WO2018194123A1 - Radiation-sensitive resin composition and resist pattern formation method - Google Patents

Radiation-sensitive resin composition and resist pattern formation method Download PDF

Info

Publication number
WO2018194123A1
WO2018194123A1 PCT/JP2018/016125 JP2018016125W WO2018194123A1 WO 2018194123 A1 WO2018194123 A1 WO 2018194123A1 JP 2018016125 W JP2018016125 W JP 2018016125W WO 2018194123 A1 WO2018194123 A1 WO 2018194123A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
radiation
resin composition
sensitive resin
group
Prior art date
Application number
PCT/JP2018/016125
Other languages
French (fr)
Japanese (ja)
Inventor
康太 古市
聡司 岡嵜
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2019513682A priority Critical patent/JPWO2018194123A1/en
Publication of WO2018194123A1 publication Critical patent/WO2018194123A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a resist pattern forming method.
  • Such a radiation sensitive resin composition generates an acid in an exposed part by irradiation with exposure light such as deep ultraviolet light such as ArF excimer laser light, extreme ultraviolet light (EUV), electron beam (EB), and the like.
  • exposure light such as deep ultraviolet light such as ArF excimer laser light, extreme ultraviolet light (EUV), electron beam (EB), and the like.
  • EUV extreme ultraviolet light
  • EB electron beam
  • Such a radiation sensitive resin composition not only has excellent resolution, but also has excellent CDU (Critical Dimension Uniformity) performance in hole pattern formation and LWR (Line Width Roughness) performance in line and space pattern formation, as well as depth of focus. (It is required to be excellent in DOF (Depth Of Focus) and to obtain a high-accuracy pattern with high yield.
  • CDU Cosmetic Dimension Uniformity
  • LWR Line Width Roughness
  • the present invention has been made based on the circumstances as described above, and an object thereof is to provide a radiation-sensitive resin composition and a resist pattern forming method that are excellent in CDU performance, LWR performance, resolution, and depth of focus. There is.
  • the invention made in order to solve the above-mentioned problems is a first polymer having a structural unit containing an acid dissociable group (hereinafter also referred to as “acid dissociable group (a)”) (hereinafter referred to as “[A] polymer”). And a first compound that generates the first acid that dissociates the acid-dissociable group (a) at 110 ° C. for 1 minute by irradiation with radiation (hereinafter, also referred to as “[B] compound”). And a second compound (hereinafter also referred to as “[C] compound”) that generates a second acid that does not substantially dissociate the acid dissociable group (a) at 110 ° C. for 1 minute.
  • the content of the [B] compound is 10% by mass or more in the total solid content (all components other than the solvent in the composition), the number of moles of the [B] compound is B m , and the above [C ] the number of moles of the compound when the C m, with a radiation-sensitive resin composition B m / C m is 1.7 or more That.
  • Another invention made in order to solve the above-described problems is a step of coating the radiation-sensitive resin composition on at least one surface side of a substrate, and exposing a resist film formed by the coating step.
  • a method for forming a resist pattern comprising a step and a step of developing the exposed resist film.
  • a resist pattern having a wide depth of focus, small CDU and LWR, and high resolution can be formed. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.
  • the radiation-sensitive resin composition contains a [A] polymer, a [B] compound, and a [C] compound.
  • the radiation-sensitive resin composition contains a fluorine atom and / or a silicon atom as a suitable component, and the sum of the mass content of the fluorine atom and the mass content of the silicon atom is [A] fluorine atom in the polymer.
  • the radiation sensitive resin composition examples include a radiation sensitive resin composition (I) for KrF or ArF exposure, and a radiation sensitive resin composition (II) for EUV or EB exposure.
  • the radiation sensitive resin composition (I) is particularly suitable for ArF exposure.
  • the polymer contained in the radiation sensitive resin composition (I) usually does not have an aromatic ring including a structural unit (IV) containing a phenolic hydroxyl group described later.
  • the [A] polymer has a structural unit (IV) containing a phenolic hydroxyl group.
  • the “phenolic hydroxyl group” is not limited to those directly bonded to a benzene ring, but refers to all hydroxy groups directly bonded to an aromatic ring.
  • the radiation-sensitive resin composition contains a [A] polymer, a [B] compound, and a [C] compound, the content of the [B] compound is set to the above value or more, and the number of moles of the [B] compound (B moles of [C] compounds of m) the (ratio C m) (B m / C m) by the above said value, CDU performance, LWR performance, resolution and depth of focus (hereinafter, "CDU performance Etc.)).
  • the reason why the radiation-sensitive resin composition exhibits the above-described effect by having the above-described configuration is not necessarily clear, but for example, while increasing the content of the [B] compound to the above-described constant value or more, C]
  • the molar ratio of the compound to the [B] compound is set to a certain value or less, thereby maintaining the exposure light absorption amount of the resist film to be formed at a certain value or less, thereby reducing the exposure intensity distribution in the resist film. It can be made more appropriate, and CDU performance and the like can be improved.
  • each component will be described.
  • the polymer is a polymer having a structural unit containing an acid dissociable group (a) (hereinafter also referred to as “structural unit (I)”).
  • structural unit (I) In addition to the structural unit (I), the polymer is a structural unit (II) containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof, a structural unit (III) containing an alcoholic hydroxyl group, and / or phenol. It preferably has a structural unit (IV) containing a functional hydroxyl group, and may have other structural units other than the structural units (I) to (IV).
  • the polymer may have one or more of each structural unit. Hereinafter, each structural unit will be described.
  • the structural unit (I) is a structural unit containing an acid dissociable group (a).
  • the “acid-dissociable group” refers to a group that replaces a hydrogen atom of an acidic group such as a carboxy group, a hydroxy group, or a sulfo group, and that dissociates by the action of an acid.
  • the acid dissociable group (a) in the exposed portion is dissociated by the action of an acid generated from the [B] compound, and the polarity is changed.
  • a resist pattern can be formed by being easily soluble or hardly soluble.
  • the acid dissociable group (a) for example, a group represented by the following formula (PG1) bonded to an oxyoxygen atom derived from a carboxy group or a sulfo group (hereinafter also referred to as “group (I-1)”), And a group represented by the following formula (PG2) bonded to an oxyoxygen atom derived from a carboxy group, a sulfo group or a hydroxy group (hereinafter also referred to as “group (I-2)”).
  • group (PG1) a group represented by the following formula (PG1) bonded to an oxyoxygen atom derived from a carboxy group or a sulfo group
  • group (I-2) a group represented by the following formula (PG2) bonded to an oxyoxygen atom derived from a carboxy group, a sulfo group or a hydroxy group
  • RPG1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R PG2 and R PG3 are each independently a monovalent linear or branched chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. Or part of an alicyclic structure of 3 to 20 ring members composed of these groups together with the carbon atom to which they are attached. * Shows the site
  • R PG4 and R PG5 each independently represent a hydrogen atom, a monovalent linear or branched chain hydrocarbon group having 1 to 20 carbon atoms, or 3 to 20 carbon atoms.
  • R PG6 represents a monovalent linear or branched chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent fatty acid having 3 to 20 carbon atoms.
  • R PG4 and R PG5 are combined together constituted with the carbon atoms to which they are attached ring members 3-20, or R PG4 and R PG6
  • R PG4 and R PG6 There is a part of the aliphatic heterocyclic structure consisting ring members 5-20 together with oxygen atom to the carbon atom and R PG6 which R PG4 are attached are combined to bind to each other.
  • ** represents a site bonded to an oxyoxygen atom derived from a carboxy group, a sulfo group or a hydroxy group.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure and is composed only of a chain structure, and includes both a straight chain hydrocarbon group and a branched chain hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure. “Number of ring members” means the number of atoms constituting the ring of the alicyclic structure, aromatic ring structure, aliphatic heterocyclic structure and aromatic heterocyclic structure, and in the case of polycyclic, the number of atoms constituting this polycyclic ring Say.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by RPG1 include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent alicyclic carbon group having 3 to 20 carbon atoms. Examples thereof include a hydrogen group and a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms represented by R PG1 to R PG6 include linear hydrocarbon groups such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. ; Examples thereof include branched hydrocarbon groups such as i-propyl group, 2-methylpropyl group, 1-methylpropyl group and t-butyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R PG1 to R PG6 include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, an adamantyl group, a tricyclo group.
  • An alicyclic saturated hydrocarbon group such as a decyl group or a tetracyclododecyl group; Examples thereof include alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, cyclodecenyl group, norbornenyl group, tricyclodecenyl group, and tetracyclododecenyl group.
  • the alicyclic structure R PG2 and R PG3 and R PG4 and R PG5 consists membered rings 3-20 with keyed carbon atom to which they are attached to each other, such as cyclopentane structure, a cyclohexane structure, a cycloheptane structure, cyclo Examples include an octane structure, a norbornane structure, an adamantane structure, a tricyclodecane structure, and a tetracyclododecane structure.
  • the aliphatic heterocyclic structure R PG4 and configured with an oxygen atom to the carbon atom and R PG6 which R PG6 is keyed R PG4 are bonded to each other are attached ring members 5-20, for example oxacyclopentane structure, oxacyclohexane Examples include a structure, an oxacycloheptane structure, an oxacyclooctane structure, and an oxanorbornane structure.
  • RPG6 may be combined with the main chain side portion of the acidic group to which the group (I-2) is bonded and may represent a ring structure having 5 to 20 ring members together with the atomic chain to which these groups are bonded. Examples of such a structure include a group having a cyclic acetal structure.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by RPG1 include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, and naphthylmethyl group.
  • the structural unit (I) examples include a structural unit derived from a (meth) acrylic acid ester containing an acid dissociable group (a), a structural unit derived from a methylene group-containing lactone containing an acid dissociable group (a), and an acid.
  • examples thereof include a structural unit derived from styrene containing a dissociable group (a).
  • KrF excimer laser light, EUV, EB, or the like is used as the radiation irradiated in the exposure step in the resist pattern forming method
  • a structural unit derived from styrene containing an acid dissociable group (a) is used as the structural unit (I).
  • the lower limit of the content ratio of the structural unit (I) is preferably 10 mol%, more preferably 30 mol%, and even more preferably 40 mol% with respect to all the structural units constituting the [A] polymer.
  • 80 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable.
  • the structural unit (II) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof (except for those corresponding to the structural unit (I)).
  • the polymer can adjust the solubility in the developer more appropriately, and as a result, the CDU performance and the like of the radiation-sensitive resin composition are further improved. be able to.
  • the adhesion between the resist pattern and the substrate can be further improved.
  • Examples of the structural unit (II) include a structural unit represented by the following formula.
  • R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (II) is preferably a structural unit containing a lactone structure.
  • the lower limit of the content ratio of the structural unit (II) is preferably 10 mol%, preferably 15 mol% with respect to all the structural units in the polymer. Is more preferable, 20 mol% is further more preferable, and 25 mol% is particularly preferable. As an upper limit of the said content rate, 80 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 55 mol% is especially preferable.
  • the [A] polymer can further appropriately adjust the solubility in the developer, and as a result, the CDU of the radiation-sensitive resin composition can be adjusted. The performance and the like can be further improved. Further, the adhesion between the resist pattern and the substrate can be further improved.
  • the structural unit (III) is a structural unit containing an alcoholic hydroxyl group (except for those corresponding to the structural unit (I)). [A] By having the structural unit (III), the polymer can adjust the solubility in the developer more appropriately, and as a result, the CDU performance and the like of the radiation sensitive resin composition are further improved. be able to. In addition, the adhesion between the resist pattern and the substrate can be further improved.
  • Examples of the structural unit (III) include a structural unit represented by the following formula.
  • R L2 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the lower limit of the content ratio of the structural unit (III) is preferably 1 mol% with respect to all the structural units in the polymer [A], and 5 mol%. Is more preferable.
  • As an upper limit of the said content rate 30 mol% is preferable and 20 mol% is more preferable.
  • the structural unit (IV) is a structural unit containing a phenolic hydroxyl group (except for those corresponding to the structural unit (I)).
  • the sensitivity can be further increased by the [A] polymer having the structural unit (IV).
  • the CDU performance and the like of the radiation sensitive resin composition can be further improved.
  • Examples of the structural unit (IV) include a structural unit represented by the following formula (1).
  • RA is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
  • Y is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, —CO—, —SO 2 —, —O—, —NH—, or a combination thereof, or a single bond.
  • R B is a halogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • p is an integer of 0-2.
  • a is an integer of 0 to 8.
  • b is an integer of 1 to 9. However, a + b is 9 or less.
  • the plurality of R B are the same or different from each other.
  • R A is preferably a hydrogen atom or a methyl group from the viewpoint of copolymerization of the monomer that gives the structural unit (IV).
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by Y include a group obtained by removing one hydrogen atom from the monovalent hydrocarbon group exemplified as R PG1 in the above formula (PG1). Can be mentioned.
  • Examples of the substituent for the divalent hydrocarbon group include a hydroxy group and a halogen atom.
  • Y is preferably a single bond, —O—, —COO— or —CONH—, more preferably a single bond or —COO—.
  • Organic group refers to a group containing at least one carbon atom.
  • the monovalent organic group having 1 to 20 carbon atoms represented by R B for example, monovalent hydrocarbon group having 1 to 20 carbon atoms, the carbon of the hydrocarbon group - the terminal carbon-carbon or a bond side
  • R B is preferably a monovalent hydrocarbon group, more preferably an alkyl group, and even more preferably a methyl group.
  • P is preferably 0 or 1, more preferably 0.
  • 0 or 1 is preferable, and 0 is more preferable.
  • b 1 or 2 is preferable and 1 is more preferable.
  • [A] When a polymer has a structural unit (IV), as a minimum of the content rate of a structural unit (IV), 10 mol% is preferable with respect to all the structural units in a [A] polymer, and 20 mol% Is more preferable. As an upper limit of the said content rate, 80 mol% is preferable and 60 mol% is more preferable. By making the content rate of structural unit (IV) into the said range, [A] polymer can improve a sensitivity more, As a result, further improving the CDU performance of the said radiation sensitive resin composition, etc. Can do.
  • Examples of the other structural unit include a structural unit (V) containing a non-acid-dissociable hydrocarbon group (however, even if it is a structural unit containing a non-acid-dissociable hydrocarbon group, a separate acid unit). Those having a dissociable group are classified as structural unit (I) in this specification).
  • Examples of the non-acid-dissociable hydrocarbon group include a methyl group bonded to the —COO—oxy group, a primary or secondary chain hydrocarbon group, a secondary alicyclic hydrocarbon group, and adamantane-1- Yl group and the like.
  • a polymer When a polymer has other structural units, as a minimum of the content rate of other structural units, it is 1 mol%, for example. As an upper limit of the said content rate, 30 mol% is preferable and 20 mol% is more preferable.
  • the lower limit of the content of the polymer is preferably 40% by mass, more preferably 45% by mass, and 50% by mass when the total solid content of the radiation-sensitive resin composition is 100% by mass. More preferred is 80% by mass.
  • the “total solid content” of the radiation-sensitive resin composition refers to all components other than the [E] solvent.
  • the said radiation sensitive resin composition can contain 1 type (s) or 2 or more types of [A] polymers.
  • the polymer can be synthesized, for example, by polymerizing monomers giving each structural unit by a known method.
  • the lower limit of the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 1,000, more preferably 3,000, still more preferably 5,000, 000 is particularly preferred.
  • the upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000.
  • the upper limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 5, more preferably 3, more preferably 2, and particularly preferably 1.5 .
  • the lower limit of the ratio is usually 1 and preferably 1.1.
  • Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 "G2000HXL” from Tosoh Corporation, 1 "G3000HXL” and 1 "G4000HXL” Column temperature: 40 ° C
  • Elution solvent Tetrahydrofuran (Wako Pure Chemical Industries)
  • Flow rate 1.0 mL / min
  • Sample concentration 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the compound [B] is a compound that generates a first acid (hereinafter also referred to as “acid (B)”) that dissociates the acid dissociable group (a) at 110 ° C. for 1 minute by irradiation with radiation. .
  • the acid (B) for example, in the case of the radiation sensitive resin composition (I), a sulfonic acid containing a fluorine atom (hereinafter also referred to as “acid (B1-1)”), a disulfonylimide acid containing a fluorine atom ( Hereinafter, also referred to as “acid (B1-2)”, sulfomalonic acid ester (hereinafter also referred to as “acid (B1-3)”), etc.
  • acid (B1-1) a sulfonic acid containing a fluorine atom
  • a disulfonylimide acid containing a fluorine atom hereinafter, also referred to as “acid (B1-2)
  • sulfomalonic acid ester hereinafter also referred to as “acid (B1-3)
  • sulfonic acid hereinafter also referred to as “acid (B2-1)”
  • disulfonylimide acid hereinafter also referred to as “acid (B2-2)
  • Examples of the acid (B1-1) include a compound represented by the following formula (2-1).
  • R C is a monovalent organic group having 1 to 30 carbon atoms.
  • R D1 and R D2 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • n is 1 or 2.
  • 2 R D1 are the same or different from each other, and 2 R D2 are the same or different from each other.
  • at least one of R D1 and R D2 is a fluorine atom or a fluorinated hydrocarbon group.
  • Examples of the acid (B1-2) include compounds represented by the following formula (2-2).
  • R E1 and R E2 are each independently a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms, or these groups are combined with each other to form the formula (2 -2)
  • Examples of the acid (B1-3) include compounds represented by the following formula (2-3).
  • R F1 and R F2 are each independently a monovalent organic group having 1 to 20 carbon atoms, or these groups are combined with each other to form the formula (2-3) It is a part of a ring structure having 7 to 12 ring members that is formed together with —O—CO—CH—CO—O—.
  • Examples of the acid (B2-1) include a compound represented by the following formula (3-1).
  • R G is a monovalent organic group having 1 to 30 carbon atoms.
  • Examples of the acid (B2-2) include compounds represented by the following formula (3-2).
  • R H1 and R H2 are each independently a monovalent organic group having 1 to 20 carbon atoms, or these groups are combined with each other to form the formula (3-2) It is a part of a ring structure having 6 to 12 ring members, which is composed of a sulfur atom and a nitrogen atom.
  • Examples of the monovalent organic group represented by R C , R F1 , R F2 , R G , R H1 and R H2 are the same groups as those exemplified as the organic group for R B in the above formula (1). Etc.
  • Examples of the monovalent hydrocarbon group represented by R D1 and R D2 include the same groups as those exemplified as the hydrocarbon group of R PG1 in the above formula (PG1). Among these, an alkyl group is preferable and a methyl group is more preferable.
  • R D1 , R D2 , R E1 and R E2 for example, a part of hydrogen atoms possessed by the hydrocarbon group exemplified as R PG1 in the above formula (PG1) or Examples include groups in which all are substituted with fluorine atoms. Among these, a perfluoroalkyl group is preferable and a trifluoromethyl group is more preferable.
  • the acid (B) preferably has a ring structure having 5 to 20 ring members.
  • the diffusion length of the acid (B) in the resist film can be shortened more appropriately.
  • the CDU performance of the radiation-sensitive resin composition can be reduced. Etc. can be further improved.
  • a ring structure include an alicyclic structure such as a norbornane structure and an adamantane structure; an aromatic ring structure such as a benzene structure and a fluorene structure.
  • the compound is usually a salt of a radiation-sensitive cation and an anion obtained by removing a proton from the acid group of the acid (B) (hereinafter also referred to as “anion (B)”).
  • anion (B) obtained by removing a proton from the acid group of the acid (B)
  • the [B] compound gives an acid (B) from protons and anions (B) generated by the decomposition of the radiation-sensitive anion by the action of radiation.
  • the acid dissociable group (a) of the [A] polymer can be dissociated at 110 ° C. for 1 minute. That is, the [B] compound functions as an acid generator that dissociates the acid dissociable group of the [A] polymer in the exposed area and changes the solubility in the developer.
  • Examples of the anion (B) include a sulfonate anion containing a fluorine atom that gives an acid (B1-1) and a disulfonylimide containing a fluorine atom that gives an acid (B1-2) in the case of the radiation sensitive resin composition (I).
  • the radiation-sensitive cation is a cation that is decomposed by exposure light and / or electron beam irradiation.
  • an acid generator composed of a sulfonate anion and a radiation-sensitive onium cation as an example, in the exposed portion, a sulfonic acid is generated from protons generated by the decomposition of the radiation-sensitive onium cation and the sulfonate anion.
  • Examples of the monovalent radiation-sensitive onium cation include a cation represented by the following formula (r ⁇ a) (hereinafter also referred to as “cation (r ⁇ a)”), and a valence represented by the following formula (rb). Cation (hereinafter also referred to as “cation (r ⁇ b)”), a cation represented by the following formula (rc) (hereinafter also referred to as “cation (rc)”), and the like.
  • R B3 and R B4 are each independently a monovalent organic group having 1 to 20 carbon atoms.
  • b3 is an integer of 0 to 11.
  • R B5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B5 are the same or different from each other and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded.
  • n bb is an integer of 0 to 3.
  • R B3 and R B4 are preferably a monovalent unsubstituted hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group in which a hydrogen atom of these groups is substituted with a substituent, and has 6 to 18 carbon atoms.
  • a monovalent unsubstituted aromatic hydrocarbon group or an aromatic hydrocarbon group in which the hydrogen atom of these groups is substituted with a substituent is more preferred, and a substituted or unsubstituted phenyl group is more preferred.
  • Examples of the substituent which may be substituted on the hydrogen atom of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R B3 and R B4 include substituted or unsubstituted 1 to 20 carbon atoms.
  • Valent hydrocarbon group, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , —O—CO—R k , —O—R kk —COOR k , —R kk —CO -R k, or -S-R k are preferred.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R B5 includes a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , —O—CO— R k , —O—R kk —COOR k , —R kk —CO—R k or —S—R k is preferred.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • b4 is an integer of 0 to 9.
  • R B6 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B6 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded.
  • b5 is an integer of 0 to 10.
  • R B7 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B7 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 3 to 20 ring members constituted with a carbon atom or a carbon chain to which is bonded.
  • n b2 is an integer of 0 to 3.
  • R B8 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • n b1 is an integer of 0-2.
  • R B6 and R B7 include a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OR k , —COOR k , —O—CO—R k , —O—R kk —COOR. k or —R kk —CO—R k is preferred.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R B8 examples include a group in which one hydrogen atom is removed from a monovalent organic group having 1 to 20 carbon atoms exemplified as R B in the above formula (1).
  • b6 is an integer of 0 to 5.
  • R B9 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B9 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded.
  • b7 is an integer of 0 to 5.
  • R B10 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • the plurality of R B10 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded.
  • R B9 and R B10 include a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , — A ring structure in which two or more of O—CO—R k , —O—R kk —COOR k , —R kk —CO—R k , —S—R k or these groups are combined with each other preferable.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R B5 , R B6 , R B7 , R B9 and R B10 include the groups exemplified as the hydrocarbon group of R PG1 in the above formula (PG1). And the like groups.
  • Examples of the divalent organic group represented by R B8 include groups in which one hydrogen atom has been removed from a monovalent organic group having 1 to 20 carbon atoms exemplified as R A in the above formula (1). It is done.
  • Examples of the substituent that may substitute the hydrogen atom of the hydrocarbon group represented by R B5 , R B6 , R B7 , R B9, and R B10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a halogen atom such as hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, and acyloxy group.
  • a halogen atom is preferable and a fluorine atom is more preferable.
  • R B5 , R B6 , R B7 , R B9, and R B10 include an unsubstituted linear or branched alkyl group, a fluorinated alkyl group, an unsubstituted monovalent aromatic hydrocarbon group, —OSO 2 -R k, or -SO 2 -R k, more preferably a fluorinated alkyl group or an unsubstituted monovalent aromatic hydrocarbon group, more preferably a fluorinated alkyl group.
  • an integer of 0 to 2 is preferable, 0 or 1 is more preferable, and 0 is more preferable.
  • n bb 0 or 1 is preferable, and 0 is more preferable.
  • b4 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • b5 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • nb2 , 2 or 3 is preferable and 2 is more preferable.
  • n b1 , 0 or 1 is preferable, and 0 is more preferable.
  • b6 and b7 are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • cation (r ⁇ a) or cation (r ⁇ b) is preferable, and triphenylsulfonium cation or 1- [2- (4-cyclohexylphenylcarbonyl) is preferable. Propan-2-yl] tetrahydrothiophenium cation is more preferred.
  • Examples of the compound [B] include compounds represented by the following formulas (i-1) to (i-6) (hereinafter also referred to as “compounds (i-1) to (i-6)”). .
  • T + is a monovalent radiation-sensitive onium cation.
  • the lower limit of the content of the [B] compound is 10% by mass, preferably 11% by mass, and more preferably 12% by mass in the total solid content (all components other than the [E] solvent in the composition).
  • As an upper limit of the said content 20 mass% is preferable, 15 mass% is more preferable, and 14 mass% is further more preferable.
