WO2018194226A1 - Egr cooler provided with pre-cooling zone - Google Patents

Egr cooler provided with pre-cooling zone Download PDF

Info

Publication number
WO2018194226A1
WO2018194226A1 PCT/KR2017/010637 KR2017010637W WO2018194226A1 WO 2018194226 A1 WO2018194226 A1 WO 2018194226A1 KR 2017010637 W KR2017010637 W KR 2017010637W WO 2018194226 A1 WO2018194226 A1 WO 2018194226A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas tube
wave
point
gas
end plate
Prior art date
Application number
PCT/KR2017/010637
Other languages
French (fr)
Korean (ko)
Inventor
조형근
Original Assignee
주식회사 코렌스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코렌스 filed Critical 주식회사 코렌스
Publication of WO2018194226A1 publication Critical patent/WO2018194226A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present invention relates to an EG cooler that cools exhaust gas introduced into an exhaust gas recirculation system (EGR: Exhaust gas) with cooling water, and more particularly, in order for the exhaust gas to exchange heat with the cooling water. It relates to an EG cooler having a section previously exhaust gas is precooled.
  • EGR exhaust gas recirculation system
  • Exhaust Gas Recirculation is a system in which a part of the exhaust gas is recycled back to the intake system to increase the concentration of CO 2 in the intake air, thereby lowering the temperature of the combustion chamber and thereby reducing the NOx.
  • the mechanism of NOx generation in detail, consists of about 79% nitrogen, 21% oxygen and other trace elements.
  • nitrogen and oxygen do not react with each other, but at high temperature (above about 1450 ° C), they react with each other to form nitrogen oxides (thermal NOx).
  • thermal NOx nitrogen oxides
  • diesel engines generate combustion by compression ignition method, and the compression ratio is getting higher due to the development of the material of the cylinder, thereby increasing the temperature of the combustion chamber.
  • Increasing the combustion chamber temperature increases the efficiency of the thermodynamic engine, but a large amount of nitrogen oxides are generated due to the high temperature.
  • These nitrogen oxides are the main harmful substances that destroy the global environment, causing acid rain, optical smog, respiratory disorders, and the like.
  • the principle of NOx reduction by EZR is to lower the maximum temperature of the combustion chamber by recirculating inert gas (steam, carbon dioxide, etc.), second, to prevent the atmosphere of nitrogen oxide formation by lean combustion, and To reduce the ignition delay and lower the local maximum temperature and pressure in the combustion chamber.
  • inert gas steam, carbon dioxide, etc.
  • EGR the NOx reduction mechanism by EGR has been reported that the reduction of the oxygen concentration is the root cause and the study that the flame temperature decrease is the cause. At this time, no conclusion about which is right is given, but the contribution of NOx reduction in oxygen concentration and flame temperature has recently been reported to be at the same level.
  • EZR is equipped with EZR cooler, which reduces NOx without increasing fuel economy and PM due to stricter diesel emission control, and installs a cooler (cooler) using coolant from the engine. It is a device that can be obtained.
  • the EZR cooler should be cooled to 700 °C to 200 °C, so it must be heat-resistant and must be compactly designed to be installed inside the car. Should be minimized, and condensation is generated from exhaust gas during heat exchange and sulfuric acid is included in the condensate because it is susceptible to corrosion. Since particulate matter (PM) of the exhaust gas can block the inside of the passage, countermeasure against fouling is required.
  • PM particulate matter
  • FIG. 1 is a perspective view of a conventional EZC cooler
  • FIG. 2 is a cross-sectional perspective view of a conventional EZC cooler
  • FIG. 3 is a partial sectional view of a conventional EZC cooler.
  • an EZR cooler in general, includes a body cell 10 including a coolant inlet pipe 11 and a coolant outlet pipe 12 so that the coolant flows in and out, and a plurality of gases installed in the body cell 10 through which exhaust gas flows.
  • a tube 20, a wave fin 30 inserted into the gas tube 20, and an end plate 40 fixing both ends of the plurality of gas tubes 20 are provided as basic components.
  • the wave fin 30 inserted into the gas tube 20 is a component for increasing the heat exchange efficiency by transferring the temperature of the exhaust gas introduced into the gas tube 20 to the side wall of the gas tube 20. Is in contact with the inner surface.
  • the wave fin 30 is installed to fill the entire inner space of the gas tube 20 to maximize the heat exchange efficiency
  • the end of the wave fin 30 (left end in Figure 3) is a gas tube
  • the end plate 40 of the inner space of the 20 is extended to the combined portion. At this time, since the end plate 40 of the gas tube 20 is not mounted in contact with the coolant, the end portion of the gas tube 20 is overheated.
  • the present invention has been proposed to solve the above problems, it is possible to prevent the phenomenon that the inlet side of the gas tube is overheated to prevent the cooling water boiling phenomenon and the thermal stress concentration phenomenon, to maximize the heat exchange amount to exhaust gas cooling
  • An object of the present invention is to provide an EG cooler that can maintain high efficiency.
  • Easy R cooler for achieving the above object is formed in the duct shape of the both sides in the longitudinal direction open the body cell in which the coolant flows out;
  • a plurality of gas tubes mounted in the body cell so as to be spaced apart from the inner surface of the body cell;
  • An end plate coupled to cover the longitudinal end of the body cell and having an opening formed at a central portion thereof in which an end of the gas tube is inserted in a fitting manner;
  • a wave fin inserted into the gas tube to be in contact with the inner surface of the gas tube, the wave fin being mounted such that one longitudinal end thereof faces the inlet of the gas tube. Is located at a point spaced one end in the longitudinal direction from the point at which the end plate is mounted toward the outlet of the gas tube.
  • the separation distance between the longitudinal end of the wave fin and the end plate is set to less than twice the height of the gas tube internal flow path.
  • the plurality of gas tubes are formed in a rectangular tube shape having a width larger than the thickness thereof, and are stacked in the thickness direction, and the upper and lower wave fins have one end in the longitudinal direction from the point where the end plate is mounted. It is located at a point spaced towards the exit.
  • the wave fin further includes an extension portion extending from the longitudinal end toward the inlet of the gas tube and spaced apart from the inner surface of the gas tube.
  • All wave fins are located at a point where the longitudinal end is spaced away from the point at which the end plate is mounted toward the outlet of the gas tube.
  • the extension part is manufactured through a process of cutting the upper and lower one side in the longitudinal direction of the wave fin.
  • the EG cooler according to the present invention can prevent cooling water boiling phenomenon and concentration of heat stress, and maximize the heat exchange rate to maintain high exhaust gas cooling efficiency. have.
  • FIG. 1 is a perspective view of a conventional RG cooler.
  • FIG. 2 is a cross-sectional perspective view of a conventional EZC cooler.
  • FIG 3 is a partial cross-sectional view of a conventional RG cooler.
  • FIG. 4 is a partial cross-sectional view of an EG cooler according to the present invention.
  • Fig. 5 is a partial cross-sectional view of an EZR cooler according to a second embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view of the third embodiment of an EZR cooler according to the present invention.
  • FIG. 7 is a partial cross-sectional view of the fourth embodiment of an EZR cooler according to the present invention.
  • FIG 8 is an enlarged perspective view of a wave fin included in the fourth embodiment of an EZR cooler according to the present invention.
  • FIG. 4 is a partial cross-sectional view of an EG cooler according to the present invention.
  • the EG cooler according to the present invention is a device for transferring a high temperature exhaust gas with a low temperature cooling water and cooling it to a predetermined level, and then transferring the exhaust gas to an exhaust gas recirculation (EGR) system, as shown in FIG. 4.
  • EGR exhaust gas recirculation
  • a plurality of gas tubes 200 mounted in the body cell 100 to be spaced apart from the inner side of the body cell 100 and the inner surface of the body cell 100 is formed in an open duct shape in both directions in the open duct shape
  • an end plate 400 coupled to cover the longitudinal end of the body cell 100 and having an opening formed at the center of the gas tube 200 in a fitting manner. Is inserted into the inside of the 200 is in contact with the inner surface of the gas tube 200 is mounted so that the longitudinal end (left end in Figure 4) toward the inlet (left end in Figure 4) of the gas tube 200
  • Wave pin 300 is provided as a basic component.
  • the EG cooler according to the present invention is not located at the point where the end plate 400 is mounted at one end in the longitudinal direction of the wave fin 300, but the gas tube from the point at which the end plate 400 is mounted.
