WO2018193757A1 - Aluminum base copper-clad laminated plate - Google Patents

Aluminum base copper-clad laminated plate Download PDF

Info

Publication number
WO2018193757A1
WO2018193757A1 PCT/JP2018/009896 JP2018009896W WO2018193757A1 WO 2018193757 A1 WO2018193757 A1 WO 2018193757A1 JP 2018009896 W JP2018009896 W JP 2018009896W WO 2018193757 A1 WO2018193757 A1 WO 2018193757A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
clad laminate
resin layer
copper
insulating resin
Prior art date
Application number
PCT/JP2018/009896
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 北原
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2018534902A priority Critical patent/JPWO2018193757A1/en
Priority to CN201880025908.4A priority patent/CN110573336A/en
Publication of WO2018193757A1 publication Critical patent/WO2018193757A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Definitions

  • the present invention relates to an aluminum-based copper-clad laminate.
  • the technology related to a laminated plate (referred to herein as an aluminum-based copper-clad laminated plate or simply a laminated plate) having a copper foil layer or an insulating layer based on an aluminum plate is various technical fields such as electric -It is examined in the electronic field, the lighting field, etc. (for example, refer patent document 1).
  • the conventional aluminum-based copper clad laminate is not strong enough, and when used as, for example, an electrical / electronic component, cracks are generated in the insulating layer and the copper foil due to external force. There were easy problems and there was room for improvement.
  • the present inventor has intensively studied in order to achieve the above problems, and has found that an aluminum-based copper-clad laminate having a specific configuration solves the above problems.
  • An aluminum-based copper clad laminate An electrically insulating insulating resin layer having a thickness of 60 to 140 ⁇ m; An aluminum plate having a thickness of 0.5 to 2.0 mm laminated on one surface of the insulating resin layer; A copper foil having a thickness of 18 to 105 ⁇ m laminated on the other surface of the insulating resin layer,
  • An aluminum-based copper clad laminate having a 0.2% proof stress of 200 to 295 MPa is provided.
  • an aluminum-based copper-clad laminate with improved strength against physical impact is provided. More specifically, an aluminum-based copper-clad laminate in which generation of cracks against impact (external force) is suppressed is provided.
  • the aluminum-based copper-clad laminate of the present invention will be described in detail with reference to the drawings.
  • the aluminum-based copper-clad laminate is simply abbreviated as a laminate.
  • the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the dimensional ratio in the drawing does not necessarily correspond to an actual article and may be exaggerated.
  • the description of “a to b” in the numerical range represents “a” to “b” unless otherwise specified.
  • FIG. 1 shows a cross section of an aluminum-based copper-clad laminate 10 according to this embodiment.
  • the laminated plate 10 includes an electrically insulating insulating resin layer 11 having a thickness of 60 to 140 ⁇ m, an aluminum plate 12 having a thickness of 0.5 to 2.0 mm laminated on one surface of the insulating resin layer 11, and an insulating plate.
  • the copper foil 13 is laminated on the other surface of the resin layer 11 and has a thickness of 18 to 105 ⁇ m.
  • the laminated plate 10 according to the present embodiment is a three-point bending method in which a load is applied from the copper foil 13 side on the laminated plate 10 having a length of 100 mm and a width of 25 mm under a condition of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min.
  • the aluminum base copper clad laminate 10 has a 0.2% proof stress of 200 to 295 MPa when the test is performed.
  • “Strength” is generally an index indicating the strength of a material whose yield point is not clear against plastic deformation.
  • “X% proof stress” means the tangential OE and the strain parallel to the tangent OE with respect to the elastic deformation region (region where load and displacement are directly proportional) of the stress-strain curve in the above three-point bending test.
  • the conventional laminated board was liable to generate cracks in the insulating layer and the copper foil due to external force. Therefore, as a result of trial and error, the present inventor made a three-point bending test under the conditions described in the present specification as the entire laminated plate 10 while setting each of the insulating resin layer 11, the aluminum plate 12, and the copper foil 13 to appropriate thicknesses. 0.2% proof stress at 200 to 295 MPa (preferably 205 to 280 MPa, more preferably 210 to 265 MPa). And it discovered that the crack generation of the insulating resin layer 11 and the copper foil 13 could be suppressed effectively by carrying out like this.
  • the laminated board 10 according to the present embodiment is applied to the laminated board 10 having a length of 100 mm and a width of 25 mm by applying a load from the copper foil 13 side under the condition of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min.
  • the laminated plate 10 has a 0.1% proof stress of 185 to 285 MPa. This value is more preferably 185 to 260 MPa, and further preferably 185 to 255 MPa.
  • the laminated board 10 which concerns on this embodiment applies a load from the copper foil 13 side with respect to the said laminated board 10 of length 100mm and width 25mm on the conditions of the distance between fulcrums of 64mm, and the bending speed of 10 mm / min.
  • the laminated plate 10 has a 0.5% proof stress of 210 to 310 MPa. This value is more preferably 210 to 285 MPa, and further preferably 215 to 280 MPa.
  • the laminate 10 according to the present embodiment applies a load from the copper foil 13 side to the laminate 10 having a length of 100 mm and a width of 25 mm under a condition of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min.
  • the laminated plate 10 has a stress of 205 to 305 MPa when strained by 1%. This value is more preferably 205 to 290 MPa, and further preferably 205 to 285 MPa.
  • the 0.2% proof stress, 0.1% proof stress, 0.5% proof stress, 1% strain stress, and the like are, for example, the characteristics and thickness of the aluminum plate 12 used for the laminated plate 10 and the insulation.
  • the insulating resin layer 11, the aluminum plate 12, the copper foil 13 and the like constituting the laminated plate 10 according to the present embodiment will be described.
  • the laminate 10 includes an electrically insulating insulating resin layer 11 having a thickness of 60 to 140 ⁇ m.
  • the thickness is preferably 70 to 130 ⁇ m, more preferably 80 to 120 ⁇ m. By setting it as this thickness, while being able to obtain sufficient electrical insulation, it can be expected that cracks in the copper foil 13 and the insulating resin layer 11 are less likely to occur.
  • the insulating resin layer 11 has insulating properties. Thereby, the aluminum plate 12 and the copper foil 13 are insulated.
  • the insulating resin layer 11 is typically composed of a solidified product or a cured product formed by solidifying or curing the resin composition. Hereinafter, this resin composition will be described.
  • the resin composition usually contains a resin.
  • the resin is not particularly limited, and various resins such as a thermoplastic resin and a thermosetting resin can be used.
  • thermoplastic resin examples include polyolefins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, modified polyolefins, polyamides (eg, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12) , Nylon 6-12, nylon 6-66), thermoplastic polyimide, aromatic polyester and other liquid crystal polymers, polyphenylene oxide, polyphenylene sulfide, polycarbonate, polymethyl methacrylate, polyether, polyether ether ketone, polyether imide, polyacetal, Styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, trans polyisoprene, fluoro rubber, Various thermoplastic elastomers fluorinated polyethylene and the like, etc., or a copolymer of these main, blend, and a polymer alloy or the like. You may use these in mixture of 2 or more types.
  • thermosetting resin examples include phenoxy resin, epoxy resin, phenol resin, urea resin, melamine resin, polyester (unsaturated polyester) resin, polyimide resin, silicone resin, polyurethane resin, and the like. You may use these in mixture of 2 or more types.
  • the resin composition includes at least one resin selected from an epoxy resin and a phenoxy resin, in other words, the insulating resin layer 11 to be formed is selected from an epoxy resin and a phenoxy resin. It preferably contains at least one resin.
  • the resin composition includes at least one resin selected from an epoxy resin and a phenoxy resin, in other words, the insulating resin layer 11 to be formed is selected from an epoxy resin and a phenoxy resin. It preferably contains at least one resin.
  • the fluidity of the resin composition is reduced, and it becomes easy to secure a sufficient thickness of the insulating resin layer 11, so that the insulation reliability can be further improved.
  • the adhesion between the insulating resin layer 11 and the aluminum plate 12 or the copper foil 13 is improved. This can contribute to the suppression or prevention of delamination between layers when flattening is performed by pressing or the like in the manufacturing process of the laminated plate 10.
  • the phenoxy resin examples include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having an anthracene skeleton, and a phenoxy resin having a biphenyl skeleton.
  • a phenoxy resin having a structure having a plurality of these skeletons can also be used.
  • a phenoxy resin having both a bisphenol A skeleton and a bisphenol F skeleton may be used.
  • the weight average molecular weight of the phenoxy resin is not particularly limited, but is preferably 4.0 ⁇ 10 4 to 4.9 ⁇ 10 4 .
  • the elastic modulus of the insulating resin layer 11 can be reduced, and the laminate 10 can be excellent in stress relaxation properties.
  • the semiconductor device is more accurately suppressed from generating cracks and the like even under a rapid heating / cooling environment. Become.
  • the epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule.
  • an epoxy resin (A) having at least one of an aromatic ring structure and an alicyclic structure (alicyclic carbocyclic structure) is preferable.
  • Examples of the epoxy resin (A) having an aromatic ring or alicyclic structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, and bisphenol P.
  • Type epoxy resin bisphenol type epoxy resin such as bisphenol Z type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, novolac type epoxy resin such as tetraphenol group ethane type novolac type epoxy resin, biphenyl type epoxy resin, biphenylene
  • Examples include arylalkylene type epoxy resins such as phenol aralkyl type epoxy resins having a skeleton, and epoxy resins such as naphthalene type epoxy resins. You may use these in combination of 2 or more type.
  • the resin content is usually 1 to 40% by mass, preferably 2 to 20% by mass, and more preferably 4 to 16% by mass, based on the entire nonvolatile components of the resin composition.
  • the resin composition may contain a curing agent as necessary depending on the type of resin (for example, when an epoxy resin is included).
  • the curing agent is not particularly limited.
  • amide curing agents such as dicyandiamide and aliphatic polyamide
  • amine curing agents such as diaminodiphenylmethane, methanephenylenediamine, ammonia, triethylamine, and diethylamine, bisphenol A, and bisphenol F.
  • phenolic curing agents such as phenol novolak resin, cresol novolak resin, p-xylene-novolak resin, and acid anhydrides.
  • the resin composition may further contain a curing catalyst (curing accelerator).
  • a curing catalyst curing accelerator
  • hardenability of a resin composition can be improved.
  • the curing catalyst include amine catalysts such as imidazoles, 1,8-diazabicyclo (5,4,0) undecene, phosphorus catalysts such as triphenylphosphine, and the like. Of these, imidazoles are preferred. Thereby, in particular, the fast curability and the storage stability of the resin composition can be sufficiently achieved.
  • imidazoles include 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2- Phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6 -[2'-methylimidazolyl- (1 ')]-ethyl-s-triazine is
  • the content of the curing catalyst is not particularly limited, but is preferably 0.01 to 30% by mass, and more preferably 0.05 to 10% by mass based on the entire non-volatile components of the resin composition.
  • the content is equal to or higher than the lower limit value, the curability of the resin composition becomes more sufficient.
  • the content is equal to or lower than the upper limit value, the storability of the resin composition can be further improved. it can.
  • the resin composition preferably contains a coupling agent.
  • the adhesiveness with the aluminum plate 12 and the copper foil 13 can be improved more. Therefore, when the flattening process etc. are given to the laminated board 10, it suppresses that a crack generate
  • Examples of coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • a silane coupling agent is preferable from the viewpoints of availability and ease of handling.
  • the silane coupling agent is not particularly limited.
  • the content of the coupling agent is not particularly limited, but is preferably 0.01 to 10% by mass, and more preferably 0.5 to 10% by mass based on the entire nonvolatile components of the resin composition.
  • the content is equal to or higher than the lower limit, the above-described effect of increasing the adhesion becomes more sufficient.
  • the content By setting the content to be equal to or lower than the upper limit, outgas and voids when forming the insulating resin layer 11 can be further suppressed.
  • the resin composition preferably contains a filler (filler).
  • the filler is preferably an inorganic material (inorganic filler).
  • the thermal conductivity can be improved as compared with the case where the insulating resin layer 11 is formed only of an organic material such as a resin. This is desirable when the laminated plate 10 according to this embodiment is applied to the electric / electronic field, the lighting field, and the like.
  • the inorganic filler is not particularly limited.
  • the inorganic filler is preferably a granular material composed of at least one of aluminum oxide and aluminum nitride, and more preferably a granular material mainly composed of aluminum oxide. Thereby, it can be set as the inorganic filler excellent in thermal conductivity and insulation.
  • Aluminum oxide is also preferable because of its versatility and availability at low cost.
  • the average primary particle diameter (D50: median diameter) is preferably 1 to 10 ⁇ m, and more preferably 3 to 7 ⁇ m.
  • the filling rate of an inorganic filler can be raised more. Therefore, the contact area between the inorganic fillers (primary particles) can be further increased, and the thermal conductivity can be further improved.
  • the shape of the inorganic filler is not particularly limited, and may be spherical or irregular. Further, as one aspect, a spherical inorganic filler and an amorphous inorganic filler may be used in combination (for example, 30-40% by mass of the inorganic filler is a spherical filler, and the rest is an irregular shape.
  • the irregularly shaped filler enters the gaps between the spherical fillers, and the insulating resin layer 11 tends to become denser. This can contribute to the production under a low pressure condition in the production of the laminate 10 described later.
  • the content of the filler is preferably 60 to 90% by mass, more preferably 70 to 85% by mass based on the total amount of nonvolatile components of the resin composition. It can be expected that the thermal conductivity of the insulating resin layer 11 is further improved by setting the value to be above the lower limit of the numerical range. By making it to be below the upper limit of this numerical range, it is excellent in stress relaxation properties and can suppress the generation of cracks.
  • the resin composition may contain additives such as a leveling agent (surfactant) and an antifoaming agent in addition to the components described above.
  • a leveling agent surfactant
  • an antifoaming agent in addition to the components described above.
  • the resin composition usually contains a solvent.
  • the solvent is an organic solvent such as methyl ethyl ketone, acetone, toluene, or dimethylformaldehyde. That is, the resin composition typically has a varnish shape in which components such as the above resin are dissolved or dispersed in an organic solvent.
  • the resin composition can be obtained, for example, by mixing a resin material and a solvent to form a varnish, and further mixing an inorganic filler.
  • a mixer used for mixing For example, a disperser, a composite blade type stirrer, a bead mill, a homogenizer, etc. are mentioned.
  • a laminated plate 10 according to this embodiment includes an aluminum plate 12 having a thickness of 0.5 to 2.0 mm laminated on one surface of the insulating resin layer 11. This thickness is preferably 0.5 to 1.0 mm, more preferably 0.6 to 0.8 mm. By setting this thickness, it is possible to achieve both impact resistance and ease of processing.
  • the aluminum plate 12 according to this embodiment is preferably made of aluminum having a purity of 98.5 to 100% by mass. More preferably, the purity is 99.5 to 100% by mass.
  • the purity is 99.5 to 100% by mass.
  • other atoms except an aluminum atom For example, magnesium, calcium, oxygen, silicon etc. are mentioned. According to the knowledge of the present inventor, high purity aluminum is moderately soft. Therefore, when the aluminum plate 12 made of such aluminum is used, the laminated plate 10 satisfying desired characteristics according to the present embodiment (for example, the laminated plate 10 having the above-described 0.2% proof stress value of 200 to 295 MPa). ) Is considered easy to manufacture.
  • the tensile strength of the aluminum material constituting the aluminum plate 12 is preferably 95 to 140 MPa, and more preferably 95 to 120 MPa.
  • the tensile strength here is calculated
  • the present inventor when selecting the aluminum plate 12 with reference to an index related to “tensile”, exhibits good performance against various impacts simulated by the “three-point bending test” (that is, due to external force). The knowledge that crack generation and dielectric breakdown can be suppressed) has been found. Incidentally, when the purity of the aluminum constituting the aluminum plate 12 is increased as described above, there is a tendency that the numerical value of the tensile strength easily falls within the preferable numerical range.
  • a laminated plate 10 according to this embodiment includes a copper foil 13 having a thickness of 18 to 105 ⁇ m laminated on the other surface of the insulating resin layer 11 (the surface opposite to the surface on which the aluminum plate 12 is present). .
  • This thickness is preferably 18 to 70 ⁇ m, more preferably 25 to 45 ⁇ m, still more preferably 30 to 40 ⁇ m, and particularly preferably 35 ⁇ m.
  • a crack etc. become difficult to generate
  • the laminated board 10 which concerns on this embodiment is manufactured by the method of the following (1) (2) and (3) as an example. Of course, as long as the finally obtained laminate 10 has characteristics such as desired proof stress, the laminate 10 according to this embodiment may be manufactured by other methods.
  • insulating resin layer 11 on copper foil 13 First, a flat copper foil 13 is prepared, and then an insulating resin layer forming layer is formed on the copper foil 13 as shown in FIG. 11A is formed.
  • This insulating resin layer forming layer 11A is obtained by supplying the above resin composition onto the copper foil 13 to form a layer and then drying it. And this insulating resin layer forming layer 11A turns into the insulating resin layer 11 by hardening or solidifying through the process (2) mentioned later.
  • the supply of the resin composition to the copper foil 13 can be performed using, for example, a roll coater, a bar coater, a knife coater, a gravure coater, a die coater, a comma coater, a curtain coater, or the like.
  • a roll coater a bar coater
  • a knife coater a gravure coater
  • a die coater a comma coater
  • a curtain coater or the like.
  • the resin composition When the resin composition is applied to the step (1), it preferably has the following viscosity behavior. That is, when the resin composition was heated from 60 ° C. to a molten state at a rate of temperature increase of 3 ° C./min and a frequency of 1 Hz using a dynamic viscoelasticity measuring device, the melt viscosity decreased initially and the lowest It is preferable that after reaching the viscosity, it has a characteristic of further increasing, and the minimum melt viscosity is in the range of 1 ⁇ 10 3 Pa ⁇ s to 1 ⁇ 10 5 Pa ⁇ s.
  • the minimum melt viscosity is not less than the above lower limit, separation of the resin and the filler can be suppressed, and a more uniform insulating resin layer 11 can be obtained through the step (2) described later. Moreover, the adhesiveness of the insulating resin layer 11 and the copper foil 13 can be improved further as the minimum melt viscosity is not more than the above upper limit. Due to these synergistic effects, the thermal conductivity and insulating properties of the laminate 10 can be further enhanced.
  • the resin composition preferably has a temperature at which the minimum melt viscosity is reached in the range of 60 to 100 ° C., and more preferably in the range of 75 to 90 ° C.
  • the resin composition preferably has a flow rate of 10 to 60%, more preferably 20 to 50%.
  • the resin composition has such a viscosity behavior
  • air can be further prevented from entering the resin composition, and the resin composition The gas dissolved inside can be discharged to the outside.
  • generation of bubbles in the insulating resin layer 11 can be further suppressed, and heat can be reliably transmitted from the copper foil 13 to the insulating resin layer 11.
  • the insulation reliability of the laminated board 10 can be improved by suppressing generation
  • the adhesion between the copper foil 13 and the insulating resin layer 11 can be improved.
  • the resin composition having such a viscosity behavior is, for example, the type and amount of the resin material described above, the type and amount of the inorganic filler, and, if the resin material contains a phenoxy resin, the type and amount of the resin material. It can be obtained by adjusting appropriately.
  • the insulating resin layer forming layer 11A is formed on the condition that the insulating resin layer forming layer 11A is cured to form the insulating resin layer 11 when the insulating resin layer forming layer 11A exhibits thermosetting properties. Heated and pressurized. Further, when the insulating resin layer forming layer 11A exhibits thermoplasticity, it is heated and pressurized under the condition of being solidified by cooling after being melted by heating and heating.
  • the heating and pressurizing conditions are appropriately set depending on the type of resin composition contained in the insulating resin layer forming layer 11A.
  • the heating temperature is preferably set to about 80 to 200 ° C, more preferably about 170 to 190 ° C.
  • the pressure to be applied is preferably set to about 1 to 12 MPa, more preferably about 3 to 10 MPa.
  • the heating and pressurizing time is preferably about 10 to 90 minutes, more preferably about 30 to 60 minutes.
  • the aluminum plate 12 is joined to the insulating resin layer forming layer 11 ⁇ / b> A, and the insulating resin layer forming layer 11 ⁇ / b> A is cured to form the insulating resin layer 11.
  • the laminated board 10 with which the aluminum plate 12 was bonded together is obtained.
  • the bonding surface of the aluminum plate 12 Prior to the bonding of the insulating resin layer forming layer 11A and the aluminum plate 12, the bonding surface of the aluminum plate 12 is brought into contact with water at 40 to 80 ° C. for 0.5 to 3 minutes. It is preferable to apply. Thereby, the adhesiveness of the insulating resin layer 11 and the aluminum plate 12 can be improved more.
  • the planarization process can be performed using, for example, the planarization apparatus 100 shown in FIG.
  • the flattening device 100 includes a seamless belt 110 on which the laminated plate 10 is placed, and a transport unit 120 that transports the seamless belt 110.
  • the conveying means 120 has tensioners (tension rollers) 130, 131, 132, 140, 141, 142, 143.
  • the tensioner 130, 131, 132, 140, 141, 142, 143 is provided with a seamless belt 110 having an annular shape when viewed from the side. , 141, 142, and 143, the seamless belt 110 is repeatedly sent out along the conveyance direction.
  • the tensioners 130, 131, 132, 140, 141, 142, and 143 each have a cylindrical outer shape, and are made of a metal material such as stainless steel.
  • the tensioners 130, 131, 132, 140, 141, 142, and 143 are disposed so that the rotation axes (center axes) face the same direction and are separated from each other. Furthermore, for example, it is rotatably supported by a frame (not shown) that supports the entire flattening device 100.
  • the tensioners 140 to 143 are rollers that rotate while the seamless belt 110 that is in contact with the tensioner 140 is wound around.
  • the seamless belt 110 is repeatedly sent out in a loop shape by changing the transport direction at the corner of the seamless belt 110 that is attached.
  • the tensioners 130 to 132 are arranged in this order between the tensioner 140 and the tensioner 141.
  • the seamless belt 110 that is in contact with the tensioner 130 and the tensioner 131 and between the tensioner 131 and the tensioner 132 is a roller that rotates while being wound around.
  • the center of the tensioner 130 and the tensioner 132 is arranged along the transport direction.
  • the center of the tensioner 131 is shifted from the center of the tensioner 130 and the tensioner 132 in a direction perpendicular to the transport direction.
  • the seamless belt 110 is conveyed between the tensioners 130 to 132 arranged in this manner, and at this time, the conveyance direction is changed.
  • the seamless belt 110 is transported between the tensioners 130 to 132, the warped laminate 10 is placed on the seamless belt 110 to correct the warp. As a result, the laminate 10 is flattened.
  • the diameter of the tensioners 130 to 132 is preferably 2 to 30 cm, and more preferably 10 to 20 cm. Further, the distance L 1 between the tensioner 130 and the tensioner 131, and the distance L 2 between the tensioner 131 and the tensioner 132, each independently, preferably 10 ⁇ 50 cm, and more preferably 15 ⁇ 30 cm. Further, when the tensioners 130 to 132 are viewed from the transport direction, the length L 3 of the region where the tensioners 130 and 132 and the tensioner 131 overlap in the direction perpendicular to the transport direction is preferably 2 to 8 cm, and preferably 4 to 6 cm. More preferred. By setting the sizes and the like of the tensioners 130 to 132 within these ranges, it is possible to more reliably correct the warp generated in the laminated board 10.
  • a motor (not shown) is connected to at least one of the tensioners 130 to 132, and the seamless belt 110 is conveyed by the operation of this motor.
  • the laminated board 10 in which the curvature was corrected has the curvature rate in the aluminum plate 12 measured using the stationary method prescribed
  • the warpage rate is within such a range, it can be said that the warpage generated in the laminated plate 10 has been corrected and flattened.
  • Thermosetting resin (1) Bisphenol A type phenoxy resin ("1255" manufactured by Mitsubishi Chemical Corporation)
  • Thermosetting resin (2) Bisphenol A type epoxy resin (DIC Corporation "850S")
  • Aluminum plate (1) Aluminum 6000 series (“A6061-T6” manufactured by Nippon Light Metal Co., Ltd., thickness 0.6 mm, aluminum purity 97.2 mass%, Brinell hardness 105 HB)
  • Aluminum plate (2) Aluminum 5000 series (“A5052-H34” manufactured by Nippon Light Metal Co., Ltd., thickness 0.6 mm, aluminum purity 97.2 mass%, Brinell hardness 82 HB)
  • Aluminum plate (3) Aluminum 1000 series (“A1050-H24” manufactured by Nippon Light Metal Co., Ltd., thickness 0.6 mm, aluminum purity 99.5 mass%, Brinell hardness 30 HB) Note that some aluminum plates have different physical properties such as tensile strength depending on the lot even if they have the same product number. The tensile strength is shown in Table 1 below.
  • Copper foil (1) Rolled copper foil (“YGP-35” manufactured by Nippon Electrolytic Co., Ltd.) thickness 35 ⁇ m
  • the laminated board was manufactured as follows.
  • thermosetting resin As a thermosetting resin, a curing agent, a curing accelerator, a silane coupling agent, and a filler, those shown in Table 1 were weighed by mass parts shown in Table 1. These were dissolved and mixed in 400 parts by mass of cyclohexanone, and stirred using a high-speed stirring device to prepare a resin composition.
  • the prepared copper foil (1) was 260 mm wide and 35 ⁇ m thick.
  • a resin composition prepared in advance is applied to the roughened surface of the copper foil (1) with a comma coater and dried by heating at 100 ° C. for 3 minutes and at 150 ° C. for 3 minutes, whereby an insulating resin layer is formed on the copper foil.
  • a forming layer was formed.
  • the thickness of the layer was adjusted so that the thickness of the insulating resin layer in the final laminated plate was a value shown in Table 1.
  • the insulating resin layer forming layer is in a semi-cured state by drying the resin composition under such conditions. This was cut into 65 mm length ⁇ 100 mm width.
  • ⁇ Dielectric breakdown voltage value> The laminates obtained in each example and each comparative example were cut to prepare 8 cm square test pieces. The copper foil on one side was etched to produce a 25 mm ⁇ pattern at the center of the test piece. Then, after bending the test piece into an L shape, the DC voltage was boosted at a speed of 0.5 kV / s according to the withstand voltage test of JIS K 6911, and the dielectric breakdown potential was read to obtain the dielectric breakdown voltage value. .
  • each of the examples that is, the laminated sheet having a 0.2% proof stress in the range of 200 to 295 MPa
  • the occurrence of cracks was suppressed and a good dielectric breakdown voltage value was exhibited.
  • each comparative example that is, a laminate having a 0.2% proof stress outside the range of 200 to 295 MPa, was inferior in terms of occurrence of cracks compared to the laminate of the example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

An aluminum base copper-clad laminated plate comprises: an electrically-insulating insulating resin layer having a thickness of 60 to 140 μm; an aluminum plate laminated onto one surface of the insulating resin layer and having a thickness of 0.5 to 2.0 mm; and copper foil laminated onto the other surface of the insulating resin layer and having a thickness of 18 to 105 μm. When the aluminum base copper-clad laminated plate having a length of 100 mm and a width of 25 mm is subjected to a three-point bending test in which a load is applied from the copper foil side under the conditions of a supporting span of 64 mm and a bending rate of 10 mm/min, a 0.2% proof stress is 200 to 295 MPa.

