WO2018193824A1 - Pyroelectric sensor element and pyroelectric sensor using same - Google Patents

Pyroelectric sensor element and pyroelectric sensor using same Download PDF

Info

Publication number
WO2018193824A1
WO2018193824A1 PCT/JP2018/014195 JP2018014195W WO2018193824A1 WO 2018193824 A1 WO2018193824 A1 WO 2018193824A1 JP 2018014195 W JP2018014195 W JP 2018014195W WO 2018193824 A1 WO2018193824 A1 WO 2018193824A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pyroelectric sensor
sensor element
holes
membrane
Prior art date
Application number
PCT/JP2018/014195
Other languages
French (fr)
Japanese (ja)
Inventor
寿彰 堀江
吉田 和司
森川 顕洋
高山 了一
足立 秀明
田中 良明
是近 哲広
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018193824A1 publication Critical patent/WO2018193824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details

Definitions

  • the present invention relates to a pyroelectric sensor used for gas detection and the like.
  • Patent Document 1 discloses a silicon substrate, a buffer layer made of zirconium oxide (ZrO 2 ) provided on the silicon substrate, a lower electrode made of platinum (Pt) provided on the buffer layer, and provided on the lower electrode.
  • ZrO 2 zirconium oxide
  • Pt platinum
  • a conventional structure having a piezoelectric film made of lead zirconate titanate (PZT) is disclosed.
  • the piezoelectric film is formed by epitaxial growth.
  • the lower electrode is used to control the crystal orientation of the piezoelectric film that is a ferroelectric.
  • a sensor using the structure is known.
  • Patent Documents 2 and 3 disclose pyroelectric sensors that detect infrared light that has passed through a band-pass filter bonded to a can (cap) or the like with a pyroelectric sensor element. This bandpass filter transmits light of a specific wavelength.
  • Patent Documents 4 and 5 disclose a pyroelectric sensor including a light absorbing member provided on a light receiving portion constituted by a lower electrode, a pyroelectric body, and an upper electrode.
  • Patent Documents 6, 7, and 8 disclose pyroelectric sensors provided with a light receiving portion provided on a substrate provided with a cavity.
  • Patent Document 9 discloses a scanning pyroelectric sensor that scans a light receiving part using a movable part.
  • Patent Documents 10 and 11 disclose pyroelectric sensors each including a light receiving portion provided on a laminated structure of silicon oxide or silicon nitride.
  • JP 2010-238856 A JP-A-6-213711 JP2015-184627A Japanese Patent Laid-Open No. 2015-206595 Japanese Patent Laying-Open No. 2015-161642 Japanese Patent Laying-Open No. 2015-184151 US Patent No. 920712 US Pat. No. 8,648,303 JP 2014-6078 A JP 2000-112432 A Japanese Unexamined Patent Publication No. 7-94788
  • the pyroelectric sensor element includes a substrate, a membrane provided on the upper surface of the substrate, a ferroelectric film provided on the upper surface of the membrane, and an upper electrode provided on the upper surface of the ferroelectric film.
  • the substrate has a first portion and a second portion that is thinner than the first portion.
  • the membrane includes a lower electrode, and the membrane is provided with a plurality of through holes penetrating from the lower surface of the membrane to the upper surface of the membrane at a position overlapping the second portion of the substrate in a top view.
  • FIG. 1 is a cross-sectional view of a structure using a ferroelectric film in the embodiment.
  • FIG. 2 is another cross-sectional view of the structure shown in FIG.
  • FIG. 3 is a characteristic diagram showing the result of X-ray diffraction of the structure in the embodiment.
  • FIG. 4 is another characteristic diagram showing the result of X-ray diffraction of the structure in the embodiment.
  • FIG. 5 is still another characteristic diagram showing the result of X-ray diffraction of the structure in the embodiment.
  • FIG. 6A is an exploded perspective view of the gyro sensor in the embodiment.
  • 6B is a plan view of the sensor element of the gyro sensor shown in FIG. 6A.
  • 6C is a cross-sectional view of the sensor element shown in FIG.
  • FIG. 7A is a schematic cross-sectional view of the pyroelectric sensor in the embodiment.
  • FIG. 7B is a perspective view of the pyroelectric sensor element of the pyroelectric sensor shown in FIG. 7A.
  • FIG. 7C is a top view of the pyroelectric sensor element shown in FIG. 7B.
  • FIG. 7D is a cross-sectional view of the pyroelectric sensor element shown in FIG. 7C taken along line 7D-7D.
  • FIG. 8A is a top view of another pyroelectric sensor element in the embodiment.
  • 8B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 8A taken along line 8B-8B.
  • FIG. 8A is a top view of another pyroelectric sensor element in the embodiment.
  • 8B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 8A taken along line 8B-8B.
  • FIG. 8C is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A.
  • FIG. 8D is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A.
  • FIG. 8E is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A.
  • FIG. 8F is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A.
  • FIG. 8G is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A.
  • FIG. 9A is a top view of still another pyroelectric sensor element in the embodiment.
  • FIG. 9B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 9A taken along line 9B-9B.
  • FIG. 9C is a cross-sectional view of still another pyroelectric sensor element in the embodiment.
  • FIG. 9D is a diagram for explaining the characteristics of the pyroelectric sensor element shown in FIG. 9A.
  • FIG. 10A is a top view of still another pyroelectric sensor element according to the embodiment.
  • FIG. 10B is a cross-sectional view of yet another pyroelectric sensor element taken along line 10B-10B in the embodiment.
  • FIG. 10C is an enlarged cross-sectional view of the pyroelectric sensor element shown in FIG. 10B.
  • FIG. 10D is a cross-sectional view of still another pyroelectric sensor element in the embodiment.
  • FIG. 10E is a cross-sectional view of still another pyroelectric sensor element in the embodiment.
  • FIG. 10F is a top view of still another pyroelectric sensor element in the embodiment.
  • 10G is a cross-sectional view of the pyroelectric sensor element shown in FIG. 10F taken along line 10G-10G.
  • FIG. 11A is a top view of still another pyroelectric sensor element according to the embodiment.
  • 11B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 11A taken along line 11B-11B.
  • FIG. 11C is an enlarged view of the pyroelectric sensor element shown in FIG. 11A.
  • FIG. 11D is an enlarged view of the pyroelectric sensor element shown in FIG. 11A.
  • FIG. 11A is a top view of still another pyroelectric sensor element according to the embodiment.
  • 11B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 11A taken along line 11B-11B.
  • FIG. 11E is an enlarged view of the pyroelectric sensor element shown in FIG. 11A.
  • FIG. 11F is an enlarged view of the pyroelectric sensor element shown in FIG. 11A.
  • FIG. 11G is an enlarged view of the pyroelectric sensor element shown in FIG. 11A.
  • FIG. 11H is an enlarged view of the pyroelectric sensor element shown in FIG. 11A.
  • FIG. 12A is a top view of still another pyroelectric sensor element in the embodiment. 12B is a cross-sectional view of the pyroelectric sensor element taken along line 12B-12B shown in FIG. 12A.
  • FIG. 12C is a diagram for explaining the characteristics of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 13A is an enlarged view of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 13B is an enlarged view of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 13C is an enlarged view of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 13D is an enlarged view of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 13E is an enlarged view of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 13F is an enlarged view of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 13G is an enlarged view of the pyroelectric sensor element shown in FIG. 12A.
  • FIG. 14A is a schematic cross-sectional view of the gas sensor in the embodiment.
  • FIG. 14B is a schematic cross-sectional view of another gas sensor in the embodiment.
  • FIG. 1 is a cross-sectional view of a structure 10 using a ferroelectric film in the embodiment.
  • the structure 10 includes a substrate 50, an intermediate film 40, a lower electrode 32, a ferroelectric film 20, and an upper electrode 31.
  • the ferroelectric film 20 is, for example, a perovskite complex oxide represented by the chemical formula ABO 3 .
  • a and B represent cations.
  • A is preferably one or more selected from Ca, Ba, Sr, Pb, K, Na, Li, La and Cd
  • B is preferably one or more selected from Ti, Zr, Ta and Nb.
  • the ferroelectric film 20 is made of lead zirconate titanate (PZT), lead magnesium niobate-PZT (PMN-PZT), lead nickel niobate-PZT (PNN-PZT), magnesium.
  • PMN-PT Lead niobate-lead titanate
  • PNN-PT lead nickel niobate-PT
  • NBT-BT sodium bismuth titanate-barium titanate
  • BST barium strontium titanate
  • the ferroelectric film 20 a laminated film in which a plurality of films made of the above materials are laminated may be used.
  • the substrate 50 is, for example, a (001) oriented MgO single crystal substrate, a (001) oriented yttria stabilized zirconia (YSZ) single crystal substrate, or a silicon single crystal having a (001) oriented YSZ epitaxial film on the surface.
  • a substrate or the like is used.
  • the intermediate film 40 is provided on the substrate 50.
  • the intermediate film 40 is made of an oxide having the chemical formula MIn 2 O 4 (M is a metal element).
  • M is a metal element
  • Mg magnesium
  • Zn zinc
  • Cd cadmium
  • the lower electrode 32 is made of a metal having a face-centered cubic structure, for example, platinum (Pt), gold (Au), iridium (Ir), palladium (Pd), and alloys or laminates thereof. By providing the lower electrode 32, the orientation of the ferroelectric film 20 provided thereon is controlled.
  • the ferroelectric film 20 is a film oriented in the c-axis direction.
  • the crystal structure is not a complete (001) -oriented film, but a c-axis-oriented crystal that is a (001) -oriented crystal so that crystal grains are ideally filled with honey on the lower electrode 32; 100) A thin film in which a-axis oriented crystals, which are oriented crystals, are mixed appropriately.
  • the upper electrode 31 is a metal film made of, for example, platinum (Pt), gold (Au), copper (Cu), titanium (Ti), aluminum, or an alloy or a laminate thereof.
  • MgIn 2 O 4 is used as the intermediate film 40. It has been confirmed by experiments that MgIn 2 O 4 can easily obtain an (002) -oriented epitaxial film in a wide range of 300 ° C. to 700 ° C. That is, there is no need to adjust the temperature before, during or after the formation of the MgIn 2 O 4 film. Also, the O 2 partial pressure need not be adjusted during the formation of the MgIn 2 O 4 film. That is, it was confirmed by experiments that an MgIn 2 O 4 film can be formed without requiring special control and is excellent in mass productivity.
  • Platinum (Pt) is preferably used for the lower electrode 32. According to experiments, by forming a film made of Pt on a (002) -oriented epitaxial film of MgIn 2 O 4 , it is possible to obtain a (002) -oriented epitaxial film of Pt without special control. I understood.
  • the epitaxial film is a film that is uniaxially oriented in the direction perpendicular to the plane and biaxially in the plane. For this reason, whether the film is an epitaxial film can be verified by X-ray diffraction of the film. Specifically, first, it is confirmed by 2 ⁇ - ⁇ scan whether or not uniaxial orientation is performed in the direction perpendicular to the plane. Next, the biaxial orientation in the plane is confirmed by confirming the symmetry of the crystal. Thereby, it can be confirmed whether the film is an epitaxial film. For example, in the case of a film oriented epitaxially in the [002] direction, it is first confirmed that it is oriented out of plane at (002) by 2 ⁇ - ⁇ scanning.
  • the positional relationship of 2 ⁇ of the X-ray diffractometer with respect to the crystal plane is fixed so as to detect the (202) plane, and the substrate is tilted by 45 ° from the perpendicular direction, and the in-plane 360 is fixed.
  • X-ray diffraction is measured while rotating at a degree. At this time, if it can be confirmed that four peaks corresponding to four planes equivalent to the (202) plane appear at intervals of 90 degrees, it can be determined that the film is an epitaxial film.
  • the film in addition to the peak corresponding to the main axis, a peak related to another axis is confirmed, or when checking in-plane symmetry, four periodic There may be some other peaks in addition to the peaks. However, if the intensity of other peaks is 1/10 or less of the main peak intensity, the film may be determined to be an epitaxial film.
  • the (101) plane, the (202) plane, and the [001] direction and the [002] direction indicate parallel planes having different orders, and show equivalent directions and planes. It is assumed that
  • FIG. 2 is a cross-sectional view of the structure 10X used for the X-ray analysis of the film in the structure 10 shown in FIG.
  • the structure 10X includes the substrate 50, the intermediate film 40, and the lower electrode 32 of the structure 10 shown in FIG.
  • FIG. 3 is a characteristic diagram showing a result of 2 ⁇ - ⁇ scan performed on the structure 10X shown in FIG.
  • a silicon single crystal substrate having a (001) -oriented YSZ epitaxial film on the surface is used as the substrate 50
  • an MgIn 2 O 4 film is used as the intermediate film 40
  • a Pt film is used as the lower electrode 32.
  • FIG. 4 the positional relationship of 2 ⁇ - ⁇ of the X-ray diffractometer with respect to the crystal plane is fixed so as to detect the (202) plane of each of the MgIn 2 O 4 film and the Pt film, and the substrate 50 is further moved from the perpendicular direction to FIG. 6 is a characteristic diagram showing the result of X-ray diffraction measured while being rotated 360 degrees in the plane after being tilted.
  • the MgIn 2 O 4 film was prepared by RF magnetron sputtering. At this time, the substrate temperature was heated to 400 ° C., oxygen gas and argon gas were mixed and introduced at a ratio of 1: 1, the pressure was adjusted to 4 Pa, and sputtering was performed at a power of 80 W. The Pt film was formed by magnetron sputtering at 400 ° C.
  • FIG. 5 shows the addition of niobium in which part of Pb of lead titanate (PbTiO 3) as the ferroelectric film 20 is replaced with lanthanum (La) and further niobium is added on the lower electrode 32 of the structure 10X shown in FIG. 3 shows the result of X-ray diffraction (2 ⁇ - ⁇ ) measurement of a structure in which lead lanthanum titanate (PLMT) is formed. From FIG. 5, it can be confirmed that the ferroelectric film 20 formed on the structure 10X of FIG. 3 is strongly oriented in the (001) direction.
  • FIG. 6A is an exploded perspective view of the gyro sensor 100 according to the embodiment.
  • the gyro sensor 100 includes a sensor element 101 having a tuning fork shape, a circuit board 100a electrically connected to the sensor element 101, a package 100b that houses the sensor element 101 and the circuit board 100a, and a lid 100c that covers the package 100b. have.
  • the package 100b is made of an insulator such as ceramic or resin.
  • FIG. 6B is a plan view of the sensor element 101.
  • the lower electrode 32d positioned below the detection electrodes 31c and 31d and the ferroelectric film 20d provided on the lower electrode 32d become an (001) -oriented epitaxial film. Yes.
  • the sensor element 101 includes a base 110 and arms 120 and 130 connected to the base 110.
  • the sensor element 101 is obtained by processing the structure 10 including the ferroelectric film 20, the upper electrode 31, and the lower electrode 32 into the shape of a tuning fork vibrator.
  • the base 110 and the arms 120 and 130 are integrally formed by the structure 10.
  • On the main surface 120S of the arm 120 a drive electrode 31a and a detection electrode 31c are formed.
  • a drive electrode 31b and a detection electrode 31d are formed on the main surface 130S of the arm 130. These electrodes are obtained by etching the upper electrode 31 into a predetermined electrode shape.
  • the lower electrode 32 formed on the main surfaces 120S and 130S of the base 110 and the arms 120 and 130 functions as a ground electrode of the sensor element 101.
  • FIG. 6C is a cross-sectional view taken along line 6C-6C of the sensor element 101 shown in FIG. 6B.
  • the ferroelectric film 20d of the PZT film in the detection portion located under the detection electrode 31d is an epitaxial film.
  • the ferroelectric film 20b of the PZT film in the driving portion located under the driving electrode 31b is an oriented ferroelectric film.
  • the lower electrode under the oriented ferroelectric film 20b is (111) oriented, whereby the ferroelectric film 20b becomes an oriented film.
  • the sensor in which the ferroelectric film 20d of the PZT film in the detection portion is an epitaxial film and the ferroelectric film 20b of the PZT film in the driving portion is an oriented ferroelectric film is not limited to the angular velocity sensor.
  • the present invention can be applied to a vibration type acceleration sensor or a pyroelectric sensor.
  • FIG. 7A is a schematic sectional view of the pyroelectric sensor 200 in the embodiment.
  • the pyroelectric sensor 200 includes a pyroelectric sensor element 201, a package 200a that houses the pyroelectric sensor element 201, and a lens 200b.
  • FIG. 7B is a perspective view of the pyroelectric sensor element 201.
  • FIG. 7C is a top view of the pyroelectric sensor element 201.
  • 7D is a cross-sectional view of pyroelectric sensor element 201 taken along line 7D-7D shown in FIG. 7C.
  • the pyroelectric sensor element 201 includes a base 110, an arm 120 connected to the base 110, an arm 130 connected to the base 110, and a movable part 60 connected to the arms 120 and 130.
  • the movable part 60 vibrates, and the ferroelectric film 20d, which is an epitaxial film located under the detection electrode 31d provided on the movable part 60, is scanned to scan the infrared rays or the like. Light that changes the temperature of the ferroelectric film 20d can be detected.
  • the pyroelectric sensor element 201 functions as a scanning pyroelectric sensor element.
  • the detection part, the drive part, and the film configuration are different. Thereby, the accuracy of the pyroelectric sensor 200 can be improved.
  • FIG. 8A is a top view of another pyroelectric sensor element 201a in the embodiment.
  • FIG. 8B is a cross-sectional view of the pyroelectric sensor element 201a shown in FIG. 8A taken along line 8B-8B.
  • 8C to 8G are cross-sectional views illustrating a manufacturing process of the pyroelectric sensor element 201a.
  • the pyroelectric sensor element 201a includes a substrate 52, a metal film 31p, a ferroelectric film 20d, a drive electrode 31b, and a detection electrode 31d.
  • the metal film 31p is composed of a metal film (upper electrode 31) and a metal film 54 stacked on each other.
  • the ferroelectric film 20d is an epitaxial film.
  • the substrate 52 is made of a material that is hardly soluble or insoluble in hydrochloric acid, such as stainless steel, or is otherwise made of a material having a significantly different etching rate from MgIn 2 O 4 that is the material of the intermediate film 40. An epitaxial film cannot be formed.
  • the metal film 31p is a metal film made of a material such as gold that is insoluble in a strong acid such as hydrochloric acid.
  • 8C to 8G are diagrams for explaining a manufacturing process of the pyroelectric sensor element 201a.
  • the structure 10 includes a substrate 50, an intermediate film 40, a lower electrode 32, a ferroelectric film 20d, and an upper electrode 31.
  • the intermediate film 40 may be described as a first layer, the lower electrode 32 as a second layer, and the ferroelectric film 20d as a third layer.
  • the intermediate film 40 is made of MgIn 2 O 4 or ZnIn 2 O 4 .
  • the structure 10 is patterned leaving the substrate 50 to obtain the structure 10b.
  • the shape of the patterned structure 10b in the top view is the same as the shape of the drive electrodes 31a and 31b and the detection electrode 31d shown in FIG. 8A in the top view.
  • the structure 10 includes an intermediate film 40, a lower electrode 32, a ferroelectric film 20 d, and an upper electrode 31.
  • the patterned structure 10b is bonded to the substrate 52 patterned in the same shape as the patterned structure 10b to obtain the structure 10c shown in FIG. 8F.
  • a metal film 54 made of gold or the like is provided on the substrate 52, and metal bonding, solid phase diffusion bonding, ultrasonic bonding, or the like is performed with the upper electrode 31 of the structure 10b on which the metal film 54 is patterned. To be joined.
  • the structure 10 c is immersed in the strong acid 91.
  • the strong acid 91 is hydrochloric acid.
  • the upper electrode for example, gold
  • the piezoelectric film for example, PZT
  • the lower electrode for example, platinum
  • the substrate 52 for example, SUS
  • MgIn 2 O 4 and ZnIn 2 O 4 used as the intermediate film 40 of the pyroelectric sensor element 201 a are soluble in hydrochloric acid, which is the strong acid 91. For this reason, the intermediate film 40 is removed by immersing the structure 10c in the strong acid 91, and as a result, the substrate 50 is peeled from the structure 10c.
  • the pyroelectric sensor element 201a shown in FIG. 8A is formed. That is, the ferroelectric film 20d, which is an epitaxial film patterned on the substrate 50, can be transferred to another substrate.
  • a patterned ferroelectric film 20d can be provided on a substrate such as SUS on which a ferroelectric film 20d that is an epitaxial film cannot be directly formed.
  • FIG. 9A is a top view of the pyroelectric sensor element 201b1 in the embodiment.
  • 9B is a cross-sectional view of pyroelectric sensor element 201b1 taken along line 9B-9B shown in FIG. 9A.
  • the pyroelectric sensor element 201b1 includes a substrate 50, an intermediate film 40, a ferroelectric film 20, an upper electrode 31, a contact portion 31e, a wiring 31f, a lower electrode 32, an insulating film 206a, and an insulating film 206b. And a cavity 208.
  • Intermediate layer 40 is MgIn 2 O 4 film made MgIn 2 O 4.
  • the intermediate layer 40 may be a ZnIn 2 O 4 film made ZnIn 2 O 4.
  • an insulator such as a silicon nitride film (SiN film), a silicon oxide film (SiO film), or a silicon oxynitride film (SiON film) can be used.
  • the insulating film 206a supports a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50, or has a function of adjusting stress in the structure.
  • an insulator such as a silicon nitride film (SiN film), a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), a polyimide-based permanent resist, or the like can be used.
  • the insulating film 206b supports a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50, or has a function of insulating between the electrodes.
  • the ferroelectric film 20 is an ferroelectric film 20d that is an epitaxial film, an oriented ferroelectric film 20b, or the like. When used for a pyroelectric sensor element, the ferroelectric film 20 may be described as a pyroelectric film or a pyroelectric material.
  • the upper electrode 31 is a metal thin film made of titanium, platinum, gold or the like. Since the upper electrode 31 preferably has a certain sheet resistance, it is preferable to reduce the film thickness. For example, the film thickness of the upper electrode 31 is 10 nm. In the pyroelectric sensor element, the upper electrode 31 can be described as an infrared absorption film that absorbs infrared rays.
  • the wiring 31f is electrically connected to the upper electrode 31 and connected to the electrode 31g1.
  • the wiring 31 f is arranged so as to surround the ferroelectric film 20.
  • the electrode 31g2 is used for taking out an electric signal from the lower electrode 32.
  • the contact portion 31e is a connection portion where the upper electrode 31 and the wiring 31f are connected.
  • the cavity 208 is provided at least at a position below the ferroelectric film 20 and between the substrate 50 and the lower electrode 32.
  • the cavity 208 is formed by removing the MgIn 2 O 2 film that can be selectively etched by wet etching. Therefore, both ends (side walls) of the cavity 208 are made of MgIn 2 O 2 . That is, the cavity 208 has an upper surface 208a, a lower surface 208b, and side surfaces 208c and 208d connected to the upper surface 208a and the lower surface 208b.
  • the side surfaces 208 c and 208 d face each other through the cavity 208. Side surfaces of the cavity 208 and 208c and 208d are made of MgIn 2 O 2 .
  • the intermediate film 40 includes MIn 2 O 4 with M as a metal element of either Mg or Zn.
  • the composition of the side surfaces 208c and 208c of the cavity 208 has the chemical formula MIn 2 O 4 .
  • the thickness of the MgIn 2 O 2 film is, for example, 20 mm
  • the thickness of the cavity 208 is also 20 mm.
  • the thickness of the lower electrode 32 is, for example, 1000 mm. Therefore, the thickness of the cavity 208 is smaller than the thickness of the lower electrode 32.
  • a part of the upper surface constituting the cavity 208 becomes an insulating film 206a.
  • the substrate 50 may be further etched using, for example, fluorine gas, thereby further expanding the cavity 208.
  • the vertical width of the cavity 208 is smaller than the vertical thickness of the lower electrode 32.
  • a part of the upper surface 208a of the cavity 208 is composed of an insulating film 206b.
  • the silicon substrate on the back side of the pyroelectric sensor element is etched to reduce the heat capacity of the pyroelectric sensor element and prevent the escape of heat.
  • this method has problems such as time-consuming cavity processing or an increase in the size of the pyroelectric sensor element.
  • the intermediate film 40 is a MgIn 2 O 2 film that can be selectively etched, and this is selectively removed by wet etching, which is necessary for the conventional pyroelectric sensor. No cavity processing is required, and the pyroelectric sensor can be reduced in size.
  • the sheet resistance of the upper electrode 31 is desirably 250 ⁇ to 500 ⁇ in order to increase the amount of infrared rays absorbed by the pyroelectric film. If the sheet resistance of the upper electrode 31 using Pt (platinum) or Au (gold) is to be set to, for example, 250 ⁇ to 500 ⁇ , the film thickness becomes 1 nm or less because the specific resistance is small, and the film thickness (film thickness) controllability. Decreases. Alternatively, even when the upper electrode 31 using NiCr is intended to have a sheet resistance of 250 ⁇ to 500 ⁇ , the film thickness of the upper electrode 31 is 1.6 nm, and the controllability of film formation (film thickness) is lowered.
  • the sheet resistance of the upper electrode 31 is made to be 250 ⁇ to 500 ⁇ using a material having a large specific resistance such as Ti and Cr, Ti and Cr easily oxidize with heat because they are easily bonded to oxygen, and are reliable. It is difficult to keep sex. Therefore, it is preferable to use NiCrAlSi as the material of the upper electrode 31.
  • the upper electrode 31 made of NiCrAlSi, that is, the NiCrAlSi electrode has a large specific resistance, so that the film thickness can be increased, the film thickness controllability and heat resistance are excellent, and the cost is lower than that of Pt or Au.
  • the weight ratio of Ni to Cr is 45/55 to 55/45
  • Al is contained in an amount of 10 to 18% by weight
  • Si is contained in an amount of 2 to 6% by weight of the total weight. It is desirable to make it.
  • the upper electrode 31 may be formed of a material other than Si, which is easy to bond with oxygen and has high reliability.
  • the upper electrode 31 may be formed of Ta, Nb, Zr, Y, or Ti.
  • the upper electrode 31 contains four elements of Ni, Cr, Al, and Si, has a higher resistance value than Ni, Cr, and Al alloy, has a sheet resistance of 250 ⁇ to 500 ⁇ , and a thickness of 5 nm or more.
  • FIG. 9C is a cross-sectional view of another pyroelectric sensor element 201b2 in the embodiment.
  • the pyroelectric sensor element 201b2 includes a substrate 50 different from the pyroelectric sensor element 201b1.
  • the substrate 50 has a laminated structure of films containing silicon.
  • the substrate 50 includes a silicon film (Si film) 50b1, a silicon oxide film (SiOx film) 50b2, a silicon nitride film (SiN film) 50b3, and a silicon oxide film (SiOx film) 50b4.
  • the membrane 408 includes a silicon film (Si film) 50b1, a silicon oxide film (SiOx film) 50b2, a silicon nitride film (SiN film) 50b3, and a silicon oxide film (SiOx film) 50b4.
  • the substrate 50 used for the pyroelectric sensor element in the embodiment may not have the cavity 208 formed by etching the intermediate film 40 (MgIn 2 O 2 film).
  • the portion where the ferroelectric film 20 exists functions as the light receiving portion 404.
  • a portion where the cavity 208 does not exist is a frame 406.
  • the frame 406 is a portion where the substrate 50 and the intermediate film 40 exist.
  • the frame 406 is a portion where the Si film 50b1 exists. The same applies to other pyroelectric sensor elements in the embodiment.
  • the membrane 408 is a part where the cavity 208 exists in the cross section of the pyroelectric sensor element 201b1, and in another expression, the part where the intermediate film 40 does not exist.
  • the membrane 408 is a portion where the Si film 50b1 does not exist.
  • the substrate 50 has a first portion and a second portion that is thinner than the first portion.
  • the first part is the part of the Si film 50b1
  • the second part is the SiOx film 50b2
  • the SiN film 50b3 the SiOx film 50b4 in the part where the Si film 50b1 does not exist. Is the combined part.
  • the first portion is a portion where the intermediate film 40 and the substrate 50 are combined, and the second portion is where the intermediate film 40 is present. It is the board
  • FIG. 9D shows the characteristics of the pyroelectric sensor element 201b2.
  • the pyroelectric coefficient of the ferroelectric film 20 changes according to the thickness of the membrane 408. That is, by setting the thickness of the membrane 408 to a certain value or less, the pyroelectric coefficient of the ferroelectric film 20 is increased, and as a result, the performance of the pyroelectric sensor element 201b2 can be improved. The mechanism by which this effect appears will be described. First, as the thickness of the SiOx film 50b4 decreases, the overall thickness of the membrane 408 decreases. And the restraining force from the membrane 408 of the ferroelectric film 20 decreases.
  • the conventional sensor of the above art is insufficient to meet the increasing demand for high accuracy and high reliability.
  • the pyroelectric sensor element 201b2 in the embodiment can obtain high accuracy as described above.
  • FIG. 10A is a top view of still another pyroelectric sensor element 201c1 in the embodiment.
  • 10B is a cross-sectional view of pyroelectric sensor element 201c1 shown in FIG. 10A taken along line 10B-10B.
  • FIG. 10C is an enlarged view of the pyroelectric sensor element 201c1 shown in FIG. 10B.
  • the pyroelectric sensor element 201c1 further includes a laminated film 210 in addition to the pyroelectric sensor element 201b1.
  • the laminated film 210 is provided in the recess 212.
  • the recess 212 has a bottom made of a portion of the upper electrode 31 in contact with the ferroelectric film 20 and a side wall made of the insulating film 206b.
  • the upper surface S1 of the laminated film 210 is lower than the upper surface S2 of the recess 212. In other words, the upper surface S1 of the stacked film 210 is lower than the upper surface S2 of the insulating film 206b. In other words, the thickness of the laminated film 210 is smaller than the depth of the recess 212.
  • the upper surface S1 of the laminated film 210 is higher than the upper surface S3 of the wiring 31f.
  • the laminated film 210 is a band-pass filter that transmits light of a predetermined wavelength band including the center wavelength of infrared light and does not transmit light having a wavelength other than the wavelength band, and has a function of transmitting only a specific wavelength. In an infrared sensor, only infrared rays having a desired wavelength can be transmitted.
  • a silicon nitride film (SiN film) as a film constituting the laminated film because it functions as a moisture-resistant film and can serve as both a bandpass filter and a moisture-resistant film.
  • the laminated film 210 is provided on the upper surface of the film 210a provided on the upper surface of the upper electrode 31, the film 210b provided on the upper surface of the film 210a, the film 210c provided on the upper surface of the film 210b, and the upper surface of the film 210c.
  • the film 210a is made of a material having a high refractive index, and for example, ZrO 2 , TiO 2 , Nb 2 O 5 , or Ta 2 O 5 can be used.
  • the film 210b is made of a material having a lower refractive index than the film 210a, and for example, SiO 2 or MgF 2 can be used.
  • the film 210c is configured using the same material as the film 210a.
  • the film 210d is formed using the same material as the film 210b. That is, the laminated film 210 is a structure in which a film made of a material having a high refractive index and a film made of a material having a low refractive index are alternately laminated. In the present embodiment, the laminated film 210 is described as a laminated structure of four films, but is not limited to this, and may be formed of five or more films, or may be formed of three or less films. May be.
  • a conventional pyroelectric sensor for detecting a specific wavelength includes a package, a bandpass filter bonded to the package, and a pyroelectric sensor element accommodated in the package.
  • the bandpass filter is a separate body from the pyroelectric sensor element
  • the pyroelectric sensor is increased in cost and size.
