterized in that it comprises an output unit for outputting the maintenance plan evaluation information.
 また、本発明の他の態様に係る車両保守計画評価方法は、車両保守計画装置が行う車両保守計画評価方法であって、前記車両保守計画装置は、条件情報取得部と、運送タスク生成部と、信号値取得部と、修理タスク生成部と、集計計算部と、保守計画評価部と、出力部と、を備え、前記条件情報取得部は、運送会社と1又は複数の車両とを関連付けた運送会社情報と、整備会社と整備を行う前記車両とを関連付けた整備会社情報と、前記車両と当該車両の有する1又は複数の系統及び整備方式とを関連付けた車両情報と、を取得する条件情報取得手順を実行し、前記運送タスク生成部は、前記運送会社に割り当てる運送タスク情報を生成する運送タスク生成手順を実行し、前記信号値取得部は、前記運送タスク情報を用いて前記車両の系統毎に該系統の信号値を算出する信号値取得手順を実行し、前記修理タスク生成部は、前記整備方式及び前記信号値を用いて前記車両の整備に関する修理タスク情報を生成し、前記整備会社に割り当てる修理タスク生成手順を実行し、前記集計計算部は、前記運送タスク情報を用いて運送料金を算出するとともに、前記修理タスク情報を用いて整備料金を算出する集計計算手順を実行し、前記保守計画評価部は、前記運送料金及び前記整備料金を含む保守計画評価情報を生成する保守計画評価手順を実行し、前記出力部は、前記保守計画評価情報を出力する表示手順を実行することを特徴とする。 A vehicle maintenance plan evaluation method according to another aspect of the present invention is a vehicle maintenance plan evaluation method performed by a vehicle maintenance planning device, the vehicle maintenance planning device including a condition information acquisition unit, a transportation task generation unit, A signal value acquisition unit, a repair task generation unit, a total calculation unit, a maintenance plan evaluation unit, and an output unit, wherein the condition information acquisition unit associates the shipping company with one or more vehicles. Condition information for acquiring shipping company information, maintenance company information associating the maintenance company with the vehicle to be maintained, and vehicle information associating the vehicle with one or more systems and maintenance methods of the vehicle. An acquisition procedure is executed, the transportation task generation unit executes a transportation task generation procedure for generating transportation task information assigned to the transportation company, and the signal value acquisition unit uses the transportation task information to The repair task generation unit generates repair task information relating to the maintenance of the vehicle using the maintenance method and the signal value, and calculates the signal value acquisition procedure for calculating the signal value of the system to the maintenance company. The repair task generation procedure to be allocated is executed, and the total calculation unit calculates a transportation fee using the transport task information, and executes a total calculation procedure for calculating a maintenance fee using the repair task information, The plan evaluation unit executes a maintenance plan evaluation procedure for generating maintenance plan evaluation information including the transportation fee and the maintenance fee, and the output unit executes a display procedure for outputting the maintenance plan evaluation information. And
 本発明によれば、車両の稼働に伴う事象から適切にビジネスを評価することができる。 According to the present invention, it is possible to appropriately evaluate a business from an event accompanying the operation of a vehicle.
 上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
車両保守計画システムの概要を説明するための図である。It is a figure for demonstrating the outline | summary of a vehicle maintenance plan system. 車両保守計画装置の機能ブロック図の一例を示す図である。It is a figure which shows an example of the functional block diagram of a vehicle maintenance planning apparatus. 系統の一例を示す図である。It is a figure which shows an example of a system | strain. 車両保守計画装置のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of a vehicle maintenance planning apparatus. シミュレーション処理の一例を示すフローチャートである。It is a flowchart which shows an example of a simulation process. シミュレーション条件入力画面の一例を示す図である。It is a figure which shows an example of a simulation condition input screen. 運送タスクの概要の一例を示す図である。It is a figure which shows an example of the outline | summary of a transportation task. 始点及び終点の設定方法の一例を説明するための図である。It is a figure for demonstrating an example of the setting method of a starting point and an end point. 1日間に1つの運送タスク情報が割り当てられている場合のスケジューリングの一例を示す。An example of scheduling when one transport task information is assigned in one day is shown. 3日間に1つの運送タスク情報が割り当てられている場合のスケジューリングの一例を示す。An example of scheduling when one transportation task information is assigned for three days is shown. 異常検知処理及び予知メンテナンススケジューリング処理の概要を示す図であるIt is a figure which shows the outline | summary of an abnormality detection process and a prediction maintenance scheduling process. 予知メンテナンスの概要を説明するための図(その1)である。It is FIG. (1) for demonstrating the outline | summary of predictive maintenance. 修理タスク生成部により実行される予知メンテナンスのスケジューリング処理の一例を示すフローチャートである。It is a flowchart which shows an example of the scheduling process of the predictive maintenance performed by the repair task production | generation part. 予知メンテナンスの概要を説明するための図(その2)である。It is FIG. (2) for demonstrating the outline | summary of predictive maintenance. 予知メンテナンスのスケジューリング処理の一例を示す図である。It is a figure which shows an example of the scheduling process of predictive maintenance. 保守計画評価画面の一例を示す図である。It is a figure which shows an example of a maintenance plan evaluation screen. 運送会社の有する車両の予定を含む保守計画評価画面の一例を示す図である。It is a figure which shows an example of the maintenance plan evaluation screen containing the schedule of the vehicle which a shipping company has. 能力消費の状態を示す保守計画評価画面の一例を示す図である。It is a figure which shows an example of the maintenance plan evaluation screen which shows the state of capability consumption. 異常検知の誤りの問題点を説明するための図である。It is a figure for demonstrating the problem of the error of abnormality detection. 虚報見逃し誤り判定処理の概要を示す図である。It is a figure which shows the outline | summary of a false report miss error determination process. 真状態情報と誤状態情報の組合せに対する、異常検知と予知メンテナンスの意味の対応表の一例を示す図である。It is a figure which shows an example of the correspondence table of the meaning of abnormality detection and the prediction maintenance with respect to the combination of true state information and error state information.
 以下、図面に基づいて本発明の実施形態の例を説明する。図1は、車両保守計画システムの概要を説明するための図である。車両保守計画システムは、車両202を有する運送会社201と、整備会社203と、サービス会社204と、を含む事業体により相互に提供されるサービスを評価するために用いられる。 Hereinafter, an example of an embodiment of the present invention will be described based on the drawings. FIG. 1 is a diagram for explaining an outline of a vehicle maintenance planning system. The vehicle maintenance planning system is used to evaluate services mutually provided by business entities including a transportation company 201 having a vehicle 202, a maintenance company 203, and a service company 204.
 運送会社201は、運送業務を請け負う会社であって、1又は複数の車両202を有している。車両202は、いずれかの運送会社201に所属し、運送業務を行う。整備会社203は、車両202を整備する会社である。サービス会社204は、各車両202の劣化状況を監視し、劣化状況を該車両202の属する運送会社201に通知するサービスを行っている。 The transportation company 201 is a company that undertakes transportation work, and has one or a plurality of vehicles 202. The vehicle 202 belongs to one of the transportation companies 201 and performs transportation work. The maintenance company 203 is a company that maintains the vehicle 202. The service company 204 performs a service of monitoring the deterioration status of each vehicle 202 and notifying the shipping company 201 to which the vehicle 202 belongs.
 運送会社201が運送業務を請け負うと、いずれかの車両202に運送業務を割り当てる。車両202の行う運送業務は、車両202が運送会社201を出発した時に開始し、引取地(始点)で荷物を受け取り、目的地(終点)まで運送し、運送会社201に帰社することで終了する。 When the transportation company 201 undertakes a transportation business, the transportation business is assigned to one of the vehicles 202. The transportation work performed by the vehicle 202 starts when the vehicle 202 leaves the transportation company 201, receives the package at the pick-up location (start point), transports it to the destination (end point), and ends by returning to the transportation company 201. .
 運送会社201は、各車両202に対し複数の整備方式のうち少なくとも1つの整備方式を採用している。整備方式は、例えば定期メンテナンス、予知メンテナンス、又は修理である。定期メンテナンスは、定期的に車両202を整備会社203に整備させる整備方式である。予知メンテナンスは、サービス会社204と契約し、該運送会社201の有する車両202について算出された信号値が所定値以上である場合に、整備会社203に整備させる整備方式である。修理は、故障した車両202を事後的に整備会社203に整備させる整備方式である。運送会社201は、例えば車両202毎に、採用する整備方式を特定している。 The shipping company 201 employs at least one maintenance method among a plurality of maintenance methods for each vehicle 202. The maintenance method is, for example, regular maintenance, predictive maintenance, or repair. Periodic maintenance is a maintenance method in which the maintenance company 203 periodically maintains the vehicle 202. Predictive maintenance is a maintenance method in which the maintenance company 203 performs maintenance when a contract is made with the service company 204 and the signal value calculated for the vehicle 202 of the transportation company 201 is greater than or equal to a predetermined value. The repair is a maintenance method in which the maintenance company 203 repairs the failed vehicle 202 later. The shipping company 201 specifies a maintenance method to be adopted for each vehicle 202, for example.
 図示しない車両保守計画装置は、運送会社201の有する車両202や、車両202を整備する整備会社203、車両202に採用される整備方式等を特定したシミュレーション条件の入力を受け付ける。車両保守計画装置は、始点、終点及び荷物の重量に関する情報を含む運送タスク情報を生成し、各車両202に割り当てる。車両保守計画装置は、各車両202が運送タスク情報に係る運送タスクを実行した場合の車両202の劣化度を算出し、運送料金や整備料金を算出する。車両保守計画装置は、該運送料金及び整備料金を含む保守計画評価情報を出力する。 A vehicle maintenance planning apparatus (not shown) receives an input of simulation conditions specifying a vehicle 202 possessed by the transportation company 201, a maintenance company 203 that maintains the vehicle 202, a maintenance method that is employed in the vehicle 202, and the like. The vehicle maintenance planning device generates transport task information including information regarding the start point, the end point, and the weight of the load, and assigns it to each vehicle 202. The vehicle maintenance planning device calculates the degree of deterioration of the vehicle 202 when each vehicle 202 executes the transportation task related to the transportation task information, and calculates the transportation fee and the maintenance fee. The vehicle maintenance planning device outputs maintenance plan evaluation information including the transportation fee and the maintenance fee.
 これにより、車両202の整備に関する契約内容や、受け付ける運送タスクの状況に応じて、運送会社201や整備会社203等の費用や収益を含む保守計画評価を適切に行うことが可能となる。 This makes it possible to appropriately perform maintenance plan evaluation including expenses and profits of the transportation company 201, the maintenance company 203, etc., according to the contract contents related to the maintenance of the vehicle 202 and the status of the transportation task to be accepted.
 図2は、車両保守計画装置1の機能ブロック図の一例を示す図である。車両保守計画装置1は、PC、サーバーコンピュータ、又はスマートフォン等の情報処理装置である。車両保守計画装置1は、シミュレーションを行うサービスを提供する事業者の管理範囲内に設置される。 FIG. 2 is a diagram illustrating an example of a functional block diagram of the vehicle maintenance planning apparatus 1. The vehicle maintenance planning device 1 is an information processing device such as a PC, a server computer, or a smartphone. The vehicle maintenance planning device 1 is installed within a management range of a business provider that provides a service for performing a simulation.
 車両保守計画装置1は、制御部110と、入力部120と、出力部130と、通信部140と、記憶部150と、を備える。制御部110は、車両保守計画装置1全体を統括的に制御する。入力部120は、キーボードやタッチパネル等の後述する入力装置を介して、情報の入力を受け付ける。出力部130は、後述する出力装置を介して情報の出力を行う。例えば、出力部130は、保守計画評価情報をディスプレイ等の表示装置に表示させる。通信部140は、ネットワークを介して接続される他の端末装置との間で情報の受信や送信を行う。 The vehicle maintenance planning apparatus 1 includes a control unit 110, an input unit 120, an output unit 130, a communication unit 140, and a storage unit 150. The control unit 110 comprehensively controls the entire vehicle maintenance planning apparatus 1. The input unit 120 receives input of information via an input device described later such as a keyboard or a touch panel. The output unit 130 outputs information via an output device described later. For example, the output unit 130 displays maintenance plan evaluation information on a display device such as a display. The communication unit 140 receives and transmits information with other terminal devices connected via a network.
 制御部110は、条件情報取得部111と、運送タスク生成部112と、修理タスク生成部113と、異常検知部114と、信号値取得部115と、保守計画評価部116と、集計計算部117と、を備える。条件情報取得部111は、車両保守サービスのシミュレーションに用いる各情報を、例えば通信部140を介して接続された他の端末装置から取得する。条件情報取得部111は、入力部120を介して情報を取得してもよい。条件情報取得部111は、取得した情報を記憶部150に記憶させる。 The control unit 110 includes a condition information acquisition unit 111, a transport task generation unit 112, a repair task generation unit 113, an abnormality detection unit 114, a signal value acquisition unit 115, a maintenance plan evaluation unit 116, and a total calculation unit 117. And comprising. The condition information acquisition unit 111 acquires each information used for the simulation of the vehicle maintenance service from, for example, another terminal device connected via the communication unit 140. The condition information acquisition unit 111 may acquire information via the input unit 120. The condition information acquisition unit 111 stores the acquired information in the storage unit 150.
 また、条件情報取得部111は、入力部120又は通信部140を介して入力されたシミュレーション条件を取得する。シミュレーション条件については後述する。 Also, the condition information acquisition unit 111 acquires simulation conditions input via the input unit 120 or the communication unit 140. The simulation conditions will be described later.
 運送タスク生成部112は、各車両202に割り当てる運送タスクに関する運送タスク情報を生成する。詳細は後述するが、運送タスク情報には、例えば荷物の引取地と、目的地と、荷物の重量とが特定されている。一例として、運送タスク生成部112は、引取地を示す始点座標と、目的地を示す終点座標と、荷物の重量と、の少なくとも1つに対し一様乱数を用い、運送タスク情報を生成する。 The transportation task generation unit 112 generates transportation task information related to the transportation task assigned to each vehicle 202. Although details will be described later, in the transportation task information, for example, the collection location, the destination, and the weight of the package are specified. As an example, the transport task generation unit 112 generates transport task information using a uniform random number for at least one of a start point coordinate indicating a pick-up location, an end point coordinate indicating a destination, and the weight of a package.
 なお、引取地及び目的地を示す情報の代わりに、走行距離を示す情報が運送タスク情報に含まれていてもよい。また、運送タスク情報に含まれる目的地、引取地及び荷物の重量は、入力部120又は通信部140を介して入力されてもよい。運送タスク生成部112は、生成した運送タスク情報を記憶部150に記憶させる。 It should be noted that information indicating the travel distance may be included in the transport task information instead of the information indicating the pickup location and the destination. In addition, the destination, the pickup location, and the weight of the package included in the transport task information may be input via the input unit 120 or the communication unit 140. The transportation task generation unit 112 stores the generated transportation task information in the storage unit 150.
 また、運送タスク生成部112は、生成した運送タスク情報を車両202に割り当てる。具体的には、運送タスク生成部112は、運送タスク情報を後述の車両カレンダーの空き領域に割り当て、車両カレンダーを更新する。 Also, the transportation task generation unit 112 assigns the generated transportation task information to the vehicle 202. Specifically, the transportation task generation unit 112 assigns transportation task information to an empty area of a vehicle calendar described later, and updates the vehicle calendar.
 修理タスク生成部113は、車両202の整備に関する情報である修理タスク情報を生成する。修理タスク生成部113は、車両202に対しシミュレーション条件として入力された整備方式を特定し、整備方式に応じた修理タスク情報を生成する。修理タスク生成部113は、生成した修理タスク情報を記憶部150に記憶させる。修理タスク情報には、整備対象の系統と整備時期とが特定されている。 The repair task generation unit 113 generates repair task information that is information related to the maintenance of the vehicle 202. The repair task generation unit 113 identifies a maintenance method input as a simulation condition for the vehicle 202, and generates repair task information corresponding to the maintenance method. The repair task generation unit 113 stores the generated repair task information in the storage unit 150. In the repair task information, the maintenance target system and the maintenance time are specified.
 例えば、定期メンテナンスの整備方式が入力された車両202について、修理タスク生成部113は定期的に修理を行うよう整備時期を設定した修理タスク情報を生成し、後述する車両カレンダー及び整備会社カレンダーの空き領域に割り当てる。また、予知メンテナンスの整備方式が入力された車両202について、修理タスク生成部113は、後述の信号値取得部115により取得された信号値を用いて整備対象の車両202の系統及び整備時期を特定し、該系統及び整備時期を特定した修理タスク情報を生成し、車両カレンダー及び整備会社カレンダーに割り当てる。 For example, the repair task generation unit 113 generates repair task information in which a maintenance time is set so as to periodically repair the vehicle 202 to which the maintenance method of the regular maintenance is input, and the vehicle calendar and the maintenance company calendar, which will be described later, are available. Assign to a region. In addition, for the vehicle 202 to which the maintenance method of predictive maintenance is input, the repair task generation unit 113 specifies the system and the maintenance time of the vehicle 202 to be maintained using a signal value acquired by a signal value acquisition unit 115 described later. Then, repair task information specifying the system and maintenance time is generated and assigned to the vehicle calendar and the maintenance company calendar.
 なお、車両202の系統は、車両202を構成する原動機、操舵系、制動系といった複数の構成要素であって、車両保守計画装置1において車両202毎に予め関連付けられて記憶されている。 The system of the vehicle 202 is a plurality of components such as a prime mover, a steering system, and a braking system that constitute the vehicle 202, and is associated with each vehicle 202 in the vehicle maintenance planning device 1 and stored in advance.
 また、修理タスク生成部113は、整備方式に関わらず、劣化度を用いて算出される信号値が所定の閾値(以下、「第1の閾値」とする)を超える系統の車両202について、当該系統が故障したものとして整備時期及び整備対象の系統を特定し、修理タスク情報を生成して車両カレンダー及び整備会社カレンダーの空き領域に割り当てる。なお、修理タスク生成部113は、修理タスク情報において整備対象の系統が定まっている場合、当該系統のパーツの在庫を有する整備会社203に修理タスク情報を割り当てる。 In addition, the repair task generation unit 113 determines the vehicle 202 of the system whose signal value calculated using the deterioration degree exceeds a predetermined threshold (hereinafter referred to as “first threshold”) regardless of the maintenance method. The maintenance time and the maintenance target system are identified as a system failure, and repair task information is generated and assigned to the empty areas of the vehicle calendar and the maintenance company calendar. In addition, when the maintenance target system is determined in the repair task information, the repair task generation unit 113 assigns the repair task information to the maintenance company 203 having the inventory of parts of the system.
 なお、修理タスク生成部113は、シミュレーション上、整備時期を途過した場合に、整備が終了したものとして、状態量を運送タスク情報を割り当てる前の値に戻して後述の状態量情報を更新する。 Note that the repair task generation unit 113 updates the state quantity information to be described later by returning the state quantity to the value before assigning the transport task information, assuming that the maintenance has been completed when the maintenance time has passed in the simulation. .
 異常検知部114は、車両202の系統毎に算出された信号値を用いて該系統の状態情報を特定する。状態情報とは、車両202の系統の不具合の度合いを示す情報であって、信号値に応じて段階的に定められる。例えば状態情報は、「正常(Normal)」、「警告(Alert)」、「緊急(Urgent)」、及び「故障(Critical)」という4段階のいずれかを示す情報である。なお、本実施形態において、「異常の検知」とは、振動や異音等、既に現れている不具合だけでなく、例えば100km走行後にタイヤ劣化による不具合が生じるというような、不具合の予兆の検知をも意味する。 The abnormality detection unit 114 specifies the state information of the system using the signal value calculated for each system of the vehicle 202. The state information is information indicating the degree of malfunction of the system of the vehicle 202, and is determined in stages according to the signal value. For example, the status information is information indicating any one of four stages of “Normal”, “Alert”, “Urgent”, and “Critical”. In the present embodiment, “abnormality detection” is not only detection of problems that have already appeared, such as vibration and abnormal noise, but also detection of signs of problems such as problems caused by tire deterioration after traveling 100 km, for example. Also means.
 信号値取得部115は、運送タスク情報を用いて車両202の系統毎に劣化度を算出する。信号値取得部115は、例えば車両202の走行距離を用いて劣化度を算出する。 The signal value acquisition unit 115 calculates the degree of deterioration for each system of the vehicle 202 using the transport task information. The signal value acquisition unit 115 calculates the degree of deterioration using the travel distance of the vehicle 202, for example.
 保守計画評価部116は、後述の集計計算部117により算出された運送料金と整備料金とを用いて保守計画評価情報を生成する。保守計画評価部116は、例えば所定の運送会社201の費用と収益とを算出し、費用及び収益を含む保守計画評価情報を生成する。また、保守計画評価部116は、車両202の稼働率を含む保守計画評価情報を生成してもよい。なお、出力部130が保守計画評価情報を含む画面情報を生成し、ディスプレイ等の出力装置に表示させる。 The maintenance plan evaluation unit 116 generates maintenance plan evaluation information by using the transportation fee and the maintenance fee calculated by the aggregation calculation unit 117 described later. The maintenance plan evaluation unit 116 calculates, for example, costs and revenues of a predetermined transportation company 201, and generates maintenance plan evaluation information including the costs and revenues. Further, the maintenance plan evaluation unit 116 may generate maintenance plan evaluation information including the operation rate of the vehicle 202. The output unit 130 generates screen information including the maintenance plan evaluation information and displays it on an output device such as a display.
 また、保守計画評価部116は、運送会社201の有する車両202の車両カレンダーを示す保守計画評価情報を生成してもよい。また、保守計画評価部116は、運送会社201又は整備会社203の能力消費の状態を示す保守計画評価情報を生成してもよい。能力消費については後述する。 Further, the maintenance plan evaluation unit 116 may generate maintenance plan evaluation information indicating a vehicle calendar of the vehicle 202 that the transportation company 201 has. Further, the maintenance plan evaluation unit 116 may generate maintenance plan evaluation information indicating the state of capacity consumption of the shipping company 201 or the maintenance company 203. The capacity consumption will be described later.
 集計計算部117は、運送タスク情報を用いて運送料金を算出する。また、集計計算部117は、修理タスク情報を用いて整備料金を算出する。なお、運送料金は、運送会社201の収益として取り扱われる。また、整備料金は、整備会社203の収益及び運送会社201の費用として取り扱われる。集計計算部117は、走行距離や荷物の重量等を用いて運送料金を算出する。また、集計計算部117は、パーツ料金や整備に要する作業時間等を用いて整備料金を算出する。 The total calculation unit 117 calculates the transportation fee using the transportation task information. The total calculation unit 117 calculates the maintenance fee using the repair task information. The transportation fee is handled as the profit of the transportation company 201. Further, the maintenance fee is handled as the revenue of the maintenance company 203 and the cost of the transportation company 201. The total calculation unit 117 calculates the transportation fee using the travel distance, the weight of the luggage, and the like. The total calculation unit 117 calculates the maintenance fee using the part fee, the work time required for the maintenance, and the like.
 また、集計計算部117は、シミュレーションの対象となる保守計画評価情報の生成要求期間に対して運送タスクの割り当てられた時間を集計し、運送会社201や車両202の稼働率を算出する。また、集計計算部117は、整備会社203における整備可能台数に対する整備台数の割合を示す稼働率を算出する。 Also, the totaling calculation unit 117 calculates the operating rate of the transportation company 201 and the vehicle 202 by totaling the time assigned to the transportation task with respect to the generation request period of the maintenance plan evaluation information to be simulated. The total calculation unit 117 calculates an operation rate indicating the ratio of the number of maintenance units to the number of maintenance units in the maintenance company 203.
 記憶部150は、運送会社情報151と、車両情報152と、整備会社情報153と、管理基準情報154と、劣化関数情報155と、車両カレンダー156と、整備会社カレンダー157と、運送タスク情報158と、修理タスク情報159と、整備内容情報160と、パーツ情報161と、整備会社パーツ在庫情報162と、状態量情報163と、を記憶している。 The storage unit 150 includes shipping company information 151, vehicle information 152, maintenance company information 153, management standard information 154, deterioration function information 155, a vehicle calendar 156, a maintenance company calendar 157, and transportation task information 158. Repair task information 159, maintenance content information 160, parts information 161, maintenance company parts inventory information 162, and state quantity information 163 are stored.
 運送会社情報151は、運送会社201の識別子と、運送会社201の有する1又は複数の車両202の識別子とを関連付けた情報である。運送会社情報151は、走行距離や荷物の重量に応じた運送料金に関する情報を含んでいてもよい。本実施形態において、運送会社情報151は後述のシミュレーション処理時に取得される。しかしながら、シミュレーション処理開始前に予め記憶部150に記憶されていてもよい。 The shipping company information 151 is information that associates the identifier of the shipping company 201 with the identifiers of one or more vehicles 202 that the shipping company 201 has. The shipping company information 151 may include information related to the transportation fee according to the travel distance or the weight of the luggage. In the present embodiment, the shipping company information 151 is acquired during a simulation process described later. However, it may be stored in advance in the storage unit 150 before the simulation process is started.
