WO2018196223A1 - 一种数据处理方法及相关设备 - Google Patents
一种数据处理方法及相关设备 Download PDFInfo
- Publication number
- WO2018196223A1 WO2018196223A1 PCT/CN2017/096312 CN2017096312W WO2018196223A1 WO 2018196223 A1 WO2018196223 A1 WO 2018196223A1 CN 2017096312 W CN2017096312 W CN 2017096312W WO 2018196223 A1 WO2018196223 A1 WO 2018196223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- signal
- host
- data
- control command
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
- G06F1/14—Time supervision arrangements, e.g. real time clock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0635—Clock or time synchronisation in a network
- H04J3/0638—Clock or time synchronisation among nodes; Internode synchronisation
- H04J3/0658—Clock or time synchronisation among packet nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0635—Clock or time synchronisation in a network
- H04J3/0638—Clock or time synchronisation among nodes; Internode synchronisation
- H04J3/0658—Clock or time synchronisation among packet nodes
- H04J3/0661—Clock or time synchronisation among packet nodes using timestamps
- H04J3/0667—Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0635—Clock or time synchronisation in a network
- H04J3/0682—Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/131—Protocols for games, networked simulations or virtual reality
Definitions
- the present invention relates to the field of data transmission, and in particular, to a data processing method and related device in the field of virtual reality (VR)/Augmented Reality (AR) application systems.
- VR virtual reality
- AR Augmented Reality
- the NTP protocol is a protocol for synchronizing the time of each computer in the network, and is used to synchronize the time and Universal Time Coordinated (UTC) of the computer to milliseconds. level.
- UTC Universal Time Coordinated
- the delay time is usually about 10 milliseconds; when the network is congested, the delay time is up to 100 milliseconds or higher, which is difficult to meet some fields. demand.
- an embodiment of the present invention provides a data processing method and related device for improving accuracy of a system time difference between time systems in a time synchronization system.
- an embodiment of the present invention provides a data processing method, where the method is applied to a host in a time synchronization system, where the time synchronization system further includes a first device and a second device, where the host and the Each of the first device and the second device has a respective time system; the method includes:
- the host acquires a time T2 from a control command, where the T2 time is a time when the first device sends a first signal to the second device, and the first signal is that the first signal is transmitted in a wireless channel.
- the time duration of the air is a fixed duration signal;
- the host receives the first data that is sent by the second device and carries the T3 time, and the time T3 is the time when the second device receives the first signal sent by the first device;
- the embodiment of the present invention has the following advantages: since the air duration of the first device transmitting the first signal to the second device is a fixed air duration, it can be understood that the fixed air duration is a substantially fixed value. Therefore, wherein the fixed air duration is ⁇ IR, and then the system time difference between the independent time systems of the first device and the second device is obtained according to the T2 time, the T3 time, and the preset ⁇ IR, since the T2 time The T3 time and the preset ⁇ IR are relatively fixed values, so the system time difference is more accurate, so that the time synchronization accuracy is improved.
- the first signal includes an infrared signal.
- the infrared signal can be transmitted in the wireless channel to have a fixed air duration, which can make the air duration less susceptible to fluctuations due to external factors.
- the method before the acquiring, by the host, the T2 time from the control command, the method further includes:
- the host sends the control command to the first device, where the control command is used to instruct the first device to send the first signal to the second device at the time T2.
- the host sends a control command to the first device, so that the first device sends the first signal to the second device at the time T2 of the local time, and finally, the system time difference is calculated according to the sending and receiving time of the first signal, and the like. .
- the method before the sending, by the host, the control command to the first device, the method further includes:
- the host determines the T2 time according to the preset threshold and the time T1, wherein the time T2 is the time after the first device receives the control command, and the first device can ensure that the first device can send the first signal to the second device at time T2, A situation occurs when the second device is ready to transmit the first signal and the local time has passed the T2 time, and the first signal cannot be transmitted.
- an embodiment of the present invention provides a data processing method, where the method is applied to a first device in a time synchronization system, where the time synchronization system further includes a host and a second device, where the host and the device Each of the first device and the second device has a respective time system; the method includes:
- the first device sends a first signal to the second device at a time T2 of the local time, where the first signal is a signal of a fixed duration when the first signal is transmitted in the wireless channel, where The fixed air duration of the first device transmitting the infrared signal is ⁇ IR, so that the host determines the time corresponding to the first device and the second device by using the T2 time, the ⁇ IR, and the like.
- the fixed air duration is a substantially fixed value. Therefore, the fixed air duration is ⁇ IR, and then the independent time system corresponding to the first device and the second device is obtained according to the T2 time, the T3 time, and the preset ⁇ IR.
- the system time difference between the two, since the T2 time, the T3 time and the preset ⁇ IR are relatively fixed values, the system time difference is more accurate, so that the time synchronization accuracy is improved.
- the first signal includes an infrared signal.
- the infrared signal can be transmitted in the wireless channel to have a fixed air duration, which can make the air duration less susceptible to fluctuations due to external factors.
- the method further includes:
- the first device receives a control command sent by the host, where the control command is used to instruct the first device to send the first signal to the second device at the time T2.
- the first device receiving the host sends a control command, so that the first device sends the first signal to the second device at the time T2 of the local time, and finally, the system time difference is calculated according to the sending and receiving time of the first signal, and the like. .
- the method before the receiving, by the first device, the control command sent by the host, the method further includes:
- the first device sends the second data carrying the time T1 to the host, where the time T1 is the local time at which the first device sends the second data to the host.
- the first device sends the second data carrying the T1 time to the host, so that the host can better determine the T2 time according to the T1 time and the preset threshold, so as to ensure that the first signal is successfully sent at the specified time T2.
- an embodiment of the present invention provides a data processing method, where the method is applied to a second device in a time synchronization system, where the time synchronization system further includes a host and a first device, where the host and the Each of the first device and the second device has a respective time system; the method includes:
- the second device receives the first signal sent by the first device at time T3 of the local time, where the first signal is a signal with a fixed duration of time when the first signal is transmitted in the wireless channel. ;
- the first signal includes an infrared signal.
- the infrared signal can be transmitted in the wireless channel to have a fixed air duration, which can make the air duration less susceptible to fluctuations due to external factors.
- an embodiment of the present invention provides a host, where the host has a function of implementing host behavior in the foregoing first aspect.
- This function can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more modules corresponding to the functions described above.
- an embodiment of the present invention provides a host, including: a processor, a memory, a bus, a receiver, and a transmitter; the memory is configured to store a computer execution instruction, and when the host is running, the processor executes the memory storage.
- the computer executes instructions to cause the host to perform the data processing method of any of the above first aspects.
- an embodiment of the present invention provides a computer readable storage medium, configured to store computer software instructions used by the live broadcast service server, when executed on a computer, to enable the computer to perform any of the foregoing first aspects.
- an embodiment of the present invention provides a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the data processing method of any of the above first aspects.