  • the pyroelectric sensor element 201c1 in the embodiment can be reduced in cost and size because the bandpass filter is integrated with the pyroelectric sensor element. Since the pyroelectric sensor element 201c1 is integrated with the band pass filter, it can function as a pyroelectric sensor without using the package 200a and the lens 200b shown in FIG. 7A. That is, the pyroelectric sensor element 201c1 may be described as a pyroelectric sensor.
  • FIG. 10D is an enlarged cross-sectional view of still another pyroelectric sensor element 201c2 in the embodiment.
  • the pyroelectric sensor element 201c2 does not include the insulating film 206a.
  • the laminated film 210 is provided in the recess 212.
  • the recess 212 has a bottom made of a portion of the upper electrode 31 in contact with the ferroelectric film 20, and a side wall made of the wiring 31f and the contact portion 31e.
  • the upper surface of the laminated film 210 is lower than the upper surface of the wiring 31f.
  • FIG. 10E is an enlarged cross-sectional view of still another pyroelectric sensor element 201c3 in the embodiment.
  • the laminated film 210 is provided between the wiring 31f and the ferroelectric film 20.
  • the laminated film 210 functions as a protective film for the bandpass filter and the ferroelectric film 20, and also functions as an insulating film for the upper electrode 31 and the lower electrode 32. Thereby, manufacture of the pyroelectric sensor element 201c3 can be simplified.
  • a part of the laminated film 210 covers the side surface S4 of the ferroelectric film 20.
  • a part of the film 210a covers the side surface S4 of the ferroelectric film 20.
  • the thickness of the film 210a in the portion covering the side surface S4 of the ferroelectric film 20 is smaller than the thickness of the film 210a in the portion covering the upper surface of the ferroelectric film 20.
  • a part of the film 210 a covers the upper surface of the lower electrode 32.
  • FIG. 10F is a top view of still another pyroelectric sensor element 201d in the embodiment.
  • 10G is a cross-sectional view of pyroelectric sensor element 201d shown in FIG. 10F taken along line 10G-10G.
  • the pyroelectric sensor element 201 d does not include the wiring 31 f surrounding the ferroelectric film 20.
  • the other configuration of the pyroelectric sensor element 201d is the same as that of the pyroelectric sensor elements 201c1 to 201c3.
  • FIG. 11A is a top view of still another pyroelectric sensor element 201e in the embodiment.
  • 11B is a cross-sectional view of pyroelectric sensor element 201e shown in FIG. 11A taken along line 11B-11B.
  • the pyroelectric sensor element 201e includes a substrate 50, an intermediate film 40, a ferroelectric film 20, an upper electrode 31, a contact portion 31g, a wiring 31f, a lower electrode 32, an insulating film 206a, and an insulating film 206b. And a cavity 208.
  • Intermediate layer 40 is MgIn 2 O 4 film made MgIn 2 O 4.
  • Intermediate film 40 may be a ZnIn 2 O 4 film made ZnIn 2 O 4.
  • an oxide film such as a silicon nitride film (SiN film), a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), an Al 2 O 3 film, or a ZrO 2 film is used. Can do.
  • the insulating film 206a supports a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50, or has a function of adjusting a stress applied to the structure.
  • the insulating film 206b is a silicon nitride film (SiN film), a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), an oxide film such as an Al 2 O 3 film, or a ZrO 2 film, or polyimide A system permanent resist or the like can be used.
  • the insulating film 206b has a function of supporting a concept such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50 and insulating between the electrodes.
  • the ferroelectric film 20 is an ferroelectric film 20d that is an epitaxial film, an oriented ferroelectric film 20b, or the like.
  • the upper electrode 31 is a metal thin film made of titanium, platinum, gold or the like. Alternatively, a metal thin film using NiCrAlSi as described above. Since the upper electrode 31 preferably has a certain sheet resistance, it is preferable to reduce the film thickness. For example, the film thickness of the upper electrode 31 is 10 nm.
  • the upper electrode 31 can also be described as an infrared absorption film that absorbs infrared rays.
  • the wiring 31f is electrically connected to the upper electrode 31 and connected to the electrode 31g1.
  • the wiring 31 f is arranged so as to surround the ferroelectric film 20. Alternatively, the wiring 31f may be arranged so as to straddle one end portion of the ferroelectric film 20.
  • the electrode 31g2 is used for taking out an electric signal from the lower electrode 32.
  • the contact portion 31e is a connection portion where the upper electrode 31 and the wiring 31f are connected.
  • the cavity 208 is provided at least at a position below the ferroelectric film 20 and between the substrate 50 and the lower electrode 32.
  • the cavity 208 is formed by removing a MgIn 2 O 2 film made of MgIn 2 O 2 that can be selectively etched by wet etching. Therefore, both ends (side walls) of the cavity 208 are made of MgIn 2 O 2 . Further, since the thickness of the MgIn 2 O 2 film is, for example, 200 mm, the thickness of the cavity 208 is also 200 mm. On the other hand, the thickness of the lower electrode 32 is, for example, 1000 mm. Therefore, the thickness of the cavity 208 is smaller than the thickness of the lower electrode 32.
  • a part of the upper surface constituting the cavity 208 is an insulating film 206a.
  • the substrate 50 may be further etched using, for example, fluorine gas, thereby further expanding the cavity 208.
  • the substrate 50 of the pyroelectric sensor element 210b2 shown in FIG. 9C may be used.
  • 11C to 11H are top views showing the shape of the through hole 402 in a top view.
  • 11C to FIG. 11H show a direction D404 toward the light receiving unit 404 and a direction D406 away from the light receiving unit 404 and toward the frame 406.
  • the through hole 402 shown in FIG. 11C has a triangular shape when viewed from above.
  • the cross-sectional area gradually decreases in the direction D404 from the frame 406 of the membrane 408 toward the light receiving portion 404, the thermal resistance increases, and the pyroelectric sensor element 201e output increases.
  • the stress concentration applied to the membrane 408 is dispersed to improve the impact resistance.
  • the triangular apex is directed in the direction D406 toward the frame 406, but the triangular apex may be directed in the direction D404 toward the light receiving unit 404.
  • the through hole 402 shown in FIG. 11D has a triangular shape in a top view.
  • the plurality of through holes 402 include a plurality of through holes 402b1 having a triangular shape whose apex faces in the direction D406, and a plurality of through holes 402b2 having a triangular shape whose apex faces in the direction D404.
  • the plurality of through holes 402b1 are arranged symmetrically with respect to the plurality of through holes 402b2 with respect to the point Pb1 on the straight line Lb1.
  • the plurality of through holes 402 have either a triangular shape or a trapezoidal shape, and are arranged symmetrically with respect to the plurality of through holes 402b1 forming the through hole group 4021 and the predetermined point Pb1 with respect to the through hole group 4021. And a plurality of through-holes 402b2 forming the through-hole group 4022.
  • the through-hole 402 shown in FIG. 11E has a trapezoidal shape having an upper base smaller than the lower bottom in a top view.
  • the plurality of through holes 402 include a plurality of through holes 402c1 having a trapezoidal shape with the upper base facing in the direction D406 and a plurality of through holes 402c2 having a trapezoidal shape with the lower bottom facing in the direction D404.
  • the plurality of through holes 402c1 are arranged symmetrically with respect to the plurality of through holes 402c2 with respect to the point Pc1 on the straight line Lc1.
  • the through holes 402 shown in FIG. 11F are provided in a staggered pattern in a top view. As a result, it is possible to extend the distance through which heat is transmitted to the light receiving unit 404 and the frame 406, and to increase the thermal insulation and increase the output.
  • the through holes 402 shown in FIG. 11G have a rhombus shape arranged in a staggered pattern when viewed from above. As a result, the thermal insulation is further improved, and the shape of the membrane 408 connected to the light receiving portion 404 and the frame 406 becomes a triangular shape and the stress is dispersed to improve the impact resistance.
  • the through holes 402 shown in FIG. 11H have circular shapes arranged in a staggered pattern when viewed from above. As a result, the distance from the light receiving unit 404 to the frame 406 is increased, the thermal resistance is increased, and the output is increased.
  • the through holes 402 shown in FIGS. 11D and 11E are arranged as follows.
  • the through hole 402 has a triangular shape or a trapezoidal shape when viewed from above.
  • the through hole 402 includes a through hole 402b1 and a through hole 402b2 that are arranged point-symmetrically with respect to the straight line Lb1.
  • the triangular apex of the through hole 402b1 faces the direction D406 opposite to the direction D404 in which the triangular apex of the through hole 402b2 faces.
  • the through hole 402 includes a through hole 402c1 and a through hole 402c2 that are arranged point-symmetrically with respect to the straight line Lc1.
  • the through holes 402 shown in FIGS. 11C to 11H are arranged as follows. That is, the through hole 402 is provided so as to surround the light receiving unit 404.
  • “surround” means that the through-hole 402 is disposed in a belt-like region having a hollow square shape. Or the through-hole 402 is arrange
  • the through holes 402 shown in FIGS. 11C to 11H are arranged as follows.
  • the through hole 402 draws a straight line from the center of the light receiving portion 404 to the frame 406, at least a part of the straight line always passes through the through hole 402.
  • a straight line Ld1 from the center of the light receiving unit 404 to the frame 406 passes through the through hole 402 as shown in FIG. 11F, or an arbitrary line from the center of the light receiving unit 404 to the frame 406 as shown in FIG. 11F.
  • the straight line passes through at least one of the plurality of through holes 402.
  • Such a structure can also be described as “the through holes 402 are arranged in a staggered pattern (hound tooth check)”.
  • the plurality of through holes 402 are arranged in a matrix shape having a plurality of columns C101 extending in the direction D101 and a plurality of rows C102 extending in the direction 102 intersecting the direction D101.
  • the plurality of through holes 402 include a plurality of through holes 402d1 arranged in each row C101 of the plurality of rows C101, and a plurality of rows arranged in corresponding rows C101 adjacent to the respective rows C101 of the plurality of rows C101.
  • Through-hole 402d2 When viewed from the direction D102, the boundary between the plurality of through holes 402d1 is deviated from the boundary between the plurality of through holes 402d2. As viewed from the direction D102, boundaries between the plurality of through holes 402d1 overlap with the plurality of through holes 402d2, and boundaries between the plurality of through holes 402d2 overlap with the plurality of through holes 402d1.
  • FIG. 12A is a top view of still another pyroelectric sensor element 201f in the embodiment.
  • 12B is a cross-sectional view of pyroelectric sensor element 201f shown in FIG. 12A taken along line 12B-12B.
  • the pyroelectric sensor element 201f includes a substrate 50, an intermediate film 40, a ferroelectric film 20, an upper electrode 31, a contact portion 31g, a wiring 31f, a lower electrode 32, an insulating film 206a, and an insulating film 206b. And a cavity 208.
  • the intermediate film 40 is a MgIn 2 O 4 film.
  • the intermediate film 40 may be a ZnIn 2 O 4 film.
  • an oxide film such as a SiN film, a SiO film, a SiON film, an Al 2 O 3 film, or a ZrO 2 film can be used.
  • the insulating film 206a has a function of supporting a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50 or adjusting a stress applied to the structure.
  • an oxide film such as a SiN film, a SiO film, a SiON film, an Al 2 O 3 film, a ZrO 2 film, a polyimide-based permanent resist, or the like can be used.
  • the insulating film 206b has a function of supporting a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50 or insulating between the electrodes.
  • the ferroelectric film 20 is a ferroelectric film 20d that is an epitaxial film, or a ferroelectric film 20b that is made of an orientation.
  • the upper electrode 31 is a metal thin film made of titanium, platinum, gold or the like. Alternatively, a metal thin film using NiCrAlSi as described above. Since the upper electrode 31 preferably has a sheet resistance of a predetermined value or more, it is preferable to reduce the film thickness. For example, the film thickness of the upper electrode 31 is 10 nm. Here, the upper electrode 31 can also be described as an infrared absorption film.
  • the wiring 31f is electrically connected to the upper electrode 31 and connected to the electrode 31g1.
  • the wiring 31 f is arranged so as to surround the ferroelectric film 20. Alternatively, the wiring 31 f may be arranged so as to straddle one end portion of the ferroelectric film 20.
  • the electrode 31g2 is used for taking out an electric signal from the lower electrode 32.
  • the contact portion 31e is a connection portion where the upper electrode 31 and the wiring 31f are connected.
  • the cavity 208 is provided at least at a position below the ferroelectric film 20 and between the substrate 50 and the lower electrode 32.
  • the cavity 208 is formed by removing the MgIn 2 O 2 film that can be selectively etched by wet etching. Therefore, both ends (side walls) of the cavity 208 are made of MgIn 2 O 2 . Further, since the thickness of the MgIn 2 O 2 film is, for example, 200 mm, the thickness of the cavity 208 is also 200 mm. On the other hand, the thickness of the lower electrode 32 is, for example, 1000 mm. Therefore, the thickness of the cavity 208 is smaller than the thickness of the lower electrode 32. A part of the upper surface constituting the cavity 208 becomes an insulating film 206a.
  • the substrate 50 may be further etched using, for example, fluorine gas, thereby further expanding the cavity 208.
  • the substrate 50 of the pyroelectric sensor element 201b2 shown in FIG. 9C may be used.
  • the light receiving portion 404 is a portion where the ferroelectric film 20 exists in the cross section of the pyroelectric sensor element 201f. The same applies to other pyroelectric sensor elements in the embodiment.
  • the frame 406 is a portion where the cavity 208 does not exist in the cross section of the pyroelectric sensor element 201f. In other words, the frame 406 is a portion where the substrate 50 and the intermediate film 40 exist. In other words, the frame 406 is a portion where the Si film 50b1 exists (see FIG. 9C). The same applies to other pyroelectric sensor elements in the embodiment.
  • the membrane 408 is a portion where the cavity 208 exists in the cross section of the pyroelectric sensor element 201f. In other words, the membrane 408 is a portion where the intermediate film 40 does not exist. In other words, the membrane 408 is a portion where the Si film 50b1 does not exist (FIG. 9B).
  • the substrate 50 has a first portion and a second portion that is thinner than the first portion, and the second portion is the cavity 208.
  • the first portion is a portion of the Si film 50b1
  • the second portion is a portion of the SiOx film 50b2, SiN film 50b3, and SiOx film 50b4 where the Si film 50b1 does not exist.
  • the first portion is a portion where the intermediate film 40 where the intermediate film 40 exists is combined with the substrate 50
  • the second portion is the intermediate film 40. This is the portion of the substrate 50 in which no exists. The same applies to other pyroelectric sensor elements in the embodiment.
  • FIG. 12C shows the characteristics of the pyroelectric sensor element 201f.
  • One side of the light receiving unit 404 has a length Le
  • one side of the membrane 408 has a length Lm.
  • the ratio (Le / Lm) of the length Le to the length Lm is 0.8 or less.
  • the size of the light receiving portion 404, that is, the ferroelectric film 20 is reduced with respect to the membrane 408, and the restraining force that the light receiving portion 404, that is, the ferroelectric film 20 receives from the membrane 408 is reduced. To do. For this reason, since the polarization during the polarization process of the ferroelectric film 20 is easily aligned, the pyroelectric coefficient of the ferroelectric film 20 increases, and the output voltage and sensitivity increase.
  • FIGS. 9A, 10A, 10F, 11A, and 12A are enlarged views of the region P shown in FIGS. 9A, 10A, 10F, 11A, and 12A.
  • a contact portion in which the wiring 31f and the upper electrode 31 (light receiving portion 404) are in contact with each other is provided.
  • FIG. 13A A configuration of the contact portion 501a shown in FIG. 13A will be described.
  • the lower electrode 32 In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1.
  • the insulating film 206a fills the gap G1.
  • the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved.
  • the lower electrode 32 does not overlap the upper electrode 31 in a top view
  • the lower electrode 32 is exposed from the upper electrode 31 in a top view
  • the lower electrode 32 is exposed from the upper electrode 31 in a top view.
  • the portion to be described is described as “the portion that does not overlap”.
  • the wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST1 provided on the insulating film 206a.
  • FIG. 13B A configuration of the contact portion 501b shown in FIG. 13B will be described.
  • the lower electrode 32 is exposed from the upper electrode 31 by a gap G1.
  • the insulating film 206a fills the gap G1.
  • the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved.
  • the lower electrode 32 does not overlap the upper electrode 31 in a top view
  • the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view.
  • the portion may be described as “a portion that does not overlap”.
  • the wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST2 provided on the insulating film 206a.
  • the wiring 31f has an overhang provided at the end thereof.
  • the wiring 31f has an H shape as a whole. In other words, the wiring 31f covers at least a part of the three sides of the insulating film 206a. In other words, the wiring 31f covers two corners of the insulating film 206a.
  • the wiring 31f can cover the step ST2 of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving unit 404 ( It is possible to prevent a decrease in yield during the production of the pyroelectric sensor element due to the disconnection of the upper electrode 31). Furthermore, it is possible to improve the long-term reliability by reducing the probability that the light receiving unit 31 (upper electrode 404) is disconnected during operation of the pyroelectric sensor element. Note that when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to a displacement of an apparatus used or the substrate. However, since the wiring 31f can cover the step of the insulating film 206a from a plurality of directions (a plurality of surfaces), it is possible to suppress a decrease in the reliability of the wiring even in such a situation.
  • FIG. 13C A configuration of the contact portion 501c shown in FIG. 13C will be described.
  • the lower electrode 32 In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1.
  • the insulating film 206a fills the gap G1.
  • the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved.
  • the lower electrode 32 does not overlap the upper electrode 31 in a top view
  • the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view.
  • the portion may be described as “a portion that does not overlap”.
  • the wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST3 provided on the insulating film 206a.
  • the wiring 31f has an overhang provided at the end thereof.
  • the wiring 31f has a U-shape, that is, a U-shape as a whole.
  • the wiring 31f covers at least a part of two sides of the insulating film 206a. In other words, the wiring 31f covers one corner of the insulating film 206a.
  • the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield during the production of the pyroelectric sensor element due to the disconnection of the electrode 2). Furthermore, it is possible to improve the long-term reliability by reducing the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element. Note that when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to a displacement of an apparatus used or the substrate. However, since the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), it is possible to suppress a decrease in the reliability of the wiring even in such a situation.
  • FIG. 13D A configuration of the contact portion 501d shown in FIG. 13D will be described.
  • the lower electrode 32 In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1.
  • the insulating film 206a fills the gap G1.
  • the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved.
  • the lower electrode 32 does not overlap the upper electrode 31 in a top view
  • the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view.
  • the portion may be described as “a portion that does not overlap”.
  • the wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST4 provided on the insulating film 206a.
  • the wiring 31f has an overhang provided at the end thereof.
  • the wiring 31f has an H shape as a whole.
  • the side of the insulating film 206a has an arc shape in a top view, and the wiring 31f and its end portion pass over the arc-shaped side of the insulating film 206a.
  • the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield during the production of the pyroelectric sensor element due to the disconnection of the electrode 2). Furthermore, it is possible to improve the long-term reliability by reducing the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element. Note that when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to a displacement of an apparatus used or the substrate. However, since the wiring 31f can cover the step ST4 of the insulating film 206a from a plurality of directions (a plurality of surfaces), a decrease in wiring reliability can be suppressed even in such a situation.
  • the wiring 31f in the contact portion 501d shown in FIG. 13D has a U-shape that covers the sides SD2 and Sd4 in a top view like the wiring 31f in the contact portion 501c shown in FIG. 13C.
  • the light receiving unit 404 includes the upper surface 404A configured by the upper surface of the upper electrode 31 and the side surface 404B connected to the upper surface 404A (see FIGS. 11A and 13A to 13D).
  • the insulating film 206a covers at least a part of the side surface 404B of the light receiving unit 404 and at least a part of the upper surface 404A.
  • the insulating film 206a includes a portion 206a1 which is located above the light receiving portion 404 and has a shape having a plurality of sides SD1 to SD4 when viewed from above.
  • the wiring 31f covers two or more sides SD2 and SD4 of the plurality of sides of the portion 206a1 of the insulating film 206a.
  • the portion 206a1 of the insulating film 206a has a rectangular shape having four sides SD1 to SD4 in a top view.
  • the sides SD1 and SD3 are located on opposite sides, and the sides SD2 and SD4 are located on opposite sides.
  • the wiring 31f may cover a portion of the insulating film 206a and have an H-shaped portion in a top view (see FIG. 13B).
  • the wiring 31f may cover the portion 206a1 of the insulating film 206a and have a U-shaped portion (see FIG. 13C).
  • the lower electrode 32 has a portion (gap G1) exposed from the upper electrode 31 in a top view.
  • the insulating film 206a covers the portion (gap G1) of the lower electrode 32.
  • the insulating film 206a may cover the portion (gap G1) of the lower electrode 32 so as to surround the light receiving portion 404 (see FIG. 13A).
  • One or more sides SD2 and Sd4 of the plurality of sides SD1 to SD4 of the portion 206a of the insulating film 206a may have an arc shape in a top view (see FIG. 13D).
  • 13F and 13G are enlarged views of the region P shown in FIG. 11A.
  • a contact portion in which the wiring 31f and the upper electrode 31 (light receiving portion 404) are in contact with each other is provided.
  • FIG. 13F A configuration of the contact portion 501e shown in FIG. 13F will be described.
  • the lower electrode 32 In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1.
  • the insulating film 206a fills the gap G1.
  • the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved.
  • the lower electrode 32 does not overlap the upper electrode 31 in a top view
  • the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view.
  • the portion may be described as “a portion that does not overlap”.
  • the wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST5 provided on the insulating film 206a.
  • the insulating film 206a has a convex portion.
  • the wiring 31f passes over the convex portion.
  • the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield when the pyroelectric sensor element is produced due to the disconnection of the electrode 31). Furthermore, it is possible to improve the long-term reliability by reducing the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element.
  • a metal film may be deposited from a specific biased direction with respect to the substrate due to an apparatus used or a positional deviation of the substrate. Since the step of the insulating film 206a can be covered from a plurality of directions (a plurality of surfaces), a decrease in the reliability of the wiring can be suppressed even in such a situation.
  • FIG. 13G A configuration of the contact portion 501f shown in FIG. 13G will be described.
  • the lower electrode 32 In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1.
  • the insulating film 206a fills the gap G1.
  • the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved.
  • the lower electrode 32 does not overlap the upper electrode 31 in a top view
  • the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view.
  • the portion may be described as “a portion that does not overlap”.
  • the wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST6 where it runs over the insulating film 206a.
  • the insulating film 206a has a hexagonal shape in a top view.
  • the wiring 31f passes over the hexagonal apex.
  • the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield during fabrication of the pyroelectric sensor element due to disconnection of the electrode 31. Further, the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element is reduced, thereby improving long-term reliability. Note that, when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to misalignment of an apparatus used or the substrate. However, since the wiring 31f can cover the step ST6 of the insulating film 206a from a plurality of directions (a plurality of surfaces), a decrease in the reliability of the wiring can be suppressed even in such a situation.
  • FIG. 14A is a schematic cross-sectional view of a gas sensor 300a in the embodiment.
  • the gas sensor 300a includes a pyroelectric sensor 200, a thermistor 302 that is a temperature detection unit that detects the temperature of the gas, a light source 304, and a circuit board 306.
  • the circuit board 306 performs predetermined processing on the lighting control of the light source 304, the detection signal from the pyroelectric sensor 200, and the detection signal from the thermistor 302.
  • the pyroelectric sensor 200 and the thermistor 302 are provided on one surface of the circuit board 306.
  • the light source 304 is provided at a position separated from the pyroelectric sensor 200 by a predetermined distance.
  • An optical path 310 is provided between the light source 304 and the pyroelectric sensor 200.
  • the light source 304 emits infrared rays toward the pyroelectric sensor 200.
  • the light source 304 is, for example, a light source that emits infrared rays, such as a filament lamp, a miniature lamp, or an LED.
  • the light source 304 is held by a support member 308 fixed to the circuit board 306.
  • the light source 304 is controlled to blink at a predetermined cycle.
  • the cross section of the support member 308 has a semi-elliptical shape that is recessed in a direction away from the optical path 310.
  • a mirror surface is formed inside the semi-elliptical shape. That is, the support member 308 is an elliptical mirror.
  • the light source 304 is provided at the semi-elliptical focus of the support member 308. Therefore, infrared light emitted from the light source 304 passes through the optical path 310 and directly enters the pyroelectric sensor 200, or reflects off a mirror surface formed on the support member 308 and then passes through the optical path 310. Or incident on the pyroelectric sensor 200.
  • the lens 200b included in the pyroelectric sensor 200 has a function as an optical filter.
  • the lens 200b is a band-pass filter that passes infrared rays in a predetermined wavelength band.
  • the predetermined wavelength band is, for example, a wavelength band including the vicinity of 4.26 ⁇ m, which is an infrared wavelength having a high absorption rate by carbon dioxide molecules.
  • the concentration detection target is a gas other than carbon dioxide
  • the wavelength according to the type of gas that is the concentration detection target, that is, the absorption rate of the gas that is the concentration detection target is high.
  • a wavelength band centered on the wavelength is selected. That is, the pyroelectric sensor 200 receives infrared rays having a predetermined wavelength band among infrared rays emitted from the light source 304 and does not receive light having a wavelength outside the wavelength band.
  • the thermistor 302 is provided around the pyroelectric sensor 200 and is fixed to the circuit board 306. In the thermistor 302, a constant current flows when a voltage is applied from the circuit board 306, and a voltage generated when the constant current flows is detected in the circuit board 306 as an output voltage.
  • the cover 312 is provided so as to cover the pyroelectric sensor 200, the thermistor 302, and the like, and is fixed to the circuit board 306.
  • the cover 312 is provided with an inlet 314 for taking in gas from the outside of the cover 312 and discharging gas inside the cover 312.
  • the intake port 314 is provided with an air filter.
  • the detection of the concentration of carbon dioxide by the gas sensor 300 a is performed in a state where gas is taken into the cover 312 from the intake port 314.
  • the emitted infrared rays are received by the pyroelectric sensor 200.
  • the pyroelectric sensor 200 outputs a voltage in response to infrared light reception. At this time, the output voltage varies depending on the concentration of carbon dioxide in the optical path 310.
  • the lens 200b transmits infrared rays having a wavelength with a high carbon dioxide absorption rate, the output from the pyroelectric sensor 200 can be converted into the concentration of carbon dioxide.
  • FIG. 12B is a schematic cross-sectional view of another gas sensor 300b according to the embodiment.
  • the gas sensor 300b pyroelectric sensor elements 201c1 to 201c3 and 201d are used as the pyroelectric sensor 200.
  • the gas sensor 300b does not include the package 200a and the lens 200b.
  • the “film” in the present embodiment is a “film” that is observed as a layered structure in the cross section of the sensor or sensor element.
  • the drive electrode, the ferroelectric layer below it, and the lower electrode are not essential. That is, none of the pyroelectric sensors needs to be a scanning type that drives the movable part.
  • the effect is obtained only when the PZT in the detection portion is the ferroelectric film 20d which is an epitaxial film and the film in the driving portion is the ferroelectric film 20b having orientation. Therefore, the ferroelectric film 20d which is the epitaxial film of the detection portion is not limited to the configuration shown in FIG.
  • the sensor includes a substrate 50, a lower electrode 32 provided on the substrate 50, a ferroelectric film 20 provided on the lower electrode 32, and an upper electrode 31 provided on the ferroelectric film 20.
  • the upper electrode 31 includes drive electrodes 31a and 31b and detection electrodes 31c and 31d.
  • the distance from the substrate 50 to the drive electrodes 31a and 31b, that is, the distance between the straight lines L0 and L1 shown in FIG. 6C is the distance from the substrate 50 to the detection electrodes 31c and 31d, that is, the straight lines L0 and L2 shown in FIG. Less than the distance between.
  • the structure 10 includes the substrate 50, the intermediate film 40, the lower electrode 32, the ferroelectric film 20, and the upper electrode 31, but is not limited thereto.
  • a functional film having characteristics such as an ion conductive film, a thermoelectric conversion film, a magnetic film, and a semiconductor film instead of the ferroelectric film, the function of each film can be improved. That is, the structure according to the present embodiment includes the substrate 50, the intermediate film 40, and the lower electrode 32.
  • the lower electrode 32 having orientation can be used as a catalyst.
  • ferroelectric film 20 of any pyroelectric sensor element may be a piezoelectric film made of PZT or the like.
  • the through-hole 402 having a plurality of shapes among various shapes shown in FIGS. 11C to 11H may be provided in the membrane 408 of one final power sensor element.
  • terms indicating directions such as “upper surface”, “lower surface”, and “upward” indicate relative directions determined by the relative positional relationship of the constituent members of the pyroelectric sensor element, and are absolute such as the vertical direction. It does not indicate a correct direction.
  • the pyroelectric sensor element of the present invention and the pyroelectric sensor using the same can improve accuracy and reliability, they are useful for electronic devices and vehicle control.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