  • [B] By making content of a compound into the said range, the sensitivity of the said radiation sensitive resin composition can be raised more appropriately, As a result, CDU performance etc. can be improved more.
  • the radiation-sensitive resin composition can contain one or more [B] compounds.
  • the compound [C] generates a second acid (hereinafter also referred to as “acid (C)”) that does not substantially dissociate the acid dissociable group (a) at 110 ° C. for 1 minute by irradiation with radiation.
  • a compound. “The acid dissociable group is not substantially dissociated” means that the dissociation rate of the acid dissociable group under the above conditions is 5 mol% or less.
  • the acid (C) for example, in the case of the radiation sensitive resin composition (I), for example, a sulfonic acid containing no fluorine atom (excluding sulfomalonic acid ester) (hereinafter also referred to as “acid (C1-1)”), examples thereof include carboxylic acid (hereinafter also referred to as “acid (C1-2)”), sulfonamidic acid (hereinafter also referred to as “acid (C1-3)”), and the like.
  • carboxylic acid hereinafter also referred to as “acid (C2-1)”
  • sulfonamidic acid hereinafter also referred to as “acid (C2-2)
  • Examples of the acid (C1-1) include compounds represented by the following formula (4-1).
  • R S1 , R S2 and R S3 are each independently a monovalent organic group having 1 to 30 carbon atoms which does not contain a hydrogen atom or a fluorine atom, or these Two or more of the groups are part of a ring structure having 3 to 20 ring members that is configured together with the carbon atoms to which they are attached. However, two or more of R S1 , R S2 and R S3 are not R′—O—CO— (where R ′ is a monovalent organic group having 1 to 29 carbon atoms).
  • Examples of the acid (C1-2) and the acid (C2-1) include compounds represented by the following formula (4-2).
  • RT is a monovalent organic group having 1 to 30 carbon atoms.
  • Examples of the acid (C1-3) and the acid (C2-2) include compounds represented by the following formula (4-3).
  • R U represents a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R V is a monovalent organic group having 1 to 20 carbon atoms.
  • Examples of the monovalent organic group that does not contain a fluorine atom represented by R S1 , R S2, and R S3 include those that do not contain a fluorine atom among the groups exemplified as the organic group of R B in the above formula (1). Etc.
  • Examples of the ring structure having 3 to 20 ring members constituted by two or more of R S1 , R S2 and R S3 include alicyclic structures such as norbornane structure and adamantane structure; aromatic rings such as benzene structure and fluorene structure Examples include the structure.
  • Examples of the monovalent organic group represented by R T and R V include the same groups as those exemplified as the organic group of R B in the above formula (1).
  • Examples of the monovalent fluorinated hydrocarbon groups represented by R U for example, the radical obtained by substituting a part or all of the hydrogen atoms by fluorine atoms included in the exemplified hydrocarbon groups as R PG1 of (PG1), etc. Is mentioned. Among these, a perfluoroalkyl group is preferable and a trifluoromethyl group is more preferable.
  • the acid (C) preferably has a ring structure having 5 to 20 ring members. Since the acid (C) has such a ring structure, the diffusion of the acid (C) in the resist film can be further suppressed, and as a result, the CDU performance and the like of the radiation sensitive resin composition can be further improved. Can be improved.
  • a ring structure include an alicyclic structure such as a norbornane structure and an adamantane structure; an aromatic ring structure such as a benzene structure and a fluorene structure.
  • the compound is usually a salt of a radiation-sensitive cation and an anion obtained by removing a proton from the acid group of the acid (C) (hereinafter also referred to as “anion (C)”).
  • anion (C) may have a betaine structure in which a group derived from an anion (C) such as a carboxylate group is bonded to a hydrocarbon group or the like of a radiation-sensitive cation.
  • the [C] compound gives an acid (C) from a proton and an anion (C) generated by the decomposition of the radiation sensitive anion by the action of radiation.
  • This acid (C) does not substantially dissociate the acid dissociable group (a) at 110 ° C. for 1 minute. Therefore, the [C] compound exhibits a function as an acid diffusion controller in the resist film.
  • the anion (C) for example, in the case of the radiation-sensitive resin composition (I), a sulfonate anion containing no fluorine atom that gives the acid (C1-1) (excluding an anion derived from sulfomalonic acid ester), an acid (C1 -2) a carboxylate anion that gives acid, a sulfonamidate anion that gives acid (C1-3), etc.
  • a carboxylate anion that gives an acid (C2-1), a sulfonamidate anion that gives an acid (C2-2), and the like can be mentioned.
  • Examples of the radiation sensitive cation of the [C] compound include the same cations as those exemplified as the radiation sensitive cation of the above [B] compound.
  • Examples of the compound [C] include compounds represented by the following formulas (ii-1) to (ii-8) (hereinafter also referred to as “compounds (ii-1) to (ii-8)”). .
  • T + is a monovalent radiation-sensitive onium cation.
  • the acid diffusion control ability is improved, while a part of the acid generated from the [B] compound is captured in the exposed area, so that there is a difference in acid concentration from the unexposed area.
  • the difference in solubility (dissolution contrast) in the developer between the exposed area and the unexposed area becomes smaller.
  • the [C] compound is preferably a compound containing no nitrogen atom.
  • the lower limit of the content of the compound is preferably 0.1% by mass, more preferably 1% by mass, and preferably 1.5% by mass in the total solid content (all components other than the solvent [E] in the composition). % Is more preferable, and 2% by mass is particularly preferable. As an upper limit of the said content, 10 mass% is preferable, 8 mass% is more preferable, 7.5 mass% is further more preferable, 7 mass% is especially preferable.
  • the lower limit of the content of the compound is preferably 0.1 parts by mass, more preferably 1 part by mass, further preferably 1.5 parts by mass, with respect to 100 parts by mass of the polymer [A]. Part is particularly preferred. As an upper limit of the said content, 12 mass parts is preferable, 10 mass parts is more preferable, 9 mass parts is further more preferable, and 8 mass parts is especially preferable.
  • the radiation-sensitive resin composition can contain one or more [C] compounds.
  • the upper limit of the above B m / C m is preferably 10, more preferably 5, more preferably 4, and particularly preferably 3.5.
  • the lower limit of the total content of the [B] compound and the [C] compound is preferably 10.1% by mass and 12% by mass in the total solid content (all components other than the solvent [E] in the composition). More preferred is 14% by mass.
  • As an upper limit of the said total content 30 mass% is preferable, 20 mass% is more preferable, and 18 mass% is further more preferable.
  • the polymer contains a fluorine atom, a silicon atom, or both, and is the sum of the mass content of fluorine atoms and the mass content of silicon atoms (hereinafter also referred to as “total mass content of fluorine atoms and silicon atoms”). ) Is a polymer larger than the total mass content of fluorine atoms and silicon atoms in the polymer [A].
  • the polymer having higher hydrophobicity than the polymer serving as the base polymer tends to be unevenly distributed in the resist film surface layer, and the [D] polymer has a total mass content of fluorine atoms and silicon atoms as compared to the [A] polymer. Therefore, there is a tendency to be unevenly distributed in the surface layer of the resist film due to the characteristics resulting from the hydrophobicity.
  • the radiation sensitive resin composition it is possible to suppress the elution of the acid generator, the acid diffusion control agent, and the like during the immersion exposure into the immersion medium.
  • the advancing contact angle between the resist film and the immersion medium can be controlled within a desired range due to the properties resulting from the hydrophobicity of the [D] polymer, and bubble defects can be controlled. Generation can be suppressed.
  • the receding contact angle between the resist film and the immersion medium is increased, and high-speed scanning exposure is possible without leaving water droplets.
  • the radiation-sensitive resin composition can form a resist film suitable for the immersion exposure method by containing the [D] polymer as described above.
  • the said radiation sensitive resin composition can form the resist pattern by which generation
  • the lower limit of the total mass content of fluorine atoms and silicon atoms in the polymer is preferably 1% by mass, more preferably 2% by mass, and even more preferably 3% by mass.
  • As an upper limit of the said mass content rate 60 mass% is preferable, 50 mass% is more preferable, and 40 mass% is further more preferable.
  • the total mass content of fluorine atoms and silicon atoms in the polymer can be calculated from the structure of the polymer obtained by 13 C-NMR spectrum measurement.
  • the content of the fluorine atom in the [D] polymer is not particularly limited, and may be bonded to any of the main chain, side chain, and terminal. It preferably has a structural unit containing an atom (hereinafter also referred to as “structural unit (F)”).
  • R J represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • G is a single bond, an oxygen atom, a sulfur atom, —COO—, —SO 2 NH—, —CONH— or —OCONH—.
  • R K is a monovalent monovalent fluorine cycloaliphatic hydrocarbon group chain fluorinated hydrocarbon group or a C 4-20 having 1 to 6 carbon atoms.
  • R J is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (f-1).
  • G is preferably —COO—, —SO 2 NH—, —CONH— or —OCONH—, more preferably —COO—.
  • R as the monovalent fluorinated chain hydrocarbon group having 1 to 6 carbon atoms represented by K, for example, some or all of the linear hydrogen atoms to 1 carbon atoms which is substituted by fluorine atom 6 Or a branched alkyl group etc. are mentioned.
  • Carbon atoms represented by R K 4 Examples of the monovalent fluorine cycloaliphatic hydrocarbon radical of 1-20, monocyclic some or carbon number of 4 to 20 substitution all of the hydrogen atoms by fluorine atoms or A polycyclic hydrocarbon group is mentioned.
  • the R K preferably a fluorinated chain hydrocarbon group, a 2,2,2-trifluoroethyl group or a 1,1,1,3,3,3-hexafluoro-2-propyl group is more preferred, 2 More preferred is a 2,2-trifluoroethyl group.
  • the polymer those having an alicyclic structure are preferable.
  • the structural unit (A) containing an alicyclic structure include a structural unit (A1) containing a non-acid dissociable alicyclic hydrocarbon group.
  • the structural unit (A1) containing a non-acid-dissociable alicyclic hydrocarbon group for example, a structural unit containing a non-acid-dissociable hydrocarbon group exemplified as the structural unit (V) of the above-mentioned [A] polymer Among them, those in which the hydrocarbon group is a secondary alicyclic hydrocarbon group or an adamantan-1-yl group are exemplified.
  • the lower limit of the content ratio of the structural unit (A) is preferably 10 mol% with respect to all the structural units constituting the polymer. Mole% is more preferable, and 50 mol% is more preferable. As an upper limit of the said content rate, 90 mol% is preferable and 80 mol% is more preferable.
  • the polymer may have a structural unit (B) containing an acid dissociable group.
  • the structural unit (B) include the structural unit (I) in the [A] polymer.
  • [D] When a polymer has a structural unit (B), as an upper limit of the content rate of a structural unit (B), 80 mol% is preferable with respect to all the structural units which comprise a [D] polymer, 20 Mole% is more preferable, and 16 mol% is more preferable. As said content rate, more than 0 mol% is preferable, 5 mol% is more preferable, and 10 mol% is further more preferable. Moreover, it is preferable that the [D] polymer does not have a structural unit (B).
  • the polymer may have a structural unit (C) containing a non-acid-dissociable chain hydrocarbon group.
  • the structural unit (C) containing a non-acid-dissociable chain hydrocarbon group for example, the structural unit containing a non-acid-dissociable hydrocarbon group exemplified as the structural unit (V) of the above-mentioned [A] polymer.
  • the hydrocarbon group is a methyl group, a primary or secondary chain hydrocarbon group, and the like.
  • the primary chain hydrocarbon group include alkyl groups such as n-butyl group and n-dodecyl group.
  • the lower limit of the content ratio of the structural unit (C) is preferably 10 mol% with respect to all the structural units constituting the [D] polymer. Mole% is more preferable. As an upper limit of the said content rate, 50 mol% is preferable and 40 mol% is more preferable.
  • the said radiation sensitive resin composition contains a [D] polymer
  • a [D] polymer as a minimum of content of a [D] polymer, 0.1 mass part is preferable with respect to 100 mass parts of [A] polymers. 0.5 parts by mass is more preferable, 1 part by mass is further preferable, and 2 parts by mass is particularly preferable. As an upper limit of the said content, 30 mass parts is preferable, 20 mass parts is more preferable, 15 mass parts is further more preferable, and 10 mass parts is especially preferable.
  • the radiation sensitive resin composition may contain one or more [D] polymers.
  • the polymer can be synthesized by the same method as the above-mentioned [A] polymer.
  • the lower limit of Mw of the polymer is preferably 1,000, more preferably 3,000, and still more preferably 4,000.
  • the upper limit of Mw is preferably 50,000, more preferably 20,000, and still more preferably 8,000.
  • the upper limit of the ratio of Mw to Mn (Mw / Mn) by GPC of the polymer [D] is preferably 5, more preferably 3, still more preferably 2, and particularly preferably 1.5.
  • the lower limit of the ratio is usually 1 and preferably 1.2.
  • the radiation-sensitive resin composition usually contains an [E] solvent.
  • the solvent is a solvent that can dissolve or disperse at least the [A] polymer, the [B] compound and the [C] compound, and the [D] polymer, [F] nitrogen-containing compound, etc. contained as necessary. If it is, it will not specifically limit.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvents examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents examples include dialkyl ether solvents having 4 to 14 carbon atoms such as diethyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvents examples include chain ketone solvents having 3 to 12 carbon atoms such as acetone, methyl ethyl ketone, methyl-iso-butyl ketone, 2-heptanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvent examples include monocarboxylic acid ester solvents such as acetate ester solvents such as n-butyl acetate and amyl acetate, and propionate solvents such as ethyl propionate; Hydroxycarboxylic acid ester solvents such as ethyl lactate and n-butyl glycolate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate; Polycarboxylic acid diester solvents such as diethyl oxalate; Lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; Examples thereof include carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
  • monocarboxylic acid ester solvents such as acetate ester solvents such as n-butyl acetate and amyl a
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • the solvent is preferably an ester solvent and / or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent, a lactone solvent, a hydroxycarboxylic acid ester and / or a cyclic ketone solvent.
  • the radiation-sensitive resin composition may contain one or more [E] solvents.
  • the radiation-sensitive resin composition may contain, for example, a surfactant, an alicyclic skeleton-containing compound, a sensitizer, and the like as other optional components.
  • the [A] polymer, the [B] compound, the [C] compound, and optional components contained as necessary are mixed in a predetermined ratio, and preferably the obtained mixture
  • the liquid can be prepared, for example, by filtering with a filter having a pore diameter of about 0.2 ⁇ m.
  • a filter having a pore diameter of about 0.2 ⁇ m As a minimum of solid content concentration of the radiation sensitive resin composition, 0.1 mass% is preferred, 0.5 mass part is more preferred, and 1 mass% is still more preferred. As an upper limit of the said solid content concentration, 50 mass% is preferable, 30 mass% is more preferable, and 20 mass% is further more preferable.
  • the resist pattern forming method includes a step of applying the radiation-sensitive resin composition to at least one surface side of a substrate (hereinafter, also referred to as “coating step”), and a resist film formed by the coating step. And a step of developing the exposed resist film (hereinafter also referred to as “developing step”).
  • the radiation-sensitive resin composition described above since the radiation-sensitive resin composition described above is used, it is possible to form a resist pattern with a wide depth of focus, a small CDU and LWR, and a high resolution.
  • the radiation sensitive resin composition is applied to at least one surface side of the substrate.
  • the substrate on which the resist film is formed include a silicon wafer and a wafer coated with aluminum.
  • a resist film is formed by applying the radiation sensitive resin composition on the substrate.
  • a coating method of the said radiation sensitive resin composition For example, well-known methods, such as a spin coat method, etc. are mentioned.
  • the amount of the radiation sensitive resin composition to be applied is adjusted so that the resist film to be formed has a desired thickness.
  • substrate in order to volatilize a solvent, you may pre-bake (henceforth "PAB").
  • the temperature of PAB As a minimum of the temperature of PAB, 30 ° C is preferred and 50 ° C is more preferred. As an upper limit of the said temperature, 200 degreeC is preferable and 150 degreeC is more preferable.
  • the lower limit of the PAB time is preferably 10 seconds, and more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • As a minimum of the average thickness of a resist film 10 nm is preferred, 20 nm is more preferred, and 50 nm is still more preferred.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, and even more preferably 150 nm.
  • the resist film formed by the coating step is exposed.
  • this exposure is performed by irradiating with radiation through a mask having a predetermined pattern through an immersion exposure liquid such as water.
  • the immersion exposure liquid a liquid having a refractive index larger than that of air is usually used. Specific examples include pure water, long-chain or cyclic aliphatic compounds, and the like.
  • the exposure apparatus irradiates radiation, and the resist film is formed through a mask having a predetermined pattern. Exposure.
  • Examples of the radiation include far ultraviolet rays such as visible light, ultraviolet rays, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), and extreme ultraviolet rays (depending on the type of radiation-sensitive acid generator used). Extreme Ultraviolet (EUV), 13.5 nm), electromagnetic waves such as X-rays, electron beams (Electron Beam (EB)), charged particle beams such as ⁇ -rays, etc. are used as appropriate.
  • EUV Extreme Ultraviolet
  • EUV Extreme Ultraviolet
  • electromagnetic waves such as X-rays, electron beams (Electron Beam (EB)), charged particle beams such as ⁇ -rays, etc.
  • ArF Excimer laser light, KrF excimer laser light, EUV, X-ray or EB is preferable
  • ArF excimer laser light, EUV or EB is more preferable.
  • exposure conditions such as exposure amount, can be suit
  • PEB post-exposure baking
  • the heating conditions for PEB are appropriately adjusted depending on the composition of the radiation sensitive resin composition, but the lower limit of the temperature of PEB is preferably 30 ° C, more preferably 50 ° C, and even more preferably 70 ° C.
  • As an upper limit of the said temperature 200 degreeC is preferable, 150 degreeC is more preferable, and 120 degreeC is further more preferable.
  • the lower limit of the PEB time is preferably 10 seconds, more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • a protective film can be provided on the resist film as disclosed in, for example, JP-A-5-188598.
  • the resist film exposed in the exposure step is developed.
  • the developer used for the development include an aqueous alkali solution (alkaline developer) and a solution containing an organic solvent (organic solvent developer). Thereby, a predetermined resist pattern is formed.
  • alkali developer examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3. 0] -5-nonene, and an alkaline aqueous solution in which at least one alkaline compound is dissolved.
  • TMAH aqueous solution is preferable and a 2.38 mass% TMAH aqueous solution is more preferable.
  • organic solvent developer examples include organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and liquids containing organic solvents.
  • organic solvent examples include one or more of the solvents exemplified as the [E] solvent of the above-described radiation-sensitive resin composition.
  • ester solvents and ketone solvents are preferable.
  • an acetate solvent is preferable, and amyl acetate and n-butyl acetate are more preferable.
  • the ketone solvent is preferably a chain ketone, more preferably 2-heptanone.
  • the lower limit of the content of the organic solvent in the organic solvent developer is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • components other than the organic solvent in the organic solvent developer include water and silicone oil.
  • These developers may be used alone or in combination of two or more.
  • the substrate is washed with water or an alcohol solvent and dried.
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the cooled polymerization solution was put into methanol (2,000 parts by mass), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with methanol (400 parts by mass), filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (A-1) in good yield. .
  • the polymerization solution was dropped into n-hexane (1,000 parts by mass) to solidify and purify the polymer.
  • propylene glycol monomethyl ether 150 parts by mass
  • methanol 150 parts by mass
  • triethylamine 1.5 molar equivalents relative to the amount of compound (M-10) used
  • water 1.5 molar equivalents relative to the amount of compound (M-10) used
  • the hydrolysis reaction was carried out for 8 hours while refluxing at the boiling point.
  • the solvent and triethylamine were distilled off under reduced pressure, and the resulting polymer was dissolved in acetone (150 parts by mass). This was dropped into water (2,000 parts by mass) to solidify, and the produced white powder was filtered off. It was dried at 50 ° C. for 17 hours to obtain a white powdery polymer (A-3) in good yield.
  • Table 1 shows the content of each structural unit of the polymers (A-1) to (A-3), Mw, and Mw / Mn. “M-10 *” in Table 1 indicates that the content ratio of the structural unit is a value for a hydroxystyrene unit derived from (M-10).
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the operation of adding hexane (100 parts by mass) and stirring to recover the acetonitrile layer was repeated three times.
  • the solvent By replacing the solvent with propylene glycol monomethyl ether acetate, a solution of the polymer (D-1) was obtained in good yield.
  • Table 2 below also shows the content ratio, Mw and Mw / Mn of each structural unit of the polymers (D-1) to (D-4).
  • E-1 Propylene glycol monomethyl ether acetate
  • E-2 Cyclohexanone
  • E-3 ⁇ -butyrolactone
  • E-4 Ethyl lactate
  • ⁇ Formation of resist pattern (1)> (ArF exposure, organic solvent development) After applying a composition for forming a lower antireflection film (“ARC66” from Brewer Science) using a spin coater (“CLEAN TRACK ACT12” from Tokyo Electron) on the surface of a 12-inch silicon wafer, 205 By heating at 60 ° C. for 60 seconds, a lower antireflection film having an average thickness of 105 nm was formed. Each radiation sensitive resin composition was coated on the lower antireflection film using the spin coater, and PAB was performed at 120 ° C. for 50 seconds. Thereafter, the mixture was cooled at 23 ° C. for 30 seconds to form a resist film having an average thickness of 90 nm.
  • ARC66 from Brewer Science
  • CLEAN TRACK ACT12 from Tokyo Electron
  • the resist pattern was formed by adjusting the mask size so as to form a 45 nm hole, 110 nm pitch pattern by irradiating the exposure amount of Eop1 obtained above.
  • the formed resist pattern was observed from above the pattern using the scanning electron microscope.
  • the hole diameter is measured at 16 points in the range of 500 nm and the average value is obtained.
  • the average value is measured at a total of 500 points, and the 3 sigma value is obtained from the distribution of the measured values. ).
  • the smaller the value of the CDU performance the better the variation in hole diameter over a long period.
  • the CDU performance can be evaluated as “good” when it is 6.0 nm or less, and “bad” when it exceeds 6.0 nm.
  • the resist pattern was formed by adjusting the mask size so as to form a 45 nm hole, 800 nm pitch pattern by irradiating the exposure amount of Eop1 obtained above.
  • the dimension at the time of changing a focus to a depth direction was observed from the pattern upper part using the said scanning electron microscope.
  • the margin (nm) in the depth direction in which the pattern dimensions were within 90% to 110% of the reference without any bridge or residue was measured, and the measured margin was defined as the depth of focus (nm).
  • the larger the value of the depth of focus the better the process margin.
  • the DOF performance can be evaluated as “good” when it is 40 nm or more, and “bad” when it is below 40 nm.
  • the resist pattern was formed by adjusting the mask size so as to form a pattern of 45 nm space and 800 nm pitch by irradiating the exposure amount of Eop1 obtained above.
  • the formed resist pattern was observed from above the pattern using the scanning electron microscope. Measure the total line width variation at 500 points, find the 3 sigma value from the measured value distribution, measure the hole diameter at 16 points in the 500 nm range, find the mean value, and calculate the mean value at any point. 500 points were measured, a 3 sigma value was determined from the distribution of the measured values, and this was defined as LWR performance (nm). The smaller the value of the LWR performance, the smaller the line play and the better. The LWR performance can be evaluated as “good” when it is 5.8 nm or less and “bad” when it exceeds 5.8 nm.
  • the radiation-sensitive resin compositions of the examples had good CDU performance, LWR performance, and depth of focus.
  • [Preparation of radiation-sensitive resin composition for electron beam exposure] [Example 16] [A] 100 parts by mass of (A-3) as a polymer, 14.0 parts by mass of (B-1) as a [B] compound, 2.3 parts by mass of (C-2) as a [C] compound, In addition, (E-1) 4,280 parts by mass and (E-4) 1,830 parts by mass as [E] solvent are mixed and filtered through a membrane filter having a pore size of 0.2 ⁇ m to obtain a radiation-sensitive resin composition. A product (J-16) was prepared.
  • CDU performance The CDU performance was measured in the same manner as described in the above resist pattern formation (1). The smaller the value of the CDU performance, the better the variation in hole diameter over a long period. The CDU performance can be evaluated as “good” when it is 1.1 nm or less and “bad” when it exceeds 1.1 nm.
  • the radiation-sensitive resin compositions of the examples all had good CDU performance and resolution.
  • an electron beam was used for the exposure of the resist film, but it is known that the basic resist characteristics are similar even when short wavelength radiation such as EUV is used. It is also known that there is a correlation. Therefore, according to the radiation-sensitive resin composition of this example, it is presumed that the CDU performance and the resolution are excellent even in the case of EUV exposure.
  • the exposure amount for forming the resist pattern having the 23 nm holes and 46 nm pitch was set as the optimum exposure amount (Eop3).
  • CDU performance The CDU performance was measured in the same manner as described in the above resist pattern formation (1). The smaller the value of the CDU performance, the better the variation in hole diameter over a long period. The CDU performance can be evaluated as “good” when it is 3.5 nm or less and “bad” when it exceeds 3.5 nm.
  • the radiation-sensitive resin compositions of the examples all had good CDU performance and resolution in EUV exposure.
  • a resist pattern having a wide depth of focus, small CDU and LWR, and high resolution can be formed. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The present invention is a radiation-sensitive resin composition containing a first polymer having structural units including an acid-dissociable group, a first compound generated by radiating radioactive rays onto a first acid that dissociates the acid-dissociable group in one minute at 110ºC, and a second compound generated by radiating radioactive rays onto a second acid that does not substantially dissociate the acid-dissociable group in one minute at 110ºC, the first compound content being at least 10% by mass of the total solid content (all non-solvent components in the composition), and the ratio Bm/Cm being at least 1.7, where Bm is the number of moles of the first compound and Cm is the number of moles of the second compound.