Description

アルミニウムベース銅張積層板Aluminum base copper clad laminate
 本発明は、アルミニウムベース銅張積層板に関する。 The present invention relates to an aluminum-based copper-clad laminate.
 アルミニウム板をベースとして、銅箔の層や絶縁層などを有する積層板(本明細書において、アルミニウムベース銅張積層板、または、単に積層板ともいう)に関する技術は、様々な技術分野、例えば電気・電子分野、照明分野等で検討されている(例えば特許文献1参照)。 The technology related to a laminated plate (referred to herein as an aluminum-based copper-clad laminated plate or simply a laminated plate) having a copper foil layer or an insulating layer based on an aluminum plate is various technical fields such as electric -It is examined in the electronic field, the lighting field, etc. (for example, refer patent document 1).
特開2005-281509号公報JP 2005-281509 A
 しかし、本発明者の検討によると、従来のアルミニウムベース銅張積層板は、その強度が十分でなく、例えば電気・電子部品等として使用した際、外力により絶縁層や銅箔にクラックが発生しやすい問題があり、改善の余地があった。 However, according to the study of the present inventor, the conventional aluminum-based copper clad laminate is not strong enough, and when used as, for example, an electrical / electronic component, cracks are generated in the insulating layer and the copper foil due to external force. There were easy problems and there was room for improvement.
 本発明者は、上記課題を達成するために鋭意検討を重ね、特定の構成を有するアルミニウムベース銅張積層板が上記課題を解決することを見出した。 The present inventor has intensively studied in order to achieve the above problems, and has found that an aluminum-based copper-clad laminate having a specific configuration solves the above problems.
 すなわち、本発明によれば、
 アルミニウムベース銅張積層板であって、
 厚さ60~140μmの電気絶縁性の絶縁樹脂層と、
 前記絶縁樹脂層の一方の面に積層された、厚さ0.5~2.0mmのアルミニウム板と、
 前記絶縁樹脂層の他方の面に積層された、厚さ18~105μmの銅箔と、から構成され、
 長さ100mm、幅25mmの当該アルミニウムベース銅張積層板に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、前記銅箔側から荷重をかける3点曲げ試験を実施したとき、0.2%耐力が、200~295MPaである、アルミニウムベース銅張積層板
が提供される。
That is, according to the present invention,
An aluminum-based copper clad laminate,
An electrically insulating insulating resin layer having a thickness of 60 to 140 μm;
An aluminum plate having a thickness of 0.5 to 2.0 mm laminated on one surface of the insulating resin layer;
A copper foil having a thickness of 18 to 105 μm laminated on the other surface of the insulating resin layer,
When a three-point bending test in which a load is applied from the copper foil side under the conditions of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min for the aluminum-based copper-clad laminate having a length of 100 mm and a width of 25 mm, An aluminum-based copper clad laminate having a 0.2% proof stress of 200 to 295 MPa is provided.
 本発明によれば、物理的な衝撃に対する強度が改善されたアルミニウムベース銅張積層板が提供される。より具体的には、衝撃(外力)に対してクラック発生が抑えられたアルミニウムベース銅張積層板が提供される。 According to the present invention, an aluminum-based copper-clad laminate with improved strength against physical impact is provided. More specifically, an aluminum-based copper-clad laminate in which generation of cracks against impact (external force) is suppressed is provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明の実施形態に係るアルミニウムベース銅張積層板を模式的に表した図である。It is the figure which represented typically the aluminum base copper clad laminated board which concerns on embodiment of this invention. 「耐力」の求め方について説明する図である。It is a figure explaining how to obtain “proof strength”. 本発明の実施形態に係るアルミニウムベース銅張積層板の製造工程を模式的に表した図である。It is the figure which represented typically the manufacturing process of the aluminum base copper clad laminated board which concerns on embodiment of this invention. 本発明の実施形態に係るアルミニウムベース銅張積層板の製造工程の一部を模式的に表した図である。It is the figure which represented typically a part of manufacturing process of the aluminum base copper clad laminated board which concerns on embodiment of this invention.
 以下、本発明のアルミニウムベース銅張積層板の実施形態について、図面を参照しつつ詳細に説明する。説明においては、前述のとおり、アルミニウムベース銅張積層板を単に積層板とも略記する。なお、すべての図面において、同様の構成要素には同様の符号を付し、適宜説明を省略する。また、図面の寸法比は、必ずしも現実の物品と対応せず、誇張されて描かれている場合がある。さらに、数値範囲の「a~b」との記載は、特に断りの無い限り、a以上b以下を表す。 Hereinafter, embodiments of the aluminum-based copper-clad laminate of the present invention will be described in detail with reference to the drawings. In the description, as described above, the aluminum-based copper-clad laminate is simply abbreviated as a laminate. Note that in all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate. In addition, the dimensional ratio in the drawing does not necessarily correspond to an actual article and may be exaggerated. Further, the description of “a to b” in the numerical range represents “a” to “b” unless otherwise specified.
<アルミニウムベース銅張積層板>
 図1は、本実施形態に係るアルミニウムベース銅張積層板10の断面を表す。積層板10は、厚さ60~140μmの電気絶縁性の絶縁樹脂層11と、絶縁樹脂層11の一方の面に積層された、厚さ0.5~2.0mmのアルミニウム板12と、絶縁樹脂層11の他方の面に積層された、厚さ18~105μmの銅箔13と、から構成されている。本実施形態に係る積層板10は、長さ100mm、幅25mmの当該積層板10について、64mmの支点間距離、10mm/minの曲げ速度の条件で、銅箔13側から荷重をかける3点曲げ試験を実施したとき、0.2%耐力が、200~295MPaである、アルミニウムベース銅張積層板10である。
<Aluminum-based copper-clad laminate>
FIG. 1 shows a cross section of an aluminum-based copper-clad laminate 10 according to this embodiment. The laminated plate 10 includes an electrically insulating insulating resin layer 11 having a thickness of 60 to 140 μm, an aluminum plate 12 having a thickness of 0.5 to 2.0 mm laminated on one surface of the insulating resin layer 11, and an insulating plate. The copper foil 13 is laminated on the other surface of the resin layer 11 and has a thickness of 18 to 105 μm. The laminated plate 10 according to the present embodiment is a three-point bending method in which a load is applied from the copper foil 13 side on the laminated plate 10 having a length of 100 mm and a width of 25 mm under a condition of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min. The aluminum base copper clad laminate 10 has a 0.2% proof stress of 200 to 295 MPa when the test is performed.
 「耐力」とは、一般に、降伏点が明りょうでない材料の、塑性変形に対する強さを示す指標である。本明細書における「X%耐力」とは、上記3点曲げ試験における応力-ひずみ曲線の弾性変形領域(荷重と変位が正比例する領域)に対して接線OE、及び接線OEと平行でひずみをX%分オフセットさせた平行線AFを描き、平行線AFと応力-ひずみ曲線との交点Cを求めたとき、交点Cの荷重PがX%耐力である(図2参照)。 “Strength” is generally an index indicating the strength of a material whose yield point is not clear against plastic deformation. In this specification, “X% proof stress” means the tangential OE and the strain parallel to the tangent OE with respect to the elastic deformation region (region where load and displacement are directly proportional) of the stress-strain curve in the above three-point bending test. When the parallel line AF offset by% is drawn and the intersection C between the parallel line AF and the stress-strain curve is obtained, the load P at the intersection C is the X% proof stress (see FIG. 2).
 上述したとおり、従来の積層板は、外力により絶縁層や銅箔にクラックが発生しやすかった。そこで本発明者は、試行錯誤の結果、絶縁樹脂層11、アルミニウム板12、及び銅箔13のそれぞれを適当な厚さとしつつ、積層板10全体として、本願明細書記載の条件による3点曲げ試験での0.2%耐力が200~295MPa(好ましくは205~280MPa、より好ましくは210~265MPa)となるようにした。そして、こうすることで、絶縁樹脂層11や銅箔13のクラック発生を効果的に抑えられることを見出した。 As described above, the conventional laminated board was liable to generate cracks in the insulating layer and the copper foil due to external force. Therefore, as a result of trial and error, the present inventor made a three-point bending test under the conditions described in the present specification as the entire laminated plate 10 while setting each of the insulating resin layer 11, the aluminum plate 12, and the copper foil 13 to appropriate thicknesses. 0.2% proof stress at 200 to 295 MPa (preferably 205 to 280 MPa, more preferably 210 to 265 MPa). And it discovered that the crack generation of the insulating resin layer 11 and the copper foil 13 could be suppressed effectively by carrying out like this.
 この理由は必ずしも明らかではないが、次のように推測される。すなわち、3点曲げ試験という、積層板10を実装する際にかかる種々の外力を模擬する試験において、上記パラメータを満たすように積層板10を設計することで、積層板10全体が適度に塑性変形し、外力が1点に集中せず適度に吸収される。その結果として、絶縁樹脂層11や銅箔13のクラックを抑制できるものと推測される。また、クラックが抑制される結果、特に本実施形態に係る積層板10を電気・電子部品に適用する際に、衝撃が加わっても十分な絶縁性が確保されるという効果が期待できる。 The reason for this is not always clear, but is presumed as follows. That is, in the three-point bending test, which is a test for simulating various external forces applied when the laminated plate 10 is mounted, by designing the laminated plate 10 to satisfy the above parameters, the entire laminated plate 10 is appropriately plastically deformed. However, the external force does not concentrate on one point and is appropriately absorbed. As a result, it is estimated that the crack of the insulating resin layer 11 and the copper foil 13 can be suppressed. In addition, as a result of suppressing the cracks, particularly when the laminated plate 10 according to the present embodiment is applied to an electric / electronic component, an effect that sufficient insulation is ensured even when an impact is applied can be expected.
 本実施形態に係る積層板10は、長さ100mm、幅25mmの当該積層板10に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、銅箔13側から荷重をかける3点曲げ試験を実施したとき、0.1%耐力が、185~285MPaである積層板10であることが好ましい。なお、この値は、185~260MPaであることがより好ましく、185~255MPaであることがさらに好ましい。 The laminated board 10 according to the present embodiment is applied to the laminated board 10 having a length of 100 mm and a width of 25 mm by applying a load from the copper foil 13 side under the condition of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min. When the bending test is performed, it is preferable that the laminated plate 10 has a 0.1% proof stress of 185 to 285 MPa. This value is more preferably 185 to 260 MPa, and further preferably 185 to 255 MPa.
 また、本実施形態に係る積層板10は、長さ100mm、幅25mmの当該積層板10に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、銅箔13側から荷重をかける3点曲げ試験を実施したとき、0.5%耐力が、210~310MPaである積層板10であることが好ましい。なお、この値は、210~285MPaであることがより好ましく、215~280MPaであることがさらに好ましい。 Moreover, the laminated board 10 which concerns on this embodiment applies a load from the copper foil 13 side with respect to the said laminated board 10 of length 100mm and width 25mm on the conditions of the distance between fulcrums of 64mm, and the bending speed of 10 mm / min. When the three-point bending test is performed, it is preferable that the laminated plate 10 has a 0.5% proof stress of 210 to 310 MPa. This value is more preferably 210 to 285 MPa, and further preferably 215 to 280 MPa.
 さらに、本実施形態に係る積層板10は、長さ100mm、幅25mmの当該積層板10に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、銅箔13側から荷重をかける3点曲げ試験を実施したとき、1%歪んだときの応力が、205~305MPaである積層板10であることが好ましい。なお、この値は、205~290MPaであることがより好ましく、205~285MPaであることがさらに好ましい。 Furthermore, the laminate 10 according to the present embodiment applies a load from the copper foil 13 side to the laminate 10 having a length of 100 mm and a width of 25 mm under a condition of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min. When the three-point bending test is performed, it is preferable that the laminated plate 10 has a stress of 205 to 305 MPa when strained by 1%. This value is more preferably 205 to 290 MPa, and further preferably 205 to 285 MPa.
 これらパラメータを満たすことによって、様々な外力に対し、絶縁樹脂層11や銅箔13のクラックをより効果的に抑制できる。なお、上記の0.2%耐力、0.1%耐力、0.5%耐力、1%歪んだときの応力等は、例えば、積層板10に用いられるアルミニウム板12の特性や厚さ、絶縁樹脂層11を構成する素材やその成分量、絶縁樹脂層11の厚さ、銅箔13の特性や厚さ、後述の積層板10の製造方法における製造条件(例えば、後述する工程(2)での加熱および加圧の条件)等を適切に設定することで所望の値とすることができる。 By satisfying these parameters, cracks in the insulating resin layer 11 and the copper foil 13 can be more effectively suppressed against various external forces. The 0.2% proof stress, 0.1% proof stress, 0.5% proof stress, 1% strain stress, and the like are, for example, the characteristics and thickness of the aluminum plate 12 used for the laminated plate 10 and the insulation. The raw material which comprises the resin layer 11, its component amount, the thickness of the insulating resin layer 11, the characteristic and thickness of the copper foil 13, the manufacturing conditions in the manufacturing method of the laminated board 10 mentioned later (For example, in process (2) mentioned later) It is possible to obtain a desired value by appropriately setting the heating and pressurizing conditions).