This pyroelectric sensor element is equipped with a substrate, a membrane provided on the top surface of the substrate, a ferroelectric film provided on the top surface of the membrane, and an upper-section electrode provided on the top surface of the ferroelectric film. The substrate has a first section and a second section which is thinner than is the first section. The membrane includes a lower-section electrode, and the membrane is provided with a plurality of through-holes that pass through the membrane from the bottom surface thereof to the top surface thereof in a location overlapping the second section of the substrate when viewed from the top.

Description

焦電センサ素子及びこれを用いた焦電センサPyroelectric sensor element and pyroelectric sensor using the same
 本発明は、ガス検知などに用いる焦電センサに関する。 The present invention relates to a pyroelectric sensor used for gas detection and the like.
 特許文献1は、シリコン基板と、シリコン基板上に設けられた酸化ジルコニウム(ZrO)よりなるバッファ層と、バッファ層上に設けられた白金(Pt)よりなる下部電極と、下部電極上に設けられたチタン酸ジルコン酸鉛(PZT)よりなる圧電膜とを備えた従来の構造体を開示している。圧電膜はエピタキシャル成長により形成される。下部電極は、強誘電体である圧電膜の結晶配向の制御に用いられる。その構造体を用いたセンサが知られていた。 Patent Document 1 discloses a silicon substrate, a buffer layer made of zirconium oxide (ZrO 2 ) provided on the silicon substrate, a lower electrode made of platinum (Pt) provided on the buffer layer, and provided on the lower electrode. A conventional structure having a piezoelectric film made of lead zirconate titanate (PZT) is disclosed. The piezoelectric film is formed by epitaxial growth. The lower electrode is used to control the crystal orientation of the piezoelectric film that is a ferroelectric. A sensor using the structure is known.
 特許文献2、3は、キャン(キャップ)などに接着されたバンドパスフィルタを通過した赤外光を焦電センサ素子で検出する焦電センサを開示している。このバンドパスフィルタは特定波長の光を透過させる。 Patent Documents 2 and 3 disclose pyroelectric sensors that detect infrared light that has passed through a band-pass filter bonded to a can (cap) or the like with a pyroelectric sensor element. This bandpass filter transmits light of a specific wavelength.
 特許文献4、5は、下部電極と焦電体と上部電極とで構成される受光部上に設けられた光吸収部材を備えた焦電センサを開示している。 Patent Documents 4 and 5 disclose a pyroelectric sensor including a light absorbing member provided on a light receiving portion constituted by a lower electrode, a pyroelectric body, and an upper electrode.
 特許文献6、7、8は、キャビティを設けた基板上に設けられた受光部を備えた焦電センサを開示している。 Patent Documents 6, 7, and 8 disclose pyroelectric sensors provided with a light receiving portion provided on a substrate provided with a cavity.
 特許文献9は、可動部を用いて受光部を走査する走査型の焦電センサを開示している。 Patent Document 9 discloses a scanning pyroelectric sensor that scans a light receiving part using a movable part.
 特許文献10、11は、酸化シリコンや窒化シリコンの積層構造上に設けられた受光部を備えた焦電センサを開示している。 Patent Documents 10 and 11 disclose pyroelectric sensors each including a light receiving portion provided on a laminated structure of silicon oxide or silicon nitride.
特開2010-238856号公報JP 2010-238856 A 特開平6-213711号公報JP-A-6-213711 特開2015-184627号公報JP2015-184627A 特開2015-206595号公報Japanese Patent Laid-Open No. 2015-206595 特開2015-161642号公報Japanese Patent Laying-Open No. 2015-161642 特開2015-184151号公報Japanese Patent Laying-Open No. 2015-184151 米国特許第920712号明細書US Patent No. 920712 米国特許第8648303号明細書US Pat. No. 8,648,303 特開2014-6078号公報JP 2014-6078 A 特開2000-121432号公報JP 2000-112432 A 特開平7-94788号公報Japanese Unexamined Patent Publication No. 7-94788
 焦電センサ素子は、基板と、基板の上面に設けられたメンブレンと、メンブレンの上面に設けられた強誘電体膜と、強誘電体膜の上面に設けられた上部電極とを備える。基板は、第1の部分と、第1の部分より薄い第2の部分とを有する。メンブレンは、下部電極を含み、上面視で基板の第2の部分と重なる位置においてメンブレンにはメンブレンの下面からメンブレンの上面まで貫通する複数の貫通孔が設けられている。 The pyroelectric sensor element includes a substrate, a membrane provided on the upper surface of the substrate, a ferroelectric film provided on the upper surface of the membrane, and an upper electrode provided on the upper surface of the ferroelectric film. The substrate has a first portion and a second portion that is thinner than the first portion. The membrane includes a lower electrode, and the membrane is provided with a plurality of through holes penetrating from the lower surface of the membrane to the upper surface of the membrane at a position overlapping the second portion of the substrate in a top view.
図1は実施の形態における強誘電体膜を用いた構造体の断面図である。FIG. 1 is a cross-sectional view of a structure using a ferroelectric film in the embodiment. 図2は図1に示す構造体の別の断面図である。FIG. 2 is another cross-sectional view of the structure shown in FIG. 図3は実施の形態における構造体のX線回折の結果を示す特性図である。FIG. 3 is a characteristic diagram showing the result of X-ray diffraction of the structure in the embodiment. 図4は実施の形態における構造体のX線回折の結果を示す別の特性図である。FIG. 4 is another characteristic diagram showing the result of X-ray diffraction of the structure in the embodiment. 図5は実施の形態における構造体のX線回折の結果を示す更に別の特性図である。FIG. 5 is still another characteristic diagram showing the result of X-ray diffraction of the structure in the embodiment. 図6Aは実施の形態におけるジャイロセンサの分解斜視図である。FIG. 6A is an exploded perspective view of the gyro sensor in the embodiment. 図6Bは図6Aに示すジャイロセンサのセンサ素子の平面図である。6B is a plan view of the sensor element of the gyro sensor shown in FIG. 6A. 図6Cは図6Bに示すセンサ素子の線6C-6Cにおける断面図である。6C is a cross-sectional view of the sensor element shown in FIG. 6B taken along line 6C-6C. 図7Aは実施の形態における焦電センサの模式断面図である。FIG. 7A is a schematic cross-sectional view of the pyroelectric sensor in the embodiment. 図7Bは図7Aに示す焦電センサの焦電センサ素子の斜視図である。FIG. 7B is a perspective view of the pyroelectric sensor element of the pyroelectric sensor shown in FIG. 7A. 図7Cは図7Bに示す焦電センサ素子の上面図である。FIG. 7C is a top view of the pyroelectric sensor element shown in FIG. 7B. 図7Dは図7Cに示す焦電センサ素子の線7D-7Dにおける断面図である。FIG. 7D is a cross-sectional view of the pyroelectric sensor element shown in FIG. 7C taken along line 7D-7D. 図8Aは実施の形態における別の焦電センサ素子の上面図である。FIG. 8A is a top view of another pyroelectric sensor element in the embodiment. 図8Bは図8Aに示す焦電センサ素子の線8B-8Bにおける断面図である。8B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 8A taken along line 8B-8B. 図8Cは図8Aに示す焦電センサ素子の製造プロセスを説明する断面図である。FIG. 8C is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A. 図8Dは図8Aに示す焦電センサ素子の製造プロセスを説明する断面図である。FIG. 8D is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A. 図8Eは図8Aに示す焦電センサ素子の製造プロセスを説明する断面図である。FIG. 8E is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A. 図8Fは図8Aに示す焦電センサ素子の製造プロセスを説明する断面図である。FIG. 8F is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A. 図8Gは図8Aに示す焦電センサ素子の製造プロセスを説明する断面図である。FIG. 8G is a cross-sectional view illustrating a manufacturing process of the pyroelectric sensor element shown in FIG. 8A. 図9Aは実施の形態におけるさらに別の焦電センサ素子の上面図である。FIG. 9A is a top view of still another pyroelectric sensor element in the embodiment. 図9Bは図9Aに示す焦電センサ素子の線9B-9Bにおける断面図である。9B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 9A taken along line 9B-9B. 図9Cは実施の形態におけるさらに別の焦電センサ素子の断面図である。FIG. 9C is a cross-sectional view of still another pyroelectric sensor element in the embodiment. 図9Dは図9Aに示す焦電センサ素子の特性を説明する図である。FIG. 9D is a diagram for explaining the characteristics of the pyroelectric sensor element shown in FIG. 9A. 図10Aは実施の形態におけるさらに別の焦電センサ素子の上面図である。FIG. 10A is a top view of still another pyroelectric sensor element according to the embodiment. 図10Bは実施の形態におけるさらに別の焦電センサ素子の線10B-10Bにおける断面図である。FIG. 10B is a cross-sectional view of yet another pyroelectric sensor element taken along line 10B-10B in the embodiment. 図10Cは図10Bに示す焦電センサ素子の拡大断面図である。FIG. 10C is an enlarged cross-sectional view of the pyroelectric sensor element shown in FIG. 10B. 図10Dは実施の形態におけるさらに別の焦電センサ素子の断面図である。FIG. 10D is a cross-sectional view of still another pyroelectric sensor element in the embodiment. 図10Eは実施の形態におけるさらに別の焦電センサ素子の断面図である。FIG. 10E is a cross-sectional view of still another pyroelectric sensor element in the embodiment. 図10Fは実施の形態におけるさらに別の焦電センサ素子の上面図である。FIG. 10F is a top view of still another pyroelectric sensor element in the embodiment. 図10Gは図10Fに示す焦電センサ素子の線10G-10Gにおける断面図である。10G is a cross-sectional view of the pyroelectric sensor element shown in FIG. 10F taken along line 10G-10G. 図11Aは実施の形態におけるさらに別の焦電センサ素子の上面図である。FIG. 11A is a top view of still another pyroelectric sensor element according to the embodiment. 図11Bは図11Aに示す焦電センサ素子の線11B-11Bにおける断面図である。11B is a cross-sectional view of the pyroelectric sensor element shown in FIG. 11A taken along line 11B-11B. 図11Cは図11Aに示す焦電センサ素子の拡大図である。FIG. 11C is an enlarged view of the pyroelectric sensor element shown in FIG. 11A. 図11Dは図11Aに示す焦電センサ素子の拡大図である。FIG. 11D is an enlarged view of the pyroelectric sensor element shown in FIG. 11A. 図11Eは図11Aに示す焦電センサ素子の拡大図である。FIG. 11E is an enlarged view of the pyroelectric sensor element shown in FIG. 11A. 図11Fは図11Aに示す焦電センサ素子の拡大図である。FIG. 11F is an enlarged view of the pyroelectric sensor element shown in FIG. 11A. 図11Gは図11Aに示す焦電センサ素子の拡大図である。FIG. 11G is an enlarged view of the pyroelectric sensor element shown in FIG. 11A. 図11Hは図11Aに示す焦電センサ素子の拡大図である。FIG. 11H is an enlarged view of the pyroelectric sensor element shown in FIG. 11A. 図12Aは実施の形態におけるさらに別の焦電センサ素子の上面図である。FIG. 12A is a top view of still another pyroelectric sensor element in the embodiment. 図12Bは図12Aに示す焦電センサ素子の線12B-12Bにおける断面図である。12B is a cross-sectional view of the pyroelectric sensor element taken along line 12B-12B shown in FIG. 12A. 図12Cは図12Aに示す焦電センサ素子の特性を説明する図である。FIG. 12C is a diagram for explaining the characteristics of the pyroelectric sensor element shown in FIG. 12A. 図13Aは図12Aに示す焦電センサ素子の拡大図である。FIG. 13A is an enlarged view of the pyroelectric sensor element shown in FIG. 12A. 図13Bは図12Aに示す焦電センサ素子の拡大図である。FIG. 13B is an enlarged view of the pyroelectric sensor element shown in FIG. 12A. 図13Cは図12Aに示す焦電センサ素子の拡大図である。FIG. 13C is an enlarged view of the pyroelectric sensor element shown in FIG. 12A. 図13Dは図12Aに示す焦電センサ素子の拡大図である。FIG. 13D is an enlarged view of the pyroelectric sensor element shown in FIG. 12A. 図13Eは図12Aに示す焦電センサ素子の拡大図である。FIG. 13E is an enlarged view of the pyroelectric sensor element shown in FIG. 12A. 図13Fは図12Aに示す焦電センサ素子の拡大図である。FIG. 13F is an enlarged view of the pyroelectric sensor element shown in FIG. 12A. 図13Gは図12Aに示す焦電センサ素子の拡大図である。FIG. 13G is an enlarged view of the pyroelectric sensor element shown in FIG. 12A. 図14Aは実施の形態におけるガスセンサの模式断面図である。FIG. 14A is a schematic cross-sectional view of the gas sensor in the embodiment. 図14Bは実施の形態における別のガスセンサの模式断面図である。FIG. 14B is a schematic cross-sectional view of another gas sensor in the embodiment.
 図1は実施の形態における強誘電体膜を用いた構造体10の断面図である。構造体10は、基板50と、中間膜40と、下部電極32と、強誘電体膜20と、上部電極31とを備える。 FIG. 1 is a cross-sectional view of a structure 10 using a ferroelectric film in the embodiment. The structure 10 includes a substrate 50, an intermediate film 40, a lower electrode 32, a ferroelectric film 20, and an upper electrode 31.
 強誘電体膜20は、例えば、化学式ABOで表されるペロブスカイト型複合酸化物である。ここで、A及びBは陽イオンを表す。Aとして、Ca、Ba、Sr、Pb、K、Na、Li、La及びCdから選ばれた1種以上が好ましく、Bとして、Ti、Zr、Ta及びNbから選ばれた1種以上が好ましい。具体的には、強誘電体膜20の材質として、チタン酸ジルコン酸鉛(PZT)、マグネシウムニオブ酸鉛-PZT系(PMN-PZT)、ニッケルニオブ酸鉛-PZT系(PNN-PZT)、マグネシウムニオブ酸鉛-チタン酸鉛系(PMN-PT)、ニッケルニオブ酸鉛-PT系(PNN-PT),チタン酸ナトリウムビスマス-チタン酸バリウム系(NBT-BT系)またはチタン酸バリウムストロンチウム系(BST)などが好適である。なお、強誘電体膜20として、上記の材料よりなる複数の膜を積層した積層膜を用いてもよい。 The ferroelectric film 20 is, for example, a perovskite complex oxide represented by the chemical formula ABO 3 . Here, A and B represent cations. A is preferably one or more selected from Ca, Ba, Sr, Pb, K, Na, Li, La and Cd, and B is preferably one or more selected from Ti, Zr, Ta and Nb. Specifically, the ferroelectric film 20 is made of lead zirconate titanate (PZT), lead magnesium niobate-PZT (PMN-PZT), lead nickel niobate-PZT (PNN-PZT), magnesium. Lead niobate-lead titanate (PMN-PT), lead nickel niobate-PT (PNN-PT), sodium bismuth titanate-barium titanate (NBT-BT) or barium strontium titanate (BST) And the like are preferred. As the ferroelectric film 20, a laminated film in which a plurality of films made of the above materials are laminated may be used.
 基板50は、例えば、(001)配向したMgO単結晶の基板、(001)配向したイットリア安定化ジルコニア(YSZ)単結晶の基板、(001)配向したYSZエピタキシャル膜を表面に有するシリコン単結晶の基板などが用いられる。 The substrate 50 is, for example, a (001) oriented MgO single crystal substrate, a (001) oriented yttria stabilized zirconia (YSZ) single crystal substrate, or a silicon single crystal having a (001) oriented YSZ epitaxial film on the surface. A substrate or the like is used.
 中間膜40は、基板50の上に設けられる。中間膜40は、化学式MIn(Mは金属元素)からなる酸化物が用いられる。ここでMには、例えば、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)が用いられる。中間膜40を設けることで、その上に設けられる下部電極32の配向が制御される。 The intermediate film 40 is provided on the substrate 50. The intermediate film 40 is made of an oxide having the chemical formula MIn 2 O 4 (M is a metal element). Here, for example, magnesium (Mg), zinc (Zn), or cadmium (Cd) is used as M. By providing the intermediate film 40, the orientation of the lower electrode 32 provided thereon is controlled.
 下部電極32は、面心立方構造を有する金属、例えば、白金(Pt)、金(Au)、イリジウム(Ir)、パラジウム(Pd)、またそれらの合金や積層体よりなる。下部電極32を設けることで、その上に設けられる強誘電体膜20の配向が制御される。 The lower electrode 32 is made of a metal having a face-centered cubic structure, for example, platinum (Pt), gold (Au), iridium (Ir), palladium (Pd), and alloys or laminates thereof. By providing the lower electrode 32, the orientation of the ferroelectric film 20 provided thereon is controlled.
 強誘電体膜20は、c軸方向に配向した膜である。但し、その結晶構造は完全な(001)配向の膜ではなく、結晶粒子が下部電極32上に理想的に最蜜充填されるように(001)配向の結晶であるc軸配向結晶と、(100)配向の結晶であるa軸配向結晶とが適度に混在した薄膜であっても良い。 The ferroelectric film 20 is a film oriented in the c-axis direction. However, the crystal structure is not a complete (001) -oriented film, but a c-axis-oriented crystal that is a (001) -oriented crystal so that crystal grains are ideally filled with honey on the lower electrode 32; 100) A thin film in which a-axis oriented crystals, which are oriented crystals, are mixed appropriately.
 上部電極31は、金属膜で、例えば、白金(Pt)、金(Au)、銅(Cu)、チタン(Ti)、アルミニウム、またそれらの合金や積層体よりなる。 The upper electrode 31 is a metal film made of, for example, platinum (Pt), gold (Au), copper (Cu), titanium (Ti), aluminum, or an alloy or a laminate thereof.
 好ましくは、中間膜40としてMgInを用いる。実験により、MgInは、300℃~700℃と広い範囲で容易に(002)配向のエピタキシャル膜が得られることが確認されている。すなわち、MgIn膜の成膜の前後もしくは成膜中にあえて温度を調整する必要はない。またO分圧も、MgIn膜を成膜中にあえて調整する必要はない。すなわち、特別な制御を必要とせずMgIn膜を形成することができ、量産性に優れていることが実験で確認された。 Preferably, MgIn 2 O 4 is used as the intermediate film 40. It has been confirmed by experiments that MgIn 2 O 4 can easily obtain an (002) -oriented epitaxial film in a wide range of 300 ° C. to 700 ° C. That is, there is no need to adjust the temperature before, during or after the formation of the MgIn 2 O 4 film. Also, the O 2 partial pressure need not be adjusted during the formation of the MgIn 2 O 4 film. That is, it was confirmed by experiments that an MgIn 2 O 4 film can be formed without requiring special control and is excellent in mass productivity.
 下部電極32には、好ましくは白金(Pt)を用いる。実験によれば、MgInの(002)配向のエピタキシャル膜上にPtよりなる膜を形成することで、特別な制御を必要とせず、Ptの(002)配向のエピタキシャル膜が得られることが分かった。 Platinum (Pt) is preferably used for the lower electrode 32. According to experiments, by forming a film made of Pt on a (002) -oriented epitaxial film of MgIn 2 O 4 , it is possible to obtain a (002) -oriented epitaxial film of Pt without special control. I understood.
 エピタキシャル膜は、面直方向に1軸配向し、かつ、面内の2軸に配向している膜である。このため、エピタキシャル膜かどうかは、膜のX線回折で検証することが出来る。具体的には、まず、面直方向に1軸配向しているかどうかを2θ-θスキャンにより確認する。次に、面内で2軸配向している事を結晶の対称性を確認する事で確認する。これにより、その膜がエピタキシャル膜かどうかを確認することができる。例えば、[002]方向にエピタキシャルに配向している膜の場合、まず2θ-θスキャンにより、(002)に面外に配向していることを確認する。次に、(202)面を検出するように、結晶面に対するX線回折装置の2θ-θの位置関係を固定し、さらに基板を面直方向から45°傾斜させた上で、面内を360度回転させながらX線回折を測定する。この時、(202)面と等価な4つの面に対応する4本のピークが90度間隔で出現する事が確認できれば、その膜がエピタキシャル膜であると判断することができる。このとき、2θ-θスキャンにおいて、メインの軸に対応するピーク以外に、他の軸に関係するピークが確認される、あるいは、面内の対称性を確認する際に、4本の周期的なピークの他にも若干の他のピークが確認される場合がある。しかし、他のピークの強度がメインのピーク強度の1/10以下であれば、その膜はエピタキシャル膜であると判断してもよい。また、本実施の形態では、(101)面と(202)面および[001]方向と[002]方向については、それぞれ次数の異なる平行な面を示しており、等価な方向、および面を示しているものとみなす。 The epitaxial film is a film that is uniaxially oriented in the direction perpendicular to the plane and biaxially in the plane. For this reason, whether the film is an epitaxial film can be verified by X-ray diffraction of the film. Specifically, first, it is confirmed by 2θ-θ scan whether or not uniaxial orientation is performed in the direction perpendicular to the plane. Next, the biaxial orientation in the plane is confirmed by confirming the symmetry of the crystal. Thereby, it can be confirmed whether the film is an epitaxial film. For example, in the case of a film oriented epitaxially in the [002] direction, it is first confirmed that it is oriented out of plane at (002) by 2θ-θ scanning. Next, the positional relationship of 2θ−θ of the X-ray diffractometer with respect to the crystal plane is fixed so as to detect the (202) plane, and the substrate is tilted by 45 ° from the perpendicular direction, and the in-plane 360 is fixed. X-ray diffraction is measured while rotating at a degree. At this time, if it can be confirmed that four peaks corresponding to four planes equivalent to the (202) plane appear at intervals of 90 degrees, it can be determined that the film is an epitaxial film. At this time, in the 2θ-θ scan, in addition to the peak corresponding to the main axis, a peak related to another axis is confirmed, or when checking in-plane symmetry, four periodic There may be some other peaks in addition to the peaks. However, if the intensity of other peaks is 1/10 or less of the main peak intensity, the film may be determined to be an epitaxial film. In the present embodiment, the (101) plane, the (202) plane, and the [001] direction and the [002] direction indicate parallel planes having different orders, and show equivalent directions and planes. It is assumed that
 図2は図1に示す構造体10での膜のX線解析に用いる構造体10Xの断面図である。構造体10Xは図1に示す構造体10のうちの基板50と中間膜40と下部電極32からなる。図3は、図2に示す構造体10Xについて、2θ-θスキャンを行った結果を示す特性図である。ここでは、基板50として、(001)配向したYSZエピタキシャル膜を表面に有するシリコン単結晶の基板を用い、中間膜40としてMgIn膜を用い、下部電極32としてPt膜を用いている。 FIG. 2 is a cross-sectional view of the structure 10X used for the X-ray analysis of the film in the structure 10 shown in FIG. The structure 10X includes the substrate 50, the intermediate film 40, and the lower electrode 32 of the structure 10 shown in FIG. FIG. 3 is a characteristic diagram showing a result of 2θ-θ scan performed on the structure 10X shown in FIG. Here, a silicon single crystal substrate having a (001) -oriented YSZ epitaxial film on the surface is used as the substrate 50, an MgIn 2 O 4 film is used as the intermediate film 40, and a Pt film is used as the lower electrode 32.
 図4は、MgIn膜、Pt膜それぞれの(202)面を検出するように結晶面に対するX線回折装置の2θ-θの位置関係を固定し、さらに基板50を面直方向から45°傾斜させた上で、面内を360度回転させながら測定したX線回折の結果を示した特性図である。 In FIG. 4, the positional relationship of 2θ-θ of the X-ray diffractometer with respect to the crystal plane is fixed so as to detect the (202) plane of each of the MgIn 2 O 4 film and the Pt film, and the substrate 50 is further moved from the perpendicular direction to FIG. 6 is a characteristic diagram showing the result of X-ray diffraction measured while being rotated 360 degrees in the plane after being tilted.
 MgIn膜はRFマグネトロンスパッタリングにより作成した。この際、基板温度は400℃に加熱し、酸素ガスおよびアルゴンガスを1:1の割合で混合し導入した上で、圧力を4Paに調整し、80Wのパワーでスパッタリングを実施した。Pt膜は400℃の状態でマグネトロンスパッタリングにより形成した。 The MgIn 2 O 4 film was prepared by RF magnetron sputtering. At this time, the substrate temperature was heated to 400 ° C., oxygen gas and argon gas were mixed and introduced at a ratio of 1: 1, the pressure was adjusted to 4 Pa, and sputtering was performed at a power of 80 W. The Pt film was formed by magnetron sputtering at 400 ° C.
 図3では、基板50のYSZの(002)のピークおよび高次の(004)のピークと同時に、その上に形成したMgIn膜の(004)および、さらに高次の(008)のピークが確認できる。これにより、MgIn膜が、基板50の面外に(002)方向に配向している事が確認できる。またPt膜についても(002)および、さらに高次の(004)のピークが確認できる。これにより、Pt膜が基板50の面外に(002)方向に配向している事が確認できる。 In FIG. 3, simultaneously with the (002) peak and the higher order (004) peak of YSZ of the substrate 50, the (004) and higher order (008) of the MgIn 2 O 4 film formed thereon are formed. A peak can be confirmed. Thereby, it can be confirmed that the MgIn 2 O 4 film is oriented in the (002) direction out of the surface of the substrate 50. In addition, the (002) and higher (004) peaks can also be confirmed for the Pt film. Thereby, it can be confirmed that the Pt film is oriented in the (002) direction out of the plane of the substrate 50.
 図4から、MgIn膜、Pt膜ともに、同位置に90°毎に4本のピークが現れることが確認できる。このことより、どちらの膜も面内に2軸配向している事が確認でき、つまり、MgIn膜もPt膜も、(002)配向したエピタキシャル膜である事が確認できる。 From FIG. 4, it can be confirmed that four peaks appear every 90 ° at the same position in both the MgIn 2 O 4 film and the Pt film. From this, it can be confirmed that both films are biaxially oriented in the plane, that is, it can be confirmed that both the MgIn 2 O 4 film and the Pt film are (002) -oriented epitaxial films.
 図5は、図2に示す構造体10Xの下部電極32上に強誘電体膜20としてのチタン酸鉛(PbTiO3)のPbの一部をランタン(La)で置換しさらにニオブを添加したニオブ添加チタン酸ランタン鉛(PLMT)を形成した構造体についてX線回折(2θ-θ)測定をした結果を示したものである。図5により、図3の構造体10X上に形成された強誘電体膜20が強く(001)方向に配向している事が確認できる。 FIG. 5 shows the addition of niobium in which part of Pb of lead titanate (PbTiO 3) as the ferroelectric film 20 is replaced with lanthanum (La) and further niobium is added on the lower electrode 32 of the structure 10X shown in FIG. 3 shows the result of X-ray diffraction (2θ-θ) measurement of a structure in which lead lanthanum titanate (PLMT) is formed. From FIG. 5, it can be confirmed that the ferroelectric film 20 formed on the structure 10X of FIG. 3 is strongly oriented in the (001) direction.
 図6Aは、実施の形態におけるジャイロセンサ100の分解斜視図である。ジャイロセンサ100は、音叉形状を有するセンサ素子101と、センサ素子101と電気的に接続された回路基板100aと、センサ素子101及び回路基板100aを収容するパッケージ100bと、パッケージ100bを覆う蓋100cとを有している。パッケージ100bはセラミックや樹脂などの絶縁物よりなる。 FIG. 6A is an exploded perspective view of the gyro sensor 100 according to the embodiment. The gyro sensor 100 includes a sensor element 101 having a tuning fork shape, a circuit board 100a electrically connected to the sensor element 101, a package 100b that houses the sensor element 101 and the circuit board 100a, and a lid 100c that covers the package 100b. have. The package 100b is made of an insulator such as ceramic or resin.
 図6Bは、センサ素子101の平面図である。中間膜40を設けることにより、検出電極31c、31dの下方に位置する下部電極32dと、下部電極32dの上に設けられる強誘電体膜20dとは、(001)配向性のエピタキシャル膜となっている。 FIG. 6B is a plan view of the sensor element 101. By providing the intermediate film 40, the lower electrode 32d positioned below the detection electrodes 31c and 31d and the ferroelectric film 20d provided on the lower electrode 32d become an (001) -oriented epitaxial film. Yes.
 センサ素子101は、基部110と、基部110に接続されたアーム120、130を備える。センサ素子101は、強誘電体膜20と上部電極31と下部電極32よりなる構造体10を音叉型振動子の形状に加工して得られる。基部110及びアーム120、130は、構造体10によって一体的に形成されている。アーム120の主面120Sには、駆動電極31a、及び検出電極31c、が形成されている。同様に、アーム130の主面130Sには、駆動電極31b、検出電極31dが形成されている。これらの電極は、上部電極31を所定の電極形状にエッチングすることにより得られる。なお、基部110、及びアーム120、130のそれぞれの主面120S、130Sに形成されている下部電極32は、センサ素子101のグランド電極として機能する。 The sensor element 101 includes a base 110 and arms 120 and 130 connected to the base 110. The sensor element 101 is obtained by processing the structure 10 including the ferroelectric film 20, the upper electrode 31, and the lower electrode 32 into the shape of a tuning fork vibrator. The base 110 and the arms 120 and 130 are integrally formed by the structure 10. On the main surface 120S of the arm 120, a drive electrode 31a and a detection electrode 31c are formed. Similarly, on the main surface 130S of the arm 130, a drive electrode 31b and a detection electrode 31d are formed. These electrodes are obtained by etching the upper electrode 31 into a predetermined electrode shape. The lower electrode 32 formed on the main surfaces 120S and 130S of the base 110 and the arms 120 and 130 functions as a ground electrode of the sensor element 101.
 図6Cは図6Bに示すセンサ素子101の線6C-6Cにおける断面図である。センサ素子101は、検出電極31dの下に位置する検出部分のPZT膜の強誘電体膜20dがエピタキシャル膜である。駆動電極31bの下に位置する駆動部分のPZT膜の強誘電体膜20bが配向性の強誘電体膜である。また、配向性の強誘電体膜20bの下の下部電極は(111)配向しており、これにより、強誘電体膜20bが配向性の膜となる。 FIG. 6C is a cross-sectional view taken along line 6C-6C of the sensor element 101 shown in FIG. 6B. In the sensor element 101, the ferroelectric film 20d of the PZT film in the detection portion located under the detection electrode 31d is an epitaxial film. The ferroelectric film 20b of the PZT film in the driving portion located under the driving electrode 31b is an oriented ferroelectric film. In addition, the lower electrode under the oriented ferroelectric film 20b is (111) oriented, whereby the ferroelectric film 20b becomes an oriented film.
 なお、検出部分のPZT膜の強誘電体膜20dがエピタキシャル膜であり、駆動部分のPZT膜の強誘電体膜20bが配向性の強誘電体膜であるセンサは角速度センサに限定されない。例えば、振動型加速度センサや焦電センサへの適用することも可能である。 The sensor in which the ferroelectric film 20d of the PZT film in the detection portion is an epitaxial film and the ferroelectric film 20b of the PZT film in the driving portion is an oriented ferroelectric film is not limited to the angular velocity sensor. For example, the present invention can be applied to a vibration type acceleration sensor or a pyroelectric sensor.
 図7Aは実施の形態における焦電センサ200の模式断図である。 FIG. 7A is a schematic sectional view of the pyroelectric sensor 200 in the embodiment.
 焦電センサ200は、焦電センサ素子201と、焦電センサ素子201を収容するパッケージ200aと、レンズ200bとを備える。 The pyroelectric sensor 200 includes a pyroelectric sensor element 201, a package 200a that houses the pyroelectric sensor element 201, and a lens 200b.
 図7Bは焦電センサ素子201の斜視図である。図7Cは焦電センサ素子201の上面図である。図7Dは図7Cに示す焦電センサ素子201の線7D-7Dにおける断面図である。 FIG. 7B is a perspective view of the pyroelectric sensor element 201. FIG. 7C is a top view of the pyroelectric sensor element 201. 7D is a cross-sectional view of pyroelectric sensor element 201 taken along line 7D-7D shown in FIG. 7C.
 焦電センサ素子201は、基部110と、基部110に接続されたアーム120と、基部110に接続されたアーム130と、アーム120、130に接続された可動部60とを備える。 The pyroelectric sensor element 201 includes a base 110, an arm 120 connected to the base 110, an arm 130 connected to the base 110, and a movable part 60 connected to the arms 120 and 130.
 駆動電極31a、31bに電圧が印加されることで可動部60が振動し、可動部60に設けた検出電極31dの下に位置するエピタキシャル膜である強誘電体膜20dを走査させて赤外線などの強誘電体膜20dの温度を変化させる光を検出することができる。このように、焦電センサ素子201は走査型の焦電センサ素子として機能する。 When a voltage is applied to the drive electrodes 31a and 31b, the movable part 60 vibrates, and the ferroelectric film 20d, which is an epitaxial film located under the detection electrode 31d provided on the movable part 60, is scanned to scan the infrared rays or the like. Light that changes the temperature of the ferroelectric film 20d can be detected. Thus, the pyroelectric sensor element 201 functions as a scanning pyroelectric sensor element.
 以上の様に、検出部分と駆動部分と膜の構成が異なる。これにより、焦電センサ200の精度を向上することができる。 As described above, the detection part, the drive part, and the film configuration are different. Thereby, the accuracy of the pyroelectric sensor 200 can be improved.
 図8Aは実施の形態における別の焦電センサ素子201aの上面図である。図8Bは図8Aに示す焦電センサ素子201aの線8B-8Bにおける断面図である。図8Cから図8Gは、焦電センサ素子201aの製造プロセスを説明する断面図である。 FIG. 8A is a top view of another pyroelectric sensor element 201a in the embodiment. FIG. 8B is a cross-sectional view of the pyroelectric sensor element 201a shown in FIG. 8A taken along line 8B-8B. 8C to 8G are cross-sectional views illustrating a manufacturing process of the pyroelectric sensor element 201a.
