WO2018193776A1 - Drone sharing service platform - Google Patents

Drone sharing service platform Download PDF

Info

Publication number
WO2018193776A1
WO2018193776A1 PCT/JP2018/010665 JP2018010665W WO2018193776A1 WO 2018193776 A1 WO2018193776 A1 WO 2018193776A1 JP 2018010665 W JP2018010665 W JP 2018010665W WO 2018193776 A1 WO2018193776 A1 WO 2018193776A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
service
providing system
service providing
thru
Prior art date
Application number
PCT/JP2018/010665
Other languages
French (fr)
Japanese (ja)
Inventor
木村 潔
田中 伸一
弘 石原
武伸 千葉
斎藤 誠
佑太 三輪
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2018193776A1 publication Critical patent/WO2018193776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/20Transport or storage specially adapted for UAVs with arrangements for servicing the UAV
    • B64U80/25Transport or storage specially adapted for UAVs with arrangements for servicing the UAV for recharging batteries; for refuelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/31Supply or distribution of electrical power generated by photovoltaics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems

Definitions

  • the present invention relates to a service providing system that constitutes a platform for providing a drone sharing service using a three-dimensional network of fifth generation communication.
  • LTE-AdvancedPro which is an extension of 3GPP LTE (Long Term Evolution) -Advanced
  • Non-Patent Document 1 which is a communication standard for mobile communication systems
  • Non-Patent Document 2 a communication standard for mobile communication systems
  • LTE-AdvancedPro specifications for providing communication to devices for recent IoT (Internet of Things) have been formulated.
  • IoT Internet of Things
  • the fifth generation mobile that supports simultaneous connection and low delay to many terminal devices (also referred to as “UE (user equipment)”, “mobile station”, “communication terminal”) such as devices for IoT. Communication has been studied (for example, see Non-Patent Document 3).
  • the propagation delay of wireless communication with a terminal device including a device for IoT is low, can be simultaneously connected to a large number of terminal devices, can be connected at high speed, and has a system capacity per unit area.
  • a terminal device that can fly such as a drone.
  • a service providing system is a service providing system that provides a service using one or a plurality of terminal devices capable of wireless communication, and includes a wireless relay station that relays wireless communication with the terminal device. And a server device that communicates with the terminal device via a wireless relay station of the wireless relay device.
  • the radio relay station is located in a floating airspace having an altitude of 100 km or less by autonomous control or external control so as to form a three-dimensional cell in a predetermined cell formation target airspace between the ground and the sea surface. It is provided in the levitation body controlled as described above.
  • the terminal device is controlled to be positioned in the three-dimensional cell by autonomous control or external control.
  • the server device may be incorporated in the wireless relay device.
  • the terminal device may include a terminal device including an unmanned or manned flying body that has a rechargeable battery and can fly the three-dimensional cell by autonomous control or external control.
  • the service providing system may further include a charging device that is provided at a place where the terminal device made of the flying object can take off and land and charges a battery of the terminal device that has landed at the place.
  • the service providing system further includes an airborne parking device that is controlled to be positioned in the three-dimensional cell by autonomous control or external control, and that allows the terminal device made of the flying object to take off and land. Also good.
  • an airborne charging device that is controlled to be positioned in the three-dimensional cell by autonomous control or external control and can supply power to the terminal device made of the flying object in contact or non-contact.
  • the server device may control the terminal device including the plurality of flying bodies so as to fly in cooperation with each other.
  • the server device may control at least one of a flight authorization of a terminal device formed of the flying object, a billing for flight, a flight route, a flight time zone, a flight area, and a flight route. .
  • the terminal device may include a communication unit that wirelessly communicates with other terminal devices located around the terminal device.
  • the communication unit may relay communication between the other terminal device and the radio relay station.
  • the terminal device may include a terminal device provided in a high-level portion of a structure extending from the ground or the sea toward the sky.
  • the terminal device may include a terminal device attached to at least one of a human body, a bird, and another animal.
  • the terminal device may include a terminal device mounted on at least one of an airplane, a helicopter, a paraglider, a parachute diver, an airship, a balloon, an ad balloon, and a kite.
  • the said terminal device may be provided with the power receiving means which receives the electric power feeding by the electromagnetic induction from a high voltage electric wire.
  • the terminal device includes a moving image, a still image, sound, temperature, humidity, illuminance, radio wave condition, fine particles, radiation, pollen, air current, field of view, weather, surrounding flying object, and the terminal.
  • Information acquisition means for acquiring at least one piece of position information of the apparatus may be provided, and the server apparatus may include means for receiving the acquisition information acquired by the terminal apparatus from the terminal apparatus.
  • the server device may further include means for analyzing information received from the terminal device.
  • the service using the terminal device includes delivery using the terminal device, acquisition and analysis of information using the terminal device, relay of communication using the terminal device, and the It may include at least one of an air flight performance using a plurality of terminal devices and a three-dimensional display.
  • the server device performs at least control of the terminal device and acquisition of information from the terminal device based on use application information from a user who uses a service using the terminal device. One may be performed, and the charging process for the user may be executed based on a service use result including at least one of control of the terminal device and acquisition of information from the terminal device.
  • the propagation delay of wireless communication with a terminal device including a device for IoT is low, can be simultaneously connected to a wide range of terminal devices, and high-speed communication is possible.
  • a flying terminal device such as a drone.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an example of HAPS used in the communication system of the embodiment.
  • FIG. 3 is a side view showing another example of HAPS used in the communication system of the embodiment.
  • FIG. 4 is a block diagram illustrating a configuration example of a HAPS wireless relay station according to the embodiment.
  • FIG. 5 is a block diagram illustrating another configuration example of the HAPS wireless relay station of the embodiment.
  • FIG. 6 is a block diagram illustrating still another configuration example of the HAPS wireless relay station according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an example of HAPS used in the communication system of the embodiment.
  • FIG. 3 is a side view showing another example of HAPS
  • FIG. 7 is an explanatory diagram illustrating an example of a state of remote energy beam power supply to the HAPS of the embodiment.
  • FIG. 8 is a block diagram illustrating a configuration example of the remote energy beam power receiving unit of the HAPS according to the embodiment.
  • FIG. 9 is an explanatory diagram illustrating an example of a communication system that provides a drone sharing service using the three-dimensional network according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to an embodiment of the present invention.
  • the communication system according to the present embodiment is a fifth generation that supports simultaneous connection to a large number of terminal devices (also referred to as “mobile station”, “mobile device”, or “user equipment (UE)”), low delay, and the like. Suitable for realizing a three-dimensional network for mobile communications.
  • the mobile communication standards applicable to the communication system, radio relay station, base station, repeater, and terminal device disclosed in this specification are the fifth generation mobile communication standards and the fifth generation and later. Includes standards for next generation mobile communications.
  • the communication system can provide a later-described drone sharing service in which one or a plurality of drones incorporating terminal devices are shared by a plurality of users.
  • the drone may be unmanned or manned.
  • An unmanned drone is also called UAV (Unmanned Aerial Vehicle).
  • the communication system includes high altitude platform stations (HAPS) (also referred to as “high altitude pseudo satellites”) 10 and 20 as a plurality of radio relay apparatuses, and a cell formation target airspace 40 of a predetermined altitude. Then, three-dimensional cells (three-dimensional areas) 41 and 42 as shown by hatching areas in the figure are formed.
  • the HAPS 10 and 20 are controlled to float in a high altitude floating airspace (hereinafter also simply referred to as “airspace”) 50 from the ground or the sea surface by autonomous control or external control.
  • a radio relay station is mounted on a floating body (eg, solar plane, airship).
  • the airspace 50 where the HAPS 10 and 20 are located is, for example, a stratospheric airspace with an altitude of 11 km or more and 50 km or less.
  • the airspace 50 where the HAPS 10 and 20 are located may be an airspace in which the altitude where the weather conditions are relatively stable is in the range of 15 [km] or more and 25 [km] or less, and particularly the altitude is approximately 20 [km].
  • the airspace may be Hrsl and Hrsu in the figure indicate relative altitudes of the lower end and the upper end of the airspace 50 where the HAPSs 10 and 20 are located with respect to the ground (GL), respectively.
  • the cell formation target airspace 40 is a target airspace that forms a three-dimensional cell with one or a plurality of HAPS in the communication system of the present embodiment.
  • the cell formation target airspace 40 is a predetermined altitude range (for example, 50 [ m] to an altitude range of 1000 [m] or less.
  • Hcl and Hcu in the figure respectively indicate the relative altitudes of the lower end and the upper end of the cell formation target airspace 40 with respect to the ground (GL).
  • the cell formation target airspace 40 in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake.
  • the wireless relay stations of the HAPS 10 and 20 respectively form beams 100 and 200 for wireless communication with a terminal device that is a mobile station toward the ground.
  • the terminal device may be a communication terminal module incorporated in the drone 60 which is an aircraft such as a small-sized helicopter that can be remotely controlled, or may be a user terminal device used by the user in the airplane 65.
  • the regions through which the beams 100 and 200 pass in the cell formation target airspace 40 are three-dimensional cells 41 and 42.
  • the plurality of beams 100 and 200 adjacent to each other in the cell formation target airspace 40 may partially overlap.
  • the wireless relay stations of the HAPS 10 and 20 are connected to the core network of the mobile communication network 80 via a feeder station 70 that is a relay station installed on the ground or the sea.
  • Each of the HAPS 10 and 20 may autonomously control its own floating movement (flight) and processing at the radio relay station by executing a control program by a control unit configured by a computer or the like incorporated therein.
  • each of the HAPS 10 and 20 acquires its own current position information (for example, GPS position information), pre-stored position control information (for example, flight schedule information), position information of other HAPS located in the vicinity, etc. Based on this information, the levitating movement (flight) and the processing at the radio relay station may be autonomously controlled.
  • the floating movement (flight) of each of the HAPS 10 and 20 and the processing at the radio relay station may be controlled by a remote control device 85 of a communication operator provided in a communication center of the mobile communication network 80 or the like.
  • the HAPS 10, 20 is incorporated with a control communication terminal device (for example, a mobile communication module) so as to receive control information from the remote control device 85, and terminal identification information (for example, an IP address, a telephone number, etc.) may be assigned.
  • terminal identification information For example, an IP address, a telephone number, etc.
  • the MAC address of the communication interface may be used for identifying the control communication terminal device.
  • Each of the HAPSs 10 and 20 receives information on the levitation movement (flight) of itself or the surrounding HAPS, processing at the wireless relay station, observation data acquired by various sensors, etc. You may make it transmit to a transmission destination.
  • the remote control device 85 is constituted by a computer device, for example, and may also be used as a server device 86 used for providing
  • a region where the beams 100 and 200 of the HAPS 10 and 20 do not pass may occur.
  • a radial beam 300 is formed upward from the ground side or the sea side to form a three-dimensional cell 43 to form an ATG (Air To Ground) connection.
  • a base station (hereinafter referred to as “ATG station”) 30 may be provided.
  • the radio relay station of the HAPS 10 and 20 can be three-dimensionally arranged in the cell formation target airspace 40.
  • the beams 100 and 200 covering the entire upper end surface of the cell formation target airspace 40 may be formed so that the cells are formed throughout.
  • the three-dimensional cell formed by the HAPS 10 and 20 may be formed so as to reach the ground or the sea level so as to be able to communicate with a terminal device located on the ground or the sea.
  • FIG. 2 is a perspective view illustrating an example of the HAPS 10 used in the communication system according to the embodiment.
  • the HAPS 10 in FIG. 2 is a solar plane type HAPS.
  • a solar power generation panel (hereinafter referred to as a “solar panel”) 102 as a solar power generation unit having a solar power generation function on the upper surface is provided.
  • a plurality of motor-driven propellers 103 as a propulsion device for a bus power system are provided at one end edge in the short direction.
  • a pod 105 serving as a plurality of device accommodating portions in which mission devices are accommodated is connected to two places in the longitudinal direction of the lower surface of the main wing portion 101 via a plate-like connecting portion 104.
  • Each pod 105 accommodates a radio relay station 110 as a mission device and a battery 106.
  • wheels 107 used at the time of taking off and landing are provided on the lower surface side of each pod 105.
  • the electric power generated by the solar panel 102 is stored in the battery 106, the electric power supplied from the battery 106 drives the motor of the propeller 103 to rotate, and the wireless relay station 110 performs wireless relay processing.
  • the solar plane type HAPS 10 can be levitated by lift by performing, for example, turning flight or 8-shaped flight, and can be levitated so as to stay in a predetermined range in a horizontal direction at a predetermined altitude.
  • the solar plane type HAPS 10 can fly like a glider when the propeller 103 is not driven to rotate. For example, when the power of the battery 106 is surplus due to the power generation of the solar panel 102 at daytime or the like, the battery 106 rises to a high position, and when the solar panel 102 cannot generate power at night or the like, the power supply from the battery 106 to the motor is stopped and the glider is stopped. Can fly like.
  • FIG. 3 is a perspective view showing another example of the HAPS 20 used in the communication system of the embodiment.
  • the HAPS 20 in FIG. 3 is an unmanned airship type HAPS and has a large payload, so that a large-capacity battery can be mounted.
  • the HAPS 20 includes an airship body 201 filled with a gas such as helium gas for buoyancy, a motor-driven propeller 202 as a propulsion device for a bus power system, and a device storage unit 203 for storing mission devices.
  • a radio relay station 210 and a battery 204 are housed inside the device housing unit 203. With the electric power supplied from the battery 204, the motor of the propeller 202 is driven to rotate, and the wireless relay processing by the wireless relay station 210 is executed.
  • a solar panel having a solar power generation function may be provided on the top surface of the airship body 201 so that the electric power generated by the solar panel is stored in the battery 204.
  • FIG. 4 is a block diagram illustrating a configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • the wireless relay stations 110 and 210 in FIG. 4 are examples of repeater type wireless relay stations.
  • Each of the radio relay stations 110 and 210 includes a 3D cell (three-dimensional cell) forming antenna unit 111, a transmission / reception unit 112, a feed antenna unit 113, a transmission / reception unit 114, a repeater unit 115, a monitoring control unit 116, and a power supply unit 117. .
  • the 3D cell formation antenna unit 111 includes antennas that form the radial beams 100 and 200 toward the cell formation target airspace 40, and forms three-dimensional cells 41 and 42 that can communicate with the terminal device.
  • the transmission / reception unit 112 includes a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to a terminal device located in the three-dimensional cell 41 or 42 via the 3D cell forming antenna unit 111 or a terminal Receive radio signals from the device.
  • DUP DUPlexer
  • the feed antenna unit 113 includes a directional antenna for wireless communication with the ground or sea feeder station 70.
  • the transmission / reception unit 114 includes a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to the feeder station 70 and receives a radio signal from the feeder station 70 via the 3D cell forming antenna unit 111. To do.
  • DUP DUPlexer
  • the repeater unit 115 relays the signal of the transmission / reception unit 112 transmitted / received to / from the terminal device and the signal of the transmission / reception unit 114 transmitted / received to / from the feeder station 70.
  • the repeater unit 115 may have a frequency conversion function.
  • the monitoring control unit 116 is configured by, for example, a CPU and a memory, and monitors the operation processing status of each unit in the HAPS 10 and 20 and controls each unit by executing a program incorporated in advance.
  • the power supply unit 117 supplies the power output from the batteries 106 and 204 to each unit in the HAPS 10 and 20.
  • the power supply unit 117 may have a function of storing in the batteries 106 and 204 power generated by a solar power generation panel or the like or power supplied from the outside.
  • FIG. 5 is a block diagram illustrating another configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • the radio relay stations 110 and 210 in FIG. 5 are examples of base station type radio relay stations.
  • the same components as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.
  • Each of the radio relay stations 110 and 210 in FIG. 5 further includes a modem unit 118 and a base station processing unit 119 instead of the repeater unit 115.
  • the modem unit 118 performs, for example, a demodulation process and a decoding process on the reception signal received from the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114, and outputs the data signal to the base station processing unit 119 side. Is generated. Further, the modem unit 118 performs encoding processing and modulation processing on the data signal received from the base station processing unit 119 side, and transmits to the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114. Generate a signal.
  • the base station processing unit 119 has a function as e-NodeB that performs baseband processing based on, for example, a method compliant with the LTE / LTE-Advanced standard.
  • the base station processing unit 119 may perform processing by a method based on a standard for future mobile communication such as the fifth generation or the next generation after the fifth generation.