  • the biggest feature of the configuration is that it is located at a point spaced toward the exit of 200.
  • the high temperature exhaust gas exhausted from the engine is introduced into the gas tube 200 through an inlet formed at one side (left side in this embodiment) of the gas tube 200, as shown in the conventional EZR cooler shown in FIG. 3.
  • the wave fins 30 are installed throughout the inner space of the gas tube 20, the heat of the exhaust gas flowing into the inlet of the gas tube 20 is transferred to the gas tube 20 as it is riding the wave fins 30.
  • a portion of the gas tube 20 which is not in contact with the cooling water, that is, the portion where the end plate 40 is mounted, is overheated, and thus the water phenomena due to the cooling water boiling and the concentration of thermal stress are frequently generated.
  • the EZR cooler according to the present invention is located at a point spaced at a distance from one end in the longitudinal direction of the wave fin 300 to the rear (more specifically, toward the outlet of the gas tube 200, the right direction in FIG. 4).
  • an empty space A in which the wave fin 300 does not exist is provided at the inlet side of the internal flow path of the gas tube 200, the heat of the exhaust gas introduced into the inlet of the gas tube 200 is empty. While passing through (A), it is not quickly delivered to the gas tube 200, but is rapidly delivered to the gas tube 200 only when the wave fin 300 is mounted.
  • the EG cooler according to the present invention is not heated to a high temperature from the inlet of the gas tube 200 when the exhaust gas flows into the gas tube 200, but is spaced a predetermined distance from the inlet of the gas tube 200. From (more specifically from the point where the longitudinal end of the wave fin 300 is located) is heated to a high temperature, the end plate 400 is mounted to prevent the phenomenon of overheating the site where the coolant is not smoothly contacted, Accordingly, there is an advantage that the problem of component damage due to cooling water boiling and concentration of thermal stress is prevented.
  • the EG cooler according to the present invention is in contact with the wave fin 300 after the exhaust gas is slightly cooled while passing through the empty space A, that is, precooling the empty space A. Since it is used as a section, it is also possible to obtain the effect of reducing the thermal shock applied to the wave fin 300.
  • Fig. 5 is a partial cross-sectional view of an EZR cooler according to a second embodiment of the present invention.
  • the EZR cooler according to the present invention can reduce the cooling water boiling and thermal stress concentration as the size of the empty space (A) used as a pre-cooling section is large, and greatly reduces the thermal shock applied to the wave fin 300 Although it can be obtained, if the size of the empty space (A) is secured too large, the length of the wave fin 300 is shortened by that, there is a problem that the heat exchange amount between the exhaust gas and the cooling water is reduced. Therefore, the separation distance L between the longitudinal end of the wave fin 300 and the end plate 400 is a cross-sectional specification of the gas tube 200 or the flow rate of the exhaust gas, the wave fin 300 and the gas tube 200. It is preferable to select appropriately according to various conditions such as heat transfer coefficient of.
  • the distance L between the longitudinal end of the wave fin 300 and the end plate 400 is preferably set to two times or less of the height H of the inner channel of the gas tube 200.
  • FIG. 6 is a partial cross-sectional view of the third embodiment of an EZR cooler according to the present invention.
  • the plurality of gas tubes 200 included in the present invention are formed in a rectangular tube shape having a width larger than the thickness thereof, and are stacked in the thickness direction (up and down direction in this embodiment), and both ends of the longitudinal direction of all the gas tubes 200 are end portions. It is coupled to penetrate the central portion of the plate 400.
  • the coolant flowing into the body cell 100 is mainly discharged toward the gas tube 200 located in the center, the gas tube 200 located on the uppermost side and the gas tube 200 located on the lowermost side.
  • the cooling water boiling and thermal stress concentration, and the wave fin 300 thermal shock phenomenon may occur frequently.
  • one end in the longitudinal direction of the upper and lower wave fins 300 is spaced toward the outlet of the gas tube 200 from the point where the end plate 400 is mounted.
  • one end of the longitudinal wave fin 300 in the longitudinal direction may be set to be mounted to the point where the end plate 400 is mounted.
  • the cooling water boiling and thermal stress concentration and the wave fin 300 thermal shock phenomenon may occur in the gas tube 200 positioned in the middle, as shown in FIG. It should be set to be located at a point spaced toward the outlet of the gas tube 200.
  • FIG. 7 is a partial cross-sectional view of the fourth embodiment of the IR cooler according to the present invention
  • FIG. 8 is an enlarged perspective view of the wave fin 300 included in the fourth embodiment of the IR cooler according to the present invention.
  • the EG cooler according to the present invention may be configured to increase the contact area between the exhaust gas and the wave fin 300 while reducing the cooling water boiling phenomenon, the thermal stress concentration phenomenon, and the thermal shock phenomenon of the wave fin 300. .
  • the wave fin 300 may include an extension 310 extending from one end in the longitudinal direction toward the inlet of the gas tube 200 as shown in FIGS. 7 and 8. Exhaust gas introduced through the inlet of the gas tube 200 is first contacted with the extension 310 to transfer heat to the wave fin 300, which is directly connected to the gas tube 200. Since it is not in contact with the heat transmitted to the extension 310 is passed through the body of the wave fin 300 is transferred to the gas tube 200. That is, when the extension part 310 is additionally provided in the wave fin 300, the efficiency of transferring the heat of the exhaust gas to the gas tube 200 through the wave fin 300 is increased, and the end of the gas tube 200 is increased. Since the phenomenon in which the plate 400 is mounted is not overheated, it is possible to obtain an effect of improving the cooling performance of the exhaust gas while preventing the cooling water boiling phenomenon, the thermal stress concentration phenomenon, and the wave fin 300 thermal shock phenomenon. do.
  • the end of the extension 310 is preferably located at the point where the end plate is mounted in the inner space of the gas tube 200, as shown in FIG.
  • all the wave fin 300 is one end in the longitudinal direction of the end plate 400 It is preferably set to be located at a point spaced toward the outlet of the gas tube 200 from the mounting point.
  • the shape of the extension portion 310 may be formed in a flat plate shape as shown in this embodiment, or may be formed in a wave plate shape to further widen the contact area with the exhaust gas. That is, the shape of the extension 310 may be variously modified according to various conditions, a detailed description thereof will be omitted.
  • the extension portion 310 in order to manufacture the extension 310 separately to be coupled to one end in the longitudinal direction of the wave fin 300, not only takes a lot of time to manufacture the extension 310, but also takes a long time to combine the extension 310 There is a problem.
  • the extension portion 310 if the extension portion 310 is manufactured separately and then coupled, the extension portion 310 may not be smoothly manufactured, which may interfere with the flow of the exhaust gas.
  • the manufacturer may cut the upper and lower portions of one side in the longitudinal direction of the conventional wave fin 30 shown in FIG. 3 to process the wave fin 300 so that the remaining portion is the extension portion 310.
  • the extension part 310 when the extension part 310 is formed by cutting the upper and lower sides of the wave fin 300 in the longitudinal direction, the extension part 310 may not only be easily manufactured, but also the exhaust gas may be smoothly flown. There is an advantage.
  • the conventional wave fin 30 can be recycled, there is an advantage that can reduce the waste of resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

An EGR cooler, according to the present invention, comprises: a body cell of which two sides in the lengthwise direction are formed in the shape of ducts so that cooling water can be introduced to and discharged from the inside thereof; a plurality of gas tubes installed inside the body cell so as to be separated away from the inner surfaces of the body cell; an end plates coupled so as to cover a lengthwise end of the body cell and provided with an opening at a center part into which an end of the gas tubes are inserted by being fitted; and wave fins inserted inside the gas tubes to be in contact with an inner surface of the gas tubes, and of which one lengthwise end is installed so as to face an inlet on the gas tubes, wherein one lengthwise end of at least one wave fin from among the plurality of wave fins is positioned at a point separated away toward an outlet on the gas tubes from the point where the end plate is installed.