Description

感放射線性樹脂組成物及びレジストパターン形成方法Radiation-sensitive resin composition and resist pattern forming method
 本発明は、感放射線性樹脂組成物及びレジストパターン形成方法に関する。 The present invention relates to a radiation-sensitive resin composition and a resist pattern forming method.
 半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンのさらなる微細化が要求されており、そのため、種々の感放射線性樹脂組成物が検討されている。このような感放射線性樹脂組成物は、ArFエキシマレーザー光等の遠紫外線、極端紫外線(EUV)、電子線(EB)などの露光光の照射により露光部に酸を生成させ、この酸の触媒作用により露光部と未露光部の現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させる。 With the miniaturization of various electronic device structures such as semiconductor devices and liquid crystal devices, further miniaturization of resist patterns in the lithography process is required, and various radiation-sensitive resin compositions are being studied. Such a radiation sensitive resin composition generates an acid in an exposed part by irradiation with exposure light such as deep ultraviolet light such as ArF excimer laser light, extreme ultraviolet light (EUV), electron beam (EB), and the like. The action causes a difference in the dissolution rate of the exposed portion and the unexposed portion with respect to the developer, thereby forming a resist pattern on the substrate.
 かかる感放射線性樹脂組成物には、解像性に優れるだけでなく、ホールパターン形成におけるCDU(Critical Dimension Uniformity)性能及びラインアンドスペースパターン形成におけるLWR(Line Width Roughness)性能に優れると共に、焦点深度(DOF(Depth Of Focus)にも優れ、高精度なパターンを高い歩留まりで得られることが求められる。この要求に対して、感放射線性樹脂組成物に含有される成分が種々検討されている。(例として、特開平11-212265号公報、特開2003-5375号公報及び特開2008-83370号公報参照)。 Such a radiation sensitive resin composition not only has excellent resolution, but also has excellent CDU (Critical Dimension Uniformity) performance in hole pattern formation and LWR (Line Width Roughness) performance in line and space pattern formation, as well as depth of focus. (It is required to be excellent in DOF (Depth Of Focus) and to obtain a high-accuracy pattern with high yield. In response to this requirement, various components contained in the radiation-sensitive resin composition have been studied. (For example, see JP-A-11-212265, JP-A-2003-5375, and JP-A-2008-83370).
特開平11-212265号公報JP-A-11-212265 特開2003-5375号公報JP 2003-5375 A 特開2008-83370号公報JP 2008-83370 A
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、CDU性能、LWR性能、解像性及び焦点深度に優れる感放射線性樹脂組成物及びレジストパターン形成方法を提供することにある。 The present invention has been made based on the circumstances as described above, and an object thereof is to provide a radiation-sensitive resin composition and a resist pattern forming method that are excellent in CDU performance, LWR performance, resolution, and depth of focus. There is.
 上記課題を解決するためになされた発明は、酸解離性基(以下、「酸解離性基(a)」ともいう)を含む構造単位を有する第1重合体(以下、「[A]重合体」ともいう)と、上記酸解離性基(a)を110℃、1分の条件で解離させる第1酸を放射線の照射により発生する第1化合物(以下、「[B]化合物」ともいう)と、上記酸解離性基(a)を110℃、1分の条件で実質的に解離させない第2酸を放射線の照射により発生する第2化合物(以下、「[C]化合物」ともいう)とを含有し、上記[B]化合物の含有量が全固形分(組成物中の溶媒以外の全成分)中10質量%以上であり、上記[B]化合物のモル数をB、上記[C]化合物のモル数をCとした場合に、B/Cが1.7以上である感放射線性樹脂組成物である。 The invention made in order to solve the above-mentioned problems is a first polymer having a structural unit containing an acid dissociable group (hereinafter also referred to as “acid dissociable group (a)”) (hereinafter referred to as “[A] polymer”). And a first compound that generates the first acid that dissociates the acid-dissociable group (a) at 110 ° C. for 1 minute by irradiation with radiation (hereinafter, also referred to as “[B] compound”). And a second compound (hereinafter also referred to as “[C] compound”) that generates a second acid that does not substantially dissociate the acid dissociable group (a) at 110 ° C. for 1 minute. The content of the [B] compound is 10% by mass or more in the total solid content (all components other than the solvent in the composition), the number of moles of the [B] compound is B m , and the above [C ] the number of moles of the compound when the C m, with a radiation-sensitive resin composition B m / C m is 1.7 or more That.
 上記課題を解決するためになされた別の発明は、基板の少なくとも一方の面側に、当該感放射線性樹脂組成物を塗工する工程と、上記塗工工程により形成されたレジスト膜を露光する工程と、上記露光されたレジスト膜を現像する工程とを備えるレジストパターン形成方法である。 Another invention made in order to solve the above-described problems is a step of coating the radiation-sensitive resin composition on at least one surface side of a substrate, and exposing a resist film formed by the coating step. A method for forming a resist pattern comprising a step and a step of developing the exposed resist film.
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、広い焦点深度を発揮して、CDU及びLWRが小さく、解像度が高いレジストパターンを形成することができる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。 According to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, a resist pattern having a wide depth of focus, small CDU and LWR, and high resolution can be formed. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体、[B]化合物及び[C]化合物を含有する。当該感放射線性樹脂組成物は、好適成分として、フッ素原子若しくはケイ素原子又はこれら両方を含み、フッ素原子の質量含有率及びケイ素原子の質量含有率の和が、[A]重合体中のフッ素原子の質量含有率及びケイ素原子の質量含有率の和よりも大きい第2重合体(以下、「[D]重合体」ともいう)及び/又は[E]溶媒を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
<Radiation sensitive resin composition>
The radiation-sensitive resin composition contains a [A] polymer, a [B] compound, and a [C] compound. The radiation-sensitive resin composition contains a fluorine atom and / or a silicon atom as a suitable component, and the sum of the mass content of the fluorine atom and the mass content of the silicon atom is [A] fluorine atom in the polymer. May contain a second polymer (hereinafter also referred to as “[D] polymer”) and / or a solvent [E] which is larger than the sum of the mass content and the silicon mass content. In the range which does not impair the effect of, other optional components may be contained.
 当該感放射線性樹脂組成物としては例えばKrF又はArF露光用の感放射線性樹脂組成物(I)、EUV又はEB露光用の感放射線性樹脂組成物(II)等が挙げられる。感放射線性樹脂組成物(I)は、特にArF露光用として好適である。 Examples of the radiation sensitive resin composition include a radiation sensitive resin composition (I) for KrF or ArF exposure, and a radiation sensitive resin composition (II) for EUV or EB exposure. The radiation sensitive resin composition (I) is particularly suitable for ArF exposure.
 感放射線性樹脂組成物(I)に含まれる重合体は後述するフェノール性水酸基を含む構造単位(IV)をはじめ、芳香環を通常有していない。感放射線性樹脂組成物(II)において、[A]重合体はフェノール性水酸基を含む構造単位(IV)を有している。なお、本明細書において「フェノール性水酸基」とはベンゼン環に直結したものに限らず、芳香環に直結したヒドロキシ基全般を指す。 The polymer contained in the radiation sensitive resin composition (I) usually does not have an aromatic ring including a structural unit (IV) containing a phenolic hydroxyl group described later. In the radiation sensitive resin composition (II), the [A] polymer has a structural unit (IV) containing a phenolic hydroxyl group. In the present specification, the “phenolic hydroxyl group” is not limited to those directly bonded to a benzene ring, but refers to all hydroxy groups directly bonded to an aromatic ring.
 当該感放射線性樹脂組成物は、[A]重合体、[B]化合物及び[C]化合物を含有し、[B]化合物の含有量を上記値以上とし、[B]化合物のモル数(B)の[C]化合物のモル数(C)に対する比(B/C)を上記値以上とすることで、CDU性能、LWR性能、解像性及び焦点深度(以下、「CDU性能等」ともいう)に優れる。当該感放射線性樹脂組成物が上記構成を備えることで上記効果を奏する理由については必ずしも明確ではないが、例えば[B]化合物の含有量を上記一定値以上とすることにより感度を高める一方、[C]化合物の[B]化合物に対するモル比を一定値以下にすることで、形成されるレジスト膜の露光光の吸収量を一定値以下に維持することにより、レジスト膜中の露光強度の分布をより適切にすることができ、CDU性能等を向上させることができると考えられる。以下、各成分について説明する。 The radiation-sensitive resin composition contains a [A] polymer, a [B] compound, and a [C] compound, the content of the [B] compound is set to the above value or more, and the number of moles of the [B] compound (B moles of [C] compounds of m) the (ratio C m) (B m / C m) by the above said value, CDU performance, LWR performance, resolution and depth of focus (hereinafter, "CDU performance Etc.)). The reason why the radiation-sensitive resin composition exhibits the above-described effect by having the above-described configuration is not necessarily clear, but for example, while increasing the content of the [B] compound to the above-described constant value or more, C] The molar ratio of the compound to the [B] compound is set to a certain value or less, thereby maintaining the exposure light absorption amount of the resist film to be formed at a certain value or less, thereby reducing the exposure intensity distribution in the resist film. It can be made more appropriate, and CDU performance and the like can be improved. Hereinafter, each component will be described.
<[A]重合体>
 [A]重合体は、酸解離性基(a)を含む構造単位(以下、「構造単位(I)」ともいう)を有する重合体である。[A]重合体は、構造単位(I)以外に、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(II)、アルコール性水酸基を含む構造単位(III)及び/又はフェノール性水酸基を含む構造単位(IV)を有することが好ましく、上記構造単位(I)~(IV)以外のその他の構造単位を有していてもよい。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。以下、各構造単位について説明する。
<[A] polymer>
[A] The polymer is a polymer having a structural unit containing an acid dissociable group (a) (hereinafter also referred to as “structural unit (I)”). [A] In addition to the structural unit (I), the polymer is a structural unit (II) containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof, a structural unit (III) containing an alcoholic hydroxyl group, and / or phenol. It preferably has a structural unit (IV) containing a functional hydroxyl group, and may have other structural units other than the structural units (I) to (IV). [A] The polymer may have one or more of each structural unit. Hereinafter, each structural unit will be described.
[構造単位(I)]
 構造単位(I)は、酸解離性基(a)を含む構造単位である。ここで、「酸解離性基」とは、カルボキシ基、ヒドロキシ基、スルホ基等の酸性基の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体が構造単位(I)を有することで、露光部における酸解離性基(a)が[B]化合物から発生した酸等の作用により解離して極性が変化し、現像液に対して易溶又は難溶となることによりレジストパターンを形成することができる。
[Structural unit (I)]
The structural unit (I) is a structural unit containing an acid dissociable group (a). Here, the “acid-dissociable group” refers to a group that replaces a hydrogen atom of an acidic group such as a carboxy group, a hydroxy group, or a sulfo group, and that dissociates by the action of an acid. [A] Since the polymer has the structural unit (I), the acid dissociable group (a) in the exposed portion is dissociated by the action of an acid generated from the [B] compound, and the polarity is changed. On the other hand, a resist pattern can be formed by being easily soluble or hardly soluble.
 酸解離性基(a)としては、例えばカルボキシ基又はスルホ基に由来するオキシ酸素原子に結合する下記式(PG1)で表される基(以下、「基(I-1)」ともいう)、カルボキシ基、スルホ基又はヒドロキシ基に由来するオキシ酸素原子に結合する下記式(PG2)で表される基(以下、「基(I-2)」ともいう)等が挙げられる。 As the acid dissociable group (a), for example, a group represented by the following formula (PG1) bonded to an oxyoxygen atom derived from a carboxy group or a sulfo group (hereinafter also referred to as “group (I-1)”), And a group represented by the following formula (PG2) bonded to an oxyoxygen atom derived from a carboxy group, a sulfo group or a hydroxy group (hereinafter also referred to as “group (I-2)”).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(PG1)中、RPG1は、炭素数1~20の1価の炭化水素基である。RPG2及びRPG3は、それぞれ独立して炭素数1~20の1価の直鎖状若しくは分岐鎖状の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部である。*は、カルボキシ基又はスルホ基に由来するオキシ酸素原子に結合する部位を示す。 In the above formula (PG1), RPG1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms. R PG2 and R PG3 are each independently a monovalent linear or branched chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. Or part of an alicyclic structure of 3 to 20 ring members composed of these groups together with the carbon atom to which they are attached. * Shows the site | part couple | bonded with the oxy oxygen atom originating in a carboxy group or a sulfo group.
 上記式(PG2)中、RPG4及びRPG5は、それぞれ独立して、水素原子、炭素数1~20の1価の直鎖状若しくは分岐鎖状の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であり、RPG6は、炭素数1~20の1価の直鎖状若しくは分岐鎖状の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、RPG4及びRPG5が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部であるか、又はRPG4及びRPG6が互いに合わせられRPG4が結合する炭素原子及びRPG6が結合する酸素原子と共に構成される環員数5~20の脂肪族複素環構造の一部である。**は、カルボキシ基、スルホ基又はヒドロキシ基に由来するオキシ酸素原子に結合する部位を示す。 In the above formula (PG2), R PG4 and R PG5 each independently represent a hydrogen atom, a monovalent linear or branched chain hydrocarbon group having 1 to 20 carbon atoms, or 3 to 20 carbon atoms. R PG6 represents a monovalent linear or branched chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent fatty acid having 3 to 20 carbon atoms. or a cyclic hydrocarbon radical, or is a part of the alicyclic structure R PG4 and R PG5 are combined together constituted with the carbon atoms to which they are attached ring members 3-20, or R PG4 and R PG6 There is a part of the aliphatic heterocyclic structure consisting ring members 5-20 together with oxygen atom to the carbon atom and R PG6 which R PG4 are attached are combined to bind to each other. ** represents a site bonded to an oxyoxygen atom derived from a carboxy group, a sulfo group or a hydroxy group.
 「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐鎖状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造及び芳香族複素環構造の環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。 The “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure and is composed only of a chain structure, and includes both a straight chain hydrocarbon group and a branched chain hydrocarbon group. The term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure. “Number of ring members” means the number of atoms constituting the ring of the alicyclic structure, aromatic ring structure, aliphatic heterocyclic structure and aromatic heterocyclic structure, and in the case of polycyclic, the number of atoms constituting this polycyclic ring Say.
 RPG1で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by RPG1 include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent alicyclic carbon group having 3 to 20 carbon atoms. Examples thereof include a hydrogen group and a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
 RPG1~RPG6で表される炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖状炭化水素基;
 i-プロピル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の分岐鎖状炭化水素基などが挙げられる。
Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms represented by R PG1 to R PG6 include linear hydrocarbon groups such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. ;
Examples thereof include branched hydrocarbon groups such as i-propyl group, 2-methylpropyl group, 1-methylpropyl group and t-butyl group.
 RPG1~RPG6で表される炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、シクロデセニル基、ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の脂環式不飽和炭化水素基などが挙げられる。
Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R PG1 to R PG6 include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, an adamantyl group, a tricyclo group. An alicyclic saturated hydrocarbon group such as a decyl group or a tetracyclododecyl group;
Examples thereof include alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, cyclodecenyl group, norbornenyl group, tricyclodecenyl group, and tetracyclododecenyl group.
 RPG2及びRPG3並びにRPG4及びRPG5が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造としては、例えばシクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等が挙げられる。 The alicyclic structure R PG2 and R PG3 and R PG4 and R PG5 consists membered rings 3-20 with keyed carbon atom to which they are attached to each other, such as cyclopentane structure, a cyclohexane structure, a cycloheptane structure, cyclo Examples include an octane structure, a norbornane structure, an adamantane structure, a tricyclodecane structure, and a tetracyclododecane structure.
 RPG4及びRPG6が互いに合わせられRPG4が結合する炭素原子及びRPG6が結合する酸素原子と共に構成される環員数5~20の脂肪族複素環構造としては、例えばオキサシクロペンタン構造、オキサシクロヘキサン構造、オキサシクロヘプタン構造、オキサシクロオクタン構造、オキサノルボルナン構造等が挙げられる。 The aliphatic heterocyclic structure R PG4 and configured with an oxygen atom to the carbon atom and R PG6 which R PG6 is keyed R PG4 are bonded to each other are attached ring members 5-20, for example oxacyclopentane structure, oxacyclohexane Examples include a structure, an oxacycloheptane structure, an oxacyclooctane structure, and an oxanorbornane structure.
 RPG6は、基(I-2)が結合する酸性基の酸素原子より主鎖側の部分と互いに合わせられこれらが結合する原子鎖と共に環員数5~20の環構造を表してもよい。このような構造として、例えば環状アセタール構造を有する基が挙げられる。 RPG6 may be combined with the main chain side portion of the acidic group to which the group (I-2) is bonded and may represent a ring structure having 5 to 20 ring members together with the atomic chain to which these groups are bonded. Examples of such a structure include a group having a cyclic acetal structure.
 上記RPG1で表される炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などが挙げられる。
Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by RPG1 include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group;
Examples thereof include aralkyl groups such as benzyl group, phenethyl group, and naphthylmethyl group.
 構造単位(I)としては、例えば酸解離性基(a)を含む(メタ)アクリル酸エステルに由来する構造単位、酸解離性基(a)を含むメチレン基含有ラクトンに由来する構造単位、酸解離性基(a)を含むスチレンに由来する構造単位等が挙げられる。レジストパターン形成方法における露光工程で照射する放射線として、KrFエキシマレーザー光、EUV、EB等を用いる場合には、構造単位(I)として酸解離性基(a)を含むスチレンに由来する構造単位を有することで、感度をより高めることができ、その結果、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。 Examples of the structural unit (I) include a structural unit derived from a (meth) acrylic acid ester containing an acid dissociable group (a), a structural unit derived from a methylene group-containing lactone containing an acid dissociable group (a), and an acid. Examples thereof include a structural unit derived from styrene containing a dissociable group (a). When KrF excimer laser light, EUV, EB, or the like is used as the radiation irradiated in the exposure step in the resist pattern forming method, a structural unit derived from styrene containing an acid dissociable group (a) is used as the structural unit (I). By having it, the sensitivity can be further increased, and as a result, the CDU performance and the like of the radiation-sensitive resin composition can be further improved.
 構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、30モル%がより好ましく、40モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の感度を適度なものとすることができ、その結果、CDU性能等をより向上させることができる。 The lower limit of the content ratio of the structural unit (I) is preferably 10 mol%, more preferably 30 mol%, and even more preferably 40 mol% with respect to all the structural units constituting the [A] polymer. As an upper limit of the said content rate, 80 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable. By making the content rate of structural unit (I) into the said range, the sensitivity of the said radiation sensitive resin composition can be made moderate, As a result, CDU performance etc. can be improved more.
[構造単位(II)]
 構造単位(II)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である(但し、構造単位(I)に該当するものを除く)。[A]重合体は、構造単位(II)を有することで現像液への溶解性をより適度に調整することができ、その結果、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。また、レジストパターンと基板との密着性をより向上させることができる。
[Structural unit (II)]
The structural unit (II) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof (except for those corresponding to the structural unit (I)). [A] By having the structural unit (II), the polymer can adjust the solubility in the developer more appropriately, and as a result, the CDU performance and the like of the radiation-sensitive resin composition are further improved. be able to. In addition, the adhesion between the resist pattern and the substrate can be further improved.
 構造単位(II)としては、例えば下記式で表される構造単位等が挙げられる。 Examples of the structural unit (II) include a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。 In the above formula, R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
 構造単位(II)としては、ラクトン構造を含む構造単位が好ましい。 The structural unit (II) is preferably a structural unit containing a lactone structure.
 [A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]重合体における全構造単位に対して、10モル%が好ましく、15モル%がより好ましく、20モル%がさらに好ましく、25モル%が特に好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましく、55モル%が特に好ましい。構造単位(II)の含有割合を上記範囲とすることで、[A]重合体は現像液への溶解性をさらに適度に調整することができ、その結果、当該感放射線性樹脂組成物のCDU性能等をさらに向上させることができる。また、レジストパターンと基板との密着性をさらに向上させることができる。 [A] When the polymer has the structural unit (II), the lower limit of the content ratio of the structural unit (II) is preferably 10 mol%, preferably 15 mol% with respect to all the structural units in the polymer. Is more preferable, 20 mol% is further more preferable, and 25 mol% is particularly preferable. As an upper limit of the said content rate, 80 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 55 mol% is especially preferable. By setting the content ratio of the structural unit (II) in the above range, the [A] polymer can further appropriately adjust the solubility in the developer, and as a result, the CDU of the radiation-sensitive resin composition can be adjusted. The performance and the like can be further improved. Further, the adhesion between the resist pattern and the substrate can be further improved.
[構造単位(III)]
 構造単位(III)は、アルコール性水酸基を含む構造単位である(但し、構造単位(I)に該当するものを除く)。[A]重合体は、構造単位(III)を有することで現像液への溶解性をより適度に調整することができ、その結果、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。また、レジストパターンと基板との密着性をより向上させることができる。
[Structural unit (III)]
The structural unit (III) is a structural unit containing an alcoholic hydroxyl group (except for those corresponding to the structural unit (I)). [A] By having the structural unit (III), the polymer can adjust the solubility in the developer more appropriately, and as a result, the CDU performance and the like of the radiation sensitive resin composition are further improved. be able to. In addition, the adhesion between the resist pattern and the substrate can be further improved.
 構造単位(III)としては、例えば下記式で表される構造単位等が挙げられる。 Examples of the structural unit (III) include a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式中、RL2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。 In the above formula, R L2 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
 [A]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]重合体における全構造単位に対して、1モル%が好ましく、5モル%がより好ましい。上記含有割合の上限としては、30モル%が好ましく、20モル%がより好ましい。構造単位(III)の含有割合を上記範囲とすることで、[A]重合体は現像液への溶解性をさらに適度に調整することができ、その結果、当該感放射線性樹脂組成物のCDU性能等をさらに向上させることができる。また、レジストパターンと基板との密着性をさらに向上させることができる。 [A] When the polymer has the structural unit (III), the lower limit of the content ratio of the structural unit (III) is preferably 1 mol% with respect to all the structural units in the polymer [A], and 5 mol%. Is more preferable. As an upper limit of the said content rate, 30 mol% is preferable and 20 mol% is more preferable. By setting the content ratio of the structural unit (III) in the above range, the [A] polymer can further appropriately adjust the solubility in the developer, and as a result, the CDU of the radiation-sensitive resin composition can be adjusted. The performance and the like can be further improved. Further, the adhesion between the resist pattern and the substrate can be further improved.
[構造単位(IV)]
 構造単位(IV)は、フェノール性水酸基を含む構造単位である(但し、構造単位(I)に該当するものを除く)。レジストパターン形成方法における露光工程で照射する放射線として、KrFエキシマレーザー光、EUV、EB等を用いる場合には、[A]重合体が構造単位(IV)を有することで、感度をより高めることができ、その結果、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。
[Structural unit (IV)]
The structural unit (IV) is a structural unit containing a phenolic hydroxyl group (except for those corresponding to the structural unit (I)). When KrF excimer laser light, EUV, EB, or the like is used as the radiation to be irradiated in the exposure process in the resist pattern forming method, the sensitivity can be further increased by the [A] polymer having the structural unit (IV). As a result, the CDU performance and the like of the radiation sensitive resin composition can be further improved.
 構造単位(IV)としては、例えば下記式(1)で表される構造単位等が挙げられる。 Examples of the structural unit (IV) include a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは、置換若しくは非置換の炭素数1~20の2価の炭化水素基、-CO-、-SO-、-O-、-NH-若しくはこれらを組み合わせた基、又は単結合である。Rは、ハロゲン原子又は炭素数1~20の1価の有機基である。pは、0~2の整数である。aは、0~8の整数である。bは、1~9の整数である。但し、a+bは、9以下である。aが2以上の場合、複数のRは互いに同一又は異なる。 In said formula (1), RA is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group. Y is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, —CO—, —SO 2 —, —O—, —NH—, or a combination thereof, or a single bond. R B is a halogen atom or a monovalent organic group having 1 to 20 carbon atoms. p is an integer of 0-2. a is an integer of 0 to 8. b is an integer of 1 to 9. However, a + b is 9 or less. When a is 2 or more, the plurality of R B are the same or different from each other.
 Rとしては、構造単位(IV)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。 R A is preferably a hydrogen atom or a methyl group from the viewpoint of copolymerization of the monomer that gives the structural unit (IV).
 Yで表される炭素数1~20の2価の炭化水素基としては、例えば上記式(PG1)のRPG1として例示した1価の炭化水素基から1個の水素原子を除いた基等が挙げられる。上記2価の炭化水素基の置換基としては、例えばヒドロキシ基、ハロゲン原子等が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by Y include a group obtained by removing one hydrogen atom from the monovalent hydrocarbon group exemplified as R PG1 in the above formula (PG1). Can be mentioned. Examples of the substituent for the divalent hydrocarbon group include a hydroxy group and a halogen atom.
 Yとしては、単結合、-O-、-COO-又は-CONH-が好ましく、単結合又は-COO-がより好ましい。 Y is preferably a single bond, —O—, —COO— or —CONH—, more preferably a single bond or —COO—.
 「有機基」とは、少なくとも1個の炭素原子を含む基をいう。Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間又は結合手側の末端に2価のヘテロ原子含有基を含む1価の基(g)、上記炭化水素基及び基(g)が有する水素原子の一部又は全部をヘテロ原子含有基で置換した1価の基等が挙げられる。 “Organic group” refers to a group containing at least one carbon atom. The monovalent organic group having 1 to 20 carbon atoms represented by R B, for example, monovalent hydrocarbon group having 1 to 20 carbon atoms, the carbon of the hydrocarbon group - the terminal carbon-carbon or a bond side A monovalent group (g) containing a divalent heteroatom-containing group, a monovalent group obtained by substituting a part or all of the hydrogen atoms of the hydrocarbon group and group (g) with a heteroatom-containing group, and the like. It is done.
 Rとしては、1価の炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。 R B is preferably a monovalent hydrocarbon group, more preferably an alkyl group, and even more preferably a methyl group.