 以下、本実施形態に係る積層板10を構成する絶縁樹脂層11、アルミニウム板12、銅箔13等について説明する。 Hereinafter, the insulating resin layer 11, the aluminum plate 12, the copper foil 13 and the like constituting the laminated plate 10 according to the present embodiment will be described.
[絶縁樹脂層11]
 本実施形態に係る積層板10は、厚さ60~140μmの電気絶縁性の絶縁樹脂層11を備える。この厚さとして好ましくは70~130μm、より好ましくは80~120μmである。この厚さとすることで、十分な電気絶縁性が得られるとともに、銅箔13や絶縁樹脂層11のクラックがより発生しにくくなることが期待できる。
[Insulating resin layer 11]
The laminate 10 according to this embodiment includes an electrically insulating insulating resin layer 11 having a thickness of 60 to 140 μm. The thickness is preferably 70 to 130 μm, more preferably 80 to 120 μm. By setting it as this thickness, while being able to obtain sufficient electrical insulation, it can be expected that cracks in the copper foil 13 and the insulating resin layer 11 are less likely to occur.
 絶縁樹脂層11は、絶縁性を有している。これにより、アルミニウム板12と銅箔13との間が絶縁される。絶縁樹脂層11は、典型的には、樹脂組成物を固化または硬化させることにより形成される固化物または硬化物で構成される。以下、この樹脂組成物について説明する。 The insulating resin layer 11 has insulating properties. Thereby, the aluminum plate 12 and the copper foil 13 are insulated. The insulating resin layer 11 is typically composed of a solidified product or a cured product formed by solidifying or curing the resin composition. Hereinafter, this resin composition will be described.
 樹脂組成物は、通常、樹脂を含有する。この樹脂としては、特に限定されず、熱可塑性樹脂、熱硬化性樹脂等の各種樹脂を用いることができる。 The resin composition usually contains a resin. The resin is not particularly limited, and various resins such as a thermoplastic resin and a thermosetting resin can be used.
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体等のポリオレフィン、変性ポリオレフィン、ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6-12、ナイロン6-66)、熱可塑性ポリイミド、芳香族ポリエステル等の液晶ポリマー、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリカーボネート、ポリメチルメタクリレート、ポリエーテル、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアセタール、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられる。これらは2種以上を混合して用いてもよい。 Examples of the thermoplastic resin include polyolefins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, modified polyolefins, polyamides (eg, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12) , Nylon 6-12, nylon 6-66), thermoplastic polyimide, aromatic polyester and other liquid crystal polymers, polyphenylene oxide, polyphenylene sulfide, polycarbonate, polymethyl methacrylate, polyether, polyether ether ketone, polyether imide, polyacetal, Styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, trans polyisoprene, fluoro rubber, Various thermoplastic elastomers fluorinated polyethylene and the like, etc., or a copolymer of these main, blend, and a polymer alloy or the like. You may use these in mixture of 2 or more types.
 熱硬化性樹脂としては、例えば、フェノキシ樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリエステル(不飽和ポリエステル)樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂等が挙げられる。これらは2種以上を混合して用いてもよい。 Examples of the thermosetting resin include phenoxy resin, epoxy resin, phenol resin, urea resin, melamine resin, polyester (unsaturated polyester) resin, polyimide resin, silicone resin, polyurethane resin, and the like. You may use these in mixture of 2 or more types.
 樹脂としては、熱硬化性樹脂を用いるのが好ましい。より具体的には、樹脂組成物は、エポキシ樹脂およびフェノキシ樹脂から選択される少なくとも1つの樹脂を含むこと、換言すれば、形成される絶縁樹脂層11が、エポキシ樹脂およびフェノキシ樹脂から選択される少なくとも1つの樹脂を含むことが好ましい。これにより、絶縁樹脂層11を形成する際には樹脂組成物の流動性が低減し、絶縁樹脂層11の十分な厚さを確保しやすくなるため、絶縁信頼性をより一層高めることができる。また、絶縁樹脂層11とアルミニウム板12や銅箔13との密着性が向上する。このことは、積層板10の製造工程において、プレス加工等で平坦化加工を施す際に、層間の剥離が生じることの抑制または防止に寄与しうる。 It is preferable to use a thermosetting resin as the resin. More specifically, the resin composition includes at least one resin selected from an epoxy resin and a phenoxy resin, in other words, the insulating resin layer 11 to be formed is selected from an epoxy resin and a phenoxy resin. It preferably contains at least one resin. Thereby, when the insulating resin layer 11 is formed, the fluidity of the resin composition is reduced, and it becomes easy to secure a sufficient thickness of the insulating resin layer 11, so that the insulation reliability can be further improved. In addition, the adhesion between the insulating resin layer 11 and the aluminum plate 12 or the copper foil 13 is improved. This can contribute to the suppression or prevention of delamination between layers when flattening is performed by pressing or the like in the manufacturing process of the laminated plate 10.
 フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。これらの中でも、ビスフェノールA型またはビスフェノールF型のフェノキシ樹脂を用いるのが好ましい。ビスフェノールA骨格とビスフェノールF骨格を両方有するフェノキシ樹脂を用いても良い。 Examples of the phenoxy resin include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having an anthracene skeleton, and a phenoxy resin having a biphenyl skeleton. A phenoxy resin having a structure having a plurality of these skeletons can also be used. Among these, it is preferable to use bisphenol A type or bisphenol F type phenoxy resin. A phenoxy resin having both a bisphenol A skeleton and a bisphenol F skeleton may be used.
 フェノキシ樹脂の重量平均分子量は、特に限定されないが、4.0×10~4.9×10であることが好ましい。これにより、絶縁樹脂層11の低弾性率化が可能となり、積層板10を応力緩和性に優れるものとすることができる。例えば、積層板10を用いて、半導体素子を実装した半導体装置を製造した場合、この半導体装置は、急激な加熱/冷却の環境下においても、クラック等の発生がより的確に抑制されることになる。 The weight average molecular weight of the phenoxy resin is not particularly limited, but is preferably 4.0 × 10 4 to 4.9 × 10 4 . Thereby, the elastic modulus of the insulating resin layer 11 can be reduced, and the laminate 10 can be excellent in stress relaxation properties. For example, when a semiconductor device having a semiconductor element mounted thereon is manufactured using the laminated plate 10, the semiconductor device is more accurately suppressed from generating cracks and the like even under a rapid heating / cooling environment. Become.
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば、特に限定されない。本実施形態においては、芳香環構造および脂環構造(脂環式の炭素環構造)の少なくともいずれか一方を有するエポキシ樹脂(A)が好ましい。このようなエポキシ樹脂(A)を使用することで、絶縁樹脂層11の、アルミニウム板12および銅箔13に対する密着性をより向上させることができる。 The epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule. In the present embodiment, an epoxy resin (A) having at least one of an aromatic ring structure and an alicyclic structure (alicyclic carbocyclic structure) is preferable. By using such an epoxy resin (A), the adhesiveness of the insulating resin layer 11 to the aluminum plate 12 and the copper foil 13 can be further improved.
 芳香環あるいは脂肪環構造を有するエポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂等のエポキシ樹脂等が挙げられる。これらは2種以上を組み合わせて用いてもよい。 Examples of the epoxy resin (A) having an aromatic ring or alicyclic structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, and bisphenol P. Type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, novolac type epoxy resin such as tetraphenol group ethane type novolac type epoxy resin, biphenyl type epoxy resin, biphenylene Examples include arylalkylene type epoxy resins such as phenol aralkyl type epoxy resins having a skeleton, and epoxy resins such as naphthalene type epoxy resins. You may use these in combination of 2 or more type.
 樹脂の含有量は、樹脂組成物の非揮発成分全体を基準として、通常1~40質量%、好ましくは2~20質量%、より好ましくは4~16質量%である。含有量を前記下限値以上とすることにより、応力緩和性に優れ、クラック発生を抑制することができる。また、含有量を前記上限値以下とすることにより、適度な流動性が担保されるため、積層板10の製造適性の観点から望ましい。 The resin content is usually 1 to 40% by mass, preferably 2 to 20% by mass, and more preferably 4 to 16% by mass, based on the entire nonvolatile components of the resin composition. By making content more than the said lower limit, it is excellent in stress relaxation property and can suppress generation | occurrence | production of a crack. Moreover, since moderate fluidity is ensured by making content below the said upper limit, it is desirable from a viewpoint of the manufacture aptitude of the laminated board 10. FIG.
 樹脂組成物は、樹脂の種類(例えば、エポキシ樹脂が含まれる場合)等によっては、必要に応じて、硬化剤を含んでもよい。硬化剤としては、特に限定されず、例えば、ジシアンジアミド、脂肪族ポリアミド等のアミド系硬化剤や、ジアミノジフェニルメタン、メタンフェニレンジアミン、アンモニア、トリエチルアミン、ジエチルアミン等のアミン系硬化剤や、ビスフェノールA、ビスフェノールF、フェノールノボラック樹脂、クレゾールノボラック樹脂、p-キシレン-ノボラック樹脂などのフェノール系硬化剤や、酸無水物類等を挙げることができる。 The resin composition may contain a curing agent as necessary depending on the type of resin (for example, when an epoxy resin is included). The curing agent is not particularly limited. For example, amide curing agents such as dicyandiamide and aliphatic polyamide, amine curing agents such as diaminodiphenylmethane, methanephenylenediamine, ammonia, triethylamine, and diethylamine, bisphenol A, and bisphenol F. And phenolic curing agents such as phenol novolak resin, cresol novolak resin, p-xylene-novolak resin, and acid anhydrides.
 樹脂組成物は、さらに硬化触媒(硬化促進剤)を含んでいてもよい。これにより、樹脂組成物の硬化性を向上させることができる。硬化触媒としては、例えば、イミダゾール類、1,8-ジアザビシクロ(5,4,0)ウンデセン等アミン系触媒、トリフェニルホスフィン等リン系触媒等が挙げられる。これらの中でもイミダゾール類が好ましい。これにより、特に、樹脂組成物の速硬化性および保存性を十分に両立することができる。 The resin composition may further contain a curing catalyst (curing accelerator). Thereby, the sclerosis | hardenability of a resin composition can be improved. Examples of the curing catalyst include amine catalysts such as imidazoles, 1,8-diazabicyclo (5,4,0) undecene, phosphorus catalysts such as triphenylphosphine, and the like. Of these, imidazoles are preferred. Thereby, in particular, the fast curability and the storage stability of the resin composition can be sufficiently achieved.
 イミダゾール類としては、例えば1-ベンジル-2メチルイミダゾール、1-ベンジル-2フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-ウンデシルイミダゾリル-(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-エチル-4'メチルイミダゾリル-(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-ビニル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジンイソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-s-トリアジン、2,4-ジアミノ-6-メタクリロイルオキシエチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。これらの中でも2-フェニル-4,5-ジヒドロキシメチルイミダゾールまたは2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが好ましい。これにより、樹脂組成物の保存性を特に向上させることができる。 Examples of imidazoles include 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2- Phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6 -[2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, with 2-phenylimidazole isocyanuric acid 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6-vinyl-s-triazine, 2,4-diamino-6- And vinyl-s-triazine isocyanuric acid adduct, 2,4-diamino-6-methacryloyloxyethyl-s-triazine, 2,4-diamino-6-methacryloyloxyethyl-s-triazine isocyanuric acid adduct, and the like. Of these, 2-phenyl-4,5-dihydroxymethylimidazole or 2-phenyl-4-methyl-5-hydroxymethylimidazole is preferred. Thereby, the preservability of the resin composition can be particularly improved.
 硬化触媒の含有量は、特に限定されないが、樹脂組成物の非揮発成分全体を基準として0.01~30質量%が好ましく、0.05~10質量%がより好ましい。含有量が前記下限値以上であると、樹脂組成物の硬化性がより十分なものとなり、一方、含有量を前記上限値以下にすることで、樹脂組成物の保存性をより向上させることができる。 The content of the curing catalyst is not particularly limited, but is preferably 0.01 to 30% by mass, and more preferably 0.05 to 10% by mass based on the entire non-volatile components of the resin composition. When the content is equal to or higher than the lower limit value, the curability of the resin composition becomes more sufficient. On the other hand, when the content is equal to or lower than the upper limit value, the storability of the resin composition can be further improved. it can.