 車両情報152は、車両202の識別子と、車両202の有する1又は複数の系統と、整備方式と、車体重量とを関連付けた情報である。また、車両情報152は、各系統の残寿命に関する情報を含む。車両情報152において、該車両202の有する系統と、残寿命に関する情報は、後述のシミュレーション処理の開始前に記憶部150に記憶されている。なお、残寿命とは、現時点から系統が故障するまでの長さをいう。残寿命は、現時点を始期とした運送可能時間と考えることができるが、日数であってもよいし、運送可能な運送タスクの数、又は走行可能な距離であってもよい。 The vehicle information 152 is information that associates the identifier of the vehicle 202, one or more systems of the vehicle 202, the maintenance method, and the weight of the vehicle body. The vehicle information 152 includes information related to the remaining life of each system. In the vehicle information 152, the system and the remaining life information of the vehicle 202 are stored in the storage unit 150 before starting a simulation process described later. The remaining life means the length of time from the current time until the system fails. The remaining life can be considered as the transportable time starting from the current time, but it may be the number of days, the number of transport tasks that can be transported, or the distance that can be traveled.
 本実施形態において、系統の整備方式に関する情報と車体重量とは、シミュレーション処理内において取得され、車両情報152に含められる。しかしながら、これらの情報は、シミュレーション開始前に予め車両情報152に含まれていてもよい。 In this embodiment, information on the maintenance method of the system and the vehicle body weight are acquired in the simulation process and included in the vehicle information 152. However, these pieces of information may be included in the vehicle information 152 in advance before starting the simulation.
 図3は、系統の一例を示す図である。車両202は、運動、エネルギー変換及び消費が行われる原動機(エンジン)、かじ取り装置、吸気系、バッテリ、電気装置、プラグ、動力伝達装置(パワートレイン)、制動装置(ブレーキ系統)、走行装置(タイヤ含む)、緩衝装置、排気系等の系統により構成される。運転手が使う内装品、車体自体も系統として取り扱う。系統は、例えば原動機のピストンのようにさらに細かく定義されても良い。また電気自動車の機能を備える車両202は電動モータなども系統として管理され得る。トラックの荷台、またミキサー車などの各種の装置も系統となり得る。 FIG. 3 is a diagram showing an example of a system. The vehicle 202 includes a prime mover (engine), a steering device, an intake system, a battery, an electric device, a plug, a power transmission device (powertrain), a braking device (brake system), a traveling device (tires) that perform movement, energy conversion and consumption. Including a shock absorber, an exhaust system, and the like. The interior parts used by the driver and the car body are also handled as a system. A system | strain may be defined further finely like the piston of a motor | power_engine, for example. The vehicle 202 having the function of an electric vehicle can also be managed as an electric motor system. Various devices such as a truck bed and a mixer truck can also be a system.
 説明を図2に戻す。整備会社情報153は、整備会社203の識別子と、整備の対象となる車両202(即ち整備を行う車両202)の識別子と、を関連付けた情報である。また、整備会社情報153は、整備可能な車両202の数の単位時間当たりの上限値と、単位時間当たりの実作業費と、単位時間当たりのメニュー価格と、を整備会社203毎に含む。 Return the explanation to FIG. The maintenance company information 153 is information that associates the identifier of the maintenance company 203 with the identifier of the vehicle 202 to be maintained (that is, the vehicle 202 that performs maintenance). Further, the maintenance company information 153 includes an upper limit value per unit time of the number of vehicles 202 that can be maintained, an actual work cost per unit time, and a menu price per unit time for each maintenance company 203.
 なお、整備会社情報153は、取り扱うパーツの一覧やパーツの代金等の情報を含んでいてもよい。本実施形態において、整備会社情報153は後述のシミュレーション処理時に取得される。しかしながら、シミュレーション処理開始前に予め記憶部150に記憶されていてもよい。 Note that the maintenance company information 153 may include information such as a list of parts to be handled and the price of the parts. In the present embodiment, the maintenance company information 153 is acquired during a simulation process described later. However, it may be stored in advance in the storage unit 150 before the simulation process is started.
 管理基準情報154は、車両202の系統に対し、状態情報の判定に用いる信号値の閾値を関連付けた情報である。管理基準情報154においては、例えば系統の1つである「原動機」に対し、状態情報が「正常」と判定される信号値の閾値と、状態情報が「警告」と判定される信号値の閾値と、状態情報が「緊急」と判定される信号値の閾値と、状態情報が「故障」と判定される信号値の閾値と、が関連付けられている。 Management standard information 154 is information in which a threshold of a signal value used for determination of state information is associated with the system of the vehicle 202. In the management standard information 154, for example, for "motor" that is one of the systems, the threshold value of the signal value for which the status information is determined to be "normal" and the threshold value of the signal value for which the status information is determined to be "warning" And the threshold value of the signal value for which the state information is determined to be “emergency” and the threshold value of the signal value for which the state information is determined to be “failure” are associated with each other.
 後述するシミュレーション処理において、系統について信号値が算出されると、管理基準情報154に含まれる閾値と信号値とが比較され、当該系統に関する状態情報が特定される。なお、本実施形態において、管理基準情報154は、例えばシミュレーション処理の開始前に予め記憶部150に記憶されている。 In a simulation process to be described later, when a signal value is calculated for a system, a threshold value included in the management reference information 154 is compared with the signal value, and state information regarding the system is specified. In the present embodiment, the management reference information 154 is stored in the storage unit 150 in advance before starting the simulation process, for example.
 劣化関数情報155については後述するが、劣化度及び信号値の算出に用いられる関数を含む情報である。本実施形態において、劣化関数情報155は、例えばシミュレーション処理の開始前に予め記憶部150に記憶されている。 Although the deterioration function information 155 will be described later, it is information including a function used for calculation of the deterioration degree and the signal value. In the present embodiment, the deterioration function information 155 is stored in the storage unit 150 in advance before starting the simulation process, for example.
 車両カレンダー156は、車両202の予定に関する情報であって、時系列に沿って、運送タスクを実行する予定であるか、修理タスクを実行する予定であるか、等を示す情報が含まれている。以下、「車両カレンダー156に運送タスクを割り当てる」と説明する場合、車両カレンダー156の空き領域に対し、実行する予定の運送タスクを示す運送タスク情報158を関連付けることを意味する。同様に、「車両カレンダー156に修理タスクを割り当てる」と説明する場合、車両カレンダー156の空き領域に対し、実行する予定の修理タスクを示す修理タスク情報159を関連付けることを意味する。 The vehicle calendar 156 is information related to the schedule of the vehicle 202, and includes information indicating whether the transportation task is scheduled to be executed or the repair task is scheduled to be executed in time series. . Hereinafter, when it is described as “assigning a transportation task to the vehicle calendar 156”, it means that the transportation task information 158 indicating the transportation task scheduled to be executed is associated with the empty area of the vehicle calendar 156. Similarly, in the case of “assigning a repair task to the vehicle calendar 156”, this means that repair task information 159 indicating a repair task scheduled to be executed is associated with an empty area of the vehicle calendar 156.
 整備会社カレンダー157は、整備会社203の予定に関する情報であって、時系列に沿って、実行する修理タスクに係る車両202の台数を示す情報が含まれている。本実施形態において、車両カレンダー156及び整備会社カレンダー157は、シミュレーション処理時に作成される。以下、「整備会社カレンダー157に修理タスクを割り当てる」と説明する場合、整備会社カレンダー157の空き領域に対し、実行する予定の修理タスクを示す修理タスク情報159を関連付けることを意味する。 The maintenance company calendar 157 is information related to the schedule of the maintenance company 203, and includes information indicating the number of vehicles 202 related to the repair task to be executed in time series. In the present embodiment, the vehicle calendar 156 and the maintenance company calendar 157 are created during the simulation process. Hereinafter, when it is described as “assigning a repair task to the maintenance company calendar 157”, it means that the repair task information 159 indicating the repair task to be executed is associated with the free area of the maintenance company calendar 157.
 運送タスク情報158は、車両202により実行される運送タスクに関する情報であって、例えば荷物の引取地と、目的地と、荷物の重量とが含まれている。本実施形態において、運送タスク情報158は、シミュレーション処理時に作成される。 The transportation task information 158 is information related to the transportation task executed by the vehicle 202, and includes, for example, a package collection location, a destination, and a package weight. In the present embodiment, the transport task information 158 is created during the simulation process.
 修理タスク情報159は、整備会社203により車両202に対して実行される修理タスクに関する情報であって、整備対象の車両202や、整備会社203、及び整備時期が含まれている。整備対象の系統が特定されている場合には、修理タスク情報159は、該系統を特定する情報が含まれる。本実施形態において、修理タスク情報159は、シミュレーション処理時に作成される。 The repair task information 159 is information relating to a repair task executed on the vehicle 202 by the maintenance company 203, and includes the vehicle 202 to be maintained, the maintenance company 203, and the maintenance time. When the maintenance target system is specified, the repair task information 159 includes information for specifying the system. In the present embodiment, the repair task information 159 is created during the simulation process.
 整備内容情報160は、整備方式を示す情報を含む。本実施形態において、整備内容情報160は、例えばシミュレーション処理開始前に予め記憶部150に記憶されている。パーツ情報161は、車両202の系統毎に、整備に用いられるパーツと、該パーツの料金とを関連付けた情報である。整備会社パーツ在庫情報162は、整備会社203の有するパーツの在庫量に関する情報である。本実施形態において、パーツ情報161及び整備会社パーツ在庫情報162は、シミュレーション処理開始前に予め記憶部150に記憶されている。 The maintenance content information 160 includes information indicating a maintenance method. In the present embodiment, the maintenance content information 160 is stored in the storage unit 150 in advance before starting the simulation process, for example. The parts information 161 is information that associates parts used for maintenance with the charge of the parts for each system of the vehicle 202. The maintenance company parts inventory information 162 is information related to the parts inventory of the maintenance company 203. In the present embodiment, the parts information 161 and the maintenance company parts inventory information 162 are stored in advance in the storage unit 150 before the simulation process is started.
 状態量情報163は、各系統の状態量と、状態量を用いて算出された劣化度及び信号値に関する情報である。シミュレーション処理において、各検知時期における劣化度が算出され、状態量情報163が生成される。 The state quantity information 163 is information on the state quantity of each system, the degree of deterioration calculated using the state quantity, and the signal value. In the simulation process, the degree of deterioration at each detection time is calculated, and the state quantity information 163 is generated.
 図4は、車両保守計画装置1のハードウェア構成例を示す図である。車両保守計画装置1は、CPU(Central Processing Unit)171と、RAM(Random Access Memory)172と、ROM(Read Only Memory)173と、補助記憶装置174と、出力装置175と、入力装置176と、メディア読取装置177と、通信装置178と、を含み、各構成要素はバスにより接続されている。 FIG. 4 is a diagram illustrating a hardware configuration example of the vehicle maintenance planning apparatus 1. The vehicle maintenance planning device 1 includes a CPU (Central Processing Unit) 171, a RAM (Random Access Memory) 172, a ROM (Read Only Memory) 173, an auxiliary storage device 174, an output device 175, an input device 176, A media reading device 177 and a communication device 178 are included, and each component is connected by a bus.
 CPU171は中央演算装置であって、RAM172やRAM173、又は補助記憶装置174に記録されたプログラムに従って処理を実行する。制御部110を構成する各処理部は、CPU171がプログラムを実行することにより各々の機能を実現する。 The CPU 171 is a central processing unit, and executes processing according to a program recorded in the RAM 172, the RAM 173, or the auxiliary storage device 174. Each processing unit constituting the control unit 110 realizes each function by the CPU 171 executing a program.
 RAM172は主記憶装置であって、プログラムやデータが一時的に読み出される記憶エリアとして機能する。RAM173は情報を読み出し可能な不揮発性の記憶装置である。補助記憶装置174は、HDD(Hard Disk Drive)、フラッシュメモリ、又はSSD(Solid State Drive)等の書き込み及び読み出し可能な記憶装置である。 The RAM 172 is a main storage device and functions as a storage area from which programs and data are temporarily read. The RAM 173 is a nonvolatile storage device that can read information. The auxiliary storage device 174 is a storage device capable of writing and reading, such as an HDD (Hard Disk Drive), a flash memory, or an SSD (Solid Disk Drive).
 出力装置175は、車両保守計画装置1に格納されたデータの出力処理を行う装置であって、例えばLCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等の表示装置、又はプリンタ等である。入力装置176は、ユーザーからの入力操作を受け付ける装置であり、例えばタッチパネル、キーボード、マウス、マイク等である。なお、入力部120は入力装置176を用いることができ、出力部130は出力装置175を用いることができる。 The output device 175 is a device that performs an output process of data stored in the vehicle maintenance planning device 1, and includes, for example, an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, and the like. A display device or a printer. The input device 176 is a device that receives an input operation from a user, and is, for example, a touch panel, a keyboard, a mouse, a microphone, or the like. Note that the input unit 120 can use the input device 176, and the output unit 130 can use the output device 175.
 メディア読取装置177は、CD(Compact Disc)やDVD(Digital Versatile Disc)等の可搬性のメディアから情報を入出力する装置である。通信装置178は、車両保守計画装置1を図示しないネットワークに接続するための装置であって、例えばNIC(Network Interface Card)等の通信デバイスである。 The media reader 177 is a device that inputs and outputs information from a portable medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc). The communication device 178 is a device for connecting the vehicle maintenance planning device 1 to a network (not shown), and is a communication device such as a NIC (Network Interface Card).
 記憶部150は、RAM172、RAM173又は補助記憶装置174によりその機能が実現される。また、記憶部150は、ネットワーク上の記憶装置によってその機能が実現されてもよい。 The function of the storage unit 150 is realized by the RAM 172, the RAM 173, or the auxiliary storage device 174. The function of the storage unit 150 may be realized by a storage device on the network.
 また、車両保守計画装置1の各構成要素の処理は、1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。また、車両保守計画装置1の各構成要素の処理は、1つのプログラムで実現されてもよいし、複数のプログラムで実現されてもよい。 Further, the processing of each component of the vehicle maintenance planning device 1 may be executed by one hardware or may be executed by a plurality of hardware. Moreover, the process of each component of the vehicle maintenance planning apparatus 1 may be realized by one program or may be realized by a plurality of programs.
 次に、車両保守計画装置1において行われるシミュレーション処理について説明する。 Next, the simulation process performed in the vehicle maintenance planning apparatus 1 will be described.
 図5は、シミュレーション処理の一例を示すフローチャートである。本実施形態において、車両保守計画装置1は、例えば入力部120を介したシミュレーション処理の開始指示を受け付けると、本フローチャートの処理を開始する。 FIG. 5 is a flowchart showing an example of the simulation process. In the present embodiment, the vehicle maintenance planning device 1 starts the processing of this flowchart when receiving a simulation processing start instruction via the input unit 120, for example.
 まず、条件情報取得部111は、シミュレーション条件を取得する(ステップS301)。具体的には、車両保守計画装置1がシミュレーション処理の開始指示を受け付けると、出力部130がシミュレーション条件入力画面を出力装置175に表示させる。条件情報取得部111は、シミュレーション条件入力画面に対して入力された情報を取得する。 First, the condition information acquisition unit 111 acquires simulation conditions (step S301). Specifically, when the vehicle maintenance planning device 1 receives a simulation process start instruction, the output unit 130 causes the output device 175 to display a simulation condition input screen. The condition information acquisition unit 111 acquires information input to the simulation condition input screen.
 図6は、シミュレーション条件入力画面401の一例を示す図である。シミュレーション条件入力画面401は、サービス会社入力領域402と、運送会社入力領域403と、車両入力領域404と、整備会社入力領域405と、期間入力領域406と、条件設定ボタン407と、開始ボタン408と、キャンセルボタン409と、を含む。 FIG. 6 is a diagram illustrating an example of the simulation condition input screen 401. The simulation condition input screen 401 includes a service company input area 402, a shipping company input area 403, a vehicle input area 404, a maintenance company input area 405, a period input area 406, a condition setting button 407, and a start button 408. , A cancel button 409.
 サービス会社入力領域402は、シミュレーション処理の対象となるサービス会社204を特定する情報の入力を受け付ける領域である。図6に示すように、サービス会社入力領域402には、追加ボタン、削除ボタン、新規ボタン、及び詳細ボタンが含まれる。追加ボタンの選択を受け付けると、例えば出力部130は記憶部150に予め記憶されたサービス会社204の一覧(図示せず)を含む一覧画面を表示し、サービス会社204の選択を受け付ける。 The service company input area 402 is an area for receiving input of information for specifying the service company 204 to be subjected to simulation processing. As shown in FIG. 6, the service company input area 402 includes an add button, a delete button, a new button, and a detail button. When the selection of the add button is accepted, for example, the output unit 130 displays a list screen including a list (not shown) of service companies 204 stored in advance in the storage unit 150 and accepts the selection of the service company 204.
 削除ボタンは、サービス会社入力領域402に表示されたサービス会社204を該領域から削除するボタンである。サービス会社204に対応するチェックボックスにチェックが付され、削除ボタンが選択されると、チェックされたサービス会社204がサービス会社入力領域402において非表示となる。 The delete button is a button for deleting the service company 204 displayed in the service company input area 402 from the area. When the check box corresponding to the service company 204 is checked and the delete button is selected, the checked service company 204 is hidden in the service company input area 402.
 新規ボタンは、先述のサービス会社204の一覧に新たなサービス会社204を登録するボタンである。詳細ボタンは、サービス会社204の一覧に含まれる情報の編集を受け付けるボタンである。 The new button is a button for registering a new service company 204 in the list of service companies 204 described above. The detail button is a button for accepting editing of information included in the list of service companies 204.
 運送会社入力領域403は、シミュレーション処理の対象となる運送会社201を特定する情報の入力を受け付ける領域である。図6に示すように、運送会社入力領域403には、運送会社201の名称を示す情報と、運送会社201において実行が可能な運送タスクの数を示す情報と、車両202の整備を依頼する整備会社203を示す情報と、が関連付けて入力可能に表示される。 The shipping company input area 403 is an area for receiving input of information for specifying the shipping company 201 to be subjected to simulation processing. As shown in FIG. 6, in the shipping company input area 403, information indicating the name of the shipping company 201, information indicating the number of transport tasks that can be executed by the shipping company 201, and maintenance requesting the maintenance of the vehicle 202 are performed. Information indicating the company 203 is displayed in association with the information.
 また、運送会社入力領域403には、追加ボタンと、削除ボタンと、新規ボタンと、詳細ボタンと、が含まれる。追加ボタンの選択を受け付けると、例えば出力部130は記憶部150に予め記憶された運送会社201の一覧(図示せず)を含む一覧画面を表示し、運送会社201の選択を受け付ける。削除ボタンは、運送会社入力領域403に表示された運送会社201を該領域から削除するボタンである。新規ボタンは、先述の運送会社201の一覧に新たな運送会社201を登録するボタンである。 In addition, the shipping company input area 403 includes an add button, a delete button, a new button, and a detail button. When the selection of the add button is received, for example, the output unit 130 displays a list screen including a list (not shown) of the shipping company 201 stored in advance in the storage unit 150 and receives the selection of the shipping company 201. The delete button is a button for deleting the shipping company 201 displayed in the shipping company input area 403 from the area. The new button is a button for registering a new shipping company 201 in the list of shipping companies 201 described above.
 詳細ボタンは、運送会社201の一覧に含まれる情報の編集を受け付けるボタンである。なお、詳細ボタンの選択により表示される図示しない入力画面において、走行距離や荷物の重量に応じた運送料金に関する情報の入力を受け付けてもよい。条件情報取得部111は、運送会社入力領域403に対して入力された情報を用いて運送会社情報151を生成し、記憶部150に記憶させる。 The detail button is a button for accepting editing of information included in the list of the shipping company 201. In addition, on the input screen (not shown) displayed by selecting the detail button, input of information related to the transportation fee according to the travel distance or the weight of the luggage may be accepted. The condition information acquisition unit 111 generates the shipping company information 151 using the information input to the shipping company input area 403 and stores it in the storage unit 150.
 車両入力領域404は、シミュレーション処理の対象となる車両202を特定する情報の入力を受け付ける領域である。図6に示すように、車両入力領域404には、車両202を特定する情報と、車両202を有する運送会社201と、車両202の総重量と、車両202の整備方式と、が関連付けて入力可能に表示される。なお、車両202の総重量は、車体重量と荷物の重量との和である。車両入力領域404は、車両202の総重量に代えて、車体重量又は運送可能な荷物の重量の上限値の入力を受け付けてもよい。 The vehicle input area 404 is an area for accepting input of information for specifying the vehicle 202 to be subjected to simulation processing. As shown in FIG. 6, in the vehicle input area 404, information for specifying the vehicle 202, the transportation company 201 having the vehicle 202, the total weight of the vehicle 202, and the maintenance method of the vehicle 202 can be input in association with each other. Is displayed. The total weight of the vehicle 202 is the sum of the weight of the vehicle body and the weight of the luggage. The vehicle input area 404 may accept an input of an upper limit value of the weight of the vehicle body or the weight of the load that can be transported instead of the total weight of the vehicle 202.
 また、車両入力領域404には、追加ボタンと、削除ボタンと、新規ボタンと、詳細ボタンと、が含まれる。追加ボタンの選択を受け付けると、例えば出力部130は記憶部150に予め記憶された車両202の一覧(図示せず)を含む一覧画面を表示し、車両202の選択を受け付ける。削除ボタンは、車両入力領域404に表示された車両202を該領域から削除するボタンである。 Also, the vehicle input area 404 includes an add button, a delete button, a new button, and a detail button. When the selection of the add button is received, for example, the output unit 130 displays a list screen including a list of vehicles 202 (not shown) stored in advance in the storage unit 150 and receives the selection of the vehicle 202. The delete button is a button for deleting the vehicle 202 displayed in the vehicle input area 404 from the area.
 新規ボタンは、先述の車両202の一覧に新たな車両202を登録するボタンである。詳細ボタンは、車両202の一覧に含まれる情報の編集を受け付けるボタンである。条件情報取得部111は、車両入力領域404に対して入力された情報を用いて車両情報152を生成し、記憶部150に記憶させる。 The new button is a button for registering a new vehicle 202 in the list of vehicles 202 described above. The detail button is a button for accepting editing of information included in the list of vehicles 202. The condition information acquisition unit 111 generates vehicle information 152 using information input to the vehicle input area 404 and stores the vehicle information 152 in the storage unit 150.
 整備会社入力領域405は、シミュレーション処理の対象となる整備会社203を特定する情報の入力を受け付ける領域である。図6に示すように、整備会社入力領域405には、整備会社203を特定する情報と、整備会社203の整備可能な単位時間(例えば1日)当たりの車両数の上限値と、が関連付けて入力可能に表示される。 The maintenance company input area 405 is an area for receiving input of information for specifying the maintenance company 203 that is a target of the simulation process. As shown in FIG. 6, in the maintenance company input area 405, information specifying the maintenance company 203 and an upper limit value of the number of vehicles per unit time (for example, one day) that can be maintained by the maintenance company 203 are associated with each other. Input is displayed.
 また、整備会社入力領域405には、追加ボタンと、削除ボタンと、新規ボタンと、詳細ボタンと、が含まれる。追加ボタンの選択を受け付けると、例えば出力部130は記憶部150に予め記憶された整備会社203の一覧(図示せず)を含む一覧画面を表示し、整備会社203の選択を受け付ける。削除ボタンは、整備会社入力領域405に表示された整備会社203を該領域から削除するボタンである。新規ボタンは、先述の整備会社203の一覧に新たな整備会社203を登録するボタンである。 Also, the maintenance company input area 405 includes an add button, a delete button, a new button, and a detail button. When the selection of the add button is accepted, for example, the output unit 130 displays a list screen including a list of maintenance companies 203 (not shown) stored in advance in the storage unit 150, and accepts the selection of the maintenance company 203. The delete button is a button for deleting the maintenance company 203 displayed in the maintenance company input area 405 from the area. The new button is a button for registering a new maintenance company 203 in the list of maintenance companies 203 described above.
 詳細ボタンは、整備会社203の一覧に含まれる情報の編集を受け付けるボタンである。なお、詳細ボタンの選択により表示される図示しない入力画面において、整備工場の取り扱うパーツの一覧やパーツの代金、整備料金、対応可能な整備方式に関する情報の入力を受け付けてもよい。条件情報取得部111は、整備会社入力領域405に対して入力された情報を用いて整備会社情報153を生成し、記憶部150に記憶させる。 The detail button is a button for accepting editing of information included in the list of the maintenance company 203. In addition, on the input screen (not shown) displayed by selecting the detail button, input of a list of parts handled by the maintenance shop, the price of the parts, the maintenance fee, and information on a maintenance method that can be handled may be accepted. The condition information acquisition unit 111 generates maintenance company information 153 using information input to the maintenance company input area 405 and stores it in the storage unit 150.
 期間入力領域406は、シミュレーションを行う期間の入力を受け付ける領域である。期間入力領域406は、図6に示すように、例えばシミュレーションの開始時期と終了時期との入力を受け付ける。なお、シミュレーションを行う期間は、保守計画評価情報の生成要求期間ともいえ、車両保守計画装置1は、入力された期間に実行される運送タスクや修理タスクに関するシミュレーションを行い、保守計画評価情報を生成する。 The period input area 406 is an area for receiving an input of a period for performing a simulation. As shown in FIG. 6, the period input area 406 receives, for example, an input of a simulation start time and an end time. The period during which simulation is performed can also be referred to as a generation request period for maintenance plan evaluation information, and the vehicle maintenance planning apparatus 1 performs a simulation regarding a transportation task and a repair task executed during the input period to generate maintenance plan evaluation information. To do.
 条件設定ボタン407は、シミュレーションの実行結果としてのログファイルの出力等、プログラムの動作を制御するための設定画面(図示せず)の表示指示を受け付けるボタンである。開始ボタン408は、各入力領域に入力されたシミュレーション条件の内容を確定し、シミュレーションの開始指示を受け付けるボタンである。キャンセルボタン409は、シミュレーションのキャンセル指示を受け付けるボタンであって、キャンセルボタン409が選択されるとシミュレーション条件入力画面401が閉じ、図5に示すシミュレーション処理が終了する。 The condition setting button 407 is a button for receiving a display instruction for a setting screen (not shown) for controlling the operation of the program, such as outputting a log file as a simulation execution result. The start button 408 is a button for confirming the contents of the simulation conditions input to each input area and receiving a simulation start instruction. The cancel button 409 is a button for accepting a simulation cancel instruction. When the cancel button 409 is selected, the simulation condition input screen 401 is closed and the simulation process shown in FIG. 5 ends.