- an embodiment of the present invention provides a first device, where the first device has a function of implementing behavior of the first device in the foregoing second aspect.
- This function can be implemented in hardware or executed by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- an embodiment of the present invention provides a first device, including: a processor, a memory, a bus, a receiver, and a transmitter; the memory is configured to store a computer execution instruction, when the first device is running, the processor The computer executing the memory stores execution instructions to cause the first device to perform the data processing method of any of the above second aspects.
- an embodiment of the present invention provides a computer readable storage medium, configured to store computer software instructions used by the live broadcast service server, when executed on a computer, to enable the computer to perform any of the foregoing second aspects.
- an embodiment of the present invention provides a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the data processing method of any of the above second aspects.
- the embodiment of the present invention provides a second device, where the second device has a function of implementing the behavior of the second device in the foregoing third aspect.
- This function can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the embodiment of the present invention provides a second device, including: a processor, a memory, a bus, a receiver, and a transmitter; the memory is configured to store a computer execution instruction, and when the second device is running, the processing The computer executes the computer-executable instructions stored by the memory to cause the second device to perform the data processing method of any of the above third aspects.
- the embodiment of the present invention provides a computer readable storage medium for storing computer software instructions used by the live broadcast service server, when the computer is running on a computer, so that the computer can execute the third aspect Any data processing method.
- an embodiment of the present invention provides a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the data processing method of any of the above third aspects.
- FIG. 1 is a system framework diagram of a time synchronization system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of an embodiment of a data processing method according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of an embodiment of a host according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of another embodiment of a host according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of an embodiment of a first device according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of an embodiment of a second device according to an embodiment of the present disclosure.
- FIG. 7 is a schematic diagram of another embodiment of a host according to an embodiment of the present invention.
- Embodiments of the present invention provide a data processing method and related device, which are used to improve time in a time synchronization system. The accuracy of the system time difference between systems.
- FIG. 1 is a schematic diagram of an embodiment of a time synchronization system according to an embodiment of the present invention.
- the time synchronization system includes: a host 10, a first device 102, and a second device 103, wherein the host 101 is first.
- the device 102 and the second device 103 respectively have respective time systems.
- the timetable of the host is displayed as: AM 12:10:00
- the timetable of the first device is displayed as: AM 11:00:10
- the second device The timetable is displayed as: AM 11:00:20; as shown in FIG. 2, between the host 101 and the first device 102, between the host 101 and the second device 102, between the first device 102 and the third device 103 Can communicate with each other.
- the number of the host, the first device, and the second device in the time synchronization system is not limited to one in the embodiment, and only one host, one first device, and one first in FIG.
- the second device is described as an example. In actual applications, the number of the three devices may be appropriately increased if necessary, and no limitation is imposed herein.
- an embodiment of a data processing method in an embodiment of the present invention includes:
- the first device sends second data to the host, where the second data carries information at time T1.
- the first device sends the second data to the host, where the second data carries the information of the time T1, where the time T1 is the local time corresponding to when the first device sends the second data to the host, the T1 The moment is the moment of the time system of the first device.
- the first device generates a timestamp at time T1, and carries the timestamp in the second data to the host at time T1.
- the air duration that the first device needs to consume when sending the second data to the host is ⁇ 1, wherein, in an actual application scenario, ⁇ 1 may be a value randomly distributed between 0 and 100 ms.
- the host determines the T2 time according to the preset threshold and the T1 time.
- the host when the host receives the second data sent by the first device, the host parses the information at the time T1 from the second data, so as to know the time T1; then, the host determines according to the preset threshold and the time T1. At time T2, wherein the receiving time corresponding to the first device does not exceed the T2 time when the control command sent by the host is subsequently received, thereby ensuring that the first device can send the first signal to the second device at time T2, It should also be noted that the T2 time corresponds to the time system of the first device.
- the air duration required to be consumed is ⁇ 1.
- the host determines the T2 time to be greater than or equal according to the preset threshold and the T1 time (T1+2*). A time value of ⁇ 1), wherein the preset threshold is 2* ⁇ 1.
- the preset threshold is related to an air duration that is consumed by the first device when sending the second data to the host, that is, ⁇ 1, and can ensure that the first device can send the first signal to the second device at time T2 (such as infrared A threshold value of the signal (such as 1.5* ⁇ 1, 3* ⁇ 1 or 2.5* ⁇ 1, etc.) may be specifically determined according to the actual application scenario, and is not limited herein.
- the host sends a control command to the first device, where the control command is used to instruct the first device to send the first signal to the second device at time T2.
- the host after the host determines the T2 time according to the preset threshold and the time T1, the host sends a control command to the first device, where the control command is used to instruct the first device to send the first signal to the second device at time T2.
- the second device receives the first signal sent by the first device at time T3.
- the first device after the first device receives the control command sent by the first device to indicate that the first signal is sent to the second device, it should be understood that the time at which the first device receives the first signal does not exceed the foregoing.
- the first device sends the first signal to the second device, so that the second device receives the first signal sent by the first device at time T2 at time T3.
- the T3 time corresponds to the time system of the second device.
- the air time consumed by the first signal when transmitting from the first device to the second device through the wireless channel is a fixed air duration ⁇ IR. .
- the first signal may include an infrared signal, and the corresponding air duration of the infrared signal is a fixed value.
- the host acquires the T2 time from the control command.
- the host after the host sends a control command to the first device, the host obtains information of the T2 time from the control command, and further obtains the T2 time.
- the step 205 may not be performed, and the local data is directly obtained. Get the T2 moment.
- the second device sends the first data to the host, where the first data carries information at time T3.
- the second device after the second device receives the first signal at time T3, the second device carries the information at time T3 in the first data, and sends the first data to the host, so that the host learns the second device.
- the local time at which the first signal is received that is, the time T3.
- the host determines, according to the time T2, the time T3, and the preset ⁇ IR, a system time difference between time systems corresponding to the first device and the second device.
- the host determines a system time difference between the time systems corresponding to the first device and the second device according to the T2 time, the T3 time, and the preset ⁇ IR, so that after the system time difference is obtained, the time is
- the synchronization system performs time synchronization based on the system time difference of the time system between the devices.
- the preset ⁇ IR may be a fixed air duration consumed when the first device sends the infrared signal to the second device, and the host may determine the fixed air duration according to the encoding and decoding process of the infrared signal.
- the fixed air duration is a substantially fixed value, and therefore, the fixed air duration is ⁇ IR, and then the first device and the first device are obtained according to the T2 time, the T3 time, and the preset ⁇ IR.
- the foregoing embodiment describes a data processing method in the embodiment of the present invention in detail.
- the following describes a time synchronization system in the embodiment of the present invention.
- the time synchronization system includes a host, a first device, and a second device.
- the host, the first device, and the second device can communicate with each other separately. The following will be combined with the host, the first device, and the second device.