 pとしては、0又は1が好ましく、0がより好ましい。aとしては、0又は1が好ましく、0がより好ましい。bとしては、1又は2が好ましく、1がより好ましい。 P is preferably 0 or 1, more preferably 0. As a, 0 or 1 is preferable, and 0 is more preferable. As b, 1 or 2 is preferable and 1 is more preferable.
 [A]重合体が構造単位(IV)を有する場合、構造単位(IV)の含有割合の下限としては、[A]重合体における全構造単位に対して、10モル%が好ましく、20モル%がより好ましい。上記含有割合の上限としては、80モル%が好ましく、60モル%がより好ましい。構造単位(IV)の含有割合を上記範囲とすることで、[A]重合体は感度をより向上させることができ、その結果、当該感放射線性樹脂組成物のCDU性能等をさらに向上させることができる。 [A] When a polymer has a structural unit (IV), as a minimum of the content rate of a structural unit (IV), 10 mol% is preferable with respect to all the structural units in a [A] polymer, and 20 mol% Is more preferable. As an upper limit of the said content rate, 80 mol% is preferable and 60 mol% is more preferable. By making the content rate of structural unit (IV) into the said range, [A] polymer can improve a sensitivity more, As a result, further improving the CDU performance of the said radiation sensitive resin composition, etc. Can do.
[その他の構造単位]
 その他の構造単位としては、例えば非酸解離性の炭化水素基を含む構造単位(V)等が挙げられる(但し、非酸解離性基の炭化水素基を含む構造単位であっても、別途酸解離性基を有するものは本明細書中では構造単位(I)に分類される)。非酸解離性の炭化水素基としては、例えば-COO-のオキシ基に結合するメチル基、1級又は2級の鎖状炭化水素基、2級の脂環式炭化水素基、アダマンタン-1-イル基等が挙げられる。[A]重合体がその他の構造単位を有する場合、その他の構造単位の含有割合の下限としては、例えば1モル%である。上記含有割合の上限としては、30モル%が好ましく、20モル%がより好ましい。
[Other structural units]
Examples of the other structural unit include a structural unit (V) containing a non-acid-dissociable hydrocarbon group (however, even if it is a structural unit containing a non-acid-dissociable hydrocarbon group, a separate acid unit). Those having a dissociable group are classified as structural unit (I) in this specification). Examples of the non-acid-dissociable hydrocarbon group include a methyl group bonded to the —COO—oxy group, a primary or secondary chain hydrocarbon group, a secondary alicyclic hydrocarbon group, and adamantane-1- Yl group and the like. [A] When a polymer has other structural units, as a minimum of the content rate of other structural units, it is 1 mol%, for example. As an upper limit of the said content rate, 30 mol% is preferable and 20 mol% is more preferable.
 [A]重合体の含有量の下限としては、当該感放射線性樹脂組成物の全固形分を100質量%とした場合において、40質量%が好ましく、45質量%がより好ましく、50質量%がさらに好ましく、80質量%が特に好ましい。当該感放射線性樹脂組成物の「全固形分」とは、[E]溶媒以外の全成分をいう。当該感放射線性樹脂組成物は、[A]重合体を1種又は2種以上含有することができる。 [A] The lower limit of the content of the polymer is preferably 40% by mass, more preferably 45% by mass, and 50% by mass when the total solid content of the radiation-sensitive resin composition is 100% by mass. More preferred is 80% by mass. The “total solid content” of the radiation-sensitive resin composition refers to all components other than the [E] solvent. The said radiation sensitive resin composition can contain 1 type (s) or 2 or more types of [A] polymers.
 [A]重合体は、例えば各構造単位を与える単量体を、公知の方法で重合することにより合成することができる。 [A] The polymer can be synthesized, for example, by polymerizing monomers giving each structural unit by a known method.
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、3,000がより好ましく、5,000がさらに好ましく、10,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗工性を向上させることができ、その結果、CDU性能等をより向上させることができる。 [A] The lower limit of the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 1,000, more preferably 3,000, still more preferably 5,000, 000 is particularly preferred. The upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000. [A] By making Mw of a polymer into the said range, the applicability | paintability of the said radiation sensitive resin composition can be improved, As a result, CDU performance etc. can be improved more.
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の上限としては、5が好ましく、3がより好ましく、2がさらに好ましく、1.5が特に好ましい。上記比の下限としては、通常1であり、1.1が好ましい。 [A] The upper limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 5, more preferably 3, more preferably 2, and particularly preferably 1.5 . The lower limit of the ratio is usually 1 and preferably 1.1.
 本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(和光純薬工業社)
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
GPC column: 2 "G2000HXL" from Tosoh Corporation, 1 "G3000HXL" and 1 "G4000HXL" Column temperature: 40 ° C
Elution solvent: Tetrahydrofuran (Wako Pure Chemical Industries)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene
<[B]化合物>
 [B]化合物は、上記酸解離性基(a)を110℃、1分の条件で解離させる第1酸(以下、「酸(B)」ともいう)を放射線の照射により発生する化合物である。
<[B] Compound>
The compound [B] is a compound that generates a first acid (hereinafter also referred to as “acid (B)”) that dissociates the acid dissociable group (a) at 110 ° C. for 1 minute by irradiation with radiation. .
 酸(B)としては、例えば
 感放射線性樹脂組成物(I)の場合、フッ素原子を含むスルホン酸(以下、「酸(B1-1)」ともいう)、フッ素原子を含むジスルホニルイミド酸(以下、「酸(B1-2)」ともいう)、スルホマロン酸エステル(以下、「酸(B1-3)」ともいう)等が、
 感放射線性樹脂組成物(II)の場合、スルホン酸(以下、「酸(B2-1)」ともいう)、ジスルホニルイミド酸(以下、「酸(B2-2)」ともいう)等が挙げられる。
As the acid (B), for example, in the case of the radiation sensitive resin composition (I), a sulfonic acid containing a fluorine atom (hereinafter also referred to as “acid (B1-1)”), a disulfonylimide acid containing a fluorine atom ( Hereinafter, also referred to as “acid (B1-2)”, sulfomalonic acid ester (hereinafter also referred to as “acid (B1-3)”), etc.
In the case of the radiation sensitive resin composition (II), sulfonic acid (hereinafter also referred to as “acid (B2-1)”), disulfonylimide acid (hereinafter also referred to as “acid (B2-2)”), and the like can be mentioned. It is done.
 酸(B1-1)としては、例えば下記式(2-1)で表される化合物等が挙げられる。 Examples of the acid (B1-1) include a compound represented by the following formula (2-1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(2-1)中、Rは、炭素数1~30の1価の有機基である。RD1及びRD2は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。nは、1又は2である。nが2の場合、2のRD1は互いに同一又は異なり、2のRD2は互いに同一又は異なる。但し、RD1及びRD2のうちの少なくとも1つはフッ素原子又はフッ素化炭化水素基である。 In the above formula (2-1), R C is a monovalent organic group having 1 to 30 carbon atoms. R D1 and R D2 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. n is 1 or 2. When n is 2, 2 R D1 are the same or different from each other, and 2 R D2 are the same or different from each other. However, at least one of R D1 and R D2 is a fluorine atom or a fluorinated hydrocarbon group.
 酸(B1-2)としては、例えば下記式(2-2)で表される化合物等が挙げられる。 Examples of the acid (B1-2) include compounds represented by the following formula (2-2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(2-2)中、RE1及びRE2は、それぞれ独立して、炭素数1~20の1価のフッ素化炭化水素基であるか、又はこれらの基が互いに合わせられ式(2-2)中の硫黄原子及び窒素原子と共に構成される環員数6~12の環構造の一部である。 In the above formula (2-2), R E1 and R E2 are each independently a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms, or these groups are combined with each other to form the formula (2 -2) A part of a ring structure having 6 to 12 ring members, which is formed together with the sulfur atom and the nitrogen atom.
 酸(B1-3)としては、例えば下記式(2-3)で表される化合物等が挙げられる。 Examples of the acid (B1-3) include compounds represented by the following formula (2-3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(2-3)中、RF1及びRF2は、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられ式(2-3)中の-O-CO-CH-CO-O-と共に構成される環員数7~12の環構造の一部である。 In the above formula (2-3), R F1 and R F2 are each independently a monovalent organic group having 1 to 20 carbon atoms, or these groups are combined with each other to form the formula (2-3) It is a part of a ring structure having 7 to 12 ring members that is formed together with —O—CO—CH—CO—O—.
 酸(B2-1)としては、例えば下記式(3-1)で表される化合物等が挙げられる。 Examples of the acid (B2-1) include a compound represented by the following formula (3-1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(3-1)中、Rは、炭素数1~30の1価の有機基である。 In the above formula (3-1), R G is a monovalent organic group having 1 to 30 carbon atoms.
 酸(B2-2)としては、例えば下記式(3-2)で表される化合物等が挙げられる。 Examples of the acid (B2-2) include compounds represented by the following formula (3-2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(3-2)中、RH1及びRH2は、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられ式(3-2)中の硫黄原子及び窒素原子と共に構成される環員数6~12の環構造の一部である。 In the above formula (3-2), R H1 and R H2 are each independently a monovalent organic group having 1 to 20 carbon atoms, or these groups are combined with each other to form the formula (3-2) It is a part of a ring structure having 6 to 12 ring members, which is composed of a sulfur atom and a nitrogen atom.
 上記R、RF1、RF2、R、RH1及びRH2で表される1価の有機基としては、例えば上記式(1)のRの有機基として例示した基と同様の基等が挙げられる。 Examples of the monovalent organic group represented by R C , R F1 , R F2 , R G , R H1 and R H2 are the same groups as those exemplified as the organic group for R B in the above formula (1). Etc.
 上記RD1及びRD2で表される1価の炭化水素基としては、例えば上記式(PG1)のRPG1の炭化水素基として例示した基と同様の基等が挙げられる。これらの中で、アルキル基が好ましく、メチル基がより好ましい。 Examples of the monovalent hydrocarbon group represented by R D1 and R D2 include the same groups as those exemplified as the hydrocarbon group of R PG1 in the above formula (PG1). Among these, an alkyl group is preferable and a methyl group is more preferable.
 上記RD1、RD2、RE1及びRE2で表される1価のフッ素化炭化水素基としては、例えば上記式(PG1)のRPG1として例示した炭化水素基が有する水素原子の一部又は全部をフッ素原子で置換した基等が挙げられる。これらの中で、パーフルオロアルキル基が好ましく、トリフルオロメチル基がより好ましい。 As the monovalent fluorinated hydrocarbon group represented by R D1 , R D2 , R E1 and R E2 , for example, a part of hydrogen atoms possessed by the hydrocarbon group exemplified as R PG1 in the above formula (PG1) or Examples include groups in which all are substituted with fluorine atoms. Among these, a perfluoroalkyl group is preferable and a trifluoromethyl group is more preferable.
 酸(B)は、環員数5~20の環構造を有することが好ましい。酸(B)がこのような環構造を有することで、酸(B)のレジスト膜中での拡散長をより適度に短くすることができ、その結果、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。このような環構造としては、例えばノルボルナン構造、アダマンタン構造等の脂環構造;ベンゼン構造、フルオレン構造等の芳香環構造などが挙げられる。 The acid (B) preferably has a ring structure having 5 to 20 ring members. When the acid (B) has such a ring structure, the diffusion length of the acid (B) in the resist film can be shortened more appropriately. As a result, the CDU performance of the radiation-sensitive resin composition can be reduced. Etc. can be further improved. Examples of such a ring structure include an alicyclic structure such as a norbornane structure and an adamantane structure; an aromatic ring structure such as a benzene structure and a fluorene structure.
 [B]化合物は、通常、感放射線性カチオンと、酸(B)の酸基からプロトンを除いたアニオン(以下、「アニオン(B)」ともいう)との塩である。露光部において、[B]化合物は、放射線の作用による感放射線性アニオンの分解によって生じるプロトンとアニオン(B)とから酸(B)を与える。この酸(B)によれば、[A]重合体の酸解離性基(a)を110℃、1分の条件で解離させることができる。すなわち、[B]化合物は露光部における[A]重合体の酸解離性基を解離させ、現像液への溶解性を変化させる酸発生剤として機能する。 [B] The compound is usually a salt of a radiation-sensitive cation and an anion obtained by removing a proton from the acid group of the acid (B) (hereinafter also referred to as “anion (B)”). In the exposed area, the [B] compound gives an acid (B) from protons and anions (B) generated by the decomposition of the radiation-sensitive anion by the action of radiation. According to this acid (B), the acid dissociable group (a) of the [A] polymer can be dissociated at 110 ° C. for 1 minute. That is, the [B] compound functions as an acid generator that dissociates the acid dissociable group of the [A] polymer in the exposed area and changes the solubility in the developer.
 アニオン(B)としては、例えば
 感放射線性樹脂組成物(I)の場合、酸(B1-1)を与えるフッ素原子を含むスルホネートアニオン、酸(B1-2)を与えるフッ素原子を含むジスルホニルイミドアニオン、酸(B1-3)を与えるマロン酸エステル基のメチレン炭素原子に結合するスルホネート基を有するアニオン等が、
 感放射線性樹脂組成物(II)の場合、酸(B2-1)を与えるスルホネートアニオン、酸(B2-2)を与えるジスルホニルイミドアニオン等が挙げられる。
Examples of the anion (B) include a sulfonate anion containing a fluorine atom that gives an acid (B1-1) and a disulfonylimide containing a fluorine atom that gives an acid (B1-2) in the case of the radiation sensitive resin composition (I). An anion having a sulfonate group bonded to a methylene carbon atom of a malonate group that gives an acid (B1-3), etc.
In the case of the radiation sensitive resin composition (II), a sulfonate anion that gives an acid (B2-1), a disulfonylimide anion that gives an acid (B2-2), and the like.
 感放射線性カチオンは、露光光及び/又は電子線の照射により分解するカチオンである。スルホネートアニオンと感放射線性オニウムカチオンからなる酸発生剤を例にとると、露光部では、この感放射線性オニウムカチオンの分解により生成されるプロトンと、上記スルホネートアニオンとからスルホン酸が生成される。 The radiation-sensitive cation is a cation that is decomposed by exposure light and / or electron beam irradiation. Taking an acid generator composed of a sulfonate anion and a radiation-sensitive onium cation as an example, in the exposed portion, a sulfonic acid is generated from protons generated by the decomposition of the radiation-sensitive onium cation and the sulfonate anion.
 1価の感放射線性オニウムカチオンとしては、例えば下記式(r-a)で表されるカチオン(以下、「カチオン(r-a)」ともいう。)、下記式(r-b)で表されるカチオン(以下、「カチオン(r-b)」ともいう。)、下記式(r-c)で表されるカチオン(以下、「カチオン(r-c)」ともいう。)等が挙げられる。 Examples of the monovalent radiation-sensitive onium cation include a cation represented by the following formula (r−a) (hereinafter also referred to as “cation (r−a)”), and a valence represented by the following formula (rb). Cation (hereinafter also referred to as “cation (r−b)”), a cation represented by the following formula (rc) (hereinafter also referred to as “cation (rc)”), and the like.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(r-a)中、RB3及びRB4は、それぞれ独立して、炭素数1~20の1価の有機基である。b3は、0~11の整数である。b3が1の場合、RB5は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b3が2以上の場合、複数のRB5は互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。nbbは、0~3の整数である。 In the above formula (r−a), R B3 and R B4 are each independently a monovalent organic group having 1 to 20 carbon atoms. b3 is an integer of 0 to 11. When b3 is 1, R B5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom. when b3 is 2 or more, the plurality of R B5 are the same or different from each other and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded. n bb is an integer of 0 to 3.
 上記RB3、RB4及びRB5で表される炭素数1~20の1価の有機基としては、例えば上記式(1)のRとして例示した有機基と同様の基等が挙げられる。 The monovalent organic group of the R B3, R B4 and having 1 to 20 carbon atoms represented by R B5, for example, like same groups as exemplified organic groups as R B in the formula (1).
 RB3及びRB4としては、炭素数1~20の1価の非置換の炭化水素基又はそれらの基が有する水素原子が置換基により置換された炭化水素基が好ましく、炭素数6~18の1価の非置換の芳香族炭化水素基又はそれらの基が有する水素原子が置換基により置換された芳香族炭化水素基がより好ましく、置換又は非置換のフェニル基がさらに好ましい。 R B3 and R B4 are preferably a monovalent unsubstituted hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group in which a hydrogen atom of these groups is substituted with a substituent, and has 6 to 18 carbon atoms. A monovalent unsubstituted aromatic hydrocarbon group or an aromatic hydrocarbon group in which the hydrogen atom of these groups is substituted with a substituent is more preferred, and a substituted or unsubstituted phenyl group is more preferred.
 上記RB3及びRB4として表される炭素数1~20の1価の炭化水素基が有する水素原子を置換していてもよい置換基としては、置換若しくは非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R又は-S-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。 Examples of the substituent which may be substituted on the hydrogen atom of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R B3 and R B4 include substituted or unsubstituted 1 to 20 carbon atoms. Valent hydrocarbon group, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , —O—CO—R k , —O—R kk —COOR k , —R kk —CO -R k, or -S-R k are preferred. R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms. R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
 RB5としては、置換若しくは非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R又は-S-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。 R B5 includes a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , —O—CO— R k , —O—R kk —COOR k , —R kk —CO—R k or —S—R k is preferred. R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms. R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
 上記式(r-b)中、b4は、0~9の整数である。b4が1の場合、RB6は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b4が2以上の場合、複数のRB6は互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。b5は、0~10の整数である。b5が1の場合、RB7は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b5が2以上の場合、複数のRB7は互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子若しくは炭素鎖と共に構成される環員数3~20の環構造の一部である。nb2は、0~3の整数である。RB8は、単結合又は炭素数1~20の2価の有機基である。nb1は、0~2の整数である。 In the above formula (rb), b4 is an integer of 0 to 9. When b4 is 1, R B6 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom. When b4 is 2 or more, the plurality of R B6 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded. b5 is an integer of 0 to 10. When b5 is 1, R B7 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom. When b5 is 2 or more, the plurality of R B7 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 3 to 20 ring members constituted with a carbon atom or a carbon chain to which is bonded. n b2 is an integer of 0 to 3. R B8 is a single bond or a divalent organic group having 1 to 20 carbon atoms. n b1 is an integer of 0-2.
 上記RB6及びRB7としては、置換若しくは非置換の炭素数1~20の1価の炭化水素基、-OR、-COOR、-O-CO-R、-O-Rkk-COOR又は-Rkk-CO-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。 R B6 and R B7 include a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OR k , —COOR k , —O—CO—R k , —O—R kk —COOR. k or —R kk —CO—R k is preferred. R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms. R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
 上記RB8としては、例えば上記式(1)のRとして例示した炭素数1~20の1価の有機基から1個の水素原子を除いた基等が挙げられる。 Examples of R B8 include a group in which one hydrogen atom is removed from a monovalent organic group having 1 to 20 carbon atoms exemplified as R B in the above formula (1).
 上記式(r-c)中、b6は、0~5の整数である。b6が1の場合、RB9は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b6が2以上の場合、複数のRB9は互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。b7は、0~5の整数である。b7が1の場合、RB10は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b7が2以上の場合、複数のRB10は互いに同一又は異なり、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基若しくはハロゲン原子であるか、又はこれらの基が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。 In the above formula (rc), b6 is an integer of 0 to 5. When b6 is 1, R B9 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom. when b6 is 2 or more, the plurality of R B9 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded. b7 is an integer of 0 to 5. When b7 is 1, R B10 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom. When b7 is 2 or more, the plurality of R B10 are the same or different from each other, and are each a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom, or these groups are combined with each other Is a part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which is bonded.
 上記RB9及びRB10としては、置換若しくは非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R、-S-R又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造が好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。 R B9 and R B10 include a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , — A ring structure in which two or more of O—CO—R k , —O—R kk —COOR k , —R kk —CO—R k , —S—R k or these groups are combined with each other preferable. R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms. R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
 RB5、RB6、RB7、RB9及びRB10で表される炭素数1~20の1価の炭化水素基としては、例えば上記式(PG1)のRPG1の炭化水素基として例示した基と同様の基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R B5 , R B6 , R B7 , R B9 and R B10 include the groups exemplified as the hydrocarbon group of R PG1 in the above formula (PG1). And the like groups.
 RB8で表される2価の有機基としては、例えば上記式(1)のRとして例示した炭素数1~20の1価の有機基から1個の水素原子を除いた基等が挙げられる。 Examples of the divalent organic group represented by R B8 include groups in which one hydrogen atom has been removed from a monovalent organic group having 1 to 20 carbon atoms exemplified as R A in the above formula (1). It is done.
 上記RB5、RB6、RB7、RB9及びRB10で表される炭化水素基が有する水素原子を置換していてもよい置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。 Examples of the substituent that may substitute the hydrogen atom of the hydrocarbon group represented by R B5 , R B6 , R B7 , R B9, and R B10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. And a halogen atom such as hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, and acyloxy group. Among these, a halogen atom is preferable and a fluorine atom is more preferable.
 RB5、RB6、RB7、RB9及びRB10としては、非置換の直鎖状若しくは分岐鎖状のアルキル基、フッ素化アルキル基、非置換の1価の芳香族炭化水素基、-OSO-R又は-SO-Rが好ましく、フッ素化アルキル基又は非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。 R B5 , R B6 , R B7 , R B9, and R B10 include an unsubstituted linear or branched alkyl group, a fluorinated alkyl group, an unsubstituted monovalent aromatic hydrocarbon group, —OSO 2 -R k, or -SO 2 -R k, more preferably a fluorinated alkyl group or an unsubstituted monovalent aromatic hydrocarbon group, more preferably a fluorinated alkyl group.
 式(r-a)におけるb3としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。nbbとしては、0又は1が好ましく、0がより好ましい。式(r-b)におけるb4としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。b5としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。nb2としては、2又は3が好ましく、2がより好ましい。nb1としては、0又は1が好ましく、0がより好ましい。式(r-c)におけるb6及びb7としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。 As b3 in the formula (r−a), an integer of 0 to 2 is preferable, 0 or 1 is more preferable, and 0 is more preferable. As n bb , 0 or 1 is preferable, and 0 is more preferable. In the formula (rb), b4 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0. b5 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0. As nb2 , 2 or 3 is preferable and 2 is more preferable. As n b1 , 0 or 1 is preferable, and 0 is more preferable. In formula (rc), b6 and b7 are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 上記1価の感放射線性オニウムカチオンとしては、これらの中で、カチオン(r-a)又はカチオン(r-b)が好ましく、トリフェニルスルホニウムカチオン又は1-[2-(4-シクロヘキシルフェニルカルボニル)プロパン-2-イル]テトラヒドロチオフェニウムカチオンがより好ましい。 Among these monovalent radiation-sensitive onium cations, cation (r−a) or cation (r−b) is preferable, and triphenylsulfonium cation or 1- [2- (4-cyclohexylphenylcarbonyl) is preferable. Propan-2-yl] tetrahydrothiophenium cation is more preferred.
 [B]化合物としては、例えば下記式(i-1)~(i-6)で表される化合物(以下、「化合物(i-1)~(i-6)」ともいう)等が挙げられる。 Examples of the compound [B] include compounds represented by the following formulas (i-1) to (i-6) (hereinafter also referred to as “compounds (i-1) to (i-6)”). .
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(i-1)~(i-6)中、Tは、1価の感放射線性オニウムカチオンである。 In the above formulas (i-1) to (i-6), T + is a monovalent radiation-sensitive onium cation.
 [B]化合物としては、化合物(i-1)~(i-6)が好ましい。 [B] Compounds (i-1) to (i-6) are preferred as the compound.
 [B]化合物の含有量の下限としては、全固形分(組成物中の[E]溶媒以外の全成分)中、10質量%であり、11質量%が好ましく、12質量%がより好ましい。上記含有量の上限としては、20質量%が好ましく、15質量%がより好ましく、14質量%がさらに好ましい。[B]化合物の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の感度をより適度に高めることができ、その結果、CDU性能等をより向上させることができる。当該感放射線性樹脂組成物は、[B]化合物を1種又は2種以上含有することができる。 The lower limit of the content of the [B] compound is 10% by mass, preferably 11% by mass, and more preferably 12% by mass in the total solid content (all components other than the [E] solvent in the composition). As an upper limit of the said content, 20 mass% is preferable, 15 mass% is more preferable, and 14 mass% is further more preferable. [B] By making content of a compound into the said range, the sensitivity of the said radiation sensitive resin composition can be raised more appropriately, As a result, CDU performance etc. can be improved more. The radiation-sensitive resin composition can contain one or more [B] compounds.
<[C]化合物>
 [C]化合物は、上記酸解離性基(a)を110℃、1分の条件で実質的に解離させない第2酸(以下、「酸(C)」ともいう)を放射線の照射により発生する化合物である。なお、「酸解離性基を実質的に解離させない」とは、上記条件における酸解離性基の解離率が5モル%以下であることをいう。
<[C] Compound>
The compound [C] generates a second acid (hereinafter also referred to as “acid (C)”) that does not substantially dissociate the acid dissociable group (a) at 110 ° C. for 1 minute by irradiation with radiation. A compound. “The acid dissociable group is not substantially dissociated” means that the dissociation rate of the acid dissociable group under the above conditions is 5 mol% or less.
 酸(C)としては、例えば
 感放射線性樹脂組成物(I)の場合、例えばフッ素原子を含まないスルホン酸(スルホマロン酸エステルを除く)(以下、「酸(C1-1)」ともいう)、カルボン酸(以下、「酸(C1-2)」ともいう)、スルホンアミド酸(以下、「酸(C1-3)」ともいう)等が挙げられる。
 感放射線性樹脂組成物(II)の場合、カルボン酸(以下、「酸(C2-1)」ともいう)、スルホンアミド酸(以下、「酸(C2-2)」ともいう)等が挙げられる。
As the acid (C), for example, in the case of the radiation sensitive resin composition (I), for example, a sulfonic acid containing no fluorine atom (excluding sulfomalonic acid ester) (hereinafter also referred to as “acid (C1-1)”), Examples thereof include carboxylic acid (hereinafter also referred to as “acid (C1-2)”), sulfonamidic acid (hereinafter also referred to as “acid (C1-3)”), and the like.
In the case of the radiation sensitive resin composition (II), carboxylic acid (hereinafter also referred to as “acid (C2-1)”), sulfonamidic acid (hereinafter also referred to as “acid (C2-2)”), and the like can be mentioned. .
 酸(C1-1)としては、例えば下記式(4-1)で表される化合物等が挙げられる。 Examples of the acid (C1-1) include compounds represented by the following formula (4-1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(4-1)中、RS1、RS2及びRS3は、それぞれ独立して、水素原子又はフッ素原子を含まない炭素数1~30の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造の一部である。但し、RS1、RS2及びRS3のうちの2つ以上がR’-O-CO-(R’は炭素数1~29の1価の有機基である)である場合はない。 In the above formula (4-1), R S1 , R S2 and R S3 are each independently a monovalent organic group having 1 to 30 carbon atoms which does not contain a hydrogen atom or a fluorine atom, or these Two or more of the groups are part of a ring structure having 3 to 20 ring members that is configured together with the carbon atoms to which they are attached. However, two or more of R S1 , R S2 and R S3 are not R′—O—CO— (where R ′ is a monovalent organic group having 1 to 29 carbon atoms).
 酸(C1-2)及び酸(C2-1)としては、例えば下記式(4-2)で表される化合物等が挙げられる。 Examples of the acid (C1-2) and the acid (C2-1) include compounds represented by the following formula (4-2).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(4-2)中、Rは、炭素数1~30の1価の有機基である。 In the above formula (4-2), RT is a monovalent organic group having 1 to 30 carbon atoms.