 なお、図5に示すシミュレーション条件入力画面401は一例であって、例えばグラフィカルなインターフェイスによって事業体や車両202をアイコン表示し、アイコンを選択及び配置することでシミュレーション条件の入力を受け付けてもよい。また例えば、事業体や車両202の名称の入力を受け付けることで、予め記憶部150に記憶された情報を参照し、各名称に関連付けられた情報を表示するものであってもよい。 Note that the simulation condition input screen 401 illustrated in FIG. 5 is an example, and for example, the business entity or the vehicle 202 may be displayed as an icon using a graphical interface, and the simulation condition input may be received by selecting and arranging the icon. Further, for example, by receiving an input of the name of the business entity or the vehicle 202, information stored in the storage unit 150 in advance may be referred to and information associated with each name may be displayed.
 説明を図5に戻す。次に、条件情報取得部111は、初期化処理を行う(ステップS302)。具体的には、条件情報取得部111は、ステップS301においてシミュレーション条件として入力された車両202毎に車両カレンダー156を生成し、記憶部150に記憶させる。また、条件情報取得部111は、同様にシミュレーション条件として入力された整備会社203毎に整備会社カレンダー157を生成し、記憶部150に記憶させる。なお、車両カレンダー156及び修理カレンダーには、期間入力領域406に入力された生成要求期間が含まれており、当該期間における予定はこの時点では空となっている。 Return the explanation to FIG. Next, the condition information acquisition unit 111 performs an initialization process (step S302). Specifically, the condition information acquisition unit 111 generates a vehicle calendar 156 for each vehicle 202 input as a simulation condition in step S <b> 301 and stores the vehicle calendar 156 in the storage unit 150. Similarly, the condition information acquisition unit 111 generates a maintenance company calendar 157 for each maintenance company 203 similarly input as a simulation condition, and stores the maintenance company calendar 157 in the storage unit 150. The vehicle calendar 156 and the repair calendar include the generation request period input in the period input area 406, and the schedule in the period is empty at this point.
 また、条件情報取得部111は、シミュレーション条件としてサービス会社入力領域402に入力されたサービス会社204を記憶部150に記憶させる。また、条件情報取得部111は、シミュレーション条件として運送会社入力領域403に入力された情報を用いて運送会社情報151を生成し、記憶部150に記憶させる。また、条件情報取得部111は、車両入力領域404に入力された情報を用いて車両情報152に整備方式を関連付け、記憶部150に記憶させる。また、条件情報取得部111は、シミュレーション条件として運送会社入力領域403及び整備会社入力領域405に入力された情報を用いて整備会社情報153を生成し、記憶部150に記憶させる。 Also, the condition information acquisition unit 111 causes the storage unit 150 to store the service company 204 input to the service company input area 402 as a simulation condition. In addition, the condition information acquisition unit 111 generates the shipping company information 151 using information input to the shipping company input area 403 as a simulation condition, and stores it in the storage unit 150. In addition, the condition information acquisition unit 111 associates the maintenance method with the vehicle information 152 using the information input in the vehicle input area 404 and stores it in the storage unit 150. In addition, the condition information acquisition unit 111 generates maintenance company information 153 using information input to the shipping company input area 403 and the maintenance company input area 405 as simulation conditions, and stores the information in the storage unit 150.
 次に、修理タスク生成部113は、定期メンテナンススケジューリングを行う(ステップS303)。具体的には、修理タスク生成部113は、車両情報152における各車両202の整備方式を参照し、定期メンテナンスの整備方式と関連付けられた車両202を抽出する。なお、整備方式が定期メンテナンスである場合、車両情報152には定期メンテナンスを行う期間が含まれている。 Next, the repair task generation unit 113 performs regular maintenance scheduling (step S303). Specifically, the repair task generation unit 113 refers to the maintenance method of each vehicle 202 in the vehicle information 152, and extracts the vehicle 202 associated with the maintenance method of the regular maintenance. When the maintenance method is regular maintenance, the vehicle information 152 includes a period for performing regular maintenance.
 修理タスク生成部113は、抽出した車両202(以下、抽出車両とする)毎に以下の処理を行う。まず、修理タスク生成部113は、抽出車両と関連付けられた、定期メンテナンスを行う期間を参照して該期間毎に整備候補時期を特定する。修理タスク生成部113は、整備会社情報153において抽出車両と関連付けられた整備会社203及び該整備会社203の整備可能な車両202の数の上限値を特定し、特定した整備会社203の整備会社カレンダー157を参照する。 The repair task generation unit 113 performs the following process for each extracted vehicle 202 (hereinafter referred to as an extracted vehicle). First, the repair task generation unit 113 refers to a period for performing regular maintenance associated with the extracted vehicle, and identifies a maintenance candidate period for each period. The repair task generation unit 113 identifies the maintenance company 203 associated with the extracted vehicle in the maintenance company information 153 and the upper limit value of the number of vehicles 202 that can be maintained by the maintenance company 203, and the maintenance company calendar of the identified maintenance company 203 157 is referred to.
 修理タスク生成部113は、整備会社カレンダー157において整備候補時期に整備を行う車両202の数が上限値未満である場合に、整備候補時期を整備時期とし、整備会社カレンダー157及び抽出車両の車両カレンダー156を更新する。 The repair task generation unit 113 sets the maintenance candidate period as the maintenance period when the number of vehicles 202 that perform maintenance at the maintenance candidate period is less than the upper limit in the maintenance company calendar 157, and sets the maintenance company calendar 157 and the vehicle calendar of the extracted vehicle. 156 is updated.
 修理タスク生成部113は、整備会社カレンダー157において整備候補時期に整備を行う車両202の数が上限値以上である場合に、該整備会社カレンダー157において車両202の数が上限値未満であって、整備候補時期以降、整備候補時期に最も近い時期(例えば翌日)を、新たな整備候補時期に特定する。修理タスク生成部113は、新たな整備候補時期を整備時期とし、整備会社カレンダー157及び車両カレンダー156を更新する。 In the maintenance company calendar 157, when the number of vehicles 202 performing maintenance at the maintenance candidate time is equal to or greater than the upper limit value, the repair task generation unit 113 has the number of vehicles 202 in the maintenance company calendar 157 less than the upper limit value. After the maintenance candidate time, a time closest to the maintenance candidate time (for example, the next day) is specified as a new maintenance candidate time. The repair task generation unit 113 updates the maintenance company calendar 157 and the vehicle calendar 156 with the new maintenance candidate time as the maintenance time.
 なお、新たな整備候補時期について、整備を行う車両202の数が上限値未満であって、整備候補時期以降、整備候補時期に最も近い時期としたが、これに限られない。例えば整備候補時期以降でなくてもよく、車両202の数が上限値未満の適切な時期に新たな整備候補時期が設定されるものであればよい。 In addition, regarding the new maintenance candidate period, the number of vehicles 202 to be maintained is less than the upper limit, and the period closest to the maintenance candidate period after the maintenance candidate period is set, but the present invention is not limited to this. For example, it does not have to be after the maintenance candidate time, and any new maintenance candidate time may be set at an appropriate time when the number of vehicles 202 is less than the upper limit.
 次に、運送タスク生成部112は、事前分の運送タスク情報158の生成及びスケジューリングを行う(ステップS304)。運送タスク情報158の生成については、後に詳述する。本ステップにおいて生成される1又は複数の運送タスク情報158には、少なくとも走行距離を示す情報と、荷物の重量を示す情報と、予め定められた走行速度と走行距離とを用いて算出された走行時間を示す情報とが含まれる。 Next, the transport task generation unit 112 generates and schedules transport task information 158 for advance (step S304). The generation of the transport task information 158 will be described in detail later. The one or more transport task information 158 generated in this step includes travel calculated using at least information indicating the travel distance, information indicating the weight of the load, and a predetermined travel speed and travel distance. And information indicating time.
 運送タスク生成部112は、シミュレーション条件として入力されたシミュレーションの開始時期から所定期間(例えば1日)に空き領域を有する車両カレンダー156に係る車両202を特定する。運送タスク生成部112は、特定した車両202の総重量を用いて該車両202の運送可能な荷物の重量を特定し、生成した各運送タスク情報158に係る重量の荷物が運送可能か否かを判定する。 The transportation task generation unit 112 identifies the vehicle 202 related to the vehicle calendar 156 having an empty area in a predetermined period (for example, one day) from the simulation start time input as the simulation condition. The transport task generation unit 112 specifies the weight of the load that can be transported by the vehicle 202 by using the total weight of the specified vehicle 202, and determines whether the weight of the load related to the generated transport task information 158 is transportable. judge.
 即ち、シミュレーション開始時期から所定期間の予定に空きがあり、荷物を運送可能な車両202を、運送タスクを実行可能な車両202として特定する。運送タスク生成部112は、生成した運送タスク情報158の各々に対し、運送タスクを実行可能な車両202を特定する。運送タスク生成部112は、特定した車両202の車両カレンダー156のうち、上述の所定期間内に運送タスクを割り当てる。 That is, the vehicle 202 that has a vacancy in the predetermined period from the simulation start time and can transport the package is identified as the vehicle 202 that can execute the transportation task. The transportation task generation unit 112 identifies the vehicle 202 that can execute the transportation task for each of the generated transportation task information 158. The transportation task generation unit 112 assigns a transportation task within the above-described predetermined period in the vehicle calendar 156 of the identified vehicle 202.
 なお、本実施形態では、シミュレーションにおいて仮想的に時間を進行させ、仮想時間における時系列において所定期間毎にスケジューリング、即ち運送タスク情報158及び修理タスク情報159の割り当てを行う。所定期間毎に繰り返しスケジューリングを行う場合に、シミュレーションの開始時期に所定量の運送タスク情報158が割り当てられている方が自然であるとの思想に基づき、本ステップにおいて事前に運送タスク情報158を割り当てる処理を行っている。しかしながら、本処理を省略し、以下の繰り返し処理においてシミュレーションの開始時期に運送タスク情報158を割り当ててもよい。 In the present embodiment, time is virtually advanced in the simulation, and scheduling is performed at predetermined intervals in the time series in the virtual time, that is, the transport task information 158 and the repair task information 159 are assigned. Based on the idea that it is more natural that a predetermined amount of transportation task information 158 is assigned at the start time of simulation when scheduling is repeatedly performed every predetermined period, transportation task information 158 is assigned in advance in this step. Processing is in progress. However, this process may be omitted, and the transport task information 158 may be assigned at the simulation start time in the following iterative process.
 次に、制御部110は、ステップS306からステップS317の処理を繰り返す(ステップS305、ステップS318)。なお、制御部110は、シミュレーション内における時計(以下、「仮想時計」とする)を進行させ、該時計に従った時系列の処理を行う。 Next, the control unit 110 repeats the processing from step S306 to step S317 (step S305, step S318). The control unit 110 advances a clock (hereinafter referred to as “virtual clock”) in the simulation, and performs time-series processing according to the clock.
 まず、制御部110は、車両稼働時間であるか否かを判定する(ステップS306)。具体的には、制御部110は、仮想時計における現在時刻が予め定められた車両稼働時間であるか否かを判定する。 First, the control unit 110 determines whether it is a vehicle operating time (step S306). Specifically, control unit 110 determines whether or not the current time in the virtual timepiece is a predetermined vehicle operating time.
 なお、労働大臣告示の「自動車運転者の労働時間等の改善のための基準(改善基準告示)」によれば、自動車運転者の最大拘束時間は1日あたり原則13時間以内とされている。そのため、本実施形態では、例えば8時から21時までの時間を車両稼働時間として取り扱う。なお、車両稼働時間の設定は本実施形態において必須ではなく、仮想時計の現在時刻に関わらず、以下のステップS307以降の処理を行うものであってもよい。 According to the “Standard for Improvement of Working Hours of Car Drivers (Improvement Standard Notice)” announced by the Minister of Labor, the maximum restraint time for car drivers is basically 13 hours per day. Therefore, in this embodiment, for example, the time from 8:00 to 21:00 is handled as the vehicle operating time. Note that the setting of the vehicle operating time is not essential in the present embodiment, and the following processing after step S307 may be performed regardless of the current time of the virtual clock.
 制御部110が、車両稼働時間であると判定する場合(ステップS306で「yes」の場合)、信号値取得部115は、車両202の状態量を更新する(ステップS307)。具体的には、信号値取得部115は、シミュレーション条件として入力された各車両202の有する系統の各々について、走行距離等、車両202の状態に変化を与える状態量を特定する。信号値取得部115は、状態量を用いて、系統の劣化度を算出する。状態量の算出については後述するが、本実施形態において本処理は仮想時計における車両稼働時間の1時間毎に行われるため、状態量算出部は1時間の劣化度を算出して各車両202の系統毎に状態量情報163に記憶させる。 When the control unit 110 determines that it is the vehicle operating time (in the case of “yes” in step S306), the signal value acquisition unit 115 updates the state quantity of the vehicle 202 (step S307). Specifically, the signal value acquisition unit 115 specifies a state quantity that changes the state of the vehicle 202, such as a travel distance, for each of the systems of each vehicle 202 input as simulation conditions. The signal value acquisition unit 115 calculates the degree of degradation of the system using the state quantity. Although the calculation of the state quantity will be described later, in the present embodiment, since this process is performed every hour of the vehicle operating time in the virtual timepiece, the state quantity calculation unit calculates the degree of deterioration for one hour to calculate the state of each vehicle 202. The state quantity information 163 is stored for each system.
 なお、状態量情報163に予め劣化度が記憶されている場合、即ち仮想時計における1時間以上前に劣化度を算出している場合、状態量算出部は既に算出した劣化度に新たに算出した劣化度を加算し、状態量情報163を更新する。また、信号値取得部115は、劣化度を用いて系統毎に信号値を算出する。信号値の算出については後述する。 In the case where the degree of deterioration is stored in the state quantity information 163 in advance, that is, when the degree of deterioration is calculated at least one hour before in the virtual timepiece, the state quantity calculation unit newly calculates the degree of deterioration already calculated. The state quantity information 163 is updated by adding the degree of deterioration. Further, the signal value acquisition unit 115 calculates a signal value for each system using the degree of deterioration. The calculation of the signal value will be described later.
 次に、異常検知部114は、車両故障チェックを実行する(ステップS308)。具体的には、異常検知部114は、ステップS307で算出した信号値を用いて管理基準情報154を参照し、状態情報が「故障」である系統を有する車両202の有無を判定する。状態情報が「故障」である系統を有する車両202がある場合、異常検知部114は故障があることを示す情報を、当該系統を有する車両202の車両情報152に関連付ける。その後、異常検知部114は処理をステップS309に移行させる。 Next, the abnormality detection unit 114 performs a vehicle failure check (step S308). Specifically, the abnormality detection unit 114 refers to the management reference information 154 using the signal value calculated in step S307, and determines the presence or absence of the vehicle 202 having a system whose state information is “failure”. When there is a vehicle 202 having a system whose state information is “failure”, the abnormality detection unit 114 associates information indicating that there is a failure with the vehicle information 152 of the vehicle 202 having the system. Thereafter, the abnormality detection unit 114 shifts the process to step S309.
 制御部110が、車両稼働時間でないと判定する場合(ステップS306で「no」の場合)、又はステップS308の処理の後、制御部110は、仮想時計の現在時刻が正午であるか否かを判定する(ステップS309)。なお、以下の処理は仮想時計における所定期間(例えば1日)毎に行われればよく、処理を行うタイミングは仮想時計の正午に限定されないことは、いうまでもない。 When the control unit 110 determines that it is not the vehicle operating time (in the case of “no” in step S306), or after the processing of step S308, the control unit 110 determines whether or not the current time of the virtual clock is noon. Determination is made (step S309). In addition, the following processes should just be performed for every predetermined period (for example, 1 day) in a virtual clock, and it cannot be overemphasized that the timing which performs a process is not limited to noon of a virtual clock.
 制御部110が、仮想時計の現在時刻が正午であると判定する場合(ステップS309で「yes」の場合)、修理タスク生成部113は、定期メンテナンスを実行する(ステップS310)。具体的には、修理タスク生成部113は、車両カレンダー156を参照し、仮想時計の現在時刻に定期メンテナンスを行う車両202を抽出する。修理タスク生成部113は、状態量情報163を参照し、抽出した車両202の整備内容を特定する。 When the control unit 110 determines that the current time of the virtual clock is noon (in the case of “yes” in step S309), the repair task generation unit 113 performs regular maintenance (step S310). Specifically, the repair task generation unit 113 refers to the vehicle calendar 156 and extracts the vehicle 202 that performs regular maintenance at the current time of the virtual clock. The repair task generation unit 113 refers to the state quantity information 163 and specifies the maintenance content of the extracted vehicle 202.
 例えば、修理タスク生成部113は、信号値が所定値以上の系統を整備対象の系統に特定する。修理タスク生成部113は、パーツ情報161を参照し、メンテナンスに要するパーツを特定する。修理タスク生成部113は、メンテナンス対象の系統について整備を行ったこととして、当該系統の状態量を予め定められた初期値に戻す。なお、初期値とは、当該車両202について運送タスク情報158を割り当てる前の値といえる。 For example, the repair task generation unit 113 identifies a system having a signal value equal to or greater than a predetermined value as a maintenance target system. The repair task generation unit 113 refers to the part information 161 and identifies a part required for maintenance. The repair task generation unit 113 returns the state quantity of the system to a predetermined initial value, assuming that the maintenance target system has been maintained. The initial value can be said to be a value before the transportation task information 158 is assigned to the vehicle 202.
 また、修理タスク生成部113は、抽出した車両202の整備を行う整備会社203を特定し、該整備会社203と関連する整備会社パーツ在庫情報162を特定する。修理タスク生成部113は、メンテナンスに要するパーツを該整備会社203の在庫から減算する。 Also, the repair task generation unit 113 specifies the maintenance company 203 that performs maintenance of the extracted vehicle 202, and specifies maintenance company parts inventory information 162 related to the maintenance company 203. The repair task generation unit 113 subtracts the parts required for maintenance from the inventory of the maintenance company 203.
 なお、車両カレンダー156において、仮想時計の現在時刻に定期メンテナンスを行うことが予定されていない車両202については、本ステップで処理が行われない。また、状態量の復旧及びパーツの在庫量の減算は、定期メンテナンスの終了予定の時刻に仮想時計の時刻が達した場合に行われるものであってもよい。 In the vehicle calendar 156, processing is not performed in this step for the vehicle 202 for which regular maintenance is not scheduled to be performed at the current time of the virtual clock. Further, the restoration of the state quantity and the subtraction of the part inventory quantity may be performed when the time of the virtual clock reaches the scheduled maintenance end time.
 次に、修理タスク生成部113は、修理を実行する(ステップS311)。具体的には、修理タスク生成部113は、車両カレンダー156を参照し、仮想時計の現在時刻に修理を行う車両202を抽出する。なお、本処理開始前(後述するステップS314)に、信号値が第1の閾値以上の値の系統を有する車両202について、修理を行うことを示す修理タスク情報159が生成され、車両カレンダー156及び整備会社カレンダー157に割り当てられている。修理タスク情報159には、修理対象となる系統が特定されている。 Next, the repair task generation unit 113 performs repair (step S311). Specifically, the repair task generation unit 113 refers to the vehicle calendar 156 and extracts the vehicle 202 that performs repair at the current time of the virtual clock. Prior to the start of this process (step S314 described later), repair task information 159 indicating that repair is performed on the vehicle 202 having a system whose signal value is greater than or equal to the first threshold value is generated, and the vehicle calendar 156 and It is assigned to the maintenance company calendar 157. In the repair task information 159, the system to be repaired is specified.
 修理タスク生成部113は、修理対象の系統について修理を行ったこととして、当該系統の状態量を予め定められた初期値に戻す。また、修理タスク生成部113は、修理対象の車両202の整備を行う整備会社203を特定し、該整備会社203と関連する整備会社パーツ在庫情報162を特定する。修理タスク生成部113は、メンテナンスに要するパーツを該整備会社203の在庫から減算する。 The repair task generation unit 113 returns the state quantity of the system to a predetermined initial value, assuming that the repair target system has been repaired. Further, the repair task generation unit 113 specifies a maintenance company 203 that performs maintenance of the vehicle 202 to be repaired, and specifies maintenance company parts inventory information 162 related to the maintenance company 203. The repair task generation unit 113 subtracts the parts required for maintenance from the inventory of the maintenance company 203.
 なお、車両カレンダー156において、仮想時計の現在時刻修理を行うことが予定されていない車両202については、本ステップで処理が行われない。定期メンテナンスの実行の際と同様に、状態量の復旧及びパーツの在庫量の減算は、修理タスクの終了予定の時刻に仮想時計の時刻が達した場合に行われるものであってもよい。 In the vehicle calendar 156, processing is not performed in this step for the vehicle 202 for which the current time of the virtual clock is not scheduled to be repaired. As in the case of the regular maintenance, the restoration of the state quantity and the subtraction of the part inventory quantity may be performed when the time of the virtual clock has reached the scheduled time for completion of the repair task.
 次に、修理タスク生成部113は、予知メンテナンスを実行する(ステップS312)。具体的には、修理タスク生成部113は、車両カレンダー156を参照し、仮想時計の現在時刻に予知メンテナンスを行う車両202を抽出する。なお、本処理開始前(後述するステップS315)に、信号値が第2の閾値以上第1の閾値未満の値の系統を有する車両202について、予知メンテナンスを行うことを示す修理タスク情報159が生成され、車両カレンダー156及び整備会社カレンダー157に割り当てられている。修理タスク情報159には、予知メンテナンス対象となる系統が特定されている。 Next, the repair task generation unit 113 performs predictive maintenance (step S312). Specifically, the repair task generation unit 113 refers to the vehicle calendar 156 and extracts the vehicle 202 that performs predictive maintenance at the current time of the virtual clock. Before starting this processing (step S315 to be described later), repair task information 159 indicating that predictive maintenance is to be performed is generated for the vehicle 202 having a system whose signal value is greater than or equal to the second threshold value and less than the first threshold value. And assigned to the vehicle calendar 156 and the maintenance company calendar 157. In the repair task information 159, a system that is subject to predictive maintenance is specified.
 修理タスク生成部113は、予知メンテナンス対象の系統について整備を行ったこととして、当該系統の状態量を予め定められた初期値に戻す。また、修理タスク生成部113は、予知メンテナンス対象の車両202の整備を行う整備会社203を特定し、該整備会社203と関連する整備会社パーツ在庫情報162を特定する。修理タスク生成部113は、メンテナンスに要するパーツを該整備会社203の在庫から減算する。 The repair task generation unit 113 returns the state quantity of the system to a predetermined initial value, assuming that the system subject to predictive maintenance has been maintained. Further, the repair task generation unit 113 specifies the maintenance company 203 that performs maintenance of the vehicle 202 to be predicted maintenance, and specifies maintenance company parts inventory information 162 related to the maintenance company 203. The repair task generation unit 113 subtracts the parts required for maintenance from the inventory of the maintenance company 203.
 なお、車両カレンダー156において、仮想時計の現在時刻に予知メンテナンスを行うことが予定されていない車両202については、本ステップで処理が行われない。また、定期メンテナンスの実行の際と同様に、状態量の復旧及びパーツの在庫量の減算は、修理タスクの終了予定の時刻に仮想時計の時刻が達した場合に行われるものであってもよい。 In the vehicle calendar 156, processing is not performed in this step for the vehicle 202 for which predictive maintenance is not scheduled at the current time of the virtual clock. Further, as in the case of performing the periodic maintenance, the restoration of the state quantity and the subtraction of the inventory quantity of the parts may be performed when the time of the virtual clock has reached the scheduled end time of the repair task. .
 次に、運送タスク生成部112は、運送タスク情報158の生成及びスケジューリングを行う(ステップS313)。 Next, the transport task generation unit 112 generates and schedules the transport task information 158 (step S313).
 図7は、運送タスクの概要の一例を示す図である。運送タスク生成部112は、運送会社201、始点、及び終点を特定する座標を含む運送タスク情報158を生成する。図7において、矢印は車両202の移動を示し、運送会社201から始点までの移動を引取、始点から終点までの移動を運送、終点から運送会社201までの移動を帰社とし、それぞれの距離を引取距離、運送距離、帰社距離とする。 FIG. 7 is a diagram showing an example of the outline of the transportation task. The transportation task generation unit 112 generates transportation task information 158 including coordinates that specify the transportation company 201, the start point, and the end point. In FIG. 7, the arrow indicates the movement of the vehicle 202, taking the movement from the transportation company 201 to the starting point, carrying the movement from the starting point to the ending point, and returning from the movement from the ending point to the transportation company 201, and taking the respective distances. Distance, transportation distance, return distance.
 引取距離、運送距離、及び帰社距離の和により運送タスクの走行距離が特定しうる。時間についても同様に、引取に要する時間を引取時間、運送に要する時間を運送時間、帰社に要する時間を帰社時間とし、引取時間、運送時間、及び帰社時間の和により運送タスクの走行時間が特定しうる。 The travel distance of the transport task can be specified by the sum of the take-up distance, the transport distance, and the return distance. Similarly, regarding the time, the time required for pick-up is taken as the pick-up time, the time required for transport is the transport time, the time required for return is the return time, and the running time of the transport task is specified by the sum of the return time, transport time, and return time Yes.
 また、運送対象の荷物には重量があり、車両202は、例えば車両総重量の半分の重さの荷物までなら運送可能と定められている。運送タスク生成部112は、運送タスクに応じて荷物の重量が異なるよう、乱数を用いて荷物の重量を設定する。 Also, there is a weight in the package to be transported, and it is determined that the vehicle 202 can be transported up to, for example, a package having a weight half the total weight of the vehicle. The transportation task generation unit 112 sets the weight of the package using a random number so that the weight of the package varies depending on the transportation task.