Description

예냉각 구간을 구비하는 이지알 쿨러EZR Cooler with Precooling Section
본 발명은 배기가스 재순환시스템(EGR:Exhaust Gas Recirculation, 이하 '이지알' 이라 함)으로 유입되는 배기가스를 냉각수로 냉각시키는 이지알 쿨러에 관한 것으로, 더 상세하게는 배기가스가 냉각수와 열교환하기 이전에 배기가스가 예냉각 되는 구간을 구비하는 이지알 쿨러에 관한 것이다.The present invention relates to an EG cooler that cools exhaust gas introduced into an exhaust gas recirculation system (EGR: Exhaust gas) with cooling water, and more particularly, in order for the exhaust gas to exchange heat with the cooling water. It relates to an EG cooler having a section previously exhaust gas is precooled.
일반적으로 이지알(EGR: Exhaust Gas Recirculation)은 배기가스의 일부를 다시 흡기계로 재순환시켜 흡입공기 중의 CO2 농도를 증대시켜 연소실의 온도를 저하시키고 이에 의해 NOx를 저감시키는 시스템이다.In general, Exhaust Gas Recirculation (EGR) is a system in which a part of the exhaust gas is recycled back to the intake system to increase the concentration of CO 2 in the intake air, thereby lowering the temperature of the combustion chamber and thereby reducing the NOx.
한편, NOx 발생 메커니즘을 구체적으로 살펴보면, 공기는 약 79%의 질소와 21%의 산소 및 기타 미량의 원소로 구성되어 있다. 상온에서 질소와 산소는 서로 반응을 일으키지 않지만 고온(약 1450℃이상)에서는 서로 반응을 하여 질소산화물(thermal NOx)이 된다. 특히 디젤엔진은 압축착화방식으로 연소를 일으키며 실린더의 재질 발달로 인해 압축비가 점점 더 높아져 연소실의 온도가 높아지고 있다. 연소실 온도의 상승은 열역학적 엔진 효율을 증대시키지만, 고온으로 인한 질소산화물이 다량 발생을 하고 있다. 이러한 질소산화물은 지구환경을 파괴하는 주요 유해물질로써, 산성비, 광학스모그, 호흡기 장애 등을 일으킨다.On the other hand, the mechanism of NOx generation, in detail, consists of about 79% nitrogen, 21% oxygen and other trace elements. At room temperature, nitrogen and oxygen do not react with each other, but at high temperature (above about 1450 ° C), they react with each other to form nitrogen oxides (thermal NOx). In particular, diesel engines generate combustion by compression ignition method, and the compression ratio is getting higher due to the development of the material of the cylinder, thereby increasing the temperature of the combustion chamber. Increasing the combustion chamber temperature increases the efficiency of the thermodynamic engine, but a large amount of nitrogen oxides are generated due to the high temperature. These nitrogen oxides are the main harmful substances that destroy the global environment, causing acid rain, optical smog, respiratory disorders, and the like.
이지알에 의한 NOx 저감 원리는 첫째 불활성가스(수증기, 이산화탄소 등) 재순환에 의해 연소실 최고온도를 낮추는 것이며, 둘째 희박연소에 의해 질소산화물 생성분위기를 방지하는 것이며, 세째 고비열 냉각 불활성 가스 투입으로 인한 점화진각 지연 및 연소실 국부 최고온도 및 압력을 낮추는 것이다. 한편, 디젤기관에서 이지알(EGR)에 의한 NOx 저감 메커니즘은 가솔린과는 달리 산소농도 저감이 근본적인 원인이라는 연구와 이에 반론하여 화염온도 감소가 원인이라는 연구가 보고되었다. 현재로서는 어느 것이 옳은지에 대한 결론은 제시되지 않은 상태이지만, 산소농도와 화염온도의 NOx 저감 기여도는 동일한 수준인 것으로 최근 보고되고 있다.The principle of NOx reduction by EZR is to lower the maximum temperature of the combustion chamber by recirculating inert gas (steam, carbon dioxide, etc.), second, to prevent the atmosphere of nitrogen oxide formation by lean combustion, and To reduce the ignition delay and lower the local maximum temperature and pressure in the combustion chamber. On the other hand, in the diesel engine, unlike the gasoline, the NOx reduction mechanism by EGR has been reported that the reduction of the oxygen concentration is the root cause and the study that the flame temperature decrease is the cause. At this time, no conclusion about which is right is given, but the contribution of NOx reduction in oxygen concentration and flame temperature has recently been reported to be at the same level.
이지알 쿨러가 설치된 이지알은 디젤엔진의 배기규제가 엄격해지면서 연비와 PM의 증가없이 NOx를 저감시키는 방법으로 엔진의 냉각수를 이용한 냉각기(쿨러)를 설치함으로서 비교적 적은 투자로서 NOx저감에 큰 효과를 얻을 수 있는 장치이다.EZR is equipped with EZR cooler, which reduces NOx without increasing fuel economy and PM due to stricter diesel emission control, and installs a cooler (cooler) using coolant from the engine. It is a device that can be obtained.
이 경우에 이지알 쿨러는 700℃ 정도의 배기가스 온도를 150℃~200℃까지 냉각시켜야 하므로 내열성 재질이어야 하며, 자동차 내부에 설치되기 위해 콤팩트하게 설계되어야 하며, 적절한 EGR량을 공급하기 위해 압력강하가 최소화되어야 하며, 열교환 중 배기가스로부터 응축이 발생하며 연료의 황성분 때문에 응축수에 황산이 포함되어 부식을 일으키기 쉬우므로 방식성 재료이어야 하며, 배기가스의 맥동영향으로 기계적 부하가 작용하므로 일정의 기계적 강도가 있어야 하며, 배기가스의 입자상물질(PM) 등이 통로 내부를 막을 수 있어 파울링(fouling)에 대한 대책이 요구된다.In this case, the EZR cooler should be cooled to 700 ℃ to 200 ℃, so it must be heat-resistant and must be compactly designed to be installed inside the car. Should be minimized, and condensation is generated from exhaust gas during heat exchange and sulfuric acid is included in the condensate because it is susceptible to corrosion. Since particulate matter (PM) of the exhaust gas can block the inside of the passage, countermeasure against fouling is required.
이하 첨부된 도면을 참조하여 종래의 이지알 쿨러에 대하여 상세히 설명한다.With reference to the accompanying drawings will be described in detail with respect to the conventional EZR cooler.
도 1은 종래의 이지알 쿨러 사시도이고, 도 2는 종래의 이지알 쿨러 단면사시도이며, 도 3은 종래의 이지알 쿨러 부분단면도이다.1 is a perspective view of a conventional EZC cooler, FIG. 2 is a cross-sectional perspective view of a conventional EZC cooler, and FIG. 3 is a partial sectional view of a conventional EZC cooler.
일반적으로 이지알 쿨러는, 냉각수가 유출입되도록 냉각수유입관(11)과 냉각수유출관(12)을 구비하는 바디셀(10)과, 상기 바디셀(10) 내에 설치되어 배기가스가 흐르는 다수의 가스튜브(20)와, 상기 가스튜브(20) 내에 삽입되는 웨이브핀(30)과, 상기 다수의 가스튜브(20) 양단을 고정시키는 엔드플레이트(40)를 기본 구성요소로 구비한다.In general, an EZR cooler includes a body cell 10 including a coolant inlet pipe 11 and a coolant outlet pipe 12 so that the coolant flows in and out, and a plurality of gases installed in the body cell 10 through which exhaust gas flows. A tube 20, a wave fin 30 inserted into the gas tube 20, and an end plate 40 fixing both ends of the plurality of gas tubes 20 are provided as basic components.
가스튜브(20) 내에 삽입되는 웨이브핀(30)은 가스튜브(20) 내부로 유입되는 배기가스의 온도를 가스튜브(20) 측벽으로 전달하여 열교환효율을 높이기 위한 구성요소로서, 가스튜브(20)의 내측면에 접촉된다.The wave fin 30 inserted into the gas tube 20 is a component for increasing the heat exchange efficiency by transferring the temperature of the exhaust gas introduced into the gas tube 20 to the side wall of the gas tube 20. Is in contact with the inner surface.
한편, 상기 웨이브핀(30)은 열교환효율을 극대화시킬 수 있도록 가스튜브(20)의 내부공간 전체를 채우도록 설치되는바, 상기 웨이브핀(30)의 끝단(도 3에서는 좌측단)은 가스튜브(20)의 내부공간 중 엔드플레이트(40)가 결합된 부위까지 연장된다. 이때, 가스튜브(20) 중 엔드플레이트(40)가 장착된 지점은 냉각수와 접촉되지 아니하므로, 상기 가스튜브(20)의 끝단 부위가 과열되는 현상이 발생된다.On the other hand, the wave fin 30 is installed to fill the entire inner space of the gas tube 20 to maximize the heat exchange efficiency, the end of the wave fin 30 (left end in Figure 3) is a gas tube The end plate 40 of the inner space of the 20 is extended to the combined portion. At this time, since the end plate 40 of the gas tube 20 is not mounted in contact with the coolant, the end portion of the gas tube 20 is overheated.