  • the base station processing unit 119 performs demodulation processing and decoding processing on the received signals received from the terminal devices located in the three-dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A data signal to be output to the modem unit 118 side is generated. In addition, the base station processing unit 119 performs encoding processing and modulation processing on the data signal received from the modem unit 118 side, and the 3D cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A transmission signal to be transmitted to the terminal device is generated.
  • FIG. 6 is a block diagram illustrating still another configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • the radio relay stations 110 and 210 in FIG. 6 are examples of high-function base station type radio relay stations having an edge computing function.
  • FIG. 6 the same components as those in FIGS. 4 and 5 are denoted by the same reference numerals, and description thereof is omitted.
  • Each of the radio relay stations 110 and 210 of FIG. 6 further includes an edge computing unit 120 in addition to the components of FIG.
  • the edge computing unit 120 is configured by a small computer, for example, and can execute various types of information processing related to wireless relaying in the wireless relay stations 110 and 210 of the HAPS 10 and 20 by executing a program incorporated in advance. it can.
  • the edge computing unit 120 determines the transmission destination of the data signal based on the data signal received from the terminal device located in the three-dimensional cell 41 or 42, and relays the communication based on the determination result. Executes the process of switching. More specifically, when the transmission destination of the data signal output from the base station processing unit 119 is a terminal device located in its own three-dimensional cell 41 or 42, the data signal is not passed to the modem unit 118. Then, it returns to the base station processing unit 119 and transmits it to the transmission destination terminal device located in its own three-dimensional cell 41, 42.
  • the transmission destination of the data signal output from the base station processing unit 119 is a terminal device residing in a cell other than its own three-dimensional cells 41 and 42
  • the data signal is passed to the modem unit 118.
  • the data is transmitted to the feeder station 70 and transmitted to the terminal device of the transmission destination located in another cell of the transmission destination via the mobile communication network 80.
  • the edge computing unit 120 may execute processing for analyzing information received from a large number of terminal devices located in the three-dimensional cells 41 and 42. This analysis result may be transmitted to a large number of terminal devices located in the three-dimensional cells 41 and 42, or may be transmitted to a server device of the mobile communication network 80 or the like.
  • the uplink and downlink duplex schemes for wireless communication with the terminal devices via the radio relay stations 110 and 210 are not limited to specific schemes. For example, even in a time division duplex (TDD) scheme Alternatively, a frequency division duplex (FDD) method may be used.
  • the access method of wireless communication with the terminal device via the wireless relay stations 110 and 210 is not limited to a specific method, for example, FDMA (Frequency Division Multiple Access) method, TDMA (Time Division Multiple Access) method, It may be a CDMA (Code Division Multiple Access) system or OFDMA (Orthogonal Frequency Division Multiple Access).
  • the wireless communication has functions such as diversity coding, transmission beamforming, and spatial division multiplexing (SDM), and by using multiple antennas simultaneously for both transmission and reception, MIMO (multi-input and multi-output) technology capable of increasing the transmission capacity of the network may be used.
  • the MIMO technology may be a SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device. Even in the MU-MIMO (Multi-User MIMO) technology in which signals are transmitted to different communication terminal devices at the same time and the same frequency, or a plurality of different base stations transmit signals to one terminal device at the same time and the same frequency. Good.
  • FIG. 7 is an explanatory diagram showing an example of a state of remote energy beam power supply to the HAPS (solar plane type) 11 capable of handling high latitudes.
  • the high-latitude HAPS 11 includes power receiving pods 108 at both ends in the longitudinal direction of the main wing 101. Inside the power receiving pod 108, a microwave power receiving unit 130 and a battery 106 as a remote energy beam power receiving unit are accommodated.
  • the microwave power receiving unit 130 is a high-power microwave beam 750 or a high-power microwave beam 750 transmitted from a microwave power supply station 75 as a power supply device on the ground or the sea or a power supply airship (charging airship) 25 as an air power supply device. 250 is received and converted into electric power and output. The electric power output from the microwave power reception unit 130 is stored in the battery 106.
  • the power supply airship 25 drifts by, for example, an air current, and sequentially supplies power to the stationary HAPS by transmitting a power supply microwave beam.
  • FIG. 8 is a block diagram illustrating a configuration example of the microwave power receiving unit 130 of the HAPS 11 capable of handling high latitudes.
  • the microwave power reception unit 130 includes a rectenna unit 131, a rectenna control unit 132, an output device 133, a pilot signal transmission antenna unit 134, and a beam direction control unit 135.
  • the rectenna unit 131 receives and rectifies the high-power feed microwave beam 750 or 250 transmitted from the ground or sea microwave feed station 75 or the power supply airship 25.
  • the rectenna control unit 132 controls power reception processing and rectification processing of the feeding microwave beam by the rectenna unit 131.
  • the output device 133 outputs the rectified power output from the rectenna unit 131 to the battery 106.
  • the pilot signal transmitting antenna unit 134 transmits a pilot signal beam including a laser beam or the like for guiding the feeding microwave beam to the microwave feeding station 75 or the feeding airship prior to receiving the feeding microwave beam 750 or 250. To 25.
  • the beam direction control unit 135 controls the beam direction of the pilot signal.
  • a drone sharing service also referred to as a DAAS (Drone as a Service)
  • a communication system platform
  • FIG. 9 is an explanatory diagram illustrating an example of a communication system that provides a drone sharing service using the three-dimensional network according to the embodiment.
  • the same parts as those in FIG. 9 are identical to FIG. 9 in FIG. 9, the same parts as those in FIG. 9, the same parts as those in FIG. 9, the same parts as those in FIG.
  • a user using the drone sharing service operates via a predetermined UI (user interface) incorporated in a communication terminal device 95 such as a computer device, and via the Internet 81 and the mobile communication network 80.
  • the server device 86 can be accessed to apply for the drone sharing service. Examples of users of the drone sharing service include a news agency, a local government, a surveying company, an event company, a delivery company, and an individual. The user may register the use of the drone sharing service with the server device in advance.
  • the drone 60 used for the drone sharing service of the embodiment is on standby at a drone parking lot provided on the ground or on the roof of the building 91, and a necessary type when receiving an application for use of the drone sharing service from a user. And a number of drones 60 take off from the drone parking.
  • the aircraft returns to the drone parking area and landers, and enters a standby state.
  • a drone parking lot provided on the ground or on the roof of the building 91 may be provided with a function of automatically repairing the drone 60 that has landed to provide an unmanned maintenance service.
  • a charging device (charging spot) 92 that charges the battery in the drone 60 may be provided in the drone parking area.
  • the charging device (charging spot) 92 may charge the drone battery in a non-contact manner using electromagnetic waves (for example, microwaves). In this case, the drone 60 can receive a charge without landing at the drone parking area. Further, the drone 60 may charge the battery using power feeding by electromagnetic induction from the high voltage electric wire 93 when flying near the high voltage electric wire 93 or hovering. By receiving such a charging service, the drone 60 can fly a long distance.
  • the drone 60 has a function of relaying communication between the HAPS 10 and 20 and other communication terminal devices (for example, user devices such as mobile phones and smartphones), and the drone sharing service uses the drone 60 to perform the HAPS 10, 20 may be a service that relays communication between 20 and another communication terminal device (for example, a user device such as a mobile phone or a smartphone).
  • other communication terminal devices for example, user devices such as mobile phones and smartphones
  • the drone sharing service uses the drone 60 to perform the HAPS 10
  • 20 may be a service that relays communication between 20 and another communication terminal device (for example, a user device such as a mobile phone or a smartphone).
  • the drone 60 may be a small size drone (micro drone).
  • a large number of drones are loaded on a vehicle such as a truck that is a ground-moving parking device or an airship that is an airborne parking device that can stay at a predetermined position in the 3D cell. You may carry to the service provision place in the lower ground or a three-dimensional cell collectively.
  • the drone sharing service includes, for example, a delivery service using the drone 60, a sensing service, a flight in which a plurality of drones are linked to each other (for example, a display of flight performance, a three-dimensional advertisement, etc.), a driverless single-seat taxi, etc. Can be mentioned.
  • the drone sharing service may be a service that lends the drone 60 to the user and allows the user to remotely control the drone within a certain range.
  • the server device 86 may perform air traffic control of the drone 60 that controls at least one of the flight authorization of the drone 60, the charging related to the flight, the flight route, the flight time zone, the flight area, and the flight route via the HAPS 10 and 20. Good.
  • the server device 86 has a function of obtaining data such as the state of the drone 60 and the position information through the HAPS 10 and 20 and supporting the operation of the drone 60, so that the drone 60 can be visually checked safely. You may make it possible to realize outside operation.
  • Sensing services include video, still image, sound, temperature, humidity, illuminance, radio wave condition, fine particles, radiation, pollen, airflow (direction and strength), visibility, weather, radar detection of surrounding flying objects, and This is a service for acquiring (including observation, measurement, imaging, and recording) at least one piece of position information of the terminal device. Such information acquisition may be performed by remote control from the server device 86 via the HAPS 10 or 20, and information such as observation data and measurement data may be transmitted from the drone 60 to the server device 86 by real-time transmission / reception. Good.
  • the sensing service may include a service for analyzing information such as observation data and measurement data received from the drone 60 by AI analysis processing, big data processing, or the like.
  • a service that complements the black box may be provided by collecting information on the state of the aircraft of a light aircraft or helicopter with an IoT device and transmitting the collected information to the server device via the HAPS 10 and 20.
  • the drone sharing service may be a countermeasure service in the event of a disaster or accident as follows.
  • a large amount of micro drone on a mother ship such as an airship or truck
  • move to the target area of the disaster site fly a large amount of micro drone from the target area, and encounter in large-scale disaster areas such as earthquakes, tsunamis, and landslides
  • large-scale disaster areas such as earthquakes, tsunamis, and landslides
  • a service for constructing a temporary temporary mobile communication area may be provided by using a wireless relay communication device installed in the drone.
  • a bracelet incorporating an IoT device as a terminal device with a function to detect biological information such as body temperature and heart rate is distributed to a large number of elderly people and care recipients.
  • a service for specifying the distribution of survivors may be provided.
  • the server device 86 once analyzes the disaster information from the data observed by a large number of drones skipped at the time of a disaster, and provides a service for sending a real-time disaster map and evacuation information from the drone 60 to a personal mobile terminal. May be.
  • the ground mobile communication network cell phone network
  • a drone 60 when a drone 60 is immediately blown to an evacuation site in the event of a disaster and information on the evacuation site is sucked up, an image of the evacuation site is taken to acquire various information, or the drone 60 holding necessary information is evacuated
  • the evacuees can land on the mobile terminal and suck up necessary information from the drone 60 with the mobile terminal, thereby providing a service for delivering necessary information.
  • public assistance such as the absence of staff at the evacuation site, and it can be used as a communication point with the site at that time.
  • Such services are used not only by local administrative staff, but also by many uses and users such as firefighting, police, first aid, news reporting, and infrastructure (electricity, gas, water, communication, transportation).
  • the drone 60 promptly visits the site and contacts the police station or fire station, etc., police monitoring and community monitoring (patrol from the sky. School from the sky. We can provide services for monitoring the surrounding area, guarding large-scale events, and preventing removal.
  • the drone sharing service is a service that estimates the flow situation of people and vehicles from the data (for example, images and videos) acquired by the drone 60 (for example, estimates by AI), and confirms and inspects the appearance of buildings, etc. It may be.
  • the server device 86 may execute a billing process for a user who uses the drone sharing service based on a service use result including at least one of control of the drone 60 and acquisition of information from the drone 60. .
  • the server device 86 performs a billing process for using the drone sharing service based on the flight distance or flight time of the drone 60 used by the user, the type of the drone sharing service used by the user, the time zone used, and the like. May be executed.
  • the drone sharing service provided using the drone 60 is a drone as a service (DAAS) that can receive drone services such as delivery, observation, sensing, and flight demonstrations when necessary users need it.
  • DAS drone as a service
  • it may be a drone sharing service for corporations.
  • the drone 60 is provided with a terminal device located in the three-dimensional cell of the HAPS 10 and 20, but the terminal device with which the HAPS 10 and 20 relays wireless communication can be It may be a terminal device provided in a high-rise part of a structure such as a skyscraper or a steel tower extending from above. In this case, for example, it is possible to provide a service that enables mobile communication to be performed via the HAPS 10 and 20 even in a high-rise part (super-high floor) of a structure such as a skyscraper or a steel tower.
  • the terminal device to which the HAPS 10 and 20 relay wireless communication may be a terminal device attached to at least one of a human body, a bird, and another animal.
  • an IoT device is attached to a foot of a wild bird, a wild bird, a harmful bird (crow, etc.), etc., and flight information of the wild bird is transmitted to the server device via the HAPS 10, 20, and the habitat, nest, etc.
  • a service may be provided to detect and take countermeasures.
  • the terminal device to which the HAPS 10, 20 relays wireless communication may be a terminal device mounted on at least one of an airplane, a helicopter, a paraglider, a parachute diver, an airship, a balloon, an ad balloon, and a kite.
  • information on the altitude of the parachute is measured by the IoT device, and the measured information is transmitted to the server device via the HAPS 10 and 20, and automatically at a predetermined altitude even if the user of the parachute loses a stroke.
  • a service for opening a parachute may be provided.
  • the cell formation target airspace 40 in a predetermined altitude range (for example, an altitude range of 50 [m] or more and 1000 [m] or less) on the ground or the sea surface.
  • Wide-area three-dimensional cells 41 and 42 can be formed, and communication between a plurality of terminal devices located in the three-dimensional cells 41 and 42 and the mobile communication network 80 can be relayed.
  • the terminal devices and mobile communication networks located in the three-dimensional cells 41 and 42 are located at a lower altitude (for example, the stratospheric altitude) than the artificial satellites, the terminal devices and mobile communication networks located in the three-dimensional cells 41 and 42
  • the propagation delay in wireless communication with 80 is smaller than that in the case of satellite communication via an artificial satellite.
  • the three-dimensional cells 41 and 42 can be formed and the propagation delay of the wireless communication is low, a three-dimensional network for fifth generation mobile communication having a low propagation delay of the wireless communication can be realized.
  • the propagation delay of wireless communication with a terminal device including a device for IoT in 5th generation mobile communication or the like is low, and can be simultaneously connected to a large number of terminal devices, and high-speed communication is possible.
  • various services using a terminal device capable of flying such as a drone can be provided.
  • drone sharing services including drone 60 air traffic control, flight route and flight time zone control, observation, flight authorization, billing, observation result data processing (eg, AI analysis processing, big data processing)
  • observation result data processing eg, AI analysis processing, big data processing
  • processing steps described in this specification and the components of the base station device in the radio relay station, feeder station, remote control device, terminal device (user device, mobile station, communication terminal) and base station of the radio relay device are as follows: Can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • entity eg, wireless relay station, feeder station, base station device, wireless relay station device, terminal device (user device, mobile station, communication terminal), remote control device, hard disk drive device, or optical disk
  • processing units used to implement the above steps and components in the drive device
  • ASIC application specific IC
  • DSP digital signal processor
  • DSPD digital signal processor
  • PLD Programmable logic device
  • FPGA field programmable gate array
  • processor controller, microcontroller, microprocessor, electronic device, designed to perform the functions described herein
  • Other electronic units Yuta, or it may be implemented in a combination thereof.
  • firmware and / or software implementation means such as processing units used to implement the above components may be programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.).
  • any computer / processor readable medium that specifically embodies firmware and / or software code is means such as a processing unit used to implement the steps and components described herein. May be used to implement
  • the firmware and / or software code may be stored in a memory, for example, in a control device, and executed by a computer or processor.
  • the memory may be implemented inside the computer or processor, or may be implemented outside the processor.
  • the firmware and / or software code is, for example, random access memory (RAM), read only memory (ROM), nonvolatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM) ), FLASH memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage, etc. Good.
  • the code may be executed by one or more computers or processors, and may cause the computers or processors to perform the functional aspects described herein.