 例えば、運送タスク生成部112は、基準の荷物の重量を1トンとし、0トン~5トンまでの追加重量を一様乱数で発生させる。追加重量が0トンなら、荷物の重量は1トンであり、2トン以上の車両総重量の車両202なら運送が可能である。追加重量が3トンなら、荷物の重量は4トンであり、8トン以上の車両総重量の車両202なら運送可能である。 For example, the transport task generation unit 112 sets the weight of the standard load as 1 ton and generates an additional weight of 0 to 5 tons with a uniform random number. If the additional weight is 0 ton, the weight of the load is 1 ton, and the vehicle 202 having a gross vehicle weight of 2 tons or more can be transported. If the additional weight is 3 tons, the weight of the load is 4 tons, and the vehicle 202 having a gross vehicle weight of 8 tons or more can be transported.
 なお、運送タスクを割り当てるためには、運送タスクに係る走行時間を求める必要がある。一例において、運送タスク生成部112は、運送タスクの始点と終点とを乱数を用いて設定する。 In addition, in order to assign a transportation task, it is necessary to obtain the travel time related to the transportation task. In one example, the transport task generation unit 112 sets the start point and end point of the transport task using random numbers.
 図8は、始点及び終点の設定方法の一例を説明するための図である。本図は2次元空間を想定しており、本実施形態において、始点st、終点enの発生しうる全体領域の範囲は1辺長さomt_rangeの正方形領域内とする。ただし、始点及び終点間の距離を長くなりすぎないように限定するため、全体領域内において、1辺長さomf_frameの正方形領域内(以下、枠領域とする)に始点及び終点を発生させる。 FIG. 8 is a diagram for explaining an example of a method for setting the start point and the end point. This figure assumes a two-dimensional space, and in the present embodiment, the range of the entire region where the start point st and the end point en may occur is within a square region of one side length omt_range. However, in order to limit the distance between the start point and the end point so as not to be too long, the start point and the end point are generated in a square region (hereinafter referred to as a frame region) having a side length of omf_frame in the entire region.
 枠領域の左下を左下点lb(left bottom)とすると、左下点lbは全体領域の原点0から、1辺長さomt_lbrangeの正方形領域内に発生させればよい。各領域の辺の長さには以下の関係がある。 Suppose that the lower left point lb (left) bottom) is the lower left point of the frame area, the lower left point lb may be generated from the origin 0 of the entire area within a square area of one side length omt_lbrange. The length of each region has the following relationship.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 関数U([l,u])をl以上、u未満の一様乱数とすれば、始点st、終点enの座標値cv(coordinate value)は式(2)で得られる。 If the function U ([l, u]) is a uniform random number greater than or equal to 1 and less than u, the coordinate value cv (coordinate value) of the start point st and end point en can be obtained by equation (2).
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 始点、終点、また運送会社201の地点の座標値もわかっているため、引取距離Dta、運送距離Dtr、帰社距離Dreが求まる。図5に示す本実施形態におけるシミュレーション処理では、1時間毎に処理を進めるので、時間と距離の関係を計算で求める。まず車両202の標準の移動速度Sstd(標準速度)を予め定めておく。引取時間Ttaは式(3)で求まる。運送時間Ttr、帰社時間Treも同様である。 Since the coordinates of the start point, end point, and point of the transportation company 201 are also known, the take-up distance D ta , the transportation distance D tr , and the return distance D re can be obtained. In the simulation process in the present embodiment shown in FIG. 5, the process proceeds every hour, so the relationship between time and distance is obtained by calculation. First, a standard moving speed S std (standard speed) of the vehicle 202 is determined in advance. The take-off time T ta can be obtained by equation (3). The same applies to the transportation time T tr and the return time T re .
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 本実施形態では、仮想時計において1時間毎に処理を行うため、時速が1時間当りの移動距離となる。引取速度Staは式(4)で求めることができる。運送速度Str、帰社速度Sreも同様である。 In this embodiment, since processing is performed every hour in the virtual timepiece, the speed per hour is the moving distance per hour. The take-up speed S ta can be obtained by equation (4). The same applies to the transportation speed S tr and the return speed S re .
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 図9は、1日間に1つの運送タスク情報158が割り当てられている場合のスケジューリングの一例を示す。本図は、運送タスクを行う車両202の車両カレンダー156であるともいえる。走行距離が490kmであって、そのうち引取距離が90km、運送距離が270km、帰社距離が130kmである。 FIG. 9 shows an example of scheduling when one transport task information 158 is assigned in one day. This figure can also be said to be a vehicle calendar 156 of the vehicle 202 performing the transportation task. The travel distance is 490 km, of which the take-up distance is 90 km, the transport distance is 270 km, and the return distance is 130 km.
 標準速度を50kmとすれば、引取時間は約2時間、運送時間は約6時間、帰社時間は約3時間である。8時から順にシミュレーションを実行し、10時まで引取1001がスケジューリングされる。12時から1時間の停止(休憩時間)1003が予定されるため、運送は10時から12時までの運送1002と、13時から17時までの運送1004とにスケジューリングされる。 If the standard speed is 50 km, the take-up time is about 2 hours, the transportation time is about 6 hours, and the return time is about 3 hours. The simulation is executed sequentially from 8 o'clock, and the collection 1001 is scheduled until 10 o'clock. Since a stop (break time) 1003 is scheduled for 1 hour from 12:00, transportation is scheduled for transportation 1002 from 10:00 to 12:00 and transportation 1004 from 13:00 to 17:00.
 また、18時から19時まで1時間の停止1006が予定されるため、帰社についても17時から18時までの帰社1005と、19時から21時までの帰社1007とにスケジューリングされる。 Also, since a stop 1006 of 1 hour from 18:00 to 19:00 is scheduled, the return is scheduled to return to work 1005 from 17:00 to 18:00 and return to work 1007 from 19:00 to 21:00.
 図10は、3日間に1つの運送タスク情報158が割り当てられている場合のスケジューリングの一例を示す。本例では、引取時間が8時間、運送時間が10時間、帰社時間が9時間である。1日目に21時で運送を中断し、翌2日目の8時から運送を再開する。翌3日目も同様であり、タスクは14時で完了する。完了後、車両202の運送タスク情報158の実行の予定はなく、また修理タスク情報159の実行の予定も入っていない。よって3日目の14時から21時まで、車両202は計画が無いということであり、実質的には停止していることとなる。0時から8時、21時から0時についても、運送タスク情報158に関連して予定が入っていないため、車両202は停止していることとなる。 FIG. 10 shows an example of scheduling when one transportation task information 158 is assigned for three days. In this example, the take-up time is 8 hours, the transportation time is 10 hours, and the return time is 9 hours. The transportation is interrupted at 21:00 on the first day, and transportation is resumed from 8:00 on the second day. The next day is the same, and the task is completed at 14:00. After completion, there is no plan to execute the transport task information 158 of the vehicle 202, and there is no plan to execute the repair task information 159. Therefore, from 14:00 to 21:00 on the third day, the vehicle 202 has no plan and is substantially stopped. From 0 o'clock to 8 o'clock and from 21 o'clock to 0 o'clock, no schedule is entered in relation to the transport task information 158, so the vehicle 202 is stopped.
 説明を図5に戻す。次に、修理タスク生成部113は、修理スケジューリングを行う(ステップS314)。具体的には、修理タスク生成部113は、ステップS308において、故障があることを示す情報を関連付けられた車両202(即ち、信号値が第1の閾値以上である系統を有する車両202)である修理対象車両の各々について、以下の処理を行う。 Return the explanation to FIG. Next, the repair task generation unit 113 performs repair scheduling (step S314). Specifically, the repair task generation unit 113 is the vehicle 202 associated with information indicating that there is a failure in step S308 (that is, the vehicle 202 having a system whose signal value is equal to or greater than the first threshold value). The following processing is performed for each vehicle to be repaired.
 まず、運送タスク生成部112は、修理対象車両の車両カレンダー156を参照し、仮想時計の現在時刻の日付の翌日以降の運送タスク情報158を削除する。なお、運送タスク生成部112は、削除した日付に割り当てられた運送タスクを実行可能な他の車両202を特定し、該車両202の車両カレンダー156に運送タスク情報158を割り当ててもよい。 First, the transport task generation unit 112 refers to the vehicle calendar 156 of the vehicle to be repaired, and deletes the transport task information 158 after the day following the date of the current time of the virtual clock. The transport task generation unit 112 may identify another vehicle 202 that can execute the transport task assigned to the deleted date, and assign the transport task information 158 to the vehicle calendar 156 of the vehicle 202.
 また、修理タスク生成部113は、パーツ情報161を参照し、信号値が第1の閾値以上である系統の修理に要するパーツを特定する。修理タスク生成部113は、整備会社パーツ在庫情報162を参照し、特定したパーツを在庫に有する整備会社203を抽出する。 In addition, the repair task generation unit 113 refers to the part information 161 and identifies a part required for repairing a system whose signal value is equal to or greater than the first threshold value. The repair task generation unit 113 refers to the maintenance company parts inventory information 162 and extracts the maintenance company 203 having the specified parts in stock.
 修理タスク生成部113は、抽出した整備会社203について整備会社カレンダー157を参照し、仮想時計の現在時刻の日付の翌日以降の日程において、修理を行う車両202の数が上限値に達しておらず、かつ最も現在時刻の日付に近い空き時期を有する整備会社203を、修理を行う整備会社203として特定する。また、修理タスク生成部113は、当該時期を整備時期に特定する。 The repair task generation unit 113 refers to the maintenance company calendar 157 for the extracted maintenance company 203, and the number of vehicles 202 to be repaired does not reach the upper limit in the schedule after the day following the current time of the virtual clock. In addition, the maintenance company 203 having the free time closest to the date of the current time is identified as the maintenance company 203 that performs the repair. In addition, the repair task generation unit 113 identifies the time as the maintenance time.
 修理タスク生成部113は、修理を行う整備会社203の整備会社カレンダー157のうち、特定した整備時期に修理タスク情報159を割り当てる。また、修理タスク生成部113は、修理対象車両202の車両カレンダー156のうち、特定した整備時期に修理タスク情報159を割り当てる。なお、割り当てられた修理タスク情報159には、整備対象となる系統が関連付けられている。 The repair task generation unit 113 assigns repair task information 159 to the specified maintenance time in the maintenance company calendar 157 of the maintenance company 203 that performs the repair. Further, the repair task generation unit 113 assigns the repair task information 159 to the specified maintenance time in the vehicle calendar 156 of the repair target vehicle 202. The assigned repair task information 159 is associated with a system to be maintained.
 次に、異常検知部114は、異常検知を行う(ステップS315)。 Next, the abnormality detection unit 114 performs abnormality detection (step S315).
 図11は、異常検知処理及び予知メンテナンススケジューリング処理の概要を示す図である。本図は、異常検知及び予知メンテナンススケジューリング処理の概念について説明するために用いられる。本図は、異常検知をサービス会社204にて行い、運送会社201及び整備会社203において予知メンテナンスを行う実態を示すものであるが、車両保守計画装置1は本図における処理を模擬的にシミュレーションする。車両保守計画装置1において行われる処理については、後に詳述する。 FIG. 11 is a diagram showing an outline of the abnormality detection process and the predictive maintenance scheduling process. This figure is used to explain the concept of abnormality detection and predictive maintenance scheduling processing. This figure shows the actual situation in which the abnormality detection is performed by the service company 204 and the predictive maintenance is performed by the transport company 201 and the maintenance company 203. The vehicle maintenance planning apparatus 1 simulates the processing in this figure in a simulated manner. . Processing performed in the vehicle maintenance planning device 1 will be described in detail later.
 まず、サービス会社204は、予め契約している運送会社201の車両202を監視し、当該車両202の各系統の状態を検知するよう設置されたセンサから発生した信号値を受信する(ステップS1221)。 First, the service company 204 monitors the vehicle 202 of the transportation company 201 with which a contract is made in advance, and receives a signal value generated from a sensor installed to detect the state of each system of the vehicle 202 (step S1221). .
 次に、サービス会社204は、信号値を用いて、各系統の状態を判定する(ステップS1222)。サービス会社204は、信号値を用いて管理基準情報154に相当する情報を参照し、各系統がどの状態情報であるかを判定する。また、サービス会社204は、信号値が第2の閾値以上第1の閾値未満である場合に、当該系統を有する車両が予知メンテナンスの対象であると判定する。 Next, the service company 204 determines the status of each system using the signal value (step S1222). The service company 204 refers to information corresponding to the management standard information 154 using the signal value, and determines which state information each system is. Further, when the signal value is greater than or equal to the second threshold value and less than the first threshold value, the service company 204 determines that the vehicle having the system is the object of predictive maintenance.
 なお、第2の閾値は、管理基準情報154において、「警告」の状態情報と関連付けられている。即ち、信号値が第2の閾値以上、第1の閾値未満である系統については、「警告」又は「緊急」の状態情報が関連付けられる。 The second threshold value is associated with the status information “Warning” in the management standard information 154. That is, status information of “warning” or “emergency” is associated with a system whose signal value is greater than or equal to the second threshold value and less than the first threshold value.
 次に、サービス会社204は、予知メンテナンスの対象となる系統、及び該系統を有する車両202を特定した通知を運送会社201に対して出力する(ステップS1223)。通知を受け付けた運送会社201は、通知により特定される系統について、車両カレンダー156を参照し、修理や予知メンテナンスの予定が含まれていない場合に、当該系統に関する初回の通知であると判定する。運送会社201は、初回の通知であると判定する場合に、ステップS1225に処理を進行させる。 Next, the service company 204 outputs a notification specifying the system to be subject to predictive maintenance and the vehicle 202 having the system to the transportation company 201 (step S1223). The shipping company 201 that has received the notification refers to the vehicle calendar 156 for the system specified by the notification, and determines that it is the first notification regarding the system when the schedule for repair or predictive maintenance is not included. When determining that the notification is the first notification, the shipping company 201 advances the processing to step S1225.
 次に、サービス会社204は、整備会社203に通知を行う(ステップS1224)。具体的には、サービス会社204は、整備会社情報153を参照し、予知メンテナンスの対象であると判定された車両202の整備を行う会社として予め定められた整備会社203を特定し、第2の閾値以上第1の閾値未満である信号値を発生した系統を特定した通知を行う。 Next, the service company 204 notifies the maintenance company 203 (step S1224). Specifically, the service company 204 refers to the maintenance company information 153, identifies the maintenance company 203 that is determined in advance as a company that performs maintenance of the vehicle 202 that is determined to be the subject of the predictive maintenance, and the second A notification specifying a system that has generated a signal value that is greater than or equal to the threshold and less than the first threshold is performed.
 なお、運送会社201には、該運送会社201の有する車両202の系統毎に残寿命を示す情報が記憶されている。予知メンテナンスの対象である系統については、すぐに故障の状態になる訳ではなく、残寿命が尽きるまでに整備を行えば足りる。 Note that the transportation company 201 stores information indicating the remaining life for each system of the vehicle 202 that the transportation company 201 has. The system that is subject to predictive maintenance does not immediately go into a failure state, but needs to be maintained until the remaining life is exhausted.
 次に、運送会社201は、整備会社203との間で日程の調整を行う(ステップS1225)。運送会社201は、整備会社203の整備会社カレンダー157を参照し、予知メンテナンスの対象となる系統の残寿命の終期以前であって、該終期に最も近い空き日程を予知メンテナンスの整備時期に特定する。 Next, the shipping company 201 adjusts the schedule with the maintenance company 203 (step S1225). The shipping company 201 refers to the maintenance company calendar 157 of the maintenance company 203, and identifies the vacant schedule closest to the end of the remaining life of the system subject to the predicted maintenance as the maintenance time of the predicted maintenance. .
 整備時期において、予知メンテナンスの対象の系統を有する車両202に運送タスクが割り当てられている場合、運送会社201は当該車両202の車両カレンダー156から整備時期を含む日程の運送タスク情報158を削除する。運送会社201は、削除した運送タスクを実行可能な他の車両202に運送タスクを割り当ててもよい。 When the transportation task is assigned to the vehicle 202 having the system subject to the predictive maintenance at the maintenance time, the transportation company 201 deletes the transportation task information 158 for the schedule including the maintenance time from the vehicle calendar 156 of the vehicle 202. The transportation company 201 may assign the transportation task to another vehicle 202 that can execute the deleted transportation task.
 また、予知メンテナンスの対象の系統を有する車両202に定期メンテナンスが予定されている場合、運送会社201は定期メンテナンスの修理タスク情報159を車両カレンダー156から削除する。また、運送会社201は、定期メンテナンスを予定していた整備会社203の整備会社カレンダー157からも、修理タスク情報159を削除する。運送会社201は、予知メンテナンスの対象となる系統を特定した修理タスク情報159を生成し、該系統を有する車両202の車両カレンダー156について、特定した整備時期に修理タスクを行うよう車両カレンダー156を更新する。また、運送会社201は、整備会社203の整備会社カレンダー157について、特定した整備時期に修理タスクを行うよう整備会社カレンダー157を更新する。 Further, when the regular maintenance is scheduled for the vehicle 202 having the system subject to the predictive maintenance, the shipping company 201 deletes the repair task information 159 for the regular maintenance from the vehicle calendar 156. Further, the shipping company 201 also deletes the repair task information 159 from the maintenance company calendar 157 of the maintenance company 203 scheduled for regular maintenance. The shipping company 201 generates repair task information 159 that identifies a system that is subject to predictive maintenance, and updates the vehicle calendar 156 so that the vehicle calendar 156 of the vehicle 202 having the system is repaired at the specified maintenance time. To do. Further, the shipping company 201 updates the maintenance company calendar 157 of the maintenance company 203 so as to perform a repair task at the specified maintenance time.
 なお、ステップS1223において、予知メンテナンスの対象となる系統を有する車両202について、既に予知メンテナンスが予定されている場合、既に予定されている予知メンテナンスの整備時期が、ステップS1221において信号値を発生した系統の残寿命内であるか否かを判定する。残寿命内であると判定する場合、運送会社201は、既に定められた予知メンテナンスの修理タスク情報159に当該系統に関する情報を加えて、車両カレンダー156及び整備会社カレンダー157を更新する。 In addition, in step S1223, when the predicted maintenance is already scheduled for the vehicle 202 having the system that is the target of the predicted maintenance, the system in which the scheduled maintenance maintenance time has generated the signal value in step S1221. It is determined whether it is within the remaining lifetime. When determining that it is within the remaining lifetime, the shipping company 201 adds information related to the system to the repair task information 159 for the predicted maintenance that has already been determined, and updates the vehicle calendar 156 and the maintenance company calendar 157.
 既に予定されている予知メンテナンスの整備時期が、残寿命の終期より後である場合、運送会社201はステップS1225と同様に予知メンテナンスのスケジューリングを行う。 If the scheduled maintenance of the predicted maintenance is after the end of the remaining life, the shipping company 201 schedules the predicted maintenance in the same manner as in step S1225.
 その後、整備会社203が予知メンテナンスに係る整備を行う(ステップS1226)。具体的には、運送会社201はステップS1221において受け付けた信号値に関する情報を削除するとともに、整備を行った整備会社203の有するパーツの在庫情報について、整備に用いたパーツの在庫量を減算する。 Thereafter, the maintenance company 203 performs maintenance related to predictive maintenance (step S1226). Specifically, the shipping company 201 deletes the information regarding the signal value received in step S1221, and subtracts the inventory amount of the parts used for maintenance from the parts inventory information of the maintenance company 203 that has performed maintenance.
 説明を図5に戻す。ステップS315において、異常検知部114が異常を検知するために、まず信号値取得部115がシミュレーション条件において特定された各車両202の系統毎に、劣化度を算出する。 Return the explanation to FIG. In step S315, in order for the abnormality detection unit 114 to detect an abnormality, first, the signal value acquisition unit 115 calculates a deterioration degree for each system of each vehicle 202 specified under the simulation conditions.
 各系統は、運送タスクの実施に伴い劣化する。ここで、運送タスクの実施に伴い変化する変数を状態変数とする。状態変数として、走行距離、走行時間、走行負荷、燃料消費量が挙げられる。走行距離は、移動に伴う1時間毎の速度の値を積算する。走行時間は移動の1時間毎に1を積算する。走行負荷は重量と走行距離の積(t・km)であって、1時間毎に積算される。 各 Each system deteriorates as the transportation task is executed. Here, let the variable which changes with implementation of a transportation task be a state variable. State variables include travel distance, travel time, travel load, and fuel consumption. The travel distance is the sum of the hourly speed values associated with the movement. The running time is incremented by 1 for every hour of movement. The travel load is the product of weight and travel distance (t · km) and is integrated every hour.
 引取、帰社では重量は車体そのものの重量(車体重量)であり、運送では車体重量と荷物の重量(積載重量)の和である。車体重量は、シミュレーション条件として入力を受け付けた車両総重量から、運送タスク情報158に含まれる荷物の重量を減算することで算出可能である。なお、車体重量は、シミュレーション条件として入力された車両総重量の2分の1としてもよい。 At the time of picking up and returning to the office, the weight is the weight of the car body itself (car body weight). The vehicle body weight can be calculated by subtracting the weight of the load included in the transport task information 158 from the total vehicle weight that has been input as a simulation condition. The vehicle body weight may be half of the total vehicle weight input as the simulation condition.
 燃料消費量は、例えば単位としてはリットルであり、走行距離と燃費(km/l、1リットルでの走行距離)の積であるが、さらに走行負荷を車体重量で除した重みをかけて、荷物重量を加味してもよい。状態変数の値が状態量である。 The fuel consumption is, for example, liters as a unit, which is the product of travel distance and fuel consumption (km / l, travel distance in 1 liter). Weight may be added. The value of the state variable is the state quantity.
 劣化度deteriorationは、状態変数state_variableの関数として定義される。劣化度を求めるための関数は、劣化関数情報155より取得する。 Degradation degree deterioration is defined as a function of state variable state_variable. A function for obtaining the degree of deterioration is acquired from the deterioration function information 155.
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 関数fは、1変数でなくても、複数の状態変数の多変数をとってもよく、パラメータでも調整し得る。状態変数は走行距離mileage、走行時間travelling_time、走行負荷acc_travel_load、燃料消費量fuel_consumptionである。 The function f may take not only one variable but also multiple variables of a plurality of state variables, and can be adjusted by parameters. The state variables are travel distance mileage, travel time travelling_time, travel load acc_travel_load, and fuel consumption fuel_consumption.
 ただ関数fを複雑に捉える必要もなく、例えば以下の式のように原動機の劣化度を決めてもよい。 However, it is not necessary to comprehend the function f in a complicated manner. For example, the deterioration degree of the prime mover may be determined by the following equation.
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 これは走行距離で原動機の劣化を管理することとなる、定期メンテナンスと関連して、経時メンテナンスのようなメンテナンス方式といえる。 This can be said to be a maintenance method such as maintenance over time in relation to regular maintenance, in which the deterioration of the prime mover is managed by the distance traveled.
 異常検知の判定を行うため、劣化度より信号値を生成する。これは、現実に機械などの劣化を自動で判定するために、センサなどを設け、センサからの出力の信号で不具合を判定することに相当する。また信号値にする際に乱数を入れることで、ノイズのようなばらつきやセンサ特有の信号の変化を再現することができる。信号値取得部115は、算出した劣化度及び信号値を状態量情報163に格納する。 ∙ Generate signal values from the degree of deterioration to determine whether anomaly is detected. This is equivalent to providing a sensor or the like in order to automatically determine the deterioration of the machine or the like in reality and determining the malfunction based on the output signal from the sensor. In addition, by using a random number when setting the signal value, it is possible to reproduce variations such as noise and changes in the signal specific to the sensor. The signal value acquisition unit 115 stores the calculated deterioration level and signal value in the state quantity information 163.
 式(8)は信号値signalの算出式の一例を示す。 Equation (8) shows an example of a calculation formula for the signal value signal.
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
 ここで、a、bは実数の係数(coefficient)と切片(intercept)、COEF_R、INTR_Rは係数、切片へのばらつきを加えるための乱数生成処理/関数である。具体的には、乱数を導入しない定数1を返す関数、一様乱数、標準正規乱数(平均0、標準偏差1の正規分布を発生確率とする乱数)、片側(0以上を返す)標準正規乱数、指数乱数(指数分布を発生確率とする乱数)等である。 Here, a and b are real coefficients (coefficient) and intercepts, and COEF_R and INTR_R are random number generation processes / functions for adding variation to the coefficients and intercepts. Specifically, a function that returns a constant 1 that does not introduce random numbers, a uniform random number, a standard normal random number (a random number with a normal distribution with mean 0, standard deviation 1), one side (returns 0 or more), a standard normal random number , Exponential random numbers (random numbers having an exponential distribution as an occurrence probability), and the like.
 得られた信号値を用いて管理基準情報154を参照し、系統毎に状態情報(AlarmStatus)を特定する。本実施形態において、状態情報は「正常」の「Normal」から、警告の「Alert」、緊急の「Urgent」、そして故障を意味する致命的の「Critical」までの、4段階で定義される。ランク判定は式(9)で表現される。 Referring to the management standard information 154 using the obtained signal value, the status information (AlarmStatus) is specified for each system. In this embodiment, the status information is defined in four stages from “Normal” of “Normal” to “Alert” of warning, “Urgent” of emergency, and “Critical” of fatal meaning failure. Rank determination is expressed by equation (9).
 状態情報(AlarmStatus)は信号値の該当する範囲で決まるので、下側と上側の閾値threshould、すなわち下限値lower_limitと上限値upper_limitを持つ。また信号値はある値を基準として上側、下側に変化するものであるので、上upperと下lowerの方向を持つ。信号値が0以上の値しか取らず、また基準となる値が0である場合、上の方向のみでよい。式(9)の2段目が上方向、3段目が下方向の判定である。 Since the status information (AlarmStatus) is determined by the corresponding range of the signal value, it has lower and upper threshold values threshould, that is, a lower limit value lower_limit and an upper limit value upper_limit. Since the signal value changes from the upper side to the lower side with a certain value as a reference, it has directions of upper upper and lower lower. If the signal value takes only a value greater than or equal to 0 and the reference value is 0, only the upper direction is sufficient. In the formula (9), the second stage is the upward direction, and the third stage is the downward direction.
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000010
 