 酸(C1-3)及び酸(C2-2)としては、例えば下記式(4-3)で表される化合物等が挙げられる。 Examples of the acid (C1-3) and the acid (C2-2) include compounds represented by the following formula (4-3).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(4-3)中、Rは、炭素数1~20の1価のフッ素化炭化水素基である。Rは、炭素数1~20の1価の有機基である。 In the above formula (4-3), R U represents a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. R V is a monovalent organic group having 1 to 20 carbon atoms.
 上記RS1、RS2及びRS3で表されるフッ素原子を含まない1価の有機基としては、例えば上記式(1)のRの有機基として例示した基のうちフッ素原子を含まないもの等が挙げられる。 Examples of the monovalent organic group that does not contain a fluorine atom represented by R S1 , R S2, and R S3 include those that do not contain a fluorine atom among the groups exemplified as the organic group of R B in the above formula (1). Etc.
 上記RS1、RS2及びRS3のうちの2つ以上が構成する環員数3~20の環構造としては、例えばノルボルナン構造、アダマンタン構造等の脂環構造;ベンゼン構造、フルオレン構造等の芳香環構造などが挙げられる。 Examples of the ring structure having 3 to 20 ring members constituted by two or more of R S1 , R S2 and R S3 include alicyclic structures such as norbornane structure and adamantane structure; aromatic rings such as benzene structure and fluorene structure Examples include the structure.
 上記Rで及びRで表される1価の有機基としては、例えば上記式(1)のRの有機基として例示した基と同様の基等が挙げられる。 Examples of the monovalent organic group represented by R T and R V include the same groups as those exemplified as the organic group of R B in the above formula (1).
 上記Rで表される1価のフッ素化炭化水素基としては、例えば上記式(PG1)のRPG1として例示した炭化水素基が有する水素原子の一部又は全部をフッ素原子で置換した基等が挙げられる。これらの中で、パーフルオロアルキル基が好ましく、トリフルオロメチル基がより好ましい。 Examples of the monovalent fluorinated hydrocarbon groups represented by R U, for example, the radical obtained by substituting a part or all of the hydrogen atoms by fluorine atoms included in the exemplified hydrocarbon groups as R PG1 of (PG1), etc. Is mentioned. Among these, a perfluoroalkyl group is preferable and a trifluoromethyl group is more preferable.
 酸(C)は、環員数5~20の環構造を有することが好ましい。酸(C)がこのような環構造を有することで、酸(C)のレジスト膜中での拡散をより抑制することができ、その結果、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。このような環構造としては、例えばノルボルナン構造、アダマンタン構造等の脂環構造;ベンゼン構造、フルオレン構造等の芳香環構造などが挙げられる。 The acid (C) preferably has a ring structure having 5 to 20 ring members. Since the acid (C) has such a ring structure, the diffusion of the acid (C) in the resist film can be further suppressed, and as a result, the CDU performance and the like of the radiation sensitive resin composition can be further improved. Can be improved. Examples of such a ring structure include an alicyclic structure such as a norbornane structure and an adamantane structure; an aromatic ring structure such as a benzene structure and a fluorene structure.
 [C]化合物は、通常、感放射線性カチオンと、酸(C)の酸基からプロトンを除いたアニオン(以下、「アニオン(C)」ともいう)との塩である。[C]化合物は、感放射線性カチオンが有する炭化水素基等にカルボキシレート基等のアニオン(C)に由来する基が結合したベタイン構造を有するものであってもよい。 [C] The compound is usually a salt of a radiation-sensitive cation and an anion obtained by removing a proton from the acid group of the acid (C) (hereinafter also referred to as “anion (C)”). The compound [C] may have a betaine structure in which a group derived from an anion (C) such as a carboxylate group is bonded to a hydrocarbon group or the like of a radiation-sensitive cation.
 露光部において、[C]化合物は、放射線の作用による感放射線性アニオンの分解によって生じるプロトンとアニオン(C)とから酸(C)を与える。この酸(C)は、上記酸解離性基(a)を110℃、1分の条件で実質的に解離させないものである。従って、[C]化合物は、レジスト膜中において、酸拡散制御剤としての機能を発揮する。 In the exposed area, the [C] compound gives an acid (C) from a proton and an anion (C) generated by the decomposition of the radiation sensitive anion by the action of radiation. This acid (C) does not substantially dissociate the acid dissociable group (a) at 110 ° C. for 1 minute. Therefore, the [C] compound exhibits a function as an acid diffusion controller in the resist film.
 アニオン(C)としては、例えば
 感放射線性樹脂組成物(I)の場合、酸(C1-1)を与えるフッ素原子を含まないスルホネートアニオン(スルホマロン酸エステルに由来するアニオンを除く)、酸(C1-2)を与えるカルボキシレートアニオン、酸(C1-3)を与えるスルホンアミド酸アニオン等が、
 感放射線性樹脂組成物(II)の場合、酸(C2-1)を与えるカルボキシレートアニオン、酸(C2-2)を与えるスルホンアミド酸アニオン等が挙げられる。
As the anion (C), for example, in the case of the radiation-sensitive resin composition (I), a sulfonate anion containing no fluorine atom that gives the acid (C1-1) (excluding an anion derived from sulfomalonic acid ester), an acid (C1 -2) a carboxylate anion that gives acid, a sulfonamidate anion that gives acid (C1-3), etc.
In the case of the radiation sensitive resin composition (II), a carboxylate anion that gives an acid (C2-1), a sulfonamidate anion that gives an acid (C2-2), and the like can be mentioned.
 [C]化合物の感放射線性カチオンとしては、例えば上記[B]化合物の感放射線性カチオンとして例示したものと同様のカチオン等が挙げられる。 Examples of the radiation sensitive cation of the [C] compound include the same cations as those exemplified as the radiation sensitive cation of the above [B] compound.
 [C]化合物としては、例えば下記式(ii-1)~(ii-8)で表される化合物(以下、「化合物(ii-1)~(ii-8)」ともいう)等が挙げられる。 Examples of the compound [C] include compounds represented by the following formulas (ii-1) to (ii-8) (hereinafter also referred to as “compounds (ii-1) to (ii-8)”). .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(ii-1)~(ii-7)中、Tは、1価の感放射線性オニウムカチオンである。 In the above formulas (ii-1) to (ii-7), T + is a monovalent radiation-sensitive onium cation.
 [C]化合物としては、化合物(ii-1)~(ii-6)が好ましい。 [C] Compounds (ii-1) to (ii-6) are preferred as the [C] compound.
 [C]化合物が窒素原子を含むものであると、酸拡散制御能が向上する一方、露光部において[B]化合物から発生した酸の一部を捕捉するため、未露光部との酸濃度の差が小さくなり、露光部と未露光部との間の現像液への溶解性の差(溶解コントラスト)が小さくなる。溶解コントラストを大きくしたい場合には、[C]化合物としては、窒素原子を含まない化合物が好ましい。 When the [C] compound contains a nitrogen atom, the acid diffusion control ability is improved, while a part of the acid generated from the [B] compound is captured in the exposed area, so that there is a difference in acid concentration from the unexposed area. The difference in solubility (dissolution contrast) in the developer between the exposed area and the unexposed area becomes smaller. When it is desired to increase the dissolution contrast, the [C] compound is preferably a compound containing no nitrogen atom.
 [C]化合物の含有量の下限としては、全固形分(組成物中の[E]溶媒以外の全成分)中、0.1質量%が好ましく、1質量%がより好ましく、1.5質量%がさらに好ましく、2質量%が特に好ましい。上記含有量の上限としては、10質量%が好ましく、8質量%がより好ましく、7.5質量%がさらに好ましく、7質量%が特に好ましい。[C]化合物の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。 [C] The lower limit of the content of the compound is preferably 0.1% by mass, more preferably 1% by mass, and preferably 1.5% by mass in the total solid content (all components other than the solvent [E] in the composition). % Is more preferable, and 2% by mass is particularly preferable. As an upper limit of the said content, 10 mass% is preferable, 8 mass% is more preferable, 7.5 mass% is further more preferable, 7 mass% is especially preferable. By making content of a [C] compound into the said range, CDU performance of the said radiation sensitive resin composition etc. can be improved more.
 [C]化合物の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、1.5質量部がさらに好ましく、2質量部が特に好ましい。上記含有量の上限としては、12質量部が好ましく、10質量部がより好ましく、9質量部がさらに好ましく、8質量部が特に好ましい。当該感放射線性樹脂組成物は、[C]化合物を1種又は2種以上含有することができる。 [C] The lower limit of the content of the compound is preferably 0.1 parts by mass, more preferably 1 part by mass, further preferably 1.5 parts by mass, with respect to 100 parts by mass of the polymer [A]. Part is particularly preferred. As an upper limit of the said content, 12 mass parts is preferable, 10 mass parts is more preferable, 9 mass parts is further more preferable, and 8 mass parts is especially preferable. The radiation-sensitive resin composition can contain one or more [C] compounds.
 [B]化合物のモル数をB、[C]化合物のモル数をCとした場合に、B/C(BのCに対する比)の下限としては、1.7であり、2.0が好ましく、2.6がより好ましく、3.0がさらに好ましく、3.2が特に好ましい。上記B/Cの上限としては、10が好ましく、5がより好ましく、4がさらに好ましく、3.5が特に好ましい。上記B/Cを上記範囲とすることで、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。 [B] the number of moles of compound B m, when the number of moles of [C] compounds and C m, the lower limit of B m / C m (ratio C m of B m), be 1.7 2.0 is preferable, 2.6 is more preferable, 3.0 is more preferable, and 3.2 is particularly preferable. The upper limit of the above B m / C m is preferably 10, more preferably 5, more preferably 4, and particularly preferably 3.5. By making said Bm / Cm into the said range, CDU performance of the said radiation sensitive resin composition etc. can be improved more.
 [B]化合物と[C]化合物との合計含有量の下限としては、全固形分(組成物中の[E]溶媒以外の全成分)中、10.1質量%が好ましく、12質量%がより好ましく、14質量%がさらに好ましい。上記合計含有量の上限としては、30質量%が好ましく、20質量%がより好ましく、18質量%がさらに好ましい。[B]化合物と[C]化合物との合計含有量を上記範囲とすることで、当該感放射線性樹脂組成物のCDU性能等をより向上させることができる。 The lower limit of the total content of the [B] compound and the [C] compound is preferably 10.1% by mass and 12% by mass in the total solid content (all components other than the solvent [E] in the composition). More preferred is 14% by mass. As an upper limit of the said total content, 30 mass% is preferable, 20 mass% is more preferable, and 18 mass% is further more preferable. By setting the total content of the [B] compound and the [C] compound in the above range, the CDU performance and the like of the radiation sensitive resin composition can be further improved.
<[D]重合体>
 [D]重合体は、フッ素原子若しくはケイ素原子又はこれら両方を含み、フッ素原子の質量含有率及びケイ素原子の質量含有率の和(以下、「フッ素原子及びケイ素原子の合計質量含有率」ともいう)が、[A]重合体中のフッ素原子及びケイ素原子の合計質量含有率よりも大きい重合体である。
<[D] Polymer>
[D] The polymer contains a fluorine atom, a silicon atom, or both, and is the sum of the mass content of fluorine atoms and the mass content of silicon atoms (hereinafter also referred to as “total mass content of fluorine atoms and silicon atoms”). ) Is a polymer larger than the total mass content of fluorine atoms and silicon atoms in the polymer [A].
 ベース重合体となる重合体より疎水性が高い重合体は、レジスト膜表層に偏在化する傾向があり、[D]重合体は[A]重合体よりもフッ素原子及びケイ素原子の合計質量含有率が大きいため、この疎水性に起因する特性により、レジスト膜表層に偏在化する傾向がある。その結果、当該感放射線性樹脂組成物によれば、液浸露光時における酸発生剤、酸拡散制御剤等が液浸媒体に溶出することを抑制することができる。また、当該感放射線性樹脂組成物によれば、この[D]重合体の疎水性に起因する特性により、レジスト膜と液浸媒体との前進接触角を所望の範囲に制御でき、バブル欠陥の発生を抑制できる。さらに、当該感放射線性樹脂組成物によれば、レジスト膜と液浸媒体との後退接触角が大きくなり、水滴が残らずに高速でのスキャン露光が可能となる。当該感放射線性樹脂組成物は、このように[D]重合体を含有することにより、液浸露光法に好適なレジスト膜を形成することができる。また、当該感放射線性樹脂組成物は、[D]重合体を含有することにより、欠陥の発生が抑制されたレジストパターンを形成することができる。 The polymer having higher hydrophobicity than the polymer serving as the base polymer tends to be unevenly distributed in the resist film surface layer, and the [D] polymer has a total mass content of fluorine atoms and silicon atoms as compared to the [A] polymer. Therefore, there is a tendency to be unevenly distributed in the surface layer of the resist film due to the characteristics resulting from the hydrophobicity. As a result, according to the radiation sensitive resin composition, it is possible to suppress the elution of the acid generator, the acid diffusion control agent, and the like during the immersion exposure into the immersion medium. In addition, according to the radiation sensitive resin composition, the advancing contact angle between the resist film and the immersion medium can be controlled within a desired range due to the properties resulting from the hydrophobicity of the [D] polymer, and bubble defects can be controlled. Generation can be suppressed. Furthermore, according to the radiation-sensitive resin composition, the receding contact angle between the resist film and the immersion medium is increased, and high-speed scanning exposure is possible without leaving water droplets. The radiation-sensitive resin composition can form a resist film suitable for the immersion exposure method by containing the [D] polymer as described above. Moreover, the said radiation sensitive resin composition can form the resist pattern by which generation | occurrence | production of the defect was suppressed by containing a [D] polymer.
 [D]重合体のフッ素原子及びケイ素原子の合計質量含有率の下限としては、1質量%が好ましく、2質量%がより好ましく、3質量%がさらに好ましい。上記質量含有率の上限としては、60質量%が好ましく、50質量%がより好ましく、40質量%がさらに好ましい。フッ素原子及びケイ素原子の合計質量含有率を上記範囲とすることで、[D]重合体のレジスト膜における偏在化をより適度に調整することができる。なお、重合体のフッ素原子及びケイ素原子の合計質量含有率は、13C-NMRスペクトル測定により重合体の構造を求め、その構造から算出することができる。 [D] The lower limit of the total mass content of fluorine atoms and silicon atoms in the polymer is preferably 1% by mass, more preferably 2% by mass, and even more preferably 3% by mass. As an upper limit of the said mass content rate, 60 mass% is preferable, 50 mass% is more preferable, and 40 mass% is further more preferable. By setting the total mass content of fluorine atoms and silicon atoms in the above range, uneven distribution of the [D] polymer in the resist film can be more appropriately adjusted. The total mass content of fluorine atoms and silicon atoms in the polymer can be calculated from the structure of the polymer obtained by 13 C-NMR spectrum measurement.
 [D]重合体がフッ素原子を含む重合体の場合、[D]重合体におけるフッ素原子の含有形態は特に限定されず、主鎖、側鎖及び末端のいずれに結合するものでもよいが、フッ素原子を含む構造単位(以下、「構造単位(F)」ともいう)を有することが好ましい。 [D] When the polymer is a polymer containing a fluorine atom, the content of the fluorine atom in the [D] polymer is not particularly limited, and may be bonded to any of the main chain, side chain, and terminal. It preferably has a structural unit containing an atom (hereinafter also referred to as “structural unit (F)”).
[構造単位(F)]
 構造単位(F)としては、例えば下記式(f-1)等が挙げられる。
[Structural unit (F)]
Examples of the structural unit (F) include the following formula (f-1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(f-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-COO-、-SONH-、-CONH-又は-OCONH-である。Rは、炭素数1~6の1価のフッ素化鎖状炭化水素基又は炭素数4~20の1価のフッ素化脂環式炭化水素基である。 In the above formula (f-1), R J represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. G is a single bond, an oxygen atom, a sulfur atom, —COO—, —SO 2 NH—, —CONH— or —OCONH—. R K is a monovalent monovalent fluorine cycloaliphatic hydrocarbon group chain fluorinated hydrocarbon group or a C 4-20 having 1 to 6 carbon atoms.
 上記Rとしては、構造単位(f-1)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。 R J is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (f-1).
 上記Gとしては、-COO-、-SONH-、-CONH-又は-OCONH-が好ましく、-COO-がより好ましい。 G is preferably —COO—, —SO 2 NH—, —CONH— or —OCONH—, more preferably —COO—.
 上記Rで表される炭素数1~6の1価のフッ素化鎖状炭化水素基としては、例えば一部又は全部の水素原子がフッ素原子により置換された炭素数1~6の直鎖状又は分岐鎖状のアルキル基等が挙げられる。 Said R as the monovalent fluorinated chain hydrocarbon group having 1 to 6 carbon atoms represented by K, for example, some or all of the linear hydrogen atoms to 1 carbon atoms which is substituted by fluorine atom 6 Or a branched alkyl group etc. are mentioned.
 上記Rで表される炭素数4~20の1価のフッ素化脂環式炭化水素基としては、一部又は全部の水素原子がフッ素原子により置換された炭素数4~20の単環又は多環の炭化水素基が挙げられる。 Carbon atoms represented by R K 4 Examples of the monovalent fluorine cycloaliphatic hydrocarbon radical of 1-20, monocyclic some or carbon number of 4 to 20 substitution all of the hydrogen atoms by fluorine atoms or A polycyclic hydrocarbon group is mentioned.
 Rとしては、フッ素化鎖状炭化水素基が好ましく、2,2,2-トリフルオロエチル基又は1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基がより好ましく、2,2,2-トリフルオロエチル基がさらに好ましい。 The R K, preferably a fluorinated chain hydrocarbon group, a 2,2,2-trifluoroethyl group or a 1,1,1,3,3,3-hexafluoro-2-propyl group is more preferred, 2 More preferred is a 2,2-trifluoroethyl group.
 [D]重合体が構造単位(F)を有する場合、構造単位(F)の含有割合の下限としては、[D]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましい。上記含有割合の上限としては、100モル%が好ましく、90モル%がより好ましい。構造単位(F)の含有割合を上記範囲とすることで、[D]重合体のフッ素原子の質量含有率をさらに適度に調整することができる。 [D] When a polymer has a structural unit (F), as a minimum of the content rate of a structural unit (F), 10 mol% is preferable with respect to all the structural units which comprise a [D] polymer, 20 Mole% is more preferable. As an upper limit of the said content rate, 100 mol% is preferable and 90 mol% is more preferable. By making the content rate of a structural unit (F) into the said range, the mass content rate of the fluorine atom of a [D] polymer can be adjusted further appropriately.
 [D]重合体としては、脂環構造を有するものが好ましい。脂環構造を含む構造単位(A)としては、例えば非酸解離性の脂環式炭化水素基を含む構造単位(A1)等が挙げられる。上記非酸解離性の脂環式炭化水素基を含む構造単位(A1)としては、例えば上記[A]重合体の構造単位(V)として例示した非酸解離性の炭化水素基を含む構造単位のうち、炭化水素基が2級の脂環式炭化水素基又はアダマンタン-1-イル基であるもの等が挙げられる。[D]重合体が構造単位(A)を有する場合、構造単位(A)の含有割合の下限としては、[D]重合体を構成する全構造単位に対して、10モル%が好ましく、30モル%がより好ましく、50モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましい。 [D] As the polymer, those having an alicyclic structure are preferable. Examples of the structural unit (A) containing an alicyclic structure include a structural unit (A1) containing a non-acid dissociable alicyclic hydrocarbon group. As the structural unit (A1) containing a non-acid-dissociable alicyclic hydrocarbon group, for example, a structural unit containing a non-acid-dissociable hydrocarbon group exemplified as the structural unit (V) of the above-mentioned [A] polymer Among them, those in which the hydrocarbon group is a secondary alicyclic hydrocarbon group or an adamantan-1-yl group are exemplified. [D] When the polymer has a structural unit (A), the lower limit of the content ratio of the structural unit (A) is preferably 10 mol% with respect to all the structural units constituting the polymer. Mole% is more preferable, and 50 mol% is more preferable. As an upper limit of the said content rate, 90 mol% is preferable and 80 mol% is more preferable.
 [D]重合体は、酸解離性基を含む構造単位(B)を有することができる。構造単位(B)としては、例えば[A]重合体における構造単位(I)等が挙げられる。[D]重合体が構造単位(B)を有する場合、構造単位(B)の含有割合の上限としては、[D]重合体を構成する全構造単位に対して、80モル%が好ましく、20モル%がより好ましく、16モル%がさらに好ましい。上記含有割合としては、0モル%超が好ましく、5モル%がより好ましく、10モル%がさらに好ましい。また、[D]重合体は、構造単位(B)を有さないことも好ましい。 [D] The polymer may have a structural unit (B) containing an acid dissociable group. Examples of the structural unit (B) include the structural unit (I) in the [A] polymer. [D] When a polymer has a structural unit (B), as an upper limit of the content rate of a structural unit (B), 80 mol% is preferable with respect to all the structural units which comprise a [D] polymer, 20 Mole% is more preferable, and 16 mol% is more preferable. As said content rate, more than 0 mol% is preferable, 5 mol% is more preferable, and 10 mol% is further more preferable. Moreover, it is preferable that the [D] polymer does not have a structural unit (B).
 [D]重合体は、非酸解離性の鎖状炭化水素基を含む構造単位(C)を有することができる。上記非酸解離性の鎖状炭化水素基を含む構造単位(C)としては、例えば上記[A]重合体の構造単位(V)として例示した非酸解離性の炭化水素基を含む構造単位のうち、炭化水素基がメチル基、1級又は2級の鎖状炭化水素基であるもの等が挙げられる。1級の鎖状炭化水素基としては、例えばn-ブチル基、n-ドデシル基等のアルキル基などが挙げられる。[D]重合体が構造単位(C)を有する場合、構造単位(C)の含有割合の下限としては、[D]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましい。上記含有割合の上限としては、50モル%が好ましく、40モル%がより好ましい。 [D] The polymer may have a structural unit (C) containing a non-acid-dissociable chain hydrocarbon group. As the structural unit (C) containing a non-acid-dissociable chain hydrocarbon group, for example, the structural unit containing a non-acid-dissociable hydrocarbon group exemplified as the structural unit (V) of the above-mentioned [A] polymer. Among them, the hydrocarbon group is a methyl group, a primary or secondary chain hydrocarbon group, and the like. Examples of the primary chain hydrocarbon group include alkyl groups such as n-butyl group and n-dodecyl group. [D] When the polymer has a structural unit (C), the lower limit of the content ratio of the structural unit (C) is preferably 10 mol% with respect to all the structural units constituting the [D] polymer. Mole% is more preferable. As an upper limit of the said content rate, 50 mol% is preferable and 40 mol% is more preferable.
 当該感放射線性樹脂組成物が[D]重合体を含有する場合、[D]重合体の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、2質量部が特に好ましい。上記含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましく、10質量部が特に好ましい。当該感放射線性樹脂組成物は[D]重合体を1種又は2種以上含有していてもよい。 When the said radiation sensitive resin composition contains a [D] polymer, as a minimum of content of a [D] polymer, 0.1 mass part is preferable with respect to 100 mass parts of [A] polymers. 0.5 parts by mass is more preferable, 1 part by mass is further preferable, and 2 parts by mass is particularly preferable. As an upper limit of the said content, 30 mass parts is preferable, 20 mass parts is more preferable, 15 mass parts is further more preferable, and 10 mass parts is especially preferable. The radiation sensitive resin composition may contain one or more [D] polymers.
 [D]重合体は、上述した[A]重合体と同様の方法で合成することができる。 [D] The polymer can be synthesized by the same method as the above-mentioned [A] polymer.
 [D]重合体のMwの下限としては、1,000が好ましく、3,000がより好ましく、4,000がさらに好ましい。上記Mwの上限としては、50,000が好ましく、20,000がより好ましく、8,000がさらに好ましい。 [D] The lower limit of Mw of the polymer is preferably 1,000, more preferably 3,000, and still more preferably 4,000. The upper limit of Mw is preferably 50,000, more preferably 20,000, and still more preferably 8,000.
 [D]重合体のGPCによるMnに対するMwの比(Mw/Mn)の比の上限としては、5が好ましく、3がより好ましく、2がさらに好ましく、1.5が特に好ましい。上記比の下限としては、通常1であり、1.2が好ましい。 [D] The upper limit of the ratio of Mw to Mn (Mw / Mn) by GPC of the polymer [D] is preferably 5, more preferably 3, still more preferably 2, and particularly preferably 1.5. The lower limit of the ratio is usually 1 and preferably 1.2.
<[E]溶媒>
 当該感放射線性樹脂組成物は、通常[E]溶媒を含有する。[E]溶媒は、少なくとも[A]重合体、[B]化合物及び[C]化合物並びに必要に応じて含有される[D]重合体、[F]窒素含有化合物等を溶解又は分散可能な溶媒であれば特に限定されない。
<[E] solvent>
The radiation-sensitive resin composition usually contains an [E] solvent. [E] The solvent is a solvent that can dissolve or disperse at least the [A] polymer, the [B] compound and the [C] compound, and the [D] polymer, [F] nitrogen-containing compound, etc. contained as necessary. If it is, it will not specifically limit.
 [E]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。 [E] Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
Examples of alcohol solvents include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol;
An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol;
A polyhydric alcohol solvent having 2 to 18 carbon atoms such as propylene glycol;
Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
 エーテル系溶媒としては、例えば
 ジエチルエーテル等の炭素数4~14のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
Examples of ether solvents include dialkyl ether solvents having 4 to 14 carbon atoms such as diethyl ether;
Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran;
And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン等の炭素数3~12の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
Examples of the ketone solvents include chain ketone solvents having 3 to 12 carbon atoms such as acetone, methyl ethyl ketone, methyl-iso-butyl ketone, 2-heptanone:
Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone:
Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
Examples of the amide solvent include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone;
Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
 エステル系溶媒としては、例えば
 酢酸n-ブチル、酢酸アミル等の酢酸エステル系溶媒、プロピオン酸エチル等のプロピオン酸エステル系溶媒などのモノカルボン酸エステル系溶媒;
 エチルラクテート、グリコール酸n-ブチル等のヒドロキシカルボン酸エステル系溶媒;
 プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
 プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒などが挙げられる。
Examples of the ester solvent include monocarboxylic acid ester solvents such as acetate ester solvents such as n-butyl acetate and amyl acetate, and propionate solvents such as ethyl propionate;
Hydroxycarboxylic acid ester solvents such as ethyl lactate and n-butyl glycolate;
Polyhydric alcohol carboxylate solvents such as propylene glycol acetate;
Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate;
Polycarboxylic acid diester solvents such as diethyl oxalate;
Lactone solvents such as γ-butyrolactone and δ-valerolactone;
Examples thereof include carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒等が挙げられる。
Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane;
Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
 [E]溶媒としては、エステル系溶媒及び/又はケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒、ラクトン系溶媒、ヒドロキシカルボン酸エステル及び/又は環状ケトン系溶媒がより好ましい。当該感放射線性樹脂組成物は、[E]溶媒を1種又は2種以上含有していてもよい。 [E] The solvent is preferably an ester solvent and / or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent, a lactone solvent, a hydroxycarboxylic acid ester and / or a cyclic ketone solvent. The radiation-sensitive resin composition may contain one or more [E] solvents.
<その他の任意成分>
 当該感放射線性樹脂組成物は、その他の任意成分として、例えば界面活性剤、脂環式骨格含有化合物、増感剤等を含有していてもよい。
<Other optional components>
The radiation-sensitive resin composition may contain, for example, a surfactant, an alicyclic skeleton-containing compound, a sensitizer, and the like as other optional components.
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、例えば[A]重合体、[B]化合物、[C]化合物及び必要に応じて含有される任意成分を所定の割合で混合し、好ましくは、得られた混合液を、例えば孔径0.2μm程度のフィルター等でろ過することで調製することができる。当該感放射線性樹脂組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量部がより好ましく、1質量%がさらに好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましい。
<Method for preparing radiation-sensitive resin composition>
In the radiation sensitive resin composition, for example, the [A] polymer, the [B] compound, the [C] compound, and optional components contained as necessary are mixed in a predetermined ratio, and preferably the obtained mixture The liquid can be prepared, for example, by filtering with a filter having a pore diameter of about 0.2 μm. As a minimum of solid content concentration of the radiation sensitive resin composition, 0.1 mass% is preferred, 0.5 mass part is more preferred, and 1 mass% is still more preferred. As an upper limit of the said solid content concentration, 50 mass% is preferable, 30 mass% is more preferable, and 20 mass% is further more preferable.
<レジストパターン形成方法>
 当該レジストパターン形成方法は、基板の少なくとも一方の面側に当該感放射線性樹脂組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されるレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。
<Resist pattern formation method>
The resist pattern forming method includes a step of applying the radiation-sensitive resin composition to at least one surface side of a substrate (hereinafter, also referred to as “coating step”), and a resist film formed by the coating step. And a step of developing the exposed resist film (hereinafter also referred to as “developing step”).