이와 같이 가스튜브(20)의 과열이 발생되면, 해당 부위에서 냉각수가 끓어오르는 보일링현상이 발생될 뿐만아니라, 열응력이 크게 발생되어 부품이 손상될 수 있다는 문제점이 있다.As such, when the overheating of the gas tube 20 occurs, not only does the boiling phenomenon of boiling water boil in the corresponding portion, but also a large amount of thermal stress is generated, there is a problem that the parts can be damaged.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 가스튜브의 입구측이 과열되는 현상을 방지하여 냉각수 보일링 현상과 열응력 집중현상을 방지할 수 있고, 열교환량을 극대화시켜 배기가스 냉각효율을 높게 유지할 수 있는 이지알 쿨러를 제공하는데 목적이 있다.The present invention has been proposed to solve the above problems, it is possible to prevent the phenomenon that the inlet side of the gas tube is overheated to prevent the cooling water boiling phenomenon and the thermal stress concentration phenomenon, to maximize the heat exchange amount to exhaust gas cooling An object of the present invention is to provide an EG cooler that can maintain high efficiency.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 이지알 쿨러는, 길이방향 양측이 개방된 덕트 형상으로 형성되어 내부에 냉각수가 유출입되는 바디셀; 상기 바디셀의 내측면과 이격되도록 상기 바디셀 내에 장착되는 다수 개의 가스튜브; 상기 바디셀의 길이방향 끝단을 덮도록 결합되며, 상기 가스튜브의 끝단이 끼워맞춤 방식으로 삽입되는 개구부가 중심부에 형성되는 엔드플레이트; 및 상기 가스튜브의 내부에 삽입되어 상기 가스튜브의 내측면과 접촉되며, 길이방향 일단이 상기 가스튜브의 입구를 향하도록 장착되는 웨이브핀;을 포함하되, 상기 다수 개의 웨이브핀 중 하나 이상의 웨이브핀은, 길이방향 일단이 상기 엔드플레이트가 장착된 지점으로부터 상기 가스튜브의 출구를 향해 이격된 지점에 위치된다.Easy R cooler according to the present invention for achieving the above object is formed in the duct shape of the both sides in the longitudinal direction open the body cell in which the coolant flows out; A plurality of gas tubes mounted in the body cell so as to be spaced apart from the inner surface of the body cell; An end plate coupled to cover the longitudinal end of the body cell and having an opening formed at a central portion thereof in which an end of the gas tube is inserted in a fitting manner; And a wave fin inserted into the gas tube to be in contact with the inner surface of the gas tube, the wave fin being mounted such that one longitudinal end thereof faces the inlet of the gas tube. Is located at a point spaced one end in the longitudinal direction from the point at which the end plate is mounted toward the outlet of the gas tube.
상기 웨이브핀의 길이방향 일단과 상기 엔드플레이트 간의 이격거리는, 상기 가스튜브 내부유로 높이의 2배 이하로 설정된다.The separation distance between the longitudinal end of the wave fin and the end plate is set to less than twice the height of the gas tube internal flow path.
상기 다수 개의 가스튜브는 두께보다 폭이 큰 사각관 형상으로 형성되어 두께방향으로 적층되고, 가장 상측과 하측에 위치하는 웨이브핀은, 길이방향 일단이 상기 엔드플레이트가 장착된 지점으로부터 상기 가스튜브의 출구를 향해 이격된 지점에 위치된다.The plurality of gas tubes are formed in a rectangular tube shape having a width larger than the thickness thereof, and are stacked in the thickness direction, and the upper and lower wave fins have one end in the longitudinal direction from the point where the end plate is mounted. It is located at a point spaced towards the exit.
상기 웨이브핀은 길이방향 일단으로부터 상기 가스튜브의 입구를 향해 연장되되 상기 가스튜브의 내측면과는 이격되는 연장부를 더 포함한다.The wave fin further includes an extension portion extending from the longitudinal end toward the inlet of the gas tube and spaced apart from the inner surface of the gas tube.
모든 웨이브핀은 길이방향 일단이 상기 엔드플레이트가 장착된 지점으로부터 상기 가스튜브의 출구를 향해 이격된 지점에 위치된다.All wave fins are located at a point where the longitudinal end is spaced away from the point at which the end plate is mounted toward the outlet of the gas tube.
상기 연장부는, 상기 웨이브핀의 길이방향 일측 상부와 하부를 커팅하는 과정을 통해 제작된다.The extension part is manufactured through a process of cutting the upper and lower one side in the longitudinal direction of the wave fin.
본 발명에 의한 이지알 쿨러는, 가스튜브의 입구측이 과열되지 아니하므로 냉각수 보일링 현상과 열응력 집중현상을 방지할 수 있고, 열교환량을 극대화시켜 배기가스 냉각효율을 높게 유지할 수 있다는 장점이 있다.Since the inlet side of the gas tube is not overheated, the EG cooler according to the present invention can prevent cooling water boiling phenomenon and concentration of heat stress, and maximize the heat exchange rate to maintain high exhaust gas cooling efficiency. have.
도 1은 종래의 이지알 쿨러 사시도이다.1 is a perspective view of a conventional RG cooler.
도 2는 종래의 이지알 쿨러 단면사시도이다.2 is a cross-sectional perspective view of a conventional EZC cooler.
도 3은 종래의 이지알 쿨러 부분단면도이다.3 is a partial cross-sectional view of a conventional RG cooler.
도 4는 본 발명에 의한 이지알 쿨러의 부분단면도이다.4 is a partial cross-sectional view of an EG cooler according to the present invention.
도 5는 본 발명에 의한 이지알 쿨러 제2 실시예의 부분단면도이다.Fig. 5 is a partial cross-sectional view of an EZR cooler according to a second embodiment of the present invention.
도 6은 본 발명에 의한 이지알 쿨러 제3 실시예의 부분단면도이다.6 is a partial cross-sectional view of the third embodiment of an EZR cooler according to the present invention.
도 7은 본 발명에 의한 이지알 쿨러 제4 실시예의 부분단면도이다.7 is a partial cross-sectional view of the fourth embodiment of an EZR cooler according to the present invention.
도 8은 본 발명에 의한 이지알 쿨러 제4 실시예에 포함되는 웨이브핀의 확대사시도이다.8 is an enlarged perspective view of a wave fin included in the fourth embodiment of an EZR cooler according to the present invention.
이하 첨부된 도면을 참조하여 본 발명에 의한 예냉각 구간을 구비하는 이지알 쿨러의 실시예를 상세히 설명한다.Hereinafter, an embodiment of an EG cooler having a precooling section according to the present invention will be described in detail with reference to the accompanying drawings.
도 4는 본 발명에 의한 이지알 쿨러의 부분단면도이다.4 is a partial cross-sectional view of an EG cooler according to the present invention.
본 발명에 의한 이지알 쿨러는 고온의 배기가스를 저온의 냉각수와 열전달시켜 일정 수준 냉각시킨 후 배기가스 재순환시스템(EGR:Exhaust Gas Recirculation)으로 전달하기 위한 장치로서, 도 4에 도시된 바와 같이 길이방향 양측이 개방된 덕트 형상으로 형성되어 내부에 냉각수가 유출입되는 바디셀(100)과, 상기 바디셀(100)의 내측면과 이격되도록 상기 바디셀(100) 내에 장착되는 다수 개의 가스튜브(200)와, 상기 바디셀(100)의 길이방향 끝단을 덮도록 결합되며 상기 가스튜브(200)의 끝단이 끼워맞춤 방식으로 삽입되는 개구부가 중심부에 형성되는 엔드플레이트(400)와, 상기 가스튜브(200)의 내부에 삽입되어 상기 가스튜브(200)의 내측면과 접촉되며 길이방향 일단(도 4에서는 좌측단)이 상기 가스튜브(200)의 입구(도 4에서는 좌측단)를 향하도록 장착되는 웨이브핀(300)을 기본 구성요소로 구비한다.The EG cooler according to the present invention is a device for transferring a high temperature exhaust gas with a low temperature cooling water and cooling it to a predetermined level, and then transferring the exhaust gas to an exhaust gas recirculation (EGR) system, as shown in FIG. 4. A plurality of gas tubes 200 mounted in the body cell 100 to be spaced apart from the inner side of the body cell 100 and the inner surface of the body cell 100 is formed in an open duct shape in both directions in the open duct shape And an end plate 400 coupled to cover the longitudinal end of the body cell 100 and having an opening formed at the center of the gas tube 200 in a fitting manner. Is inserted into the inside of the 200 is in contact with the inner surface of the gas tube 200 is mounted so that the longitudinal end (left end in Figure 4) toward the inlet (left end in Figure 4) of the gas tube 200 Wave pin 300 is provided as a basic component.
이때 본 발명에 의한 이지알 쿨러는, 상기 웨이브핀(300)의 길이방향 일단이 상기 엔드플레이트(400)가 장착된 지점에 위치되는 것이 아니라, 엔드플레이트(400)가 장착된 지점으로부터 상기 가스튜브(200)의 출구를 향해 이격된 지점에 위치된다는 점에 구성상의 가장 큰 특징이 있다.In this case, the EG cooler according to the present invention is not located at the point where the end plate 400 is mounted at one end in the longitudinal direction of the wave fin 300, but the gas tube from the point at which the end plate 400 is mounted. The biggest feature of the configuration is that it is located at a point spaced toward the exit of 200.