 インデックスiは各状態情報に対応しており、Normalが1、Alertが2、Urgentが3、Criticalが4となる。 The index i corresponds to each status information, Normal is 1, Alert is 2, Urgent is 3, and Critical is 4.
 なお、車両202の状態情報を特定するために、必ずしも信号値を用いる必要はなく、劣化度を用いて管理基準情報154を参照することにより状態情報を特定してもよい。正常、警告、緊急、又は、故障等の状態が定まれば、修理を行うか予知メンテナンスを行うかの判定が可能であり、即ち修理タスク情報159の生成が可能となる。この場合、式(9)の信号値signalを劣化度deteriorationと置けばよい。 In addition, in order to specify the state information of the vehicle 202, it is not always necessary to use the signal value, and the state information may be specified by referring to the management standard information 154 using the degree of deterioration. If the state such as normal, warning, emergency, or failure is determined, it is possible to determine whether to perform repair or predictive maintenance, that is, it is possible to generate repair task information 159. In this case, the signal value signal of Equation (9) may be set as the deterioration degree deterioration.
 また、異常検知のためには、劣化度を算出せずに、状態変数から直接に信号値を求めてもよい。これは、センサ信号の値は暗に機械的な劣化と対応することから、移動(走行)の実施でセンサ信号の変化を直接に取得することと対応している。その場合、計算上は式(5)を式(8)に代入すればよい。なお、異常検知部114は、特定された状態情報を系統毎に状態量情報163に格納する。 Also, for abnormality detection, the signal value may be obtained directly from the state variable without calculating the deterioration degree. This corresponds to the fact that the sensor signal value directly corresponds to the mechanical deterioration, and thus the change of the sensor signal is directly acquired by performing the movement (running). In that case, the formula (5) may be substituted into the formula (8) for calculation. The abnormality detection unit 114 stores the specified state information in the state amount information 163 for each system.
 次に、修理タスク生成部113は、予知メンテナンススケジューリングを行う(ステップS316)。 Next, the repair task generation unit 113 performs predictive maintenance scheduling (step S316).
 図12は、予知メンテナンスの概要を説明するための図(その1)である。図12(a)は、系統が故障した場合のスケジューリングの一例を示す。図12に示す上から下に向かう方向へと時間が経過する。 FIG. 12 is a diagram (part 1) for explaining an outline of predictive maintenance. FIG. 12A shows an example of scheduling when a system fails. Time elapses from the top to the bottom shown in FIG.
 故障が発生すると、車両202は運送を停止せざるをえず、運送タスクの実施中である場合、運送タスクの実施が中断する。車両202の修理が完了するまで、運送タスクはキャンセルされる。運送タスクのキャンセルは運送会社201の損失となる。車両202の故障時点で、速やかに他の車両202に運送タスクを割り当てることができなければ、運送会社201にとって機会的な損実となる。 If a failure occurs, the vehicle 202 must stop the transportation, and if the transportation task is being performed, the transportation task is interrupted. The transportation task is canceled until the vehicle 202 is repaired. Canceling the transportation task results in a loss of the transportation company 201. If the transportation task cannot be quickly assigned to another vehicle 202 at the time of the failure of the vehicle 202, it will be an opportunity loss for the transportation company 201.
 図12(b)は、図5に示すステップS315において、予知メンテナンスの対象として特定された車両202について行われる予知メンテナンスのスケジューリングの概要を示す。第2の閾値以上の信号値が算出された系統については、異常が検知されたものと取り扱われる。異常が検知された系統の残寿命が、車両情報152を参照することにより特定される。該系統を有する車両202は、残寿命が尽きるまで走行可能である。 FIG. 12B shows an outline of the scheduling of the predictive maintenance performed for the vehicle 202 specified as the target of the predictive maintenance in step S315 shown in FIG. About the system | strain in which the signal value more than a 2nd threshold value was calculated, it is handled that abnormality was detected. The remaining life of the system in which the abnormality is detected is specified by referring to the vehicle information 152. The vehicle 202 having the system can travel until the remaining life is exhausted.
 車両保守計画装置1において、残寿命により特定される対象車両202の走行可能期間のうち、対象車両を整備する整備会社203の日程に空きがあるか否かが確認される。図12(b)に示す整備会社203は、1日につき2台の車両202の整備が可能である。また、同図において、黒く塗りつぶされた四角形は既に整備予定があることを示し、白抜きで表現された四角形は空きがあることを示している。車両保守計画装置1において、車両202の走行可能期間における整備会社203の空き日程を整備候補時期として抽出する。 In the vehicle maintenance planning device 1, it is confirmed whether or not there is a vacancy in the schedule of the maintenance company 203 that maintains the target vehicle in the travelable period of the target vehicle 202 specified by the remaining life. The maintenance company 203 shown in FIG. 12B can maintain two vehicles 202 per day. Further, in the figure, a black-filled square indicates that there is already a maintenance plan, and a white square represents that there is a vacancy. In the vehicle maintenance planning device 1, the vacant schedule of the maintenance company 203 during the travelable period of the vehicle 202 is extracted as a maintenance candidate time.
 また、車両保守計画装置1において、整備候補時期に運送タスクを実行可能な他の車両202の有無が判定される。整備候補時期において、運送タスクを実行可能な他の車両202がある場合、当該他の車両202に運送タスクが割り当てられる。 Also, the vehicle maintenance planning device 1 determines whether or not there is another vehicle 202 that can execute the transportation task at the maintenance candidate time. If there is another vehicle 202 that can execute the transportation task at the maintenance candidate time, the transportation task is assigned to the other vehicle 202.
 図13は、修理タスク生成部113により実行される予知メンテナンスのスケジューリング処理の一例を示すフローチャートである。本図は、図5に示すステップS316において行われる処理の詳細を示すものである。図5に示すステップS315において、複数の系統について異常が検知された場合、修理タスク生成部113は異常が検知された各系統について以下の処理を行う。なお、異常が検知された系統を対象系統、該系統を有する車両202を対象車両として説明する。 FIG. 13 is a flowchart showing an example of a predictive maintenance scheduling process executed by the repair task generation unit 113. This figure shows the details of the processing performed in step S316 shown in FIG. In step S315 illustrated in FIG. 5, when an abnormality is detected for a plurality of systems, the repair task generation unit 113 performs the following process for each system where the abnormality is detected. In addition, the system | strain in which abnormality was detected is demonstrated as a target system | strain, and the vehicle 202 which has this system | strain is demonstrated as a target vehicle.
 まず、修理タスク生成部113は、対象系統の残寿命を取得する(ステップS1301)。具体的には、修理タスク生成部113は、車両202情報を参照し、異常が検知された系統の残寿命を取得する。 First, the repair task generation unit 113 acquires the remaining life of the target system (step S1301). Specifically, the repair task generation unit 113 refers to the vehicle 202 information and acquires the remaining life of the system in which an abnormality has been detected.
 次に、修理タスク生成部113は、走行可能期間の整備会社203の空き時期を抽出する(ステップS1302)。具体的には、修理タスク生成部113は、整備会社情報153を参照し、対象系統を有する対象車両を整備する整備会社203を特定する。修理タスク生成部113は、仮想時計において現時点から残寿命が尽きるまでの間の走行可能期間における、特定した整備会社203の空き時期を、整備会社カレンダー157を参照することにより抽出する。 Next, the repair task generation unit 113 extracts the vacant time of the maintenance company 203 during the travelable period (step S1302). Specifically, the repair task generation unit 113 refers to the maintenance company information 153 and identifies the maintenance company 203 that maintains the target vehicle having the target system. The repair task generation unit 113 extracts the vacant time of the specified maintenance company 203 in the travelable period from the current time until the remaining life is exhausted by referring to the maintenance company calendar 157.
 次に、修理タスク生成部113は、対象車両202及び他の車両202の空き時期を抽出する(ステップS1303)。具体的には、修理タスク生成部113は、走行可能期間における対象車両202の空き時期を、対象車両202の車両カレンダー156を参照することにより抽出する。また、修理タスク生成部113は、他の車両202の車両カレンダー156を参照し、走行可能期間における他の車両202の空き時期を抽出する。 Next, the repair task generation unit 113 extracts vacant times of the target vehicle 202 and other vehicles 202 (step S1303). Specifically, the repair task generation unit 113 extracts the vacant time of the target vehicle 202 in the travelable period by referring to the vehicle calendar 156 of the target vehicle 202. In addition, the repair task generation unit 113 refers to the vehicle calendar 156 of the other vehicle 202 and extracts the free time of the other vehicle 202 in the travelable period.
 なお、本実施形態において、本ステップでは対象車両202と同じ運送会社201に属する他の車両202の空き時期を抽出する。しかしながら、他の車両202は、対象車両202とは異なる運送会社201に属する車両202であってもよい。 In this embodiment, in this step, the free time of other vehicles 202 belonging to the same transportation company 201 as the target vehicle 202 is extracted. However, the other vehicle 202 may be a vehicle 202 belonging to a transportation company 201 different from the target vehicle 202.
 次に、修理タスク生成部113は、整備会社203の空き時期と、対象車両202又は他の車両の空き時期との組合せを抽出する(ステップS1304)。具体的には、修理タスク生成部113は、ステップS1302において抽出した整備会社203の空き時期と、ステップS1303において抽出した対象車両202の空き時期とが一致する時期を抽出する。また、修理タスク生成部113は、ステップS1302において抽出した整備会社203の空き時期と、ステップS1303において抽出した他の車両202の空き時期とが一致する時期を抽出する。 Next, the repair task generation unit 113 extracts a combination of the vacant time of the maintenance company 203 and the vacant time of the target vehicle 202 or another vehicle (step S1304). Specifically, the repair task generation unit 113 extracts a time when the vacant time of the maintenance company 203 extracted in step S1302 matches the vacant time of the target vehicle 202 extracted in step S1303. In addition, the repair task generation unit 113 extracts a time when the vacant time of the maintenance company 203 extracted in step S1302 matches the vacant time of the other vehicle 202 extracted in step S1303.
 次に、修理タスク生成部113は、まだ特定していない組合せのうち、最も遅い組合せを特定する(ステップS1305)。具体的には、修理タスク生成部113は、ステップS1304において抽出した整備会社203と対象車両202との空き時期の組合せ、及び整備会社203と他の車両202との空き時期の組合せのうち、まだ特定されていない組合せであって、最も時期の遅い組合せを特定する。 Next, the repair task generation unit 113 identifies the slowest combination among the combinations that have not yet been identified (step S1305). Specifically, the repair task generation unit 113 has not yet selected among the combination of the free times of the maintenance company 203 and the target vehicle 202 extracted in step S1304 and the free times of the maintenance company 203 and the other vehicles 202. A combination that is not specified and that is the latest is specified.
 次に、修理タスク生成部113は、特定した組合せが、対象車両202の空き時期による組合せであるか否かを判定する(ステップS1306)。具体的には、修理タスク生成部113は、ステップS1305において特定した組合せが、対象車両202の空き時期と整備会社203の空き時期との組合せである場合に、処理をステップS1307に進行させる。 Next, the repair task generation unit 113 determines whether or not the identified combination is a combination based on the vacant time of the target vehicle 202 (step S1306). Specifically, the repair task generation unit 113 advances the process to step S1307 when the combination identified in step S1305 is a combination of the free time of the target vehicle 202 and the free time of the maintenance company 203.
 修理タスク生成部113が、対象車両202の空き時期による組合せであると判定する場合(ステップS1306で「yes」の場合)、修理タスク生成部113は、整備時期を特定し、修理タスク情報159を生成する(ステップS1307)。具体的には、修理タスク生成部113は、組合せに係る時期を整備時期として特定し、当該整備時期及び対象の系統を特定した修理タスク情報159を生成する。 When the repair task generation unit 113 determines that the combination is based on the availability time of the target vehicle 202 (in the case of “yes” in step S1306), the repair task generation unit 113 identifies the maintenance time and sets the repair task information 159. Generate (step S1307). Specifically, the repair task generation unit 113 specifies the time related to the combination as the maintenance time, and generates repair task information 159 specifying the maintenance time and the target system.
 即ち、修理タスク生成部113は、第2の閾値以上の信号値が算出された系統を有する車両202について、整備会社203の整備する車両数が上限に達しておらず、該系統の残寿命までの期間のうち最も遅い時期であって、かつ信号値の算出に係る仮想時計の現在時以降の時期を整備時期に特定して、修理タスク情報159を生成する。 That is, the repair task generation unit 113 does not reach the upper limit of the number of vehicles maintained by the maintenance company 203 for the vehicle 202 having the system for which the signal value equal to or greater than the second threshold value is calculated, and until the remaining life of the system is reached. The repair task information 159 is generated by specifying the latest time of the virtual clock related to the calculation of the signal value and the time after the present time as the maintenance time.
 修理タスク生成部113は、対象車両202の車両カレンダー156の整備時期を示す箇所に、修理タスク情報159を割り当てる。また、修理タスク生成部113は、組合せに係る整備会社203の整備会社カレンダー157の整備時期を示す箇所に、修理タスク情報159を割り当てる。その後、修理タスク生成部113は、本フローチャートの処理を終了する。即ち、図5に示すステップS317に処理が進行する。 The repair task generation unit 113 assigns repair task information 159 to the location indicating the maintenance time of the vehicle calendar 156 of the target vehicle 202. Further, the repair task generation unit 113 assigns repair task information 159 to a location indicating the maintenance time of the maintenance company calendar 157 of the maintenance company 203 related to the combination. Thereafter, the repair task generation unit 113 ends the process of this flowchart. That is, the process proceeds to step S317 shown in FIG.
 修理タスク生成部113が、対象車両202の空き時期による組合せでないと判定する場合(ステップS1306で「no」の場合)、修理タスク生成部113は、他の車両202が運送タスクの実行が可能であるか否かを判定する(ステップS1308)。特定された組合せが、対象車両202の空き時期による組合せでない場合、該組合せは整備会社203と他の車両202との空き時期の組合せである。修理タスク生成部113は、組合せに係る時期における対象車両202の車両カレンダー156を参照し、対象車両202に割り当てられた運送タスク情報158を特定する。 When the repair task generation unit 113 determines that the combination is not based on the vacant time of the target vehicle 202 (in the case of “no” in step S1306), the repair task generation unit 113 allows the other vehicle 202 to execute the transportation task. It is determined whether or not there is (step S1308). When the identified combination is not a combination based on the vacant time of the target vehicle 202, the combination is a combination of vacant times between the maintenance company 203 and the other vehicles 202. The repair task generation unit 113 refers to the vehicle calendar 156 of the target vehicle 202 at the time related to the combination, and specifies the transport task information 158 assigned to the target vehicle 202.
 修理タスク生成部113は、運送タスク情報158における荷物の重量を特定する。また、修理タスク生成部113は、組合せに係る他の車両202の車両情報152を参照して車体重量を特定し、特定した重量の荷物を該他の車両202が運送可能であるか否かを判定する。修理タスク生成部113は、他の車両202において荷物の運送が可能である場合に、処理をステップS1309に進める。 The repair task generation unit 113 identifies the weight of the package in the transport task information 158. Further, the repair task generation unit 113 identifies the vehicle body weight with reference to the vehicle information 152 of the other vehicle 202 related to the combination, and determines whether or not the other vehicle 202 can transport the specified weight. judge. The repair task generation unit 113 advances the process to step S1309 when the other vehicle 202 can transport the package.
 修理タスク生成部113が、他の車両202が運送タスクの実行が可能であると判定する場合(ステップS1308で「yes」の場合)、修理タスク生成部113は、整備時期を特定し、修理タスク情報159を生成する(ステップS1309)。本ステップにおいて行われる処理は、ステップS1307において行われる処理と同様であるため、説明を省略する。 When the repair task generation unit 113 determines that another vehicle 202 can execute the transportation task (in the case of “yes” in step S1308), the repair task generation unit 113 specifies the maintenance time, and repair task Information 159 is generated (step S1309). Since the process performed in this step is the same as the process performed in step S1307, description thereof is omitted.
 図14は、予知メンテナンスの概要を説明するための図(その2)である。図14(a)は、整備日程の調整の一例を示す。車両Aが対象車両202であって、残寿命の終期に近い日程において、整備会社203と他の車両202との空き日程がある場合、対象車両202の運送タスクが他の車両202に割り当てられる。結果として、空き日程に車両Aの修理タスクが実行される。 FIG. 14 is a diagram (part 2) for explaining the outline of the predictive maintenance. FIG. 14A shows an example of adjustment of the maintenance schedule. If the vehicle A is the target vehicle 202 and there is an empty schedule between the maintenance company 203 and the other vehicle 202 in the schedule close to the end of the remaining life, the transportation task of the target vehicle 202 is assigned to the other vehicle 202. As a result, the repair task of the vehicle A is executed during the free schedule.
 なお、本処理において、残寿命の終期に近い時期を整備時期に特定するのは、残寿命の期間は運送が可能であるため、なるべく遅い時期に整備を行う方が経済的であって、かつ1車両における総整備回数を削減しうるためである。 In this process, the time near the end of the remaining life is specified as the maintenance time because the remaining life can be transported, so it is more economical to perform the maintenance as late as possible, and This is because the total number of maintenance times per vehicle can be reduced.
 説明を図13に戻す。次に、運送タスク生成部112は、他の車両202について運送タスク情報158を生成する(ステップS1310)。具体的には、運送タスク生成部112は、ステップS1309において特定された整備時期に対象車両202が実行する予定であった運送タスク情報158を特定し、ステップS1305において特定された組合せに係る他の車両202の車両カレンダー156の整備時期に該当する箇所に格納する。 Return the explanation to FIG. Next, the transportation task generation unit 112 generates transportation task information 158 for the other vehicle 202 (step S1310). Specifically, the transportation task generation unit 112 identifies the transportation task information 158 that the target vehicle 202 was scheduled to execute at the maintenance time identified in step S1309, and the other related to the combination identified in step S1305. The vehicle 202 is stored in a location corresponding to the maintenance time of the vehicle calendar 156.
 また、運送タスク生成部112は、整備時期において対象車両202の車両カレンダー156に格納された運送タスク情報158を削除する。運送タスク生成部112は、その後本フローチャートの処理を終了する。 Also, the transport task generation unit 112 deletes the transport task information 158 stored in the vehicle calendar 156 of the target vehicle 202 at the maintenance time. The transport task generation unit 112 thereafter ends the process of this flowchart.
 図14(b)は、運送タスクの調整の概要を示す図である。本図において、車両Aが対象車両202であって、車両Bが組合せに係る他の車両202である。車両Bに空き時期がある場合、車両Aの運送タスクを車両Bに割り振ることが可能である。即ち、車両Aに替わって車両Bが運送を行うこととなる。 Fig. 14 (b) is a diagram showing an outline of adjustment of the transportation task. In this figure, the vehicle A is the target vehicle 202 and the vehicle B is another vehicle 202 related to the combination. When the vehicle B has a free time, the transportation task of the vehicle A can be allocated to the vehicle B. That is, instead of the vehicle A, the vehicle B carries it.
 説明を図13に戻す。修理タスク生成部113が、他の車両202が運送タスクの実行が可能でないと判定する場合(ステップS1308で「no」の場合)、修理タスク生成部113は、ステップS1305において特定された組合せの特定を終了する(ステップS1311)。その後、修理タスク生成部113は処理をステップS1305に戻す。結果として、ステップS1311において特定を終了した組合せを除く他の組合せのうち、最も時期の遅い組合せがステップS1305で特定される。 Return the explanation to FIG. When the repair task generation unit 113 determines that the other vehicle 202 cannot execute the transportation task (in the case of “no” in step S1308), the repair task generation unit 113 specifies the combination specified in step S1305. Is finished (step S1311). Thereafter, the repair task generation unit 113 returns the process to step S1305. As a result, among the combinations other than the combinations that have been identified in step S1311, the latest combination is identified in step S1305.
 図15は、予知メンテナンスのスケジューリング処理の一例を示す図である。本図において、車両Aが対象車両202であって、車両Bが車両Aと同じ運送会社201に属する他の車両202であって、整備会社Cは車両Aを整備する会社として予め整備会社情報153に記憶されている整備会社203である。整備会社Cは1日当たり2台まで整備が可能である。 FIG. 15 is a diagram illustrating an example of a scheduling process for predictive maintenance. In this figure, the vehicle A is the target vehicle 202, the vehicle B is another vehicle 202 belonging to the same transportation company 201 as the vehicle A, and the maintenance company C is a maintenance company information 153 in advance as a company that maintains the vehicle A. Is a maintenance company 203 stored in Maintenance company C can maintain up to two vehicles per day.
 車両Aにおいて、第2の閾値以上の信号値が算出(即ち異常が検知)されてから、当該信号値に係る残寿命が尽きるまでの期間が走行可能期間として扱われる。修理タスク生成部113は、走行可能期間の整備会社203の空き時期を抽出する。その結果、整備候補時期を示す情報として、「r1」と、「r2」と、「r3」と、「r4」と、「r5」とが抽出される。 In the vehicle A, a period from when a signal value equal to or greater than the second threshold is calculated (that is, when an abnormality is detected) until the remaining life related to the signal value is exhausted is treated as a travelable period. The repair task generation unit 113 extracts the vacant time of the maintenance company 203 during the travelable period. As a result, “r1”, “r2”, “r3”, “r4”, and “r5” are extracted as information indicating the maintenance candidate time.
 また、修理タスク生成部113は、走行可能期間の対象車両202の空き時期を抽出する。整備会社203の四角形は1日当たりの整備予定車両202の有無を示している。車両Aの「t1」は、整備会社203の四角形1つ分の1.5倍の大きさであり、これは運送タスク「t1」が1.5日に渡ることを示している。修理タスク生成部113は、所定期間(例えば1日)未満の空き時期は、空き時期とみなさない。図15に示す一例において、車両Aは、走行可能期間に1日間の空き時期を有さないため、修理タスク生成部113は対象車両202の空き時期を抽出しない。 Also, the repair task generation unit 113 extracts the vacant time of the target vehicle 202 during the travelable period. The square of the maintenance company 203 indicates the presence / absence of the maintenance planned vehicle 202 per day. “T1” of the vehicle A is 1.5 times as large as one square of the maintenance company 203, which indicates that the transportation task “t1” takes 1.5 days. The repair task generation unit 113 does not regard an empty time less than a predetermined period (for example, one day) as an empty time. In the example shown in FIG. 15, since the vehicle A does not have a free time of one day in the travelable period, the repair task generation unit 113 does not extract the free time of the target vehicle 202.
 また、修理タスク生成部113は、走行可能期間の他の車両202の空き時期を抽出する。修理タスク生成部113は、車両Bの走行可能期間の空き時期を示す情報として、「b1」と、「b2」とを抽出する。 Also, the repair task generation unit 113 extracts a free time of the other vehicle 202 during the travelable period. The repair task generation unit 113 extracts “b1” and “b2” as information indicating the vacant time of the travelable period of the vehicle B.
 次に、修理タスク生成部113は、整備会社203の空き時期と、対象車両202又は他の車両202の空き時期との組合せを抽出する。その結果、「r1:b1」と、「r4:b2」と、「r5:b2」との組合せが抽出される。 Next, the repair task generation unit 113 extracts a combination of a free time of the maintenance company 203 and a free time of the target vehicle 202 or another vehicle 202. As a result, a combination of “r1: b1”, “r4: b2”, and “r5: b2” is extracted.
 次に、修理タスク生成部113は、抽出した組合せのうち最も時期の遅い組合せを特定する。その結果、最も時期の遅い組合せである「r5:b2」の組合せが特定される。 Next, the repair task generation unit 113 identifies the latest combination among the extracted combinations. As a result, the combination of “r5: b2” that is the latest combination is identified.
 当該組合せに係る時期に該当する車両Aの運送タスクは「t4」である。運送タスク生成部112は、「t4」の運送タスク情報158を参照し、当該運送タスクを車両Bが実行可能であるか否かを判定する。「t4」を車両Bが実行可能であると判定されると、修理タスク生成部113は、「r5:b2」に相当する時期を整備時期に特定して修理タスク情報159を生成し、車両Aの車両カレンダー156及び整備会社Cの整備会社カレンダー157に格納する。 The transportation task of the vehicle A corresponding to the time according to the combination is “t4”. The transportation task generation unit 112 refers to the transportation task information 158 of “t4” and determines whether or not the vehicle B can execute the transportation task. When it is determined that the vehicle B can execute “t4”, the repair task generation unit 113 specifies the time corresponding to “r5: b2” as the maintenance time, generates repair task information 159, and the vehicle A Stored in the vehicle calendar 156 and the maintenance company calendar 157 of the maintenance company C.
 また、運送タスク生成部112は、「t4」の運送タスクを車両Bが実行するよう運送タスク情報158を生成し、車両Bの車両カレンダー156に格納する。 Also, the transportation task generation unit 112 generates transportation task information 158 so that the vehicle B executes the transportation task of “t4”, and stores it in the vehicle calendar 156 of the vehicle B.
 説明を図5に戻す。制御部110が、仮想時計の現在時刻が正午でないと判定する場合(ステップS309で「no」の場合)、又はステップS316の処理の後、制御部110は仮想時計を1時間進める(ステップS317)。その後、ステップS318において処理がステップS305に戻り、仮想時計が1時間進んだ状態でステップS306からステップS316の処理が繰り返される。なお、繰り返して処理を行った結果、シミュレーション条件として入力されたシミュレーションの終了時期に達した場合、制御部110は処理をステップS319に進行させる。 Return the explanation to FIG. When the control unit 110 determines that the current time of the virtual clock is not noon (in the case of “no” in step S309), or after the process of step S316, the control unit 110 advances the virtual clock by one hour (step S317). . Thereafter, the process returns to step S305 in step S318, and the processes from step S306 to step S316 are repeated with the virtual clock advanced by one hour. Note that, as a result of repeated processing, when the simulation end time input as the simulation condition is reached, the control unit 110 advances the processing to step S319.
 シミュレーションの終了時期に達した場合、集計計算部117は、集計計算処理を行う(ステップS319)。具体的には、集計計算部117は、運送タスク情報158を用いて運送料金を算出するとともに、修理タスク情報159を用いて整備料金を算出する。なお、本処理開始前に、制御部110は保守計画評価情報の生成対象となる運送会社201又は整備会社203の指定を受け付けている。 When the simulation end time is reached, the tally calculation unit 117 performs tally calculation processing (step S319). Specifically, the total calculation unit 117 calculates the transportation fee using the transportation task information 158 and calculates the maintenance fee using the repair task information 159. Prior to the start of this process, the control unit 110 accepts designation of the shipping company 201 or the maintenance company 203 that is the target for generating maintenance plan evaluation information.
 保守計画評価情報の生成対象として、運送会社201の指定を受け付けた場合、集計計算部117は、指定された運送会社201の有する車両202の車両カレンダー156において、保守計画評価情報の生成要求期間に割り当てられた運送タスク情報158を参照することにより、指定された運送料金を算出する。集計計算部117は、例えば運送距離と荷物重量に応じて運送料金を算出する。一例として、集計計算部117は、運送距離1kmあたり100円の基本料金に対して、運送距離1km、荷物重量1トン毎に100円の重量加算料金を加算することにより、運送料金を算出する。なお、運送距離及び荷物の重量は、運送タスク情報158を参照することにより特定可能である。 When the designation of the shipping company 201 is received as the maintenance plan evaluation information generation target, the aggregation calculation unit 117 performs the maintenance plan evaluation information generation request period in the vehicle calendar 156 of the vehicle 202 of the designated shipping company 201. By referring to the assigned transportation task information 158, the designated transportation fee is calculated. The total calculation unit 117 calculates a transportation fee according to, for example, the transportation distance and the load weight. As an example, the total calculation unit 117 calculates a transportation fee by adding a weight addition fee of 100 yen per transportation distance of 1 km and 1 ton of luggage weight to a basic fee of 100 yen per transportation distance of 1 km. The transport distance and the weight of the package can be specified by referring to the transport task information 158.