Abstract

The present invention provides a service that uses a flyable terminal device such as a drone in a three-dimensionally formed network in which, in fifth-generation mobile communication and the like, the propagation delay of wireless communication with terminal devices including a device for IoT is low, simultaneous connection with a wide range of multiple terminal devices and high-speed communication are possible, and the system capacity per unit area is large. A service provision system for providing a service that uses one or more terminal devices is provided with: a wireless relay device having a wireless relay station for relaying wireless communication with the terminal device; and a server device for communicating with the terminal device via the wireless relay station of the wireless relay device. The wireless relay station is provided in a floating body that is controlled so as to be located in a floating airspace at an altitude of 100 [km] or less by autonomous control or control from outside such that a three-dimensional cell is formed in a predetermined cell formation target airspace between the wireless delay station and the ground or the sea surface. The terminal device is controlled so as to be located in the three-dimensional cell by autonomous control or control from outside.

Description

ドローンシェアリングサービス・プラットフォームDrone sharing service platform
 本発明は、第5世代通信の3次元化ネットワークを利用したドローンシェアリングサービスを提供するプラットフォームを構成するサービス提供システムに関するものである。 The present invention relates to a service providing system that constitutes a platform for providing a drone sharing service using a three-dimensional network of fifth generation communication.
 従来、移動通信システムの通信規格である3GPPのLTE(Long Term Evolution)-Advanced(非特許文献1参照)を発展させたLTE-AdvancedProと呼ばれる通信規格が知られている(非特許文献2参照)。このLTE-AdvancedProでは、近年のIoT(Internet of Things)向けデバイスへの通信を提供するための仕様が策定された。更に、IoT向けデバイス等の多数の端末装置(「UE(ユーザ装置)」、「移動局」、「通信端末」ともいう。)への同時接続や低遅延化などに対応する第5世代の移動通信が検討されている(例えば、非特許文献3参照)。 Conventionally, a communication standard called LTE-AdvancedPro, which is an extension of 3GPP LTE (Long Term Evolution) -Advanced (see Non-Patent Document 1), which is a communication standard for mobile communication systems, is known (see Non-Patent Document 2). . In LTE-AdvancedPro, specifications for providing communication to devices for recent IoT (Internet of Things) have been formulated. In addition, the fifth generation mobile that supports simultaneous connection and low delay to many terminal devices (also referred to as “UE (user equipment)”, “mobile station”, “communication terminal”) such as devices for IoT. Communication has been studied (for example, see Non-Patent Document 3).
 上記第5世代移動通信等においてIoT向けデバイスを含む端末装置との間の無線通信の伝搬遅延が低く、広範囲の多数の端末装置と同時接続でき、高速通信可能で、単位面積あたりのシステム容量の大きい3次元化したネットワークにおいて、ドローン等の飛行可能な端末装置を用いたサービスを提供したいという課題がある。 In the fifth generation mobile communication, etc., the propagation delay of wireless communication with a terminal device including a device for IoT is low, can be simultaneously connected to a large number of terminal devices, can be connected at high speed, and has a system capacity per unit area. In a large three-dimensional network, there is a problem that it is desired to provide a service using a terminal device that can fly such as a drone.
 本発明の一態様に係るサービス提供システムは、無線通信可能な一又は複数の端末装置を用いたサービスを提供するサービス提供システムであって、前記端末装置との無線通信を中継する無線中継局を有する無線中継装置と、前記無線中継装置の無線中継局を介して前記端末装置と通信するサーバ装置と、を備える。前記無線中継局は、地面又は海面との間の所定のセル形成目標空域に3次元セルを形成するように、自律制御又は外部からの制御により高度が100[km]以下の浮揚空域に位置するように制御される浮揚体に設けられる。前記端末装置は、自律制御又は外部からの制御により前記3次元セルに位置するように制御される。
 前記サービス提供システムにおいて、前記サーバ装置は、前記無線中継装置に組み込まれていてもよい。
A service providing system according to an aspect of the present invention is a service providing system that provides a service using one or a plurality of terminal devices capable of wireless communication, and includes a wireless relay station that relays wireless communication with the terminal device. And a server device that communicates with the terminal device via a wireless relay station of the wireless relay device. The radio relay station is located in a floating airspace having an altitude of 100 km or less by autonomous control or external control so as to form a three-dimensional cell in a predetermined cell formation target airspace between the ground and the sea surface. It is provided in the levitation body controlled as described above. The terminal device is controlled to be positioned in the three-dimensional cell by autonomous control or external control.
In the service providing system, the server device may be incorporated in the wireless relay device.
 また、前記サービス提供システムにおいて、前記端末装置は、充電可能なバッテリーを有し自律制御又は外部からの制御により前記3次元セルを飛行可能な無人又は有人の飛行体からなる端末装置を含んでもよい。
 ここで、前記サービス提供システムにおいて、前記飛行体からなる端末装置が離発着可能な場所に設けられ、その場所に着陸した端末装置のバッテリーを充電する充電装置を更に備えてもよい。
 また、前記サービス提供システムにおいて、自律制御又は外部からの制御により前記3次元セルに位置するように制御され、前記飛行体からなる端末装置が離発着可能な空中滞在型の駐機装置を更に備えてもよい。
 また、前記サービス提供システムにおいて、自律制御又は外部からの制御により前記3次元セルに位置するように制御され、前記飛行体からなる端末装置に接触又は非接触で給電可能な空中滞在型の充電装置を、更に備えてもよい。
 また、前記サービス提供システムにおいて、前記サーバ装置は、互いに連携して飛行するように前記複数の飛行体からなる端末装置を制御してもよい。
 また、前記サービス提供システムにおいて、前記サーバ装置は、前記飛行体からなる端末装置の飛行許認可、飛行に関する課金、飛行経路、飛行時間帯、飛行エリア及び飛行ルートの少なくとも一つを制御してもよい。
In the service providing system, the terminal device may include a terminal device including an unmanned or manned flying body that has a rechargeable battery and can fly the three-dimensional cell by autonomous control or external control. .
Here, the service providing system may further include a charging device that is provided at a place where the terminal device made of the flying object can take off and land and charges a battery of the terminal device that has landed at the place.
The service providing system further includes an airborne parking device that is controlled to be positioned in the three-dimensional cell by autonomous control or external control, and that allows the terminal device made of the flying object to take off and land. Also good.
Also, in the service providing system, an airborne charging device that is controlled to be positioned in the three-dimensional cell by autonomous control or external control and can supply power to the terminal device made of the flying object in contact or non-contact. May be further provided.
In the service providing system, the server device may control the terminal device including the plurality of flying bodies so as to fly in cooperation with each other.
In the service providing system, the server device may control at least one of a flight authorization of a terminal device formed of the flying object, a billing for flight, a flight route, a flight time zone, a flight area, and a flight route. .
 また、前記サービス提供システムにおいて、前記端末装置は、その端末装置の周囲に位置する他の端末装置との間で無線通信する通信手段を備えてもよい。前記通信手段は、前記他の端末装置と前記無線中継局との間の通信を中継してもよい。
 また、前記サービス提供システムにおいて、前記端末装置は、地上又は海上から上空に向けて延びた構造体の高層部に設けられた端末装置を含んでもよい。
 また、前記サービス提供システムにおいて、前記端末装置は、人体、鳥及び他の動物の少なくとも一つに装着された端末装置を含んでもよい。
 また、前記サービス提供システムにおいて、前記端末装置は、飛行機、ヘリコプター、パラグライダー、パラシュートダイバー、飛行船、気球、アドバルーン及びカイトの少なくとも一つに装着された端末装置を含んでもよい。
 また、前記サービス提供システムにおいて、前記端末装置は、高圧電線からの電磁誘導による給電を受ける受電手段を備えてもよい。
 また、前記サービス提供システムにおいて、前記端末装置は、動画、静止画、音、気温、湿度、照度、電波状況、微粒子、放射線、花粉、気流、視界、天候、周囲の飛行体、及び、当該端末装置の位置情報の少なくとも一つの情報を取得する情報取得手段を備え、前記サーバ装置は、前記端末装置で取得された取得情報を前記端末装置から受信する手段を備えてもよい。ここで、前記サーバ装置は、前記端末装置から受信した情報を分析する手段を更に備えてもよい。
In the service providing system, the terminal device may include a communication unit that wirelessly communicates with other terminal devices located around the terminal device. The communication unit may relay communication between the other terminal device and the radio relay station.
In the service providing system, the terminal device may include a terminal device provided in a high-level portion of a structure extending from the ground or the sea toward the sky.
In the service providing system, the terminal device may include a terminal device attached to at least one of a human body, a bird, and another animal.
In the service providing system, the terminal device may include a terminal device mounted on at least one of an airplane, a helicopter, a paraglider, a parachute diver, an airship, a balloon, an ad balloon, and a kite.
Moreover, the said service provision system WHEREIN: The said terminal device may be provided with the power receiving means which receives the electric power feeding by the electromagnetic induction from a high voltage electric wire.
In the service providing system, the terminal device includes a moving image, a still image, sound, temperature, humidity, illuminance, radio wave condition, fine particles, radiation, pollen, air current, field of view, weather, surrounding flying object, and the terminal. Information acquisition means for acquiring at least one piece of position information of the apparatus may be provided, and the server apparatus may include means for receiving the acquisition information acquired by the terminal apparatus from the terminal apparatus. Here, the server device may further include means for analyzing information received from the terminal device.
 また、前記サービス提供システムにおいて、前記端末装置を用いたサービスは、前記端末装置を用いた配達、前記端末装置を用いた情報の取得及び分析、前記端末装置を用いた通信の中継、並びに、前記複数の端末装置を用いた空中の飛行演技及び3次元ディスプレイの少なくとも一つを含んでもよい。
 また、前記サービス提供システムにおいて、前記サーバ装置は、前記端末装置を用いたサービスを利用する利用者からの利用申込情報に基づいて、前記端末装置の制御及び前記端末装置からの情報の取得の少なくとも一方を行い、前記端末装置の制御及び前記端末装置からの情報の取得の少なくとも一方を含むサービス利用結果に基づいて、前記利用者に対する課金処理を実行してもよい。
Further, in the service providing system, the service using the terminal device includes delivery using the terminal device, acquisition and analysis of information using the terminal device, relay of communication using the terminal device, and the It may include at least one of an air flight performance using a plurality of terminal devices and a three-dimensional display.
In the service providing system, the server device performs at least control of the terminal device and acquisition of information from the terminal device based on use application information from a user who uses a service using the terminal device. One may be performed, and the charging process for the user may be executed based on a service use result including at least one of control of the terminal device and acquisition of information from the terminal device.
 本発明によれば、上記第5世代移動通信等においてIoT向けデバイスを含む端末装置との間の無線通信の伝搬遅延が低く、広範囲の多数の端末装置と同時接続でき、高速通信可能で、単位面積あたりのシステム容量の大きい3次元化したネットワークにおいて、ドローン等の飛行可能な端末装置を用いたサービスを提供することができる。 According to the present invention, in the fifth generation mobile communication or the like, the propagation delay of wireless communication with a terminal device including a device for IoT is low, can be simultaneously connected to a wide range of terminal devices, and high-speed communication is possible. In a three-dimensional network having a large system capacity per area, it is possible to provide a service using a flying terminal device such as a drone.
図1は本発明の一実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention. 図2は実施形態の通信システムに用いられるHAPSの一例を示す斜視図である。FIG. 2 is a perspective view showing an example of HAPS used in the communication system of the embodiment. 図3は実施形態の通信システムに用いられるHAPSの他の例を示す側面図である。FIG. 3 is a side view showing another example of HAPS used in the communication system of the embodiment. 図4は実施形態のHAPSの無線中継局の一構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of a HAPS wireless relay station according to the embodiment. 図5は実施形態のHAPSの無線中継局の他の構成例を示すブロック図である。FIG. 5 is a block diagram illustrating another configuration example of the HAPS wireless relay station of the embodiment. 図6は実施形態のHAPSの無線中継局の更に他の構成例を示すブロック図である。FIG. 6 is a block diagram illustrating still another configuration example of the HAPS wireless relay station according to the embodiment. 図7は実施形態のHAPSに対する遠隔エネルギービーム給電の様子の一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of a state of remote energy beam power supply to the HAPS of the embodiment. 図8は実施形態のHAPSの遠隔エネルギービーム受電部の一構成例を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration example of the remote energy beam power receiving unit of the HAPS according to the embodiment. 図9は実施形態の3次元化ネットワークによるドローンシェアリングサービスを提供している通信システムの一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of a communication system that provides a drone sharing service using the three-dimensional network according to the embodiment.
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る通信システムの全体構成の一例を示す概略構成図である。本実施形態に係る通信システムは、多数の端末装置(「移動局」、「移動機」又は「ユーザ装置(UE)」ともいう。)への同時接続や低遅延化などに対応する第5世代移動通信の3次元化ネットワークの実現に適する。なお、本明細書に開示する通信システム、無線中継局、基地局、リピータ及び端末装置に適用可能な移動通信の標準規格は、第5世代の移動通信の標準規格、及び、第5世代以降の次々世代の移動通信の標準規格を含む。本実施形態に係る通信システムは、端末装置が組み込まれた一又は複数のドローンを複数の利用者でシェアリングする後述のドローンシェアリングサービスを提供することができる。ここで、ドローンは無人でもよいし有人でもよい。無人のドローンはUAV(Unmanned Aerial Vehicle)とも呼ばれる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to an embodiment of the present invention. The communication system according to the present embodiment is a fifth generation that supports simultaneous connection to a large number of terminal devices (also referred to as “mobile station”, “mobile device”, or “user equipment (UE)”), low delay, and the like. Suitable for realizing a three-dimensional network for mobile communications. The mobile communication standards applicable to the communication system, radio relay station, base station, repeater, and terminal device disclosed in this specification are the fifth generation mobile communication standards and the fifth generation and later. Includes standards for next generation mobile communications. The communication system according to the present embodiment can provide a later-described drone sharing service in which one or a plurality of drones incorporating terminal devices are shared by a plurality of users. Here, the drone may be unmanned or manned. An unmanned drone is also called UAV (Unmanned Aerial Vehicle).
 図1に示すように、通信システムは、複数の無線中継装置としての高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)10,20を備え、所定高度のセル形成目標空域40に、図中ハッチング領域で示すような3次元セル(3次元エリア)41,42を形成する。HAPS10,20は、自律制御又は外部から制御により地面又は海面から100[km]以下の高高度の浮揚空域(以下、単に「空域」ともいう。)50に浮遊して位置するように制御される浮揚体(例えば、ソーラープレーン、飛行船)に無線中継局が搭載されたものである。 As shown in FIG. 1, the communication system includes high altitude platform stations (HAPS) (also referred to as “high altitude pseudo satellites”) 10 and 20 as a plurality of radio relay apparatuses, and a cell formation target airspace 40 of a predetermined altitude. Then, three-dimensional cells (three-dimensional areas) 41 and 42 as shown by hatching areas in the figure are formed. The HAPS 10 and 20 are controlled to float in a high altitude floating airspace (hereinafter also simply referred to as “airspace”) 50 from the ground or the sea surface by autonomous control or external control. A radio relay station is mounted on a floating body (eg, solar plane, airship).
 HAPS10,20の位置する空域50は、例えば、高度が11[km]以上及び50[km]以下の成層圏の空域である。HAPS10,20の位置する空域50は、気象条件が比較的安定している高度が15[km]以上及び25[km]以下の範囲の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。図中のHrsl及びHrsuはそれぞれ、地面(GL)を基準にしたHAPS10,20の位置する空域50の下端及び上端の相対的な高度を示している。 The airspace 50 where the HAPS 10 and 20 are located is, for example, a stratospheric airspace with an altitude of 11 km or more and 50 km or less. The airspace 50 where the HAPS 10 and 20 are located may be an airspace in which the altitude where the weather conditions are relatively stable is in the range of 15 [km] or more and 25 [km] or less, and particularly the altitude is approximately 20 [km]. The airspace may be Hrsl and Hrsu in the figure indicate relative altitudes of the lower end and the upper end of the airspace 50 where the HAPSs 10 and 20 are located with respect to the ground (GL), respectively.