- the second device describes the time synchronization system in the embodiment of the present invention, as follows:
- an embodiment of a host in the embodiment of the present invention includes:
- the acquiring unit 301 is configured to acquire a time T2 from a control command, where the time T2 is a time when the first device sends the first signal to the second device, where the first signal is when the first signal is transmitted in the wireless channel
- the length of the air is a signal of a fixed duration
- the first receiving unit 302 is configured to receive, by the second device, the first data that carries the T3 time, where the T3 time is the time when the second device receives the first signal sent by the first device;
- a first determining unit 303 configured to determine, according to the T2 time, the T3 time, and the preset ⁇ IR, a system time difference between time systems corresponding to the first device and the second device, where the ⁇ IR is The fixed air duration when the first device sends the first signal to the second device.
- the foregoing first signal may be an infrared signal.
- the host may further include: a sending unit 404, where the sending unit 404 is configured to send the control command to the first device, where the control command is used to Instructing the first device to send the first signal to the second device at the time T2.
- the host may further include: a second receiving unit 405 and a second determining unit 406; wherein the two units are respectively configured to perform the following operations:
- the second receiving unit 405 is configured to receive the second data that is sent by the first device, where the second data carries the information of the T1 time, where the T1 time is that the first device sends the second data to the host local time;
- the second determining unit 406 is configured to determine the T2 time according to the preset threshold and the T1 time, so that the time when the first device receives the control command does not exceed the T2 time, and the first device is implemented at the time T2. Sending the first signal to the second device.
- the fixed air duration is a substantially fixed value, and therefore, the fixed air duration is ⁇ IR, and then the first device and the first device are obtained according to the T2 time, the T3 time, and the preset ⁇ IR.
- the foregoing embodiment 2 describes an embodiment of the host in the embodiment of the present invention.
- the first device in the embodiment of the present invention is described below with reference to a specific embodiment.
- an embodiment of the first device in the embodiment of the present invention includes:
- the first sending unit 501 is configured to send a first signal to the second device at a time T2 of the local time, where the first a signal is a signal of a fixed duration when the first signal is transmitted in the wireless channel, and the fixed time duration of the first device transmitting the infrared signal is ⁇ IR, so that the host passes the T2 time and the ⁇ IR or the like determines a system time difference value between time systems corresponding to each of the first device and the second device.
- the foregoing first signal may be an infrared signal.
- the first device further includes: a receiving unit 502, where the receiving unit 502 is configured to receive a control command sent by the host, where the control command is used to Instructing the first device to send the first signal to the second device at the time T2.
- the first device further includes: a second sending unit 503, wherein the second sending unit 503 is configured to send, to the host, a time that carries the time T1 The second data, the time T1 is the local time at which the first device sends the second data to the host.
- the first device sends the first signal (such as the infrared signal) to the second device for a fixed duration, so that the first device and the second device are calculated by the host according to the fixed air duration ⁇ IR or the like.
- the system time difference between the respective time systems is more accurate.
- an embodiment of the second device in the embodiment of the present invention includes:
- the receiving unit 601 is configured to receive the first signal sent by the first device at a time T3 of the local time, where the first signal is a signal of a fixed duration when the first signal is transmitted in the wireless channel;
- the sending unit 602 is configured to send the first data carrying the T3 time to the host, so that the host determines a system time difference between the time systems corresponding to the first device and the second device according to the T3 time and the like. value.
- the first signal may be an infrared signal.
- the second device receives the first signal (such as an infrared signal) sent by the first device, and receives the local time corresponding to the first signal, that is, the T3 time, and carries the data in the second data to the host, so that The host learns that the second device receives the first signal sent by the first device at time T2, so that the system time difference between the respective time systems of the first device and the second device is obtained by calculation.
- the first signal such as an infrared signal
- the foregoing embodiment 2 to the embodiment 4 respectively describe an embodiment of the host, the first device, and the second device in the embodiment of the present invention.
- the following describes the host, the first device, and the second device in the implementation of the present invention.
- another embodiment of the host, the first device, and the second device is similar in structure, and only another embodiment of the host is described in the fifth embodiment, for the first device and the second device. Similar to the host in the fifth embodiment, it will not be described here.
- the host 14 includes:
- FIG. 7 is also applicable to the first device and the second device in the above embodiments.
- the memory 1404 can include read only memory and random access memory and provides instructions and data to the processor 1403.
- a portion of the memory 1404 may also include a non-volatile random access memory (English name: Non-Volatile Random Access Memory, English abbreviation: NVRAM).
- the memory 1404 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
- Operation instructions including various operation instructions for implementing various operations
- Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
- the processor 1403 in the embodiment of the present invention may be used to perform operations corresponding to the host 14 in the foregoing embodiment, and may include the following operations:
- T2 time is a time when the first device sends a first signal to the second device, where the first signal is a fixed duration when the first signal is transmitted in the wireless channel.
- the processor 1403 in the embodiment of the present invention may be further configured to perform operations corresponding to the first device in the foregoing embodiment, including:
- the first signal is a signal of a fixed duration when the first signal is transmitted in the wireless channel
- the first device sends the infrared signal
- the fixed air duration consumed is ⁇ IR, so that the host determines the system time difference between the time systems corresponding to the first device and the second device by the T2 time and the ⁇ IR.
- the processor 1403 is further configured to perform the operations corresponding to the second device in the foregoing embodiment, including:
- the first signal is a signal of a fixed duration when the first signal is transmitted in the wireless channel
- the processor 1403 controls the operation of the host 14.
- the processor 1403 may also be referred to as a central processing unit (English full name: Central Processing Unit: CPU).
- Memory 1404 can include read only memory and random access memory and provides instructions and data to processor 1403.
- a portion of the memory 1404 can also include an NVRAM.
- the various components of the host 14 are coupled together by a bus system 1405.
- the bus system 1405 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1405 in the figure.
- the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1403 or implemented by the processor 1403.
- the processor 1403 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1403 or an instruction in a form of software.
- the processor 1403 may be a general-purpose processor, a digital signal processor (English name: Digital Signal Processing, English abbreviation: DSP), an application specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), ready-made programmable Gate array (English name: Field-Programmable Gate Array, English abbreviation: FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 1404, and the processor 1403 reads the information in the memory 1404 and completes the steps of the above method in combination with its hardware.
- FIG. 7 The related description of FIG. 7 can be understood by referring to the related description and effect of the method part of FIG. 2, and no further description is made here.
- the computer program product includes one or more computer instructions.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
- wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
- the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
- the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be in the form of a software product.