 当該レジストパターン形成方法によれば、上述した当該感放射線性樹脂組成物を用いているので、広い焦点深度で、CDU及びLWRが小さく、解像度が高いレジストパターンを形成することができる。 According to the resist pattern forming method, since the radiation-sensitive resin composition described above is used, it is possible to form a resist pattern with a wide depth of focus, a small CDU and LWR, and a high resolution.
[塗工工程]
 本工程では基板の少なくとも一方の面側に当該感放射線性樹脂組成物を塗工する。上記レジスト膜を形成する基板としては、例えばシリコンウェハ、アルミニウムで被覆したウェハ等が挙げられる。この基板上に当該感放射線性樹脂組成物を塗工することによりレジスト膜が形成される。当該感放射線性樹脂組成物の塗工方法としては、特に限定されないが、例えばスピンコート法等の公知の方法等が挙げられる。当該感放射線性樹脂組成物を塗工する際には、形成されるレジスト膜が所望の厚みとなるように、塗工する当該感放射線性樹脂組成物の量を調整する。なお当該感放射線性樹脂組成物を基板上に塗工した後、溶媒を揮発させるためにプレベーク(以下、「PAB」ともいう)を行ってもよい。PABの温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。PABの時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。レジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましく、50nmがさらに好ましい。上記平均厚みの上限としては、1,000nmが好ましく、200nmがより好ましく、150nmがさらに好ましい。
[Coating process]
In this step, the radiation sensitive resin composition is applied to at least one surface side of the substrate. Examples of the substrate on which the resist film is formed include a silicon wafer and a wafer coated with aluminum. A resist film is formed by applying the radiation sensitive resin composition on the substrate. Although it does not specifically limit as a coating method of the said radiation sensitive resin composition, For example, well-known methods, such as a spin coat method, etc. are mentioned. When the radiation sensitive resin composition is applied, the amount of the radiation sensitive resin composition to be applied is adjusted so that the resist film to be formed has a desired thickness. In addition, after coating the said radiation sensitive resin composition on a board | substrate, in order to volatilize a solvent, you may pre-bake (henceforth "PAB"). As a minimum of the temperature of PAB, 30 ° C is preferred and 50 ° C is more preferred. As an upper limit of the said temperature, 200 degreeC is preferable and 150 degreeC is more preferable. The lower limit of the PAB time is preferably 10 seconds, and more preferably 30 seconds. The upper limit of the time is preferably 600 seconds, and more preferably 300 seconds. As a minimum of the average thickness of a resist film, 10 nm is preferred, 20 nm is more preferred, and 50 nm is still more preferred. The upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, and even more preferably 150 nm.
[露光工程]
 本工程では、上記塗工工程により形成されたレジスト膜を露光する。この露光は、場合によっては、水等の液浸露光液を介し、所定のパターンを有するマスクを介して放射線を照射することにより行う。
[Exposure process]
In this step, the resist film formed by the coating step is exposed. In some cases, this exposure is performed by irradiating with radiation through a mask having a predetermined pattern through an immersion exposure liquid such as water.
 液浸露光液としては、通常、空気より屈折率の大きい液体を使用する。具体的には、例えば純水、長鎖又は環状の脂肪族化合物等が挙げられる。この液浸露光液を介した状態、すなわち、レンズとレジスト膜との間に液浸露光液を満たした状態で、露光装置から放射線を照射し、所定のパターンを有するマスクを介してレジスト膜を露光する。 As the immersion exposure liquid, a liquid having a refractive index larger than that of air is usually used. Specific examples include pure water, long-chain or cyclic aliphatic compounds, and the like. In this state through the immersion exposure liquid, that is, in a state where the immersion exposure liquid is filled between the lens and the resist film, the exposure apparatus irradiates radiation, and the resist film is formed through a mask having a predetermined pattern. Exposure.
 上記放射線としては、使用される感放射線性酸発生剤の種類に応じて、可視光線、紫外線、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)等の遠紫外線、極端紫外線(Extreme Ultraviolet(EUV)、13.5nm)、X線等の電磁波、電子線(Electron Beam(EB))、α線等の荷電粒子線等から適宜選定されて使用されるが、これらの中でも、ArFエキシマレーザー光、KrFエキシマレーザー光、EUV、X線又はEBが好ましく、ArFエキシマレーザー光、EUV又はEBがより好ましい。なお、露光量等の露光条件は、当該感放射線性樹脂組成物の配合組成、添加剤の種類等に応じて適宜選定することができる。 Examples of the radiation include far ultraviolet rays such as visible light, ultraviolet rays, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), and extreme ultraviolet rays (depending on the type of radiation-sensitive acid generator used). Extreme Ultraviolet (EUV), 13.5 nm), electromagnetic waves such as X-rays, electron beams (Electron Beam (EB)), charged particle beams such as α-rays, etc. are used as appropriate. Among these, ArF Excimer laser light, KrF excimer laser light, EUV, X-ray or EB is preferable, and ArF excimer laser light, EUV or EB is more preferable. In addition, exposure conditions, such as exposure amount, can be suitably selected according to the compounding composition of the said radiation sensitive resin composition, the kind of additive, etc.
 露光後のレジスト膜に対し、加熱処理(以下、「露光後加熱(ポストエクスポージャーベーク、PEB)」ともいう)を行うことが好ましい。このPEBにより、[A]重合体等の酸解離性基の解離反応を円滑に進行させることができる。PEBの加熱条件は、感放射線性樹脂組成物の配合組成によって適宜調整されるが、PEBの温度の下限としては、30℃が好ましく、50℃がより好ましく、70℃がさらに好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましく、120℃がさらに好ましい。PEBの時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。 It is preferable to perform a heat treatment (hereinafter also referred to as “post-exposure baking (post-exposure baking, PEB)”) on the resist film after exposure. By this PEB, the dissociation reaction of an acid dissociable group such as the [A] polymer can be smoothly advanced. The heating conditions for PEB are appropriately adjusted depending on the composition of the radiation sensitive resin composition, but the lower limit of the temperature of PEB is preferably 30 ° C, more preferably 50 ° C, and even more preferably 70 ° C. As an upper limit of the said temperature, 200 degreeC is preferable, 150 degreeC is more preferable, and 120 degreeC is further more preferable. The lower limit of the PEB time is preferably 10 seconds, more preferably 30 seconds. The upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
 また、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば特公平6-12452号公報、特開昭59-93448号公報等に開示されているように、使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5-188598号公報等に開示されているように、レジスト膜上に保護膜を設けることもできる。 Further, in order to maximize the potential of the radiation-sensitive resin composition, as disclosed in, for example, Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448, on the substrate to be used. An organic or inorganic antireflection film can also be formed. Further, in order to prevent the influence of basic impurities contained in the environmental atmosphere, a protective film can be provided on the resist film as disclosed in, for example, JP-A-5-188598.
[現像工程]
 本工程では、上記露光工程で露光されたレジスト膜を現像する。この現像に用いる現像液としては、例えばアルカリ水溶液(アルカリ現像液)、有機溶媒を含有する液(有機溶媒現像液)等が挙げられる。これにより、所定のレジストパターンが形成される。
[Development process]
In this step, the resist film exposed in the exposure step is developed. Examples of the developer used for the development include an aqueous alkali solution (alkaline developer) and a solution containing an organic solvent (organic solvent developer). Thereby, a predetermined resist pattern is formed.
 アルカリ現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中で、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。 Examples of the alkali developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3. 0] -5-nonene, and an alkaline aqueous solution in which at least one alkaline compound is dissolved. In these, a TMAH aqueous solution is preferable and a 2.38 mass% TMAH aqueous solution is more preferable.
 有機溶媒現像液としては、例えば炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、又は有機溶媒を含有する液が挙げられる。有機溶媒としては、例えば上述の感放射線性樹脂組成物の[E]溶媒として例示した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒及びケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸アミル及び酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。有機溶媒現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。有機溶媒現像液中の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。 Examples of the organic solvent developer include organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and liquids containing organic solvents. Examples of the organic solvent include one or more of the solvents exemplified as the [E] solvent of the above-described radiation-sensitive resin composition. Among these, ester solvents and ketone solvents are preferable. As the ester solvent, an acetate solvent is preferable, and amyl acetate and n-butyl acetate are more preferable. The ketone solvent is preferably a chain ketone, more preferably 2-heptanone. The lower limit of the content of the organic solvent in the organic solvent developer is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass. Examples of components other than the organic solvent in the organic solvent developer include water and silicone oil.
 これらの現像液は、単独で又は2種以上を組み合わせて用いてもよい。なお、現像後は、水やアルコール系溶媒等で洗浄し、乾燥することが一般的である。 These developers may be used alone or in combination of two or more. In general, after development, the substrate is washed with water or an alcohol solvent and dried.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The measuring method of various physical property values is shown below.
[重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)の測定]
 東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
[Measurement of weight average molecular weight (Mw), number average molecular weight (Mn) and dispersity (Mw / Mn)]
Using Tosoh's GPC columns ("G2000HXL", "G3000HXL", "G4000HXL"), flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, column temperature: 40 ° C, It was measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard.
H-NMR分析及び13C-NMR分析]
 日本電子社の「JNM-Delta400」を用いて測定した。
[ 1 H-NMR analysis and 13 C-NMR analysis]
Measurement was performed using “JNM-Delta400” manufactured by JEOL.
<重合体の合成>
 各実施例及び比較例における各重合体の合成で用いた単量体を以下に示す。なお以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
<Synthesis of polymer>
The monomers used in the synthesis of each polymer in each example and comparative example are shown below. In the following synthesis examples, unless otherwise specified, parts by mass means a value when the total mass of the monomers used is 100 parts by mass, and mol% indicates the total number of moles of the monomers used. It means the value when it is 100 mol%.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[[A]重合体の合成]
[合成例1](重合体(A-1)の合成)
 単量体としての化合物(M-2)、化合物(M-3)、化合物(M-6)及び化合物(M-7)を、モル比率が25/20/45/10となるよう2-ブタノン(200質量部)に溶解した。ここに開始剤としてアゾビスイソブチロニトリル(AIBN)(全単量体に対して2モル%)を添加し、単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした。反応容器内を80℃とし、攪拌しながら、上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をメタノール(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノール(400質量部)で2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A-1)を良好な収率で得た。
[[A] Synthesis of polymer]
[Synthesis Example 1] (Synthesis of polymer (A-1))
Compound (M-2), compound (M-3), compound (M-6) and compound (M-7) as monomers are mixed with 2-butanone so that the molar ratio is 25/20/45/10. Dissolved in (200 parts by mass). Azobisisobutyronitrile (AIBN) (2 mol% based on the total monomers) was added as an initiator to prepare a monomer solution. 2-Butanone (100 parts by mass) was placed in the reaction vessel and purged with nitrogen for 30 minutes. The monomer solution was added dropwise over 3 hours while stirring in a reaction vessel at 80 ° C. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization solution was cooled with water and cooled to 30 ° C. or lower. The cooled polymerization solution was put into methanol (2,000 parts by mass), and the precipitated white powder was filtered off. The filtered white powder was washed twice with methanol (400 parts by mass), filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (A-1) in good yield. .
[合成例2](重合体(A-2)の合成)
 下記表1に示す種類及び使用量の単量体を用い、開始剤量を適宜選択し、合成例1と同様の操作を行うことによって、重合体(A-2)を合成した。
[Synthesis Example 2] (Synthesis of Polymer (A-2))
Polymers (A-2) were synthesized by using the types and amounts of monomers shown in Table 1 below, appropriately selecting the amount of initiator, and performing the same operations as in Synthesis Example 1.
[合成例3](重合体(A-3)の合成)
 単量体としての化合物(M-1)及び化合物(M-10)を、モル比率が43/57となるよう、プロピレングリコールモノメチルエーテル(100質量部)に溶解した。ここに開始剤としてAIBN(全単量体に対して6モル%)を、連鎖移動剤としてt-ドデシルメルカプタン(開始剤100質量部に対して38質量部)を加えて単量体溶液を調製した。この単量体溶液を窒素雰囲気下、反応温度を70℃に保持して、16時間共重合させた。重合反応終了後、重合溶液をn-ヘキサン(1,000質量部)中に滴下して、重合体を凝固精製した。上記重合体に、再度プロピレングリコールモノメチルエーテル(150質量部)を加えた。更に、メタノール(150質量部)、トリエチルアミン(化合物(M-10)の使用量に対し1.5モル当量)及び水(化合物(M-10)の使用量に対し1.5モル当量)を加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応終了後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン(150質量部)に溶解した。これを水(2,000質量部)中に滴下して凝固させ、生成した白色粉末をろ別した。50℃で17時間乾燥させて白色粉末状の重合体(A-3)を良好な収率で得た。
[Synthesis Example 3] (Synthesis of Polymer (A-3))
The compound (M-1) and the compound (M-10) as monomers were dissolved in propylene glycol monomethyl ether (100 parts by mass) so that the molar ratio was 43/57. A monomer solution was prepared by adding AIBN (6 mol% based on the total monomers) as an initiator and t-dodecyl mercaptan (38 parts by mass with respect to 100 parts by mass of the initiator) as a chain transfer agent. did. This monomer solution was copolymerized under a nitrogen atmosphere while maintaining the reaction temperature at 70 ° C. for 16 hours. After completion of the polymerization reaction, the polymerization solution was dropped into n-hexane (1,000 parts by mass) to solidify and purify the polymer. To the polymer, propylene glycol monomethyl ether (150 parts by mass) was added again. Further, methanol (150 parts by mass), triethylamine (1.5 molar equivalents relative to the amount of compound (M-10) used) and water (1.5 molar equivalents relative to the amount of compound (M-10) used) were added. Then, the hydrolysis reaction was carried out for 8 hours while refluxing at the boiling point. After completion of the reaction, the solvent and triethylamine were distilled off under reduced pressure, and the resulting polymer was dissolved in acetone (150 parts by mass). This was dropped into water (2,000 parts by mass) to solidify, and the produced white powder was filtered off. It was dried at 50 ° C. for 17 hours to obtain a white powdery polymer (A-3) in good yield.
 下記表1に、重合体(A-1)~(A-3)の各構造単位の含有割合、Mw及びMw/Mnについて合わせて示す。表1における「M-10*」は、構造単位の含有割合の値が(M-10)に由来するヒドロキシスチレン単位についての値であることを示す。 Table 1 below shows the content of each structural unit of the polymers (A-1) to (A-3), Mw, and Mw / Mn. “M-10 *” in Table 1 indicates that the content ratio of the structural unit is a value for a hydroxystyrene unit derived from (M-10).
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
[[D]重合体の合成]
[合成例4](重合体(D-1)の合成)
 単量体としての化合物(M-4)及び化合物(M-9)をモル比率が70/30となるよう、2-ブタノン(200質量部)に溶解した。ここに開始剤としてAIBN(全単量体に対して5モル%)を添加して単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした。反応容器内を80℃とし、攪拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。溶媒をアセトニトリル(400質量部)に置換した後、ヘキサン(100質量部)を加えて撹拌しアセトニトリル層を回収する操作を3回繰り返した。溶媒をプロピレングリコールモノメチルエーテルアセテートに置換することで、重合体(D-1)の溶液を良好な収率で得た。
[[D] Synthesis of polymer]
[Synthesis Example 4] (Synthesis of Polymer (D-1))
Compound (M-4) and compound (M-9) as monomers were dissolved in 2-butanone (200 parts by mass) so that the molar ratio was 70/30. AIBN (5 mol% with respect to all monomers) was added here as an initiator to prepare a monomer solution. 2-Butanone (100 parts by mass) was placed in the reaction vessel and purged with nitrogen for 30 minutes. The inside of the reaction vessel was set to 80 ° C., and the monomer solution was added dropwise over 3 hours with stirring. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization solution was cooled with water and cooled to 30 ° C. or lower. After replacing the solvent with acetonitrile (400 parts by mass), the operation of adding hexane (100 parts by mass) and stirring to recover the acetonitrile layer was repeated three times. By replacing the solvent with propylene glycol monomethyl ether acetate, a solution of the polymer (D-1) was obtained in good yield.
[合成例5~7](重合体(D-2)~(D-4)の合成)
 下記表2に示す種類及び使用量の単量体を用いた以外は、合成例4と同様の操作を行うことによって、重合体(D-2)~(D-4)を合成した。
[Synthesis Examples 5 to 7] (Synthesis of polymers (D-2) to (D-4))
Polymers (D-2) to (D-4) were synthesized in the same manner as in Synthesis Example 4 except that the types and amounts of monomers shown in Table 2 were used.
 下記表2に、重合体(D-1)~(D-4)の各構造単位の含有割合、Mw及びMw/Mnについて合わせて示す。 Table 2 below also shows the content ratio, Mw and Mw / Mn of each structural unit of the polymers (D-1) to (D-4).
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<[B]化合物の合成>
[合成例8](化合物(B-2)の合成)
 特開2014-224984の実施例18を参考に、トリフェニルスルホニウムクロライドの代わりにトリス(4-メチルフェニル)スルホニウムクロライドを使用することで化合物(B-2)を合成した。
<Synthesis of [B] Compound>
[Synthesis Example 8] (Synthesis of Compound (B-2))
With reference to Example 18 of JP2014-224984, compound (B-2) was synthesized by using tris (4-methylphenyl) sulfonium chloride instead of triphenylsulfonium chloride.
[合成例9](化合物(B-5)の合成)
 特願2016-125021の合成例10を参考に化合物(B-5)を合成した。
[Synthesis Example 9] (Synthesis of Compound (B-5))
Compound (B-5) was synthesized with reference to Synthesis Example 10 of Japanese Patent Application No. 2016-125021.
<感放射線性樹脂組成物の調製>
 感放射線性樹脂組成物を構成する[B]化合物、[C]化合物及び[E]溶媒について以下に示す。
<Preparation of radiation-sensitive resin composition>
[B] compound, [C] compound, and [E] solvent which comprise a radiation sensitive resin composition are shown below.
[[B]化合物]
 B-1~B-6:下記式(B-1)~(B-6)で表される化合物
[[B] Compound]
B-1 to B-6: Compounds represented by the following formulas (B-1) to (B-6)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[[C]化合物]
 C-1~C-7:下記式(C-1)~(C-7)で表される化合物
[[C] Compound]
C-1 to C-7: Compounds represented by the following formulas (C-1) to (C-7)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[[E]溶媒]
 E-1:プロピレングリコールモノメチルエーテルアセテート
 E-2:シクロヘキサノン
 E-3:γ-ブチロラクトン
 E-4:エチルラクテート
[[E] solvent]
E-1: Propylene glycol monomethyl ether acetate E-2: Cyclohexanone E-3: γ-butyrolactone E-4: Ethyl lactate
[ArF露光用感放射線性樹脂組成物の調製]
[実施例1]
 [A]重合体としての(A-1)100質量部、[B]化合物としての(B-1)14.0質量部、[C]化合物としての(C-2)2.3質量部、[D]重合体としての(D-1)7質量部、並びに[E]溶媒としての(E-1)2,240質量部、(E-2)960質量部及び(E-3)30質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-1)を調製した。
[Preparation of radiation-sensitive resin composition for ArF exposure]
[Example 1]
[A] 100 parts by mass of (A-1) as a polymer, 14.0 parts by mass of (B-1) as a [B] compound, 2.3 parts by mass of (C-2) as a [C] compound, [D] 7 parts by mass of (D-1) as a polymer, and (E-1) 2,240 parts by mass, (E-2) 960 parts by mass and (E-3) 30 parts by mass as a solvent [E] The parts were mixed and filtered through a membrane filter having a pore size of 0.2 μm to prepare a radiation sensitive resin composition (J-1).
[実施例2~15及び比較例1~6]
 下記表3に示す種類及び含有量の各成分を用いた以外は実施例1と同様にして、感放射線性樹脂組成物(J-2)~(J-15)及び(CJ-1)~(CJ-6)を調製した。
[Examples 2 to 15 and Comparative Examples 1 to 6]
The radiation-sensitive resin compositions (J-2) to (J-15) and (CJ-1) to (CJ-1) to (C CJ-6) was prepared.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<レジストパターンの形成(1)>(ArF露光、有機溶媒現像)
 12インチのシリコンウェハ表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗工した後、205℃で60秒間加熱することにより平均厚み105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して各感放射線性樹脂組成物を塗工し、120℃で50秒間PABを行った。その後23℃で30秒間冷却し、平均厚み90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Annular(σ=0.8/0.6)の光学条件にて、44nmスペース、102nmピッチのレジストパターン形成用のマスクパターンを介して露光した。露光後、90℃で50秒間PEBを行った。その後、酢酸n-ブチルを用い、23℃で10秒間パドル現像を行い、2,000rpm、15秒間振り切りでスピンドライすることにより、45nmスペースのレジストパターンを形成した。このレジストパターン形成の際、幅45nmスペースのパターンを形成する露光量を最適露光量(Eop1)とした。
<Formation of resist pattern (1)> (ArF exposure, organic solvent development)
After applying a composition for forming a lower antireflection film (“ARC66” from Brewer Science) using a spin coater (“CLEAN TRACK ACT12” from Tokyo Electron) on the surface of a 12-inch silicon wafer, 205 By heating at 60 ° C. for 60 seconds, a lower antireflection film having an average thickness of 105 nm was formed. Each radiation sensitive resin composition was coated on the lower antireflection film using the spin coater, and PAB was performed at 120 ° C. for 50 seconds. Thereafter, the mixture was cooled at 23 ° C. for 30 seconds to form a resist film having an average thickness of 90 nm. Next, this resist film was subjected to an optical condition of NA = 1.35, Annular (σ = 0.8 / 0.6) using an ArF excimer laser immersion exposure apparatus (“TWINSCAN XT-1900i” manufactured by ASML). Then, exposure was performed through a mask pattern for forming a resist pattern having a space of 44 nm and a pitch of 102 nm. After the exposure, PEB was performed at 90 ° C. for 50 seconds. Thereafter, paddle development was performed for 10 seconds at 23 ° C. using n-butyl acetate, and spin drying was performed by shaking off at 2,000 rpm for 15 seconds to form a resist pattern having a 45 nm space. When this resist pattern was formed, the exposure amount for forming a pattern having a width of 45 nm was determined as the optimum exposure amount (Eop1).
<評価>
 形成したレジストパターンについて下記方法に従って測定することにより、各感放射線性樹脂組成物の評価を行った。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-5000」)を用いた。
<Evaluation>
Each of the radiation sensitive resin compositions was evaluated by measuring the formed resist pattern according to the following method. A scanning electron microscope (Hitachi High-Technologies “CG-5000”) was used for measuring the resist pattern.
[CDU性能]
 上記で求めたEop1の露光量を照射して45nmホール、110nmピッチのパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。500nmの範囲でホール径を16点測定してその平均値を求め、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをCDU性能(nm)とした。CDU性能は、その値が小さいほど、長周期でのホール径のばらつきが小さく良好である。CDU性能は、6.0nm以下の場合は「良好」と、6.0nmを超える場合は「不良」と評価できる。
[CDU performance]
The resist pattern was formed by adjusting the mask size so as to form a 45 nm hole, 110 nm pitch pattern by irradiating the exposure amount of Eop1 obtained above. The formed resist pattern was observed from above the pattern using the scanning electron microscope. The hole diameter is measured at 16 points in the range of 500 nm and the average value is obtained. The average value is measured at a total of 500 points, and the 3 sigma value is obtained from the distribution of the measured values. ). The smaller the value of the CDU performance, the better the variation in hole diameter over a long period. The CDU performance can be evaluated as “good” when it is 6.0 nm or less, and “bad” when it exceeds 6.0 nm.
[焦点深度(DOF性能)]
 上記で求めたEop1の露光量を照射して45nmホール、800nmピッチのパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンについて、深さ方向にフォーカスを変化させた際の寸法を、上記走査型電子顕微鏡を用い、パターン上部から観察した。この際、ブリッジや残渣がないままパターン寸法が基準の90%~110%に入る深さ方向の余裕度(nm)を測定し、測定した余裕度を焦点深度(nm)とした。焦点深度は、その値が大きいほど、プロセスマージンがあり良好である。DOF性能は、40nm以上の場合は「良好」と、40nmを下回る場合は「不良」と評価できる。
[Depth of focus (DOF performance)]
The resist pattern was formed by adjusting the mask size so as to form a 45 nm hole, 800 nm pitch pattern by irradiating the exposure amount of Eop1 obtained above. About the formed resist pattern, the dimension at the time of changing a focus to a depth direction was observed from the pattern upper part using the said scanning electron microscope. At this time, the margin (nm) in the depth direction in which the pattern dimensions were within 90% to 110% of the reference without any bridge or residue was measured, and the measured margin was defined as the depth of focus (nm). The larger the value of the depth of focus, the better the process margin. The DOF performance can be evaluated as “good” when it is 40 nm or more, and “bad” when it is below 40 nm.
[LWR性能]
 上記で求めたEop1の露光量を照射して45nmスペース、800nmピッチのパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、500nmの範囲でホール径を16点測定してその平均値を求め、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをLWR性能(nm)とした。LWR性能は、その値が小さいほど、ラインのがたつきが小さく良好である。LWR性能は、5.8nm以下の場合は「良好」と、5.8nmを超える場合は「不良」と評価できる。
[LWR performance]
The resist pattern was formed by adjusting the mask size so as to form a pattern of 45 nm space and 800 nm pitch by irradiating the exposure amount of Eop1 obtained above. The formed resist pattern was observed from above the pattern using the scanning electron microscope. Measure the total line width variation at 500 points, find the 3 sigma value from the measured value distribution, measure the hole diameter at 16 points in the 500 nm range, find the mean value, and calculate the mean value at any point. 500 points were measured, a 3 sigma value was determined from the distribution of the measured values, and this was defined as LWR performance (nm). The smaller the value of the LWR performance, the smaller the line play and the better. The LWR performance can be evaluated as “good” when it is 5.8 nm or less and “bad” when it exceeds 5.8 nm.
 上記CDU性能、焦点深度及びLWR性能の評価結果を以下に示す。 The evaluation results of the above CDU performance, depth of focus and LWR performance are shown below.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 上記表4の結果から明らかなように、実施例の感放射線性樹脂組成物では、CDU性能、LWR性能及び焦点深度が良好であった。 As is clear from the results in Table 4 above, the radiation-sensitive resin compositions of the examples had good CDU performance, LWR performance, and depth of focus.
[電子線露光用感放射線性樹脂組成物の調製]
[実施例16]
 [A]重合体としての(A-3)100質量部、[B]化合物としての(B-1)14.0質量部、[C]化合物としての(C-2)2.3質量部、並びに[E]溶媒としての(E-1)4,280質量部及び(E-4)1,830質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-16)を調製した。
[Preparation of radiation-sensitive resin composition for electron beam exposure]
[Example 16]
[A] 100 parts by mass of (A-3) as a polymer, 14.0 parts by mass of (B-1) as a [B] compound, 2.3 parts by mass of (C-2) as a [C] compound, In addition, (E-1) 4,280 parts by mass and (E-4) 1,830 parts by mass as [E] solvent are mixed and filtered through a membrane filter having a pore size of 0.2 μm to obtain a radiation-sensitive resin composition. A product (J-16) was prepared.
[実施例17及び18並びに比較例7]
 下記表5に示す種類及び含有量の各成分を用いた以外は実施例16と同様にして、感放射線性樹脂組成物(J-17)及び(J-18)並びに(CJ-7)を調製した。
[Examples 17 and 18 and Comparative Example 7]
Radiation-sensitive resin compositions (J-17), (J-18), and (CJ-7) were prepared in the same manner as in Example 16 except that the components having the types and contents shown in Table 5 were used. did.
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000027
 