엔진에서 배기된 고온의 배기가스는 가스튜브(200)의 일측(본 실시예에서는 좌측)에 형성된 입구를 통해 가스튜브(200) 내부로 유입되는데, 도 3에 도시된 종래의 이지알 쿨러와 같이 가스튜브(20)의 내부공간 전체에 걸쳐 웨이브핀(30)이 설치되면 가스튜브(20) 입구로 유입되는 배기가스의 열이 웨이브핀(30)을 타고 그대로 가스튜브(20)로 전달되는바, 가스튜브(20) 중 냉각수와 접촉되지 아니하는 부위 즉, 엔드플레이트(40)가 장착된 부위가 과열되어 냉각수 보일링 현상과 열응력 집중에 의한 파손현상이 빈번하게 발생된다.The high temperature exhaust gas exhausted from the engine is introduced into the gas tube 200 through an inlet formed at one side (left side in this embodiment) of the gas tube 200, as shown in the conventional EZR cooler shown in FIG. 3. When the wave fins 30 are installed throughout the inner space of the gas tube 20, the heat of the exhaust gas flowing into the inlet of the gas tube 20 is transferred to the gas tube 20 as it is riding the wave fins 30. In the gas tube 20, a portion of the gas tube 20 which is not in contact with the cooling water, that is, the portion where the end plate 40 is mounted, is overheated, and thus the water phenomena due to the cooling water boiling and the concentration of thermal stress are frequently generated.
그러나 본 발명에 의한 이지알 쿨러는 웨이브핀(300)의 길이방향 일단이 후방(더 명확하게는 가스튜브(200)의 출구를 향하는 방향, 도 4에서는 우측 방향)으로 일정거리 이격된 지점에 위치되면, 가스튜브(200)의 내부유로 중 입구측에는 웨이브핀(300)이 존재하지 아니하는 빈 공간(A)이 마련되므로, 가스튜브(200)의 입구로 유입된 배기가스의 열이 상기 빈 공간(A)을 통과하는 동안에는 가스튜브(200)로 빠르게 전달되지 아니하다가 웨이브핀(300)이 장착된 지점에 이르러서야 상기 가스튜브(200)로 빠르게 전달되는 현상이 발생된다.However, the EZR cooler according to the present invention is located at a point spaced at a distance from one end in the longitudinal direction of the wave fin 300 to the rear (more specifically, toward the outlet of the gas tube 200, the right direction in FIG. 4). In this case, since an empty space A in which the wave fin 300 does not exist is provided at the inlet side of the internal flow path of the gas tube 200, the heat of the exhaust gas introduced into the inlet of the gas tube 200 is empty. While passing through (A), it is not quickly delivered to the gas tube 200, but is rapidly delivered to the gas tube 200 only when the wave fin 300 is mounted.
즉, 본 발명에 의한 이지알 쿨러는, 가스튜브(200)로 배기가스가 유입될 때 가스튜브(200)의 입구부터 고온으로 가열되는 것이 아니라 가스튜브(200)의 입구로부터 일정거리 이격된 지점부터(더 명확하게는 웨이브핀(300)의 길이방향 일단이 위치한 지점부터) 고온으로 가열되므로, 엔드플레이트(400)가 장착되어 냉각수가 원활하게 접촉되지 아니하는 부위가 과열되는 현상이 방지되고, 이에 따라 냉각수 보일링 및 열응력 집중에 의한 부품 파손의 문제가 예방된다는 장점이 있다. 또한, 본 발명에 의한 이지알 쿨러는, 배기가스가 상기 빈 공간(A)을 지나는 동안 미세하게나마 냉각된 이후 웨이브핀(300)과 접촉되므로 즉, 상기 빈 공간(A)을 예냉각(Precooling) 구간으로 활용하므로, 상기 웨이브핀(300)에 인가되는 열충격을 감소시킬 수 있다는 효과도 얻을 수 있다.That is, the EG cooler according to the present invention is not heated to a high temperature from the inlet of the gas tube 200 when the exhaust gas flows into the gas tube 200, but is spaced a predetermined distance from the inlet of the gas tube 200. From (more specifically from the point where the longitudinal end of the wave fin 300 is located) is heated to a high temperature, the end plate 400 is mounted to prevent the phenomenon of overheating the site where the coolant is not smoothly contacted, Accordingly, there is an advantage that the problem of component damage due to cooling water boiling and concentration of thermal stress is prevented. In addition, the EG cooler according to the present invention is in contact with the wave fin 300 after the exhaust gas is slightly cooled while passing through the empty space A, that is, precooling the empty space A. Since it is used as a section, it is also possible to obtain the effect of reducing the thermal shock applied to the wave fin 300.
도 5는 본 발명에 의한 이지알 쿨러 제2 실시예의 부분단면도이다.Fig. 5 is a partial cross-sectional view of an EZR cooler according to a second embodiment of the present invention.
본 발명에 의한 이지알 쿨러는 예냉각 구간으로 활용되는 빈 공간(A)의 크기가 크게 확보될수록 냉각수 보일링 및 열응력 집중현상을 줄일 수 있고 웨이브핀(300)에 인가되는 열충격 감소효과를 크게 얻을 수 있지만, 상기 빈 공간(A)의 크기가 너무 크게 확보되면 그만큼 웨이브핀(300)의 길이가 짧아지므로 배기가스와 냉각수 간의 열교환량이 줄어드는 문제가 있다. 따라서 상기 웨이브핀(300)의 길이방향 일단과 상기 엔드플레이트(400) 간의 이격거리(L)는 가스튜브(200)의 횡단면 규격이나 배기가스의 유속, 웨이브핀(300)과 가스튜브(200)의 열전달계수 등 여러가지 조건에 따라 적절하게 선정됨이 바람직하다.EZR cooler according to the present invention can reduce the cooling water boiling and thermal stress concentration as the size of the empty space (A) used as a pre-cooling section is large, and greatly reduces the thermal shock applied to the wave fin 300 Although it can be obtained, if the size of the empty space (A) is secured too large, the length of the wave fin 300 is shortened by that, there is a problem that the heat exchange amount between the exhaust gas and the cooling water is reduced. Therefore, the separation distance L between the longitudinal end of the wave fin 300 and the end plate 400 is a cross-sectional specification of the gas tube 200 or the flow rate of the exhaust gas, the wave fin 300 and the gas tube 200. It is preferable to select appropriately according to various conditions such as heat transfer coefficient of.
이때, 상기 웨이브핀(300)의 길이방향 일단과 상기 엔드플레이트(400) 간의 이격거리(L)가 가스튜브(200)의 내부유로 높이(H) 2배가 되면, 빈 공간 중 냉각수와 접촉되는 부위가 충분히 확보되므로, 상기 언급한 냉각수 보일링 현상 및 열응력 집중현상 방지효과와 웨이브핀(300) 열충격 저감효과가 더 이상 크게 증가하지 아니하게 된다. 따라서 상기 웨이브핀(300)의 길이방향 일단과 상기 엔드플레이트(400) 간의 이격거리(L)는 상기 가스튜브(200) 내부유로 높이(H)의 2배 이하로 설정됨이 바람직하다.At this time, when the separation distance (L) between the longitudinal end of the wave fin 300 and the end plate 400 becomes twice the height (H) of the internal flow path of the gas tube 200, a portion of the empty space in contact with the coolant Since is sufficiently secured, the above-mentioned cooling water boiling phenomenon and thermal stress concentration prevention effect and wave fin 300 thermal shock reduction effect is no longer increased significantly. Therefore, the distance L between the longitudinal end of the wave fin 300 and the end plate 400 is preferably set to two times or less of the height H of the inner channel of the gas tube 200.
도 6은 본 발명에 의한 이지알 쿨러 제3 실시예의 부분단면도이다.6 is a partial cross-sectional view of the third embodiment of an EZR cooler according to the present invention.
본 발명에 포함되는 다수 개의 가스튜브(200)는 두께보다 폭이 큰 사각관 형상으로 형성되어 두께방향(본 실시예에서는 상하방향)으로 적층되며, 모든 가스튜브(200)의 길이방향 양단은 엔드플레이트(400)의 중심부를 관통하도록 결합된다.The plurality of gas tubes 200 included in the present invention are formed in a rectangular tube shape having a width larger than the thickness thereof, and are stacked in the thickness direction (up and down direction in this embodiment), and both ends of the longitudinal direction of all the gas tubes 200 are end portions. It is coupled to penetrate the central portion of the plate 400.
이때, 바디셀(100) 내부로 유입되는 냉각수는 주로 가운데에 위치하는 가스튜브(200)를 향해 토출되는바, 가장 상측에 위치하는 가스튜브(200)와 가장 하측에 위치하는 가스튜브(200)는 가운데에 위치하는 가스튜브(200)에 비해 충분히 냉각되지 못하여 상기 언급한 냉각수 보일링 및 열응력 집중현상, 웨이브핀(300) 열충격 현상이 빈번하게 발생될 수 있다.At this time, the coolant flowing into the body cell 100 is mainly discharged toward the gas tube 200 located in the center, the gas tube 200 located on the uppermost side and the gas tube 200 located on the lowermost side. Compared to the gas tube 200 positioned in the center, the cooling water boiling and thermal stress concentration, and the wave fin 300 thermal shock phenomenon may occur frequently.