- the computer software product is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the methods of the various embodiments of the present invention. step.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electric Clocks (AREA)
- Mobile Radio Communication Systems (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
本发明实施例公开了一种数据处理方法及相关设备,用于提高时间同步系统中各时间系统之间系统时间差值的准确度。本发明实施例方法包括:所述主机从控制命令中获取T2时刻,所述T2时刻为所述第一设备向所述第二设备发送第一信号的时刻,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号;所述主机接收所述第二设备发送的携带有T3时刻的第一数据,所述T3时刻为所述第二设备接收所述第一设备发送的所述第一信号的时刻;所述主机根据所述T2时刻、所述T3时刻和预置的△IR确定所述第一设备和第二设备各自对应的时间系统之间的系统时间差值,其中,所述△IR为所述第一设备向所述第二设备发送所述第一信号时的固定空中时长。
Description
本发明涉及数据传输领域,尤其涉及虚拟现实(Virtual Reality,VR)/增强现实(Augmented Reality,AR)应用系统领域的一种数据处理方法及相关设备。
在数据传输系统中,如VR/AR的应用系统,系统之间的数据交互是必不可少的一个环节,不同系统使用的时间系统相对独立。在多个系统的数据交互过程中,若不同的系统对应的独立时间系统之间存在较大的系统时间差,可能会引起各系统之间无法协同工作,如在VR/AR的应用系统中因延时过大,对用户的体验产生较大的影响。因此,对于提高时间同步的精度已成为一研究方向。
以网络时间协议(Network Time Protocol,NTP)为例,NTP协议是使网络中的各个计算机时间同步的一种协议,用于将计算机的时间和世界协调时间(Universal Time Coordinated,UTC)同步到毫秒级。网络时间协议的同步机制中,需要较多的数据交互,在网络畅通时,延时时间通常在10毫秒左右;在网络拥堵时,延时时间可达100毫秒或更高,难以满足一些领域的需求。
发明内容
有鉴于此,本发明实施例提供了一种数据处理方法及相关设备,用于提高时间同步系统中各时间系统之间系统时间差值的准确度。
第一方面,本发明实施例提供了一种数据处理方法,所述方法应用于时间同步系统中的主机,所述时间同步系统还包括第一设备和第二设备,其中,所述主机、所述第一设备和所述第二设备均具有各自的时间系统;所述方法包括:
所述主机从控制命令中获取T2时刻,所述T2时刻为所述第一设备向所述第二设备发送第一信号的时刻,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号;
所述主机接收所述第二设备发送的携带有T3时刻的第一数据,所述T3时刻为所述第二设备接收所述第一设备发送的所述第一信号的时刻;
所述主机根据所述T2时刻、所述T3时刻和预置的△IR确定所述第一设备和第二设备各自对应的时间系统之间的系统时间差值,其中,所述△IR为所述第一设备向所述第二设备发送所述第一信号时的固定空中时长。
从以上技术方案可以看出,本发明实施例具有以下优点:由于第一设备向第二设备发送第一信号的空中时长为固定空中时长,可以理解的是,固定空中时长是一个基本固定的值,因此,其中该固定空中时长为△IR,然后根据T2时刻、T3时刻和预置的△IR得到第一设备与第二设备各自对应的独立时间系统之间的系统时间差值,由于T2时刻、T3时刻和预置的△IR都是相对固定的值,因此该系统时间差值更加准确,以使得时间同步精度得以提高。
在一种可能的设计中,在本发明实施例第一方面的第一种可能的实现方式中,所述第一信号包括红外信号。
其次,红外信号在无线信道中传输时可以实现其具有固定空中时长,可以使得空中时长不容易受外界因素的影响而波动。
在一种可能的设计中,在本发明实施例第一方面的第二种可能的实现方式中,在所述主机从控制命令中获取T2时刻之前,还包括:
所述主机向所述第一设备发送所述控制命令,所述控制命令用于指示所述第一设备在所述T2时刻向所述第二设备发送所述第一信号。
其次,主机向第一设备发送控制命令,可以使得第一设备在其本地时间的T2时刻向第二设备发送第一信号,最终使得根据此次第一信号的收发时刻等来计算系统时间差值。
在一种可能的设计中,在本发明实施例第一方面的第三种可能的实现方式中,在所述主机向所述第一设备发送所述控制命令之前,还包括:
所述主机接收所述第一设备发送的第二数据,其中,第二数据中携带有所述T1时刻的信息,所述T1时刻为所述第一设备向所述主机发送所述第二数据的本地时间;
所述主机根据预设阈值和所述T1时刻确定所述T2时刻,以使得所述第一设备接收到所述控制命令的时刻不超过所述T2时刻,保证所述第一设备实现在所述T2时刻向所述第二设备发送所述第一信号。
其次,主机根据预设阈值和T1时刻确定T2时刻,其中,T2时刻为在第一设备接收到控制命令之后的时刻,可以保证第一设备能在T2时刻向第二设备发送第一信号,不会发生当第二设备准备发送第一信号时本地时间已经过了T2时刻,而导致无法发送第一信号的情况。
第二方面,本发明实施例提供了一种数据处理方法,所述方法应用于时间同步系统中的第一设备,所述时间同步系统还包括主机和第二设备,其中,所述主机、所述第一设备和所述第二设备均具有各自的时间系统;所述方法包括:
所述第一设备在本地时间的T2时刻向第二设备发送第一信号,其中,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号,所述第一设备发送所述红外信号消耗的固定空中时长为△IR,以使得所述主机通过所述T2时刻和所述△IR等确定所述第一设备与所述第二设备各自对应的时间系统之间的系统时间差值。
其次,固定空中时长是一个基本固定的值,因此,其中该固定空中时长为△IR,然后根据T2时刻、T3时刻和预置的△IR得到第一设备与第二设备各自对应的独立时间系统之间的系统时间差值,由于T2时刻、T3时刻和预置的△IR都是相对固定的值,因此该系统时间差值更加准确,以使得时间同步精度得以提高。
在一种可能的设计中,在本发明实施例第二方面的第一种可能的实现方式中,所述第一信号包括红外信号。
其次,红外信号在无线信道中传输时可以实现其具有固定空中时长,可以使得空中时长不容易受外界因素的影响而波动。
在一种可能的设计中,在本发明实施例第二方面的第二种可能的实现方式中,在所述
第一设备在本地时间的T2时刻向第二设备发送第一信号之前,还包括:
所述第一设备接收所述主机发送的控制命令,所述控制命令用于指示所述第一设备在所述T2时刻向所述第二设备发送所述第一信号。
其次,第一设备接收主机发送控制命令,可以使得第一设备在其本地时间的T2时刻向第二设备发送第一信号,最终使得根据此次第一信号的收发时刻等来计算系统时间差值。
在一种可能的设计中,在本发明实施例第二方面的第三种可能的实现方式中,在所述第一设备接收所述主机发送的控制命令之前,还包括:
所述第一设备向所述主机发送携带有T1时刻的第二数据,所述T1时刻为所述第一设备向所述主机发送所述第二数据的本地时间。
其次,第一设备向主机发送携带T1时刻的第二数据,以使得主机更好的根据该T1时刻和预设阈值确定T2时刻,从而保证第一信号在指定的T2时刻顺利发送。
第三方面,本发明实施例提供了一种数据处理方法,所述方法应用于时间同步系统中的第二设备,所述时间同步系统还包括主机和第一设备,其中,所述主机、所述第一设备和所述第二设备均具有各自的时间系统;所述方法包括:
所述第二设备在本地时间的T3时刻接收到第一设备发送的第一信号,其中,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号;
所述第二设备将携带有所述T3时刻的第一数据发送至主机,以使得所述主机根据所述T3时刻等确定所述第一设备与所述第二设备各自对应的时间系统之间的系统时间差值。
在一种可能的设计中,在本发明实施例第一方面的第一种可能的实现方式中,所述第一信号包括红外信号。
其次,红外信号在无线信道中传输时可以实现其具有固定空中时长,可以使得空中时长不容易受外界因素的影响而波动。