 例えば運送距離200km、荷物重量が4トンの場合、200km×100円=20000円の基本料金に対して、200km×4トン×100円=80000円の重量加算料金が加算され、運送料金が100000円となる。算出された運送料金は、運送会社201に対しては収益として取り扱われる。 For example, if the transport distance is 200km and the weight of the package is 4 tons, the additional charge of 200km x 4 tons x 100 yen = 80000 yen will be added to the basic charge of 200 km x 100 yen = 20000 yen, and the transportation charge will be 100000 yen It becomes. The calculated transportation fee is handled as revenue for the transportation company 201.
 また、集計計算部117は、燃料消費量を算出する。燃料消費量は、例えば燃料1リットル当たりの走行距離である燃費と、燃料の1リットル当たりの価格とを用いて算出される。また、集計計算部117は、高速道路利用等により生じる費用を算出してもよい。燃料消費量は運送会社201に対しては費用として取り扱われる。 Also, the total calculation unit 117 calculates the fuel consumption. The fuel consumption is calculated using, for example, the fuel consumption, which is the travel distance per liter of fuel, and the price per liter of fuel. Moreover, the total calculation unit 117 may calculate a cost caused by using the expressway or the like. The fuel consumption is handled as an expense for the shipping company 201.
 このほか、集計計算部117は、記憶部150の図示しない領域に記憶された運転手の単位時間当たりの作業費に、稼働時間を乗じて得た運転手の総作業費を、費用として計上してもよい。また、集計計算部117は、シミュレーション条件として入力されたサービス会社204を特定する情報毎に、予め定められたサービス料金を、費用として計上してもよい。 In addition, the total calculation unit 117 records the total operation cost of the driver obtained by multiplying the operation cost per unit time stored in the area (not shown) of the storage unit 150 by the operating time as an expense. May be. Moreover, the total calculation unit 117 may record a predetermined service fee as an expense for each piece of information specifying the service company 204 input as the simulation condition.
 なお、運送料金及び燃料消費量の算出方法はこの限りでない。例えば運送タスクの単位数量当たりの平均金額に、保守計画評価情報の生成要求期間内に実行された運送タスクの量を乗じることにより、運送料金を算出してもよい。 However, this does not apply to the method of calculating the transportation fee and fuel consumption. For example, the transportation fee may be calculated by multiplying the average amount per unit quantity of transportation tasks by the amount of transportation tasks executed within the maintenance plan evaluation information generation request period.
 また、集計計算部117は、整備会社カレンダー157において、保守計画評価情報の生成要求期間に割り当てられた修理タスク情報159を参照することにより、整備料金を算出する。集計計算部117は、例えば整備会社情報153を参照することにより整備会社203の単位時間当たりのメニュー価格を特定し、整備に要した時間を乗じることにより、整備料金を算出する。整備料金は、運送会社201に対しては費用として取り扱われ、整備会社203に対しては収益として取り扱われる。 Also, the total calculation unit 117 calculates the maintenance fee by referring to the repair task information 159 assigned to the maintenance plan evaluation information generation request period in the maintenance company calendar 157. The total calculation unit 117 specifies the menu price per unit time of the maintenance company 203 by referring to the maintenance company information 153, for example, and calculates the maintenance fee by multiplying the time required for the maintenance. The maintenance fee is treated as an expense for the shipping company 201 and treated as a profit for the maintenance company 203.
 また、集計計算部117は、整備費用を算出する。集計計算部117は、例えば整備会社情報153を参照することにより整備会社203の単位時間当たりの実作業費を特定し、整備に要した時間を乗じることにより、総作業費を算出する。集計計算部117は、整備に要したパーツの価格と総作業費とを加算することにより、整備費用を算出する。整備費用は、整備会社203にとって費用として取り扱われる。 Also, the total calculation unit 117 calculates maintenance costs. The total calculation unit 117 specifies the actual work cost per unit time of the maintenance company 203 by referring to the maintenance company information 153, for example, and calculates the total work cost by multiplying the time required for maintenance. The total calculation unit 117 calculates the maintenance cost by adding the price of the parts required for the maintenance and the total work cost. The maintenance cost is handled as a cost for the maintenance company 203.
 なお、後述する保守計画評価情報の出力処理において、保守計画評価部116は、車両202や整備会社203の稼働率を含む保守計画評価情報や、車両202の予定を含む保守計画評価情報や、運送会社201又は整備会社203の能力消費の状態を示す保守計画評価情報を生成することができる。これらの保守計画評価情報を生成する場合、保守計画評価部116は、ステップS319による処理よりも前に、生成する保守計画評価情報の種別と、保守計画評価の対象となる運送会社201又は整備会社203を特定した表示指示の入力を受け付ける。 In the output process of maintenance plan evaluation information described later, the maintenance plan evaluation unit 116 performs maintenance plan evaluation information including the operation rate of the vehicle 202 and the maintenance company 203, maintenance plan evaluation information including the schedule of the vehicle 202, and transportation. Maintenance plan evaluation information indicating the state of capacity consumption of the company 201 or the maintenance company 203 can be generated. When generating the maintenance plan evaluation information, the maintenance plan evaluation unit 116 determines the type of maintenance plan evaluation information to be generated and the transportation company 201 or maintenance company to be subjected to the maintenance plan evaluation before the processing in step S319. The display instruction specifying 203 is received.
 車両202の稼働率を指定した保守計画評価情報の表示指示を受け付けた場合、集計計算部117は、ステップS319において、表示指示において特定された運送会社201の有する車両202の運送タスクの走行時間である稼働時間と、運送時間と、整備に要する時間である保守時間と、車両202が走行することができない期間であるダウンタイムとを算出する。 When the display instruction of the maintenance plan evaluation information specifying the operation rate of the vehicle 202 is received, the tabulation calculation unit 117 uses the travel time of the transportation task of the vehicle 202 possessed by the transportation company 201 specified in the display instruction in step S319. A certain operation time, a transportation time, a maintenance time that is a time required for maintenance, and a downtime that is a period during which the vehicle 202 cannot travel are calculated.
 整備会社203の稼働率を指定した保守計画評価情報の表示指示を受け付けた場合、集計計算部117は、整備会社における整備可能台数に対する単位時間当たりの整備台数の割合を稼働率として算出する。 When the maintenance plan evaluation information display instruction designating the operation rate of the maintenance company 203 is received, the total calculation unit 117 calculates the ratio of the number of maintenance units per unit time to the number of maintenance available in the maintenance company as the operation rate.
 運送会社201の能力消費の状態を示す保守計画評価情報の表示指示を受け付けた場合、集計計算部117は、保守計画評価情報の生成要求期間における、運送会社201の有する車両202の稼働状態を示す能力消費量を算出する。集計計算部117は、例えば生成要求期間における単位時間(例えば1日)当たりの稼働車両数を算出する。 When the display instruction of the maintenance plan evaluation information indicating the state of capacity consumption of the shipping company 201 is received, the total calculation unit 117 indicates the operating state of the vehicle 202 of the shipping company 201 during the maintenance plan evaluation information generation request period. Calculate capacity consumption. The total calculation unit 117 calculates the number of operating vehicles per unit time (for example, one day) in the generation request period, for example.
 整備会社203の能力消費の状態を示す保守計画評価情報の表示指示を受け付けた場合、集計計算部117は、保守計画評価情報の生成要求期間における、整備会社203の稼働状態を示す能力消費量を算出する。集計計算部117は、例えば生成要求期間における単位時間(たとえば1日)当たりの整備車両数(即ち修理タスクの数)を算出する。 When the display instruction of the maintenance plan evaluation information indicating the capacity consumption state of the maintenance company 203 is received, the total calculation unit 117 calculates the capacity consumption indicating the operation state of the maintenance company 203 during the maintenance plan evaluation information generation request period. calculate. For example, the total calculation unit 117 calculates the number of maintenance vehicles (that is, the number of repair tasks) per unit time (for example, one day) in the generation request period.
 次に、保守計画評価部116は、保守計画評価情報を出力部130に出力させる(ステップS320)。具体的には、保守計画評価部116は、保守計画評価情報として、運送料金及び整備料金を表示する保守計画評価画面の表示情報を生成し、出力部130に出力させる。保守計画評価部116は、その後本フローチャートの処理を終了する。 Next, the maintenance plan evaluation unit 116 causes the output unit 130 to output maintenance plan evaluation information (step S320). Specifically, the maintenance plan evaluation unit 116 generates display information of a maintenance plan evaluation screen that displays the transportation fee and the maintenance fee as the maintenance plan evaluation information, and causes the output unit 130 to output the display information. The maintenance plan evaluation unit 116 then ends the process of this flowchart.
 図16は、保守計画評価画面の一例を示す図である。図16(a)は、指定された運送会社201に対して、当該運送会社201の有する車両202のすべてに予知メンテナンスを行うようシミュレーション条件の入力を行った場合と、当該車両202に定期メンテナンスを行うようシミュレーション条件の入力を行った場合と、当該車両202に定期メンテナンス及び予知メンテナンスを行わず、故障が生じた場合に修理を行うようシミュレーション条件の入力を行った場合と、の費用及び収益を表示する保守計画評価画面の一例である。 FIG. 16 is a diagram showing an example of a maintenance plan evaluation screen. FIG. 16A shows the case where the simulation conditions are input to the designated transportation company 201 so as to perform predictive maintenance on all of the vehicles 202 of the transportation company 201, and periodic maintenance is performed on the vehicle 202. The cost and profit of the case where the simulation condition is input so as to be performed, and the case where the simulation condition is input so that the vehicle 202 is repaired when a failure occurs without performing the regular maintenance and the predictive maintenance. It is an example of the maintenance plan evaluation screen to be displayed.
 なお、費用及び収益を含む保守計画評価画面については、運送会社201の費用及び収益に限定されるものではない。例えば整備会社203の費用及び収益であってもよい。 Note that the maintenance plan evaluation screen including the cost and revenue is not limited to the cost and revenue of the shipping company 201. For example, the cost and revenue of the maintenance company 203 may be used.
 図16(b)は、車両202の稼働率を示す保守計画評価画面の表示指示を受け付けた場合の、保守計画評価画面の一例を示す図である。 FIG. 16B is a diagram illustrating an example of a maintenance plan evaluation screen when an instruction to display a maintenance plan evaluation screen indicating the operation rate of the vehicle 202 is received.
 図16(b)は、指定された運送会社201に対して、当該運送会社201の有する車両202のすべてに予知メンテナンスを行うようシミュレーション条件の入力を行った場合と、当該車両202に定期メンテナンスを行うようシミュレーション条件の入力を行った場合と、当該車両202に定期メンテナンス及び予知メンテナンスを行わず、故障が生じた場合に修理を行うようシミュレーション条件の入力を行った場合と、の各々に対して、稼働時間、運送時間、保守時間、及びダウンタイムの生成要求期間に対する割合である稼働率を表示する保守計画評価画面の一例である。 FIG. 16B shows a case where simulation conditions are input to the designated transportation company 201 so that all of the vehicles 202 of the transportation company 201 are subjected to predictive maintenance, and periodic maintenance is performed on the vehicle 202. For each of the case where the simulation condition is input so as to be performed, and the case where the simulation condition is input so that the vehicle 202 is repaired without performing the regular maintenance and the predictive maintenance. It is an example of the maintenance plan evaluation screen which displays the operation rate which is the ratio with respect to the production | generation request | requirement period of an operation time, a transportation time, a maintenance time, and a down time.
 なお、稼働率については円グラフを用いて表示してもよい。また、稼働率は、稼働時間、運送時間、保守時間、及びダウンタイムの、走行可能期間に対する割合であってもよい。 In addition, the operating rate may be displayed using a pie chart. Further, the operation rate may be a ratio of the operation time, the transportation time, the maintenance time, and the down time to the travelable period.
 また、整備会社203の稼働率を指定した保守計画評価情報の表示指示を受け付けた場合、保守計画評価部116は、算出した整備会社203の稼働率を示す保守計画評価情報を生成し、出力部を介して出力させる。 In addition, when a display instruction for maintenance plan evaluation information specifying the operation rate of the maintenance company 203 is received, the maintenance plan evaluation unit 116 generates maintenance plan evaluation information indicating the calculated operation rate of the maintenance company 203, and outputs an output unit. Output via.
 図17は、運送会社201の有する車両202の予定を含む保守計画評価画面の一例を示す図である。保守計画評価部116は、指定された運送会社201の有する車両202の車両カレンダー156を参照し、保守計画評価情報の生成要求期間における各車両202の運送タスク及び修理タスクの実行状況を示す保守計画評価画面を生成する。 FIG. 17 is a diagram illustrating an example of a maintenance plan evaluation screen including a schedule of the vehicle 202 possessed by the shipping company 201. The maintenance plan evaluation unit 116 refers to the vehicle calendar 156 of the vehicle 202 possessed by the designated transportation company 201, and shows a maintenance plan indicating the execution status of the transportation task and the repair task of each vehicle 202 during the maintenance plan evaluation information generation request period. Generate an evaluation screen.
 図17は、車両202のガントチャートを示す図であって、横軸を時間軸とし、縦軸に車両202を表示している。ガントチャートは、車両の稼働予定を示している。黒い四角形601が運送タスクの量を示し、白い四角形602が修理タスクの量を示している。 FIG. 17 is a diagram showing a Gantt chart of the vehicle 202, in which the horizontal axis represents the time axis and the vertical axis represents the vehicle 202. The Gantt chart shows the operation schedule of the vehicle. A black square 601 indicates the amount of the transportation task, and a white square 602 indicates the amount of the repair task.
 図18は、能力消費の状態を示す保守計画評価画面の一例を示す図である。図18(a)は、運送会社201の能力消費の状態を示す保守計画評価画面の一例である。本図は、横軸を時間軸とし、縦軸を運送会社201の実行する運送タスクの量としている。本図において、黒い四角形701は運送タスクがある状態を示している。保守計画評価部116は、集計計算部117の算出した単位時間当たりの稼働車両数を用いて、運送会社201の能力消費の状態を示す保守計画評価画面を生成する。 FIG. 18 is a diagram showing an example of a maintenance plan evaluation screen showing the state of capacity consumption. FIG. 18A is an example of a maintenance plan evaluation screen showing the capacity consumption state of the shipping company 201. In this figure, the horizontal axis represents the time axis, and the vertical axis represents the amount of transportation tasks executed by the transportation company 201. In this figure, a black square 701 indicates a state where there is a transportation task. The maintenance plan evaluation unit 116 uses the number of operating vehicles per unit time calculated by the total calculation unit 117 to generate a maintenance plan evaluation screen showing the capacity consumption state of the shipping company 201.
 図18(b)は、整備会社203の能力消費の状態を示す保守計画評価画面の一例である。本図は、横軸を時間軸とし、縦軸を整備会社203の実行する修理タスクの量としている。本図において、黒い四角形702は修理タスクがある状態を示している。保守計画評価部116は、集計計算部117の算出した単位時間当たりの修理タスクの量を用いて、整備会社203の能力消費の状態を示す保守計画評価画面を生成する。 FIG. 18B is an example of a maintenance plan evaluation screen showing a state of capacity consumption of the maintenance company 203. In this figure, the horizontal axis is the time axis, and the vertical axis is the amount of repair tasks executed by the maintenance company 203. In this figure, a black square 702 indicates a state where there is a repair task. The maintenance plan evaluation unit 116 uses the repair task amount per unit time calculated by the total calculation unit 117 to generate a maintenance plan evaluation screen indicating the capacity consumption state of the maintenance company 203.
 なお、整備会社203の能力消費の状態を示す保守計画評価画面には、整備会社203の整備可能な車両数の上限値を示す情報が表示されていてもよい。付言すると、シミュレーション条件において整備会社203の整備可能な車両数の上限値を入力しない場合、修理タスクのスケジューリングにおいて整備会社203の能力による制限が考慮されない。そのため、運送会社201の必要とする整備会社203の能力、即ち運送会社201により実行が要求される単位時間当たりの修理タスクの量を認識することができる。 Note that information indicating the upper limit value of the number of vehicles that can be maintained by the maintenance company 203 may be displayed on the maintenance plan evaluation screen that indicates the state of capacity consumption of the maintenance company 203. In addition, if the upper limit value of the number of vehicles that can be maintained by the maintenance company 203 is not input under the simulation conditions, the limitation due to the capability of the maintenance company 203 is not considered in the scheduling of the repair task. Therefore, the capacity of the maintenance company 203 required by the shipping company 201, that is, the amount of repair tasks per unit time required to be executed by the shipping company 201 can be recognized.
 本実施形態において生成される保守計画評価情報により、車両202の整備方式による収益及び費用の違いを認識することができる。これにより、整備方式による保守計画評価を適切に行うことが可能となる。また、車両202の稼働率を含む保守計画評価情報を生成することにより、整備方式による所要時間の違いを認識することができる。その場合に、車両202の予定を示す保守計画評価情報を表示すれば、生成要求期間における車両202の予定を認識することが可能となる。 The difference in revenue and expense depending on the maintenance method of the vehicle 202 can be recognized from the maintenance plan evaluation information generated in the present embodiment. This makes it possible to appropriately perform maintenance plan evaluation by the maintenance method. Further, by generating maintenance plan evaluation information including the operation rate of the vehicle 202, it is possible to recognize a difference in required time depending on the maintenance method. In that case, if the maintenance plan evaluation information indicating the schedule of the vehicle 202 is displayed, the schedule of the vehicle 202 in the generation request period can be recognized.
 また、運送会社201及び整備会社203における能力消費量を用いて保守計画評価情報を生成することにより、シミュレーションにおいて運送会社201や整備会社203の有する能力のうちどの程度が活用されたかを認識することができる。 In addition, by generating the maintenance plan evaluation information using the capacity consumption in the shipping company 201 and the maintenance company 203, it is possible to recognize how much of the capabilities of the shipping company 201 and the maintenance company 203 is utilized in the simulation. Can do.
 なお、保守計画評価画面のグラフィックスについては、図16、図17、及び図18に示す態様に限定されるものではない。 In addition, about the graphics of a maintenance plan evaluation screen, it is not limited to the aspect shown in FIG.16, FIG.17 and FIG.18.
 <変形例> <Modification>
 次に、車両保守計画装置1の変形例について説明する。車両202に関する異常検知処理において、不具合が発生していないにも係わらず不具合が検知されたものとして運送会社201に虚報が通知される事や、不具合が発生していながら不具合が検知されない見逃しが生じる事等の、検知の誤りが発生するおそれがある。 Next, a modified example of the vehicle maintenance planning apparatus 1 will be described. In the abnormality detection processing related to the vehicle 202, a falsification is notified to the shipping company 201 as a failure is detected even though no failure has occurred, or there is an oversight where a failure is not detected while a failure has occurred. There is a risk that detection errors will occur.
 本変形例における車両保守計画装置1の異常検知部114は、状態情報に対し所定の数式を用いることにより、誤状態情報を生成する。修理タスク生成部113は、状態情報と誤状態情報の組合せに応じて、修理タスク情報159を生成する。以下、上述の実施形態と異なる点について説明する。 The abnormality detection unit 114 of the vehicle maintenance planning apparatus 1 in the present modification generates erroneous state information by using a predetermined mathematical formula for the state information. The repair task generation unit 113 generates repair task information 159 according to the combination of the state information and the erroneous state information. Hereinafter, differences from the above-described embodiment will be described.
 図19は、異常検知の誤りの問題点を説明するための図である。図19(a)は、不具合がないにも関わらず、「緊急」を示す状態情報が特定された系統を有する車両202に関する図である。「緊急」を示す状態情報が特定されたため、修理タスク生成部113は該系統の残寿命までに整備会社203の空き時期に、予知メンテナンスを予定する修理タスク情報159を生成する。 FIG. 19 is a diagram for explaining the problem of error in abnormality detection. FIG. 19A is a diagram related to the vehicle 202 having a system in which the state information indicating “emergency” is specified even though there is no malfunction. Since the status information indicating “emergency” has been identified, the repair task generation unit 113 generates repair task information 159 for which predictive maintenance is scheduled in the spare time of the maintenance company 203 by the remaining life of the system.
 また、運送タスク生成部112は、該車両202の運送タスクをキャンセルする。実際には、修理タスクにおいて系統の整備を必要としないため、サービス会社204から運送会社201へと送信される、予知メンテナンスを行うことを示す通知は、「虚報」であると考えられる。運送会社201は、整備対象の車両202について運送タスク実行による収益を得ることができず、また整備会社203に対しても点検費用が発生することになるため、虚報によって生じる損失は看過できない。 In addition, the transportation task generation unit 112 cancels the transportation task of the vehicle 202. In practice, since no system maintenance is required in the repair task, the notification indicating that the predictive maintenance is performed, which is transmitted from the service company 204 to the shipping company 201, is considered to be “false information”. The shipping company 201 cannot obtain a profit due to the execution of the transportation task for the vehicle 202 to be maintained, and an inspection cost is also generated for the maintenance company 203. Therefore, the loss caused by the false alarm cannot be overlooked.
 図19(b)は、不具合があるにも関わらず、「緊急」を示す状態情報が特定されなかった系統を有する車両202に関する図である。「緊急」を示す状態情報が特定されなかった結果、該系統は故障し、該系統を有する車両202に割り当てられた運送タスクは中断せざるを得なくなる。この場合、予知メンテナンスが必要であったにも関わらず、「緊急」の状態情報が生成されなかったため、異常検知において「見逃し」があったと考えられる。 FIG. 19B is a diagram related to the vehicle 202 having a system in which the state information indicating “emergency” is not specified in spite of a defect. As a result of the status information indicating “emergency” not being identified, the system fails, and the transportation task assigned to the vehicle 202 having the system must be interrupted. In this case, although “predictive maintenance” was necessary, “emergency” status information was not generated, so it is considered that there was “missing” in abnormality detection.
 また、当該車両202は修理を余儀なくされるため、予知メンテナンスにおける整備よりも、故障の修理に要する費用の方が高額である場合、運送会社201の支払う費用はより高額となる。運送会社201にとっては、ダウンタイムの間に該車両202に運送タスクを割り当てることができないため、見逃しによる運送タスク実行の機会損失が発生する。また、実行中の運送タスクの中断により、罰金等の予期しない損失が発生する可能性がある。 Further, since the vehicle 202 is forced to be repaired, if the cost required for repairing the failure is higher than the maintenance in the predictive maintenance, the cost paid by the transportation company 201 becomes higher. Since the transportation company 201 cannot assign a transportation task to the vehicle 202 during the downtime, an opportunity loss of the transportation task execution due to oversight occurs. In addition, there is a possibility that an unexpected loss such as a fine may occur due to interruption of the carrying task being executed.
 図20は、虚報見逃し誤り判定処理の概要を示す図である。本図は、虚報見逃し誤り判定の概念について説明するために用いられる。本図は、虚報見逃し誤り判定をサービス会社204にて行う実態を示しているが、車両保守計画装置1は本図における処理を模擬的にシミュレーションする。 FIG. 20 is a diagram showing an outline of the false alarm missing error determination process. This figure is used to explain the concept of false alarm miss error determination. Although this figure has shown the actual condition which performs the false report miss error determination in the service company 204, the vehicle maintenance planning apparatus 1 simulates the process in this figure in simulation.
 まず、図11に示すステップS1221と同様に、サービス会社204は、予め契約している運送会社201の車両202を監視し、当該車両202の各系統の状態を検知するよう設置されたセンサから発生した信号値を受信する(ステップS1301)。 First, similar to step S1221 shown in FIG. 11, the service company 204 monitors the vehicle 202 of the transportation company 201 with which the contract is made in advance, and is generated from a sensor installed to detect the state of each system of the vehicle 202. The received signal value is received (step S1301).
 次に、サービス会社204は、信号値を用いて、異常状態を判定する(ステップS1302)。ステップS1302の異常状態判定処理は、真の判定処理(ステップS1501)と、誤状態情報生成処理(ステップS1502)とを有する。真の判定処理は、図11に示すステップS1222において行われる処理と同様である。真の判定処理の結果、対象車両202の有する各系統の状態情報が特定される。以下、真の判定処理の結果特定される状態情報を、「真状態情報」として説明する。 Next, the service company 204 determines an abnormal state using the signal value (step S1302). The abnormal state determination process in step S1302 includes a true determination process (step S1501) and an erroneous state information generation process (step S1502). The true determination process is the same as the process performed in step S1222 shown in FIG. As a result of the true determination process, the state information of each system of the target vehicle 202 is specified. Hereinafter, the state information specified as a result of the true determination process will be described as “true state information”.
 誤状態情報生成処理において、サービス会社204は、真状態情報を用いて誤状態情報を生成し、誤状態情報を運送会社201に通知する(ステップS1303)。また、サービス会社204は、誤状態情報を整備会社203に通知する(ステップS1304)。ステップS1305及びステップS1306において行われる処理は、図11に示すステップS1225及びステップS1226において行われる処理と同様であるため、説明を省略する。 In the erroneous state information generation process, the service company 204 generates erroneous state information using the true state information and notifies the shipping company 201 of the erroneous state information (step S1303). In addition, the service company 204 notifies the maintenance company 203 of erroneous state information (step S1304). The processing performed in steps S1305 and S1306 is the same as the processing performed in steps S1225 and S1226 shown in FIG.
 サービス会社204における異常状態の判定処理(ステップS1302)は、車両保守計画装置1において行われる異常検知処理(図5に示すステップS315)に対応している。上述の実施形態と同様に、車両保守計画装置1の異常検知部114は信号値取得部115により取得された信号値を用いて系統毎に状態情報を特定する。特定された状態情報は、真状態情報として取り扱う。 The abnormal state determination process (step S1302) in the service company 204 corresponds to the abnormality detection process (step S315 shown in FIG. 5) performed in the vehicle maintenance planning apparatus 1. Similar to the above-described embodiment, the abnormality detection unit 114 of the vehicle maintenance planning device 1 specifies the state information for each system using the signal value acquired by the signal value acquisition unit 115. The specified state information is handled as true state information.
 同ステップにおいて、異常検知部114は、真状態情報に対して所定の数式を用いて誤状態情報を生成する。具体的には、真状態情報trueAlarmSatusi(i=1..4)が誤状態情報falseAlarmStatusj(j=1..4)に変換される確率(誤り確率)をfalsepi jとする。式(11)は行列表現であり、式(12)を満たす。 In the same step, the abnormality detection unit 114 generates erroneous state information using a predetermined mathematical formula for the true state information. Specifically, the probability (error probability) that true state information true AlarmSatus i (i = 1..4) is converted to false state information false AlarmStatus j (j = 1..4) is false p i j . Equation (11) is a matrix representation and satisfies Equation (12).
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000012
 