<レジストパターンの形成(2)>(電子線露光、アルカリ現像)
 8インチのシリコンウェハ表面にスピンコーター(東京エレクトロン社の「CLEAN TRACK ACT8」)を使用して、各感放射線性樹脂組成物を塗工し、90℃で60秒間PABを行った。その後、23℃で30秒間冷却し、平均厚み50nmのレジスト膜を形成した。次に、このレジスト膜に、簡易型の電子線描画装置(日立製作所社の「HL800D」、出力:50KeV、電流密度:5.0A/cm)を用いて電子線を照射した。照射後、120℃で60秒間PEBを行った。その後、アルカリ現像液としての2.38質量%のTMAH水溶液を用いて23℃で30秒間現像し、水で洗浄し、乾燥して90nmホール180nmピッチのレジストパターンを形成した。この90nmホール180nmピッチのレジストパターンを形成する露光量を最適露光量(Eop2)とした。
<Formation of resist pattern (2)> (electron beam exposure, alkali development)
Using a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.) on the surface of an 8-inch silicon wafer, each radiation sensitive resin composition was applied, and PAB was performed at 90 ° C. for 60 seconds. Then, it cooled at 23 degreeC for 30 second, and formed the resist film with an average thickness of 50 nm. Next, the resist film was irradiated with an electron beam by using a simple electron beam drawing apparatus (“HL800D” manufactured by Hitachi, Ltd., output: 50 KeV, current density: 5.0 A / cm 2 ). After irradiation, PEB was performed at 120 ° C. for 60 seconds. Thereafter, development was performed at 23 ° C. for 30 seconds using a 2.38 mass% TMAH aqueous solution as an alkali developer, washed with water, and dried to form a resist pattern having 90 nm holes and 180 nm pitches. The exposure amount for forming this 90 nm hole 180 nm pitch resist pattern was determined as the optimum exposure amount (Eop2).
<評価>
 感放射線性樹脂組成物について、下記方法に従い、CDU性能及び解像性のリソグラフィー性能を評価した。レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジー社の「S-9380」)を用いた。
<Evaluation>
About the radiation sensitive resin composition, according to the following method, CDU performance and resolution lithography performance were evaluated. A scanning electron microscope (Hitachi High-Technology “S-9380”) was used for measuring the resist pattern.
[CDU性能]
 CDU性能は、上述のレジストパターンの形成(1)で説明した方法と同様にして測定した。CDU性能は、その値が小さいほど、長周期でのホール径のばらつきが小さく良好である。CDU性能は、1.1nm以下の場合は「良好」と、1.1nmを超える場合は「不良」と評価できる。
[CDU performance]
The CDU performance was measured in the same manner as described in the above resist pattern formation (1). The smaller the value of the CDU performance, the better the variation in hole diameter over a long period. The CDU performance can be evaluated as “good” when it is 1.1 nm or less and “bad” when it exceeds 1.1 nm.
[解像性]
 上記で求めたEop2の露光量を照射して形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。マスクサイズを1nm刻みで小さくしていった際に、形成される最小ホール径を解像性(nm)とした。解像性は、その値が小さいほど、解像度限界が小さく、微細パターンを形成可能であり良好である。解像性は、70nm以下の場合は「良好」と、70nmを超える場合は「不良」と評価できる。
[Resolution]
The resist pattern formed by irradiating the exposure amount of Eop2 obtained above was observed from above the pattern using the scanning electron microscope. When the mask size was reduced in steps of 1 nm, the minimum hole diameter formed was defined as resolution (nm). The smaller the value is, the better the resolution limit is and the fine pattern can be formed. The resolution can be evaluated as “good” when it is 70 nm or less, and “bad” when it exceeds 70 nm.
 上記CDU性能及び解像性の評価結果を下記表6に示す。 The evaluation results of the CDU performance and resolution are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表6の結果から明らかなように、実施例の感放射線性樹脂組成物では、いずれもCDU性能及び解像性が良好であった。本実施例においては、レジスト膜の露光に電子線を使用したが、EUV等の短波長放射線を使用した場合でも、基本的なレジスト特性は類似していることが知られており、それらの間に相関性があることも知られている。従って、本実施例の感放射線性樹脂組成物によれば、EUV露光の場合においても、CDU性能及び解像性が優れていると推測される。 As is clear from the results in Table 6, the radiation-sensitive resin compositions of the examples all had good CDU performance and resolution. In this example, an electron beam was used for the exposure of the resist film, but it is known that the basic resist characteristics are similar even when short wavelength radiation such as EUV is used. It is also known that there is a correlation. Therefore, according to the radiation-sensitive resin composition of this example, it is presumed that the CDU performance and the resolution are excellent even in the case of EUV exposure.
[EUV露光用感放射線性樹脂組成物の調製]
[実施例19~21並びに比較例8及び9]
 下記表7に示す種類及び含有量の各成分を用いた以外は実施例16と同様にして、感放射線性樹脂組成物(J-19)~(J-21)並びに(CJ-8)及び(CJ-9)を調製した。
[Preparation of radiation-sensitive resin composition for EUV exposure]
[Examples 19 to 21 and Comparative Examples 8 and 9]
The radiation-sensitive resin compositions (J-19) to (J-21) and (CJ-8) and (CJ-8) were used in the same manner as in Example 16 except that the components having the types and contents shown in Table 7 were used. CJ-9) was prepared.
Figure JPOXMLDOC01-appb-T000029
 