第四方面,本发明实施例提供一种主机,该主机具有实现上述第一方面中主机行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本发明实施例提供一种主机,包括:处理器、存储器、总线、接收器和发射器;该存储器用于存储计算机执行指令,当该主机运行时,该处理器执行该存储器存储的该计算机执行指令,以使该主机执行如上述第一方面任意一项的数据处理方法。
第六方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述直播业务服务器所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的数据处理方法。
第七方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的数据处理方法。
另外,第四方面至第七方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第八方面,本发明实施例提供一种第一设备,该第一设备具有实现上述第二方面中第一设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实
现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,本发明实施例提供一种第一设备,包括:处理器、存储器、总线、接收器和发射器;该存储器用于存储计算机执行指令,当该第一设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该第一设备执行如上述第二方面任意一项的数据处理方法。
第十方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述直播业务服务器所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的数据处理方法。
第十一方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的数据处理方法。
另外,第八方面至第十一方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十二方面,本发明实施例提供一种第二设备,该第二设备具有实现上述第三方面中第二设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十三方面,本发明实施例提供一种第二设备,包括:处理器、存储器、总线、接收器和发射器;该存储器用于存储计算机执行指令,当该第二设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该第二设备执行如上述第三方面任意一项的数据处理方法。
第十四方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述直播业务服务器所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第三方面中任意一项的数据处理方法。
第十五方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第三方面中任意一项的数据处理方法。
另外,第十二方面至第十五方面中任一种设计方式所带来的技术效果可参见第三方面中不同设计方式所带来的技术效果,此处不再赘述。
图1为本发明实施例中时间同步系统的一个系统框架图;
图2为本发明实施例中数据处理方法的一个实施例示意图;
图3为本发明实施例中主机的一个实施例示意图;
图4为本发明实施例中主机的另一个实施例示意图;
图5为本发明实施例中第一设备的一个实施例示意图;
图6为本发明实施例中第二设备的一个实施例示意图;
图7为本发明实施例中主机的另一个实施例示意图。
本发明实施例提供了一种数据处理方法及相关设备,用于提高时间同步系统中各时
间系统之间系统时间差值的准确度。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示为本发明实施例中时间同步系统的一个实施例示意图,该时间同步系统中包括:一个主机10、一个第一设备102和一个第二设备103,其中,主机101、第一设备102和第二设备103分别具有各自的时间系统,如主机的时刻表显示为:AM 12:10:00时,第一设备的时刻表显示为:AM 11:00:10,第二设备的时刻表显示为:AM 11:00:20;如图2所示,主机101和第一设备102之间,主机101和第二设备102之间,第一设备102和第三设备103之间都可以相互进行通信。
当然,应当理解的是,时间同步系统中的主机、第一设备和第二设备的数量并不限定于本实施例中的一个,图2中仅仅是以一个主机、一个第一设备和一个第二设备为例进行说明,在实际应用中若有需要可以适当增加三者的数量,对此此处不作任何限定。
为了便于理解本发明实施例中的数据处理方法,下面将结合具体的实施例对本发明实施例中的数据处理方法进行详细说明。
实施例一,如图2所示,本发明实施例中数据处理方法的一个实施例,包括:
201、第一设备向主机发送第二数据,其中,该第二数据中携带有T1时刻的信息。
本实施例中,第一设备向主机发送第二数据,其中,该第二数据中携带有T1时刻的信息,该T1时刻为第一设备向主机发送第二数据时对应的本地时间,该T1时刻是第一设备的时间系统的时刻。
进一步地,在该第二数据中还可以包括其他数据,对此此处不作任何限制。
可选地,第一设备将T1时刻生成一个时间戳,并在T1时刻将该时间戳携带于第二数据中发送至主机。
可选地,第一设备向主机发送第二数据时需要消耗的空中时长为△1,其中,在实际应用场景中,△1可以是在0—100ms之间随机分布的数值。
202、主机根据预设阈值和T1时刻确定T2时刻。
本实施例中,当主机接收到第一设备发送的第二数据时,主机将T1时刻的信息从该第二数据中解析出来,从而获知T1时刻;然后,主机根据预设阈值和T1时刻确定T2时刻,其中,以使得第一设备在后续接收到主机发送的控制命令时对应的接收时刻不超过该T2时刻,从而,保证第一设备可以在T2时刻向第二设备发送第一信号,此外,还需要说明的是,该T2时刻与第一设备的时间系统对应。
可选地,如步骤201中第一设备向主机发送第二数据时需要消耗的空中时长为△1,此时,主机根据预设阈值和T1时刻将T2时刻确定为大于等于(T1+2*△1)的时刻值,其中,预设阈值为2*△1。
此外,上述预设阈值为一个与第一设备向主机发送第二数据时需要消耗的空中时长即△1相关,并且可以保证第一设备在T2时刻可以向第二设备发送第一信号(如红外信号)的一个阈值(如1.5*△1、3*△1或2.5*△1等),可以根据实际应用场景而具体确定,对此此处不作任何限定。
203、主机向第一设备发送控制命令,其中,该控制命令用于指示第一设备在T2时刻向第二设备发送第一信号。
本实施例中,在主机根据预设阈值和T1时刻确定T2时刻之后,主机向第一设备发送控制命令,该控制命令用于指示第一设备在T2时刻向第二设备发送第一信号。
204、第二设备在T3时刻接收第一设备发送的第一信号。
本实施例中,在第一设备接收到第一设备发送的,用于指示向第二设备发送第一信号的控制命令之后,应理解,第一设备接收到该第一信号的时刻不超过上述T2时刻;当第一设备中的时间系统显示到达T2时刻时,第一设备向第二设备发送第一信号,从而,第二设备在T3时刻接收第一设备在T2时刻发送的第一信号,其中,需要说明的是,该T3时刻与第二设备的时间系统对应,此外,第一信号在通过无线信道,从第一设备传输至第二设备时所消耗的空中时长为固定空中时长△IR。
可选地,第一信号可以包括红外信号,该红外信号对应的空中时长为固定值。
205、主机从控制命令中获取T2时刻。
本实施例中,在主机向第一设备发送控制命令之后,主机从该控制命令中获取其中T2时刻的信息,进一步得到T2时刻。
可选的,在一种可能的设计中,由于在步骤202中T2时刻是主机确定的,因此若T2时刻被保存到主机的本地数据中时,可以不执行该步骤205,直接获取从本地数据中获取T2时刻。
206、第二设备向主机发送第一数据,其中,该第一数据中携带有T3时刻的信息。
本实施例中,在第二设备在T3时刻接收第一信号之后,第二设备将T3时刻的信息携带于第一数据中,并将该第一数据发送至主机,以使得主机获知第二设备接收该第一信号的本地时间即T3时刻。
207、主机根据T2时刻、T3时刻和预置的△IR确定第一设备和第二设备各自对应的时间系统之间的系统时间差值。