 セル形成目標空域40は、本実施形態の通信システムにおける一又は複数のHAPSで3次元セルを形成する目標の空域である。セル形成目標空域40は、HAPS10,20が位置する空域50と従来のマクロセル基地局等の基地局90がカバーする地面近傍のセル形成領域との間に位置する、所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)の空域である。図中のHcl及びHcuはそれぞれ、地面(GL)を基準にしたセル形成目標空域40の下端及び上端の相対的な高度を示している。 The cell formation target airspace 40 is a target airspace that forms a three-dimensional cell with one or a plurality of HAPS in the communication system of the present embodiment. The cell formation target airspace 40 is a predetermined altitude range (for example, 50 [ m] to an altitude range of 1000 [m] or less. Hcl and Hcu in the figure respectively indicate the relative altitudes of the lower end and the upper end of the cell formation target airspace 40 with respect to the ground (GL).
 なお、本実施形態の3次元セルが形成されるセル形成目標空域40は、海、川又は湖の上空であってもよい。 Note that the cell formation target airspace 40 in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake.
 HAPS10,20の無線中継局はそれぞれ、移動局である端末装置と無線通信するためのビーム100,200を地面に向けて形成する。端末装置は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローン60に組み込まれた通信端末モジュールでもよいし、飛行機65の中でユーザが使用するユーザ端末装置であってもよい。セル形成目標空域40においてビーム100,200が通過する領域が3次元セル41,42である。セル形成目標空域40において互いに隣り合う複数のビーム100,200は部分的に重なってもよい。 The wireless relay stations of the HAPS 10 and 20 respectively form beams 100 and 200 for wireless communication with a terminal device that is a mobile station toward the ground. The terminal device may be a communication terminal module incorporated in the drone 60 which is an aircraft such as a small-sized helicopter that can be remotely controlled, or may be a user terminal device used by the user in the airplane 65. The regions through which the beams 100 and 200 pass in the cell formation target airspace 40 are three- dimensional cells 41 and 42. The plurality of beams 100 and 200 adjacent to each other in the cell formation target airspace 40 may partially overlap.
 HAPS10,20の無線中継局はそれぞれ、地上又は海上に設置された中継局であるフィーダ局70を介して、移動通信網80のコアネットワークに接続されている。 The wireless relay stations of the HAPS 10 and 20 are connected to the core network of the mobile communication network 80 via a feeder station 70 that is a relay station installed on the ground or the sea.
 HAPS10,20はそれぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の浮揚移動(飛行)や無線中継局での処理を自律制御してもよい。例えば、HAPS10,20はそれぞれ、自身の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や無線中継局での処理を自律制御してもよい。 Each of the HAPS 10 and 20 may autonomously control its own floating movement (flight) and processing at the radio relay station by executing a control program by a control unit configured by a computer or the like incorporated therein. For example, each of the HAPS 10 and 20 acquires its own current position information (for example, GPS position information), pre-stored position control information (for example, flight schedule information), position information of other HAPS located in the vicinity, etc. Based on this information, the levitating movement (flight) and the processing at the radio relay station may be autonomously controlled.
 また、HAPS10,20それぞれの浮揚移動(飛行)や無線中継局での処理は、移動通信網80の通信センター等に設けられた通信オペレータの遠隔制御装置85によって制御できるようにしてもよい。この場合、HAPS10,20は、遠隔制御装置85からの制御情報を受信できるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、遠隔制御装置85から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。また、HAPS10,20はそれぞれ、自身又は周辺のHAPSの浮揚移動(飛行)や無線中継局での処理に関する情報や各種センサなどで取得した観測データなどの情報を、遠隔制御装置85等の所定の送信先に送信するようにしてもよい。また、遠隔制御装置85は、例えばコンピュータ装置で構成され、後述のドローンシェアリングサービスの提供に用いるサーバ装置86と兼用してもよい。 Further, the floating movement (flight) of each of the HAPS 10 and 20 and the processing at the radio relay station may be controlled by a remote control device 85 of a communication operator provided in a communication center of the mobile communication network 80 or the like. In this case, the HAPS 10, 20 is incorporated with a control communication terminal device (for example, a mobile communication module) so as to receive control information from the remote control device 85, and terminal identification information ( For example, an IP address, a telephone number, etc.) may be assigned. The MAC address of the communication interface may be used for identifying the control communication terminal device. Each of the HAPSs 10 and 20 receives information on the levitation movement (flight) of itself or the surrounding HAPS, processing at the wireless relay station, observation data acquired by various sensors, etc. You may make it transmit to a transmission destination. Further, the remote control device 85 is constituted by a computer device, for example, and may also be used as a server device 86 used for providing a drone sharing service described later.
 セル形成目標空域40では、HAPS10,20のビーム100,200が通過していない領域(3次元セル41,42が形成されない領域)が発生するおそれがある。この領域を補完するため、図1の構成例のように、地上側又は海上側から上方に向かって放射状のビーム300を形成して3次元セル43を形成してATG(Air To Ground)接続を行う基地局(以下「ATG局」という。)30を備えてもよい。 In the cell formation target airspace 40, there is a possibility that a region where the beams 100 and 200 of the HAPS 10 and 20 do not pass (region where the three- dimensional cells 41 and 42 are not formed) may occur. In order to supplement this region, as shown in the configuration example of FIG. 1, a radial beam 300 is formed upward from the ground side or the sea side to form a three-dimensional cell 43 to form an ATG (Air To Ground) connection. A base station (hereinafter referred to as “ATG station”) 30 may be provided.
 また、ATG局を用いずに、HAPS10,20の位置やビーム100,200の発散角(ビーム幅)等を調整することにより、HAPS10,20の無線中継局が、セル形成目標空域40に3次元セルがくまなく形成されるように、セル形成目標空域40の上端面の全体をカバーするビーム100,200を形成してもよい。 Further, by adjusting the position of the HAPS 10 and 20 and the divergence angle (beam width) of the beams 100 and 200 without using the ATG station, the radio relay station of the HAPS 10 and 20 can be three-dimensionally arranged in the cell formation target airspace 40. The beams 100 and 200 covering the entire upper end surface of the cell formation target airspace 40 may be formed so that the cells are formed throughout.
 なお、上記HAPS10,20で形成する3次元セルは、地上又は海上に位置する端末装置との間でも通信できるよう地面又は海面に達するように形成してもよい。 Note that the three-dimensional cell formed by the HAPS 10 and 20 may be formed so as to reach the ground or the sea level so as to be able to communicate with a terminal device located on the ground or the sea.
 図2は、実施形態の通信システムに用いられるHAPS10の一例を示す斜視図である。図2のHAPS10はソーラープレーンタイプのHAPSである。上面に太陽光発電機能を有する太陽光発電部としての太陽光発電パネル(以下「ソーラーパネル」という。)102が設けられ長手方向の両端部側が上方に沿った主翼部101と、主翼部101の短手方向の一端縁部にバス動力系の推進装置としての複数のモータ駆動のプロペラ103とを備える。主翼部101の下面の長手方向の2箇所には、板状の連結部104を介して、ミッション機器が収容される複数の機器収容部としてのポッド105が連結されている。各ポッド105の内部には、ミッション機器としての無線中継局110と、バッテリー106とが収容されている。また、各ポッド105の下面側には離発着時に使用される車輪107が設けられている。ソーラーパネル102で発電された電力はバッテリー106に蓄電され、バッテリー106から供給される電力により、プロペラ103のモータが回転駆動され、無線中継局110による無線中継処理が実行される。 FIG. 2 is a perspective view illustrating an example of the HAPS 10 used in the communication system according to the embodiment. The HAPS 10 in FIG. 2 is a solar plane type HAPS. A solar power generation panel (hereinafter referred to as a “solar panel”) 102 as a solar power generation unit having a solar power generation function on the upper surface is provided. A plurality of motor-driven propellers 103 as a propulsion device for a bus power system are provided at one end edge in the short direction. A pod 105 serving as a plurality of device accommodating portions in which mission devices are accommodated is connected to two places in the longitudinal direction of the lower surface of the main wing portion 101 via a plate-like connecting portion 104. Each pod 105 accommodates a radio relay station 110 as a mission device and a battery 106. In addition, wheels 107 used at the time of taking off and landing are provided on the lower surface side of each pod 105. The electric power generated by the solar panel 102 is stored in the battery 106, the electric power supplied from the battery 106 drives the motor of the propeller 103 to rotate, and the wireless relay station 110 performs wireless relay processing.
 ソーラープレーンタイプのHAPS10は、例えば旋回飛行を行ったり8の字飛行を行ったりすることにより揚力で浮揚し、所定の高度で水平方向の所定の範囲に滞在するように浮揚することができる。なお、ソーラープレーンタイプのHAPS10は、プロペラ103が回転駆動されていないときは、グライダーのように飛ぶこともできる。例えば、昼間などのソーラーパネル102の発電によってバッテリー106の電力が余っているときに高い位置に上昇し、夜間などのソーラーパネル102で発電できないときにバッテリー106からモータへの給電を停止してグライダーのように飛ぶことができる。 The solar plane type HAPS 10 can be levitated by lift by performing, for example, turning flight or 8-shaped flight, and can be levitated so as to stay in a predetermined range in a horizontal direction at a predetermined altitude. The solar plane type HAPS 10 can fly like a glider when the propeller 103 is not driven to rotate. For example, when the power of the battery 106 is surplus due to the power generation of the solar panel 102 at daytime or the like, the battery 106 rises to a high position, and when the solar panel 102 cannot generate power at night or the like, the power supply from the battery 106 to the motor is stopped and the glider is stopped. Can fly like.
 図3は、実施形態の通信システムに用いられるHAPS20の他の例を示す斜視図である。図3のHAPS20は、無人飛行船タイプのHAPSであり、ペイロードが大きいため大容量のバッテリーを搭載することができる。HAPS20は、浮力で浮揚するためのヘリウムガス等の気体が充填された飛行船本体201と、バス動力系の推進装置としてのモータ駆動のプロペラ202と、ミッション機器が収容される機器収容部203とを備える。機器収容部203の内部には、無線中継局210とバッテリー204とが収容されている。バッテリー204から供給される電力により、プロペラ202のモータが回転駆動され、無線中継局210による無線中継処理が実行される。 FIG. 3 is a perspective view showing another example of the HAPS 20 used in the communication system of the embodiment. The HAPS 20 in FIG. 3 is an unmanned airship type HAPS and has a large payload, so that a large-capacity battery can be mounted. The HAPS 20 includes an airship body 201 filled with a gas such as helium gas for buoyancy, a motor-driven propeller 202 as a propulsion device for a bus power system, and a device storage unit 203 for storing mission devices. Prepare. A radio relay station 210 and a battery 204 are housed inside the device housing unit 203. With the electric power supplied from the battery 204, the motor of the propeller 202 is driven to rotate, and the wireless relay processing by the wireless relay station 210 is executed.
 なお、飛行船本体201の上面に、太陽光発電機能を有するソーラーパネルを設け、ソーラーパネルで発電された電力をバッテリー204に蓄電するようにしてもよい。 It should be noted that a solar panel having a solar power generation function may be provided on the top surface of the airship body 201 so that the electric power generated by the solar panel is stored in the battery 204.
 図4は、実施形態のHAPS10,20の無線中継局110,210の一構成例を示すブロック図である。図4の無線中継局110,210はリピータータイプの無線中継局の例である。無線中継局110,210はそれぞれ、3Dセル(3次元セル)形成アンテナ部111と送受信部112とフィード用アンテナ部113と送受信部114とリピーター部115と監視制御部116と電源部117とを備える。 FIG. 4 is a block diagram illustrating a configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment. The wireless relay stations 110 and 210 in FIG. 4 are examples of repeater type wireless relay stations. Each of the radio relay stations 110 and 210 includes a 3D cell (three-dimensional cell) forming antenna unit 111, a transmission / reception unit 112, a feed antenna unit 113, a transmission / reception unit 114, a repeater unit 115, a monitoring control unit 116, and a power supply unit 117. .
 3Dセル形成アンテナ部111は、セル形成目標空域40に向けて放射状のビーム100,200を形成するアンテナを有し、端末装置と通信可能な3次元セル41,42を形成する。送受信部112は、送受共用器(DUP:DUPlexer)や増幅器などを有し、3Dセル形成アンテナ部111を介して、3次元セル41,42に在圏する端末装置に無線信号を送信したり端末装置から無線信号を受信したりする。 The 3D cell formation antenna unit 111 includes antennas that form the radial beams 100 and 200 toward the cell formation target airspace 40, and forms three- dimensional cells 41 and 42 that can communicate with the terminal device. The transmission / reception unit 112 includes a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to a terminal device located in the three- dimensional cell 41 or 42 via the 3D cell forming antenna unit 111 or a terminal Receive radio signals from the device.
 フィード用アンテナ部113は、地上又は海上のフィーダ局70と無線通信するための指向性アンテナを有する。送受信部114は、送受共用器(DUP:DUPlexer)や増幅器などを有し、3Dセル形成アンテナ部111を介して、フィーダ局70に無線信号を送信したりフィーダ局70から無線信号を受信したりする。 The feed antenna unit 113 includes a directional antenna for wireless communication with the ground or sea feeder station 70. The transmission / reception unit 114 includes a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to the feeder station 70 and receives a radio signal from the feeder station 70 via the 3D cell forming antenna unit 111. To do.
 リピーター部115は、端末装置との間で送受信される送受信部112の信号と、フィーダ局70との間で送受信される送受信部114の信号とを中継する。リピーター部115は、周波数変換機能を有してもよい。 The repeater unit 115 relays the signal of the transmission / reception unit 112 transmitted / received to / from the terminal device and the signal of the transmission / reception unit 114 transmitted / received to / from the feeder station 70. The repeater unit 115 may have a frequency conversion function.
 監視制御部116は、例えばCPU及びメモリ等で構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20内の各部の動作処理状況を監視したり各部を制御したりする。電源部117は、バッテリー106,204から出力された電力をHAPS10,20内の各部に供給する。電源部117は、太陽光発電パネル等で発電した電力や外部から給電された電力をバッテリー106,204に蓄電させる機能を有してもよい。 The monitoring control unit 116 is configured by, for example, a CPU and a memory, and monitors the operation processing status of each unit in the HAPS 10 and 20 and controls each unit by executing a program incorporated in advance. The power supply unit 117 supplies the power output from the batteries 106 and 204 to each unit in the HAPS 10 and 20. The power supply unit 117 may have a function of storing in the batteries 106 and 204 power generated by a solar power generation panel or the like or power supplied from the outside.
 図5は、実施形態のHAPS10,20の無線中継局110,210の他の構成例を示すブロック図である。図5の無線中継局110,210は基地局タイプの無線中継局の例である。なお、図5において、図4と同様な構成要素については同じ符号を付し、説明を省略する。図5の無線中継局110,210はそれぞれ、モデム部118を更に備え、リピーター部115の代わりに基地局処理部119を備える。 FIG. 5 is a block diagram illustrating another configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment. The radio relay stations 110 and 210 in FIG. 5 are examples of base station type radio relay stations. In FIG. 5, the same components as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted. Each of the radio relay stations 110 and 210 in FIG. 5 further includes a modem unit 118 and a base station processing unit 119 instead of the repeater unit 115.
 モデム部118は、例えば、フィーダ局70からフィード用アンテナ部113及び送受信部114を介して受信した受信信号に対して復調処理及び復号処理を実行し、基地局処理部119側に出力するデータ信号を生成する。また、モデム部118は、基地局処理部119側から受けたデータ信号に対して符号化処理及び変調処理を実行し、フィード用アンテナ部113及び送受信部114を介してフィーダ局70に送信する送信信号を生成する。 The modem unit 118 performs, for example, a demodulation process and a decoding process on the reception signal received from the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114, and outputs the data signal to the base station processing unit 119 side. Is generated. Further, the modem unit 118 performs encoding processing and modulation processing on the data signal received from the base station processing unit 119 side, and transmits to the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114. Generate a signal.
 基地局処理部119は、例えば、LTE/LTE-Advancedの標準規格に準拠した方式に基づいてベースバンド処理を行うe-NodeBとしての機能を有する。基地局処理部119は、第5世代又は第5世代以降の次々世代等の将来の移動通信の標準規格に準拠する方式で処理するものであってもよい。 The base station processing unit 119 has a function as e-NodeB that performs baseband processing based on, for example, a method compliant with the LTE / LTE-Advanced standard. The base station processing unit 119 may perform processing by a method based on a standard for future mobile communication such as the fifth generation or the next generation after the fifth generation.
 基地局処理部119は、例えば、3次元セル41,42に在圏する端末装置から3Dセル形成アンテナ部111及び送受信部112を介して受信した受信信号に対して復調処理及び復号処理を実行し、モデム部118側に出力するデータ信号を生成する。また、基地局処理部119は、モデム部118側から受けたデータ信号に対して符号化処理及び変調処理を実行し、3Dセル形成アンテナ部111及び送受信部112を介して3次元セル41,42の端末装置に送信する送信信号を生成する。 For example, the base station processing unit 119 performs demodulation processing and decoding processing on the received signals received from the terminal devices located in the three- dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A data signal to be output to the modem unit 118 side is generated. In addition, the base station processing unit 119 performs encoding processing and modulation processing on the data signal received from the modem unit 118 side, and the 3D cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A transmission signal to be transmitted to the terminal device is generated.