따라서 본 발명에 의한 이지알 쿨러는, 가장 상측과 하측에 위치하는 웨이브핀(300)의 길이방향 일단이 상기 엔드플레이트(400)가 장착된 지점으로부터 상기 가스튜브(200)의 출구를 향해 이격된 지점에 위치하고, 나머지 웨이브핀(300)의 길이방향 일단은 상기 엔드플레이트(400)가 장착된 지점에 장착되도록 설정될 수 있다. 물론, 가운데 위치하는 가스튜브(200)에도 냉각수 보일링 및 열응력 집중현상과 웨이브핀(300) 열충격 현상이 발생될 우려가 있다면 도 4에 도시된 바와 같이 모든 웨이브핀(300)의 길이방향 일단이 상기 가스튜브(200)의 출구를 향해 이격된 지점에 위치하도록 설정되어야 할 것이다.Therefore, in the EG cooler according to the present invention, one end in the longitudinal direction of the upper and lower wave fins 300 is spaced toward the outlet of the gas tube 200 from the point where the end plate 400 is mounted. Located at the point, one end of the longitudinal wave fin 300 in the longitudinal direction may be set to be mounted to the point where the end plate 400 is mounted. Of course, if there is a risk that the cooling water boiling and thermal stress concentration and the wave fin 300 thermal shock phenomenon may occur in the gas tube 200 positioned in the middle, as shown in FIG. It should be set to be located at a point spaced toward the outlet of the gas tube 200.
도 7은 본 발명에 의한 이지알 쿨러 제4 실시예의 부분단면도이고, 도 8은 본 발명에 의한 이지알 쿨러 제4 실시예에 포함되는 웨이브핀(300)의 확대사시도이다.FIG. 7 is a partial cross-sectional view of the fourth embodiment of the IR cooler according to the present invention, and FIG. 8 is an enlarged perspective view of the wave fin 300 included in the fourth embodiment of the IR cooler according to the present invention.
웨이브핀(300)의 길이방향 일단이 상기 가스튜브(200)의 입구와 멀어질수록 빈 공간(A)이 크게 확보되어 냉각수 보일링 현상과 열응력 집중현상, 웨이브핀(300) 열충격 현상이 감소되지만, 배기가스와 웨이브핀(300) 간의 접촉면적이 감소하여 배기가스 냉각성능은 다소 떨어질 수 있다.As the lengthwise end of the wave fin 300 moves away from the inlet of the gas tube 200, a large space A is secured to reduce cooling water boiling, concentration of thermal stress, and thermal shock of wave fin 300. However, the contact area between the exhaust gas and the wave fins 300 may be reduced, so that the exhaust gas cooling performance may be somewhat degraded.
따라서 본 발명에 의한 이지알 쿨러는 냉각수 보일링 현상과 열응력 집중현상, 웨이브핀(300) 열충격 현상을 줄일 수 있으면서 배기가스와 웨이브핀(300) 간의 접촉면적은 증대시킬 수 있도록 구성될 수 있다. Therefore, the EG cooler according to the present invention may be configured to increase the contact area between the exhaust gas and the wave fin 300 while reducing the cooling water boiling phenomenon, the thermal stress concentration phenomenon, and the thermal shock phenomenon of the wave fin 300. .
예를 들어, 상기 웨이브핀(300)은 도 7 및 도 8에 도시된 바와 같이 길이방향 일단으로부터 가스튜브(200)의 입구를 향해 연장되는 연장부(310)를 구비할 수 있다. 가스튜브(200) 입구를 통해 유입된 배기가스는 상기 연장부(310)에 가장 먼저 접촉되어 웨이브핀(300)으로 열을 전달하게 되는데, 상기 연장부(310)는 가스튜브(200)와 직접 접촉되지 아니하므로 상기 연장부(310)로 전달된 열은 웨이브핀(300)의 몸체를 거친 후 가스튜브(200)로 전달된다. 즉, 웨이브핀(300)에 연장부(310)가 추가로 구비되면 배기가스의 열이 웨이브핀(300)을 통해 가스튜브(200)로 전달되는 효율은 증대되고, 가스튜브(200) 중 엔드플레이트(400)가 장착된 부위가 과열되는 현상은 유발되지 아니하므로, 냉각수 보일링 현상과 열응력 집중현상과 웨이브핀(300) 열충격 현상을 방지하면서 배기가스 냉각성능을 향상시키는 효과를 얻을 수 있게 된다.For example, the wave fin 300 may include an extension 310 extending from one end in the longitudinal direction toward the inlet of the gas tube 200 as shown in FIGS. 7 and 8. Exhaust gas introduced through the inlet of the gas tube 200 is first contacted with the extension 310 to transfer heat to the wave fin 300, which is directly connected to the gas tube 200. Since it is not in contact with the heat transmitted to the extension 310 is passed through the body of the wave fin 300 is transferred to the gas tube 200. That is, when the extension part 310 is additionally provided in the wave fin 300, the efficiency of transferring the heat of the exhaust gas to the gas tube 200 through the wave fin 300 is increased, and the end of the gas tube 200 is increased. Since the phenomenon in which the plate 400 is mounted is not overheated, it is possible to obtain an effect of improving the cooling performance of the exhaust gas while preventing the cooling water boiling phenomenon, the thermal stress concentration phenomenon, and the wave fin 300 thermal shock phenomenon. do.
이때, 상기 연장부(310)의 연장 길이가 길어질수록 배기가스 냉각성능이 좋아지지만, 상기 연장부(310)의 연장 길이가 너무 길게 제작되면 연장부(310)의 끝단이 가스튜브(200) 외부로 돌출될 우려가 있는바, 상기 연장부(310)의 끝단은 도 7에 도시된 바와 같이 상기 가스튜브(200)의 내부공간 중 엔드플레이드가 장착된 지점에 위치됨이 바람직하다.In this case, the longer the extension length of the extension portion 310, the better the exhaust gas cooling performance, but if the extension length of the extension portion 310 is made too long, the end of the extension portion 310 outside the gas tube 200 There is a risk of protruding into the bar, the end of the extension 310 is preferably located at the point where the end plate is mounted in the inner space of the gas tube 200, as shown in FIG.
한편, 상기 언급한 바와 같이 웨이브핀(300)에 연장부(310)가 구비되면 배기가스의 냉각성능이 높게 유지될 수 있으므로, 모든 웨이브핀(300)은 길이방향 일단이 상기 엔드플레이트(400)가 장착된 지점으로부터 상기 가스튜브(200)의 출구를 향해 이격된 지점에 위치되도록 설정됨이 바람직하다.On the other hand, when the extension 310 is provided in the wave fin 300 as mentioned above, since the cooling performance of the exhaust gas can be maintained high, all the wave fin 300 is one end in the longitudinal direction of the end plate 400 It is preferably set to be located at a point spaced toward the outlet of the gas tube 200 from the mounting point.
또한, 상기 연장부(310)의 형상은 본 실시예에 도시된 바와 같이 평판 형상으로 형성될 수도 있고, 배기가스와의 접촉면적을 더욱 넓힐 수 있도록 물결판 형상으로 형성될 수도 있다. 즉, 상기 연장부(310)의 형상은 여러가지 조건에 따라 다양하게 변형될 수 있으므로, 이에 대한 상세한 설명은 생략한다.In addition, the shape of the extension portion 310 may be formed in a flat plate shape as shown in this embodiment, or may be formed in a wave plate shape to further widen the contact area with the exhaust gas. That is, the shape of the extension 310 may be variously modified according to various conditions, a detailed description thereof will be omitted.
한편, 상기 연장부(310)를 별도로 제작하여 웨이브핀(300)의 길이방향 일단에 결합시키기 위해서는 연장부(310) 제작에 많은 시간이 소요될 뿐만 아니라 연장부(310) 결합에도 많은 시간이 소요된다는 문제점이 있다. 또한, 연장부(310)를 별도로 제작한 후 결합시키면 연장부(310) 결합부위가 매끄럽게 제작되지 못하므로 배기가스의 유동에 방해를 줄 우려가 있다. On the other hand, in order to manufacture the extension 310 separately to be coupled to one end in the longitudinal direction of the wave fin 300, not only takes a lot of time to manufacture the extension 310, but also takes a long time to combine the extension 310 There is a problem. In addition, if the extension portion 310 is manufactured separately and then coupled, the extension portion 310 may not be smoothly manufactured, which may interfere with the flow of the exhaust gas.
따라서 제작자는 도 3에 도시된 종래 웨이브핀(30)의 길이방향 일측 상부와 하부를 커팅하여, 커팅되지 아니하고 남은 부위가 상기 연장부(310)가 되도록 웨이브핀(300)을 가공할 수 있다. 이와 같이 웨이브핀(300)의 길이방향 일측 상부와 하부를 커팅하여 연장부(310)를 형성하는 경우, 연장부(310) 제작이 매우 간편해질 뿐만 아니라, 배기가스의 유동을 원활하게 할 수 있다는 장점이 있다. 또한, 종래의 웨이브핀(30)을 재활용할 수 있으므로, 자원낭비를 줄일 수 있다는 장점도 있다.Therefore, the manufacturer may cut the upper and lower portions of one side in the longitudinal direction of the conventional wave fin 30 shown in FIG. 3 to process the wave fin 300 so that the remaining portion is the extension portion 310. As such, when the extension part 310 is formed by cutting the upper and lower sides of the wave fin 300 in the longitudinal direction, the extension part 310 may not only be easily manufactured, but also the exhaust gas may be smoothly flown. There is an advantage. In addition, since the conventional wave fin 30 can be recycled, there is an advantage that can reduce the waste of resources.
이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although this invention was demonstrated in detail using the preferable Example, the scope of the present invention is not limited to a specific Example and should be interpreted by the attached Claim. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