本实施例中,主机根据T2时刻、T3时刻和预置的△IR确定第一设备和第二设备各自对应的时间系统之间的系统时间差值,以使得在得到系统时间差值之后,时间同步系统根据各设备之间时间系统的系统时间差值进行时间同步。
可选的,预置的△IR可以为第一设备向第二设备发送红外信号时消耗的固定空中时长,主机可以根据红外信号的编解码过程等预先确定该固定空中时长。
可选的,主机将T2时刻、T3时刻和预置的△IR,带入第一公式中进行计算得到第一设备和第二设备各自对应的时间系统之间的系统时间差值,其中,第一公式可以为:Δ12=T3-T2+ΔIR;在第一公式中:Δ12为第一设备和第二设备各自对应的时间系统之间的系统时间差值;T3为第二设备的时间系统中,第二设备接收第一设备发送的第一信号的时刻;T2为在第一设备的时间系统中,第一设备向第二设备发送第一信号的时刻;ΔIR为
第一设备向第二设备发送第一信号时所消耗的固定空中时长。
本实施例中,可以理解的是,固定空中时长是一个基本固定的值,因此,其中该固定空中时长为△IR,然后根据T2时刻、T3时刻和预置的△IR得到第一设备与第二设备各自对应的独立时间系统之间的系统时间差值,由于T2时刻、T3时刻和预置的△IR都是相对固定的值,因此该系统时间差值更加准确,以使得时间同步精度得以提高。
上述实施例一对本发明实施例中数据处理方法进行了详细说明,下面结合的一个具体实施对本发明实施例中时间同步系统进行说明。
其中,该时间同步系统包括主机、第一设备和第二设备,其中,主机、第一设备和第二设备三者之间可以两两分别进行通信,下面将分别结合主机、第一设备和第二设备对本发明实施例中的时间同步系统进行说明,具体如下:
实施例二,如图2所示,本发明实施例中的主机的一个实施例,包括:
获取单元301,用于从控制命令中获取T2时刻,该T2时刻为该第一设备向该第二设备发送第一信号的时刻,该第一信号为在无线信道中传输该第一信号时的空中时长为一个固定时长的信号;
第一接收单元302,用于接收该第二设备发送的携带有T3时刻的第一数据,该T3时刻为该第二设备接收该第一设备发送的该第一信号的时刻;
第一确定单元303,用于根据该T2时刻、该T3时刻和预置的△IR确定该第一设备和第二设备各自对应的时间系统之间的系统时间差值,其中,该△IR为该第一设备向该第二设备发送该第一信号时的固定空中时长。
可选地,在一种可能的实现方式中,上述第一信号可以是红外信号。
可选地,在一种可能的设计中,如图4所示,主机还可以包括:发送单元404;其中,发送单元404,用于向该第一设备发送该控制命令,该控制命令用于指示该第一设备在该T2时刻向该第二设备发送该第一信号。
可选地,在一种可能的设计中,如图4所示,主机还可以包括:第二接收单元405和第二确定单元406;其中,上述两单元分别用于执行如下操作:
第二接收单元405,用于接收该第一设备发送的第二数据,其中,第二数据中携带有该T1时刻的信息,该T1时刻为该第一设备向该主机发送该第二数据的本地时间;
第二确定单元406,用于根据预设阈值和该T1时刻确定该T2时刻,以使得该第一设备接收到该控制命令的时刻不超过该T2时刻,保证该第一设备实现在该T2时刻向该第二设备发送该第一信号。
本实施例中,可以理解的是,固定空中时长是一个基本固定的值,因此,其中该固定空中时长为△IR,然后根据T2时刻、T3时刻和预置的△IR得到第一设备与第二设备各自对应的独立时间系统之间的系统时间差值,由于T2时刻、T3时刻和预置的△IR都是相对固定的值,因此该系统时间差值更加准确,以使得时间同步精度得以提高。
上述实施例二对本发明实施例中主机的一个实施例进行了详细说明,下面结合一个具体实施例对本发明实施例中的第一设备进行说明,具体如下:
实施例三,如图5所示,本发明实施例中第一设备的一个实施例,包括:
第一发送单元501,用于在本地时间的T2时刻向第二设备发送第一信号,其中,该第
一信号为在无线信道中传输该第一信号时的空中时长为一个固定时长的信号,该第一设备发送该红外信号消耗的固定空中时长为△IR,以使得该主机通过该T2时刻和该△IR等确定该第一设备与该第二设备各自对应的时间系统之间的系统时间差值。
可选地,在一种可能的实现方式中,上述第一信号可以是红外信号。
可选地,在一种可能的实现方式中,如图5所示,第一设备还包括:接收单元502;其中,接收单元502,用于接收该主机发送的控制命令,该控制命令用于指示该第一设备在该T2时刻向该第二设备发送该第一信号。
可选地,在一种可能的设计中,如图5所示,第一设备还包括:第二发送单元503;其中,第二发送单元503,用于向该主机发送携带有T1时刻的第二数据,该T1时刻为该第一设备向该主机发送该第二数据的本地时间。
本实施例中,第一设备向第二设备发送第一信号(如红外信号)的空中时长为固定时长,因此,使得主机在根据固定空中时长△IR等计算得到的第一设备和第二设备各自对应的时间系统之间的系统时间差值更加精确。
上述实施例三对本发明实施例中第一设备的一个实施例进行了详细说明,下面结合一个具体实施例对本发明实施例中的第二设备进行说明,具体如下:
实施例四,如图6所示,本发明实施例中第二设备的一个实施例,包括:
接收单元601,用于在本地时间的T3时刻接收到第一设备发送的第一信号,其中,该第一信号为在无线信道中传输该第一信号时的空中时长为一个固定时长的信号;
发送单元602,用于将携带有该T3时刻的第一数据发送至主机,以使得该主机根据该T3时刻等确定该第一设备与该第二设备各自对应的时间系统之间的系统时间差值。
可选地,在一种可能的设计中,上述第一信号可以是红外信号。
本实施例中,第二设备接收第一设备发送的第一信号(如红外信号),并将接收该第一信号对应的本地时间即T3时刻,携带于第二数据中发送至主机,以使得主机获知第二设备接收第一设备在T2时刻发送的第一信号,从而通过计算得到第一设备与第二设备各自时间系统之间的系统时间差值。
上述实施例二至实施四分别对本发明实施例中主机、第一设备和第二设备的一个实施例进行了详细说明,下面将结合实施例五对本发明实施中主机、第一设备和第二设备进行说明,其中,需要说明的是,主机、第一设备和第二设备的另一个实施例结构类似,实施例五中仅对主机的另一个实施例进行说明,对于第一设备和第二设备与实施例五中的主机类似,对此此处不再赘述。
另外,需要说明的是,为了便于说明,实施例五中仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。
实施例五,如图7所示,本发明实施例中主机的另一个实施例,主机14包括:
接收器1401、发射器1402、处理器1403、存储器1404和总线1405。
需要说明的是,图7所示的结构也适用于上述实施例中第一设备和第二设备。
其中,存储器1404可以包括只读存储器和随机存取存储器,并向处理器1403提供指令和数据。存储器1404的一部分还可以包括非易失性随机存取存储器(英文全称:Non-Volatile Random Access Memory,英文缩写:NVRAM)。
存储器1404存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作;
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
其中,本发明实施例中处理器1403可以用于执行上述实施例中主机14对应的操作,可以包括如下操作:
从控制命令中获取T2时刻,该T2时刻为该第一设备向该第二设备发送第一信号的时刻,该第一信号为在无线信道中传输该第一信号时的空中时长为一个固定时长的信号;
接收该第二设备发送的携带有T3时刻的第一数据,该T3时刻为该第二设备接收该第一设备发送的该第一信号的时刻;
根据该T2时刻、该T3时刻和预置的△IR确定该第一设备和第二设备各自对应的时间系统之间的系统时间差值,其中,该△IR为该第一设备向该第二设备发送该第一信号时的固定空中时长。
其次,当图7适用于上述实施例中的第一设备时,本发明实施例中处理器1403还可以用于执行上述实施例中第一设备对应的操作,包括:
在本地时间的T2时刻向第二设备发送第一信号,其中,该第一信号为在无线信道中传输该第一信号时的空中时长为一个固定时长的信号,该第一设备发送该红外信号消耗的固定空中时长为△IR,以使得该主机通过该T2时刻和该△IR等确定该第一设备与该第二设备各自对应的时间系统之间的系统时间差值。
再次,当图7适用于上述实施例中的第二设备时,本发明实施例中处理器1403还可以用于执行上述实施例中第二设备对应的操作,包括:
在本地时间的T3时刻接收到第一设备发送的第一信号,其中,该第一信号为在无线信道中传输该第一信号时的空中时长为一个固定时长的信号;