 図6は、実施形態のHAPS10,20の無線中継局110,210の更に他の構成例を示すブロック図である。図6の無線中継局110,210はエッジコンピューティング機能を有する高機能の基地局タイプの無線中継局の例である。なお、図6において、図4及び図5と同様な構成要素については同じ符号を付し、説明を省略する。図6の無線中継局110,210はそれぞれ、図5の構成要素に加えてエッジコンピューティング部120を更に備える。 FIG. 6 is a block diagram illustrating still another configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment. The radio relay stations 110 and 210 in FIG. 6 are examples of high-function base station type radio relay stations having an edge computing function. In FIG. 6, the same components as those in FIGS. 4 and 5 are denoted by the same reference numerals, and description thereof is omitted. Each of the radio relay stations 110 and 210 of FIG. 6 further includes an edge computing unit 120 in addition to the components of FIG.
 エッジコンピューティング部120は、例えば小型のコンピュータで構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20の無線中継局110,210における無線中継などに関する各種の情報処理を実行することができる。 The edge computing unit 120 is configured by a small computer, for example, and can execute various types of information processing related to wireless relaying in the wireless relay stations 110 and 210 of the HAPS 10 and 20 by executing a program incorporated in advance. it can.
 例えば、エッジコンピューティング部120は、3次元セル41,42に在圏する端末装置から受信したデータ信号に基づいて、そのデータ信号の送信先を判定し、その判定結果に基づいて通信の中継先を切り換える処理を実行する。より具体的には、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42に在圏する端末装置の場合は、そのデータ信号をモデム部118に渡さずに、基地局処理部119に戻して自身の3次元セル41,42に在圏する送信先の端末装置に送信するようにする。一方、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42以外の他のセルに在圏する端末装置の場合は、そのデータ信号をモデム部118に渡してフィーダ局70に送信し、移動通信網80を介して送信先の他のセルに在圏する送信先の端末装置に送信するようにする。 For example, the edge computing unit 120 determines the transmission destination of the data signal based on the data signal received from the terminal device located in the three- dimensional cell 41 or 42, and relays the communication based on the determination result. Executes the process of switching. More specifically, when the transmission destination of the data signal output from the base station processing unit 119 is a terminal device located in its own three- dimensional cell 41 or 42, the data signal is not passed to the modem unit 118. Then, it returns to the base station processing unit 119 and transmits it to the transmission destination terminal device located in its own three- dimensional cell 41, 42. On the other hand, when the transmission destination of the data signal output from the base station processing unit 119 is a terminal device residing in a cell other than its own three- dimensional cells 41 and 42, the data signal is passed to the modem unit 118. The data is transmitted to the feeder station 70 and transmitted to the terminal device of the transmission destination located in another cell of the transmission destination via the mobile communication network 80.
 エッジコンピューティング部120は、3次元セル41,42に在圏する多数の端末装置から受信した情報を分析する処理を実行してもよい。この分析結果は3次元セル41,42に在圏する多数の端末装置に送信したり移動通信網80のサーバ装置などに送信したりしてもよい。 The edge computing unit 120 may execute processing for analyzing information received from a large number of terminal devices located in the three- dimensional cells 41 and 42. This analysis result may be transmitted to a large number of terminal devices located in the three- dimensional cells 41 and 42, or may be transmitted to a server device of the mobile communication network 80 or the like.
 無線中継局110、210を介した端末装置との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、無線中継局110、210を介した端末装置との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。また、上記無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、送受信両方で複数のアンテナを同時に利用することにより、単位周波数当たりの伝送容量を増やすことができるMIMO(多入力多出力:Multi-Input and Multi-Output)技術を用いてもよい。また、上記MIMO技術は、1つの基地局が1つの端末装置と同一時刻・同一周波数で複数の信号を送信するSU-MIMO(Single-User MIMO)技術でもよいし、1つの基地局が複数の異なる通信端末装置に同一時刻・同一周波数で信号を送信又は複数の異なる基地局が1つの端末装置に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術であってもよい。 The uplink and downlink duplex schemes for wireless communication with the terminal devices via the radio relay stations 110 and 210 are not limited to specific schemes. For example, even in a time division duplex (TDD) scheme Alternatively, a frequency division duplex (FDD) method may be used. In addition, the access method of wireless communication with the terminal device via the wireless relay stations 110 and 210 is not limited to a specific method, for example, FDMA (Frequency Division Multiple Access) method, TDMA (Time Division Multiple Access) method, It may be a CDMA (Code Division Multiple Access) system or OFDMA (Orthogonal Frequency Division Multiple Access). In addition, the wireless communication has functions such as diversity coding, transmission beamforming, and spatial division multiplexing (SDM), and by using multiple antennas simultaneously for both transmission and reception, MIMO (multi-input and multi-output) technology capable of increasing the transmission capacity of the network may be used. The MIMO technology may be a SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device. Even in the MU-MIMO (Multi-User MIMO) technology in which signals are transmitted to different communication terminal devices at the same time and the same frequency, or a plurality of different base stations transmit signals to one terminal device at the same time and the same frequency. Good.
 図7は、高緯度対応可能なHAPS(ソーラープレーンタイプ)11に対する遠隔エネルギービーム給電の様子の一例を示す説明図である。図7中のHAPS10において、図2と共通する構成要素については同じ符号を付し、説明を省略する。図7において、高緯度対応HAPS11は、主翼部101の長手方向の両端部側それぞれに受電用ポッド108を備えている。受電用ポッド108の内部には、遠隔エネルギービーム受電部としてのマイクロ波受電部130とバッテリー106とが収容されている。マイクロ波受電部130は、地上又は海上の給電装置としてのマイクロ波給電局75又は空中の給電装置としての給電用飛行船(充電用飛行船)25から送信された高出力の給電用マイクロ波ビーム750又は250を受けて電力に変換して出力する。マイクロ波受電部130から出力された電力は、バッテリー106に蓄電される。 FIG. 7 is an explanatory diagram showing an example of a state of remote energy beam power supply to the HAPS (solar plane type) 11 capable of handling high latitudes. In the HAPS 10 in FIG. 7, the same components as those in FIG. In FIG. 7, the high-latitude HAPS 11 includes power receiving pods 108 at both ends in the longitudinal direction of the main wing 101. Inside the power receiving pod 108, a microwave power receiving unit 130 and a battery 106 as a remote energy beam power receiving unit are accommodated. The microwave power receiving unit 130 is a high-power microwave beam 750 or a high-power microwave beam 750 transmitted from a microwave power supply station 75 as a power supply device on the ground or the sea or a power supply airship (charging airship) 25 as an air power supply device. 250 is received and converted into electric power and output. The electric power output from the microwave power reception unit 130 is stored in the battery 106.
 給電用飛行船25は、例えば、気流にまかせてドリフトし、静止中のHAPSに順次、給電用マイクロ波ビームを送信して給電する。 The power supply airship 25 drifts by, for example, an air current, and sequentially supplies power to the stationary HAPS by transmitting a power supply microwave beam.
 図8は、高緯度対応可能なHAPS11のマイクロ波受電部130の一構成例を示すブロック図である。図8において、マイクロ波受電部130は、レクテナ部131とレクテナ制御部132と出力装置133とパイロット信号送信アンテナ部134とビーム方向制御部135とを備える。レクテナ部131は、地上又は海上のマイクロ波給電局75又は給電用飛行船25から送信された高出力の給電用マイクロ波ビーム750又は250を受けて整流する。レクテナ制御部132は、レクテナ部131による給電用マイクロ波ビームの受電処理及び整流処理を制御する。出力装置133は、レクテナ部131から出力される整流後の電力をバッテリー106に出力する。パイロット信号送信アンテナ部134は、給電用マイクロ波ビーム750又は250の受電に先立って、給電用マイクロ波ビームを案内するレーザビーム等からなるパイロット信号のビームを、マイクロ波給電局75又は給電用飛行船25に向けて送信する。ビーム方向制御部135は、パイロット信号のビームの方向を制御する。 FIG. 8 is a block diagram illustrating a configuration example of the microwave power receiving unit 130 of the HAPS 11 capable of handling high latitudes. In FIG. 8, the microwave power reception unit 130 includes a rectenna unit 131, a rectenna control unit 132, an output device 133, a pilot signal transmission antenna unit 134, and a beam direction control unit 135. The rectenna unit 131 receives and rectifies the high-power feed microwave beam 750 or 250 transmitted from the ground or sea microwave feed station 75 or the power supply airship 25. The rectenna control unit 132 controls power reception processing and rectification processing of the feeding microwave beam by the rectenna unit 131. The output device 133 outputs the rectified power output from the rectenna unit 131 to the battery 106. The pilot signal transmitting antenna unit 134 transmits a pilot signal beam including a laser beam or the like for guiding the feeding microwave beam to the microwave feeding station 75 or the feeding airship prior to receiving the feeding microwave beam 750 or 250. To 25. The beam direction control unit 135 controls the beam direction of the pilot signal.
 なお、図7及び図8の遠隔エネルギービーム給電では、エネルギービームとしてマイクロ波ビームを用いた場合について説明したが、レーザビームなどの他のエネルビービームを用いてもよい。 In the remote energy beam feeding shown in FIGS. 7 and 8, the case where a microwave beam is used as the energy beam has been described, but another energy beam such as a laser beam may be used.
 次に、上記構成の第5世代移動通信の3次元化ネットワークを実現する通信システム(プラットフォーム)を用いて提供されるドローンシェアリングサービス(DAAS(ドローンアズアサービス)ともいう。)について説明する。 Next, a drone sharing service (also referred to as a DAAS (Drone as a Service)) provided by using a communication system (platform) that realizes the three-dimensional network of the fifth generation mobile communication having the above configuration will be described.
 図9は実施形態の3次元化ネットワークによるドローンシェアリングサービスを提供している通信システムの一例を示す説明図である。なお、図9において、前述の図1と同様な部分については同じ符号を付し、説明を省略する。 FIG. 9 is an explanatory diagram illustrating an example of a communication system that provides a drone sharing service using the three-dimensional network according to the embodiment. In FIG. 9, the same parts as those in FIG.
 図9において、ドローンシェアリングサービスを利用する利用者は、コンピュータ装置などの通信端末装置95に組み込まれた所定のUI(ユーザインターフェース)を介して操作し、インターネット81及び移動通信網80を介してサーバ装置86にアクセスし、ドローンシェアリングサービスの利用を申し込むことができる。ドローンシェアリングサービスの利用者としては、例えば、報道機関、地方自治体、測量会社、イベント会社、配送会社、個人などが挙げられる。利用者は、前もって、サーバ装置に対してドローンシェアリングサービスの利用登録をしておいてもよい。 In FIG. 9, a user using the drone sharing service operates via a predetermined UI (user interface) incorporated in a communication terminal device 95 such as a computer device, and via the Internet 81 and the mobile communication network 80. The server device 86 can be accessed to apply for the drone sharing service. Examples of users of the drone sharing service include a news agency, a local government, a surveying company, an event company, a delivery company, and an individual. The user may register the use of the drone sharing service with the server device in advance.
 実施形態のドローンシェアリングサービスに用いるドローン60は、地上や建物91の屋上などに設けられたドローン駐機場に待機しており、利用者からのドローンシェアリングサービスの利用申込を受けると必要な種類及び数のドローン60がドローン駐機場から飛び立つ。ドローンシェアリングサービスの提供が終了すると、ドローン駐機場に戻って着陸し、待機状態になる。 The drone 60 used for the drone sharing service of the embodiment is on standby at a drone parking lot provided on the ground or on the roof of the building 91, and a necessary type when receiving an application for use of the drone sharing service from a user. And a number of drones 60 take off from the drone parking. When the provision of the drone sharing service is finished, the aircraft returns to the drone parking area and landes, and enters a standby state.
 地上や建物91の屋上などに設けられたドローン駐機場には、着陸したドローン60を自動整備する機能を設け、無人整備サービスを提供するようにしてもよい。また、ドローン駐機場には、ドローン60内のバッテリーを充電する充電装置(充電スポット)92を設けてもよい。充電装置(充電スポット)92は、電磁波(例えばマイクロ波)などを用いて非接触でドローンのバッテリーを充電するものであってもよい。この場合、ドローン60はドローン駐機場に着陸しなくても充電を受けることができる。また、ドローン60は、高圧電線93の近くを飛行したりホバリングしたりするときに高圧電線93からの電磁誘導による給電を利用してバッテリーを充電してもよい。このような充電サービスを受けることにより、ドローン60は長距離飛行が可能になる。 A drone parking lot provided on the ground or on the roof of the building 91 may be provided with a function of automatically repairing the drone 60 that has landed to provide an unmanned maintenance service. Further, a charging device (charging spot) 92 that charges the battery in the drone 60 may be provided in the drone parking area. The charging device (charging spot) 92 may charge the drone battery in a non-contact manner using electromagnetic waves (for example, microwaves). In this case, the drone 60 can receive a charge without landing at the drone parking area. Further, the drone 60 may charge the battery using power feeding by electromagnetic induction from the high voltage electric wire 93 when flying near the high voltage electric wire 93 or hovering. By receiving such a charging service, the drone 60 can fly a long distance.
 また、HAPS10、20と他の通信端末装置(例えば携帯電話機やスマートフォンなどのユーザ装置)との間の通信を中継する機能をドローン60に設け、ドローンシェアリングサービスは、ドローン60を用いてHAPS10、20と他の通信端末装置(例えば携帯電話機やスマートフォンなどのユーザ装置)との間の通信を中継するサービスであってもよい。 In addition, the drone 60 has a function of relaying communication between the HAPS 10 and 20 and other communication terminal devices (for example, user devices such as mobile phones and smartphones), and the drone sharing service uses the drone 60 to perform the HAPS 10, 20 may be a service that relays communication between 20 and another communication terminal device (for example, a user device such as a mobile phone or a smartphone).
 ドローン60は、小型サイズのドローン(マイクロドローン)であってもよい。また、多数のドローンを地上移動型の駐機装置であるトラックなどの車両や、上記3次元セル内の所定位置に滞在可能な空中滞在型の駐機装置である飛行船に積載し、3次元セル下方の地上や3次元セル内のサービス提供場所に一括して運んでもよい。 The drone 60 may be a small size drone (micro drone). In addition, a large number of drones are loaded on a vehicle such as a truck that is a ground-moving parking device or an airship that is an airborne parking device that can stay at a predetermined position in the 3D cell. You may carry to the service provision place in the lower ground or a three-dimensional cell collectively.
 ドローンシェアリングサービスは、例えば、ドローン60を用いた配達サービス、センシングサービス、複数のドローンが互いに連携した飛行(例えば、飛行演技、3次元の広告などのディスプレイ)、無人運転の一人乗りタクシーなどが挙げられる。 The drone sharing service includes, for example, a delivery service using the drone 60, a sensing service, a flight in which a plurality of drones are linked to each other (for example, a display of flight performance, a three-dimensional advertisement, etc.), a driverless single-seat taxi, etc. Can be mentioned.
 ドローンシェアリングサービスは、利用者にドローン60を貸し出し、利用者が一定範囲でドローンを遠隔制御できるようにしたサービスであってもよい。 The drone sharing service may be a service that lends the drone 60 to the user and allows the user to remotely control the drone within a certain range.
 サーバ装置86は、HAPS10,20を介して、ドローン60の飛行許認可、飛行に関する課金、飛行経路、飛行時間帯、飛行エリア及び飛行ルートの少なくとも一つを制御するドローン60の航空管制を行ってもよい。また、サーバ装置86は、HAPS10,20を介して、ドローン60の機体の状態や位置情報等のデータを取得してドローン60の運航支援を行ったりする機能を有し、ドローン60の安全な目視外運航を実現できるようにしてもよい。 The server device 86 may perform air traffic control of the drone 60 that controls at least one of the flight authorization of the drone 60, the charging related to the flight, the flight route, the flight time zone, the flight area, and the flight route via the HAPS 10 and 20. Good. In addition, the server device 86 has a function of obtaining data such as the state of the drone 60 and the position information through the HAPS 10 and 20 and supporting the operation of the drone 60, so that the drone 60 can be visually checked safely. You may make it possible to realize outside operation.
 センシングサービスは、動画、静止画、音、気温、湿度、照度、電波状況、微粒子、放射線、花粉、気流(方向・強さ)、視界、天候、レーダ電波測定による周囲の飛行体の検知、及び、当該端末装置の位置情報の少なくとも一つの情報を取得(観測、測定、撮像、録音を含む)するサービスである。このような情報の取得は、HAPS10、20を介してサーバ装置86からの遠隔制御で行ってもよく、観測データ、測定データ等の情報はリアルタイム送受信でドローン60からサーバ装置86に送信してもよい。また、センシングサービスは、AI解析処理やビッグデータ処理などにより、ドローン60から受信した観測データ、測定データ等の情報を解析するサービスを含んでもよい。 Sensing services include video, still image, sound, temperature, humidity, illuminance, radio wave condition, fine particles, radiation, pollen, airflow (direction and strength), visibility, weather, radar detection of surrounding flying objects, and This is a service for acquiring (including observation, measurement, imaging, and recording) at least one piece of position information of the terminal device. Such information acquisition may be performed by remote control from the server device 86 via the HAPS 10 or 20, and information such as observation data and measurement data may be transmitted from the drone 60 to the server device 86 by real-time transmission / reception. Good. The sensing service may include a service for analyzing information such as observation data and measurement data received from the drone 60 by AI analysis processing, big data processing, or the like.