 樹脂組成物は、カップリング剤を含むことが好ましい。これにより、アルミニウム板12および銅箔13との密着性をより向上させることができる。そのため、積層板10に平坦化処理等を施した際に、絶縁樹脂層11にクラックが発生するのを抑制し、また、アルミニウム板12や銅箔13から絶縁樹脂層11が剥離するのを抑制することが期待できる。 The resin composition preferably contains a coupling agent. Thereby, the adhesiveness with the aluminum plate 12 and the copper foil 13 can be improved more. Therefore, when the flattening process etc. are given to the laminated board 10, it suppresses that a crack generate | occur | produces in the insulating resin layer 11, and suppresses the insulating resin layer 11 peeling from the aluminum plate 12 or the copper foil 13. Can be expected to do.
 カップリング剤としては、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤等が挙げられる。これらの中でも入手性や取扱いの容易性等からシランカップリング剤が好ましい。 Examples of coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Among these, a silane coupling agent is preferable from the viewpoints of availability and ease of handling.
 シラン系カップリング剤は特に限定されず、例えばビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファンなどが挙げられる。これらは2種以上を用いてもよい。 The silane coupling agent is not particularly limited. For example, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-Glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyl Dimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysila N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, bis (3 -Triethoxysilylpropyl) tetrasulfane and the like. Two or more of these may be used.
 カップリング剤の含有量は、特に限定されないが、樹脂組成物の非揮発成分全体を基準として0.01~10質量%であるのが好ましく、0.5~10質量%がより好ましい。含有量が前記下限値以上であると、前述の密着性を高める効果がより十分なものとなる。含有量を前記上限値以下にすることで、絶縁樹脂層11を形成する際のアウトガスやボイドをより抑制できる。 The content of the coupling agent is not particularly limited, but is preferably 0.01 to 10% by mass, and more preferably 0.5 to 10% by mass based on the entire nonvolatile components of the resin composition. When the content is equal to or higher than the lower limit, the above-described effect of increasing the adhesion becomes more sufficient. By setting the content to be equal to or lower than the upper limit, outgas and voids when forming the insulating resin layer 11 can be further suppressed.
 樹脂組成物は、フィラー(充填材)を含むことが好ましい。本実施形態において、フィラーは、好ましくは無機材料(無機充填材)である。樹脂組成物がこのようなフィラーを含むことで、樹脂などの有機系の材料のみで絶縁樹脂層11を構成するよりも熱伝導率を向上させることができる。このことは本実施形態に係る積層板10を電気・電子分野や照明分野等に適用する際に望ましい。 The resin composition preferably contains a filler (filler). In the present embodiment, the filler is preferably an inorganic material (inorganic filler). When the resin composition contains such a filler, the thermal conductivity can be improved as compared with the case where the insulating resin layer 11 is formed only of an organic material such as a resin. This is desirable when the laminated plate 10 according to this embodiment is applied to the electric / electronic field, the lighting field, and the like.
 無機充填材としては、特に限定されない。例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム(アルミナ、Al)、窒化アルミニウム、ほう酸アルミニウムウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、炭化ケイ素などが挙げられる。これらは2種以上を組み合わせて用いてもよい。 The inorganic filler is not particularly limited. For example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, calcium oxide, magnesium oxide, aluminum oxide (alumina, Al 2 O 3 ), aluminum nitride, aluminum borate whisker, boron nitride, crystalline silica , Amorphous silica, silicon carbide and the like. You may use these in combination of 2 or more type.
 無機充填材は、酸化アルミニウムおよび窒化アルミニウムのうちの少なくともいずれかで構成される粒状体であることが好ましく、主として酸化アルミニウムで構成された粒状体であることがより好ましい。これにより、より熱伝導性および絶縁性に優れた無機充填材とすることができる。また、酸化アルミニウムは、汎用性に優れ、安価に入手できる点でも好ましい。 The inorganic filler is preferably a granular material composed of at least one of aluminum oxide and aluminum nitride, and more preferably a granular material mainly composed of aluminum oxide. Thereby, it can be set as the inorganic filler excellent in thermal conductivity and insulation. Aluminum oxide is also preferable because of its versatility and availability at low cost.
 無機充填材は、一次粒子の平均粒径(D50:メディアン径)が1~10μmであることが好ましく、3~7μmであることがより好ましい。これにより、無機充填材の充填率をより高めることができる。そのため、無機充填材(一次粒子)同士の接触面積をより大きくすることができ、熱伝導性をより一層向上させることができる。また、無機充填材の形状は特に限定されず、球状であっても不定形であってもよい。また、一態様として、球状の無機充填材と不定形の無機充填材とを併用してもよい(例えば、無機充填材のうち、30~40質量%を球状の充填材とし、残りを不定形の充填材とする等)。こうすることで、球状の充填材の隙間に不定形の充填材が入り込み、絶縁樹脂層11がより密になりやすくなる。これは、後述する積層体10の製造において、低圧条件での製造に寄与しうる。 In the inorganic filler, the average primary particle diameter (D50: median diameter) is preferably 1 to 10 μm, and more preferably 3 to 7 μm. Thereby, the filling rate of an inorganic filler can be raised more. Therefore, the contact area between the inorganic fillers (primary particles) can be further increased, and the thermal conductivity can be further improved. Moreover, the shape of the inorganic filler is not particularly limited, and may be spherical or irregular. Further, as one aspect, a spherical inorganic filler and an amorphous inorganic filler may be used in combination (for example, 30-40% by mass of the inorganic filler is a spherical filler, and the rest is an irregular shape. Etc.) By doing so, the irregularly shaped filler enters the gaps between the spherical fillers, and the insulating resin layer 11 tends to become denser. This can contribute to the production under a low pressure condition in the production of the laminate 10 described later.
 フィラーの含有量は、樹脂組成物の不揮発成分全量を基準として、60~90質量%であることが好ましく、70~85質量%であることがより好ましい。この数値範囲下限以上とすることで、絶縁樹脂層11の熱伝導性をより優れたものとすることが期待できる。この数値範囲上限以下とすることで応力緩和性に優れ、クラック発生を抑制することができる。 The content of the filler is preferably 60 to 90% by mass, more preferably 70 to 85% by mass based on the total amount of nonvolatile components of the resin composition. It can be expected that the thermal conductivity of the insulating resin layer 11 is further improved by setting the value to be above the lower limit of the numerical range. By making it to be below the upper limit of this numerical range, it is excellent in stress relaxation properties and can suppress the generation of cracks.
 樹脂組成物は、上述した成分に加え、レベリング剤(界面活性剤)、消泡剤等の添加剤を含んでいてもよい。 The resin composition may contain additives such as a leveling agent (surfactant) and an antifoaming agent in addition to the components described above.
 樹脂組成物は、通常、溶剤を含有する。溶剤として典型的には、メチルエチルケトン、アセトン、トルエン、ジメチルホルムアルデヒド等の有機溶剤である。すなわち、樹脂組成物は、典型的には、有機溶剤に上記樹脂等の成分が溶解または分散されたものであり、ワニス状をなしている。 The resin composition usually contains a solvent. Typically, the solvent is an organic solvent such as methyl ethyl ketone, acetone, toluene, or dimethylformaldehyde. That is, the resin composition typically has a varnish shape in which components such as the above resin are dissolved or dispersed in an organic solvent.
 樹脂組成物は、例えば、樹脂材料と溶剤とを混合してワニス状にした後、さらに、無機充填材を混合することで得ることができる。混合に用いる混合機としては、特に限定されないが、例えば、ディスパーザー、複合羽根型撹拌機、ビーズミルおよびホモジナイザー等が挙げられる。 The resin composition can be obtained, for example, by mixing a resin material and a solvent to form a varnish, and further mixing an inorganic filler. Although it does not specifically limit as a mixer used for mixing, For example, a disperser, a composite blade type stirrer, a bead mill, a homogenizer, etc. are mentioned.
[アルミニウム板12]
 本実施形態に係る積層板10は、上記の絶縁樹脂層11の一方の面に積層された、厚さ0.5~2.0mmのアルミニウム板12を備える。この厚さとして好ましくは0.5~1.0mm、より好ましくは0.6~0.8mmである。この厚さとすることで、対衝撃性と加工の容易性を両立しうる。
[Aluminum plate 12]
A laminated plate 10 according to this embodiment includes an aluminum plate 12 having a thickness of 0.5 to 2.0 mm laminated on one surface of the insulating resin layer 11. This thickness is preferably 0.5 to 1.0 mm, more preferably 0.6 to 0.8 mm. By setting this thickness, it is possible to achieve both impact resistance and ease of processing.
 本実施形態に係るアルミニウム板12は、純度98.5~100質量%のアルミニウムで構成されていることが好ましい。より好ましくは、純度99.5~100質量%である。なお、アルミニウム原子を除く他の原子としては、特に限定されないが、例えば、マグネシウム、カルシウム、酸素、ケイ素等が挙げられる。本発明者の知見によれば、純度が高いアルミニウムは、適度にやわらかい。よって、そのようなアルミニウムで構成されたアルミニウム板12を用いると、本実施形態に係る所望の特性を満たす積層板10(例えば上述の0.2%耐力の値が200~295MPaである積層板10)を製造しやすいものと考えられる。 The aluminum plate 12 according to this embodiment is preferably made of aluminum having a purity of 98.5 to 100% by mass. More preferably, the purity is 99.5 to 100% by mass. In addition, although it does not specifically limit as other atoms except an aluminum atom, For example, magnesium, calcium, oxygen, silicon etc. are mentioned. According to the knowledge of the present inventor, high purity aluminum is moderately soft. Therefore, when the aluminum plate 12 made of such aluminum is used, the laminated plate 10 satisfying desired characteristics according to the present embodiment (for example, the laminated plate 10 having the above-described 0.2% proof stress value of 200 to 295 MPa). ) Is considered easy to manufacture.
 また、別観点として、アルミニウム板12を構成するアルミニウム素材の引張強度は、95~140MPaであることが好ましく、95~120MPaであることがより好ましい。なお、ここでの引張強度は、方法JIS Z 2241で求められる。本発明者は、意外にも、「引張」に関する指標を参考にアルミニウム板12を選択すると、「3点曲げ試験」により模擬される種々の衝撃に対して良好な性能を奏する(つまり、外力によるクラック発生や絶縁破壊が抑えられる)という知見を見出している。ちなみに、上述のようにアルミニウム板12を構成するアルミニウムの純度を高めにすると、引張強度の数値を上記の好適な数値範囲に収めやすい傾向がある。 As another viewpoint, the tensile strength of the aluminum material constituting the aluminum plate 12 is preferably 95 to 140 MPa, and more preferably 95 to 120 MPa. In addition, the tensile strength here is calculated | required by the method JISZ2241. Surprisingly, the present inventor, when selecting the aluminum plate 12 with reference to an index related to “tensile”, exhibits good performance against various impacts simulated by the “three-point bending test” (that is, due to external force). The knowledge that crack generation and dielectric breakdown can be suppressed) has been found. Incidentally, when the purity of the aluminum constituting the aluminum plate 12 is increased as described above, there is a tendency that the numerical value of the tensile strength easily falls within the preferable numerical range.
[銅箔13]
 本実施形態に係る積層板10は、上記の絶縁樹脂層11の他方の面(アルミニウム板12がある面とは反対側の面)に積層された、厚さ18~105μmの銅箔13を備える。この厚さは好ましくは18~70μm、より好ましくは25~45μm、さらに好ましくは30~40μm、特に好ましくは35μmである。この厚さとすることで、クラック等がより発生しにくくなり、また、銅箔13としての十分な機能(例えば電気伝導性や熱伝導性など)を発揮することができる。
[Copper foil 13]
A laminated plate 10 according to this embodiment includes a copper foil 13 having a thickness of 18 to 105 μm laminated on the other surface of the insulating resin layer 11 (the surface opposite to the surface on which the aluminum plate 12 is present). . This thickness is preferably 18 to 70 μm, more preferably 25 to 45 μm, still more preferably 30 to 40 μm, and particularly preferably 35 μm. By setting it as this thickness, a crack etc. become difficult to generate | occur | produce and sufficient function (for example, electrical conductivity, heat conductivity, etc.) as the copper foil 13 can be exhibited.
<アルミニウムベース銅張積層板10の製造方法>
 本実施形態に係る積層板10は、一例として、以下の(1)(2)および(3)の方法により製造される。もちろん、最終的に得られる積層板10が所望の耐力等の特性を有する限りにおいて、これ以外の方法により本実施形態に係る積層板10を製造してもよい。
<Method for Manufacturing Aluminum Base Copper Clad Laminate 10>
The laminated board 10 which concerns on this embodiment is manufactured by the method of the following (1) (2) and (3) as an example. Of course, as long as the finally obtained laminate 10 has characteristics such as desired proof stress, the laminate 10 according to this embodiment may be manufactured by other methods.
(1)銅箔上13への絶縁樹脂層11の形成
 まず、平板状の銅箔13を用意し、その後、図3(a)に示すように、銅箔13上に絶縁樹脂層形成用層11Aを形成する。この絶縁樹脂層形成用層11Aは、上述の樹脂組成物を銅箔13上に供給して層状とした後、乾燥させて得られたものである。そして、この絶縁樹脂層形成用層11Aは、後述する工程(2)を経ることで、硬化または固化することにより絶縁樹脂層11となるものである。