将携带有该T3时刻的第一数据发送至主机,以使得该主机根据该T3时刻等确定该第一设备与该第二设备各自对应的时间系统之间的系统时间差值。
处理器1403控制主机14的操作,处理器1403还可以称为中央处理单元(英文全称:Central Processing Unit,英文缩写:CPU)。存储器1404可以包括只读存储器和随机存取存储器,并向处理器1403提供指令和数据。存储器1404的一部分还可以包括NVRAM。具体的应用中,主机14的各个组件通过总线系统1405耦合在一起,其中总线系统1405除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1405。
上述本发明实施例揭示的方法可以应用于处理器1403中,或者由处理器1403实现。处理器1403可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1403中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1403可以是通用处理器、数字信号处理器(英文全称:Digital Signal Processing,英文缩写:DSP)、专用集成电路(英文全称:Application Specific Integrated Circuit,英文缩写:ASIC)、现成可编程门阵列(英文全称:Field-Programmable Gate Array,英文缩写:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可
以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1404,处理器1403读取存储器1404中的信息,结合其硬件完成上述方法的步骤。
图7的相关描述可以参阅图2方法部分的相关描述和效果进行理解,此处不做过多赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式
体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (12)
- 一种数据处理方法,其特征在于,所述方法应用于时间同步系统中的主机,所述时间同步系统还包括第一设备和第二设备,其中,所述主机、所述第一设备和所述第二设备均具有各自的时间系统;所述方法包括:所述主机从控制命令中获取T2时刻,所述T2时刻为所述第一设备向所述第二设备发送第一信号的时刻,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号;所述主机接收所述第二设备发送的携带有T3时刻的第一数据,所述T3时刻为所述第二设备接收所述第一设备发送的所述第一信号的时刻;所述主机根据所述T2时刻、所述T3时刻和预置的△IR确定所述第一设备和第二设备各自对应的时间系统之间的系统时间差值,其中,所述△IR为所述第一设备向所述第二设备发送所述第一信号时的固定空中时长。
- 根据权利要求1所述的数据处理方法,其特征在于,在所述主机从控制命令中获取T2时刻之前,还包括:所述主机向所述第一设备发送所述控制命令,所述控制命令用于指示所述第一设备在所述T2时刻向所述第二设备发送所述第一信号。
- 根据权利要求2所述的数据处理方法,其特征在于,在所述主机向所述第一设备发送所述控制命令之前,还包括:所述主机接收所述第一设备发送的第二数据,其中,第二数据中携带有所述T1时刻的信息,所述T1时刻为所述第一设备向所述主机发送所述第二数据的本地时间;所述主机根据预设阈值和所述T1时刻确定所述T2时刻,以使得所述第一设备接收到所述控制命令的时刻不超过所述T2时刻,保证所述第一设备实现在所述T2时刻向所述第二设备发送所述第一信号。
- 一种数据处理方法,其特征在于,所述方法应用于时间同步系统中的第一设备,所述时间同步系统还包括主机和第二设备,其中,所述主机、所述第一设备和所述第二设备均具有各自的时间系统;所述方法包括:所述第一设备在本地时间的T2时刻向第二设备发送第一信号,其中,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号,所述第一设备发送所述红外信号消耗的固定空中时长为△IR,以使得所述主机通过所述T2时刻和所述△IR等确定所述第一设备与所述第二设备各自对应的时间系统之间的系统时间差值。
- 根据权利要求4述的数据处理方法,其特征在于,在所述第一设备在本地时间的T2时刻向第二设备发送第一信号之前,还包括:所述第一设备接收所述主机发送的控制命令,所述控制命令用于指示所述第一设备在所述T2时刻向所述第二设备发送所述第一信号。
- 根据权利要求5所述的数据处理方法,其特征在于,在所述第一设备接收所述主机发送的控制命令之前,还包括:所述第一设备向所述主机发送携带有T1时刻的第二数据,所述T1时刻为所述第一设备向所述主机发送所述第二数据的本地时间。
- 一种数据处理方法,其特征在于,所述方法应用于时间同步系统中的第二设备, 所述时间同步系统还包括主机和第一设备,其中,所述主机、所述第一设备和所述第二设备均具有各自的时间系统;所述方法包括:所述第二设备在本地时间的T3时刻接收到第一设备发送的第一信号,其中,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号;所述第二设备将携带有所述T3时刻的第一数据发送至主机,以使得所述主机根据所述T3时刻等确定所述第一设备与所述第二设备对应的时间系统之间的系统时间差值。
- 一种主机,其特征在于,包括:获取单元,用于从控制命令中获取T2时刻,所述T2时刻为所述第一设备向所述第二设备发送第一信号的时刻,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号;第一接收单元,用于接收所述第二设备发送的携带有T3时刻的第一数据,所述T3时刻为所述第二设备接收所述第一设备发送的所述第一信号的时刻;第一确定单元,用于根据所述T2时刻、所述T3时刻和预置的△IR确定所述第一设备和第二设备各自对应的时间系统之间的系统时间差值,其中,所述△IR为所述第一设备向所述第二设备发送所述第一信号时的固定空中时长。
- 根据权利要求8所述的主机,其特征在于,所述主机还包括:发送单元,用于向所述第一设备发送所述控制命令,所述控制命令用于指示所述第一设备在所述T2时刻向所述第二设备发送所述第一信号。第二接收单元,用于接收所述第一设备发送的第二数据,其中,第二数据中携带有所述T1时刻的信息,所述T1时刻为所述第一设备向所述主机发送所述第二数据的本地时间;第二确定单元,用于根据预设阈值和所述T1时刻确定所述T2时刻,以使得所述第一设备接收到所述控制命令的时刻不超过所述T2时刻,保证所述第一设备实现在所述T2时刻向所述第二设备发送所述第一信号。
- 一种第一设备,其特征在于,包括:第一发送单元,用于在本地时间的T2时刻向第二设备发送第一信号,其中,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号,所述第一设备发送所述红外信号消耗的固定空中时长为△IR,以使得所述主机通过所述T2时刻和所述△IR等确定所述第一设备与所述第二设备各自对应的时间系统之间的系统时间差值。
- 根据权利要求10所述的第一设备,其特征在于,所述第一设备还包括:接收单元,用于接收所述主机发送的控制命令,所述控制命令用于指示所述第一设备在所述T2时刻向所述第二设备发送所述第一信号。第二发送单元,用于向所述主机发送携带有T1时刻的第二数据,所述T1时刻为所述第一设备向所述主机发送所述第二数据的本地时间。
- 一种第二设备,其特征在于,包括:接收单元,用于在本地时间的T3时刻接收到第一设备发送的第一信号,其中,所述第一信号为在无线信道中传输所述第一信号时的空中时长为一个固定时长的信号;发送单元,用于将携带有所述T3时刻的第一数据发送至主机,以使得所述主机根据所述T3时刻等确定所述第一设备与所述第二设备对应的时间系统之间的系统时间差值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/554,648 US20190386762A1 (en) | 2017-04-24 | 2019-08-29 | Date processing system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710273573.5 | 2017-04-24 | ||