 また、軽飛行機やヘリコプターの機体の状態の情報をIoTデバイスで収集し、収集した情報をHAPS10、20を介してサーバ装置に送信し、ブラックボックスを補完するサービスを提供してもよい。 Also, a service that complements the black box may be provided by collecting information on the state of the aircraft of a light aircraft or helicopter with an IoT device and transmitting the collected information to the server device via the HAPS 10 and 20.
 また、ドローンシェアリングサービスは、次のような災害発生時や事故発生時の対策のサービスであってもよい。 Also, the drone sharing service may be a countermeasure service in the event of a disaster or accident as follows.
 例えば、飛行船やトラックなどの母船に大量のマイクロドローンをセットにして災害現場の目的エリアに移動し、目的エリアから大量のマイクロドローンを飛ばし、地震・津波・土砂くずれなど大規模災害地での遭難者の捜索するサービスを提供できる。また、ドローンに搭載した無線中継の通信装置を利用して暫定的な臨時の移動通信エリアを構築するサービスを提供してもよい。 For example, set a large amount of micro drone on a mother ship such as an airship or truck, move to the target area of the disaster site, fly a large amount of micro drone from the target area, and encounter in large-scale disaster areas such as earthquakes, tsunamis, and landslides Can provide a search service. Further, a service for constructing a temporary temporary mobile communication area may be provided by using a wireless relay communication device installed in the drone.
 また例えば、多数の老齢者・要介護者に、体温や心拍などの生体情報検知機能を有する端末装置としてのIoTデバイスを組み込んだブレスレットを配布し、災害発生時にドローンを多数飛ばし、生体情報を検知して生存者の分布状況を特定するサービスを提供してもよい。 In addition, for example, a bracelet incorporating an IoT device as a terminal device with a function to detect biological information such as body temperature and heart rate is distributed to a large number of elderly people and care recipients. Thus, a service for specifying the distribution of survivors may be provided.
 また例えば、災害時に多数飛ばしたドローンが観測したデータから災害情報などを、一旦、サーバ装置86で解析のうえ、リアルタイムの災害マップや避難情報をドローン60から個人の携帯端末へ送るサービスを提供してもよい。既に災害時の情報共有アプリはあるが、地上の移動通信網(携帯電話網)がダウンした場合には、この大量のドローン60による情報提供・通信機能が役立つ。 In addition, for example, the server device 86 once analyzes the disaster information from the data observed by a large number of drones skipped at the time of a disaster, and provides a service for sending a real-time disaster map and evacuation information from the drone 60 to a personal mobile terminal. May be. There is already an information sharing application at the time of a disaster, but when the ground mobile communication network (cell phone network) goes down, the information provision / communication function by this large amount of drone 60 is useful.
 また例えば、災害時に避難場所へ直ちにドローン60を飛ばして避難場所の情報を吸い上げたら避難場所の画像を撮影したりして各種情報を取得するサービスや、必要な情報を保持したドローン60を避難場所に着陸させ、避難者が携帯端末でドローン60から必要な情報を吸い上げることにより、必要な情報を届けるサービスを提供することができる。災害時には、避難場所に職員がいけないなど、公助が行き届かない可能性が高く、その際の現場との伝達役として活用することができる。また、このようなサービスは、例えば、地域行政職員のみならず、消防、警察、救急、報道、インフラ(電気・ガス・水道・通信・交通)など利用用途及びユーザは多数である。 In addition, for example, when a drone 60 is immediately blown to an evacuation site in the event of a disaster and information on the evacuation site is sucked up, an image of the evacuation site is taken to acquire various information, or the drone 60 holding necessary information is evacuated The evacuees can land on the mobile terminal and suck up necessary information from the drone 60 with the mobile terminal, thereby providing a service for delivering necessary information. In the event of a disaster, there is a high possibility that public assistance will not be achieved, such as the absence of staff at the evacuation site, and it can be used as a communication point with the site at that time. Such services are used not only by local administrative staff, but also by many uses and users such as firefighting, police, first aid, news reporting, and infrastructure (electricity, gas, water, communication, transportation).
 また例えば、交通事故・火災が発生したときにドローン60が現場にいち早くかけつけ、警察署や消防署等へ連絡をするサービスや、警察のみまもりや地域のみまもり(空からの巡回。空のからの学校周辺のみまもり。大規模イベント警備)及び連れ去り防止のためのサービスを提供することができる。 In addition, for example, when a traffic accident or fire occurs, the drone 60 promptly visits the site and contacts the police station or fire station, etc., police monitoring and community monitoring (patrol from the sky. School from the sky. We can provide services for monitoring the surrounding area, guarding large-scale events, and preventing removal.
 また、ドローンシェアリングサービスは、ドローン60で取得したデータ(例えば画像・動画)から人・車の流動状況を推測(例えば、AIによる推測)したり、建物等の外観確認・検査等を行うサービスであってもよい。 In addition, the drone sharing service is a service that estimates the flow situation of people and vehicles from the data (for example, images and videos) acquired by the drone 60 (for example, estimates by AI), and confirms and inspects the appearance of buildings, etc. It may be.
 また、サーバ装置86は、ドローン60の制御及びドローン60のからの情報の取得の少なくとも一方を含むサービス利用結果に基づいて、ドローンシェアリングサービスを利用する利用者に対する課金処理を実行してもよい。例えば、サーバ装置86は、利用者が利用したドローン60の飛行距離又は飛行時間、利用者したドローンシェアリングサービスの種類、利用した時間帯などに基づいて、ドローンシェアリングサービスの利用に対する課金処理を実行してもよい。また、利用者が利用したドローン60の充電回数又は充電量に基づいて充電に関する課金を行ってもよい。 Further, the server device 86 may execute a billing process for a user who uses the drone sharing service based on a service use result including at least one of control of the drone 60 and acquisition of information from the drone 60. . For example, the server device 86 performs a billing process for using the drone sharing service based on the flight distance or flight time of the drone 60 used by the user, the type of the drone sharing service used by the user, the time zone used, and the like. May be executed. Moreover, you may charge about charge based on the frequency | count of charge or charge amount of the drone 60 which the user utilized.
 また、ドローン60を用いて提供するドローンシェアリングサービスは、必要な利用者が必要なときに上記配達、観測、センシング、飛行実演などのドローンサービスを受けられるドローン・アズ・ア・サービス(DAAS)でもよいし、法人向けドローンシェアリングサービスであってもよい。 In addition, the drone sharing service provided using the drone 60 is a drone as a service (DAAS) that can receive drone services such as delivery, observation, sensing, and flight demonstrations when necessary users need it. However, it may be a drone sharing service for corporations.
 なお、上記実施形態では、HAPS10、20の3次元セルに在圏する端末装置がドローン60に設けれている場合について説明したが、HAPS10、20が無線通信を中継する端末装置は、地上又は海上から上空に向けて延びた超高層ビルや鉄塔などの構造体の高層部に設けられた端末装置であってもよい。この場合、例えば、超高層ビルや鉄塔などの構造体の高層部(超高層階)においてもHAPS10、20を介して移動通信を行うことができるようにするサービスを提供できる。 In the above-described embodiment, a case has been described in which the drone 60 is provided with a terminal device located in the three-dimensional cell of the HAPS 10 and 20, but the terminal device with which the HAPS 10 and 20 relays wireless communication can be It may be a terminal device provided in a high-rise part of a structure such as a skyscraper or a steel tower extending from above. In this case, for example, it is possible to provide a service that enables mobile communication to be performed via the HAPS 10 and 20 even in a high-rise part (super-high floor) of a structure such as a skyscraper or a steel tower.
 HAPS10、20が無線通信を中継する端末装置は、人体、鳥及び他の動物の少なくとも一つに装着された端末装置であってもよい。この場合、例えば、野鳥や野鳥・害鳥(カラスなど)の足などにIoTデバイスを装着し、その野鳥などの飛行経路の情報をHAPS10、20を介してサーバ装置に送信し、生息や巣などを探知して対策を打てるようにするサービスを提供してもよい。 The terminal device to which the HAPS 10 and 20 relay wireless communication may be a terminal device attached to at least one of a human body, a bird, and another animal. In this case, for example, an IoT device is attached to a foot of a wild bird, a wild bird, a harmful bird (crow, etc.), etc., and flight information of the wild bird is transmitted to the server device via the HAPS 10, 20, and the habitat, nest, etc. A service may be provided to detect and take countermeasures.
 また、HAPS10、20が無線通信を中継する端末装置は、飛行機、ヘリコプター、パラグライダー、パラシュートダイバー、飛行船、気球、アドバルーン及びカイトの少なくとも一つに装着された端末装置であってもよい。この場合、例えば、パラシュートの高度の情報をIoTデバイスで計測し、計測した情報をHAPS10、20を介してサーバ装置に送信し、パラシュートの利用者が万が一気を失っても所定高度で自動的にパラシュートを開かせるサービスを提供してもよい。 Further, the terminal device to which the HAPS 10, 20 relays wireless communication may be a terminal device mounted on at least one of an airplane, a helicopter, a paraglider, a parachute diver, an airship, a balloon, an ad balloon, and a kite. In this case, for example, information on the altitude of the parachute is measured by the IoT device, and the measured information is transmitted to the server device via the HAPS 10 and 20, and automatically at a predetermined altitude even if the user of the parachute loses a stroke. A service for opening a parachute may be provided.
 以上、本実施形態によれば、従来の地上の基地局90とは異なり、地面又は海面の所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)のセル形成目標空域40に広域の3次元セル41,42を形成し、その3次元セル41,42に在圏する複数の端末装置と移動通信網80との通信を中継することができる。しかも、上記3次元セル41,42を形成するHAPS10,20は、人工衛星よりも低い高度(例えば成層圏の高度)に位置するので、3次元セル41,42に在圏する端末装置と移動通信網80との間の無線通信における伝搬遅延が、人工衛星を介した衛星通信の場合よりも小さい。このように3次元セル41,42を形成できるとともに無線通信の伝搬遅延が低いので、無線通信の伝搬遅延が低い第5世代移動通信の3次元化ネットワークを実現することができる。 As described above, according to the present embodiment, unlike the conventional ground base station 90, the cell formation target airspace 40 in a predetermined altitude range (for example, an altitude range of 50 [m] or more and 1000 [m] or less) on the ground or the sea surface. Wide-area three- dimensional cells 41 and 42 can be formed, and communication between a plurality of terminal devices located in the three- dimensional cells 41 and 42 and the mobile communication network 80 can be relayed. Moreover, since the HAPSs 10 and 20 forming the three- dimensional cells 41 and 42 are located at a lower altitude (for example, the stratospheric altitude) than the artificial satellites, the terminal devices and mobile communication networks located in the three- dimensional cells 41 and 42 The propagation delay in wireless communication with 80 is smaller than that in the case of satellite communication via an artificial satellite. As described above, since the three- dimensional cells 41 and 42 can be formed and the propagation delay of the wireless communication is low, a three-dimensional network for fifth generation mobile communication having a low propagation delay of the wireless communication can be realized.
 特に、本実施形態によれば、第5世代移動通信等においてIoT向けデバイスを含む端末装置との間の無線通信の伝搬遅延が低く、広範囲の多数の端末装置と同時接続でき、高速通信可能で、単位面積あたりのシステム容量の大きい3次元化したネットワークにおいて、ドローン等の飛行可能な端末装置を用いた各種サービスを提供することができる。
 また、ドローン60の航空管制、飛行経路や飛行時間帯の制御、観測、飛行の許認可、課金、観測結果のデータ処理(例えば、AI解析処理、ビックデータ処理)を含めてドローンシェアリングサービスを一括して提供するプラットフォームを実現し、そのドローンシェアリングサービスのプラットフォームビジネスを展開することができる。
In particular, according to the present embodiment, the propagation delay of wireless communication with a terminal device including a device for IoT in 5th generation mobile communication or the like is low, and can be simultaneously connected to a large number of terminal devices, and high-speed communication is possible. In a three-dimensional network having a large system capacity per unit area, various services using a terminal device capable of flying such as a drone can be provided.
In addition, drone sharing services including drone 60 air traffic control, flight route and flight time zone control, observation, flight authorization, billing, observation result data processing (eg, AI analysis processing, big data processing) The platform to be provided can be realized and the drone sharing service platform business can be developed.
 なお、本明細書で説明された処理工程並びに無線中継装置の無線中継局、フィーダ局、遠隔制御装置、端末装置(ユーザ装置、移動局、通信端末)及び基地局における基地局装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 Note that the processing steps described in this specification and the components of the base station device in the radio relay station, feeder station, remote control device, terminal device (user device, mobile station, communication terminal) and base station of the radio relay device are as follows: Can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、無線中継局、フィーダ局、基地局装置、無線中継局装置、端末装置(ユーザ装置、移動局、通信端末)、遠隔制御装置、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 For hardware implementation, entity (eg, wireless relay station, feeder station, base station device, wireless relay station device, terminal device (user device, mobile station, communication terminal), remote control device, hard disk drive device, or optical disk The means such as processing units used to implement the above steps and components in the drive device) are one or more application specific IC (ASIC), digital signal processor (DSP), digital signal processor (DSPD). ), Programmable logic device (PLD), field programmable gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, designed to perform the functions described herein Other electronic units, Yuta, or it may be implemented in a combination thereof.
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Also, for firmware and / or software implementation, means such as processing units used to implement the above components may be programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.). In general, any computer / processor readable medium that specifically embodies firmware and / or software code is means such as a processing unit used to implement the steps and components described herein. May be used to implement For example, the firmware and / or software code may be stored in a memory, for example, in a control device, and executed by a computer or processor. The memory may be implemented inside the computer or processor, or may be implemented outside the processor. The firmware and / or software code is, for example, random access memory (RAM), read only memory (ROM), nonvolatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM) ), FLASH memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage, etc. Good. The code may be executed by one or more computers or processors, and may cause the computers or processors to perform the functional aspects described herein.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 Also, descriptions of the embodiments disclosed herein are provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to the present disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. The present disclosure is therefore not limited to the examples and designs described herein, but should be accorded the widest scope consistent with the principles and novel features disclosed herein.
 10,11,12 HAPS(ソーラープレーンタイプ)
 20 HAPS(飛行船タイプ)
 25 給電用飛行船
 30 ATG局
 40 セル形成目標空域
 41,42,43 3次元セル
 50 HAPSが位置する空域
 60 ドローン
 65 飛行機
 70 フィーダ局
 75 マイクロ波給電局
 80 移動通信網
 85 遠隔制御装置
 86 サーバ装置
 100,200,300 ビーム
 101 主翼部
 102 ソーラーパネル(太陽光発電パネル)
 103 プロペラ
 104 連結部
 105 ポッド
 106 バッテリー
 107 車輪
 108 受電用ポッド
 109 補助翼部
 110,210 無線中継局
 111 3次元(3D)セル形成アンテナ部
 112 送受信部
 113 フィード用アンテナ部
 114 送受信部
 115 リピーター部
 116 監視制御部
 117 電源部
 118 モデム部
 119 基地局処理部
 120 エッジコンピューティング部
 130 遠隔エネルギービーム受電部
 131 レクテナ部
 132 レクテナ制御部
 133 出力装置
 134 パイロット信号送信アンテナ部
 135 ビーム方向制御部
10, 11, 12 HAPS (solar plane type)
20 HAPS (Airship type)
25 Power Supply Airship 30 ATG Station 40 Cell Formation Target Airspace 41, 42, 43 3D Cell 50 Airspace where HAPS is located 60 Drone 65 Airplane 70 Feeder Station 75 Microwave Feed Station 80 Mobile Communication Network 85 Remote Control Device 86 Server Device 100 , 200, 300 Beam 101 Main wing 102 Solar panel (solar power generation panel)
DESCRIPTION OF SYMBOLS 103 Propeller 104 Connection part 105 Pod 106 Battery 107 Wheel 108 Power receiving pod 109 Auxiliary wing part 110,210 Radio relay station 111 Three-dimensional (3D) cell formation antenna part 112 Transmission / reception part 113 Feed antenna part 114 Transmission / reception part 115 Repeater part 116 Monitoring control unit 117 Power supply unit 118 Modem unit 119 Base station processing unit 120 Edge computing unit 130 Remote energy beam power receiving unit 131 Rectenna unit 132 Rectenna control unit 133 Output device 134 Pilot signal transmitting antenna unit 135 Beam direction control unit