(1) Formation of insulating resin layer 11 on copper foil 13 First, a flat copper foil 13 is prepared, and then an insulating resin layer forming layer is formed on the copper foil 13 as shown in FIG. 11A is formed. This insulating resin layer forming layer 11A is obtained by supplying the above resin composition onto the copper foil 13 to form a layer and then drying it. And this insulating resin layer forming layer 11A turns into the insulating resin layer 11 by hardening or solidifying through the process (2) mentioned later.
 樹脂組成物の銅箔13への供給は、例えば、ロールコーター、バーコーター、ナイフコーター、グラビアコーター、ダイコーター、コンマコーターおよびカーテンコーター等を用いて行うことができる。また、インクジェット技術の適用なども考えられる。これらの中でも、ダイコーター、ナイフコーター、およびコンマコーターを用いることが好ましい。これにより、ボイドがなく、均一な厚みを有する絶縁樹脂層形成用層11A、ひいては絶縁樹脂層11をより効率よく形成することができる。 The supply of the resin composition to the copper foil 13 can be performed using, for example, a roll coater, a bar coater, a knife coater, a gravure coater, a die coater, a comma coater, a curtain coater, or the like. In addition, application of inkjet technology is also conceivable. Among these, it is preferable to use a die coater, a knife coater, and a comma coater. Thereby, the insulating resin layer forming layer 11A having no void and having a uniform thickness, and thus the insulating resin layer 11 can be formed more efficiently.
 樹脂組成物は、上記(1)の工程に適用する場合には、以下のような粘度挙動を有することが好ましい。すなわち、動的粘弾性測定装置を用いて、この樹脂組成物を60℃から昇温速度3℃/分、周波数1Hzで溶融状態まで昇温したときに、初期は溶融粘度が減少し、最低溶融粘度に到達した後、さらに上昇するような特性を有し、かつ、最低溶融粘度が1×10Pa・s以上1×10Pa・s以下の範囲内であることが好ましい。 When the resin composition is applied to the step (1), it preferably has the following viscosity behavior. That is, when the resin composition was heated from 60 ° C. to a molten state at a rate of temperature increase of 3 ° C./min and a frequency of 1 Hz using a dynamic viscoelasticity measuring device, the melt viscosity decreased initially and the lowest It is preferable that after reaching the viscosity, it has a characteristic of further increasing, and the minimum melt viscosity is in the range of 1 × 10 3 Pa · s to 1 × 10 5 Pa · s.
 最低溶融粘度が上記下限値以上であると、樹脂とフィラーの分離が抑制でき、後述の工程(2)を経ることでより均質な絶縁樹脂層11を得ることができる。また、最低溶融粘度が上記上限値以下であると、絶縁樹脂層11と銅箔13との密着性をより一層向上できる。これらの相乗効果により、積層板10の熱伝導性や絶縁特性をより高められる。 When the minimum melt viscosity is not less than the above lower limit, separation of the resin and the filler can be suppressed, and a more uniform insulating resin layer 11 can be obtained through the step (2) described later. Moreover, the adhesiveness of the insulating resin layer 11 and the copper foil 13 can be improved further as the minimum melt viscosity is not more than the above upper limit. Due to these synergistic effects, the thermal conductivity and insulating properties of the laminate 10 can be further enhanced.
 また、樹脂組成物は、最低溶融粘度に到達する温度が60~100℃の範囲内であることが好ましく、75~90℃の範囲内であることがより好ましい。 The resin composition preferably has a temperature at which the minimum melt viscosity is reached in the range of 60 to 100 ° C., and more preferably in the range of 75 to 90 ° C.
 さらに、樹脂組成物は、フロー率が10~60%であることが好ましく、20~50%であることがより好ましい。なお、このフロー率は、以下の手順で測定することができる。まず、本実施形態の樹脂組成物により形成された絶縁樹脂層を有する銅箔を所定のサイズ(50mm×50mm)に裁断後5~7枚積層し、その重量を測定する。次に、内部温度を175℃に保持した熱盤間で5分間プレスした後冷却し、流れ出た樹脂を丁寧に落として再び重量を測定する。フロー率は次式(I)により求めることができる。
 フロー率(%)=(測定前重量-測定後重量)/(測定前重量-銅箔重量) (I)
Furthermore, the resin composition preferably has a flow rate of 10 to 60%, more preferably 20 to 50%. This flow rate can be measured by the following procedure. First, 5-7 sheets of copper foil having an insulating resin layer formed of the resin composition of the present embodiment are cut into a predetermined size (50 mm × 50 mm), and the weight is measured. Next, after pressing for 5 minutes between hot plates maintained at an internal temperature of 175 ° C. and cooling, the resin that has flowed out is carefully dropped and the weight is measured again. The flow rate can be obtained by the following formula (I).
Flow rate (%) = (weight before measurement-weight after measurement) / (weight before measurement-copper foil weight) (I)
 樹脂組成物がこのような粘度挙動を有すると、樹脂組成物を加熱硬化して絶縁樹脂層11を形成する際に、樹脂組成物中に空気が侵入するのをより抑制できるとともに、樹脂組成物中に溶けている気体を十分に外部に排出できる。その結果、絶縁樹脂層11に気泡が生じてしまうことをより抑制でき、銅箔13から絶縁樹脂層11へ確実に熱を伝えることができる。また、気泡の発生がより抑制されることにより、積層板10の絶縁信頼性を高めることができる。また、銅箔13と絶縁樹脂層11との密着性を向上できる。 When the resin composition has such a viscosity behavior, when the resin composition is heated and cured to form the insulating resin layer 11, air can be further prevented from entering the resin composition, and the resin composition The gas dissolved inside can be discharged to the outside. As a result, generation of bubbles in the insulating resin layer 11 can be further suppressed, and heat can be reliably transmitted from the copper foil 13 to the insulating resin layer 11. Moreover, the insulation reliability of the laminated board 10 can be improved by suppressing generation | occurrence | production of a bubble more. In addition, the adhesion between the copper foil 13 and the insulating resin layer 11 can be improved.
 このような粘度挙動を有する樹脂組成物は、例えば、前述した樹脂材料の種類や量、無機充填材の種類や量、また、樹脂材料にフェノキシ樹脂が含まれる場合には、その種類や量を適宜調整することにより得ることができる。 The resin composition having such a viscosity behavior is, for example, the type and amount of the resin material described above, the type and amount of the inorganic filler, and, if the resin material contains a phenoxy resin, the type and amount of the resin material. It can be obtained by adjusting appropriately.
(2)貼りあわせ
 次に、アルミニウム板12を用意し、その後、図3(b)に示すように、銅箔13とアルミニウム板12とが、絶縁樹脂層形成用層11Aを介して互いに接近するように加圧および加熱する。これにより、絶縁樹脂層形成用層11Aにアルミニウム板12が貼り合わされる(図3(c))。
(2) Bonding Next, an aluminum plate 12 is prepared, and then, as shown in FIG. 3B, the copper foil 13 and the aluminum plate 12 approach each other through the insulating resin layer forming layer 11A. And pressurize and heat. Thereby, the aluminum plate 12 is bonded to the insulating resin layer forming layer 11A (FIG. 3C).
 この際、絶縁樹脂層形成用層11Aは、絶縁樹脂層形成用層11Aが熱硬化性を示す場合には、絶縁樹脂層形成用層11Aが硬化して絶縁樹脂層11が形成される条件で加熱および加圧される。また、絶縁樹脂層形成用層11Aが熱可塑性を示す場合には、加熱および加熱により溶融した後、冷却により固化する条件で、加熱および加圧される。 At this time, the insulating resin layer forming layer 11A is formed on the condition that the insulating resin layer forming layer 11A is cured to form the insulating resin layer 11 when the insulating resin layer forming layer 11A exhibits thermosetting properties. Heated and pressurized. Further, when the insulating resin layer forming layer 11A exhibits thermoplasticity, it is heated and pressurized under the condition of being solidified by cooling after being melted by heating and heating.
 この加熱および加圧の条件は、絶縁樹脂層形成用層11Aに含まれる樹脂組成物の種類等によって適宜設定される。加熱温度は、好ましくは80~200℃程度、より好ましくは170~190℃程度に設定される。また、加圧する圧力は、好ましくは1~12MPa程度、より好ましくは3~10MPa程度に設定される。さらに、加熱および加圧する時間は、10~90分程度であるのが好ましく、30~60分程度であるのがより好ましい。 The heating and pressurizing conditions are appropriately set depending on the type of resin composition contained in the insulating resin layer forming layer 11A. The heating temperature is preferably set to about 80 to 200 ° C, more preferably about 170 to 190 ° C. The pressure to be applied is preferably set to about 1 to 12 MPa, more preferably about 3 to 10 MPa. Furthermore, the heating and pressurizing time is preferably about 10 to 90 minutes, more preferably about 30 to 60 minutes.
 この加熱および加圧により、アルミニウム板12が絶縁樹脂層形成用層11Aに接合するとともに、絶縁樹脂層形成用層11Aが硬化して絶縁樹脂層11が形成され、その結果、絶縁樹脂層11にアルミニウム板12が貼り合わされた積層板10が得られる。 By this heating and pressurization, the aluminum plate 12 is joined to the insulating resin layer forming layer 11 </ b> A, and the insulating resin layer forming layer 11 </ b> A is cured to form the insulating resin layer 11. The laminated board 10 with which the aluminum plate 12 was bonded together is obtained.
 なお、絶縁樹脂層形成用層11Aとアルミニウム板12との貼り合わせに先立って、アルミニウム板12の接合面には、40~80℃の水に0.5分間~3分間接触させる等の表面処理を施すことが好ましい。これにより、絶縁樹脂層11とアルミニウム板12との密着性をより向上させることができる。 Prior to the bonding of the insulating resin layer forming layer 11A and the aluminum plate 12, the bonding surface of the aluminum plate 12 is brought into contact with water at 40 to 80 ° C. for 0.5 to 3 minutes. It is preferable to apply. Thereby, the adhesiveness of the insulating resin layer 11 and the aluminum plate 12 can be improved more.
(3)平坦化加工
 上記(2)で得られた積層板10を冷却すると、アルミニウム板12、絶縁樹脂層11、銅箔13の熱膨張率がそれぞれ異なることに起因して、積層板10に反りが生じる場合がある。その場合には、任意の工程として、その反りを矯正する平坦化加工を行うことが好ましい。これにより、反りがない平坦な積層板10が得られる。
(3) Planarization processing When the laminated plate 10 obtained in the above (2) is cooled, the aluminum plate 12, the insulating resin layer 11, and the copper foil 13 have different thermal expansion coefficients. Warpage may occur. In that case, it is preferable to perform a flattening process to correct the warp as an optional step. Thereby, the flat laminated board 10 without a curvature is obtained.
 平坦化加工は、例えば、図4に示す平坦化装置100を用いて行うことができる。平坦化装置100は、積層板10を載置するシームレスベルト110と、シームレスベルト110を搬送する搬送手段120とを備えている。 The planarization process can be performed using, for example, the planarization apparatus 100 shown in FIG. The flattening device 100 includes a seamless belt 110 on which the laminated plate 10 is placed, and a transport unit 120 that transports the seamless belt 110.
 搬送手段120は、テンショナー(テンションローラ)130、131、132、140、141、142、143を有している。 The conveying means 120 has tensioners (tension rollers) 130, 131, 132, 140, 141, 142, 143.
 図4に示すように、搬送手段120では、テンショナー130、131、132、140、141、142、143に、側面視が円環状をなすシームレスベルト110が装着され、テンショナー130、131、132、140、141、142、143の回転により、シームレスベルト110が搬送方向に沿って繰り返して送り出されることとなる。 As shown in FIG. 4, in the transport unit 120, the tensioner 130, 131, 132, 140, 141, 142, 143 is provided with a seamless belt 110 having an annular shape when viewed from the side. , 141, 142, and 143, the seamless belt 110 is repeatedly sent out along the conveyance direction.
 なお、テンショナー130、131、132、140、141、142、143は、それぞれ、外形形状が円柱状をなし、例えば、ステンレス鋼等のような金属材料で構成されている。また、これらのテンショナー130、131、132、140、141、142、143は、回動軸(中心軸)同士が同じ方向を向いており、互いに離間して配置されている。さらに、例えば、平坦化装置100全体を支持するフレーム(図示せず)に回動可能に支持されている。 Note that the tensioners 130, 131, 132, 140, 141, 142, and 143 each have a cylindrical outer shape, and are made of a metal material such as stainless steel. In addition, the tensioners 130, 131, 132, 140, 141, 142, and 143 are disposed so that the rotation axes (center axes) face the same direction and are separated from each other. Furthermore, for example, it is rotatably supported by a frame (not shown) that supports the entire flattening device 100.
 各テンショナーのうち、テンショナー140~143は、接触するシームレスベルト110が、掛け回されつつ回転するローラである。装着されたシームレスベルト110の角部となる位置で、搬送方向が変更されることで、シームレスベルト110がループ状に繰り返して送り出される。 Among the tensioners, the tensioners 140 to 143 are rollers that rotate while the seamless belt 110 that is in contact with the tensioner 140 is wound around. The seamless belt 110 is repeatedly sent out in a loop shape by changing the transport direction at the corner of the seamless belt 110 that is attached.
 また、テンショナー130~132は、テンショナー140と、テンショナー141との間にこの順で配置されている。テンショナー130とテンショナー131との間、さらにはテンショナー131とテンショナー132との間を挿通するようにして接触するシームレスベルト110が、掛け回されつつ回転するローラである。 Further, the tensioners 130 to 132 are arranged in this order between the tensioner 140 and the tensioner 141. The seamless belt 110 that is in contact with the tensioner 130 and the tensioner 131 and between the tensioner 131 and the tensioner 132 is a roller that rotates while being wound around.