 焦電センサ素子201aは、基板52と、金属膜31pと、強誘電体膜20dと、駆動電極31bと、検出電極31dと、を備える。金属膜31pは互いに積層された金属膜(上部電極31)と金属膜54よりなる。強誘電体膜20dはエピタキシャル膜である。 The pyroelectric sensor element 201a includes a substrate 52, a metal film 31p, a ferroelectric film 20d, a drive electrode 31b, and a detection electrode 31d. The metal film 31p is composed of a metal film (upper electrode 31) and a metal film 54 stacked on each other. The ferroelectric film 20d is an epitaxial film.
 基板52は、ステンレス鋼など、塩酸に難溶又は不溶である、あるいは別の表現では、中間膜40の材料であるMgInとエッチングレートが大きく異なる材料よりなり、かつ、この材料にはエピタキシャル膜を形成できない。 The substrate 52 is made of a material that is hardly soluble or insoluble in hydrochloric acid, such as stainless steel, or is otherwise made of a material having a significantly different etching rate from MgIn 2 O 4 that is the material of the intermediate film 40. An epitaxial film cannot be formed.
 金属膜31pは、塩酸などの強酸に不溶な金などの材料からなる金属膜である。 The metal film 31p is a metal film made of a material such as gold that is insoluble in a strong acid such as hydrochloric acid.
 図8Cから図8Gは、焦電センサ素子201aの製造プロセスを説明する図である。 8C to 8G are diagrams for explaining a manufacturing process of the pyroelectric sensor element 201a.
 図8Cに示すように、構造体10は、基板50と、中間膜40と、下部電極32と、強誘電体膜20dと、上部電極31とを備える。なお、中間膜40を第1の層、下部電極32を第2の層、強誘電体膜20dを第3の層、と記載してもよい。中間膜40はMgInまたはZnInよりなる。 As shown in FIG. 8C, the structure 10 includes a substrate 50, an intermediate film 40, a lower electrode 32, a ferroelectric film 20d, and an upper electrode 31. The intermediate film 40 may be described as a first layer, the lower electrode 32 as a second layer, and the ferroelectric film 20d as a third layer. The intermediate film 40 is made of MgIn 2 O 4 or ZnIn 2 O 4 .
 図8Dに示すように、構造体10が基板50を残してパターニングされ、構造体10bを得る。ここで、パターニングされた構造体10bの上面視における形状は、図8Aに示す駆動電極31a、31b及び検出電極31dの上面視における形状と同じである。詳細にはここでは構造体10は、中間膜40と、下部電極32と、強誘電体膜20dと、上部電極31とからなる。 As shown in FIG. 8D, the structure 10 is patterned leaving the substrate 50 to obtain the structure 10b. Here, the shape of the patterned structure 10b in the top view is the same as the shape of the drive electrodes 31a and 31b and the detection electrode 31d shown in FIG. 8A in the top view. Specifically, here, the structure 10 includes an intermediate film 40, a lower electrode 32, a ferroelectric film 20 d, and an upper electrode 31.
 その後、図8Eに示すように、パターニングされた構造体10bが、パターニングされた構造体10bと同じ形状にパターニングされた基板52と張り合わされて、図8Fに示す構造体10cを得る。詳細には、基板52には金などからなる金属膜54が設けられており、金属膜54がパターニングされた構造体10bの上部電極31と、金属接合、固相拡散接合、超音波接合などを用いて接合される。 Then, as shown in FIG. 8E, the patterned structure 10b is bonded to the substrate 52 patterned in the same shape as the patterned structure 10b to obtain the structure 10c shown in FIG. 8F. Specifically, a metal film 54 made of gold or the like is provided on the substrate 52, and metal bonding, solid phase diffusion bonding, ultrasonic bonding, or the like is performed with the upper electrode 31 of the structure 10b on which the metal film 54 is patterned. To be joined.
 その後、図8Gに示すように、構造体10cが強酸91に漬けられる。実施の形態では強酸91は塩酸である。ここで、上部電極(例えば金)、圧電膜(例えばPZT)、下部電極(例えば白金)、及び基板52(例えばSUS)は強酸91である塩酸に不溶である。一方で、焦電センサ素子201aの中間膜40として用いられているMgInとZnInは強酸91である塩酸に可溶である。このため、構造体10cが強酸91に漬けられることで中間膜40が除去され、その結果、構造体10cから基板50が剥離される。 Thereafter, as shown in FIG. 8G, the structure 10 c is immersed in the strong acid 91. In the embodiment, the strong acid 91 is hydrochloric acid. Here, the upper electrode (for example, gold), the piezoelectric film (for example, PZT), the lower electrode (for example, platinum), and the substrate 52 (for example, SUS) are insoluble in hydrochloric acid that is the strong acid 91. On the other hand, MgIn 2 O 4 and ZnIn 2 O 4 used as the intermediate film 40 of the pyroelectric sensor element 201 a are soluble in hydrochloric acid, which is the strong acid 91. For this reason, the intermediate film 40 is removed by immersing the structure 10c in the strong acid 91, and as a result, the substrate 50 is peeled from the structure 10c.
 このようにして、図8Aに示す焦電センサ素子201aが形成される。すなわち、基板50の上にパターニングされたエピタキシャル膜である強誘電体膜20dを、別の基板に転写することができる。これは特に、SUSなど、その上に直接にエピタキシャル膜である強誘電体膜20dを形成できない基板にパターニングされた強誘電体膜20dを設けることができる。 In this way, the pyroelectric sensor element 201a shown in FIG. 8A is formed. That is, the ferroelectric film 20d, which is an epitaxial film patterned on the substrate 50, can be transferred to another substrate. In particular, a patterned ferroelectric film 20d can be provided on a substrate such as SUS on which a ferroelectric film 20d that is an epitaxial film cannot be directly formed.
 図9Aは実施の形態における焦電センサ素子201b1の上面図である。図9Bは図9Aに示す焦電センサ素子201b1の線9B-9Bにおける断面図である。 FIG. 9A is a top view of the pyroelectric sensor element 201b1 in the embodiment. 9B is a cross-sectional view of pyroelectric sensor element 201b1 taken along line 9B-9B shown in FIG. 9A.
 焦電センサ素子201b1は、基板50と、中間膜40と、強誘電体膜20と、上部電極31と、コンタクト部31eと、配線31fと、下部電極32と、絶縁膜206aと、絶縁膜206bと、キャビティ208とを備える。中間膜40はMgInよりなるMgIn膜である。なお、中間膜40はZnInよりなるZnIn膜でもよい。 The pyroelectric sensor element 201b1 includes a substrate 50, an intermediate film 40, a ferroelectric film 20, an upper electrode 31, a contact portion 31e, a wiring 31f, a lower electrode 32, an insulating film 206a, and an insulating film 206b. And a cavity 208. Intermediate layer 40 is MgIn 2 O 4 film made MgIn 2 O 4. The intermediate layer 40 may be a ZnIn 2 O 4 film made ZnIn 2 O 4.
 絶縁膜206aは、シリコン窒化膜(SiN膜)、シリコン酸化膜(SiO膜)、シリコン酸窒化膜(SiON膜)などの絶縁物を用いることができる。絶縁膜206aは基板50上の強誘電体膜20と上部電極31などの構造物を支持する、あるいは、構造物内の応力の調整などの機能を有する。 As the insulating film 206a, an insulator such as a silicon nitride film (SiN film), a silicon oxide film (SiO film), or a silicon oxynitride film (SiON film) can be used. The insulating film 206a supports a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50, or has a function of adjusting stress in the structure.
 絶縁膜206bは、シリコン窒化膜(SiN膜)、シリコン酸化膜(SiO膜)、シリコン酸窒化膜(SiON膜)、ポリイミド系の永久レジストなどの絶縁物を用いることができる。絶縁膜206bは基板50上の強誘電体膜20と上部電極31などの構造物を支持、あるいは、電極間の絶縁などの機能を有する。 As the insulating film 206b, an insulator such as a silicon nitride film (SiN film), a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), a polyimide-based permanent resist, or the like can be used. The insulating film 206b supports a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50, or has a function of insulating between the electrodes.
 強誘電体膜20は、エピタキシャル膜である強誘電体膜20dあるいは配向性を有する強誘電体膜20bなどである。焦電センサ素子に用いる場合において、強誘電体膜20を焦電膜、あるいは焦電体と記載してもよい。 The ferroelectric film 20 is an ferroelectric film 20d that is an epitaxial film, an oriented ferroelectric film 20b, or the like. When used for a pyroelectric sensor element, the ferroelectric film 20 may be described as a pyroelectric film or a pyroelectric material.
 上部電極31は、チタン、白金、金などからなる金属薄膜である。上部電極31はある程度のシート抵抗を有することが好ましいので、その膜厚を薄くする事が好ましい。例えば、上部電極31の膜厚は10nmである。焦電センサ素子では、上部電極31は赤外線を吸収する赤外線吸収膜と表記することができる。 The upper electrode 31 is a metal thin film made of titanium, platinum, gold or the like. Since the upper electrode 31 preferably has a certain sheet resistance, it is preferable to reduce the film thickness. For example, the film thickness of the upper electrode 31 is 10 nm. In the pyroelectric sensor element, the upper electrode 31 can be described as an infrared absorption film that absorbs infrared rays.
 配線31fは、上部電極31に電気的に接続され、電極31g1に接続される。配線31fは強誘電体膜20を取り囲むように配される。電極31g2は下部電極32からの電気信号の取り出しに用いられる。 The wiring 31f is electrically connected to the upper electrode 31 and connected to the electrode 31g1. The wiring 31 f is arranged so as to surround the ferroelectric film 20. The electrode 31g2 is used for taking out an electric signal from the lower electrode 32.
 コンタクト部31eは、上部電極31と配線31fとが接続された接続部分である。 The contact portion 31e is a connection portion where the upper electrode 31 and the wiring 31f are connected.
 キャビティ208は、強誘電体膜20の下であって、基板50と下部電極32との間である位置に少なくとも設けられる。キャビティ208は、選択的にエッチングできるMgIn膜をウエットエッチングにより除去することで形成される。従って、キャビティ208の両端(側壁)は、MgInよりなる。すなわち、キャビティ208は、上面208aと、下面208bと、上面208aと下面208bとに繋がる側面と208c、208dを有する。側面と208c、208dはキャビティ208を介して互いに対向する。キャビティ208の側面と208c、208dはMgInよりなる。このように、中間膜40は、MをMg又はZnのいずれかの金属元素としてMInを含む。キャビティ208の側面208c、208cの組成は化学式MInである。また、MgIn膜の厚みは例えば20Åであるので、キャビティ208の厚みも20Åである。一方で、下部電極32の厚みは例えば1000Åである。従って、キャビティ208の厚みは下部電極32の厚みよりも小さい。また、キャビティ208を構成する上面の一部は絶縁膜206aとなる。ただし、キャビティ208を形成後に例えばフッ素ガスなどを用いて基板50をさらにエッチングし、これによりキャビティ208を更に拡大しても構わない。 The cavity 208 is provided at least at a position below the ferroelectric film 20 and between the substrate 50 and the lower electrode 32. The cavity 208 is formed by removing the MgIn 2 O 2 film that can be selectively etched by wet etching. Therefore, both ends (side walls) of the cavity 208 are made of MgIn 2 O 2 . That is, the cavity 208 has an upper surface 208a, a lower surface 208b, and side surfaces 208c and 208d connected to the upper surface 208a and the lower surface 208b. The side surfaces 208 c and 208 d face each other through the cavity 208. Side surfaces of the cavity 208 and 208c and 208d are made of MgIn 2 O 2 . Thus, the intermediate film 40 includes MIn 2 O 4 with M as a metal element of either Mg or Zn. The composition of the side surfaces 208c and 208c of the cavity 208 has the chemical formula MIn 2 O 4 . Further, since the thickness of the MgIn 2 O 2 film is, for example, 20 mm, the thickness of the cavity 208 is also 20 mm. On the other hand, the thickness of the lower electrode 32 is, for example, 1000 mm. Therefore, the thickness of the cavity 208 is smaller than the thickness of the lower electrode 32. A part of the upper surface constituting the cavity 208 becomes an insulating film 206a. However, after the cavity 208 is formed, the substrate 50 may be further etched using, for example, fluorine gas, thereby further expanding the cavity 208.
 キャビティ208の上下方向の幅は下部電極32の上下方向の厚みより小さい。キャビティ208の上面208aの一部は絶縁膜206bで構成されている。 The vertical width of the cavity 208 is smaller than the vertical thickness of the lower electrode 32. A part of the upper surface 208a of the cavity 208 is composed of an insulating film 206b.
 従来の焦電センサでは、焦電センサ素子の裏側のシリコン基板をエッチングすることで焦電センサ素子の熱容量を減らし、熱の逃げを防止する。しかし、この方法では、キャビティ加工の手間がかかる、あるいは焦電センサ素子が大型化するなどの課題がある。これに対して焦電センサ素子201b1では、中間膜40を、選択的にエッチングできるMgIn膜とし、これをウエットエッチにて選択的に除去しているので、従来の焦電センサに要するキャビティ加工がいらず、また、焦電センサを小型化する事ができる。 In the conventional pyroelectric sensor, the silicon substrate on the back side of the pyroelectric sensor element is etched to reduce the heat capacity of the pyroelectric sensor element and prevent the escape of heat. However, this method has problems such as time-consuming cavity processing or an increase in the size of the pyroelectric sensor element. On the other hand, in the pyroelectric sensor element 201b1, the intermediate film 40 is a MgIn 2 O 2 film that can be selectively etched, and this is selectively removed by wet etching, which is necessary for the conventional pyroelectric sensor. No cavity processing is required, and the pyroelectric sensor can be reduced in size.
 上部電極31のシート抵抗は、焦電膜に吸収される赤外線の量を増大させるため、250Ω~500Ωにすることが望ましい。Pt(白金)やAu(金)を用いた上部電極31でシート抵抗を例えば250Ω~500Ωにしようとすると、比抵抗が小さいため膜厚が1nm以下になり、成膜(膜厚)の制御性が低下する。あるいは、NiCrを用いた上部電極31でシート抵抗を250Ω~500Ωにしようとした場合でも、上部電極31の膜厚は1.6nmとなり、成膜(膜厚)の制御性が低下する。またあるいは、Ti、Crなどの比抵抗が大きい材料で上部電極31のシート抵抗を250Ω~500Ωにしようとすると、Ti、Crなどは酸素と結合しやすいために熱に弱く酸化してしまい、信頼性を保つ事が困難である。そこで、上部電極31の材料として、NiCrAlSiを用いる事が好ましい。NiCrAlSiで形成した上部電極31すなわちNiCrAlSi電極は、比抵抗が大きいため膜厚を大きくでき、膜厚制御性と耐熱性にも優れ、更には、コストもPtやAuより安価である。具体的には、NiCrAlSi電極では、NiのCrに対する重量比を45/55~55/45とし、Alを全重量の10~18重量%含有し、かつSiを全重量の2~6重量%含有させることが望ましい。 The sheet resistance of the upper electrode 31 is desirably 250Ω to 500Ω in order to increase the amount of infrared rays absorbed by the pyroelectric film. If the sheet resistance of the upper electrode 31 using Pt (platinum) or Au (gold) is to be set to, for example, 250Ω to 500Ω, the film thickness becomes 1 nm or less because the specific resistance is small, and the film thickness (film thickness) controllability. Decreases. Alternatively, even when the upper electrode 31 using NiCr is intended to have a sheet resistance of 250 Ω to 500 Ω, the film thickness of the upper electrode 31 is 1.6 nm, and the controllability of film formation (film thickness) is lowered. Alternatively, if the sheet resistance of the upper electrode 31 is made to be 250 Ω to 500 Ω using a material having a large specific resistance such as Ti and Cr, Ti and Cr easily oxidize with heat because they are easily bonded to oxygen, and are reliable. It is difficult to keep sex. Therefore, it is preferable to use NiCrAlSi as the material of the upper electrode 31. The upper electrode 31 made of NiCrAlSi, that is, the NiCrAlSi electrode has a large specific resistance, so that the film thickness can be increased, the film thickness controllability and heat resistance are excellent, and the cost is lower than that of Pt or Au. Specifically, in the NiCrAlSi electrode, the weight ratio of Ni to Cr is 45/55 to 55/45, Al is contained in an amount of 10 to 18% by weight, and Si is contained in an amount of 2 to 6% by weight of the total weight. It is desirable to make it.
 またSi以外の材料でも、酸素結合しやすく且つ信頼性の高い材料で上部電極31を形成してもよく、例えば、Ta、またはNb、またはZr、またはY、またはTiで形成してもよい。上部電極31は、Ni,Cr,Al,Siの4元素を含み、Ni,Cr,Al合金よりも高い抵抗値を有してシート抵抗が250Ω~500Ωでありかつ5nm以上の厚みを有する。 Alternatively, the upper electrode 31 may be formed of a material other than Si, which is easy to bond with oxygen and has high reliability. For example, the upper electrode 31 may be formed of Ta, Nb, Zr, Y, or Ti. The upper electrode 31 contains four elements of Ni, Cr, Al, and Si, has a higher resistance value than Ni, Cr, and Al alloy, has a sheet resistance of 250Ω to 500Ω, and a thickness of 5 nm or more.
 図9Cは実施の形態における別の焦電センサ素子201b2の断面図である。 FIG. 9C is a cross-sectional view of another pyroelectric sensor element 201b2 in the embodiment.
 焦電センサ素子201b2は、焦電センサ素子201b1とは異なる基板50を備える。 The pyroelectric sensor element 201b2 includes a substrate 50 different from the pyroelectric sensor element 201b1.
 基板50は、シリコンを含む膜の積層構造を有する。詳細には、基板50は、シリコン膜(Si膜)50b1とシリコン酸化膜(SiOx膜)50b2とシリコン窒化膜(SiN膜)50b3とシリコン酸化膜(SiOx膜)50b4とを備える。メンブレン408はシリコン膜(Si膜)50b1とシリコン酸化膜(SiOx膜)50b2とシリコン窒化膜(SiN膜)50b3とシリコン酸化膜(SiOx膜)50b4とを含む。 The substrate 50 has a laminated structure of films containing silicon. Specifically, the substrate 50 includes a silicon film (Si film) 50b1, a silicon oxide film (SiOx film) 50b2, a silicon nitride film (SiN film) 50b3, and a silicon oxide film (SiOx film) 50b4. The membrane 408 includes a silicon film (Si film) 50b1, a silicon oxide film (SiOx film) 50b2, a silicon nitride film (SiN film) 50b3, and a silicon oxide film (SiOx film) 50b4.
 図9Cに示すように、実施の形態における焦電センサ素子に用いる基板50には、中間膜40(MgIn膜)をエッチングして形成するキャビティ208が形成されていなくてもよい。 As shown in FIG. 9C, the substrate 50 used for the pyroelectric sensor element in the embodiment may not have the cavity 208 formed by etching the intermediate film 40 (MgIn 2 O 2 film).
 焦電センサ素子201b1、201b2の断面において、強誘電体膜20が存在する部分は受光部404として機能する。実施の形態における他の焦電センサ素子においても同様である。 In the cross section of the pyroelectric sensor elements 201b1 and 201b2, the portion where the ferroelectric film 20 exists functions as the light receiving portion 404. The same applies to other pyroelectric sensor elements in the embodiment.
 焦電センサ素子201b1の断面において、キャビティ208が存在しない部分はフレーム406である。別の表現では、フレーム406は、基板50と中間膜40とが存在する部分である。焦電センサ素子201b2においては、フレーム406はSi膜50b1が存在する部分である。なお、実施の形態における他の焦電センサ素子においても同様である。 In the cross section of the pyroelectric sensor element 201b1, a portion where the cavity 208 does not exist is a frame 406. In other words, the frame 406 is a portion where the substrate 50 and the intermediate film 40 exist. In the pyroelectric sensor element 201b2, the frame 406 is a portion where the Si film 50b1 exists. The same applies to other pyroelectric sensor elements in the embodiment.
 メンブレン408は、焦電センサ素子201b1の断面において、キャビティ208が存在する部分であり、別の表現では、中間膜40が存在しない部分である。焦電センサ素子201b2では、メンブレン408はSi膜50b1が存在しない部分である。別の表現では、基板50は第1の部分と、第1の部分より薄い第2の部分とを有する。図9Cに示す焦電センサ素子201b2では、第1の部分はSi膜50b1の部分であり、第2の部分は、Si膜50b1の存在しない部分におけるSiOx膜50b2とSiN膜50b3とSiOx膜50b4とを合せた部分である。図9Aに示す焦電センサ素子201b1では、第1の部分は、中間膜40が存在する部分の中間膜40と基板50とを合わせた部分であり、第2の部分は、中間膜40が存在しない部分における基板50である。この第2の部分がメンブレン408である。なお、実施の形態における他の焦電センサ素子においても同様である。 The membrane 408 is a part where the cavity 208 exists in the cross section of the pyroelectric sensor element 201b1, and in another expression, the part where the intermediate film 40 does not exist. In the pyroelectric sensor element 201b2, the membrane 408 is a portion where the Si film 50b1 does not exist. In other words, the substrate 50 has a first portion and a second portion that is thinner than the first portion. In the pyroelectric sensor element 201b2 shown in FIG. 9C, the first part is the part of the Si film 50b1, and the second part is the SiOx film 50b2, the SiN film 50b3, the SiOx film 50b4 in the part where the Si film 50b1 does not exist. Is the combined part. In the pyroelectric sensor element 201b1 shown in FIG. 9A, the first portion is a portion where the intermediate film 40 and the substrate 50 are combined, and the second portion is where the intermediate film 40 is present. It is the board | substrate 50 in the part which is not carried out. This second part is the membrane 408. The same applies to other pyroelectric sensor elements in the embodiment.
 図9Dは、焦電センサ素子201b2の特性を示す。メンブレン408の厚みに応じて強誘電体膜20の焦電係数が変化する。すなわち、メンブレン408の厚みを或る値以下にすることで、強誘電体膜20の焦電係数が増大し、結果、焦電センサ素子201b2の性能を向上することができる。この効果が発現するメカニズムを説明する。まず、SiOx膜50b4の膜厚が減少することでメンブレン408の全体の厚みが減少する。そして、強誘電体膜20のメンブレン408からの拘束力が減少する。結果、強誘電体膜20の分極処理時の分極が揃いやすくなるために強誘電体膜20の分極量が増大して強誘電性が増大し、焦電性が増大して焦電係数が増大する。焦電係数の増大は出力電圧すなわちセンサ感度の増大をもたらすので、結果、センサの精度を向上できる。特に、強誘電体膜20の膜厚1400nmに対して、メンブレン408の膜厚が800nm以下で効果が得られることが実験により確認された。したがって、メンブレン408の膜厚を強誘電体膜20の厚の0.57倍(=800nm/1400nm)以下にすることが好ましい。 FIG. 9D shows the characteristics of the pyroelectric sensor element 201b2. The pyroelectric coefficient of the ferroelectric film 20 changes according to the thickness of the membrane 408. That is, by setting the thickness of the membrane 408 to a certain value or less, the pyroelectric coefficient of the ferroelectric film 20 is increased, and as a result, the performance of the pyroelectric sensor element 201b2 can be improved. The mechanism by which this effect appears will be described. First, as the thickness of the SiOx film 50b4 decreases, the overall thickness of the membrane 408 decreases. And the restraining force from the membrane 408 of the ferroelectric film 20 decreases. As a result, since the polarization of the ferroelectric film 20 is easily aligned, the amount of polarization of the ferroelectric film 20 increases, the ferroelectricity increases, the pyroelectricity increases, and the pyroelectric coefficient increases. To do. An increase in pyroelectric coefficient results in an increase in output voltage, that is, sensor sensitivity, and as a result, the accuracy of the sensor can be improved. In particular, it has been confirmed through experiments that the effect can be obtained when the film thickness of the membrane 408 is 800 nm or less with respect to the film thickness of the ferroelectric film 20 of 1400 nm. Therefore, the film thickness of the membrane 408 is preferably 0.57 times (= 800 nm / 1400 nm) or less than the thickness of the ferroelectric film 20.
 上術の従来のセンサでは増大し続けている高精度、高信頼性への要求に応えるには不十分である。 The conventional sensor of the above art is insufficient to meet the increasing demand for high accuracy and high reliability.
 実施の形態における焦電センサ素子201b2は上述のように高い精度が得られる。 The pyroelectric sensor element 201b2 in the embodiment can obtain high accuracy as described above.
 図10Aは実施の形態におけるさらに別の焦電センサ素子201c1の上面図である。図10Bは図10Aに示す焦電センサ素子201c1の線10B-10Bにおける断面図である。図10Cは図10Bに示す焦電センサ素子201c1の拡大図である。 FIG. 10A is a top view of still another pyroelectric sensor element 201c1 in the embodiment. 10B is a cross-sectional view of pyroelectric sensor element 201c1 shown in FIG. 10A taken along line 10B-10B. FIG. 10C is an enlarged view of the pyroelectric sensor element 201c1 shown in FIG. 10B.
 焦電センサ素子201c1は、焦電センサ素子201b1に更に積層膜210を備える。積層膜210は凹部212に設けられている。凹部212は、上部電極31の強誘電体膜20に接する部分よりなる底と、絶縁膜206bよりなる側壁とを有する。 The pyroelectric sensor element 201c1 further includes a laminated film 210 in addition to the pyroelectric sensor element 201b1. The laminated film 210 is provided in the recess 212. The recess 212 has a bottom made of a portion of the upper electrode 31 in contact with the ferroelectric film 20 and a side wall made of the insulating film 206b.
 積層膜210の上面S1は、凹部212の上面S2よりも低い。別の表現では、積層膜210の上面S1は、絶縁膜206bの上面S2よりも低い。別の表現では、積層膜210の厚みは凹部212の深さよりも小さい。 The upper surface S1 of the laminated film 210 is lower than the upper surface S2 of the recess 212. In other words, the upper surface S1 of the stacked film 210 is lower than the upper surface S2 of the insulating film 206b. In other words, the thickness of the laminated film 210 is smaller than the depth of the recess 212.
 積層膜210の上面S1は、配線31fの上面S3よりも高い。 The upper surface S1 of the laminated film 210 is higher than the upper surface S3 of the wiring 31f.
 積層膜210は、赤外線の中心波長を含む所定の波長帯域の波長の光を通し、その波長帯域以外の波長を有する光を通さないバンドパスフィルタであり、特定波長のみを透過する機能を有する。赤外線センサでは、所望の波長を有する赤外線のみを透過することができる。ここで、積層膜を構成する膜としてシリコン窒化膜(SiN膜)を用いることで耐湿膜としても機能し、バンドパスフィルタと耐湿膜とを兼用できるので好ましい。 The laminated film 210 is a band-pass filter that transmits light of a predetermined wavelength band including the center wavelength of infrared light and does not transmit light having a wavelength other than the wavelength band, and has a function of transmitting only a specific wavelength. In an infrared sensor, only infrared rays having a desired wavelength can be transmitted. Here, it is preferable to use a silicon nitride film (SiN film) as a film constituting the laminated film because it functions as a moisture-resistant film and can serve as both a bandpass filter and a moisture-resistant film.
 積層膜210は、上部電極31の上面に設けられた膜210aと、膜210aの上面に設けられた膜210bと、膜210bの上面に設けられた膜210cと、膜210cの上面に設けられた膜210dとを有する。 The laminated film 210 is provided on the upper surface of the film 210a provided on the upper surface of the upper electrode 31, the film 210b provided on the upper surface of the film 210a, the film 210c provided on the upper surface of the film 210b, and the upper surface of the film 210c. A film 210d.
 膜210aは、高い屈折率を有する材料で構成され、例えば、ZrO、TiO、Nb、またはTaなどを用いることができる。 The film 210a is made of a material having a high refractive index, and for example, ZrO 2 , TiO 2 , Nb 2 O 5 , or Ta 2 O 5 can be used.
 膜210bは、膜210aよりも低い屈折率を有する材料で構成され、例えば、SiOまたは及びMgFなどを用いることができる。 The film 210b is made of a material having a lower refractive index than the film 210a, and for example, SiO 2 or MgF 2 can be used.
 膜210cは膜210aと同じ材料を用いて構成される。膜210dは膜210bと同じ材料を用いて構成される。すなわち、積層膜210は、高い屈折率の材料からなる膜と低い屈折率の材料からなる膜とが交互に積層された構造物である。本実施の形態では積層膜210は四つの膜の積層構造であるとして説明されるが、これに限らず5つ以上の膜で形成されていてもよいし、3つ以下の膜で形成されていてもよい。 The film 210c is configured using the same material as the film 210a. The film 210d is formed using the same material as the film 210b. That is, the laminated film 210 is a structure in which a film made of a material having a high refractive index and a film made of a material having a low refractive index are alternately laminated. In the present embodiment, the laminated film 210 is described as a laminated structure of four films, but is not limited to this, and may be formed of five or more films, or may be formed of three or less films. May be.
 特定の波長を検知する従来の焦電センサは、パッケージと、パッケージに接着されたバンドパスフィルタと、パッケージに収容される焦電センサ素子とを備える。このように、バンドパスフィルタが焦電センサ素子と別体であるため、焦電センサが高コスト、大型化する。これに対して、実施の形態における焦電センサ素子201c1はバンドパスフィルタが焦電センサ素子と一体化されているので、低コスト化、小型化することができる。なお、焦電センサ素子201c1は、バンドパスフィルタと一体化されているので、図7Aに示すパッケージ200a及びレンズ200bを用なくても焦電センサとして機能し得る。すなわち、焦電センサ素子201c1を焦電センサと記載してもよい。 A conventional pyroelectric sensor for detecting a specific wavelength includes a package, a bandpass filter bonded to the package, and a pyroelectric sensor element accommodated in the package. Thus, since the bandpass filter is a separate body from the pyroelectric sensor element, the pyroelectric sensor is increased in cost and size. In contrast, the pyroelectric sensor element 201c1 in the embodiment can be reduced in cost and size because the bandpass filter is integrated with the pyroelectric sensor element. Since the pyroelectric sensor element 201c1 is integrated with the band pass filter, it can function as a pyroelectric sensor without using the package 200a and the lens 200b shown in FIG. 7A. That is, the pyroelectric sensor element 201c1 may be described as a pyroelectric sensor.
 図10Dは、実施の形態におけるさらに別の焦電センサ素子201c2の拡大断面図である。焦電センサ素子201c2では絶縁膜206aを備えていない。 FIG. 10D is an enlarged cross-sectional view of still another pyroelectric sensor element 201c2 in the embodiment. The pyroelectric sensor element 201c2 does not include the insulating film 206a.
 焦電センサ素子201c2では、積層膜210は凹部212に設けられている。凹部212は、上部電極31の強誘電体膜20に接する部分よりなる底と、配線31fとコンタクト部31eをからなる側壁とを有する。積層膜210の上面は、配線31fの上面よりも低い。 In the pyroelectric sensor element 201c2, the laminated film 210 is provided in the recess 212. The recess 212 has a bottom made of a portion of the upper electrode 31 in contact with the ferroelectric film 20, and a side wall made of the wiring 31f and the contact portion 31e. The upper surface of the laminated film 210 is lower than the upper surface of the wiring 31f.
 図10Eは実施の形態におけるさらに別の焦電センサ素子201c3の拡大断面図である。 FIG. 10E is an enlarged cross-sectional view of still another pyroelectric sensor element 201c3 in the embodiment.
 焦電センサ素子201c3では、積層膜210が配線31fと強誘電体膜20との間に設けられている。この構造により、積層膜210がバンドパスフィルタと強誘電体膜20の保護膜として機能し、さらに、上部電極31と下部電極32の絶縁膜としても機能する。これにより、焦電センサ素子201c3の作製を簡素化できる。 In the pyroelectric sensor element 201c3, the laminated film 210 is provided between the wiring 31f and the ferroelectric film 20. With this structure, the laminated film 210 functions as a protective film for the bandpass filter and the ferroelectric film 20, and also functions as an insulating film for the upper electrode 31 and the lower electrode 32. Thereby, manufacture of the pyroelectric sensor element 201c3 can be simplified.
 焦電センサ素子201c3では、積層膜210の一部が強誘電体膜20の側面S4を覆う。別の表現では、膜210aの一部が強誘電体膜20の側面S4を覆う。ここで、強誘電体膜20の側面S4を覆う部分における膜210aの厚みは、強誘電体膜20の上面を覆う部分における膜210aの厚みよりも薄い。膜210aの一部は下部電極32の上面を覆う。 In the pyroelectric sensor element 201c3, a part of the laminated film 210 covers the side surface S4 of the ferroelectric film 20. In other words, a part of the film 210a covers the side surface S4 of the ferroelectric film 20. Here, the thickness of the film 210a in the portion covering the side surface S4 of the ferroelectric film 20 is smaller than the thickness of the film 210a in the portion covering the upper surface of the ferroelectric film 20. A part of the film 210 a covers the upper surface of the lower electrode 32.