Claims (5)

  1. 길이방향 양측이 개방된 덕트 형상으로 형성되어 내부에 냉각수가 유출입되는 바디셀;Body cells in which both sides of the longitudinal direction are formed in an open duct shape and flow coolant therein;
    상기 바디셀의 내측면과 이격되도록 상기 바디셀 내에 장착되는 다수 개의 가스튜브;A plurality of gas tubes mounted in the body cell so as to be spaced apart from the inner surface of the body cell;
    상기 바디셀의 길이방향 끝단을 덮도록 결합되며, 상기 가스튜브의 끝단이 끼워맞춤 방식으로 삽입되는 개구부가 중심부에 형성되는 엔드플레이트; 및An end plate coupled to cover the longitudinal end of the body cell and having an opening formed at a central portion thereof in which an end of the gas tube is inserted in a fitting manner; And
    상기 가스튜브의 내부에 삽입되어 상기 가스튜브의 내측면과 접촉되며, 길이방향 일단이 상기 가스튜브의 입구를 향하도록 장착되는 웨이브핀;A wave fin inserted into the gas tube and in contact with an inner surface of the gas tube, the wave fin being mounted such that one longitudinal end thereof faces the inlet of the gas tube;
    을 포함하되,Including,
    상기 다수 개의 웨이브핀 중 하나 이상의 웨이브핀은, 길이방향 일단이 상기 엔드플레이트가 장착된 지점으로부터 상기 가스튜브의 출구를 향해 이격된 지점에 위치되고, At least one of the plurality of wave fins is located at a point at which one longitudinal end is spaced from the point at which the end plate is mounted toward the outlet of the gas tube,
    상기 웨이브핀은 길이방향 일단으로부터 상기 가스튜브의 입구를 향해 연장되되 상기 가스튜브의 내측면과는 이격되는 연장부를 더 포함하는 것을 특징으로 하는 이지알 쿨러.The wave fin further comprises an extension extending from the longitudinal end toward the inlet of the gas tube and spaced apart from the inner surface of the gas tube.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 웨이브핀의 길이방향 일단과 상기 엔드플레이트 간의 이격거리는, 상기 가스튜브 내부유로 높이의 2배 이하인 것을 특징으로 하는 이지알 쿨러.The separation distance between the longitudinal end of the wave fins and the end plate is less than twice the height of the inner channel of the gas tube cooler.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 다수 개의 가스튜브는 두께보다 폭이 큰 사각관 형상으로 형성되어 두께방향으로 적층되고,The plurality of gas tubes are formed in the shape of a square tube having a width larger than the thickness is laminated in the thickness direction,
    가장 상측과 하측에 위치하는 웨이브핀은, 길이방향 일단이 상기 엔드플레이트가 장착된 지점으로부터 상기 가스튜브의 출구를 향해 이격된 지점에 위치되는 것을 특징으로 하는 이지알 쿨러.The top and bottom wave fins are located in the zigzag cooler, characterized in that the longitudinal end is located at a point away from the point where the end plate is mounted toward the outlet of the gas tube.
  4. 청구항 1에 있어서,The method according to claim 1,
    모든 웨이브핀은 길이방향 일단이 상기 엔드플레이트가 장착된 지점으로부터 상기 가스튜브의 출구를 향해 이격된 지점에 위치되는 것을 특징으로 하는 이지알 쿨러.And wherein all the wave fins are located at a point longitudinally spaced apart from the point at which the end plate is mounted toward the outlet of the gas tube.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 연장부는, 상기 웨이브핀의 길이방향 일측 상부와 하부를 커팅하는 과정을 통해 제작되는 것을 특징으로 하는 이지알 쿨러.The extension unit, an EG cooler, characterized in that the manufacturing process by cutting the upper and lower one side in the longitudinal direction of the wave fins.
PCT/KR2017/010637 2017-04-17 2017-09-26 Egr cooler provided with pre-cooling zone WO2018194226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0049204 2017-04-17
KR1020170049204A KR101793198B1 (en) 2017-04-17 2017-04-17 EGR cooler having precooling zone