 これらテンショナー130~132のうち、テンショナー130およびテンショナー132は、その中心が搬送方向に沿って配置されている。テンショナー131は、その中心がテンショナー130およびテンショナー132の中心に対して、搬送方向に直交する方向にずらして配置されている。 Among these tensioners 130 to 132, the center of the tensioner 130 and the tensioner 132 is arranged along the transport direction. The center of the tensioner 131 is shifted from the center of the tensioner 130 and the tensioner 132 in a direction perpendicular to the transport direction.
 このように配設されるテンショナー130~132との間にシームレスベルト110が搬送され、このときに、搬送方向が変更される。そのテンショナー130~132との間へのシームレスベルト110の搬送の際に、シームレスベルト110上に、反りが生じた積層板10を載置することで、この反りが矯正され、その結果、積層板10が平坦化される。 The seamless belt 110 is conveyed between the tensioners 130 to 132 arranged in this manner, and at this time, the conveyance direction is changed. When the seamless belt 110 is transported between the tensioners 130 to 132, the warped laminate 10 is placed on the seamless belt 110 to correct the warp. As a result, the laminate 10 is flattened.
 テンショナー130~132の直径は、2~30cmが好ましく、10~20cmがより好ましい。また、テンショナー130とテンショナー131との離間距離Lと、テンショナー131とテンショナー132との離間距離Lとは、それぞれ独立して、10~50cmが好ましく、15~30cmがより好ましい。さらに、搬送方向からテンショナー130~132を見たとき、搬送方向に直交する方向で、テンショナー130、132とテンショナー131とが重なる領域の長さLは、2~8cmが好ましく、4~6cmがより好ましい。テンショナー130~132のサイズ等をこれら範囲内に設定することにより、積層板10に生じた反りをより確実に矯正することができる。 The diameter of the tensioners 130 to 132 is preferably 2 to 30 cm, and more preferably 10 to 20 cm. Further, the distance L 1 between the tensioner 130 and the tensioner 131, and the distance L 2 between the tensioner 131 and the tensioner 132, each independently, preferably 10 ~ 50 cm, and more preferably 15 ~ 30 cm. Further, when the tensioners 130 to 132 are viewed from the transport direction, the length L 3 of the region where the tensioners 130 and 132 and the tensioner 131 overlap in the direction perpendicular to the transport direction is preferably 2 to 8 cm, and preferably 4 to 6 cm. More preferred. By setting the sizes and the like of the tensioners 130 to 132 within these ranges, it is possible to more reliably correct the warp generated in the laminated board 10.
 なお、テンショナー130~132のうち、少なくとも1つに、モータ(図示せず)が接続されており、このモータの作動により、シームレスベルト110が搬送される。 A motor (not shown) is connected to at least one of the tensioners 130 to 132, and the seamless belt 110 is conveyed by the operation of this motor.
 また、反りが矯正された積層板10は、JIS C 6481に規定の静置法を用いて測定される、アルミニウム板12における反り率が0.2%以下であることが好ましく、0.1%以下であることがより好ましい。反り率がかかる範囲内であるときに、積層板10に生じた反りが矯正され、平坦化がなされたと言うことができる。 Moreover, it is preferable that the laminated board 10 in which the curvature was corrected has the curvature rate in the aluminum plate 12 measured using the stationary method prescribed | regulated to JISC6481, 0.2% or less, 0.1% The following is more preferable. When the warpage rate is within such a range, it can be said that the warpage generated in the laminated plate 10 has been corrected and flattened.
 以下、本発明を実施例に基づき説明する。なお、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.
1.原材料の準備
 各実施例および各比較例の樹脂組成物で用いた原材料を以下に示す。
 ・熱硬化性樹脂(1):ビスフェノールA型フェノキシ樹脂(三菱化学社製「1255」)
 ・熱硬化性樹脂(2):ビスフェノールA型エポキシ樹脂(DIC社製「850S」)
 ・硬化剤(1):ジシアンジアミド(デグサ社製)
 ・硬化促進剤(1):2-フェニルイミダゾール(四国化成社製「2PZ」)
 ・シランカップリング剤(1):γ-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製「KBM-403」)
 ・フィラー(1):不定形アルミナ(日本軽金属社製「LS-210B」)
 ・フィラー(2):球状アルミナ(デンカ社製「DAW-03」)
1. Preparation of raw materials The raw materials used in the resin compositions of Examples and Comparative Examples are shown below.
Thermosetting resin (1): Bisphenol A type phenoxy resin ("1255" manufactured by Mitsubishi Chemical Corporation)
Thermosetting resin (2): Bisphenol A type epoxy resin (DIC Corporation "850S")
Curing agent (1): Dicyandiamide (Degussa)
Curing accelerator (1): 2-phenylimidazole (“2PZ” manufactured by Shikoku Chemicals)
Silane coupling agent (1): γ-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Silicone)
Filler (1): Amorphous alumina (“LS-210B” manufactured by Nippon Light Metal Co., Ltd.)
Filler (2): Spherical alumina (“DAW-03” manufactured by Denka)
 ・アルミニウム板(1):アルミニウム6000系(日本軽金属社製「A6061-T6」、厚さ0.6mm、アルミニウム純度97.2質量%、ブリネル硬さ105HB)
 ・アルミニウム板(2):アルミニウム5000系(日本軽金属社製「A5052-H34」、厚さ0.6mm、アルミニウム純度97.2質量%、ブリネル硬さ82HB)
 ・アルミニウム板(3):アルミニウム1000系(日本軽金属社製「A1050-H24」、厚さ0.6mm、アルミニウム純度は99.5質量%、ブリネル硬さ30HB)
 なお、アルミニウム板は、同一品番であっても、ロットにより引張強度等の物性が異なるものがあった。引張強度は後掲の表1に示す。
Aluminum plate (1): Aluminum 6000 series (“A6061-T6” manufactured by Nippon Light Metal Co., Ltd., thickness 0.6 mm, aluminum purity 97.2 mass%, Brinell hardness 105 HB)
Aluminum plate (2): Aluminum 5000 series (“A5052-H34” manufactured by Nippon Light Metal Co., Ltd., thickness 0.6 mm, aluminum purity 97.2 mass%, Brinell hardness 82 HB)
Aluminum plate (3): Aluminum 1000 series (“A1050-H24” manufactured by Nippon Light Metal Co., Ltd., thickness 0.6 mm, aluminum purity 99.5 mass%, Brinell hardness 30 HB)
Note that some aluminum plates have different physical properties such as tensile strength depending on the lot even if they have the same product number. The tensile strength is shown in Table 1 below.
 ・銅箔(1):ロール状銅箔(日本電解社製「YGP-35」)厚み35μm Copper foil (1): Rolled copper foil (“YGP-35” manufactured by Nippon Electrolytic Co., Ltd.) thickness 35 μm
2.積層板の製造
 以下のようにして積層板を製造した。
2. Manufacture of a laminated board The laminated board was manufactured as follows.
<樹脂組成物の調製>
 熱硬化性樹脂、硬化剤、硬化促進剤、シランカップリング剤およびフィラーとして、表1に示すものを、表1に示す質量部で秤量した。これらを、シクロヘキサノン400質量部に溶解・混合させ、高速撹拌装置を用い撹拌することで、樹脂組成物を調製した。
<Preparation of resin composition>
As a thermosetting resin, a curing agent, a curing accelerator, a silane coupling agent, and a filler, those shown in Table 1 were weighed by mass parts shown in Table 1. These were dissolved and mixed in 400 parts by mass of cyclohexanone, and stirred using a high-speed stirring device to prepare a resin composition.
<銅箔上への絶縁樹脂層形成用層の成膜>
 用意した銅箔(1)を、幅260mm、厚さ35μmの大きさとした。この銅箔(1)の粗化面に、予め調製した樹脂組成物をコンマコーターにて塗布し、100℃で3分、150℃で3分加熱乾燥することで、銅箔上に絶縁樹脂層形成用層を形成した。層の厚みは、最終的な積層板における絶縁樹脂層の厚さが、表1に示す値になるように調整した。なお、かかる条件で樹脂組成物を乾燥させることにより、絶縁樹脂層形成用層は、半硬化の状態となっている。これを縦65mm×横100mmにカットした。
<Deposition of insulating resin layer forming layer on copper foil>
The prepared copper foil (1) was 260 mm wide and 35 μm thick. A resin composition prepared in advance is applied to the roughened surface of the copper foil (1) with a comma coater and dried by heating at 100 ° C. for 3 minutes and at 150 ° C. for 3 minutes, whereby an insulating resin layer is formed on the copper foil. A forming layer was formed. The thickness of the layer was adjusted so that the thickness of the insulating resin layer in the final laminated plate was a value shown in Table 1. In addition, the insulating resin layer forming layer is in a semi-cured state by drying the resin composition under such conditions. This was cut into 65 mm length × 100 mm width.
<樹脂層(絶縁樹脂層形成用層)上へのアルミニウム板の接合>
 絶縁樹脂層形成用層が形成された銅箔(1)の絶縁樹脂層形成用層上に、アルミニウム板(表1に「○」を付したもの)を載置し、その後、銅箔(1)とアルミニウム板とが、絶縁樹脂層形成用層を介して互いに接近するように加圧および加熱した。この工程により絶縁樹脂層形成用層を硬化させ、銅箔(1)と、絶縁樹脂層と、アルミニウム板とがこの順で積層された積層板を得た。なお、加熱・加圧の条件は、以下とした。
 ・加熱温度   :180℃
 ・加圧時の圧力 :10MPa
 ・加熱/加圧時間:1.5時間
<Joint of aluminum plate on resin layer (insulating resin layer forming layer)>
On the insulating resin layer forming layer of the copper foil (1) on which the insulating resin layer forming layer is formed, an aluminum plate (those marked with “◯” in Table 1) is placed, and then the copper foil (1 ) And the aluminum plate were pressed and heated so as to approach each other through the insulating resin layer forming layer. By this step, the insulating resin layer forming layer was cured to obtain a laminated plate in which the copper foil (1), the insulating resin layer, and the aluminum plate were laminated in this order. The heating / pressurizing conditions were as follows.
-Heating temperature: 180 ° C
・ Pressure pressure: 10 MPa
・ Heating / pressurizing time: 1.5 hours
<平坦化>
 上記で得られた積層板のそれぞれについて、平坦化装置100を用いて、反りを矯正する平坦化加工を行った。なお、平坦化装置100を用いた平坦化加工は、離間距離L=20cm、離間距離L=20cm、長さL=5cm、テンショナー直径=15cmの装置を用いた。この平坦化加工により、各実施例および各比較例の積層板は、反り率(JIS C 6481に規定)が0.2%以下となっていた。
<Planarization>
About each of the laminated board obtained above, the planarization process which corrects curvature using the planarization apparatus 100 was performed. Incidentally, flattening processing using a planarization apparatus 100 was used the distance L 1 = 20 cm, the distance L 2 = 20 cm, length L 3 = 5 cm, the apparatus of the tensioner diameter = 15cm. By this flattening process, the warp rate (specified in JIS C 6481) of the laminated plates of each example and each comparative example was 0.2% or less.
3.評価
<3点曲げ試験>
 各実施例および各比較例で得られた積層板をカットし、長さ100mm、幅25mmの試験片を作成した。各試験片について、64mmの支点間距離、10mm/minの曲げ速度の条件で、前記銅箔側から荷重をかける3点曲げ試験を実施した。この試験により得た応力―ひずみ曲線に基づき、0.1%耐力、0.2%耐力、0.5%耐力および1%歪んだときの応力を求めた。
3. Evaluation <3-point bending test>
The laminates obtained in each Example and each Comparative Example were cut to prepare test pieces having a length of 100 mm and a width of 25 mm. About each test piece, the 3 point | piece bending test which applies a load from the said copper foil side was implemented on the conditions of the distance between fulcrums of 64 mm, and the bending speed of 10 mm / min. Based on the stress-strain curve obtained by this test, the 0.1% proof stress, 0.2% proof stress, 0.5% proof stress and 1% distorted stress were determined.
<クラックの発生>
 各実施例および各比較例で得られた積層板を、L字に折り曲げたサンプルを作製した。このサンプルを切断し、その切断面における折り曲げた部分を研磨して、クラックの有無を明瞭に判別できるようにしたうえで、クラックの有無を観察した。そして、以下基準により評価した。
 A:クラック発生せず
 B:クラック発生したが、実用上問題なし
 C:実用上問題ある(絶縁破壊が起きる)クラック発生があった
<Occurrence of cracks>
Samples were produced by bending the laminates obtained in each Example and each Comparative Example into an L shape. This sample was cut, and the bent portion of the cut surface was polished so that the presence or absence of cracks could be clearly discriminated, and the presence or absence of cracks was observed. And it evaluated by the following reference | standard.
A: Crack did not occur B: Crack occurred, but no problem in practical use C: Problem occurred in practical use (insulation breakdown occurred)
<絶縁破壊電圧値>
 各実施例および各比較例で得られた積層板をカットし、8cm角の試験片を作製した。その片面の銅箔をエッチングし、試験片の中央に25mmφのパターンを作製した。その後、試験片をL字に折り曲げた後、JIS K 6911の耐電圧試験に準じて、DC電圧を0.5kV/sのスピードで昇圧し、絶縁破壊した電位を読み取り、絶縁破壊電圧値とした。
<Dielectric breakdown voltage value>
The laminates obtained in each example and each comparative example were cut to prepare 8 cm square test pieces. The copper foil on one side was etched to produce a 25 mmφ pattern at the center of the test piece. Then, after bending the test piece into an L shape, the DC voltage was boosted at a speed of 0.5 kV / s according to the withstand voltage test of JIS K 6911, and the dielectric breakdown potential was read to obtain the dielectric breakdown voltage value. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、各実施例、すなわち、0.2%耐力が200~295MPaの範囲内の積層板は、クラックの発生が抑えられ、また、良好な絶縁破壊電圧値を示した。これに対して、各比較例、すなわち、0.2%耐力が200~295MPaの範囲外の積層板は、実施例の積層板に比べ、クラックの発生の点で劣るものだった。 As is apparent from Table 1, in each of the examples, that is, the laminated sheet having a 0.2% proof stress in the range of 200 to 295 MPa, the occurrence of cracks was suppressed and a good dielectric breakdown voltage value was exhibited. On the other hand, each comparative example, that is, a laminate having a 0.2% proof stress outside the range of 200 to 295 MPa, was inferior in terms of occurrence of cracks compared to the laminate of the example.
 この出願は、2017年4月20日に出願された日本出願特願2017-083567号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-083567 filed on April 20, 2017, the entire disclosure of which is incorporated herein.