Claims (20)

  1.  無線通信可能な一又は複数の上空を飛行可能な端末装置を用いたサービスを提供するサービス提供システムであって、
     前記端末装置との無線通信を中継する無線中継局を有する無線中継装置と、
     前記無線中継局を介して前記端末装置と通信可能なサーバ装置と、を備え、
     前記サーバ装置と前記端末装置との通信に基づいて、自律制御又は外部からの制御により前記端末装置の飛行が制御されることを特徴とするサービス提供システム。
    A service providing system that provides a service using a terminal device capable of flying over one or more wirelessly communicable devices,
    A wireless relay device having a wireless relay station that relays wireless communication with the terminal device;
    A server device capable of communicating with the terminal device via the wireless relay station,
    A service providing system, wherein flight of the terminal device is controlled by autonomous control or external control based on communication between the server device and the terminal device.
  2.  請求項1のサービス提供システムにおいて、
     前記端末装置が飛行するエリアに3次元セルを形成することを特徴とするサービス提供システム。
    In the service provision system of Claim 1,
    A service providing system, wherein a three-dimensional cell is formed in an area where the terminal device flies.
  3.  請求項1又は2のサービス提供システムにおいて、
     前記無線中継局は、地面又は海面との間の所定のセル形成目標空域に3次元セルを形成するように、自律制御又は外部からの制御により高度が100[km]以下の浮揚空域に位置するように制御される浮揚体に設けられ、
     前記端末装置は、自律制御又は外部からの制御により前記3次元セルに位置するように制御されることを特徴とするサービス提供システム。
    In the service provision system of Claim 1 or 2,
    The radio relay station is located in a floating airspace having an altitude of 100 km or less by autonomous control or external control so as to form a three-dimensional cell in a predetermined cell formation target airspace between the ground and the sea surface. Provided in the levitation body controlled as
    The service providing system, wherein the terminal device is controlled to be positioned in the three-dimensional cell by autonomous control or external control.
  4.  請求項1乃至3のいずれかのサービス提供システムにおいて、
     前記サーバ装置は、前記無線中継装置に組み込まれていることを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 3,
    The service providing system, wherein the server device is incorporated in the wireless relay device.
  5.  請求項1乃至4のいずれかのサービス提供システムにおいて、
     前記端末装置は、充電可能なバッテリーを有し自律制御又は外部からの制御により前記3次元セルを飛行可能な無人又は有人の飛行体からなる端末装置を含むことを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 4,
    The service providing system comprising: a terminal device comprising an unmanned or manned flying body having a rechargeable battery and capable of flying the three-dimensional cell by autonomous control or external control.
  6.  請求項5のサービス提供システムにおいて、
     前記飛行体からなる端末装置が離発着可能な場所に設けられ、その場所に着陸した端末装置のバッテリーを充電する充電装置を更に備えることを特徴とするサービス提供システム。
    In the service provision system of Claim 5,
    A service providing system, further comprising a charging device that is provided at a place where the terminal device composed of the flying object can be taken off and landing and charges a battery of the terminal device that has landed at the place.
  7.  請求項5又は6のサービス提供システムにおいて、
     自律制御又は外部からの制御により前記3次元セルに位置するように制御され、前記飛行体からなる端末装置が離発着可能な空中滞在型の駐機装置を更に備えることを特徴とするサービス提供システム。
    The service providing system according to claim 5 or 6,
    A service providing system further comprising an airborne parking device that is controlled so as to be positioned in the three-dimensional cell by autonomous control or control from the outside and to which a terminal device composed of the flying object can take off and land.
  8.  請求項5乃至7のいずれかのサービス提供システムにおいて、
     自律制御又は外部からの制御により前記3次元セルに位置するように制御され、前記飛行体からなる端末装置に接触又は非接触で給電可能な空中滞在型の充電装置を、更に備えることを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 5 thru | or 7,
    It further includes an airborne charging device that is controlled to be positioned in the three-dimensional cell by autonomous control or control from the outside and that can supply power to the terminal device made of the flying object in contact or non-contact. Service providing system.
  9.  請求項5乃至8のいずれかのサービス提供システムにおいて、
     前記サーバ装置は、互いに連携して飛行するように前記複数の飛行体からなる端末装置を制御することを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 5 thru | or 8,
    The service providing system according to claim 1, wherein the server device controls the terminal device including the plurality of flying bodies so as to fly in cooperation with each other.
  10.  請求項5乃至9のいずれかのサービス提供システムにおいて、
     前記サーバ装置は、前記飛行体からなる端末装置の飛行許認可、飛行に関する課金、飛行経路、飛行時間帯、飛行エリア及び飛行ルートの少なくとも一つを制御することを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 5 thru | or 9,
    The server device controls at least one of a flight authorization of a terminal device composed of the flying object, a billing for flight, a flight route, a flight time zone, a flight area, and a flight route.
  11.  請求項1乃至10のいずれかのサービス提供システムにおいて、
     前記端末装置は、その端末装置の周囲に位置する他の端末装置との間で無線通信する通信手段を備えることを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 10,
    The said terminal device is provided with the communication means which carries out radio | wireless communication between the other terminal devices located around the terminal device, The service provision system characterized by the above-mentioned.
  12.  請求項11のサービス提供システムにおいて、
     前記端末装置の前記通信手段は、前記他の端末装置と前記無線中継局との間の通信を中継することを特徴とするサービス提供システム。
    In the service provision system of Claim 11,
    The service providing system, wherein the communication unit of the terminal device relays communication between the other terminal device and the wireless relay station.
  13.  請求項1乃至12のいずれかのサービス提供システムにおいて、
     前記端末装置は、地上又は海上から上空に向けて延びた構造体の高層部に設けられた端末装置を含むことを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 12,
    The terminal device includes a terminal device provided in a high-rise part of a structure extending from the ground or the sea toward the sky.
  14.  請求項1乃至13のいずれかのサービス提供システムにおいて、
     前記端末装置は、人体、鳥及び他の動物の少なくとも一つに装着された端末装置を含むことを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 13,
    The service providing system, wherein the terminal device includes a terminal device attached to at least one of a human body, a bird, and another animal.
  15.  請求項1乃至14のいずれかのサービス提供システムにおいて、
     前記端末装置は、飛行機、ヘリコプター、パラグライダー、パラシュートダイバー、飛行船、気球、アドバルーン及びカイトの少なくとも一つに装着された端末装置を含むことを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 14,
    The terminal device includes a terminal device mounted on at least one of an airplane, a helicopter, a paraglider, a parachute diver, an airship, a balloon, an ad balloon, and a kite.
  16.  請求項1乃至15のいずれかのサービス提供システムにおいて、
     前記端末装置は、高圧電線からの電磁誘導による給電を受ける受電手段を備えることを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 15,
    The service providing system, wherein the terminal device includes power receiving means for receiving power supply by electromagnetic induction from a high-voltage electric wire.
  17.  請求項1乃至16のいずれかのサービス提供システムにおいて、
     前記端末装置は、動画、静止画、音、気温、湿度、照度、電波状況、微粒子、放射線、花粉、気流、視界、天候、周囲の飛行体、及び、当該端末装置の位置情報の少なくとも一つの情報を取得する情報取得手段を備え、
     前記サーバ装置は、前記端末装置で取得された取得情報を前記端末装置から受信する手段を備えることを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 16,
    The terminal device is at least one of moving image, still image, sound, temperature, humidity, illuminance, radio wave condition, fine particle, radiation, pollen, air current, field of view, weather, surrounding flying object, and position information of the terminal device. Comprising information acquisition means for acquiring information;
    The service providing system, wherein the server device includes means for receiving acquisition information acquired by the terminal device from the terminal device.
  18.  請求項17のサービス提供システムにおいて、
     前記サーバ装置は、前記端末装置から受信した情報を分析する手段を更に備えることを特徴とするサービス提供システム。
    The service providing system according to claim 17,
    The service providing system, wherein the server device further comprises means for analyzing information received from the terminal device.
  19.  請求項1乃至18のいずれかのサービス提供システムにおいて、
     前記端末装置を用いたサービスは、前記端末装置を用いた配達、前記端末装置を用いた情報の取得及び分析、前記端末装置を用いた通信の中継、並びに、前記複数の端末装置を用いた空中の飛行演技及び3次元ディスプレイの少なくとも一つを含むことを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 18,
    The service using the terminal device includes delivery using the terminal device, acquisition and analysis of information using the terminal device, relay of communication using the terminal device, and air using the plurality of terminal devices. A service providing system comprising at least one of a flight performance and a three-dimensional display.
  20.  請求項1乃至19のいずれかのサービス提供システムにおいて、
     前記サーバ装置は、
      前記端末装置を用いたサービスを利用する利用者からの利用申込情報に基づいて、前記端末装置の制御及び前記端末装置からの情報の取得の少なくとも一方を行い、
      前記端末装置の制御及び前記端末装置からの情報の取得の少なくとも一方を含むサービス利用結果に基づいて、前記利用者に対する課金処理を実行することを特徴とするサービス提供システム。
    In the service provision system in any one of Claims 1 thru | or 19,
    The server device
    Based on use application information from a user who uses the service using the terminal device, at least one of control of the terminal device and acquisition of information from the terminal device,
    A service providing system for executing charging processing for the user based on a service use result including at least one of control of the terminal device and acquisition of information from the terminal device.
PCT/JP2018/010665 2017-04-20 2018-03-17 Drone sharing service platform WO2018193776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017083435A JP6602336B2 (en) 2017-04-20 2017-04-20 Service provision system
JP2017-083435 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018193776A1 true WO2018193776A1 (en) 2018-10-25