CN201710273573.5A CN108737001B (zh) | 2017-04-24 | 2017-04-24 | 一种数据处理方法及相关设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/554,648 Continuation US20190386762A1 (en) | 2017-04-24 | 2019-08-29 | Date processing system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196223A1 true WO2018196223A1 (zh) | 2018-11-01 |
Family
ID=63918006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/096312 WO2018196223A1 (zh) | 2017-04-24 | 2017-08-07 | 一种数据处理方法及相关设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190386762A1 (zh) |
CN (1) | CN108737001B (zh) |
WO (1) | WO2018196223A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109933418B (zh) * | 2019-03-25 | 2022-10-25 | 联想(北京)有限公司 | 一种时间戳同步方法、电子设备及异构设备 |
CN114173172B (zh) * | 2021-12-09 | 2023-07-25 | 深圳创维数字技术有限公司 | 数据处理方法、装置、终端设备以及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150113186A1 (en) * | 2011-12-27 | 2015-04-23 | Intel Corporation | Multi-protocol i/o interconnect time synchronization |
CN105245324A (zh) * | 2015-10-14 | 2016-01-13 | 中兴通讯股份有限公司 | 时钟同步方法及装置 |
CN106130710A (zh) * | 2016-06-29 | 2016-11-16 | 北京东土科技股份有限公司 | 一种时钟同步方法及系统 |
-
2017
- 2017-04-24 CN CN201710273573.5A patent/CN108737001B/zh active Active
- 2017-08-07 WO PCT/CN2017/096312 patent/WO2018196223A1/zh active Application Filing
-
2019
- 2019-08-29 US US16/554,648 patent/US20190386762A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150113186A1 (en) * | 2011-12-27 | 2015-04-23 | Intel Corporation | Multi-protocol i/o interconnect time synchronization |
CN105245324A (zh) * | 2015-10-14 | 2016-01-13 | 中兴通讯股份有限公司 | 时钟同步方法及装置 |
CN106130710A (zh) * | 2016-06-29 | 2016-11-16 | 北京东土科技股份有限公司 | 一种时钟同步方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108737001B (zh) | 2020-02-07 |
US20190386762A1 (en) | 2019-12-19 |
CN108737001A (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI733752B (zh) | 用於旁波帶通訊之系統及方法、以及實體非暫時性計算機可讀媒體 | |
US10969983B2 (en) | Method for implementing NVME over fabrics, terminal, server, and system | |
TWI552558B (zh) | 用於WiFi串列匯流排之基於媒體時間之USB訊框計數器同步 | |
US20190146806A1 (en) | Method and apparatus for plug and play, networkable iso 18000-7 connectivity | |
US20130215142A1 (en) | Apparatus and method for displaying an image on a sink device | |
US9129064B2 (en) | USB 3.0 link layer timer adjustment to extend distance | |
CN106959935B (zh) | 一种兼容i2c通信与ipmb通信的方法 | |
US10621124B2 (en) | Method, device and computer program product for enabling SR-IOV functions in endpoint device | |
CN105302750A (zh) | 一种接口功能配置方法和电子设备 | |
CN106385304A (zh) | 数据传输方法、设备和系统 | |
WO2018196223A1 (zh) | 一种数据处理方法及相关设备 | |
CN111818632A (zh) | 一种设备同步的方法、装置、设备及存储介质 | |
CN104461978B (zh) | 单向数据传输的方法及装置 | |
US8793402B2 (en) | Synchronizing time across a plurality of devices connected to a network | |
WO2017049556A1 (zh) | 数据传输方法和移动终端 | |
US9882737B2 (en) | Network system | |
CN109189705A (zh) | 一种usb扩展方法、装置、设备、存储介质及系统 | |
US10212215B2 (en) | Apparatus and method for providing metadata with network traffic | |
US20150350014A1 (en) | Networking implementation using a converged high speed input/output fabric technology | |
US9853832B2 (en) | Wireless ethernet network controlling method and wireless ethernet network system | |
TW201503668A (zh) | 影像顯示系統與其方法 | |
WO2018225641A1 (ja) | 通信制御方法、記録媒体および通信制御装置 | |
US9405719B2 (en) | Circuitry to generate and/or use at least one transmission time in at least one descriptor | |
TWI543562B (zh) | 網路控制設備、遠端設備的網路控制系統與控制方法 | |
US9647853B2 (en) | Transmitting system, the device and the method for the remote bus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907904 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.03.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17907904 Country of ref document: EP Kind code of ref document: A1 |