Publications (1)

Publication Number Publication Date
WO2018194226A1 true WO2018194226A1 (en) 2018-10-25

Family

ID=60384166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010637 WO2018194226A1 (en) 2017-04-17 2017-09-26 Egr cooler provided with pre-cooling zone

Country Status (2)

Country Link
KR (1) KR101793198B1 (en)
WO (1) WO2018194226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796908A (en) * 2020-11-24 2021-05-14 无锡塔尔基热交换器科技有限公司 Water outlet with partition plate for EGR cooler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296661B1 (en) 2020-02-13 2021-09-02 주식회사 코렌스 Gas tube for EGR cooler having precooling zone improved durability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814071B1 (en) * 2007-02-28 2008-03-14 주식회사 코렌스 Egr cooler
KR100895483B1 (en) * 2005-09-09 2009-05-06 우수이 고쿠사이 산교 가부시키가이샤 Heat exchanger tube
KR20090104163A (en) * 2008-03-31 2009-10-06 주식회사 코렌스 EGR cooler for automobile
JP4354586B2 (en) * 1999-09-29 2009-10-28 株式会社ティラド Exhaust gas heat exchanger
JP4622150B2 (en) * 2001-04-26 2011-02-02 株式会社デンソー Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354586B2 (en) * 1999-09-29 2009-10-28 株式会社ティラド Exhaust gas heat exchanger
JP4622150B2 (en) * 2001-04-26 2011-02-02 株式会社デンソー Heat exchanger
KR100895483B1 (en) * 2005-09-09 2009-05-06 우수이 고쿠사이 산교 가부시키가이샤 Heat exchanger tube
KR100814071B1 (en) * 2007-02-28 2008-03-14 주식회사 코렌스 Egr cooler
KR20090104163A (en) * 2008-03-31 2009-10-06 주식회사 코렌스 EGR cooler for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796908A (en) * 2020-11-24 2021-05-14 无锡塔尔基热交换器科技有限公司 Water outlet with partition plate for EGR cooler

Also Published As

Publication number Publication date
KR101793198B1 (en) 2017-11-06

Similar Documents

Publication Publication Date Title
KR100999607B1 (en) Cooling apparatus and method of exhaust gas recirculation gas
US10151279B2 (en) Apparatus for cooling vehicle engine
US7210468B1 (en) Heat exchanger method and apparatus
KR101480633B1 (en) EGR Cooler and EGR Cooler Device
WO2013081249A1 (en) Wave fins
KR100774347B1 (en) Apparatus for cooling exhaust gas
EP1091113A3 (en) High-temperature coolant loop for cooled exhaust gas recirculation for internal combustion engines
WO2018194226A1 (en) Egr cooler provided with pre-cooling zone
CN107304734B (en) EGR cooler for vehicle and related cylinder block
WO2016167477A1 (en) Egr cooler
WO2018190450A1 (en) Egr cooler having baffle for supporting gas tubes
WO2018124428A2 (en) Wavy fin for egr cooler
US20110023840A1 (en) Exhaust Gas Cooler
US9228484B2 (en) Engine fluid cooling assembly
WO2017175920A1 (en) Gas tube for egr cooler
KR101207839B1 (en) Integrated heat exchanger having sub-radiator and watercool charge air cooler
EP2463490A1 (en) Improvements in or relating to gas coolers for internal combustion engines
KR20090104163A (en) EGR cooler for automobile
KR101221514B1 (en) Egr cooler
KR102011754B1 (en) EGR cooler having improved durability
US10746138B2 (en) Hollow fin tube structure at inlet of EGR cooler
US20150136369A1 (en) Egr cooler header casting
WO2018194230A1 (en) Egr cooler having improved cooling water fluidity
KR102296661B1 (en) Gas tube for EGR cooler having precooling zone improved durability
US20110100342A1 (en) Forced convection egr cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906459

Country of ref document: EP

Kind code of ref document: A1