 図10Fは、実施の形態におけるさらに別の焦電センサ素子201dの上面図である。図10Gは、図10Fに示す焦電センサ素子201dの線10G-10Gにおける断面図である。焦電センサ素子201dは、強誘電体膜20を囲む配線31fを備えていない。焦電センサ素子201dのその他の構成については焦電センサ素子201c1~201c3と同じである。 FIG. 10F is a top view of still another pyroelectric sensor element 201d in the embodiment. 10G is a cross-sectional view of pyroelectric sensor element 201d shown in FIG. 10F taken along line 10G-10G. The pyroelectric sensor element 201 d does not include the wiring 31 f surrounding the ferroelectric film 20. The other configuration of the pyroelectric sensor element 201d is the same as that of the pyroelectric sensor elements 201c1 to 201c3.
 図11Aは実施の形態におけるさらに別の焦電センサ素子201eの上面図である。図11Bは図11Aに示す焦電センサ素子201eの線11B-11Bにおける断面図である。 FIG. 11A is a top view of still another pyroelectric sensor element 201e in the embodiment. 11B is a cross-sectional view of pyroelectric sensor element 201e shown in FIG. 11A taken along line 11B-11B.
 焦電センサ素子201eは、基板50と、中間膜40と、強誘電体膜20と、上部電極31と、コンタクト部31gと、配線31fと、下部電極32と、絶縁膜206aと、絶縁膜206bと、キャビティ208とを備える。中間膜40はMgInよりなるMgIn膜である。中間膜40はZnInよりなるZnIn膜でもよい。 The pyroelectric sensor element 201e includes a substrate 50, an intermediate film 40, a ferroelectric film 20, an upper electrode 31, a contact portion 31g, a wiring 31f, a lower electrode 32, an insulating film 206a, and an insulating film 206b. And a cavity 208. Intermediate layer 40 is MgIn 2 O 4 film made MgIn 2 O 4. Intermediate film 40 may be a ZnIn 2 O 4 film made ZnIn 2 O 4.
 絶縁膜206aは、シリコン窒化膜(SiN膜)、またはシリコン酸化膜(SiO膜)、またはシリコン酸窒化膜(SiON膜)、またはAl膜、またはZrO膜などの酸化膜を用いることができる。絶縁膜206aは基板50上の強誘電体膜20と上部電極31などの構造物を支持、あるいは、その構造物に印加される応力の調整などの機能を有する。 As the insulating film 206a, an oxide film such as a silicon nitride film (SiN film), a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), an Al 2 O 3 film, or a ZrO 2 film is used. Can do. The insulating film 206a supports a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50, or has a function of adjusting a stress applied to the structure.
 絶縁膜206bは、シリコン窒化膜(SiN膜)、またはシリコン酸化膜(SiO膜)、またはシリコン酸窒化膜(SiON膜)、またはAl膜、またはZrO膜などの酸化膜、またはポリイミド系の永久レジストなどを用いることができる。絶縁膜206bは基板50上の強誘電体膜20と上部電極31などの構想物を支持し、電極間を絶縁するなどの機能を有する。 The insulating film 206b is a silicon nitride film (SiN film), a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), an oxide film such as an Al 2 O 3 film, or a ZrO 2 film, or polyimide A system permanent resist or the like can be used. The insulating film 206b has a function of supporting a concept such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50 and insulating between the electrodes.
 強誘電体膜20は、エピタキシャル膜である強誘電体膜20dあるいは配向性を有する強誘電体膜20bなどである。 The ferroelectric film 20 is an ferroelectric film 20d that is an epitaxial film, an oriented ferroelectric film 20b, or the like.
 上部電極31は、チタン、白金、金などからなる金属薄膜である。あるいは、前述の様なNiCrAlSiを用いた金属薄膜である。上部電極31はある程度のシート抵抗を有することが好ましいので、膜厚を薄くする事が好ましい。例えば、上部電極31の膜厚は10nmである。ここで、焦電センサ素子において、上部電極31は赤外線を吸収する赤外線吸収膜と表記することもできる。 The upper electrode 31 is a metal thin film made of titanium, platinum, gold or the like. Alternatively, a metal thin film using NiCrAlSi as described above. Since the upper electrode 31 preferably has a certain sheet resistance, it is preferable to reduce the film thickness. For example, the film thickness of the upper electrode 31 is 10 nm. Here, in the pyroelectric sensor element, the upper electrode 31 can also be described as an infrared absorption film that absorbs infrared rays.
 配線31fは、上部電極31に電気的に接続され、電極31g1に接続される。配線31fは強誘電体膜20を取り囲むように配される。あるいは、配線31fは強誘電体膜20の一端の部分を跨ぐように配してもよい。電極31g2は下部電極32からの電気信号の取り出しに用いられる。 The wiring 31f is electrically connected to the upper electrode 31 and connected to the electrode 31g1. The wiring 31 f is arranged so as to surround the ferroelectric film 20. Alternatively, the wiring 31f may be arranged so as to straddle one end portion of the ferroelectric film 20. The electrode 31g2 is used for taking out an electric signal from the lower electrode 32.
 コンタクト部31eは、上部電極31と配線31fとが接続されている接続部分である。 The contact portion 31e is a connection portion where the upper electrode 31 and the wiring 31f are connected.
 キャビティ208は、強誘電体膜20の下であって、基板50と下部電極32との間である位置に少なくとも設けられる。キャビティ208は、選択的にエッチングできるMgInよりなるMgIn膜をウエットエッチングにより除去することで形成される。したがって、キャビティ208の両端(側壁)は、MgInよりなる。また、MgIn膜の厚みは例えば200Åであるので、キャビティ208の厚みも200Åである。一方で、下部電極32の厚みは例えば1000Åである。従って、キャビティ208の厚みは下部電極32の厚みよりも小さい。また、キャビティ208を構成する上面の一部は絶縁膜206aである。ただし、キャビティ208を形成後に例えばフッ素ガスなどを用いて基板50をさらにエッチングし、これによりキャビティ208を更に拡大しても構わない。なお、基板50と中間膜40に変えて、図9Cに示す焦電センサ素子210b2の基板50を用いてもよい。 The cavity 208 is provided at least at a position below the ferroelectric film 20 and between the substrate 50 and the lower electrode 32. The cavity 208 is formed by removing a MgIn 2 O 2 film made of MgIn 2 O 2 that can be selectively etched by wet etching. Therefore, both ends (side walls) of the cavity 208 are made of MgIn 2 O 2 . Further, since the thickness of the MgIn 2 O 2 film is, for example, 200 mm, the thickness of the cavity 208 is also 200 mm. On the other hand, the thickness of the lower electrode 32 is, for example, 1000 mm. Therefore, the thickness of the cavity 208 is smaller than the thickness of the lower electrode 32. A part of the upper surface constituting the cavity 208 is an insulating film 206a. However, after the cavity 208 is formed, the substrate 50 may be further etched using, for example, fluorine gas, thereby further expanding the cavity 208. Instead of the substrate 50 and the intermediate film 40, the substrate 50 of the pyroelectric sensor element 210b2 shown in FIG. 9C may be used.
 焦電センサ素子201eでは、メンブレン408にメンブレン408の下面からメンブレン408の上面まで貫通する複数の貫通孔402が形成されている。図11Cから図11Hは貫通孔402の上面視における形状を示す上面図である。図11Cから図Hは、受光部404に向かう方向D404と、受光部404から遠ざかりフレーム406に向かう方向D406とを示す。 In the pyroelectric sensor element 201e, a plurality of through holes 402 that penetrate from the lower surface of the membrane 408 to the upper surface of the membrane 408 are formed in the membrane 408. 11C to 11H are top views showing the shape of the through hole 402 in a top view. 11C to FIG. 11H show a direction D404 toward the light receiving unit 404 and a direction D406 away from the light receiving unit 404 and toward the frame 406.
 図11Cに示す貫通孔402は上面視で三角形状を有する。これによりメンブレン408のフレーム406から受光部404に向かう方向D404で断面積が徐々に小さくなり、熱抵抗が上昇して焦電センサ素子201e出力が増大する。且つ、メンブレン408にかかる応力の集中を分散させ耐衝撃性が向上する。また図11Cでは、フレーム406に向かう方向D406に三角形状の頂点が向いているが、受光部404に向かう方向D404に三角形状の頂点が向いていてもよい。 The through hole 402 shown in FIG. 11C has a triangular shape when viewed from above. As a result, the cross-sectional area gradually decreases in the direction D404 from the frame 406 of the membrane 408 toward the light receiving portion 404, the thermal resistance increases, and the pyroelectric sensor element 201e output increases. In addition, the stress concentration applied to the membrane 408 is dispersed to improve the impact resistance. In FIG. 11C, the triangular apex is directed in the direction D406 toward the frame 406, but the triangular apex may be directed in the direction D404 toward the light receiving unit 404.
 図11Dに示す貫通孔402は上面視で三角形状を有する。具体的には、複数の貫通孔402は、方向D406に頂点が向いている三角形状を有する複数の貫通孔402b1と、方向D404に頂点が向いている三角形状を有する複数の貫通孔402b2とを含む。複数の貫通孔402b1は直線Lb1上の点Pb1について複数の貫通孔402b2に対して対称に配置されている。互いに隣り合う三角形状を有する貫通孔402b1、402b2を点Pb1について対称に並べることで、限られた面積内で、有効に熱絶縁性を高める事ができる。 The through hole 402 shown in FIG. 11D has a triangular shape in a top view. Specifically, the plurality of through holes 402 include a plurality of through holes 402b1 having a triangular shape whose apex faces in the direction D406, and a plurality of through holes 402b2 having a triangular shape whose apex faces in the direction D404. Including. The plurality of through holes 402b1 are arranged symmetrically with respect to the plurality of through holes 402b2 with respect to the point Pb1 on the straight line Lb1. By arranging the through holes 402b1 and 402b2 having triangular shapes adjacent to each other symmetrically with respect to the point Pb1, it is possible to effectively improve the thermal insulation within a limited area.
 上面視で複数の貫通孔402は、三角形状と台形状のいずれかを有し、貫通孔群4021を成す複数の貫通孔402b1と、所定の点Pb1について貫通孔群4021に対して対称に配置された貫通孔群4022を成す複数の貫通孔402b2とを含む。 In the top view, the plurality of through holes 402 have either a triangular shape or a trapezoidal shape, and are arranged symmetrically with respect to the plurality of through holes 402b1 forming the through hole group 4021 and the predetermined point Pb1 with respect to the through hole group 4021. And a plurality of through-holes 402b2 forming the through-hole group 4022.
 図11Eに示す貫通孔402は、上面視で下底より小さい上底を有する台形形状を有する。具体的には、複数の貫通孔402は、方向D406に上底が向いている台形形状を有する複数の貫通孔402c1と、方向D404に下底が向いている台形形状を有する複数の貫通孔402c2とを含む。複数の貫通孔402c1は直線Lc1上の点Pc1について複数の貫通孔402c2に対して対称に配置されている。互いに隣り合う三角形状を有する貫通孔402c1、402c2を点Pc1について対称に並べることで、限られた面積内で、有効に熱絶縁性を高める事ができる。 The through-hole 402 shown in FIG. 11E has a trapezoidal shape having an upper base smaller than the lower bottom in a top view. Specifically, the plurality of through holes 402 include a plurality of through holes 402c1 having a trapezoidal shape with the upper base facing in the direction D406 and a plurality of through holes 402c2 having a trapezoidal shape with the lower bottom facing in the direction D404. Including. The plurality of through holes 402c1 are arranged symmetrically with respect to the plurality of through holes 402c2 with respect to the point Pc1 on the straight line Lc1. By arranging the through-holes 402c1 and 402c2 having triangular shapes adjacent to each other symmetrically with respect to the point Pc1, it is possible to effectively improve the thermal insulation within a limited area.
 図11Fに示す貫通孔402は上面視で千鳥格子状に設けられている。これにより、受光部404とフレーム406までの熱が伝導する距離を延伸させる事ができ、熱絶縁性を高め出力を増大させすることができる。 The through holes 402 shown in FIG. 11F are provided in a staggered pattern in a top view. As a result, it is possible to extend the distance through which heat is transmitted to the light receiving unit 404 and the frame 406, and to increase the thermal insulation and increase the output.
 図11Gに示す貫通孔402は、上面視で千鳥格子状に配置された菱形形状を有する。これにより、より熱絶縁が向上すると共に、受光部404とフレーム406に接続されるメンブレン408の形状は三角形状になり応力分散され耐衝撃が向上する。 The through holes 402 shown in FIG. 11G have a rhombus shape arranged in a staggered pattern when viewed from above. As a result, the thermal insulation is further improved, and the shape of the membrane 408 connected to the light receiving portion 404 and the frame 406 becomes a triangular shape and the stress is dispersed to improve the impact resistance.
 図11Hに示す貫通孔402は、上面視で千鳥格子状に配置された円形状を有する。これにより、受光部404からフレーム406までの距離が長くなり、熱抵抗が上昇して出力が増大する。 The through holes 402 shown in FIG. 11H have circular shapes arranged in a staggered pattern when viewed from above. As a result, the distance from the light receiving unit 404 to the frame 406 is increased, the thermal resistance is increased, and the output is increased.
 図11Dと図11Eに示す貫通孔402は以下のように配置されている。貫通孔402は上面視で三角形状または台形形状を有する。貫通孔402は、直線Lb1を挟んで互いに点対称に配置される貫通孔402b1と貫通孔402b2とを含む。貫通孔402b1の三角形状の頂点は貫通孔402b2の三角形状の頂点が向いている方向D404と反対の方向D406を向いている。貫通孔402は、直線Lc1を挟んで互いに点対称に配置される貫通孔402c1と貫通孔402c2とを含む。 The through holes 402 shown in FIGS. 11D and 11E are arranged as follows. The through hole 402 has a triangular shape or a trapezoidal shape when viewed from above. The through hole 402 includes a through hole 402b1 and a through hole 402b2 that are arranged point-symmetrically with respect to the straight line Lb1. The triangular apex of the through hole 402b1 faces the direction D406 opposite to the direction D404 in which the triangular apex of the through hole 402b2 faces. The through hole 402 includes a through hole 402c1 and a through hole 402c2 that are arranged point-symmetrically with respect to the straight line Lc1.
 図11Cから図11Hに示す貫通孔402を以下のように配置されている。すなわち、貫通孔402は、受光部404を囲むように設けられている。ここで「囲む」とは、貫通孔402がロの字状(Hollow Square)を有する帯(ベルト)状の領域に配置されている。あるいは、貫通孔402は環形状を有する帯(ベルト)状の領域に配置されている。 The through holes 402 shown in FIGS. 11C to 11H are arranged as follows. That is, the through hole 402 is provided so as to surround the light receiving unit 404. Here, “surround” means that the through-hole 402 is disposed in a belt-like region having a hollow square shape. Or the through-hole 402 is arrange | positioned at the area | region of a belt | band | zone (belt) which has a ring shape.
 図11Cから図11Hに示す貫通孔402は以下のように配置されている。すなわち、貫通孔402は、受光部404の中心からフレーム406までの直線を引いた時、その直線の少なくとも一部が必ず貫通孔402を通る。例えば、図11Fに示すように、受光部404の中心からフレーム406までの直線Ld1は貫通孔402を通過する、もしくは図11Fに示すように、の受光部404の中心からフレーム406までの任意の直線は複数の貫通孔402の少なくとも1つを通過する。このような構造を「貫通孔402が千鳥格子状(ハウンドトゥース・チェック)に配置されている」と記載することもできる。すなわち、上面視で複数の貫通孔402は、方向D101に延びる複数の列C101と、方向D101と交差する方向102に延びる複数の行C102を有するマトリクス形状に配置されている。複数の貫通孔402は、複数の列C101のそれぞれの列C101に配列された複数の貫通孔402d1と、複数の列C101の上記それぞれの列C101に隣り合う対応する列C101に配列された複数の貫通孔402d2とを含む。方向D102から見て、複数の貫通孔402d1の間の境界は複数の貫通孔402d2の間の境界からずれている。方向D102から見て、複数の貫通孔402d1の間の境界は複数の貫通孔402d2と重なり、複数の貫通孔402d2の間の境界は複数の貫通孔402d1と重なる。 The through holes 402 shown in FIGS. 11C to 11H are arranged as follows. In other words, when the through hole 402 draws a straight line from the center of the light receiving portion 404 to the frame 406, at least a part of the straight line always passes through the through hole 402. For example, a straight line Ld1 from the center of the light receiving unit 404 to the frame 406 passes through the through hole 402 as shown in FIG. 11F, or an arbitrary line from the center of the light receiving unit 404 to the frame 406 as shown in FIG. 11F. The straight line passes through at least one of the plurality of through holes 402. Such a structure can also be described as “the through holes 402 are arranged in a staggered pattern (hound tooth check)”. That is, in the top view, the plurality of through holes 402 are arranged in a matrix shape having a plurality of columns C101 extending in the direction D101 and a plurality of rows C102 extending in the direction 102 intersecting the direction D101. The plurality of through holes 402 include a plurality of through holes 402d1 arranged in each row C101 of the plurality of rows C101, and a plurality of rows arranged in corresponding rows C101 adjacent to the respective rows C101 of the plurality of rows C101. Through-hole 402d2. When viewed from the direction D102, the boundary between the plurality of through holes 402d1 is deviated from the boundary between the plurality of through holes 402d2. As viewed from the direction D102, boundaries between the plurality of through holes 402d1 overlap with the plurality of through holes 402d2, and boundaries between the plurality of through holes 402d2 overlap with the plurality of through holes 402d1.
 図12Aは実施の形態におけるさらに別の焦電センサ素子201fの上面図である。図12Bは図12Aに示す焦電センサ素子201fの線12B-12Bにおける断面図である。 FIG. 12A is a top view of still another pyroelectric sensor element 201f in the embodiment. 12B is a cross-sectional view of pyroelectric sensor element 201f shown in FIG. 12A taken along line 12B-12B.
 焦電センサ素子201fは、基板50と、中間膜40と、強誘電体膜20と、上部電極31と、コンタクト部31gと、配線31fと、下部電極32と、絶縁膜206aと、絶縁膜206bと、キャビティ208とを備える。中間膜40はMgIn膜である。なお、中間膜40はZnIn膜でもよい。 The pyroelectric sensor element 201f includes a substrate 50, an intermediate film 40, a ferroelectric film 20, an upper electrode 31, a contact portion 31g, a wiring 31f, a lower electrode 32, an insulating film 206a, and an insulating film 206b. And a cavity 208. The intermediate film 40 is a MgIn 2 O 4 film. The intermediate film 40 may be a ZnIn 2 O 4 film.
 絶縁膜206aは、SiN膜、SiO膜、SiON膜、Al膜、ZrO膜などの酸化膜を用いることができる。絶縁膜206aは基板50の上の強誘電体膜20と上部電極31などの構造物の支持、あるいは、構造物に印加される応力の調整などの機能を有する。 As the insulating film 206a, an oxide film such as a SiN film, a SiO film, a SiON film, an Al 2 O 3 film, or a ZrO 2 film can be used. The insulating film 206a has a function of supporting a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50 or adjusting a stress applied to the structure.
 絶縁膜206bは、SiN膜、SiO膜、SiON膜、Al膜、ZrO膜などの酸化膜およびポリイミド系の永久レジストなどを用いることができる。絶縁膜206bは基板50の上の強誘電体膜20と上部電極31などの構造物の支持、あるいは、電極間の絶縁などの機能を有する。 As the insulating film 206b, an oxide film such as a SiN film, a SiO film, a SiON film, an Al 2 O 3 film, a ZrO 2 film, a polyimide-based permanent resist, or the like can be used. The insulating film 206b has a function of supporting a structure such as the ferroelectric film 20 and the upper electrode 31 on the substrate 50 or insulating between the electrodes.
 強誘電体膜20は、エピタキシャル膜である強誘電体膜20dあるいは配向製を有する強誘電体膜20bなどである。 The ferroelectric film 20 is a ferroelectric film 20d that is an epitaxial film, or a ferroelectric film 20b that is made of an orientation.
 上部電極31は、チタン、白金、金などからなる金属薄膜である。あるいは、前述の様なNiCrAlSiを用いた金属薄膜である。上部電極31は所定の値以上のシート抵抗を有することが好ましいので、膜厚を薄くする事が好ましい。例えば、上部電極31の膜厚は10nmである。ここで、上部電極31を赤外線吸収膜と表記することもできる。 The upper electrode 31 is a metal thin film made of titanium, platinum, gold or the like. Alternatively, a metal thin film using NiCrAlSi as described above. Since the upper electrode 31 preferably has a sheet resistance of a predetermined value or more, it is preferable to reduce the film thickness. For example, the film thickness of the upper electrode 31 is 10 nm. Here, the upper electrode 31 can also be described as an infrared absorption film.
 配線31fは、上部電極31に電気的に接続され、電極31g1に接続される。配線31fは強誘電体膜20を取り囲むように配される。あるいは、配線31fは強誘電体膜20の一端部分を跨ぐように配されていてもよい。電極31g2は下部電極32からの電気信号の取り出しに用いられる。 The wiring 31f is electrically connected to the upper electrode 31 and connected to the electrode 31g1. The wiring 31 f is arranged so as to surround the ferroelectric film 20. Alternatively, the wiring 31 f may be arranged so as to straddle one end portion of the ferroelectric film 20. The electrode 31g2 is used for taking out an electric signal from the lower electrode 32.
 コンタクト部31eは、上部電極31と配線31fとが接続される接続部分である。 The contact portion 31e is a connection portion where the upper electrode 31 and the wiring 31f are connected.
 キャビティ208は、強誘電体膜20の下であって、基板50と下部電極32との間である位置に少なくとも設けられる。キャビティ208は、選択的にエッチングできるMgIn膜をウエットエッチングにより除去することで形成される。従って、キャビティ208の両端(側壁)は、MgInよりなる。また、MgIn膜の厚みは例えば200Åであるので、キャビティ208の厚みも200Åである。一方で、下部電極32の厚みは例えば1000Åである。したがって、キャビティ208の厚みは下部電極32の厚みよりも小さい。また、キャビティ208を構成する上面の一部は絶縁膜206aとなる。ただし、キャビティ208を形成後に例えばフッ素ガスなどを用いて基板50をさらにエッチングし、これによりキャビティ208を更に拡大しても構わない。なお、基板50と中間膜40に変えて、図9Cに示す焦電センサ素子201b2の基板50を用いてもよい。 The cavity 208 is provided at least at a position below the ferroelectric film 20 and between the substrate 50 and the lower electrode 32. The cavity 208 is formed by removing the MgIn 2 O 2 film that can be selectively etched by wet etching. Therefore, both ends (side walls) of the cavity 208 are made of MgIn 2 O 2 . Further, since the thickness of the MgIn 2 O 2 film is, for example, 200 mm, the thickness of the cavity 208 is also 200 mm. On the other hand, the thickness of the lower electrode 32 is, for example, 1000 mm. Therefore, the thickness of the cavity 208 is smaller than the thickness of the lower electrode 32. A part of the upper surface constituting the cavity 208 becomes an insulating film 206a. However, after the cavity 208 is formed, the substrate 50 may be further etched using, for example, fluorine gas, thereby further expanding the cavity 208. Instead of the substrate 50 and the intermediate film 40, the substrate 50 of the pyroelectric sensor element 201b2 shown in FIG. 9C may be used.
 受光部404は、焦電センサ素子201fの断面において、強誘電体膜20が存在する部分である。なお、実施の形態における他の焦電センサ素子においても同様である。 The light receiving portion 404 is a portion where the ferroelectric film 20 exists in the cross section of the pyroelectric sensor element 201f. The same applies to other pyroelectric sensor elements in the embodiment.
 フレーム406は、焦電センサ素子201fの断面において、キャビティ208が存在しない部分である。別の表現では、フレーム406は、基板50と中間膜40とが存在する部分である。別の表現では、フレーム406は、Si膜50b1が存在する部分である(図9C参照)。なお、実施の形態における他の焦電センサ素子においても同様である。 The frame 406 is a portion where the cavity 208 does not exist in the cross section of the pyroelectric sensor element 201f. In other words, the frame 406 is a portion where the substrate 50 and the intermediate film 40 exist. In other words, the frame 406 is a portion where the Si film 50b1 exists (see FIG. 9C). The same applies to other pyroelectric sensor elements in the embodiment.
 メンブレン408は、焦電センサ素子201fの断面において、キャビティ208が存在する部分である。別の表現では、メンブレン408は、中間膜40が存在しない部分である。別の表現では、メンブレン408は、Si膜50b1が存在しない部分である(図9B)。別の表現では、基板50は第1の部分と、第1の部分より薄い第2の部分とを有し、第2の部分がキャビティ208である。図9Cに示す焦電センサ素子201b2では、第1の部分はSi膜50b1の部分であり、第2の部分は、Si膜50b1の存在しない部分のSiOx膜50b2とSiN膜50b3とSiOx膜50b4とを合せた部分である。図10Aと図10Bに示す焦電センサ素子201c1では、第1の部分は、中間膜40が存在する部分の中間膜40と基板50とを合わせた部分であり、第2の部分は中間膜40が存在しない部分の基板50である。なお、実施の形態における他の焦電センサ素子においても同様である。 The membrane 408 is a portion where the cavity 208 exists in the cross section of the pyroelectric sensor element 201f. In other words, the membrane 408 is a portion where the intermediate film 40 does not exist. In other words, the membrane 408 is a portion where the Si film 50b1 does not exist (FIG. 9B). In other words, the substrate 50 has a first portion and a second portion that is thinner than the first portion, and the second portion is the cavity 208. In the pyroelectric sensor element 201b2 shown in FIG. 9C, the first portion is a portion of the Si film 50b1, and the second portion is a portion of the SiOx film 50b2, SiN film 50b3, and SiOx film 50b4 where the Si film 50b1 does not exist. Is the combined part. In the pyroelectric sensor element 201c1 shown in FIG. 10A and FIG. 10B, the first portion is a portion where the intermediate film 40 where the intermediate film 40 exists is combined with the substrate 50, and the second portion is the intermediate film 40. This is the portion of the substrate 50 in which no exists. The same applies to other pyroelectric sensor elements in the embodiment.
 図12Cは焦電センサ素子201fの特性を示す。受光部404の一辺は長さLeを有し、メンブレン408の一辺は長さLmを有する。焦電センサ素子201fでは、長さLeの長さLmに対する比(Le/Lm)は0.8以下である。これにより、強誘電体膜20の焦電係数を大きくすることができ、結果、焦電センサ素子201fの出力と感度を増大させることができる。比(Le/Lm)を小さくすることで、メンブレン408に対して受光部404すなわち強誘電体膜20のサイズが減少し、受光部404すなわち強誘電体膜20がメンブレン408から受ける拘束力が減少する。このため、強誘電体膜20の分極処理時の分極が揃い易くなるので、強誘電体膜20の焦電係数が増大し、出力電圧と感度が増大する。 FIG. 12C shows the characteristics of the pyroelectric sensor element 201f. One side of the light receiving unit 404 has a length Le, and one side of the membrane 408 has a length Lm. In the pyroelectric sensor element 201f, the ratio (Le / Lm) of the length Le to the length Lm is 0.8 or less. Thereby, the pyroelectric coefficient of the ferroelectric film 20 can be increased, and as a result, the output and sensitivity of the pyroelectric sensor element 201f can be increased. By reducing the ratio (Le / Lm), the size of the light receiving portion 404, that is, the ferroelectric film 20, is reduced with respect to the membrane 408, and the restraining force that the light receiving portion 404, that is, the ferroelectric film 20 receives from the membrane 408 is reduced. To do. For this reason, since the polarization during the polarization process of the ferroelectric film 20 is easily aligned, the pyroelectric coefficient of the ferroelectric film 20 increases, and the output voltage and sensitivity increase.
 図13Aから図13Eは、図9Aと図10Aと図10Fと図11Aと図12Aに示す領域Pの拡大図である。領域Pには、配線31fと上部電極31(受光部404)とが接して互いに接続されているコンタクト部が設けられている。 13A to 13E are enlarged views of the region P shown in FIGS. 9A, 10A, 10F, 11A, and 12A. In the region P, a contact portion in which the wiring 31f and the upper electrode 31 (light receiving portion 404) are in contact with each other is provided.
 図13Aに示すコンタクト部501aの構成について説明する。焦電センサ素子201b1の上面視において下部電極32は上部電極31から隙間G1だけ露出する。配線31fを上部電極31と接続する為に、絶縁膜206aが隙間G1を埋めている。なお、図13Aでは絶縁膜206aは配線31fの付近のみに設けられているがこれに限らない。すなわち、絶縁膜206aは上部電極31(受光部404)の保護を兼ねるために上部電極31(受光部404)の外周全体を覆っていてもよい。これにより、強誘電体膜20を塵埃、水分から保護することができるので信頼性が向上する。なお、上面視で下部電極32が上部電極31とオーバーラップしない部分、別の表現では、上面視で下部電極32が上部電極31から露出する部分、上面視で下部電極32が上部電極31から露出する部分を「オーバーラップしない部分」と記載する。配線31fは絶縁膜206aの上を通過して、上部電極31と接続されている。従って、配線31fは絶縁膜206aに乗り上げる所に設けられた段差ST1を有する。 A configuration of the contact portion 501a shown in FIG. 13A will be described. In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1. In order to connect the wiring 31f to the upper electrode 31, the insulating film 206a fills the gap G1. In FIG. 13A, the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved. It should be noted that the lower electrode 32 does not overlap the upper electrode 31 in a top view, in another expression, the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 is exposed from the upper electrode 31 in a top view. The portion to be described is described as “the portion that does not overlap”. The wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST1 provided on the insulating film 206a.
 図13Bに示すコンタクト部501bの構成について説明する。焦電センサ素子201b1の上面視において、下部電極32は上部電極31から隙間G1だけ露出している。配線31fを上部電極31と接続する為に、絶縁膜206aが隙間G1を埋めている。なお、図13Bでは絶縁膜206aは配線31fの付近のみに設けられているがこれに限らない。すなわち、絶縁膜206aは上部電極31(受光部404)の保護を兼ねるために上部電極31(受光部404)の外周全体を覆っていてもよい。これにより、強誘電体膜20を塵埃、水分から保護することができるので信頼性が向上する。なお、上面視で下部電極32が上部電極31とオーバーラップしない部分、別の表現では、上面視で下部電極32が上部電極31から露出する部分、上面視で下部電極32が上部電極31からはみ出す部分を「オーバーラップしない部分」と記載してもよい。配線31fは絶縁膜206aの上を通過して、上部電極31と接続されている。従って、配線31fは絶縁膜206aに乗り上げる所に設けられた段差ST2を有する。 A configuration of the contact portion 501b shown in FIG. 13B will be described. In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1. In order to connect the wiring 31f to the upper electrode 31, the insulating film 206a fills the gap G1. In FIG. 13B, the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved. It should be noted that the lower electrode 32 does not overlap the upper electrode 31 in a top view, in another expression, the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view. The portion may be described as “a portion that does not overlap”. The wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST2 provided on the insulating film 206a.
 図13Bに示すコンタクト部501bでは、配線31fはその端部に設けられた張り出しを有する。別の表現では、配線31fは全体としてH字形状を有する。別の表現では、配線31fは、絶縁膜206aの3辺の少なくとも一部を覆う。別の表現では、配線31fは、絶縁膜206aの2つの角を覆う。この構成により、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差ST2を覆うことができるために配線31fが1方向からスパッタ等により成膜されたとしても、受光部404(上部電極31)の断線による焦電センサ素子の作製時の歩留まり低下を防ぐことができる。さらに、焦電センサ素子の動作時に受光部31(上部電極404)が断線する確率を軽減して長期信頼性を向上させることができる。なお、スパッタ等により成膜する際には用いる装置や基板の位置ずれなどに起因して、基板に対して特定の偏った方向から金属膜が堆積される事が起こり得る。しあkし、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差を覆うことができるためにこのような状況でも配線の信頼性低下を抑制できる。 In the contact portion 501b shown in FIG. 13B, the wiring 31f has an overhang provided at the end thereof. In another expression, the wiring 31f has an H shape as a whole. In other words, the wiring 31f covers at least a part of the three sides of the insulating film 206a. In other words, the wiring 31f covers two corners of the insulating film 206a. With this configuration, since the wiring 31f can cover the step ST2 of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving unit 404 ( It is possible to prevent a decrease in yield during the production of the pyroelectric sensor element due to the disconnection of the upper electrode 31). Furthermore, it is possible to improve the long-term reliability by reducing the probability that the light receiving unit 31 (upper electrode 404) is disconnected during operation of the pyroelectric sensor element. Note that when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to a displacement of an apparatus used or the substrate. However, since the wiring 31f can cover the step of the insulating film 206a from a plurality of directions (a plurality of surfaces), it is possible to suppress a decrease in the reliability of the wiring even in such a situation.