Figure JPOXMLDOC01-appb-M000012
 
 右下添え字のインデックスiは真状態情報、右上添え字のインデックスjは誤状態情報を特定するインデックスである。誤り確率は範囲[0,1]の値となり、一切の誤りが無い場合はfalsep=Eの単位行列となる。誤状態情報への変換では範囲[0,1)の一様乱数を生成し、インデックスiの真状態情報に応じて乱数値rを、式(14)で確率の範囲で判定して、インデックスjを定めて、誤状態情報であるfalseAlarmStatusを求める。インデックスjの値が誤状態情報を特定する識別番号である。 The index i of the lower right subscript is true state information, and the index j of the upper right subscript is an index for specifying erroneous state information. The error probability is a value in the range [0, 1] . If there is no error, the unit matrix is false p = E. In the conversion to the error state information, a uniform random number in the range [0, 1) is generated, and the random value r is determined in accordance with the true state information of the index i within the probability range by the expression (14), and the index j And false AlarmStatus that is error state information is obtained. The value of the index j is an identification number that identifies erroneous state information.
Figure JPOXMLDOC01-appb-M000013
 
Figure JPOXMLDOC01-appb-M000013
 
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000015
 
Figure JPOXMLDOC01-appb-M000015
 
 ここで、falsePi jは誤異常状態に関する累積誤り確率を意味し、式(12)の通りに、falsePi 4=1である。インデックスjは1から4までの整数であり、特にj-1=0 (j=1)の場合、累積誤り確率は0、もしくは存在しないと扱う。 Here, false P i j means the cumulative error probability related to the erroneously abnormal state, and false P i 4 = 1 as in equation (12). The index j is an integer from 1 to 4, and in particular when j-1 = 0 (j = 1), the cumulative error probability is treated as 0 or does not exist.
 図21は、真状態情報と誤状態情報の組合せに対する、異常検知と予知メンテナンスの意味の対応表の一例を示す図である。真状態情報が「故障(Critical)」の場合、誤状態情報に関わらず系統を故障として取り扱う。また、誤状態情報が「故障(Critical)」であったとしても、真状態情報が「故障(Critical)」でない限り故障として取り扱わず、「緊急(Urgent)」として取り扱う。 FIG. 21 is a diagram illustrating an example of a correspondence table of meanings of abnormality detection and predictive maintenance for a combination of true state information and erroneous state information. When the true state information is “Critical”, the system is treated as a failure regardless of the erroneous state information. Further, even if the erroneous state information is “Critical”, it is not handled as a failure unless the true state information is “Critical”, and is handled as “Urgent”.
 真状態情報が「正常(Normal)」であるにも関わらず、誤状態情報が「警告(Alert)」、又は「緊急(Urgent)」となる場合、虚報の発生と考え、整備が不要であると取り扱う。真状態情報が「警告(Alert)」、又は「緊急(Urgent)」であるにも関わらず、誤状態情報が「正常(Normal)」となる場合、見逃しの発生と考え、予知メンテナンスを行う。真状態情報が「警告(Alert)」、又は「緊急(Urgent)」であって、誤状態情報が真状態情報と一致する場合には、正しい判定がなされているものと取り扱う。 If the true state information is “Normal” but the false state information is “Alert” or “Urgent”, it is considered to be a false alarm and no maintenance is required. And handle. When the true state information is “Alert” or “Urgent” but the erroneous state information is “Normal”, it is assumed that an oversight has occurred, and predictive maintenance is performed. When the true state information is “Alert” or “Urgent” and the erroneous state information matches the true state information, it is handled that the correct determination is made.
 また、真状態情報が「緊急(Urgent)」であって、誤状態情報が「警告(Alert)」である場合において、真状態情報に応じた整備が予定されている場合、整備が不十分であるものと取り扱う。また、真状態情報が「警告(Alert)」であって、誤状態情報が「緊急(Urgent)」である場合において、真状態情報に応じた整備が予定されている場合、過剰な整備が予定されているものと取り扱う。 In addition, when the true state information is “Urgent” and the wrong state information is “Alert”, if the maintenance according to the true state information is scheduled, the maintenance is insufficient. Treat as something. In addition, when the true state information is “Alert” and the wrong state information is “Urgent”, excessive maintenance is planned when the maintenance according to the true state information is scheduled. It is treated as being.
 図5のステップS316において、真状態情報と誤状態情報の組合せに応じて実行する整備を特定して修理タスク情報159を生成し、対応する車両カレンダー156及び整備会社カレンダー157に格納する。 5, the maintenance task information 159 is generated by specifying the maintenance to be executed in accordance with the combination of the true state information and the erroneous state information, and stored in the corresponding vehicle calendar 156 and maintenance company calendar 157.
 図5のステップS319で行われる集計計算処理において、誤り判定の組合せ毎に運送料金及び整備料金を算出することで、誤り判定の保守計画評価への影響を考慮した保守計画評価情報を生成することができる。 In the tabulation calculation process performed in step S319 of FIG. 5, maintenance plan evaluation information that takes into account the effect of error determination on maintenance plan evaluation is generated by calculating a transportation fee and a maintenance fee for each error determination combination. Can do.
 以上、本発明に係る各実施形態及び変形例の説明を行ってきたが、本発明は、上記した実施形態の一例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態の一例は、本発明を分かり易くするために詳細に説明したものであり、本発明は、ここで説明した全ての構成を備えるものに限定されない。また、ある実施形態の一例の構成の一部を他の一例の構成に置き換えることが可能である。また、ある実施形態の一例の構成に他の一例の構成を加えることも可能である。また、各実施形態の一例の構成の一部について、他の構成の追加・削除・置換をすることもできる。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、図中の制御線や情報線は、説明上必要と考えられるものを示しており、全てを示しているとは限らない。ほとんど全ての構成が相互に接続されていると考えてもよい。 As mentioned above, although each embodiment and modification which concern on this invention have been demonstrated, this invention is not limited to an example of above-described embodiment, Various modifications are included. For example, the above-described exemplary embodiment has been described in detail for easy understanding of the present invention, and the present invention is not limited to the one having all the configurations described here. A part of the configuration of an example of an embodiment can be replaced with the configuration of another example. Moreover, it is also possible to add the structure of another example to the structure of an example of an embodiment. In addition, for a part of the configuration of an example of each embodiment, another configuration can be added, deleted, or replaced. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. In addition, the control lines and information lines in the figure indicate what is considered necessary for the description, and do not necessarily indicate all of them. It can be considered that almost all configurations are connected to each other.
 また、上記の車両保守計画装置1の機能構成は、理解を容易にするために、主な処理内容に応じて分類したものである。構成要素の分類の仕方や名称によって、本願発明が制限されることはない。上述に示す通り、車両保守計画装置1の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。 In addition, the functional configuration of the vehicle maintenance planning apparatus 1 is classified according to the main processing contents in order to facilitate understanding. The present invention is not limited by the way of classification and names of the constituent elements. As described above, the configuration of the vehicle maintenance planning apparatus 1 can be classified into more components depending on the processing content. Moreover, it can also classify | categorize so that one component may perform more processes.
1:車両保守計画装置、110:制御部、111:条件情報取得部、112:運送タスク生成部、113:修理タスク生成部、114:異常検知部、115:信号値取得部、116:保守計画評価部、117:集計計算部、120:入力部、130:出力部、140:通信部、150:記憶部、151:運送会社情報、152:車両情報、153:整備会社情報、154:管理基準情報、155:劣化関数情報、156:車両カレンダー、157:整備会社カレンダー、158:運送タスク情報、159:修理タスク情報、160:整備内容情報、161:パーツ情報、162:整備会社パーツ在庫情報、163:状態量情報、171:CPU、172:RAM、173:ROM、174:補助記憶装置、175:出力装置、176:入力装置、177:メディア読取装置、178:通信装置、201:運送会社、202:車両、203:整備会社、204:サービス会社、401:シミュレーション条件入力画面、402:サービス会社入力領域、403:運送会社入力領域、404:車両入力領域、405:整備会社入力領域、406:期間入力領域、407:条件設定ボタン、408:開始ボタン、409:キャンセルボタン、601・701・702:黒い四角形、602:白い四角形、1001:引取、1002・1004:運送、1003・1006:停止、1005・1007:帰社 DESCRIPTION OF SYMBOLS 1: Vehicle maintenance plan apparatus, 110: Control part, 111: Condition information acquisition part, 112: Transportation task generation part, 113: Repair task generation part, 114: Abnormality detection part, 115: Signal value acquisition part, 116: Maintenance plan Evaluation unit, 117: Total calculation unit, 120: Input unit, 130: Output unit, 140: Communication unit, 150: Storage unit, 151: Transportation company information, 152: Vehicle information, 153: Maintenance company information, 154: Management standard Information: 155: Degradation function information, 156: Vehicle calendar, 157: Maintenance company calendar, 158: Transportation task information, 159: Repair task information, 160: Maintenance content information, 161: Parts information, 162: Maintenance company parts inventory information, 163: state quantity information, 171: CPU, 172: RAM, 173: ROM, 174: auxiliary storage device, 175: output device, 176: input device 177: Media reader 178: Communication device 201: Transportation company 202: Vehicle 203: Maintenance company 204: Service company 401: Simulation condition input screen 402: Service company input area 403: Transportation company input Area 404: vehicle input area 405: maintenance company input area 406: period input area 407: condition setting button 408: start button 409: cancel button 601 701 702 black square 602 white square , 1001: Pickup, 1002, 1004: Transportation, 1003, 1006: Stop, 1005, 1007: Return to work

Claims (20)