Figure JPOXMLDOC01-appb-T000029
 
<レジストパターンの形成(3)>(EUV露光、アルカリ現像)
 感放射線性樹脂組成物をケイ素含有スピンオンハードマスク「SHB-A940」(ケイ素の含有量が43質量%)を平均厚み20nmで形成したSi基板上にスピンコートし、ホットプレートを用いて105℃で60秒間PABを行い、平均厚み60nmのレジスト膜を形成した。これに、EUVスキャナー(ASML社の「NXE3300」(NA0.33、σ0.9/0.6、クアドルポール照明、ウェハ上寸法がピッチ46nm、+20%バイアスのホールパターンのマスク))を用いて露光し、ホットプレート上で120℃で60秒間PEBを行い、2.38質量%TMAH水溶液で30秒間現像を行って、23nmホール46nmピッチのレジストパターンを形成した。この23nmホール46nmピッチのレジストパターンを形成する露光量を最適露光量(Eop3)とした。
<Formation of resist pattern (3)> (EUV exposure, alkali development)
A silicon-containing spin-on hard mask “SHB-A940” (with a silicon content of 43 mass%) was spin-coated on a Si substrate having an average thickness of 20 nm and a hot plate was used at 105 ° C. PAB was performed for 60 seconds to form a resist film having an average thickness of 60 nm. This is exposed using an EUV scanner (“NXE3300” manufactured by ASML (NA 0.33, σ 0.9 / 0.6, quadrupole illumination, hole pattern mask with a pitch on the wafer of 46 nm and + 20% bias)). Then, PEB was performed on a hot plate at 120 ° C. for 60 seconds, and development was performed with a 2.38 mass% TMAH aqueous solution for 30 seconds to form a resist pattern having 23 nm holes and 46 nm pitches. The exposure amount for forming the resist pattern having the 23 nm holes and 46 nm pitch was set as the optimum exposure amount (Eop3).
<評価>
 感放射線性樹脂組成物について、下記方法に従い、CDU性能及び解像性のリソグラフィー性能を評価した。レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-5000」)を用いた。
<Evaluation>
About the radiation sensitive resin composition, according to the following method, CDU performance and resolution lithography performance were evaluated. For measuring the resist pattern, a scanning electron microscope (“CG-5000” manufactured by Hitachi High-Technologies Corporation) was used.
[CDU性能]
 CDU性能は、上述のレジストパターンの形成(1)で説明した方法と同様にして測定した。CDU性能は、その値が小さいほど、長周期でのホール径のばらつきが小さく良好である。CDU性能は、3.5nm以下の場合は「良好」と、3.5nmを超える場合は「不良」と評価できる。
[CDU performance]
The CDU performance was measured in the same manner as described in the above resist pattern formation (1). The smaller the value of the CDU performance, the better the variation in hole diameter over a long period. The CDU performance can be evaluated as “good” when it is 3.5 nm or less and “bad” when it exceeds 3.5 nm.
[解像性]
 解像性は、上述のレジストパターンの形成(2)で説明した方法と同様にして測定した。解像性は、その値が小さいほど、解像度限界が小さく、微細パターンを形成可能であり良好である。解像性は、20nm以下の場合は「良好」と、20nmを超える場合は「不良」と評価できる。
[Resolution]
The resolution was measured in the same manner as described in the above resist pattern formation (2). The smaller the value is, the better the resolution limit is and the fine pattern can be formed. The resolution can be evaluated as “good” when it is 20 nm or less, and “bad” when it exceeds 20 nm.
 上記CDU性能及び解像性の評価結果を下記表8に示す。 The evaluation results of the CDU performance and resolution are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表8の結果から明らかなように、実施例の感放射線性樹脂組成物では、EUV露光において、いずれもCDU性能及び解像性が良好であった。 As is clear from the results in Table 8, the radiation-sensitive resin compositions of the examples all had good CDU performance and resolution in EUV exposure.
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、広い焦点深度を発揮して、CDU及びLWRが小さく、解像度が高いレジストパターンを形成することができる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 
According to the radiation-sensitive resin composition and the resist pattern forming method of the present invention, a resist pattern having a wide depth of focus, small CDU and LWR, and high resolution can be formed. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.

Claims (18)

  1.  酸解離性基を含む構造単位を有する第1重合体と、
     上記酸解離性基を110℃、1分の条件で解離させる第1酸を放射線の照射により発生する第1化合物と、
     上記酸解離性基を110℃、1分の条件で実質的に解離させない第2酸を放射線の照射により発生する第2化合物と
    を含有し、
     上記第1化合物の含有量が全固形分(組成物中の溶媒以外の全成分)中10質量%以上であり、
     上記第1化合物のモル数をB、上記第2化合物のモル数をCとした場合に、B/Cが1.7以上である感放射線性樹脂組成物。
    A first polymer having a structural unit containing an acid dissociable group;
    A first compound that generates a first acid that dissociates the acid dissociable group at 110 ° C. for 1 minute by irradiation with radiation;
    Containing a second compound that generates a second acid that is not substantially dissociated at 110 ° C. for 1 minute under the conditions of 110 ° C.
    The content of the first compound is 10% by mass or more in the total solid content (all components other than the solvent in the composition),
    Moles of B m of the first compound, the number of moles of the second compound when the C m, B m / C m is the radiation-sensitive resin composition is 1.7 or more.
  2.  上記第1化合物が、感放射線性カチオンと、上記第1酸の酸基からプロトンを除いたアニオンとの塩である請求項1に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 1, wherein the first compound is a salt of a radiation-sensitive cation and an anion obtained by removing a proton from the acid group of the first acid.
  3.  上記第2化合物が、感放射線性カチオンと、上記第2酸の酸基からプロトンを除いたアニオンとの塩である請求項1又は請求項2に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 1 or 2, wherein the second compound is a salt of a radiation-sensitive cation and an anion obtained by removing a proton from the acid group of the second acid.
  4.  フッ素原子若しくはケイ素原子又はこれら両方を含む第2重合体をさらに含有し、第2重合体中のフッ素原子の質量含有率及びケイ素原子の質量含有率の和が、上記第1重合体中のフッ素原子の質量含有率及びケイ素原子の質量含有率の和よりも大きい請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。 A second polymer containing a fluorine atom or a silicon atom or both, wherein the sum of the mass content of fluorine atoms and the mass content of silicon atoms in the second polymer is fluorine in the first polymer; The radiation sensitive resin composition of Claim 1, Claim 2 or Claim 3, which is larger than the sum of the mass content of atoms and the mass content of silicon atoms.
  5.  上記第2重合体が脂環構造を有する請求項4に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to claim 4, wherein the second polymer has an alicyclic structure.
  6.  上記第2重合体が酸解離性基を含む構造単位を有し、この構造単位の含有割合が0モル%を超え20モル%以下である請求項4又は請求項5に記載の感放射線性樹脂組成物。 The radiation sensitive resin according to claim 4 or 5, wherein the second polymer has a structural unit containing an acid dissociable group, and the content ratio of the structural unit is more than 0 mol% and 20 mol% or less. Composition.
  7.  上記第2重合体が酸解離性基を含む構造単位を有さない請求項4又は請求項5に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to claim 4 or 5, wherein the second polymer does not have a structural unit containing an acid dissociable group.
  8.  上記第2酸が、カルボン酸、スルホンアミド酸若しくはフッ素原子を含まないスルホン酸(スルホマロン酸エステルを除く)又はこれらの組み合わせである請求項1から請求項7のいずれか1項に記載の感放射線性樹脂組成物。 The radiation-sensitive material according to any one of claims 1 to 7, wherein the second acid is a carboxylic acid, a sulfonamidic acid, a sulfonic acid not containing a fluorine atom (excluding a sulfomalonic acid ester), or a combination thereof. Resin composition.
  9.  上記第1酸が、スルホマロン酸エステル、フッ素原子を含むスルホン酸若しくはフッ素原子を含むジスルホニルイミド酸又はこれらの組み合わせである請求項1から請求項8のいずれか1項に記載の感放射線性樹脂組成物。 The radiation sensitive resin according to any one of claims 1 to 8, wherein the first acid is a sulfomalonic acid ester, a sulfonic acid containing a fluorine atom, a disulfonylimide acid containing a fluorine atom, or a combination thereof. Composition.
  10.  ArF露光用である請求項8又は請求項9に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 8 or 9, which is for ArF exposure.
  11.  上記B/Cが2.6以上である請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。 The said Bm / Cm is 2.6 or more, The radiation sensitive resin composition of Claim 1, Claim 2, or Claim 3.
  12.  上記第2酸が、カルボン酸、スルホンアミド酸又はこれらの組み合わせである請求項11に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 11, wherein the second acid is carboxylic acid, sulfonamidic acid or a combination thereof.
  13.  上記第1酸が、スルホン酸、ジスルホニルイミド酸又はこれらの組み合わせである請求項11又は請求項12に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 11 or 12, wherein the first acid is sulfonic acid, disulfonylimide acid, or a combination thereof.
  14.  極端紫外線(EUV)又は電子線(EB)露光用である請求項12又は請求項13に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 12 or 13, which is for extreme ultraviolet (EUV) or electron beam (EB) exposure.
  15.  上記第2化合物が窒素原子を含まない請求項1から請求項14のいずれか1項に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to any one of claims 1 to 14, wherein the second compound does not contain a nitrogen atom.
  16.  有機溶媒現像用である請求項1から請求項15のいずれか1項に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to any one of claims 1 to 15, which is used for organic solvent development.
  17.  基板の少なくとも一方の面側に、請求項1から請求項16のいずれか1項に記載の感放射線性樹脂組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と
     を備えるレジストパターン形成方法。
    Applying the radiation sensitive resin composition according to any one of claims 1 to 16 to at least one surface side of the substrate;
    Exposing the resist film formed by the coating process;
    And a step of developing the exposed resist film.
  18.  上記現像工程は有機溶媒を含む現像液により行われる請求項17に記載のレジストパターン形成方法。
     
    The resist pattern forming method according to claim 17, wherein the developing step is performed with a developer containing an organic solvent.
PCT/JP2018/016125 2017-04-20 2018-04-19 Radiation-sensitive resin composition and resist pattern formation method WO2018194123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513682A JPWO2018194123A1 (en) 2017-04-20 2018-04-19 Radiation-sensitive resin composition and resist pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-083771 2017-04-20
JP2017083771 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018194123A1 true WO2018194123A1 (en) 2018-10-25

Family

ID=63856725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016125 WO2018194123A1 (en) 2017-04-20 2018-04-19 Radiation-sensitive resin composition and resist pattern formation method

Country Status (3)

Country Link
JP (1) JPWO2018194123A1 (en)
TW (1) TWI763827B (en)
WO (1) WO2018194123A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172054A1 (en) * 2018-03-08 2019-09-12 Jsr株式会社 Radiation sensitive resin composition, method for producing same and resist pattern forming method
JP2022518411A (en) * 2019-01-18 2022-03-15 アプライド マテリアルズ インコーポレイテッド Film structure for field induction photoresist pattern formation process
WO2023085414A1 (en) 2021-11-15 2023-05-19 日産化学株式会社 Polycyclic aromatic hydrocarbon-based photo-curable resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513827A (en) * 2009-12-11 2013-04-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Compositions containing base-reactive components and methods for photolithography
JP2015169841A (en) * 2014-03-07 2015-09-28 富士フイルム株式会社 Actinic-ray-sensitive or radiation-sensitive resin composition, pattern formation method, electronic device manufacturing method, and electronic device
WO2016043558A1 (en) * 2014-09-18 2016-03-24 Heraeus Materials Korea Corporation Photo-acid generating agent
JP2016085382A (en) * 2014-10-27 2016-05-19 Jsr株式会社 Method for forming resist pattern and radiation-sensitive resin composition
JP2016088898A (en) * 2014-11-07 2016-05-23 信越化学工業株式会社 Novel onium salt compound, a resist composition using the same, and a pattern-forming method
JP2016104849A (en) * 2014-10-10 2016-06-09 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Polymer comprising repeat units with photoacid-generating functionality and base-solubility-enhancing functionality, and associated photoresist composition and electronic device forming method
WO2016158994A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Pattern formation method, photomask manufacturing method, and electronic device manufacturing method
JP2017045037A (en) * 2015-08-27 2017-03-02 住友化学株式会社 Resist composition and resist pattern production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513827A (en) * 2009-12-11 2013-04-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Compositions containing base-reactive components and methods for photolithography
JP2015169841A (en) * 2014-03-07 2015-09-28 富士フイルム株式会社 Actinic-ray-sensitive or radiation-sensitive resin composition, pattern formation method, electronic device manufacturing method, and electronic device
WO2016043558A1 (en) * 2014-09-18 2016-03-24 Heraeus Materials Korea Corporation Photo-acid generating agent
JP2016104849A (en) * 2014-10-10 2016-06-09 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Polymer comprising repeat units with photoacid-generating functionality and base-solubility-enhancing functionality, and associated photoresist composition and electronic device forming method
JP2016085382A (en) * 2014-10-27 2016-05-19 Jsr株式会社 Method for forming resist pattern and radiation-sensitive resin composition
JP2016088898A (en) * 2014-11-07 2016-05-23 信越化学工業株式会社 Novel onium salt compound, a resist composition using the same, and a pattern-forming method
WO2016158994A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Pattern formation method, photomask manufacturing method, and electronic device manufacturing method
JP2017045037A (en) * 2015-08-27 2017-03-02 住友化学株式会社 Resist composition and resist pattern production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172054A1 (en) * 2018-03-08 2019-09-12 Jsr株式会社 Radiation sensitive resin composition, method for producing same and resist pattern forming method
US11319388B2 (en) 2018-03-08 2022-05-03 Jsr Corporation Radiation-sensitive resin composition, production method thereof, and resist pattern-forming method
JP2022518411A (en) * 2019-01-18 2022-03-15 アプライド マテリアルズ インコーポレイテッド Film structure for field induction photoresist pattern formation process
US11880137B2 (en) 2019-01-18 2024-01-23 Applied Materials, Inc. Film structure for electric field guided photoresist patterning process
WO2023085414A1 (en) 2021-11-15 2023-05-19 日産化学株式会社 Polycyclic aromatic hydrocarbon-based photo-curable resin composition

Also Published As

Publication number Publication date
TWI763827B (en) 2022-05-11
JPWO2018194123A1 (en) 2020-05-14
TW201843198A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
JP6264144B2 (en) Polymer, radiation-sensitive resin composition, and resist pattern forming method
JP6648452B2 (en) Radiation-sensitive resin composition and method for forming resist pattern
KR20210149685A (en) Radiation-sensitive resin composition and method of forming a resist pattern
WO2018230334A1 (en) Radiation sensitive resin composition and resist pattern forming method
JP6561731B2 (en) Radiation sensitive resin composition, resist pattern forming method, acid diffusion controller and compound
WO2018012472A1 (en) Radiation sensitive resin composition and resist pattern forming method
WO2018194123A1 (en) Radiation-sensitive resin composition and resist pattern formation method
JP2015092231A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP2017181697A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6668825B2 (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6756120B2 (en) Radiation-sensitive resin composition, resist pattern forming method, radiation-sensitive acid generator and compound
JP6485240B2 (en) Radiation-sensitive resin composition and resist pattern forming method
WO2017122697A1 (en) Radiation-sensitive resin composition, method for forming resist pattern, acid diffusion control agent, and compound
WO2017122528A1 (en) Radiation-sensitive resin composition, resist pattern formation method, and acid diffusion control agent
KR102573542B1 (en) Radiation-sensitive resin composition and resist pattern formation method
JP5783111B2 (en) Photoresist composition and resist pattern forming method
JP2017016068A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6668831B2 (en) Radiation-sensitive resin composition, resist pattern forming method, radiation-sensitive acid generator and compound
JP2018097125A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6183199B2 (en) Radiation-sensitive resin composition, resist pattern forming method and compound
JP6398267B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP6926406B2 (en) Radiation-sensitive resin composition, resist pattern forming method and compound
JP6822179B2 (en) Radiation-sensitive resin composition and resist pattern forming method
KR102293088B1 (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6641759B2 (en) Radiation-sensitive resin composition and method for forming resist pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787791

Country of ref document: EP

Kind code of ref document: A1