 図13Cに示すコンタクト部501cの構成について説明する。焦電センサ素子201b1の上面視において、下部電極32は上部電極31から隙間G1だけ露出する。配線31fを上部電極31と接続する為に、絶縁膜206aが隙間G1を埋めている。なお、図13Cでは絶縁膜206aは配線31fの付近のみに設けられているがこれに限らない。すなわち、絶縁膜206aは上部電極31(受光部404)の保護を兼ねるために上部電極31(受光部404)の外周全体を覆っていてもよい。これにより、強誘電体膜20を塵埃、水分から保護することができるので信頼性が向上する。なお、上面視で下部電極32が上部電極31とオーバーラップしない部分、別の表現では、上面視で下部電極32が上部電極31から露出する部分、上面視で下部電極32が上部電極31からはみ出す部分を「オーバーラップしない部分」と記載してもよい。配線31fは絶縁膜206aの上を通過して、上部電極31と接続されている。従って、配線31fは絶縁膜206aに乗り上げる所に設けられた段差ST3を有する。 A configuration of the contact portion 501c shown in FIG. 13C will be described. In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1. In order to connect the wiring 31f to the upper electrode 31, the insulating film 206a fills the gap G1. In FIG. 13C, the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved. It should be noted that the lower electrode 32 does not overlap the upper electrode 31 in a top view, in another expression, the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view. The portion may be described as “a portion that does not overlap”. The wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST3 provided on the insulating film 206a.
 図13Cに示すコンタクト部501cでは、配線31fはその端部に設けられた張り出しを有する。別の表現では、配線31fは全体としてコの字形状すなわちU字形状を有する。別の表現では、配線31fは、絶縁膜206aの2辺の少なくとも一部を覆う。別の表現では、配線31fは、絶縁膜206aの1つの角を覆う。 In the contact portion 501c shown in FIG. 13C, the wiring 31f has an overhang provided at the end thereof. In other words, the wiring 31f has a U-shape, that is, a U-shape as a whole. In other words, the wiring 31f covers at least a part of two sides of the insulating film 206a. In other words, the wiring 31f covers one corner of the insulating film 206a.
 この構成により、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差を覆うことができるために配線31fが1方向からスパッタ等により成膜されたとしても、受光部404(上部電極2)の断線による焦電センサ素子の作製時の歩留まり低下を防ぐことができる。さらに、焦電センサ素子の動作時に受光部31(上部電極404)の断線する確率を軽減して長期信頼性を向上させることができる。なお、スパッタ等により成膜する際には用いる装置や基板の位置ずれなどに起因して、基板に対して特定の偏った方向から金属膜が堆積される事が起こり得る。しかし、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差を覆うことができるためにこのような状況でも配線の信頼性低下を抑制できる。 With this configuration, since the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield during the production of the pyroelectric sensor element due to the disconnection of the electrode 2). Furthermore, it is possible to improve the long-term reliability by reducing the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element. Note that when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to a displacement of an apparatus used or the substrate. However, since the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), it is possible to suppress a decrease in the reliability of the wiring even in such a situation.
 図13Dに示すコンタクト部501dの構成について説明する。焦電センサ素子201b1の上面視において、下部電極32は上部電極31から隙間G1だけ露出している。配線31fを上部電極31と接続する為に、絶縁膜206aが隙間G1を埋めている。なお、図13Dでは絶縁膜206aは配線31fの付近のみに設けられているがこれに限らない。すなわち、絶縁膜206aは上部電極31(受光部404)の保護を兼ねるために上部電極31(受光部404)の外周全体を覆っていてもよい。これにより、強誘電体膜20を塵埃、水分から保護することができるので信頼性が向上する。なお、上面視で下部電極32が上部電極31とオーバーラップしない部分、別の表現では、上面視で下部電極32が上部電極31から露出する部分、上面視で下部電極32が上部電極31からはみ出す部分を「オーバーラップしない部分」と記載してもよい。配線31fは絶縁膜206aの上を通過して、上部電極31と接続されている。従って、配線31fは絶縁膜206aに乗り上げる所に設けられた段差ST4を有する。 A configuration of the contact portion 501d shown in FIG. 13D will be described. In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1. In order to connect the wiring 31f to the upper electrode 31, the insulating film 206a fills the gap G1. In FIG. 13D, the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved. It should be noted that the lower electrode 32 does not overlap the upper electrode 31 in a top view, in another expression, the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view. The portion may be described as “a portion that does not overlap”. The wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST4 provided on the insulating film 206a.
 図13Dに示すコンタクト部501dでは、配線31fはその端部に設けられた張り出しを有する。別の表現では、配線31fは全体としてH字形状を有する。ここで、上面視で絶縁膜206aの辺は弧形状を有しており、配線31fおよびその端部は絶縁膜206aの弧形状の辺の上を通る。 In the contact portion 501d shown in FIG. 13D, the wiring 31f has an overhang provided at the end thereof. In another expression, the wiring 31f has an H shape as a whole. Here, the side of the insulating film 206a has an arc shape in a top view, and the wiring 31f and its end portion pass over the arc-shaped side of the insulating film 206a.
 この構成により、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差を覆うことができるために配線31fが1方向からスパッタ等により成膜されたとしても、受光部404(上部電極2)の断線による焦電センサ素子の作製時の歩留まり低下を防ぐことができる。さらに、焦電センサ素子の動作時に受光部31(上部電極404)の断線する確率を軽減して長期信頼性を向上させることができる。なお、スパッタ等により成膜する際には用いる装置や基板の位置ずれなどに起因して、基板に対して特定の偏った方向から金属膜が堆積される事が起こり得る。しかし、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差ST4を覆うことができるためにこのような状況でも配線の信頼性低下を抑制できる。 With this configuration, since the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield during the production of the pyroelectric sensor element due to the disconnection of the electrode 2). Furthermore, it is possible to improve the long-term reliability by reducing the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element. Note that when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to a displacement of an apparatus used or the substrate. However, since the wiring 31f can cover the step ST4 of the insulating film 206a from a plurality of directions (a plurality of surfaces), a decrease in wiring reliability can be suppressed even in such a situation.
 図13Eに示すコンタクト部501d1の構成について説明する。図13Eに示すコンタクト部501d1では、図13Dに示すコンタクト部501dでの配線31fが図13Cに示すコンタクト部501cの配線31fのように上面視で辺SD2、Sd4を覆うコの字形状を有する。 A configuration of the contact portion 501d1 illustrated in FIG. 13E will be described. In the contact portion 501d1 shown in FIG. 13E, the wiring 31f in the contact portion 501d shown in FIG. 13D has a U-shape that covers the sides SD2 and Sd4 in a top view like the wiring 31f in the contact portion 501c shown in FIG. 13C.
 上述のように、受光部404は、上部電極31の上面で構成された上面404Aと、上面404Aに繋がる側面404Bとを有する(図11A、図13Aから図13D参照)。絶縁膜206aは受光部404の側面404Bの少なくとも一部と上面404Aの少なくとも一部とを覆う。絶縁膜206aは、受光部404より上方に位置してかつ上面視で複数の辺SD1~SD4を有する形状を有する部分206a1を有する。配線31fは、絶縁膜206aの部分206a1の複数の辺の2つ以上の辺SD2、SD4を覆う。 As described above, the light receiving unit 404 includes the upper surface 404A configured by the upper surface of the upper electrode 31 and the side surface 404B connected to the upper surface 404A (see FIGS. 11A and 13A to 13D). The insulating film 206a covers at least a part of the side surface 404B of the light receiving unit 404 and at least a part of the upper surface 404A. The insulating film 206a includes a portion 206a1 which is located above the light receiving portion 404 and has a shape having a plurality of sides SD1 to SD4 when viewed from above. The wiring 31f covers two or more sides SD2 and SD4 of the plurality of sides of the portion 206a1 of the insulating film 206a.
 絶縁膜206aの部分206a1は上面視で4つの辺SD1~SD4を有する矩形状を有する。辺SD1、SD3は互いに反対側に位置し、辺SD2、SD4は互いに反対側に位置する。 The portion 206a1 of the insulating film 206a has a rectangular shape having four sides SD1 to SD4 in a top view. The sides SD1 and SD3 are located on opposite sides, and the sides SD2 and SD4 are located on opposite sides.
 配線31fは、絶縁膜206aの部分を覆いかつ上面視でH字形状の部分を有してもいてもよい(図13B参照)。 The wiring 31f may cover a portion of the insulating film 206a and have an H-shaped portion in a top view (see FIG. 13B).
 配線31fは、絶縁膜206aの部分206a1を覆いかつコの字形状の部分を有していてもよい(図13C参照)。 The wiring 31f may cover the portion 206a1 of the insulating film 206a and have a U-shaped portion (see FIG. 13C).
 下部電極32は、上面視で上部電極31から露出する部分(隙間G1)を有する。絶縁膜206aは下部電極32の上記部分(隙間G1)を覆う。 The lower electrode 32 has a portion (gap G1) exposed from the upper electrode 31 in a top view. The insulating film 206a covers the portion (gap G1) of the lower electrode 32.
 絶縁膜206aは受光部404を囲むように下部電極32の上記部分(隙間G1)を覆っていてもよい(図13A参照)。 The insulating film 206a may cover the portion (gap G1) of the lower electrode 32 so as to surround the light receiving portion 404 (see FIG. 13A).
 絶縁膜206aの部分206aの複数の辺SD1~SD4のうちの1つ以上の辺SD2、Sd4は、上面視で弧形状を有していてもよい(図13D参照)。 One or more sides SD2 and Sd4 of the plurality of sides SD1 to SD4 of the portion 206a of the insulating film 206a may have an arc shape in a top view (see FIG. 13D).
 図13Fと図13Gは、図11Aに示す領域Pの拡大図である。領域Pには、配線31fと上部電極31(受光部404)とが接して互いに接続されているコンタクト部が設けられている。 13F and 13G are enlarged views of the region P shown in FIG. 11A. In the region P, a contact portion in which the wiring 31f and the upper electrode 31 (light receiving portion 404) are in contact with each other is provided.
 図13Fに示すコンタクト部501eの構成について説明する。焦電センサ素子201b1の上面視において、下部電極32は上部電極31から隙間G1だけ露出している。配線31fを上部電極31と接続する為に、絶縁膜206aが隙間G1を埋めている。なお、図13Fでは絶縁膜206aは配線31fの付近のみに設けられているがこれに限らない。すなわち、絶縁膜206aは上部電極31(受光部404)の保護を兼ねるために上部電極31(受光部404)の外周全体を覆っていてもよい。これにより、強誘電体膜20を塵埃、水分から保護することができるので信頼性が向上する。なお、上面視で下部電極32が上部電極31とオーバーラップしない部分、別の表現では、上面視で下部電極32が上部電極31から露出する部分、上面視で下部電極32が上部電極31からはみ出す部分を「オーバーラップしない部分」と記載してもよい。配線31fは絶縁膜206aの上を通過して、上部電極31と接続されている。従って、配線31fは絶縁膜206aに乗り上げる所に設けられた段差ST5を有する。 A configuration of the contact portion 501e shown in FIG. 13F will be described. In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1. In order to connect the wiring 31f to the upper electrode 31, the insulating film 206a fills the gap G1. In FIG. 13F, the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved. It should be noted that the lower electrode 32 does not overlap the upper electrode 31 in a top view, in another expression, the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view. The portion may be described as “a portion that does not overlap”. The wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST5 provided on the insulating film 206a.
 図13Fに示すコンタクト部501eでは、絶縁膜206aが凸状の部分を有する。配線31fはこの凸状の部分の上を通る。 In the contact portion 501e shown in FIG. 13F, the insulating film 206a has a convex portion. The wiring 31f passes over the convex portion.
 この構成により、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差を覆うことができるために配線31fが1方向からスパッタ等により成膜されたとしても、受光部404(上部電極31)の断線による焦電センサ素子の作製時の歩留まり低下を防ぐことができる。さらに、焦電センサ素子動作時に受光部31(上部電極404)の断線する確率を軽減して長期信頼性を向上させることができる。なお、スパッタ等により成膜する際には用いる装置や基板の位置ずれなどに起因して、基板に対して特定の偏った方向から金属膜が堆積される事が起こり得るが、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差を覆うことができるためにこのような状況でも配線の信頼性低下を抑制できる。 With this configuration, since the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield when the pyroelectric sensor element is produced due to the disconnection of the electrode 31). Furthermore, it is possible to improve the long-term reliability by reducing the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element. Note that, when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to an apparatus used or a positional deviation of the substrate. Since the step of the insulating film 206a can be covered from a plurality of directions (a plurality of surfaces), a decrease in the reliability of the wiring can be suppressed even in such a situation.
 図13Gに示すコンタクト部501fの構成について説明する。焦電センサ素子201b1の上面視において、下部電極32は上部電極31から隙間G1だけ露出している。配線31fを上部電極31と接続する為に、絶縁膜206aが隙間G1を埋めている。なお、図13Gでは絶縁膜206aは配線31fの付近のみに設けられているがこれに限らない。すなわち、絶縁膜206aは上部電極31(受光部404)の保護を兼ねるために上部電極31(受光部404)の外周全体を覆っていてもよい。これにより、強誘電体膜20を塵埃、水分から保護することができるので信頼性が向上する。なお、上面視で下部電極32が上部電極31とオーバーラップしない部分、別の表現では、上面視で下部電極32が上部電極31から露出する部分、上面視で下部電極32が上部電極31からはみ出す部分を「オーバーラップしない部分」と記載してもよい。配線31fは絶縁膜206aの上を通過して、上部電極31と接続されている。従って、配線31fは絶縁膜206aに乗り上げる所において段差ST6を有する。 A configuration of the contact portion 501f shown in FIG. 13G will be described. In the top view of the pyroelectric sensor element 201b1, the lower electrode 32 is exposed from the upper electrode 31 by a gap G1. In order to connect the wiring 31f to the upper electrode 31, the insulating film 206a fills the gap G1. In FIG. 13G, the insulating film 206a is provided only in the vicinity of the wiring 31f, but this is not restrictive. That is, the insulating film 206a may cover the entire outer periphery of the upper electrode 31 (light receiving portion 404) in order to also protect the upper electrode 31 (light receiving portion 404). Thereby, since the ferroelectric film 20 can be protected from dust and moisture, the reliability is improved. It should be noted that the lower electrode 32 does not overlap the upper electrode 31 in a top view, in another expression, the lower electrode 32 is exposed from the upper electrode 31 in a top view, and the lower electrode 32 protrudes from the upper electrode 31 in a top view. The portion may be described as “a portion that does not overlap”. The wiring 31f passes over the insulating film 206a and is connected to the upper electrode 31. Accordingly, the wiring 31f has a step ST6 where it runs over the insulating film 206a.
 図13Gに示すコンタクト部501fでは、絶縁膜206aが上面視で6角形状を有する。配線31fはこの6角形の頂点の上を通る。 In the contact portion 501f shown in FIG. 13G, the insulating film 206a has a hexagonal shape in a top view. The wiring 31f passes over the hexagonal apex.
 この構成により、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差を覆うことができるために配線31fが1方向からスパッタ等により成膜されたとしても、受光部404(上部電極31の断線による焦電センサ素子の作製時の歩留まり低下を防ぐことができる。さらに、焦電センサ素子の動作時に受光部31(上部電極404)の断線する確率を軽減して長期信頼性を向上させることができる。なお、スパッタ等により成膜する際には用いる装置や基板の位置ずれなどに起因して、基板に対して特定の偏った方向から金属膜が堆積される事が起こり得るが、配線31fは、複数の方向(複数の面)から絶縁膜206aの段差ST6を覆うことができるためにこのような状況でも配線の信頼性低下を抑制できる。 With this configuration, since the wiring 31f can cover the steps of the insulating film 206a from a plurality of directions (a plurality of surfaces), even if the wiring 31f is formed by sputtering or the like from one direction, the light receiving portion 404 (upper part) It is possible to prevent a decrease in yield during fabrication of the pyroelectric sensor element due to disconnection of the electrode 31. Further, the probability of disconnection of the light receiving unit 31 (upper electrode 404) during operation of the pyroelectric sensor element is reduced, thereby improving long-term reliability. Note that, when a film is formed by sputtering or the like, a metal film may be deposited from a specific biased direction with respect to the substrate due to misalignment of an apparatus used or the substrate. However, since the wiring 31f can cover the step ST6 of the insulating film 206a from a plurality of directions (a plurality of surfaces), a decrease in the reliability of the wiring can be suppressed even in such a situation.
 図14Aは、実施の形態におけるガスセンサ300aの模式断面図である。 FIG. 14A is a schematic cross-sectional view of a gas sensor 300a in the embodiment.
 ガスセンサ300aは、焦電センサ200と、ガスの温度を検出する温度検出部であるサーミスタ302と、光源304と、回路基板306とを備える。回路基板306は、光源304の点灯制御、焦電センサ200からの検出信号、およびサーミスタ302からの検出信号に対して所定の処理を行う。焦電センサ200およびサーミスタ302は、回路基板306の一方の面上に設けられる。 The gas sensor 300a includes a pyroelectric sensor 200, a thermistor 302 that is a temperature detection unit that detects the temperature of the gas, a light source 304, and a circuit board 306. The circuit board 306 performs predetermined processing on the lighting control of the light source 304, the detection signal from the pyroelectric sensor 200, and the detection signal from the thermistor 302. The pyroelectric sensor 200 and the thermistor 302 are provided on one surface of the circuit board 306.
 光源304は、焦電センサ200と所定の距離だけ離隔した位置に設けられる。光源304と焦電センサ200との間には光路310が設けられる。光源304は、焦電センサ200に向けて赤外線を放射する。光源304は、たとえば、フィラメントランプ、ミニチュアランプやLED等の赤外線を放射する光源である。光源304は、回路基板306に固定された支持部材308によって保持される。光源304は、所定の周期で点滅するように制御される。 The light source 304 is provided at a position separated from the pyroelectric sensor 200 by a predetermined distance. An optical path 310 is provided between the light source 304 and the pyroelectric sensor 200. The light source 304 emits infrared rays toward the pyroelectric sensor 200. The light source 304 is, for example, a light source that emits infrared rays, such as a filament lamp, a miniature lamp, or an LED. The light source 304 is held by a support member 308 fixed to the circuit board 306. The light source 304 is controlled to blink at a predetermined cycle.
 支持部材308の断面は、光路310から離れる方向に凹む半楕円形状を有する。半楕円形状の内側は鏡面が形成される。すなわち、支持部材308は、楕円ミラーである。光源304は、支持部材308の半楕円形状の焦点に設けられる。そのため、光源304から放射された赤外線は、光路310を通過して焦電センサ200に直接的に入射したり、あるいは、支持部材308に形成される鏡面を反射した後、光路310を通過して焦電センサ200に入射したりする。 The cross section of the support member 308 has a semi-elliptical shape that is recessed in a direction away from the optical path 310. A mirror surface is formed inside the semi-elliptical shape. That is, the support member 308 is an elliptical mirror. The light source 304 is provided at the semi-elliptical focus of the support member 308. Therefore, infrared light emitted from the light source 304 passes through the optical path 310 and directly enters the pyroelectric sensor 200, or reflects off a mirror surface formed on the support member 308 and then passes through the optical path 310. Or incident on the pyroelectric sensor 200.
 焦電センサ200の備えるレンズ200bが光学フィルタとしての機能を有する。別の表現では、レンズ200bは所定の波長帯の赤外線を通過するバンドパスフィルタである。所定の波長帯は、たとえば、二酸化炭素分子による吸収率の高い赤外線の波長である4.26μmの近傍を含む波長帯である。所定の波長帯は、濃度の検出対象が二酸化炭素以外の気体である場合には、濃度の検出対象となる気体の種類に応じた波長、すなわち、濃度の検出対象となる気体の吸収率が高い波長を中心とした波長帯に選択される。すなわち、焦電センサ200は、光源304から放射された赤外線のうち所定の波長帯の赤外線を受光し、その波長帯の外の波長を有する光は受光しない。 The lens 200b included in the pyroelectric sensor 200 has a function as an optical filter. In other words, the lens 200b is a band-pass filter that passes infrared rays in a predetermined wavelength band. The predetermined wavelength band is, for example, a wavelength band including the vicinity of 4.26 μm, which is an infrared wavelength having a high absorption rate by carbon dioxide molecules. In the predetermined wavelength band, when the concentration detection target is a gas other than carbon dioxide, the wavelength according to the type of gas that is the concentration detection target, that is, the absorption rate of the gas that is the concentration detection target is high. A wavelength band centered on the wavelength is selected. That is, the pyroelectric sensor 200 receives infrared rays having a predetermined wavelength band among infrared rays emitted from the light source 304 and does not receive light having a wavelength outside the wavelength band.
 サーミスタ302は、焦電センサ200の周辺に設けられ、回路基板306に固定される。サーミスタ302においては、回路基板306から電圧が印加されることにより定電流が流れ、定電流が流れたときに生じる電圧が出力電圧として回路基板306において検出される。 The thermistor 302 is provided around the pyroelectric sensor 200 and is fixed to the circuit board 306. In the thermistor 302, a constant current flows when a voltage is applied from the circuit board 306, and a voltage generated when the constant current flows is detected in the circuit board 306 as an output voltage.
 カバー312は、焦電センサ200、サーミスタ302などを覆うように設けられ、回路基板306に固定される。カバー312には、カバー312の外部からガスを取り入れたり、カバー312の内部のガスを排出したりするための取入口314が設けられる。取入口314には、エアフィルターが設けられる。 The cover 312 is provided so as to cover the pyroelectric sensor 200, the thermistor 302, and the like, and is fixed to the circuit board 306. The cover 312 is provided with an inlet 314 for taking in gas from the outside of the cover 312 and discharging gas inside the cover 312. The intake port 314 is provided with an air filter.
 ガスセンサ300aによる二酸化炭素の濃度の検出は、取入口314からカバー312の内部に気体が取り入れられた状態で行われる。光源304から焦電センサ200に向けて赤外線が放射されると、放射された赤外線は、焦電センサ200において受光される。焦電センサ200は、赤外線の受光に応じて電圧を出力する。このとき、出力される電圧は、光路310における二酸化炭素の濃度によって異なる。これは、光源304から放射される赤外線が光路310上の二酸化炭素により吸収されるため、二酸化炭素の濃度により、光源304から焦電センサ200に到達する赤外線の量も変化するためである。 The detection of the concentration of carbon dioxide by the gas sensor 300 a is performed in a state where gas is taken into the cover 312 from the intake port 314. When infrared rays are emitted from the light source 304 toward the pyroelectric sensor 200, the emitted infrared rays are received by the pyroelectric sensor 200. The pyroelectric sensor 200 outputs a voltage in response to infrared light reception. At this time, the output voltage varies depending on the concentration of carbon dioxide in the optical path 310. This is because the infrared ray radiated from the light source 304 is absorbed by the carbon dioxide on the optical path 310, so that the amount of infrared ray reaching the pyroelectric sensor 200 from the light source 304 also changes depending on the concentration of carbon dioxide.
 レンズ200bは、二酸化炭素の吸収率が高い波長の赤外線を通過させるものであるため、焦電センサ200の出力から二酸化炭素の濃度に換算することが可能となる。 Since the lens 200b transmits infrared rays having a wavelength with a high carbon dioxide absorption rate, the output from the pyroelectric sensor 200 can be converted into the concentration of carbon dioxide.
 図12Bは実施の形態における別のガスセンサ300bの模式断面図である。ガスセンサ300bでは焦電センサ200として焦電センサ素子201c1~201c3、201dを用いている。これにより、ガスセンサ300bはパッケージ200a、レンズ200bを備えていない。 FIG. 12B is a schematic cross-sectional view of another gas sensor 300b according to the embodiment. In the gas sensor 300b, pyroelectric sensor elements 201c1 to 201c3 and 201d are used as the pyroelectric sensor 200. Thus, the gas sensor 300b does not include the package 200a and the lens 200b.
 なお、本実施の形態における「膜」とは、センサあるいはセンサ素子の断面において、層状の構造として観察されるものが「膜」である。 The “film” in the present embodiment is a “film” that is observed as a layered structure in the cross section of the sensor or sensor element.
 なお、いずれの焦電センサにおいても、駆動電極およびその下の強誘電体層、下部電極は必須ではない。すなわち、いずれの焦電センサも可動部を駆動させる走査型である必要はない。 In any pyroelectric sensor, the drive electrode, the ferroelectric layer below it, and the lower electrode are not essential. That is, none of the pyroelectric sensors needs to be a scanning type that drives the movable part.
 なお、いずれのセンサにおいても、検出部分のPZTがエピタキシャル膜である強誘電体膜20dであり、駆動部分の膜が配向性を有する強誘電体膜20bであることだけで効果を奏するものであり、従って、検出部分のエピタキシャル膜である強誘電体膜20dは、図1に示す構成に限定されない。 In any sensor, the effect is obtained only when the PZT in the detection portion is the ferroelectric film 20d which is an epitaxial film and the film in the driving portion is the ferroelectric film 20b having orientation. Therefore, the ferroelectric film 20d which is the epitaxial film of the detection portion is not limited to the configuration shown in FIG.
 なお、本実施の形態の強誘電体膜を用いた構造体10を用いたジャイロセンサや焦電センサなどのセンサの特徴を次の様に記載することもできる。そのセンサは、基板50と、基板50に設けられる下部電極32と、下部電極32に設けられる強誘電体膜20と、強誘電体膜20に設けられる上部電極31と、を備える。ここで、上部電極31は、駆動電極31a、31bと、検出電極31c、31dとを有する。基板50からの駆動電極31a、31bまでの距離すなわち、図6Cに示す直線L0、L1の間の距離は、基板50からの検出電極31c、31dまでの距離すなわち図6Cに示す直線L0、L2の間の距離よりも小さい。 Note that the characteristics of a sensor such as a gyro sensor or a pyroelectric sensor using the structure 10 using the ferroelectric film of the present embodiment can also be described as follows. The sensor includes a substrate 50, a lower electrode 32 provided on the substrate 50, a ferroelectric film 20 provided on the lower electrode 32, and an upper electrode 31 provided on the ferroelectric film 20. Here, the upper electrode 31 includes drive electrodes 31a and 31b and detection electrodes 31c and 31d. The distance from the substrate 50 to the drive electrodes 31a and 31b, that is, the distance between the straight lines L0 and L1 shown in FIG. 6C is the distance from the substrate 50 to the detection electrodes 31c and 31d, that is, the straight lines L0 and L2 shown in FIG. Less than the distance between.
 なお、構造体10は、基板50と、中間膜40と、下部電極32と、強誘電体膜20と、上部電極31とを備えるがこれに限らない。強誘電体膜の代わりに例えば、イオン伝導膜、熱電変換膜、磁性膜、半導体膜などの特性を持つ機能膜を用いることで、それぞれの膜の機能を高性能化する事ができる。すなわち本実施の形態に係る構造体は、基板50と、中間膜40と、下部電極32とを備える。この構造体は、例えば、配向性を有する下部電極32を触媒として用いることができる。 The structure 10 includes the substrate 50, the intermediate film 40, the lower electrode 32, the ferroelectric film 20, and the upper electrode 31, but is not limited thereto. By using a functional film having characteristics such as an ion conductive film, a thermoelectric conversion film, a magnetic film, and a semiconductor film instead of the ferroelectric film, the function of each film can be improved. That is, the structure according to the present embodiment includes the substrate 50, the intermediate film 40, and the lower electrode 32. In this structure, for example, the lower electrode 32 having orientation can be used as a catalyst.
 なお、いずれの焦電センサ素子の強誘電体膜20は、PZTなどからなる圧電膜を用いてもよい。 Note that the ferroelectric film 20 of any pyroelectric sensor element may be a piezoelectric film made of PZT or the like.
 なお、1つの終電センサ素子のメンブレン408に、図11Cから図11Hに示すさまざまな形状のうちの複数の形状を有する貫通孔402が設けられていてもよい。 In addition, the through-hole 402 having a plurality of shapes among various shapes shown in FIGS. 11C to 11H may be provided in the membrane 408 of one final power sensor element.
 なお、全ての図面において、説明に必要の無い構成は省略されることがある。 In all the drawings, configurations not necessary for explanation may be omitted.
 実施の形態において、「上面」「下面」「上方」等の方向を示す用語は焦電センサ素子の構成部材の相対的な位置関係で飲み決まる相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。 In the embodiment, terms indicating directions such as “upper surface”, “lower surface”, and “upward” indicate relative directions determined by the relative positional relationship of the constituent members of the pyroelectric sensor element, and are absolute such as the vertical direction. It does not indicate a correct direction.
 本発明の焦電センサ素子及びこれを用いた焦電センサは、精度や信頼性を向上できるので、電子機器用や車両制御用として有用である。 Since the pyroelectric sensor element of the present invention and the pyroelectric sensor using the same can improve accuracy and reliability, they are useful for electronic devices and vehicle control.
10  構造体
10b  構造体
10c  構造体
20  強誘電体膜
20d  強誘電体膜
20b  強誘電体膜
31  上部電極
31a,31b  駆動電極
31c,31d  検出電極
31e  コンタクト部
31f  配線
31g1,31g2  電極
32,32d  下部電極
40  中間膜
50  基板
50b1  シリコン膜(Si膜)
50b2  シリコン酸化膜(SiOx膜)
50b3  シリコン窒化膜(SiN膜)
50b4  シリコン酸化膜(SiOx膜)
52  基板
54  金属膜
60  可動部
100  ジャイロセンサ
101  センサ素子
100a  回路基板
100b  パッケージ
100c  蓋
110  基部
120,130  アーム
200  焦電センサ
200a  パッケージ
200b  レンズ
201,201a,201b1,201b2,201c1~201c3,201d,201e,201f  焦電センサ素子
206a  絶縁膜
206b  絶縁膜
208  キャビティ
210  積層膜
210a  膜
210b  膜
210c  膜
210d  膜
212  凹部
300a,300b  ガスセンサ
302  サーミスタ
304  光源
306  回路基板
308  支持部材
310  光路
312  カバー
314  取入口
402  貫通孔
404  受光部
406  フレーム
408  メンブレン
501a~501f  コンタクト部
DESCRIPTION OF SYMBOLS 10 Structure 10b Structure 10c Structure 20 Ferroelectric film 20d Ferroelectric film 20b Ferroelectric film 31 Upper electrode 31a, 31b Drive electrode 31c, 31d Detection electrode 31e Contact part 31f Wiring 31g1, 31g2 Electrode 32, 32d Lower part Electrode 40 Intermediate film 50 Substrate 50b1 Silicon film (Si film)
50b2 Silicon oxide film (SiOx film)
50b3 Silicon nitride film (SiN film)
50b4 Silicon oxide film (SiOx film)
52 Substrate 54 Metal film 60 Movable part 100 Gyro sensor 101 Sensor element 100a Circuit board 100b Package 100c Lid 110 Base part 120, 130 Arm 200 Pyroelectric sensor 200a Package 200b Lens 201, 201a, 201b1, 201b2, 201c1 to 201c3, 201d, 201e , 201f Pyroelectric sensor element 206a Insulating film 206b Insulating film 208 Cavity 210 Laminated film 210a Film 210b Film 210c Film 210d Film 212 Recess 300a, 300b Gas sensor 302 Thermistor 304 Light source 306 Circuit board 308 Support member 310 Optical path 312 Cover 314 Intake 402 Through Hole 404 Light receiving portion 406 Frame 408 Membrane 501a to 501f Contact portion