  1.  運送会社と1又は複数の車両とを関連付けた運送会社情報と、整備会社と整備を行う前記車両とを関連付けた整備会社情報と、前記車両と当該車両の有する1又は複数の系統及び整備方式とを関連付けた車両情報と、を取得する条件情報取得部と、
     前記運送会社に割り当てる運送タスク情報を生成する運送タスク生成部と、
     前記運送タスク情報を用いて前記車両の系統毎に信号値を算出する信号値取得部と、
     前記整備方式及び前記信号値を用いて前記車両の整備に関する修理タスク情報を生成し、前記整備会社に割り当てる修理タスク生成部と、
     前記運送タスク情報を用いて運送料金を算出するとともに、前記修理タスク情報を用いて整備料金を算出する集計計算部と、
     前記運送料金及び前記整備料金を含む保守計画評価情報を生成する保守計画評価部と、
     前記保守計画評価情報を出力する出力部と、を備えることを特徴とする、車両保守計画装置。
    Shipping company information associating a shipping company with one or more vehicles, maintenance company information associating a maintenance company with the vehicle to be serviced, and one or more systems and maintenance systems of the vehicle and the vehicle, Vehicle information associated with the condition information acquisition unit for acquiring,
    A transportation task generator for generating transportation task information to be assigned to the transportation company;
    A signal value acquisition unit that calculates a signal value for each system of the vehicle using the transportation task information;
    A repair task generation unit that generates repair task information related to the maintenance of the vehicle using the maintenance method and the signal value, and is assigned to the maintenance company;
    Calculating a transportation fee using the transportation task information, and calculating a maintenance fee using the repair task information;
    A maintenance plan evaluation unit for generating maintenance plan evaluation information including the transportation fee and the maintenance fee;
    A vehicle maintenance planning apparatus comprising: an output unit that outputs the maintenance plan evaluation information.
  2.  請求項1に記載の車両保守計画装置であって、
     前記条件情報取得部は、前記車両の予定に関する車両カレンダーと、前記整備会社の予定に関する整備会社カレンダーと、前記保守計画評価情報の生成要求期間とを取得し、
     前記運送タスク生成部は、前記運送タスク情報を前記車両カレンダーの空き領域に割り当て、
     前記修理タスク生成部は、前記車両に割り当てられた前記運送タスク情報を用いて算出された前記信号値と、該車両に対し関連付けられた整備方式と、を用いて特定された整備時期を特定した前記修理タスク情報を生成し、前記車両カレンダー及び前記整備会社カレンダーの空き領域に割り当て、
     前記保守計画評価部は、整備対象の前記系統の前記生成要求期間における整備に要する前記整備料金を用いて前記保守計画評価情報を生成することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    The condition information acquisition unit acquires a vehicle calendar related to the schedule of the vehicle, a maintenance company calendar related to the schedule of the maintenance company, and a generation request period of the maintenance plan evaluation information,
    The transportation task generation unit assigns the transportation task information to an empty area of the vehicle calendar,
    The repair task generation unit specifies a maintenance time specified using the signal value calculated using the transportation task information assigned to the vehicle and a maintenance method associated with the vehicle. Generating the repair task information, assigning it to an empty area of the vehicle calendar and the maintenance company calendar,
    The maintenance plan evaluation unit generates the maintenance plan evaluation information using the maintenance fee required for maintenance of the system to be maintained during the generation request period.
  3.  請求項2に記載の車両保守計画装置であって、
     前記運送タスク生成部は、引取地を示す始点座標と、目的地を示す終点座標と、荷物の重量と、の少なくとも1つに対し乱数を用いて前記運送タスク情報を生成するとともに、前記車両カレンダーのうち予め定められた車両稼働時間の前記空き領域に前記運送タスク情報を割り当てることを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    The transport task generating unit generates the transport task information using a random number for at least one of a start point coordinate indicating a pick-up location, an end point coordinate indicating a destination, and a weight of a load, and the vehicle calendar The vehicle maintenance planning device is characterized in that the transport task information is assigned to the empty area of a predetermined vehicle operating time.
  4.  請求項1に記載の車両保守計画装置であって、
     前記集計計算部は、前記車両について算出された前記運送料金と、該車両について算出された前記整備料金と、を用いて前記運送会社又は前記整備会社の収益及び費用を特定し、
     前記出力部は、前記収益及び費用を含む保守計画評価画面を出力することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    The total calculation unit specifies the revenue and expense of the transportation company or the maintenance company using the transportation fee calculated for the vehicle and the maintenance fee calculated for the vehicle,
    The output section outputs a maintenance plan evaluation screen including the revenue and expense, and a vehicle maintenance planning apparatus.
  5.  請求項1に記載の車両保守計画装置であって、
     前記集計計算部は、前記運送会社の有する前記車両について算出された前記運送料金を用いて該運送会社の収益を特定するとともに、該車両について算出された前記整備料金を用いて該運送会社の費用を特定し、
     前記保守計画評価部は、前記収益及び前記費用を含む前記運送会社の前記保守計画評価情報を生成することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    The total calculation unit specifies the revenue of the transportation company using the transportation fee calculated for the vehicle of the transportation company, and uses the maintenance fee calculated for the vehicle to determine the cost of the transportation company. Identify
    The vehicle maintenance plan apparatus, wherein the maintenance plan evaluation unit generates the maintenance plan evaluation information of the shipping company including the revenue and the cost.
  6.  請求項1に記載の車両保守計画装置であって、
     前記集計計算部は、前記車両情報に含まれる前記整備方式毎に、前記車両又は前記整備会社の稼働率を算出し、
     前記出力部は、前記稼働率を含む保守計画評価画面を出力することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    The total calculation unit calculates an operation rate of the vehicle or the maintenance company for each maintenance method included in the vehicle information,
    The output section outputs a maintenance plan evaluation screen including the operation rate, and a vehicle maintenance planning apparatus.
  7.  請求項2に記載の車両保守計画装置であって、
     前記集計計算部は、前記生成要求期間における前記運送会社又は前記整備会社の稼働状態を示す能力消費量を算出し、
     前記出力部は、前記能力消費量を含む保守計画評価画面を出力し、
     前記運送会社の前記能力消費量は、該運送会社の有する前記車両の稼働状態を示す値であることを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    The total calculation unit calculates a capacity consumption indicating an operating state of the transportation company or the maintenance company in the generation request period,
    The output unit outputs a maintenance plan evaluation screen including the capacity consumption;
    The vehicle maintenance planning device, wherein the capacity consumption of the transportation company is a value indicating an operating state of the vehicle of the transportation company.
  8.  請求項2に記載の車両保守計画装置であって、
     前記保守計画評価部は、前記車両カレンダーに割り当てられた前記運送タスク情報と前記修理タスク情報を用いて保守計画評価情報を生成し、
     前記出力部は、前記保守計画評価情報により特定される前記車両の稼働予定を示すガントチャートを含む保守計画評価画面を出力することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    The maintenance plan evaluation unit generates maintenance plan evaluation information using the transportation task information and the repair task information assigned to the vehicle calendar,
    The said output part outputs the maintenance plan evaluation screen containing the Gantt chart which shows the operation plan of the said vehicle specified by the said maintenance plan evaluation information, The vehicle maintenance plan apparatus characterized by the above-mentioned.
  9.  請求項1に記載の車両保守計画装置であって、
     前記出力部は、前記運送会社に対し整備を依頼する前記整備会社の入力を受け付ける運送会社入力領域と、前記車両に対し該車両を有する前記運送会社と前記整備方式との入力を受け付ける車両入力領域と、を含むシミュレーション条件入力画面を表示し、
     前記条件情報取得部は、前記シミュレーション条件入力画面に対して入力された情報を用いて前記運送会社情報と前記整備会社情報と前記車両情報とを取得することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    The output unit is a shipping company input area that receives an input of the maintenance company that requests maintenance to the shipping company, and a vehicle input area that receives an input of the shipping company having the vehicle and the maintenance method for the vehicle. And display the simulation condition input screen including
    The said condition information acquisition part acquires the said shipping company information, the said maintenance company information, and the said vehicle information using the information input with respect to the said simulation condition input screen, The vehicle maintenance planning apparatus characterized by the above-mentioned.
  10.  請求項1に記載の車両保守計画装置であって、
     前記信号値を用いて、前記系統の状態を示す状態情報を特定する異常検知部を備え、
     前記条件情報取得部は、前記信号値に応じて段階的に定められた複数の前記状態情報を含む管理基準情報を取得し、
     前記信号値取得部は、前記運送タスク情報を用いて特定される走行距離を用いて前記信号値を算出し、
     前記異常検知部は、前記管理基準情報において前記信号値と対応する前記状態情報を特定し、
     前記修理タスク生成部は、前記状態情報及び前記整備方式を用いて整備対象の前記系統を特定することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    Using the signal value, comprising an abnormality detection unit that identifies state information indicating the state of the system,
    The condition information acquisition unit acquires management reference information including a plurality of the state information determined stepwise according to the signal value,
    The signal value acquisition unit calculates the signal value using a travel distance specified using the transportation task information,
    The abnormality detection unit identifies the state information corresponding to the signal value in the management reference information,
    The vehicle repair planning device, wherein the repair task generation unit identifies the system to be maintained using the state information and the maintenance method.
  11.  請求項10に記載の車両保守計画装置であって、
     前記異常検知部は、前記状態情報に対して所定の数式を用いて誤状態情報を生成し、
     前記修理タスク生成部は、前記状態情報と前記誤状態情報との組合せに応じて前記修理タスク情報を生成することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 10,
    The abnormality detection unit generates erroneous state information using a predetermined mathematical formula for the state information,
    The vehicle maintenance planning device, wherein the repair task generation unit generates the repair task information according to a combination of the state information and the erroneous state information.
  12.  請求項2に記載の車両保守計画装置であって、
     前記修理タスク生成部は、前記修理タスク情報において特定された前記整備時期後の前記車両の状態を示す値である状態量を、該系統に係る前記車両に対し前記運送タスク情報を割り当てる前の値に戻すことを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    The repair task generation unit is a value before assigning the transportation task information to the vehicle related to the system, with a state quantity that is a value indicating the state of the vehicle after the maintenance time specified in the repair task information. A vehicle maintenance planning device, wherein
  13.  請求項2に記載の車両保守計画装置であって、
     前記車両情報は、定期メンテナンス、予知メンテナンス、又は事後の修理の少なくともいずれか1つを含む前記整備方式が前記車両に関連付けられ、
     前記整備会社情報は、整備が可能な前記車両の数の上限値が前記整備会社に関連付けられ、
     前記修理タスク生成部は、前記定期メンテナンスを示す前記整備方式が関連付けられた前記車両について、予め定められた期間毎に整備候補時期を特定して前記整備会社カレンダーを参照し、前記車両の数が前記上限値に達しておらずかつ前記整備候補時期以降の最も近い時期を前記整備時期に特定して前記整備会社カレンダー及び前記車両カレンダーを更新することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    The vehicle information is related to the vehicle with the maintenance method including at least one of periodic maintenance, predictive maintenance, or subsequent repair,
    In the maintenance company information, an upper limit value of the number of vehicles that can be maintained is associated with the maintenance company,
    The repair task generation unit refers to the maintenance company calendar for each vehicle that is associated with the maintenance method indicating the regular maintenance, identifies a maintenance candidate period for each predetermined period, and the number of vehicles is The vehicle maintenance planning apparatus, wherein the maintenance company calendar and the vehicle calendar are updated by specifying the closest time after the maintenance candidate time as the maintenance time, without reaching the upper limit value.
  14.  請求項2に記載の車両保守計画装置であって、
     前記整備会社情報は、整備が可能な前記車両の数の上限値が前記整備会社に関連付けられ、
     前記信号値取得部は、ある検知時期における前記信号値を算出し、
     前記修理タスク生成部は、第1の閾値以上の前記信号値が算出された前記系統に係る前記車両について、前記整備会社カレンダーを参照し、前記車両の数が前記上限値に達しておらずかつ前記信号値に係る前記検知時期以降該検知時期に最も近い時期を前記整備時期に特定して前記整備会社カレンダー及び前記車両カレンダーを更新することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    In the maintenance company information, an upper limit value of the number of vehicles that can be maintained is associated with the maintenance company,
    The signal value acquisition unit calculates the signal value at a certain detection time,
    The repair task generation unit refers to the maintenance company calendar for the vehicle related to the system for which the signal value equal to or greater than a first threshold is calculated, and the number of the vehicles does not reach the upper limit value. A vehicle maintenance planning apparatus, wherein the maintenance company calendar and the vehicle calendar are updated by specifying the time closest to the detection time after the detection time related to the signal value as the maintenance time.
  15.  請求項2に記載の車両保守計画装置であって、
     前記車両情報は、前記系統毎に残寿命を示す値を含み、
     前記整備会社情報は、整備が可能な前記車両の数の上限値が前記整備会社に関連付けられ、
     前記信号値取得部は、ある検知時期における前記信号値を算出し、
     前記修理タスク生成部は、第2の閾値以上の前記信号値が算出された前記系統に関する車両について、前記整備会社カレンダーを参照し、割り当てられた前記修理タスク情報に係る前記車両の数が前記上限値に達しておらず、かつ当該系統に係る前記残寿命までの期間のうち最も遅い時期であって、かつ第2の閾値以上の前記信号値の算出に係る前記検知時期以降の時期を前記整備時期に特定して前記整備会社カレンダー及び前記車両カレンダーを更新することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    The vehicle information includes a value indicating a remaining life for each system,
    In the maintenance company information, an upper limit value of the number of vehicles that can be maintained is associated with the maintenance company,
    The signal value acquisition unit calculates the signal value at a certain detection time,
    The repair task generation unit refers to the maintenance company calendar for vehicles related to the system for which the signal value equal to or greater than a second threshold is calculated, and the number of vehicles related to the assigned repair task information is the upper limit. The maintenance period is the latest period of time until the remaining life of the system that has not reached the value, and the period after the detection period related to the calculation of the signal value equal to or greater than a second threshold. A vehicle maintenance planning apparatus, wherein the maintenance company calendar and the vehicle calendar are updated at specific times.
  16.  請求項2に記載の車両保守計画装置であって、
     前記車両情報は、前記系統毎に残寿命を示す値を含み、
     前記信号値取得部は、ある検知時期における前記信号値を算出し、
     前記修理タスク生成部は、第2の閾値以上の前記信号値が算出された前記系統に関する前記車両を整備対象車両として特定し、
     前記整備対象車両と同じ前記運送会社に関連付けられた前記1又は複数の前記車両の前記車両カレンダーと前記整備会社カレンダーを参照し、前記車両と前記整備会社とにおいて予定の入っていない1又は複数の空き時期を抽出するとともに、前記空き時期のうち前記残寿命までの期間中最も遅い時期を整備時期に特定し、
     前記整備時期に係る前記車両が前記整備対象車両でない場合に、該整備時期において前記整備対象車両に割り当てられた前記運送タスク情報を前記整備時期に係る前記車両に割り当てるとともに、前記整備対象車両に割り当てられた前記運送タスク情報を削除し、
     前記整備対象車両の前記車両カレンダーと前記整備会社カレンダーとの前記空き時期に、前記信号値の算出に係る前記系統の前記修理タスク情報を割り当てることを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 2,
    The vehicle information includes a value indicating a remaining life for each system,
    The signal value acquisition unit calculates the signal value at a certain detection time,
    The repair task generation unit identifies the vehicle related to the system for which the signal value equal to or greater than a second threshold is calculated as a maintenance target vehicle,
    Refer to the vehicle calendar and the maintenance company calendar of the one or more vehicles associated with the same transportation company as the maintenance object vehicle, and the vehicle and the maintenance company are not scheduled. In addition to extracting the vacant time, the latest time among the vacant times until the remaining life is specified as the maintenance time,
    When the vehicle related to the maintenance time is not the maintenance target vehicle, the transportation task information assigned to the maintenance target vehicle at the maintenance time is assigned to the vehicle related to the maintenance time and assigned to the maintenance target vehicle. Delete the transport task information provided,
    The vehicle maintenance planning apparatus, wherein the repair task information of the system related to the calculation of the signal value is assigned to the vacant time of the vehicle calendar and the maintenance company calendar of the maintenance object vehicle.
  17.  請求項1に記載の車両保守計画装置であって、
     前記条件情報取得部は、整備に用いられるパーツ及び該パーツの価格を前記系統に対し関連付けたパーツ情報を取得し、
     前記車両情報は、前記系統の整備に要する前記パーツが関連付けられ、
     前記修理タスク生成部は、前記信号値を用いて特定した整備対象の前記系統を特定した前記修理タスク情報を生成し、
     前記集計計算部は、前記修理タスク情報に含まれる前記系統の整備に用いる前記パーツの価格と、前記信号値に応じて定められる作業時間に予め記憶された時間単価を乗じた作業費と、を用いて前記整備料金を算出することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    The condition information acquisition unit acquires part information in which parts used for maintenance and the price of the parts are associated with the system,
    The vehicle information is associated with the parts required for maintenance of the system,
    The repair task generation unit generates the repair task information specifying the maintenance target system specified using the signal value,
    The total calculation unit includes a price of the parts used for maintenance of the system included in the repair task information, and a work cost obtained by multiplying a work time determined in accordance with the signal value by a unit price stored in advance. A vehicle maintenance planning apparatus using the maintenance fee to calculate the maintenance fee.
  18.  請求項17に記載の車両保守計画装置であって、
     前記集計計算部は、前記整備会社について算出された前記整備料金を用いて前記整備会社の収益を特定するとともに、前記整備会社の用いた前記パーツの価格と前記作業費とを用いて前記整備会社の費用を特定し、
     前記保守計画評価部は、前記収益及び前記費用を含む前記整備会社の前記保守計画評価情報を生成することを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 17,
    The total calculation unit specifies the revenue of the maintenance company using the maintenance fee calculated for the maintenance company, and uses the price of the parts and the work cost used by the maintenance company. Identify the cost of
    The vehicle maintenance plan apparatus, wherein the maintenance plan evaluation unit generates the maintenance plan evaluation information of the maintenance company including the revenue and the cost.
  19.  請求項1に記載の車両保守計画装置であって、
     前記条件情報取得部は、整備に用いられるパーツの在庫量を前記整備会社毎に関連付けた整備会社パーツ在庫情報を取得し、
     前記修理タスク生成部は、前記信号値を用いて整備対象の前記系統を特定し、特定した前記系統の整備に用いる前記パーツの在庫を有する前記整備会社に対し前記修理タスク情報を割り当てることを特徴とする、車両保守計画装置。
    The vehicle maintenance planning device according to claim 1,
    The condition information acquisition unit acquires maintenance company parts inventory information that associates an inventory amount of parts used for maintenance for each maintenance company,
    The repair task generation unit identifies the system to be serviced using the signal value, and assigns the repair task information to the maintenance company having the inventory of the parts used for maintenance of the identified system. A vehicle maintenance planning device.
  20.  車両保守計画装置が行う車両保守計画評価方法であって、
     前記車両保守計画装置は、条件情報取得部と、運送タスク生成部と、信号値取得部と、修理タスク生成部と、集計計算部と、保守計画評価部と、出力部と、を備え、
     前記条件情報取得部は、運送会社と1又は複数の車両とを関連付けた運送会社情報と、整備会社と整備を行う前記車両とを関連付けた整備会社情報と、前記車両と当該車両の有する1又は複数の系統及び整備方式とを関連付けた車両情報と、を取得する条件情報取得手順を実行し、
     前記運送タスク生成部は、前記運送会社に割り当てる運送タスク情報を生成する運送タスク生成手順を実行し、
     前記信号値取得部は、前記運送タスク情報を用いて前記車両の系統毎に該系統の信号値を算出する信号値取得手順を実行し、
     前記修理タスク生成部は、前記整備方式及び前記信号値を用いて前記車両の整備に関する修理タスク情報を生成し、前記整備会社に割り当てる修理タスク生成手順を実行し、
     前記集計計算部は、前記運送タスク情報を用いて運送料金を算出するとともに、前記修理タスク情報を用いて整備料金を算出する集計計算手順を実行し、
     前記保守計画評価部は、前記運送料金及び前記整備料金を含む保守計画評価情報を生成する保守計画評価手順を実行し、
     前記出力部は、前記保守計画評価情報を出力する表示手順を実行することを特徴とする、車両保守計画評価方法。
    A vehicle maintenance plan evaluation method performed by a vehicle maintenance planning device,
    The vehicle maintenance planning device includes a condition information acquisition unit, a transport task generation unit, a signal value acquisition unit, a repair task generation unit, a total calculation unit, a maintenance plan evaluation unit, and an output unit,
    The condition information acquisition unit includes transportation company information that associates a transportation company with one or more vehicles, maintenance company information that associates the maintenance company with the vehicle that performs maintenance, and one or more of the vehicle and the vehicle. A condition information acquisition procedure for acquiring vehicle information in which a plurality of systems and maintenance methods are associated,
    The transportation task generation unit executes a transportation task generation procedure for generating transportation task information to be assigned to the transportation company,
    The signal value acquisition unit executes a signal value acquisition procedure for calculating a signal value of the system for each system of the vehicle using the transportation task information,
    The repair task generation unit generates repair task information related to maintenance of the vehicle using the maintenance method and the signal value, and executes a repair task generation procedure assigned to the maintenance company,
    The total calculation unit calculates a transportation fee using the transportation task information, and executes a total calculation procedure for calculating a maintenance fee using the repair task information,
    The maintenance plan evaluation unit executes a maintenance plan evaluation procedure for generating maintenance plan evaluation information including the transportation fee and the maintenance fee,
    The vehicle maintenance plan evaluation method, wherein the output unit executes a display procedure for outputting the maintenance plan evaluation information.
PCT/JP2018/002068 2017-04-26 2018-01-24 Vehicle maintenance plan device and vehicle maintenance plan evaluation method WO2018198450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087225 2017-04-26
JP2017087225A JP6836954B2 (en) 2017-04-26 2017-04-26 Vehicle maintenance planning device and vehicle maintenance plan evaluation method

Publications (1)

Publication Number Publication Date
WO2018198450A1 true WO2018198450A1 (en) 2018-11-01

Family

ID=63918305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002068 WO2018198450A1 (en) 2017-04-26 2018-01-24 Vehicle maintenance plan device and vehicle maintenance plan evaluation method

Country Status (2)

Country Link
JP (1) JP6836954B2 (en)
WO (1) WO2018198450A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111401586A (en) * 2020-04-09 2020-07-10 东风小康汽车有限公司重庆分公司 Method and device for generating vehicle maintenance recommendation information
CN113822459A (en) * 2020-06-17 2021-12-21 三菱重工业株式会社 Planning device, planning method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816156A (en) * 2019-01-04 2019-05-28 北京百度网讯科技有限公司 The autonomous method for running of unmanned logistic car, device and storage medium
JP7243563B2 (en) * 2019-10-16 2023-03-22 トヨタ自動車株式会社 Information processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000132608A (en) * 1998-10-27 2000-05-12 Aru Fuoomiyureeto Kk Automatic prediction means of next maintenance time in maintenance service management of vehicle by time manager method
JP2008257541A (en) * 2007-04-06 2008-10-23 Tetsumasa Yamamoto Delivery vehicle driving employee management system
JP2009223682A (en) * 2008-03-17 2009-10-01 Hamakyorex:Kk Daily balance processor, daily balance processing system, and daily balance processing program
WO2015132947A1 (en) * 2014-03-07 2015-09-11 株式会社日立システムズ Vehicle preventive maintenance system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000132608A (en) * 1998-10-27 2000-05-12 Aru Fuoomiyureeto Kk Automatic prediction means of next maintenance time in maintenance service management of vehicle by time manager method
JP2008257541A (en) * 2007-04-06 2008-10-23 Tetsumasa Yamamoto Delivery vehicle driving employee management system
JP2009223682A (en) * 2008-03-17 2009-10-01 Hamakyorex:Kk Daily balance processor, daily balance processing system, and daily balance processing program
WO2015132947A1 (en) * 2014-03-07 2015-09-11 株式会社日立システムズ Vehicle preventive maintenance system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111401586A (en) * 2020-04-09 2020-07-10 东风小康汽车有限公司重庆分公司 Method and device for generating vehicle maintenance recommendation information
CN113822459A (en) * 2020-06-17 2021-12-21 三菱重工业株式会社 Planning device, planning method, and program

Also Published As

Publication number Publication date
JP2018185662A (en) 2018-11-22
JP6836954B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2018198450A1 (en) Vehicle maintenance plan device and vehicle maintenance plan evaluation method
US9477950B2 (en) Prognostics-based estimator
US11354899B2 (en) Visual inspection support using extended reality
US10373260B1 (en) Imaging processing system for identifying parts for repairing a vehicle
Prytz et al. Predicting the need for vehicle compressor repairs using maintenance records and logged vehicle data
US20150081161A1 (en) Systems, article and methods for managing vehicle logistics including authored content generation, approval, and distribution
US20190079725A1 (en) Stream-processing data
EP3042322A2 (en) Prognostics-based estimator
US20170169399A1 (en) System and method for vehicle pricing
JPWO2006137137A1 (en) Customer management device
CN105683970A (en) Prognostics-based estimator
JP2011232950A (en) Demand prediction device, demand prediction method and demand prediction program
US20210103817A1 (en) Systems and methods for automatically determining adjacent panel dependencies during damage appraisal
JP7349097B1 (en) Carbon dioxide emissions calculation method, calculation device, and computer program
Wang et al. Optimizing the maintenance schedule for a vehicle fleet: a simulation-based case study
US9563989B2 (en) System and method for maintaining an aircraft engine
CN111091202B (en) Vehicle management system, vehicle management device, and vehicle management method
CN114202313A (en) Vehicle fuel consumption management method and device, computer storage medium and electronic equipment
US20230245056A1 (en) Demand estimation apparatus, demand estimation method, and computer-readable recording medium
JP2006338363A (en) Recycle processing management system and computer program
US20200143004A1 (en) Visualization of machine structure damage from machine sensor data using machine learning
US20230236588A1 (en) Integrated record of asset usage, maintenance, and condition, and associated systems and methods
JP7241846B1 (en) mine management system
US20170108875A1 (en) Vehicle Control System
US20240152877A1 (en) Infrastructure maintenance management support system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791205

Country of ref document: EP

Kind code of ref document: A1