Claims (8)

  1.  アルミニウムベース銅張積層板であって、
     厚さ60~140μmの電気絶縁性の絶縁樹脂層と、
     前記絶縁樹脂層の一方の面に積層された、厚さ0.5~2.0mmのアルミニウム板と、
     前記絶縁樹脂層の他方の面に積層された、厚さ18~105μmの銅箔と、から構成され、
     長さ100mm、幅25mmの当該アルミニウムベース銅張積層板に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、前記銅箔側から荷重をかける3点曲げ試験を実施したとき、0.2%耐力が、200~295MPaである、アルミニウムベース銅張積層板。
    An aluminum-based copper clad laminate,
    An electrically insulating insulating resin layer having a thickness of 60 to 140 μm;
    An aluminum plate having a thickness of 0.5 to 2.0 mm laminated on one surface of the insulating resin layer;
    A copper foil having a thickness of 18 to 105 μm laminated on the other surface of the insulating resin layer,
    When a three-point bending test in which a load is applied from the copper foil side under the conditions of a distance between fulcrums of 64 mm and a bending speed of 10 mm / min for the aluminum-based copper-clad laminate having a length of 100 mm and a width of 25 mm, An aluminum-based copper clad laminate having a 0.2% proof stress of 200 to 295 MPa.
  2.  請求項1に記載のアルミニウムベース銅張積層板であって、長さ100mm、幅25mmの当該アルミニウムベース銅張積層板に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、前記銅箔側から荷重をかける3点曲げ試験を実施したとき、0.1%耐力が、185~285MPaである、アルミニウムベース銅張積層板。 The aluminum-based copper-clad laminate according to claim 1, wherein the aluminum-base copper-clad laminate having a length of 100 mm and a width of 25 mm is subjected to a distance between fulcrums of 64 mm and a bending speed of 10 mm / min. An aluminum-based copper-clad laminate having a 0.1% proof stress of 185 to 285 MPa when a three-point bending test in which a load is applied from the copper foil side is performed.
  3.  請求項1または2に記載のアルミニウムベース銅張積層板であって、長さ100mm、幅25mmの当該アルミニウムベース銅張積層板に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、前記銅箔側から荷重をかける3点曲げ試験を実施したとき、0.5%耐力が、210~310MPaである、アルミニウムベース銅張積層板。 It is the aluminum base copper clad laminated board of Claim 1 or 2, Comprising: With respect to the said aluminum base copper clad laminated board of length 100mm and width 25mm, on the conditions of the distance between fulcrums of 64mm, and the bending speed of 10 mm / min. An aluminum-based copper-clad laminate having a 0.5% yield strength of 210 to 310 MPa when a three-point bending test in which a load is applied from the copper foil side is performed.
  4.  請求項1~3のいずれか1項に記載のアルミニウムベース銅張積層板であって、長さ100mm、幅25mmの当該アルミニウムベース銅張積層板に対し、64mmの支点間距離、10mm/minの曲げ速度の条件で、前記銅箔側から荷重をかける3点曲げ試験を実施したとき、1%歪んだときの応力が、205~305MPaである、アルミニウムベース銅張積層板。 The aluminum-based copper-clad laminate according to any one of claims 1 to 3, wherein the distance between fulcrums of 64 mm is 10 mm / min with respect to the aluminum-based copper-clad laminate having a length of 100 mm and a width of 25 mm. An aluminum-based copper-clad laminate having a stress of 205 to 305 MPa when strained by 1% when a three-point bending test in which a load is applied from the copper foil side under a bending speed condition is performed.
  5.  請求項1~4のいずれか1項に記載のアルミニウムベース銅張積層板であって、
     前記アルミニウム板が、純度98.5~100質量%のアルミニウムで構成されているアルミニウムベース銅張積層板。
    The aluminum-based copper-clad laminate according to any one of claims 1 to 4,
    An aluminum-based copper-clad laminate in which the aluminum plate is made of aluminum having a purity of 98.5 to 100% by mass.
  6.  請求項1~5のいずれか1項に記載のアルミニウムベース銅張積層板であって、前記アルミニウム板を構成するアルミニウム素材の引張強度が、95~140MPaである、アルミニウムベース銅張積層板。 The aluminum-based copper-clad laminate according to any one of claims 1 to 5, wherein the aluminum material constituting the aluminum plate has a tensile strength of 95 to 140 MPa.
  7.  請求項1~6のいずれか1項に記載のアルミニウムベース銅張積層板であって、
     前記絶縁樹脂層が、エポキシ樹脂およびフェノキシ樹脂から選択される少なくとも1つの樹脂を含むアルミニウムベース銅張積層板。
    The aluminum-based copper-clad laminate according to any one of claims 1 to 6,
    An aluminum-based copper-clad laminate in which the insulating resin layer includes at least one resin selected from an epoxy resin and a phenoxy resin.
  8.  請求項7に記載のアルミニウムベース銅張積層板であって、
     前記絶縁樹脂層が、フィラーをさらに含むアルミニウムベース銅張積層板。
    The aluminum-based copper-clad laminate according to claim 7,
    The aluminum-based copper clad laminate, wherein the insulating resin layer further contains a filler.
PCT/JP2018/009896 2017-04-20 2018-03-14 Aluminum base copper-clad laminated plate WO2018193757A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018534902A JPWO2018193757A1 (en) 2017-04-20 2018-03-14 Aluminum base copper clad laminate
CN201880025908.4A CN110573336A (en) 2017-04-20 2018-03-14 Aluminum-based copper-clad laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-083567 2017-04-20
JP2017083567 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018193757A1 true WO2018193757A1 (en) 2018-10-25

Family

ID=63856698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009896 WO2018193757A1 (en) 2017-04-20 2018-03-14 Aluminum base copper-clad laminated plate

Country Status (3)

Country Link
JP (1) JPWO2018193757A1 (en)
CN (1) CN110573336A (en)
WO (1) WO2018193757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116406090A (en) * 2023-05-15 2023-07-07 台山市科伟电子科技有限公司 Production process of aluminum-based copper-clad aluminum foil plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275036A (en) * 1988-04-27 1989-11-02 Mitsubishi Alum Co Ltd Aluminium core metallic foil placed laminating plate and method thereof
JP2003046210A (en) * 2001-07-27 2003-02-14 Denki Kagaku Kogyo Kk Metallic base circuit board
JP2005353974A (en) * 2004-06-14 2005-12-22 Hitachi Chem Co Ltd Metal base circuit board
JP2011100816A (en) * 2009-11-05 2011-05-19 Denki Kagaku Kogyo Kk Circuit board
JP2017063161A (en) * 2015-09-25 2017-03-30 ナミックス株式会社 Printed wiring board and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133518A1 (en) * 2011-03-31 2012-10-04 新日鐵化学株式会社 Copper foil, copper-clad laminate, flexible circuit board, and manufacturing method for copper-clad laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275036A (en) * 1988-04-27 1989-11-02 Mitsubishi Alum Co Ltd Aluminium core metallic foil placed laminating plate and method thereof
JP2003046210A (en) * 2001-07-27 2003-02-14 Denki Kagaku Kogyo Kk Metallic base circuit board
JP2005353974A (en) * 2004-06-14 2005-12-22 Hitachi Chem Co Ltd Metal base circuit board
JP2011100816A (en) * 2009-11-05 2011-05-19 Denki Kagaku Kogyo Kk Circuit board
JP2017063161A (en) * 2015-09-25 2017-03-30 ナミックス株式会社 Printed wiring board and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116406090A (en) * 2023-05-15 2023-07-07 台山市科伟电子科技有限公司 Production process of aluminum-based copper-clad aluminum foil plate
CN116406090B (en) * 2023-05-15 2024-02-02 台山市科伟电子科技有限公司 Production process of aluminum-based copper-clad aluminum foil plate

Also Published As

Publication number Publication date
JPWO2018193757A1 (en) 2020-02-27
CN110573336A (en) 2019-12-13

Similar Documents

Publication Publication Date Title
JP4938910B1 (en) Precured material, roughened precured material and laminate
JP5738274B2 (en) Heat-resistant adhesive
JP5629407B2 (en) Insulating resin material and multilayer substrate
JP2009256626A (en) Epoxy-based resin composition, prepreg, cured product, sheet-like molded form, laminated board, and multi-layer laminated board
JP5200386B2 (en) Adhesive sheet for electronic materials
JP2016002669A (en) Metal foil-clad substrate, circuit board and electronic component-mounted substrate
JP6310193B2 (en) Copper foil with carrier, method for producing the same, method for producing copper-clad laminate, and method for producing printed wiring board
WO2014017606A1 (en) Copper foil with carrier
JP5118469B2 (en) Copper foil with filler particle-containing resin layer and copper-clad laminate using the filler particle-containing copper foil with resin layer
JP2012211269A (en) Precured product, roughened precured product and laminate
JP5560746B2 (en) Adhesive sheet
JP2017098376A (en) Resin composition, circuit board, exothermic body-mounted substrate and circuit board manufacturing method
JP5799174B2 (en) Insulating resin film, pre-cured product, laminate and multilayer substrate
JP5083070B2 (en) Sealing film
JP5752071B2 (en) B-stage film and multilayer substrate
WO2018193757A1 (en) Aluminum base copper-clad laminated plate
JP2015009556A (en) Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP6451867B2 (en) Metal base board, circuit board and heating element mounting board
JP6310191B2 (en) Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board
WO2015178393A1 (en) Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon
JP2016131926A (en) Coating device, coating method, metal foil-clad substrate, circuit board, electronic component mounting substrate, and electronic apparatus
JP2014062150A (en) Insulating resin film, production method of insulating resin film, preliminarily cured product, laminate, and multilayer substrate
JP2007194405A (en) Epoxy resin composition for heat conduction
JP2011032330A (en) Resin composition, b-stage film, laminated film, copper-clad laminate, and multilayer substrate
WO2011161902A1 (en) Resin composition used to form resin layer of metal base substrate, metal base substrate, and method for producing metal base substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534902

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787979

Country of ref document: EP

Kind code of ref document: A1