Claims (25)

  1. 第1の部分と、前記第1の部分より薄い第2の部分とを有する基板と、
    前記基板の上面に設けられて、下部電極を含みかつ前記下部電極の上面が露出する上面を有するメンブレンと、
    前記下部電極の前記上面に設けられた強誘電体膜と、
    前記強誘電体膜の上面に設けられた上部電極と、
    を備え、
    上面視で前記基板の前記第2の部分と重なる位置において前記メンブレンに前記メンブレンの下面から前記メンブレンの前記上面まで貫通する複数の貫通孔が設けられており、
    前記複数の貫通孔は、上面視で前記強誘電体膜を囲む環形状を有するベルト状領域に配置されている、焦電センサ素子。
    A substrate having a first portion and a second portion thinner than the first portion;
    A membrane provided on the upper surface of the substrate, including a lower electrode and having an upper surface from which the upper surface of the lower electrode is exposed;
    A ferroelectric film provided on the upper surface of the lower electrode;
    An upper electrode provided on the upper surface of the ferroelectric film;
    With
    The membrane is provided with a plurality of through holes penetrating from the lower surface of the membrane to the upper surface of the membrane at a position overlapping the second portion of the substrate in a top view,
    The pyroelectric sensor element, wherein the plurality of through holes are arranged in a belt-like region having a ring shape surrounding the ferroelectric film in a top view.
  2. 前記複数の貫通孔は、前記基板の中心を通り互いに直交する2つの軸に対して対称に設けられている、請求項1に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 1, wherein the plurality of through holes are provided symmetrically with respect to two axes that pass through the center of the substrate and are orthogonal to each other.
  3. 上面視で前記複数の貫通孔は、三角形状と台形状と円形状と楕円形状と菱形状のいずれかを有する、請求項1に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 1, wherein the plurality of through holes have a triangular shape, a trapezoidal shape, a circular shape, an elliptical shape, or a rhombus shape when viewed from above.
  4. 上面視で前記複数の貫通孔は、円形状と楕円形状と菱形状のいずれかを有し、千鳥格子状に配置されている、請求項1に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 1, wherein the plurality of through holes have a circular shape, an elliptical shape, or a rhombus shape in a top view, and are arranged in a staggered pattern.
  5. 上面視で前記複数の貫通孔は、第1の方向に延びる複数の列と、前記第1の方向と交差する第2の方向に延びる複数の行とを有するマトリクス形状に配置されており、
    前記複数の貫通孔は、前記複数の列のそれぞれの列に配列された複数の第1の貫通孔と、前記複数の列の上記それぞれの列に隣り合う対応する列に配列された複数の第2の貫通孔とを含み、
    前記第2の方向から見て、前記複数の第1の貫通孔の間の境界は前記複数の第2の貫通孔の間の境界からずれている、請求項1に記載の焦電センサ素子。
    When viewed from above, the plurality of through holes are arranged in a matrix shape having a plurality of columns extending in a first direction and a plurality of rows extending in a second direction intersecting the first direction,
    The plurality of through holes are a plurality of first through holes arranged in each of the plurality of rows and a plurality of first holes arranged in corresponding rows adjacent to the respective rows of the plurality of rows. Two through holes,
    2. The pyroelectric sensor element according to claim 1, wherein a boundary between the plurality of first through holes is shifted from a boundary between the plurality of second through holes when viewed from the second direction.
  6. 上面視で前記複数の貫通孔は、三角形状と台形状のいずれかを有し、第1の貫通孔群を成す複数の第1の貫通孔と、所定の点について前記第1の貫通孔群に対して対称に配置された第2の貫通孔群を成す複数の第2の貫通孔とを含む、請求項1に記載の焦電センサ素子。 When viewed from above, the plurality of through holes have either a triangular shape or a trapezoidal shape, the plurality of first through holes forming the first through hole group, and the first through hole group at a predetermined point. The pyroelectric sensor element according to claim 1, further comprising a plurality of second through holes forming a second through hole group arranged symmetrically with respect to each other.
  7. 前記強誘電体膜の幅は前記基板の前記第2の部分の幅の0.8倍以下である、請求項1に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 1, wherein a width of the ferroelectric film is 0.8 times or less of a width of the second portion of the substrate.
  8. 前記メンブレンは、前記第1のシリコン酸化膜と、シリコン窒化膜と、前記第1のシリコン酸化膜より前記強誘電体膜から離れている第2のシリコン酸化膜とを有する、請求項1に記載の焦電センサ素子。 2. The membrane according to claim 1, wherein the membrane includes the first silicon oxide film, a silicon nitride film, and a second silicon oxide film that is farther from the ferroelectric film than the first silicon oxide film. Pyroelectric sensor element.
  9. 前記メンブレンの厚みは前記強誘電体膜の厚みの0.57倍以下である、請求項8に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 8, wherein the thickness of the membrane is 0.57 times or less the thickness of the ferroelectric film.
  10. 前記基板の前記第1の部分は前記メンブレンの前記下面に接合しており、
    前記基板の前記上面には、前記メンブレンの前記下面と前記基板の前記第2の部分の上面とが面するキャビティが設けられている、請求項1に記載の焦電センサ素子。
    The first portion of the substrate is bonded to the lower surface of the membrane;
    The pyroelectric sensor element according to claim 1, wherein a cavity facing the lower surface of the membrane and an upper surface of the second portion of the substrate is provided on the upper surface of the substrate.
  11. 第1の部分と、前記第1の部分より薄い第2の部分とを有する基板と、
    前記基板の上面に設けられて、下部電極を含みかつ前記下部電極の上面が露出する上面を有するメンブレンと、
    前記下部電極の前記上面に設けられた強誘電体膜と、
    前記強誘電体膜の前記上面に設けられた上部電極と、
    を備え、
    上面視で前記基板の前記第2の部分と重なる位置において前記メンブレンに前記メンブレンの下面から前記メンブレンの前記上面まで貫通する複数の貫通孔が設けられており、
    上面視で前記複数の貫通孔は、三角形状と楕円形状と菱形状のいずれかであり、千鳥格子状に配置されている、焦電センサ素子。
    A substrate having a first portion and a second portion thinner than the first portion;
    A membrane provided on the upper surface of the substrate, including a lower electrode and having an upper surface from which the upper surface of the lower electrode is exposed;
    A ferroelectric film provided on the upper surface of the lower electrode;
    An upper electrode provided on the upper surface of the ferroelectric film;
    With
    The membrane is provided with a plurality of through holes penetrating from the lower surface of the membrane to the upper surface of the membrane at a position overlapping the second portion of the substrate in a top view,
    The pyroelectric sensor element in which the plurality of through holes are in a triangular shape, an elliptical shape, or a rhombus shape in a top view, and are arranged in a staggered pattern.
  12. 上面視で前記複数の貫通孔は、第1の方向に延びる複数の列と、前記第1の方向と交差する第2の方向に延びる複数の行とを有するマトリクス形状に配置されており、
    前記複数の貫通孔は、前記複数の列のそれぞれの列に配列された複数の第1の貫通孔と、前記複数の列の上記それぞれの列に隣り合う対応する列に配列された複数の第2の貫通孔とを含み、
    前記第2の方向から見て、前記複数の第1の貫通孔の間の境界は前記複数の第2の貫通孔の間の境界からずれている、請求項11に記載の焦電センサ素子。
    When viewed from above, the plurality of through holes are arranged in a matrix shape having a plurality of columns extending in a first direction and a plurality of rows extending in a second direction intersecting the first direction,
    The plurality of through holes are a plurality of first through holes arranged in each of the plurality of rows and a plurality of first holes arranged in corresponding rows adjacent to the respective rows of the plurality of rows. Two through holes,
    The pyroelectric sensor element according to claim 11, wherein a boundary between the plurality of first through holes is shifted from a boundary between the plurality of second through holes when viewed from the second direction.
  13. 前記複数の貫通孔は、上面視で前記強誘電体膜を囲む環形状を有するベルト状領域に配置されている、請求項11に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 11, wherein the plurality of through holes are arranged in a belt-shaped region having a ring shape surrounding the ferroelectric film in a top view.
  14. 前記強誘電体膜の幅は、前記第2の部分の幅の0.8倍以下である、請求項11に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 11, wherein a width of the ferroelectric film is equal to or less than 0.8 times a width of the second portion.
  15. 前記メンブレンは、前記第1のシリコン酸化膜と、シリコン窒化膜と、前記第1のシリコン酸化膜より前記強誘電体膜から離れている第2のシリコン酸化膜とを有する、請求項11に記載の焦電センサ素子。 12. The membrane according to claim 11, wherein the membrane includes the first silicon oxide film, a silicon nitride film, and a second silicon oxide film that is further away from the ferroelectric film than the first silicon oxide film. Pyroelectric sensor element.
  16. 前記メンブレンの厚みは前記強誘電体膜の厚みの0.57倍以下である、請求項15に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 15, wherein the thickness of the membrane is 0.57 times or less the thickness of the ferroelectric film.
  17. 前記基板の前記第1の部分は前記メンブレンの前記下面に接合しており、
    前記基板の前記上面には、前記メンブレンの前記下面と前記基板の前記第2の部分の上面とが面するキャビティが設けられている、請求項11から16のいずれか一項に記載の焦電センサ素子。
    The first portion of the substrate is bonded to the lower surface of the membrane;
    The pyroelectric device according to any one of claims 11 to 16, wherein a cavity facing the lower surface of the membrane and an upper surface of the second portion of the substrate is provided on the upper surface of the substrate. Sensor element.
  18. 第1の部分と、前記第1の部分より薄い第2の部分とを有する基板と、
    前記基板の上面に設けられて、下部電極を含みかつ前記下部電極の上面が露出する上面を有するメンブレンと、
    前記下部電極の前記上面に設けられた強誘電体膜と、
    前記強誘電体膜の上面に設けられた上部電極と、
    を備え、
    上面視で前記基板の前記第2の部分と重なる位置において前記メンブレンに前記メンブレンの下面から前記メンブレンの前記上面まで貫通する複数の貫通孔が設けられており、
    上面視で前記複数の貫通孔は三角形状と台形状のいずれかを有し、第1の貫通孔群を成す複数の第1の貫通孔と、所定の点について前記第1の貫通孔群に対して対称に配置された第2の貫通孔群を成す複数の第2の貫通孔とを含む、焦電センサ素子。
    A substrate having a first portion and a second portion thinner than the first portion;
    A membrane provided on the upper surface of the substrate, including a lower electrode and having an upper surface from which the upper surface of the lower electrode is exposed;
    A ferroelectric film provided on the upper surface of the lower electrode;
    An upper electrode provided on the upper surface of the ferroelectric film;
    With
    The membrane is provided with a plurality of through holes penetrating from the lower surface of the membrane to the upper surface of the membrane at a position overlapping the second portion of the substrate in a top view,
    When viewed from above, the plurality of through holes have either a triangular shape or a trapezoidal shape. The plurality of first through holes forming the first through hole group and the first through hole group with respect to a predetermined point. A pyroelectric sensor element including a plurality of second through holes forming a second through hole group arranged symmetrically with respect to each other.
  19. 前記複数の第1の貫通孔の先端が向いている方向は、前記複数の第2の貫通孔の先端が向いている方向と反対である、請求項18に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 18, wherein a direction in which tips of the plurality of first through holes are directed is opposite to a direction in which tips of the plurality of second through holes are directed.
  20. 前記複数の貫通孔は、上面視で前記強誘電体膜を囲む環形状を有するベルト状領域に配置されている、請求項18に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 18, wherein the plurality of through holes are arranged in a belt-like region having a ring shape surrounding the ferroelectric film in a top view.
  21. 前記強誘電体膜の幅は前記第2の部分の幅の0.8倍以下である、請求項18に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 18, wherein a width of the ferroelectric film is 0.8 times or less of a width of the second portion.
  22. 前記メンブレンは、前記第1のシリコン酸化膜と、シリコン窒化膜と、前記第1のシリコン酸化膜より前記強誘電体膜から離れている第2のシリコン酸化膜とを有する、請求項18に記載の焦電センサ素子。 19. The membrane according to claim 18, wherein the membrane includes the first silicon oxide film, a silicon nitride film, and a second silicon oxide film that is further away from the ferroelectric film than the first silicon oxide film. Pyroelectric sensor element.
  23. 前記メンブレンの厚みは前記強誘電体膜の厚みの0.57倍以下である、請求項22に記載の焦電センサ素子。 The pyroelectric sensor element according to claim 22, wherein the thickness of the membrane is 0.57 times or less the thickness of the ferroelectric film.
  24. 前記基板の前記第1の部分は前記メンブレンの前記下面に接合しており、
    前記基板の前記上面には、前記メンブレンの前記下面と前記基板の前記第2の部分の上面とが面するキャビティが設けられている、請求項18に記載の焦電センサ素子。
    The first portion of the substrate is bonded to the lower surface of the membrane;
    The pyroelectric sensor element according to claim 18, wherein a cavity facing the lower surface of the membrane and an upper surface of the second portion of the substrate is provided on the upper surface of the substrate.
  25. 請求項1から24のいずれか一項に記載の焦電センサ素子と、
    前記焦電センサ素子を収容するパッケージと、
    前記パッケージに設けられるレンズと、
    を備えた焦電センサ。
    Pyroelectric sensor element according to any one of claims 1 to 24;
    A package containing the pyroelectric sensor element;
    A lens provided in the package;
    Pyroelectric sensor with
PCT/JP2018/014195 2017-04-17 2018-04-03 Pyroelectric sensor element and pyroelectric sensor using same WO2018193824A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2017-081010 2017-04-17
JP2017081011 2017-04-17
JP2017081010 2017-04-17
JP2017-081011 2017-04-17
JP2017-103224 2017-05-25
JP2017103224 2017-05-25
JP2017-110578 2017-06-05
JP2017110578 2017-06-05
JP2017-117388 2017-06-15
JP2017117388 2017-06-15
JP2017137578 2017-07-14
JP2017-137578 2017-07-14