Family

ID=63855746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010665 WO2018193776A1 (en) 2017-04-20 2018-03-17 Drone sharing service platform

Country Status (2)

Country Link
JP (1) JP6602336B2 (en)
WO (1) WO2018193776A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176955A (en) * 2019-07-01 2019-08-27 北京有感科技有限责任公司 UAV Communication base station, communication system and communication system construction method
CN110303912A (en) * 2019-07-11 2019-10-08 电子科技大学 A kind of aerial unmanned plane mobile charging system based on dirigible
WO2020225945A1 (en) * 2019-05-09 2020-11-12 Hapsモバイル株式会社 High-altitude platform system (haps) combining differing haps
CN113014303A (en) * 2021-02-22 2021-06-22 深圳市皓华网络通讯股份有限公司 5G relay device and emergency vehicle
WO2022123961A1 (en) * 2020-12-07 2022-06-16 Hapsモバイル株式会社 Control device, program, system, and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7177747B2 (en) * 2019-04-24 2022-11-24 Hapsモバイル株式会社 Controller, system, program, and control method
JP7177746B2 (en) * 2019-04-24 2022-11-24 Hapsモバイル株式会社 Controller, system, program, and control method
JP7093327B2 (en) * 2019-06-18 2022-06-29 Hapsモバイル株式会社 Arrangement determination device, program and arrangement determination method
JP7289755B2 (en) * 2019-08-09 2023-06-12 株式会社日立製作所 System and matching method
KR102492736B1 (en) * 2020-11-02 2023-01-31 고려대학교 산학협력단 Dron Based Network Communication Service System and Method Using Thereof
JP2022119290A (en) 2021-02-04 2022-08-17 Hapsモバイル株式会社 System, information providing device, program, and information providing method
WO2023112245A1 (en) * 2021-12-16 2023-06-22 日本電気株式会社 Management device, management method, and computer-readable storage medium
KR102612615B1 (en) * 2023-04-14 2023-12-12 (주)메타파스 Unmanned Aerial Vehicle-based Inspection/Patrol System and Method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336408A (en) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd Construction method of communication network, and communication system
JP2015188150A (en) * 2014-03-26 2015-10-29 株式会社衛星ネットワーク Aerial imaging video distribution system and aerial imaging video distribution method
JP6063595B1 (en) * 2016-06-10 2017-01-18 株式会社緑星社 Fish school search system
JP2017071233A (en) * 2015-10-05 2017-04-13 廣田 祐次 Drone shelter
JP2017195493A (en) * 2016-04-20 2017-10-26 日本電気株式会社 Mobile communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336408A (en) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd Construction method of communication network, and communication system
JP2015188150A (en) * 2014-03-26 2015-10-29 株式会社衛星ネットワーク Aerial imaging video distribution system and aerial imaging video distribution method
JP2017071233A (en) * 2015-10-05 2017-04-13 廣田 祐次 Drone shelter
JP2017195493A (en) * 2016-04-20 2017-10-26 日本電気株式会社 Mobile communication system
JP6063595B1 (en) * 2016-06-10 2017-01-18 株式会社緑星社 Fish school search system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225945A1 (en) * 2019-05-09 2020-11-12 Hapsモバイル株式会社 High-altitude platform system (haps) combining differing haps
JP2020184732A (en) * 2019-05-09 2020-11-12 Hapsモバイル株式会社 Haps system in which different haps are combined
JP7385372B2 (en) 2019-05-09 2023-11-22 ソフトバンク株式会社 HAPS system that combines different HAPS
CN110176955A (en) * 2019-07-01 2019-08-27 北京有感科技有限责任公司 UAV Communication base station, communication system and communication system construction method
CN110176955B (en) * 2019-07-01 2023-08-25 合肥有感科技有限责任公司 Unmanned aerial vehicle communication base station, communication system and method for constructing communication system
CN110303912A (en) * 2019-07-11 2019-10-08 电子科技大学 A kind of aerial unmanned plane mobile charging system based on dirigible
WO2022123961A1 (en) * 2020-12-07 2022-06-16 Hapsモバイル株式会社 Control device, program, system, and method
US11924586B2 (en) 2020-12-07 2024-03-05 Softbank Corp. Control device, program, system, and method
CN113014303A (en) * 2021-02-22 2021-06-22 深圳市皓华网络通讯股份有限公司 5G relay device and emergency vehicle

Also Published As

Publication number Publication date
JP6602336B2 (en) 2019-11-06
JP2018177135A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6602336B2 (en) Service provision system
US11308814B2 (en) HAPS cooperative flight system
KR102121164B1 (en) Inter-HAPS communication and high-capacity multi-cell HAPS to build a 3D network of 5th generation communication
EP3606128B1 (en) Three dimensionalization of fifth generation communication
CN111684738B (en) Wireless relay device and communication system
US10985839B2 (en) 3D-compatible directional optical antenna
US11215708B2 (en) Flight feedback control based on gust detection around HAPS
JP6689804B2 (en) Communication relay device, system and management device
JP2021019335A (en) Dynamic site diversity in haps communication system
JP6689802B2 (en) Communication relay device, system and management device
OA19809A (en) Inter-HAPS communication that builds three-dimensionally formed network of fifthgeneration communication, and large-capacity and multi-cell captive airship-type HAPS.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787326

Country of ref document: EP

Kind code of ref document: A1