Publications (1)

Publication Number Publication Date
WO2018193824A1 true WO2018193824A1 (en) 2018-10-25

Family

ID=63855798

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/014196 WO2018193825A1 (en) 2017-04-17 2018-04-03 Pyroelectric sensor element and pyroelectric sensor using same
PCT/JP2018/014195 WO2018193824A1 (en) 2017-04-17 2018-04-03 Pyroelectric sensor element and pyroelectric sensor using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014196 WO2018193825A1 (en) 2017-04-17 2018-04-03 Pyroelectric sensor element and pyroelectric sensor using same

Country Status (1)

Country Link
WO (2) WO2018193825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521415A (en) * 2019-02-22 2022-04-07 ピレオス リミテッド How to create a micro system and a micro system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583058A (en) * 1992-09-17 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Infrared detection element array and method for fabricating the same
JP2011179953A (en) * 2010-03-01 2011-09-15 Rohm Co Ltd Infrared sensor
US20120068072A1 (en) * 2009-03-26 2012-03-22 Scott Freeborn Infrared light detector having high resolution
JP2014130056A (en) * 2012-12-28 2014-07-10 Panasonic Corp Infrared sensor
JP2014224810A (en) * 2013-04-24 2014-12-04 三菱電機株式会社 Electromagnetic wave sensor device
US20150179861A1 (en) * 2013-12-24 2015-06-25 Melexis Technologies Nv Etching of infrared sensor membrane
JP2015184151A (en) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 sensor
JP2015206595A (en) * 2014-04-17 2015-11-19 パナソニックIpマネジメント株式会社 Infrared detection element and infrared detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2847680B2 (en) * 1990-03-26 1999-01-20 株式会社村田製作所 Ceramic electronic component and method of manufacturing the same
JPH05283756A (en) * 1992-03-31 1993-10-29 Murata Mfg Co Ltd Ferroelectric thin film element
JP3574368B2 (en) * 1997-01-27 2004-10-06 三菱電機株式会社 Infrared solid-state imaging device
JP3533332B2 (en) * 1998-05-20 2004-05-31 Tdk株式会社 Electronic component manufacturing method and water treatment device
JP2005241457A (en) * 2004-02-26 2005-09-08 Hamamatsu Photonics Kk Infrared sensor, and manufacturing method therefor
JP2012026860A (en) * 2010-07-23 2012-02-09 Seiko Epson Corp Pyroelectric photodetector and electronic equipment
KR101861147B1 (en) * 2011-11-08 2018-05-28 삼성전자주식회사 Infrared detector
JP2013246021A (en) * 2012-05-25 2013-12-09 Seiko Epson Corp Thermal electromagnetic wave detection element, manufacturing method of thermal electromagnetic wave detection element, thermal electromagnetic wave detection device and electronic apparatus
JP2015094585A (en) * 2013-11-08 2015-05-18 パナソニックIpマネジメント株式会社 Sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583058A (en) * 1992-09-17 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Infrared detection element array and method for fabricating the same
US20120068072A1 (en) * 2009-03-26 2012-03-22 Scott Freeborn Infrared light detector having high resolution
JP2011179953A (en) * 2010-03-01 2011-09-15 Rohm Co Ltd Infrared sensor
JP2014130056A (en) * 2012-12-28 2014-07-10 Panasonic Corp Infrared sensor
JP2014224810A (en) * 2013-04-24 2014-12-04 三菱電機株式会社 Electromagnetic wave sensor device
US20150179861A1 (en) * 2013-12-24 2015-06-25 Melexis Technologies Nv Etching of infrared sensor membrane
JP2015184151A (en) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 sensor
JP2015206595A (en) * 2014-04-17 2015-11-19 パナソニックIpマネジメント株式会社 Infrared detection element and infrared detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521415A (en) * 2019-02-22 2022-04-07 ピレオス リミテッド How to create a micro system and a micro system
US11788895B2 (en) 2019-02-22 2023-10-17 Avago Technologies International Sales Pte. Limited Microsystem and method for making a microsystem

Also Published As

Publication number Publication date
WO2018193825A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US11623246B2 (en) Piezoelectric micromachined ultrasound transducer device with piezoelectric barrier layer
US5684302A (en) Pyrodetector element having a pyroelectric layer produced by oriented growth, and method for the fabrication of the element
US6240781B1 (en) Vibration gyro sensor
US7145285B2 (en) Piezoelectric element, fabrication method for the same, and inkjet head, inkjet recording apparatus and angular velocity sensor including the same
US8176781B2 (en) Multilayer piezoelectric thin film and method of manufacturing the same, angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric
US7263884B2 (en) Vibration type gyrosensor device
US8044557B2 (en) Piezoelectric device and its manufacturing method
CN106025058B (en) Ultrasonic sensor and method for manufacturing the same
KR20120139825A (en) Ferroelectric device
US10914638B2 (en) Pyroelectric sensor
US20150292949A1 (en) Infrared detecting device
JP2017117981A (en) Piezoelectric element, piezoelectric module, electronic device, and method of manufacturing piezoelectric element
WO2018193824A1 (en) Pyroelectric sensor element and pyroelectric sensor using same
JP3514207B2 (en) Ferroelectric thin film element and sensor, and method of manufacturing ferroelectric thin film element
JP3891190B2 (en) Piezoelectric element, piezoelectric device and angular velocity sensor
JP6690193B2 (en) Piezoelectric layer, piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
JP2012173234A (en) Pyroelectric type detector, pyroelectric type detection device, and electronic apparatus
JP6814950B2 (en) A structure using a ferroelectric film and a sensor using this structure
US9231182B2 (en) Angular velocity sensor
JP2016181840A (en) Ultrasonic sensor
JP6413070B2 (en) Infrared detector and infrared detector
US9423304B2 (en) Infrared ray detecting element and infrared ray detector including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP