WO2018193750A1 - Video conferencing system - Google Patents

Video conferencing system Download PDF

Info

Publication number
WO2018193750A1
WO2018193750A1 PCT/JP2018/009302 JP2018009302W WO2018193750A1 WO 2018193750 A1 WO2018193750 A1 WO 2018193750A1 JP 2018009302 W JP2018009302 W JP 2018009302W WO 2018193750 A1 WO2018193750 A1 WO 2018193750A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
point
wavelength
signal
wavelength multiplexed
Prior art date
Application number
PCT/JP2018/009302
Other languages
French (fr)
Japanese (ja)
Inventor
並木 周
松浦 裕之
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2018193750A1 publication Critical patent/WO2018193750A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0307Multiplexers; Demultiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/15Conference systems

Definitions

  • the present invention relates generally to a video conference system, and more specifically to a video conference system via an optical path network that connects a plurality of points bi-directionally with optical fibers.
  • a system called a video conference or a video conference in which voice and an image are transmitted between a plurality of distant points is widely spread.
  • moving image captured by a video camera and audio data collected by a microphone are taken into the system.
  • the captured data is converted into IP (Internet Protocol) data using a data compression technique, and then transmitted to a remote location using an Internet line.
  • IP Internet Protocol
  • the transmitted IP data is converted into a signal that can be received by a display or speaker.
  • Non-Patent Document 1 discloses an application to a video conference using an uncompressed 4K high-definition moving image as an example by using a DOPN configuration that uses optical transmission that establishes a path between any of the eight nodes when necessary.
  • DOPN Dynamic Optical Path Network
  • Reference 1 discloses an application to a video conference using an uncompressed 4K high-definition moving image as an example by using a DOPN configuration that uses optical transmission that establishes a path between any of the eight nodes when necessary.
  • ultra-high-definition video can be shared in real time between any remote locations without being compressed, enabling a video conferencing service with a higher sense of presence than a video conferencing system via a conventional IP network.
  • Non-Patent Document 1 is effective in that ultra-high definition video can be shared in real time between any remote locations without being compressed.
  • an optical signal that can further transmit the Ethernet (registered trademark) signal over a long distance with a transponder
  • the structure and control are likely to be complicated.
  • the wavelength division multiplexed signal is divided by the optical demultiplexer 32, combined with the signal at another point by the optical multiplexer 33, amplified by the optical amplifier 34, and transmitted to each point as the wavelength multiplexed signal.
  • a necessary optical signal is demultiplexed by the optical demultiplexer 35 and displayed on a display through a filter for wavelength selection.
  • the present invention improves the above-described problems of the conventional technology, and provides a video conference system capable of providing a video conference service with a high sense of presence between a plurality of points by a relatively simple configuration and signal processing via an optical path network.
  • the purpose is to provide. Specifically, for example, a flexible connection such as realizing a video conference connection between a plurality of points with a small number of parts, or performing the connection only between selected points without fixing the connection.
  • the goal is to achieve this without using expensive elements such as WSS.
  • a video conference system that uses an optical path network that connects a plurality of points in two directions with an optical fiber via at least one exchange.
  • the video conference system is configured such that at each point, (a) a plurality of video cameras, (b) a plurality of displays, and (c) moving image signals from the plurality of video cameras are assigned to each video camera.
  • An optical transmitter for converting into an optical signal of a wavelength; and (d) an optical signal having a different wavelength from the optical transmitter is combined and output to the switching center via an optical fiber as a first wavelength multiplexed signal.
  • a first optical multiplexer and (e) demultiplexing a second wavelength multiplexed signal including an optical signal transmitted from an exchange station via an optical fiber from a point other than the point into optical signals having different wavelengths.
  • a first optical demultiplexer for output, and (f) a first optical receiver for converting each of the optical signals from the first wavelength selector into a driving signal for displaying a moving image on a corresponding display.
  • the switching center includes (g) a third optical multiplexer that multiplexes each of the first wavelength multiplexed signals transmitted from each point and outputs the multiplexed signal as a third wavelength multiplexed signal; and (h) a third optical multiplexer.
  • An optical demultiplexer that outputs the third wavelength multiplexed signal from the optical multiplexer to each of the optical fibers connected to each point; and (i) the first wavelength multiplexed signal sent from each point.
  • the input of the first wavelength multiplexed signal to the third optical multiplexer is switched, and the third to the optical fiber connected to each point from the optical demultiplexer.
  • an optical matrix switch for switching the output of the wavelength multiplexed signal.
  • the outline of the operation using the video conference system of one embodiment of the present invention is as follows.
  • a moving image for example, a high-definition moving image
  • An electrical signal moving image signal
  • An optical transmitter without IP conversion or image compression by a PC
  • the wavelength of the optical signal is different for each video camera. If there are a plurality of video cameras at each point, the optical signal is wavelength-multiplexed.
  • the switching center transmits a combined optical signal copy to each point by distributing after combining the optical signal from each point.
  • an optical signal to be displayed is selected from the optical signals sent from the switching center by a wavelength selector (for example, an optical bandpass filter), and then displayed by an optical receiver (for example, a high definition). It is converted into an electrical signal (drive signal) that can be displayed on the display.
  • a wavelength selector for example, an optical bandpass filter
  • an optical receiver for example, a high definition
  • driver signal for example, a high definition
  • FIG. 1 is a diagram illustrating an overall configuration of a video conference system according to an embodiment of the present invention. It is a figure for demonstrating the operation
  • connection points N 4 (points A to D)
  • the number N of points can be any number of 3 or more.
  • a different wavelength is assigned to each video camera at each connection point, and light of the assigned wavelength is transmitted from the transmitter / receiver installed at each connection point. Allow signals to be transmitted / received.
  • WDM Wavelength: Division: Multiplex
  • FIG. 3 is a diagram showing the overall configuration of the video conference system according to the embodiment of the present invention.
  • an exchange 10 and four points 1 to 4 are connected via optical fibers 20 and 21.
  • the optical fibers 20 and 21 for example, one two-core optical fiber can be used.
  • the switching center 10 includes a controller 11, an optical coupler 16, an optical demultiplexer 18, an optical amplifier 12, and an optical matrix switch 14.
  • the controller 11 performs control and maintenance of each device in the exchange.
  • the signal line is omitted because it is complicated, but in reality, a signal line exists between the controller 11 and each device.
  • the optical matrix switch 14 in the switching center 10 has eight input ports (IN) 1 to 8 and eight output ports (OUT) 1 to 8.
  • the optical matrix switch 14 has a connection relationship between the input port and the output port shown in FIG. In this case, connect the optical matrix switch 14 to IN5 ⁇ OUT1 IN6 ⁇ OUT2 IN7 ⁇ OUT3 IN8 ⁇ OUT4
  • the optical signals ⁇ A , ⁇ B , ⁇ C , and ⁇ D from each point can be connected to the input of the optical multiplexer (Coupler) 16.
  • the connection of the optical matrix switch 14 is changed from IN1 to OUT5.
  • the wavelength multiplexed signals ⁇ A to D of the optical demultiplexer 18 after passing through the optical amplifier 12 can be sent to each point.
  • the wavelength multiplexed signals transmitted from the points 1 to 4 through the optical fiber 20 are input to the four input ports (IN) 5 to 8 of the optical matrix switch 14, and the output port (OUT) 1 is switched by the switch operation.
  • the optical coupler (Coupler) 16 further multiplexes each of the wavelength multiplexed signals transmitted from each point, and outputs the optical signals as wavelength multiplexed signals ⁇ A to D including 12 different wavelengths ⁇ A1 to ⁇ D3 in FIG. Output to the amplifier 12.
  • the optical coupler 16 can be an optical coupler, that is, a power combiner, or an AWG (Arrayed Waveguide Grating) that is a wavelength multiplexer.
  • the optical amplifier 12 amplifies the wavelength multiplexed signals ⁇ A to D as necessary. This is to compensate for the optical power loss lost due to factors such as the optical coupler (Coupler) 16, the next-stage optical demultiplexer (Distributor) 18, or the transmission distance. When the optical power loss is small, it is not necessary to amplify by the optical amplifier 12. In other words, the optical amplifier 12 is not an essential device.
  • An optical demultiplexer 18 sends copies of the wavelength multiplexed signals ⁇ A to D sent via the optical amplifier 12 to the four input ports (IN) 1 to 4 of the optical matrix switch 14.
  • the copies of the wavelength multiplexed signals ⁇ A to D are output from the output ports (OUT) 5 to 8 to each of the optical fibers 21 connected to each point by the switching operation of the optical matrix switch 14.
  • Each of the points A to D includes a controller 25, three video cameras 5, three displays 6, an optical demultiplexer 23, an optical transmitter T, and an optical receiver. R and a wavelength selector F are installed.
  • a controller 25 controls each device.
  • the signal line is omitted because it is complicated, but in reality, a signal line exists between the controller 25 and each device.
  • the video camera 5 is used to transmit a moving image including a conference participant 7 (one or more people) toward another point.
  • the three video cameras 5 are arranged so as to surround the front view of the conference participant 7. It is desirable that the video camera 5 and the display 6 have a high definition, for example, a 4K compatible device, and the number of frames per second can correspond to 60 frames or more.
  • the three displays 6 are arranged so as to surround the front view of the conference participant 7. For example, among the three displays 6 in front of the person 7 at the point A, the high-definition video of the person 7 at the point B is displayed on the left display, and the high-definition video of the person 7 at the point C is displayed on the center display. Is displayed, and the high-definition moving image of the person 7 at the point D is displayed without delay on the right display. As a result, an environment full of realism can be realized as if the person 7 at the point A is facing the same place as each person 7 at the other point. The same applies to other points.
  • the optical transmitter T at each point converts the moving image signal from each video camera 5 into an optical signal and outputs the optical signal to an optical multiplexer (Coupler) 23.
  • the wavelength of the optical signal is set to be different for each transmitter corresponding to each video camera 5.
  • the wavelength sent to point B is ⁇ A1
  • the wavelength sent to point C is ⁇ A2
  • the wavelength sent to point D is ⁇ A3 ( ⁇ A1 ⁇ ⁇ A2 , ⁇ A1 ⁇ ⁇ A3 , ⁇ A2 ⁇ ⁇ A3 ). Since these optical signals have different wavelengths, they can be wavelength-multiplexed by an optical coupler (Coupler) 23 such as an optical coupler.
  • an AWG Arrayed Waveguide Grating
  • the light wavelengths ⁇ A1 , ⁇ B1 , ⁇ C1 , ⁇ D1 , ⁇ A2 , ⁇ B2 , ⁇ C2 , ⁇ D2 , ⁇ A3 , ⁇ B3 , ⁇ C3 , ⁇ D3 are all different wavelengths. .
  • the wavelength multiplexed signal from the optical coupler (Coupler) 23 is transmitted to the switching center 10 through the optical fiber 20.
  • an optical amplifier is inserted in the middle of the transmission path to the switching center, or compensated if the optical dispersion is large.
  • a dispersion compensator may be inserted.
  • the processing of the wavelength multiplexed signal in the switching center 10 has already been described above, and the finally multiplexed wavelength multiplexed signals ⁇ A to D are sent to each point via each optical fiber 21.
  • the wavelength selector F at each point selects an optical signal having a wavelength including a moving image to be displayed on each display 6 from the received wavelength multiplexed signals ⁇ A to D.
  • the wavelength selector F B3 is one of the three optical signals ⁇ B1 , ⁇ B2 , ⁇ B3 corresponding to the moving image signals captured by the three video cameras 5 at the point B (for example, the point The optical signal ⁇ B3 ) of the video camera on the right side of B is selected.
  • the wavelength selector F C2 selects one of the three optical signals ⁇ C1 , ⁇ C2 , and ⁇ C3 from the point C (for example, the optical signal ⁇ C2 of the video camera in the center of the point C), and the wavelength.
  • the selector F D1 selects one of the three optical signals ⁇ D1 , ⁇ D2 , and ⁇ D3 from the point D (for example, the optical signal ⁇ D1 of the video camera on the left side of the point D). That is, the three optical signals selected by the three wavelength selectors at the point A are selected so that the positions (left, center, right) of the three video cameras at the other points B to D, in other words, the shooting directions are different. Is done.
  • the other points B to D are similarly selected.
  • An optical filter can be used for the wavelength selector F, or an AWG (Arrayed Waveguide Grating) may be used.
  • Each selected optical signal is converted into a drive signal that can be displayed on the corresponding display 6 by the optical receiver R, and displayed as a moving image at another point on each display.
  • the image seen by the person (A) at the point A is displayed on the left display of the person (B) at the point B taken from the right side when viewed from (B).
  • the front display shows a person at point C (an image of C taken from the front
  • the right display shows an image of the person at point D (D) taken from the left as viewed from (D).
  • the incoming optical signal includes the image signal at the point, so if necessary, select it with the wavelength selector and send it to the other party using a separate display. It is also possible to monitor the appearance of yourself A.
  • the wavelength on the transmission side is fixed and the wavelength in the pass band of the wavelength selector F on the reception side is made variable to select a desired signal
  • the wavelength selector F on the reception side may be fixed
  • the wavelength on the transmission side that is, the video camera 5 side
  • the wavelength may be selected and transmitted so as to appear on the desired display 6.
  • an optical filter (wavelength tunable filter) used as the wavelength selector F is more expensive than a wavelength tunable light source, so it is useful to make the transmission side variable.
  • the wavelength used for the multi-point conference (for example, four points) is determined as the specific wavelength.
  • the transmission wavelength from each video camera 5 is assigned to one of the specific wavelengths under the control of the controller 25. Since the wavelength selector F on the receiving side is fixed to a specific wavelength for the conference, a multi-point conference can be executed.
  • the wavelength of the wavelength selector F on the reception side associated with the display 6 is used. Allows a wavelength other than the specific wavelength assigned for the conference at a plurality of points to pass. Since switching is performed by the optical matrix switch 14, the signals of the conferences at a plurality of points are not mixed at this time. That is, users participating in a conference at a plurality of locations use a specific wavelength of 12 wavelengths in this example, and users who do not participate in a conference at a plurality of locations use other wavelengths.
  • the transmission wavelength is variable and the reception wavelength is fixed to a specific wavelength, it becomes possible to provide services to a large number of users. That is, it is possible to accommodate as many users as the number of ports of the optical matrix switch 14 allows for a larger number of users than the wavelength used for a multipoint conference or other conference.
  • the upper limit of the number of users is further limited by the number of wavelengths that can be set by the wavelength selector F on the receiving side. It is also possible to make the wavelength selection more flexible by making the optical wavelength on the transmission side variable and simultaneously changing the wavelength of the wavelength selector F on the reception side. That is, the transmission side wavelength and the wavelength of the wavelength selector F on the reception side are operated under the control of the controller 25 so as to use the empty wavelength.
  • the audio can be transmitted in the same manner. That is, sound is converted into an electrical signal with a microphone installed at each point, the transmission of the sound signal is superimposed on the moving image signal, and the sound signal is separated from the moving image signal at the receiving point and is made sound with a speaker.
  • the microphone may be either a built-in (accompanying) type of the video camera 5 or a stand-alone type.
  • the speaker may be either a stand-alone type or a built-in (accompanying) type of the display 6. In this way, a video conference between a plurality of points can be realized by transmitting moving images and sound between the plurality of points.
  • the optical signal from each point is directly connected to the exchange, but in reality, the same route may be taken from the middle.
  • the optical signal from the point A and the optical signal from the point B take the same route between the relay station and the exchange station provided in the middle of each route.
  • the optical multiplexer and the optical demultiplexer that handle the optical signals from each point are not installed only in the exchange, but some functions thereof, that is, the optical multiplexer and the optical demultiplexer related to the points A and B Can be installed at the relay station. By doing so, the number of optical fibers secured between the relay station and the exchange station can be further reduced.
  • the image captured by the video camera is described as the high-definition moving image generated at each point.
  • a high-definition image (still image or moving image) generated by a computer
  • a high-definition image source (for example, a video recording device, etc.) can be connected and used for explanation. Switching between the high-definition moving image captured by the video camera and the source of these high-definition video can be realized by using the conventional technology, and transmission of this to multiple points can also be realized by the method of the present invention.
  • the audio information can be superimposed on a high-definition image in the same manner as in the case of a video camera using the conventional technology.
  • FIG. 6 is a diagram showing an overall configuration of a video conference system according to another embodiment of the present invention.
  • the video cameras 5 at each of the points A to D (1 to 4) are limited to one, and the moving image signal sent to the exchange 10 is limited to one.
  • the optical transmitter T at each point converts a moving image signal from one video camera 5 into an optical signal and sends the optical signal to the exchange 10 via the optical fiber 20.
  • an optical coupler is not necessary.
  • Other configurations and operations thereof are basically the same as those in the configuration of FIG.
  • the optical signal sent from each point A to D to the switching center 10 is not a wavelength multiplexed signal but a single wavelength optical signal. Also in this case, the wavelength of the optical signal sent from each point to the exchange is different. That is, the optical wavelength of the signal sent from the point A to the exchange is ⁇ A , the optical wavelength of the signal sent from the point B to the exchange is ⁇ B , the optical wavelength of the signal sent from the point C to the exchange is ⁇ C , and the signal is exchanged from the point D When the optical wavelength of the signal sent to the station is ⁇ D , ⁇ A , ⁇ B , ⁇ C , and ⁇ D are all different.
  • an optical amplifier is inserted in the middle of the transmission path when the optical signal is attenuated due to a long transmission distance, or a dispersion compensator is inserted to compensate for it when the optical dispersion is large. Just do it.
  • the optical signal sent to the switching center is multiplexed by a multiplexer to become wavelength multiplexed signals ⁇ A to D including wavelengths ⁇ A , ⁇ B , ⁇ C , ⁇ D , It is sent to each point via the fiber 21.
  • the wavelength multiplexed signals ⁇ A to D arriving at the respective points select optical signals having wavelengths including moving images to be displayed on the respective displays 6 by the wavelength selector F.
  • the point A the wavelength selector F B selects an optical signal lambda B corresponding to the moving image signal is a video camera 5 point B taken.
  • wavelength selector F C selects the optical signal lambda C from the point C
  • the wavelength selector F D selects the optical signal lambda D from the point C.
  • the other points B to D are similarly selected.
  • An optical filter can be used for the wavelength selector, or an AWG (Arrayed Waveguide Grating) may be used.
  • Each selected optical signal is converted into a drive signal that can be displayed on the corresponding display 6 by the optical receiver R, and displayed as a moving image at another point on each display.
  • FIG. 7 shows a configuration example regarding such a case, where the number of points is 12 and the number of points that can participate in a multi-point conference is limited to 4 points.
  • a 16-input (IN) ⁇ 16-output (OUT) optical matrix switch 14 is used.
  • the optical signals from the points participating in the multipoint conference are switched to the input of the optical coupler 16 by the optical matrix switch 14.
  • the wavelength multiplexed signal of the optical demultiplexer (Distributor) 18 after passing through the optical amplifier 12 is switched so as to be connected to the participation point.
  • it is possible to hold a conference between two points by connecting points that do not participate in the conference of the plurality of points at the same time via the optical matrix switch 14. For example, by performing a connection as in the optical matrix switch 14 of FIG. 7, while a meeting is held at four points of point A, point B, point C, and point D, two points E and Z are simultaneously displayed. Conferences can be held between points.
  • ⁇ Fourth embodiment> In the configuration of FIG. 7, the number of simultaneous multi-point (three or more) meetings is limited to one. Therefore, as shown in FIG. 8, by arranging a plurality of sets of optical multiplexers (Couplers) 16, optical amplifiers 12, and optical demultiplexers (Distributors) 18, the number of simultaneous meetings held at a plurality of points can be determined. The number can be increased up to two (two or more).
  • Circulators 8 and 13 are installed at each point and exchange. That is, at each point, the optical signal from the optical coupler (Coupler) 25 or the transmitter T is input to the optical circulator 8 and transmitted only to the common port side. The optical signal from the common port side of the optical circulator 8 is output only to the wavelength selector F side.
  • the optical signal from the common port side of the optical circulator 13 is output only to the optical coupler (Coupler) 16 side, and the optical signal from the optical demultiplexer (Distributor) 18 is output only to the common port side. Is done.
  • a similar optical circulator can be selectively introduced in an optical fiber line connecting another point (one or more) and the exchange. By configuring in this way, the number of optical fibers connecting each point and the exchange is reduced from two to one, and the cost can be reduced.
  • an optical circulator is disposed before and after the optical path. Separate and amplify the light in the transmission direction.
  • optical multiplexer 15 it is without providing the optical circulator at each point, the optical multiplexer 15, a case where the transmitting-side optical filter F x, provided the reception side optical filter F Y.
  • B it is without providing the optical circulator in the exchange station 10, the optical multiplexer 15, a case where the transmitting-side optical filter F x, provided the reception side optical filter F Y.
  • C is without providing the optical circulator at each point, the optical multiplexer 15, a case in which the receiving-side optical filter F Y.
  • D is without providing the optical circulator in the exchange station 10, the optical multiplexer 15, a case in which the transmitting-side optical filter F x.
  • the optical filters F x and F Y are set so as to pass an optical signal having a desired wavelength or to block unnecessary optical signals.
  • the receiver-side optical filter F Y can be substituted by already optical filter wavelength selector F of each point in FIG. 3 described.
  • it is desirable to use a circulator because there is a fundamental loss in optical couplers, and there are restrictions on the optical filter's passing loss and unwanted wave blocking capability.
  • FIG. 11 shows a configuration example in the case of implementation as a so-called video wall system.
  • two remote connections between point A, point B, point C, and point D are mutually connected so that a person stands in front of each display and talks with the person at the other point independently.
  • a situation is shown in which six conversations are made between four points.
  • the video wall is always connected regardless of whether people are present or not.
  • the configuration of the present invention can be applied to a video wall whose principle is always-on connection, and flexible operation is possible in addition to simple functions.
  • the video conference system of the present invention is not limited to video conferences that connect conference rooms, but also high-definition images such as music ensembles, remote lectures, medical applications, multiple work sites and their consoles, etc., with low delay, that is, in real time. It can be widely applied to the case where it is effective to create a realistic situation where three or more remote locations are in the immediate vicinity.
  • Video camera 6 Display 7 (Meeting participants) 8, 13 Optical circulator 10, 31 Switching office 11, 25 Controller 12, 34 Optical amplifier 14 Optical matrix switch 15, 16, 23, 30, 33 Optical multiplexer 18, 32, 35 Optical demultiplexer 20, 21, 24 Light fiber 100, 110 video conferencing system

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Optical Communication System (AREA)

Abstract

Provided is a video conferencing service with which flexible connections are possible and which allows for a strong sense of presence between a plurality of sites via an optical path network using signal processing and a comparatively simple structure. In this video conferencing system, a video camera provided at each site captures video. The electrical signal of each captured video is transmitted to a conversion station after having been converted into light at an optical transmitter. When doing so, the wavelength of the optical signal from each of the video cameras is made to differ, and if there is a plurality of video cameras in each site, the optical signals are subjected to wavelength multiplexing. The optical signals from the sites are combined in the conversion station and then distributed, whereby copies of the combined optical signals are transmitted to the sites. From among the optical signals that have been transmitted from the conversion station, the optical signal that should be displayed at each site is selected by a wavelength selector and then converted by an optical receiver into an electrical signal that can be displayed by a display. A plurality of displays is provided at each site so as to surround a meeting participant, for example, and a display corresponding to the video from the other sites is displayed on the displays.

Description

ビデオ会議システムVideo conferencing system
 本発明は、一般的にはビデオ会議システムに関し、より具体的には、複数地点間を光ファイバによって双方向に結ぶ光パスネットワークを介したビデオ会議システムに関する。 The present invention relates generally to a video conference system, and more specifically to a video conference system via an optical path network that connects a plurality of points bi-directionally with optical fibers.
離れた複数地点間で音声と画像を相互に伝送して行う、ビデオ会議もしくはテレビ会議と呼ばれるシステムが近年広く普及しつつある。従来のテレビ会議システムでは、ビデオカメラで撮像した動画像やマイクロフォンで集音した音声のデータをシステムに取り込む。取り込まれたデータに対してデータ圧縮技術を利用してIP(インターネットプロトコル)データに変換した後に、インターネット回線を用いて遠隔地に伝送する。遠隔地側では伝送されてきたIPデータをディスプレイやスピーカで受信可能な信号に変換する。これを双方向に行うことによって、遠隔地点間のIPネットワークを介したテレビ会議を実現する。 In recent years, a system called a video conference or a video conference in which voice and an image are transmitted between a plurality of distant points is widely spread. In a conventional video conference system, moving image captured by a video camera and audio data collected by a microphone are taken into the system. The captured data is converted into IP (Internet Protocol) data using a data compression technique, and then transmitted to a remote location using an Internet line. At the remote site, the transmitted IP data is converted into a signal that can be received by a display or speaker. By doing this in both directions, a video conference over an IP network between remote locations is realized.
 そうしたテレビ会議では、より臨場感を増すためには、画像が高精細であることや画像及び音声の伝送遅延が少ないことが望まれる。しかし、従来のIPネットワークを介したテレビ会議システムでは、データ圧縮技術を利用するので、その圧縮及び復元の演算処理に時間がかかる。特にデータ量の膨大な高精細な動画像データの転送では転送遅延が起こりやすい。したがって、高精細映像などの大容量情報をネットワーク上で低遅延に共有する需要が増えている。 In such a video conference, in order to increase the presence, it is desired that the image has high definition and that the transmission delay of the image and sound is small. However, since the video conference system via the conventional IP network uses the data compression technique, it takes time for the calculation processing of the compression and decompression. In particular, transfer of high-definition moving image data with an enormous amount of data tends to cause a transfer delay. Therefore, there is an increasing demand for sharing large-capacity information such as high-definition video on the network with low delay.
 その需要に答える技術として、例えば、非特許文献1に開示されるような、複数地点間を光スイッチにより任意の光パスで結ぶダイナミック光パスネットワーク(Dynamic Optical Path Network(DOPN)がある。非特許文献1では、必要となった時点で8ノード間のいずれかでパスを張る光伝送を用いるDOPN構成により、例として非圧縮4K高精細動画像を用いたビデオ会議への応用が開示されている。これにより、例えば、超高精細映像を非圧縮のまま任意の遠隔地間でリアルタイムに共有できるので、従来のIPネットワークを介するビデオ会議システムに比べて臨場感の高いビデオ会議サービスが可能となる。 As a technology that answers the demand, for example, there is a dynamic optical path network (Dynamic Optical Path Network (DOPN)) that connects a plurality of points with an optical switch using an optical switch as disclosed in Non-Patent Document 1. Reference 1 discloses an application to a video conference using an uncompressed 4K high-definition moving image as an example by using a DOPN configuration that uses optical transmission that establishes a path between any of the eight nodes when necessary. As a result, for example, ultra-high-definition video can be shared in real time between any remote locations without being compressed, enabling a video conferencing service with a higher sense of presence than a video conferencing system via a conventional IP network. .
 非特許文献1のDOPNでは、超高精細映像を非圧縮のまま任意の遠隔地間でリアルタイムに共有できる点で有効である。しかし、例えば各ノードにおいて4Kビデオカメラと共にコンピュータ(PC)を用いて撮影映像を一旦イーサネット(登録商標)信号に変換した後に、さらにイーサネット(登録商標)信号をトランスポンダーにて長距離伝送可能な光信号に変換する必要がある等、その構成及び制御が複雑になりやすい。 The DOPN of Non-Patent Document 1 is effective in that ultra-high definition video can be shared in real time between any remote locations without being compressed. However, for example, after each captured image is converted into an Ethernet (registered trademark) signal using a computer (PC) together with a 4K video camera at each node, an optical signal that can further transmit the Ethernet (registered trademark) signal over a long distance with a transponder The structure and control are likely to be complicated.
 他の従来技術として、図1のビデオウォールシステムに示すように、各地点間の双方向接続を実現するために、フルメッシュすなわち、全地点間に独立に光ファイバを敷設することが行われている。しかし、この方法では光ファイバが多数必要でありその分コストがかかる。そこで、従来技術の延長として、言い換えれば従来の当該技術の通念から波長分割多重(WDM:Wavelength Division Multiplex)技術を用いて光ファイバ数を抑えることが考えられる。例えば図2に示すように、地点Aのカメラ3台(A1、A2、A3)の出力を異なる波長の光信号にして、光合波器30で波長多重した後に交換局31に送る。他の地点B、C、Dのカメラ3台についても同様である。交換局31では、光分波器32で波長多重信号を分け、光合波器33で他地点の信号と合波し光アンプ34で増幅して、波長多重信号として各地点に伝送する。各地点では、必要な光信号を光分波器35で分波して、波長選択のためのフィルタを介してディスプレイで表示する。 As another conventional technique, as shown in the video wall system of FIG. 1, in order to realize a bidirectional connection between points, a full mesh, that is, an optical fiber is laid independently between all points. Yes. However, this method requires a large number of optical fibers, which is costly. Therefore, as an extension of the prior art, in other words, it is conceivable to reduce the number of optical fibers by using a wavelength division multiplexing (WDM) technology based on the conventional concept of the technology. For example, as shown in FIG. 2, the outputs of three cameras (A1, A2, A3) at point A are converted into optical signals of different wavelengths, wavelength-multiplexed by an optical multiplexer 30, and then sent to an exchange 31. The same applies to the three cameras at other points B, C, and D. In the switching station 31, the wavelength division multiplexed signal is divided by the optical demultiplexer 32, combined with the signal at another point by the optical multiplexer 33, amplified by the optical amplifier 34, and transmitted to each point as the wavelength multiplexed signal. At each point, a necessary optical signal is demultiplexed by the optical demultiplexer 35 and displayed on a display through a filter for wavelength selection.
 図2の方式では、部品点数が多いだけでなく、接続が固定されてしまう。特に地点間を1対1のみで接続したい、4地点間で接続をしたい、複数の別個の接続を同時に実現したい、というような要望に応えられない。また、すべての信号を受信側に送り、受信側の光フィルタの選択機能だけで選ぶ方式とすると、本来接続したくない地点において、光フィルタを故意に操作し、あるいはそれと等価なことを行うことにより、映像通信の盗聴が可能となってしまう。盗聴といったセキュリティを失うことなしに、接続を柔軟にするには、交換局31の光合波器33の部分に波長選択スイッチ(WSS:Wavelength Selective Switch)を利用したWXC(Wavelength Cross Connect)という構成が必要となる。一般にWSSは高価な要素部品であり、さらに接続地点がさらに多くなった場合などに対応するWSSの多ポート化は容易ではない。 In the method of FIG. 2, not only the number of parts is large, but the connection is fixed. In particular, it is not possible to meet demands such as connecting between points only one-to-one, connecting between four points, or realizing a plurality of separate connections simultaneously. In addition, if all the signals are sent to the receiving side and only the optical filter selection function on the receiving side is selected, the optical filter is intentionally operated at a point where it is not desired to connect, or the equivalent is performed. This makes it possible to wiretap video communication. In order to make the connection flexible without losing security such as eavesdropping, there is a configuration called WXC (Wavelength Cross 利用 Connect) using a wavelength selective switch (WSS: Wavelength Selective Switch) for the optical multiplexer 33 of the exchange 31. Necessary. In general, WSS is an expensive element part, and it is not easy to increase the number of WSS ports when the number of connection points increases.
 本発明は、上述した従来の技術の問題を改善して、光パスネットワークを介して比較的簡易な構成及び信号処理により、複数地点間で臨場感の高いビデオ会議サービスが可能なビデオ会議システムを提供することを目的とする。具体的には、例えば、複数地点間のビデオ会議の接続を少ない部品点数で実現し、あるいはその接続を固定とせず選択した地点間だけで行う、というような柔軟な接続にすることを、セキュリティを確保しつつ、高価なWSSなどの要素を用いずに実現することを目的とする。 The present invention improves the above-described problems of the conventional technology, and provides a video conference system capable of providing a video conference service with a high sense of presence between a plurality of points by a relatively simple configuration and signal processing via an optical path network. The purpose is to provide. Specifically, for example, a flexible connection such as realizing a video conference connection between a plurality of points with a small number of parts, or performing the connection only between selected points without fixing the connection. The goal is to achieve this without using expensive elements such as WSS.
 本発明の一態様として、複数の地点間を少なくとも1つの交換局を介して光ファイバによって双方向に結ぶ光パスネットワークを利用するビデオ会議システムを提供する。そのビデオ会議システムは、各地点において、(a)複数のビデオカメラと、(b)複数のディスプレイと、(c)複数のビデオカメラからの動画像信号の各々をビデオカメラ毎に割り当てられた異なる波長の光信号に変換する光送信機と、(d)光送信機からの波長の異なる光信号を合波して、光ファイバを介して交換局へ向けて第1の波長多重信号として出力する第1の光合波器と、(e)交換局から光ファイバを介して送られる当該地点以外の他の地点からの光信号を含む第2の波長多重信号を波長の異なる光信号に分波して出力する第1の光分波器と、(f)第1の波長選択器からの光信号の各々を、対応するディスプレイで動画像を表示するための駆動信号に変換する第1の光受信機と、を備える。さらに、交換局は、(g)各地点から送られる前記第1の波長多重信号の各々を合波して第3の波長多重信号として出力する第3の光合波器と、(h)第3の光合波器からの第3の波長多重信号を、各地点に接続する前記光ファイバの各々に向けて出力する光分波器と、(i)各地点から送られる前記第1の波長多重信号を選択された地点に送るために、前記第3の光合波器への前記第1の波長多重信号の入力を切り替え、前記光分波器から各地点に接続する前記光ファイバへの前記第3の波長多重信号の出力を切り替える光マトリックススイッチと、を備える。 As one aspect of the present invention, there is provided a video conference system that uses an optical path network that connects a plurality of points in two directions with an optical fiber via at least one exchange. The video conference system is configured such that at each point, (a) a plurality of video cameras, (b) a plurality of displays, and (c) moving image signals from the plurality of video cameras are assigned to each video camera. An optical transmitter for converting into an optical signal of a wavelength; and (d) an optical signal having a different wavelength from the optical transmitter is combined and output to the switching center via an optical fiber as a first wavelength multiplexed signal. A first optical multiplexer; and (e) demultiplexing a second wavelength multiplexed signal including an optical signal transmitted from an exchange station via an optical fiber from a point other than the point into optical signals having different wavelengths. A first optical demultiplexer for output, and (f) a first optical receiver for converting each of the optical signals from the first wavelength selector into a driving signal for displaying a moving image on a corresponding display. A machine. Further, the switching center includes (g) a third optical multiplexer that multiplexes each of the first wavelength multiplexed signals transmitted from each point and outputs the multiplexed signal as a third wavelength multiplexed signal; and (h) a third optical multiplexer. An optical demultiplexer that outputs the third wavelength multiplexed signal from the optical multiplexer to each of the optical fibers connected to each point; and (i) the first wavelength multiplexed signal sent from each point. To the selected point, the input of the first wavelength multiplexed signal to the third optical multiplexer is switched, and the third to the optical fiber connected to each point from the optical demultiplexer. And an optical matrix switch for switching the output of the wavelength multiplexed signal.
本発明の一態様のビデオ会議システムを用いた動作の概要は以下の通りである。(i)各地点のビデオカメラで動画像(例えば、高精細動画像)を撮像する。(ii)撮像した映像情報を持つ電気信号(動画像信号)をそのまま(PCでIP変換することなく、また画像圧縮することなく)光送信機にて光に変換した後、交換局に伝送する。このとき、ビデオカメラ毎に光信号の波長を全て異なるものとする。また、各地点に複数ビデオカメラがある場合は光信号を波長多重する。(iii)交換局では各地点からの光信号を合波した後に分配することで、合波した光信号のコピーを各地点に伝送する。(iv)各地点では交換局から送られてきた光信号のうち、表示すべき光信号を波長選択器(例えば、光バンドパスフィルタ)で選択した後に、光受信機によりディスプレイ(例えば、高精細ディスプレイ)で表示可能な電気信号(駆動信号)に変換する。(v)各地点では、例えば会議参加者を囲むように複数のディスプレイを設置し、他の地点からの動画像を対応するディスプレイに表示する。 The outline of the operation using the video conference system of one embodiment of the present invention is as follows. (I) A moving image (for example, a high-definition moving image) is captured by the video camera at each point. (Ii) An electrical signal (moving image signal) having captured video information is directly converted into light by an optical transmitter (without IP conversion or image compression by a PC) and then transmitted to an exchange. . At this time, the wavelength of the optical signal is different for each video camera. If there are a plurality of video cameras at each point, the optical signal is wavelength-multiplexed. (Iii) The switching center transmits a combined optical signal copy to each point by distributing after combining the optical signal from each point. (Iv) At each point, an optical signal to be displayed is selected from the optical signals sent from the switching center by a wavelength selector (for example, an optical bandpass filter), and then displayed by an optical receiver (for example, a high definition). It is converted into an electrical signal (drive signal) that can be displayed on the display. (V) At each point, for example, a plurality of displays are installed so as to surround the conference participants, and moving images from other points are displayed on the corresponding display.
従来の4地点間でのフルメッシュでの接続例を示す図である。It is a figure which shows the example of a connection by the full mesh between the conventional 4 points | pieces. 従来の波長分割多重(WDM)技術を用いた4地点間での接続例を示す図である。It is a figure which shows the example of a connection between 4 points | pieces using the conventional wavelength division multiplexing (WDM) technique. 本発明の一実施形態のビデオ会議システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a video conference system according to an embodiment of the present invention. 図3の交換局内での動作を説明するための図である。It is a figure for demonstrating the operation | movement in the switching center of FIG. 図3の交換局内での動作を説明するための図である。It is a figure for demonstrating the operation | movement in the switching center of FIG. 本発明の他の一実施形態のビデオ会議システムの全体構成を示す図である。It is a figure which shows the whole structure of the video conference system of other one Embodiment of this invention. 本発明の一実施形態のビデオ会議システムの部分構成を示す図である。It is a figure which shows the partial structure of the video conference system of one Embodiment of this invention. 本発明の一実施形態のビデオ会議システムの部分構成を示す図である。It is a figure which shows the partial structure of the video conference system of one Embodiment of this invention. 本発明の一実施形態のビデオ会議システムの部分構成を示す図である。It is a figure which shows the partial structure of the video conference system of one Embodiment of this invention. 本発明の一実施形態のビデオ会議システムの部分構成を示す図である。It is a figure which shows the partial structure of the video conference system of one Embodiment of this invention. 本発明の一実施形態のビデオ会議システムを用いた4地点間での接続例を示す図である。It is a figure which shows the example of a connection between 4 points | pieces using the video conference system of one Embodiment of this invention.
 図面を参照しながら本発明のビデオ会議システムの実施形態について説明する。以下の各実施形態では、主に接続地点数N=4(地点A~D)の場合について説明しているが、地点数Nは3以上の任意の数とすることができる。また、光パスネットワークの設備及び運用コストを削減するために、各接続地点のビデオカメラの各々に異なる波長を割り当て、各接続地点に設置される送信器/受信器からは割り当てられた波長の光信号が送信/受信されるようにする。これにより、各接続地点と交換局の間の伝送路(光パス)に波長分割多重通信(WDM : Wavelength Division Multiplex) を適用することが可能となり、使用する光ファイバの芯数を削減することができる。 Embodiments of the video conference system of the present invention will be described with reference to the drawings. In the following embodiments, the case where the number of connection points N = 4 (points A to D) is mainly described. However, the number N of points can be any number of 3 or more. In order to reduce the equipment and operating costs of the optical path network, a different wavelength is assigned to each video camera at each connection point, and light of the assigned wavelength is transmitted from the transmitter / receiver installed at each connection point. Allow signals to be transmitted / received. This makes it possible to apply wavelength division multiplex communication (WDM: Wavelength: Division: Multiplex) to the transmission path (optical path) between each connection point and the switching center, thereby reducing the number of optical fiber cores used. it can.
<第1実施形態>
 図3は、本発明の一実施形態のビデオ会議システムの全体構成を示す図である。図3では、ビデオ会議システム100は、交換局10と4つの地点1~4(A~D)が光ファイバ20、21を介して接続している。光ファイバ20、21は、例えば1本の2芯の光ファイバを利用することができる。交換局10は、コントローラ(Controller)11と、光合波器(Coupler)16と、光分波器(Distributor)18と、光アンプ12と、光マトリックススイッチ14を含む。コントローラ(Controller)11は、交換局における各機器の制御及びメンテナンスを行う。なお、図3では煩雑であるので信号線は省略しているが、実際はコントローラ(Controller)11と各機器の間に信号線が存在している。
<First Embodiment>
FIG. 3 is a diagram showing the overall configuration of the video conference system according to the embodiment of the present invention. In FIG. 3, in the video conference system 100, an exchange 10 and four points 1 to 4 (A to D) are connected via optical fibers 20 and 21. As the optical fibers 20 and 21, for example, one two-core optical fiber can be used. The switching center 10 includes a controller 11, an optical coupler 16, an optical demultiplexer 18, an optical amplifier 12, and an optical matrix switch 14. The controller 11 performs control and maintenance of each device in the exchange. In FIG. 3, the signal line is omitted because it is complicated, but in reality, a signal line exists between the controller 11 and each device.
 交換局10内の光マトリックススイッチ14は、8つの入力ポート(IN)1~8と8つの出力ポート(OUT)1~8を有する。図3の構成例では、光マトリックススイッチ14は、図4に示す入力ポートと出力ポートの間の接続関係を有している。この場合、光マトリックススイッチ14の接続を
    IN5→OUT1
    IN6→OUT2
    IN7→OUT3
    IN8→OUT4
とすることにより、各地点からの光信号λA、λB、λC、λDを光合波器(Coupler)16の入力に接続できる。さらに、光マトリックススイッチ14の接続を
    IN1→OUT5
    IN2→OUT6
    IN3→OUT7
    IN4→OUT8
とすることにより、光アンプ12を通った後の光分波器(Distributor)18の波長多重信号λA~Dを各地点に送ることができる。このように、地点1~4から光ファイバ20を介して送られる波長多重信号は、光マトリックススイッチ14の4つの入力ポート(IN)5~8に入力し、スイッチ動作によって出力ポート(OUT)1~4から光合波器(Coupler)16に送られる。光合波器(Coupler)16は、各地点から送られる波長多重信号の各々をさらに合波して、図3中の12の異なる波長λA1~λD3を含む波長多重信号λA~Dとして光アンプ12に出力する。
The optical matrix switch 14 in the switching center 10 has eight input ports (IN) 1 to 8 and eight output ports (OUT) 1 to 8. In the configuration example of FIG. 3, the optical matrix switch 14 has a connection relationship between the input port and the output port shown in FIG. In this case, connect the optical matrix switch 14 to IN5 → OUT1
IN6 → OUT2
IN7 → OUT3
IN8 → OUT4
Thus, the optical signals λ A , λ B , λ C , and λ D from each point can be connected to the input of the optical multiplexer (Coupler) 16. Furthermore, the connection of the optical matrix switch 14 is changed from IN1 to OUT5.
IN2 → OUT6
IN3 → OUT7
IN4 → OUT8
Thus, the wavelength multiplexed signals λ A to D of the optical demultiplexer 18 after passing through the optical amplifier 12 can be sent to each point. In this way, the wavelength multiplexed signals transmitted from the points 1 to 4 through the optical fiber 20 are input to the four input ports (IN) 5 to 8 of the optical matrix switch 14, and the output port (OUT) 1 is switched by the switch operation. ˜4 to the optical coupler (Coupler) 16. The optical coupler (Coupler) 16 further multiplexes each of the wavelength multiplexed signals transmitted from each point, and outputs the optical signals as wavelength multiplexed signals λ A to D including 12 different wavelengths λ A1 to λ D3 in FIG. Output to the amplifier 12.
 光合波器(Coupler)16は、光カプラすなわちパワーコンバイナ、あるいは波長合波器であるAWG(Arrayed Waveguide Grating)などを用いることができる。光アンプ12は、必要に応じて波長多重信号λA~Dを増幅する。これは光合波器(Coupler)16や次段の光分波器(Distributer)18、あるいは伝送距離等の要因で失われる光パワー損失を補償するためである。なお、光パワー損失が小さい場合は光アンプ12で増幅する必要はない。言い換えれば、光アンプ12は必須の機器ではない。光分波器(Distributor)18は、光アンプ12を介して送られる波長多重信号λA~Dのコピーを光マトリックススイッチ14の4つの入力ポート(IN)1~4に送る。波長多重信号λA~Dのコピーは、光マトリックススイッチ14のスイッチ動作によって出力ポート(OUT)5~8から各地点に接続する光ファイバ21の各々に出力する。 The optical coupler 16 can be an optical coupler, that is, a power combiner, or an AWG (Arrayed Waveguide Grating) that is a wavelength multiplexer. The optical amplifier 12 amplifies the wavelength multiplexed signals λ A to D as necessary. This is to compensate for the optical power loss lost due to factors such as the optical coupler (Coupler) 16, the next-stage optical demultiplexer (Distributor) 18, or the transmission distance. When the optical power loss is small, it is not necessary to amplify by the optical amplifier 12. In other words, the optical amplifier 12 is not an essential device. An optical demultiplexer 18 sends copies of the wavelength multiplexed signals λ A to D sent via the optical amplifier 12 to the four input ports (IN) 1 to 4 of the optical matrix switch 14. The copies of the wavelength multiplexed signals λ A to D are output from the output ports (OUT) 5 to 8 to each of the optical fibers 21 connected to each point by the switching operation of the optical matrix switch 14.
 地点A~Dの各々には、コントローラ(Controller)25と、3台のビデオカメラ5と、3台のディスプレイ6と、光分波器(Coupler)23と、光送信機Tと、光受信器Rと、波長選択器Fが設置されている。コントローラ(Controller)25は各機器の制御を行う。なお、図3では煩雑であるので信号線は省略しているが、実際はコントローラ(Controller)25と各機器の間に信号線が存在している。ビデオカメラ5は、他地点へ向けて会議参加者7(一人または複数人)を含む動画像を伝送するために用いられる。3台のビデオカメラ5は、会議参加者7の前方視界を囲むように配置される。ビデオカメラ5とディスプレイ6は、高精細であるもの、例えば4K対応の機器を用いて、1秒あたりのフレーム数は60フレーム以上に対応できることが望ましい。 Each of the points A to D includes a controller 25, three video cameras 5, three displays 6, an optical demultiplexer 23, an optical transmitter T, and an optical receiver. R and a wavelength selector F are installed. A controller 25 controls each device. In FIG. 3, the signal line is omitted because it is complicated, but in reality, a signal line exists between the controller 25 and each device. The video camera 5 is used to transmit a moving image including a conference participant 7 (one or more people) toward another point. The three video cameras 5 are arranged so as to surround the front view of the conference participant 7. It is desirable that the video camera 5 and the display 6 have a high definition, for example, a 4K compatible device, and the number of frames per second can correspond to 60 frames or more.
 3台のディスプレイ6は、会議参加者7の前方視界を囲むように配置される。例えば地点Aの人7の前の3台のディスプレイ6のうち、左方のディスプレイには地点Bの人7の高精細動画が映し出され、中央のディスプレイには地点Cの人7の高精細動画が映し出され、右方のディスプレイには地点Dの人7の高精細動画が遅延なく映し出されるようにする。これによって地点Aの人7は、あたかも他地点の各人7と同じ場所で対面しているような、臨場感あふれた環境が実現できる。他の地点においても同様である。 The three displays 6 are arranged so as to surround the front view of the conference participant 7. For example, among the three displays 6 in front of the person 7 at the point A, the high-definition video of the person 7 at the point B is displayed on the left display, and the high-definition video of the person 7 at the point C is displayed on the center display. Is displayed, and the high-definition moving image of the person 7 at the point D is displayed without delay on the right display. As a result, an environment full of realism can be realized as if the person 7 at the point A is facing the same place as each person 7 at the other point. The same applies to other points.
 各地点の光送信機Tは、各ビデオカメラ5からの動画像信号を光信号に変換して、光合波器(Coupler)23へ出力する。その際、光信号の波長は各ビデオカメラ5に対応する各送信機で異なる波長とする。例えば地点Aにおいて、地点B宛に送る波長はλA1、地点C宛に送る波長はλA2、地点D宛に送る波長はλA3とする(λA1≠λA2、λA1≠λA3、λA2≠λA3)。これらの光信号は波長が異なるので、光カプラなどの光合波器(Coupler)23によって波長多重することができる。波長合波のためには光カプラではなくAWG(Arrayed Waveguide Grating)などを用いることもできる。なお、図3中の各光波長λA1, λB1, λC1, λD1, λA2, λB2, λC2, λD2, λA3, λB3, λC3, λD3はすべて異なる波長である。 The optical transmitter T at each point converts the moving image signal from each video camera 5 into an optical signal and outputs the optical signal to an optical multiplexer (Coupler) 23. At this time, the wavelength of the optical signal is set to be different for each transmitter corresponding to each video camera 5. For example, at point A, the wavelength sent to point B is λ A1 , the wavelength sent to point C is λ A2 , and the wavelength sent to point D is λ A3A1 ≠ λ A2 , λ A1 ≠ λ A3 , λ A2 ≠ λ A3 ). Since these optical signals have different wavelengths, they can be wavelength-multiplexed by an optical coupler (Coupler) 23 such as an optical coupler. For wavelength multiplexing, an AWG (Arrayed Waveguide Grating) or the like can be used instead of an optical coupler. In FIG. 3, the light wavelengths λ A1 , λ B1 , λ C1 , λ D1 , λ A2 , λ B2 , λ C2 , λ D2 , λ A3 , λ B3 , λ C3 , λ D3 are all different wavelengths. .
 光合波器(Coupler)23からの波長多重信号は光ファイバ20を介して交換局10へ送信される。なお、特に図示しないが、伝送距離が長いことによって光信号が減衰してしまう場合には交換局までの伝送路の途中に光アンプを挿入したり、光分散が大きい場合にはそれを補償する分散補償器を挿入したりすればよい。交換局10内での波長多重信号の処理は既に上述した通りであり、最終的に合波された波長多重信号λA~Dが各光ファイバ21を介して各地点へ送られる。 The wavelength multiplexed signal from the optical coupler (Coupler) 23 is transmitted to the switching center 10 through the optical fiber 20. Although not specifically shown, if the optical signal is attenuated due to a long transmission distance, an optical amplifier is inserted in the middle of the transmission path to the switching center, or compensated if the optical dispersion is large. A dispersion compensator may be inserted. The processing of the wavelength multiplexed signal in the switching center 10 has already been described above, and the finally multiplexed wavelength multiplexed signals λ A to D are sent to each point via each optical fiber 21.
 各地点の波長選択器Fは、受信した波長多重信号λA~Dから各ディスプレイ6で表示すべき動画像を含む波長の光信号を選択する。例えば、地点Aでは、波長選択器FB3は地点Bの3台のビデオカメラ5が撮影した動画像信号に対応する3つの光信号λB1B2B3の中の1つ(例えば地点Bの右側のビデオカメラの光信号λB3)を選択する。同様に、波長選択器FC2は地点Cからの3つの光信号λC1C2C3の中の1つ(例えば地点Cの中央のビデオカメラの光信号λC2)を選択し、波長選択器FD1は地点Dからの3つの光信号λD1D2D3の中の1つ(例えば地点Dの左側のビデオカメラの光信号λD1)を選択する。すなわち、地点Aの3つの波長選択器が選択する3つの光信号は、他の地点B~Dの3つのビデオカメラの位置(左、中央、右)が、言い換えれば撮影方向が異なるように選択される。他の地点B~Dにおいても同様にして選択される。この波長選択器Fには光フィルタを用いることができ、あるいはAWG(Arrayed Waveguide Grating)を用いてもよい。選択された各光信号は光受信機Rにて対応するディスプレイ6で表示可能な駆動信号に変換され、各ディスプレイにて他地点の動画像として表示される。 The wavelength selector F at each point selects an optical signal having a wavelength including a moving image to be displayed on each display 6 from the received wavelength multiplexed signals λ A to D. For example, at the point A, the wavelength selector F B3 is one of the three optical signals λ B1 , λ B2 , λ B3 corresponding to the moving image signals captured by the three video cameras 5 at the point B (for example, the point The optical signal λ B3 ) of the video camera on the right side of B is selected. Similarly, the wavelength selector F C2 selects one of the three optical signals λ C1 , λ C2 , and λ C3 from the point C (for example, the optical signal λ C2 of the video camera in the center of the point C), and the wavelength. The selector F D1 selects one of the three optical signals λ D1 , λ D2 , and λ D3 from the point D (for example, the optical signal λ D1 of the video camera on the left side of the point D). That is, the three optical signals selected by the three wavelength selectors at the point A are selected so that the positions (left, center, right) of the three video cameras at the other points B to D, in other words, the shooting directions are different. Is done. The other points B to D are similarly selected. An optical filter can be used for the wavelength selector F, or an AWG (Arrayed Waveguide Grating) may be used. Each selected optical signal is converted into a drive signal that can be displayed on the corresponding display 6 by the optical receiver R, and displayed as a moving image at another point on each display.
 このようにすることによって地点Aの人(A)が見る画像は、例えば、その左方のディスプレイには地点Bの人(B)を(B)から見て右方から撮像した画像が表示され、正面のディスプレイには地点Cの人(Cを正面から撮像した画像が表示され、右方のディスプレイには地点Dの人(D)を(D)から見て左方から撮像した画像が表示される。このようにすることにより、4人の会議参加者7それぞれがあたかも同じ場所に集合し、左方、正面、右方にそれぞれの相手が存在するように感じる臨場感あふれる会議が実現できる。図示していないが、到着する光信号には当該地点での画像の信号も含まれているため、必要に応じて、同様に波長選択器で選択して、別途設けるディスプレイにて相手方に送られている自分の姿などをモニタすることも可能である。 In this way, for example, the image seen by the person (A) at the point A is displayed on the left display of the person (B) at the point B taken from the right side when viewed from (B). The front display shows a person at point C (an image of C taken from the front, and the right display shows an image of the person at point D (D) taken from the left as viewed from (D). By doing in this way, it is possible to realize a meeting with a sense of reality that makes it possible for each of the four conference participants 7 to gather at the same place and feel that their opponents exist on the left, front, and right. Although not shown, the incoming optical signal includes the image signal at the point, so if necessary, select it with the wavelength selector and send it to the other party using a separate display. It is also possible to monitor the appearance of yourself A.
 ビデオ会議を実施する際、常に決まった地点だけを結ぶのではない場面が想定される。すなわち例えば図3の実施形態のビデオ会議システムにおいて、(a)ある時は地点A、地点B、地点C、地点Dの4地点で会議をし、(b)別の時には地点A、地点Bの2地点で会議をして同時に地点C、地点Dの2地点で別の会議をする、というようなことが想定できる。(a)のケースは例えば上述した図4の光マトリックススイッチ14の接続を用いた場合である。(b)のケースでは、例えば図5に示すように、光マトリックススイッチ14の接続を
    IN5→OUT6
    IN6→OUT5
    IN7→OUT8
    IN8→OUT7
とすれば、所望の接続が実現できる。
When conducting a video conference, it is assumed that there is not always a fixed point. That is, for example, in the video conference system of the embodiment of FIG. 3, (a) a meeting is held at four points of point A, point B, point C, and point D when (a) is present, and (b) It can be assumed that a conference is held at two points and another conference is held at two points of points C and D at the same time. The case of (a) is a case where the connection of the optical matrix switch 14 of FIG. 4 mentioned above is used, for example. In the case (b), for example, as shown in FIG. 5, the connection of the optical matrix switch 14 is changed to IN5 → OUT6.
IN6 → OUT5
IN7 → OUT8
IN8 → OUT7
Then, a desired connection can be realized.
 このように光スイッチを用いて会議に参加する地点を切り替えることが可能となる。これらの制御は交換局内のコントローラ(Controller)を用いて行う。交換局のコントローラ(Controller)と各地点のコントローラ(Controller)は連携して動作する必要があり、動画像伝送とは別回線であるインターネットやイントラネットを用いて接続する方法がある。もしくは同じ光ファイバ接続を用いるにしても、例えば動画像伝送は1.5μm帯の光信号を用い、コントローラ間の制御信号は1.3μm帯の光信号を用いるようなことも可能である。このように連携接続されたコントローラのシステムに会議予約、接続、切断等の指令を適切な方法で指令して、ビデオ会議を行うことができる。 In this way, it becomes possible to switch the locations participating in the conference using the optical switch. These controls are performed using a controller in the exchange. The controller of the switching center and the controller at each point need to operate in a coordinated manner, and there is a method of connecting using the Internet or an intranet which is a separate line from moving image transmission. Alternatively, even when the same optical fiber connection is used, for example, a moving image transmission may use a 1.5 μm band optical signal, and a control signal between controllers may use a 1.3 μm band optical signal. In this way, a video conference can be performed by instructing the system of the controller connected in cooperation to commands such as conference reservation, connection, and disconnection by an appropriate method.
 以上の説明では、送信側の波長は固定されていて、受信側の波長選択器Fの通過域の波長を可変として所望の信号を選択するケースについて述べた。同等の接続を行うのに、受信側の波長選択器Fを固定として、送信側すなわちビデオカメラ5側の波長を可変として、所望のディスプレイ6に映るよう波長を選んで送信するようにしてもよい。一般に、波長選択器Fとして用いる光フィルタ(波長可変フィルタ)は波長可変光源に比べて高価であるので、送信側を可変にすることは有用である。 In the above description, the case where the wavelength on the transmission side is fixed and the wavelength in the pass band of the wavelength selector F on the reception side is made variable to select a desired signal has been described. In order to make an equivalent connection, the wavelength selector F on the reception side may be fixed, the wavelength on the transmission side, that is, the video camera 5 side may be variable, and the wavelength may be selected and transmitted so as to appear on the desired display 6. . In general, an optical filter (wavelength tunable filter) used as the wavelength selector F is more expensive than a wavelength tunable light source, so it is useful to make the transmission side variable.
 このように受信側の波長選択器Fの波長を固定とし送信側波長を可変とする前提で、複数地点の会議(例えば4地点)に用いる波長を特定波長に定める。図3の例のような3面のディスプレイを用いる場合、特定波長の数は“地点数×ディスプレイ数”、すなわち4×3=12波長となる。複数地点の会議に参加する場合には、コントローラ(Controller)25の制御の下で、各ビデオカメラ5からの送信波長を特定波長の内の一つに割り当てる。受信側の波長選択器Fは会議用の特定波長に固定してあるので、これで複数地点の会議が実行できる。なお、この複数地点の会議開催時に、これには参加せず別の会議を行いたい場合に関してもシステムが機能するようにするためには、ディスプレイ6に付随する受信側の波長選択器Fの波長は、複数地点の会議用に割り当てられている特定波長とは別の波長が通過するようにする。光マトリックススイッチ14で切り替えているので、この時に複数地点の会議の信号が混ざることはない。すなわち、複数地点の会議に参加するユーザ達はこの例では12波長の特定波長を使用し、複数地点の会議に参加しないユーザは、そのほかの波長を用いる。 As described above, on the premise that the wavelength of the wavelength selector F on the receiving side is fixed and the wavelength on the transmitting side is variable, the wavelength used for the multi-point conference (for example, four points) is determined as the specific wavelength. When using a three-sided display as in the example of FIG. 3, the number of specific wavelengths is “number of points × number of displays”, that is, 4 × 3 = 12 wavelengths. When participating in a conference at a plurality of points, the transmission wavelength from each video camera 5 is assigned to one of the specific wavelengths under the control of the controller 25. Since the wavelength selector F on the receiving side is fixed to a specific wavelength for the conference, a multi-point conference can be executed. In order to enable the system to function even when it is desired to hold another conference without participating in this multi-point conference, the wavelength of the wavelength selector F on the reception side associated with the display 6 is used. Allows a wavelength other than the specific wavelength assigned for the conference at a plurality of points to pass. Since switching is performed by the optical matrix switch 14, the signals of the conferences at a plurality of points are not mixed at this time. That is, users participating in a conference at a plurality of locations use a specific wavelength of 12 wavelengths in this example, and users who do not participate in a conference at a plurality of locations use other wavelengths.
 送信波長を可変とし、受信波長を特定波長に固定した場合、多数のユーザに対してサービスを提供することが可能となる。すなわち複数地点の会議もしくはその他の会議に使う波長より多くのユーザに対して、光マトリックススイッチ14のポート数が許す限りの数のユーザを収容することができる。一方、送信波長を固定とした場合には、さらに受信側の波長選択器Fの設定可能波長数でユーザ数の上限の制限を受けてしまう。また、送信側の光波長を可変として、同時に受信側の波長選択器Fの波長も可変として、より柔軟な波長選択をすることも可能である。すなわち空き波長を用いるように、送信側波長と受信側の波長選択器Fの波長をコントローラ(Controller)25の制御の下で運用する。 If the transmission wavelength is variable and the reception wavelength is fixed to a specific wavelength, it becomes possible to provide services to a large number of users. That is, it is possible to accommodate as many users as the number of ports of the optical matrix switch 14 allows for a larger number of users than the wavelength used for a multipoint conference or other conference. On the other hand, when the transmission wavelength is fixed, the upper limit of the number of users is further limited by the number of wavelengths that can be set by the wavelength selector F on the receiving side. It is also possible to make the wavelength selection more flexible by making the optical wavelength on the transmission side variable and simultaneously changing the wavelength of the wavelength selector F on the reception side. That is, the transmission side wavelength and the wavelength of the wavelength selector F on the reception side are operated under the control of the controller 25 so as to use the empty wavelength.
 図3のビデオ会議システムでは、動画像だけについて示しているが、音声についても同様に伝送できる。すなわち各地点に設置したマイクロフォンで音声を電気信号に変換し、音声信号の伝送は動画像信号に重畳して伝送し、受信地点では音声信号を動画像信号から分離して、スピーカで音響にするなどの従来技術で容易に実現することができる。マイクロフォンは、ビデオカメラ5の内蔵(付随)型あるいは独立型のいずれでもよい。スピーカは、独立型あるいはディスプレイ6の内蔵(付随)型のいずれでもよい。このようにして、複数地点間の動画像及び音声の伝送を行うことにより、複数地点間のビデオ会議を実現することができる。 In the video conference system of FIG. 3, only the moving image is shown, but the audio can be transmitted in the same manner. That is, sound is converted into an electrical signal with a microphone installed at each point, the transmission of the sound signal is superimposed on the moving image signal, and the sound signal is separated from the moving image signal at the receiving point and is made sound with a speaker. It can be easily realized by conventional techniques such as. The microphone may be either a built-in (accompanying) type of the video camera 5 or a stand-alone type. The speaker may be either a stand-alone type or a built-in (accompanying) type of the display 6. In this way, a video conference between a plurality of points can be realized by transmitting moving images and sound between the plurality of points.
 以上の説明では、各地点からの光信号を直接交換局に接続するように述べたが、実際には途中から同じ経路をとる場合も生じる。例えば地点Aと地点Bが比較的近い地域にある場合、地点Aからの光信号と、地点Bからの光信号が各々の経路途中に設けた中継局と交換局との間を同じ経路をとるような場合である。その場合、各地点からの光信号を扱う光合波器と光分波器を交換局だけに設置するのではなく、その一部機能、すなわち地点Aと地点Bに関する光合波器と光分波器を中継局に設置するようにすることが可能である。こうすることによって、中継局と交換局間に確保する光ファイバの数をさらに減らすことができる。 In the above description, it has been described that the optical signal from each point is directly connected to the exchange, but in reality, the same route may be taken from the middle. For example, when the point A and the point B are in a relatively close area, the optical signal from the point A and the optical signal from the point B take the same route between the relay station and the exchange station provided in the middle of each route. This is the case. In that case, the optical multiplexer and the optical demultiplexer that handle the optical signals from each point are not installed only in the exchange, but some functions thereof, that is, the optical multiplexer and the optical demultiplexer related to the points A and B Can be installed at the relay station. By doing so, the number of optical fibers secured between the relay station and the exchange station can be further reduced.
 さらに、以上の説明では各地点で生成する高精細動画像としてビデオカメラで撮像した画像を説明したが、会議の進行途中で、例えばコンピュータで生成した高精細画像(静止画もしくは動画)や、そのほかの高精細画像ソース(例えば、ビデオ記録装置など)を接続して、説明に使うような場面が想定できる。ビデオカメラで撮像した高精細動画像とこれらの高精細映像のソースを切り替えることは従来技術を用いて実現でき、これを多地点に伝送することも本発明の方法で実現できる。この場合の音声の情報は、ビデオカメラの場合と同様に高精細画像に重畳することが従来技術を用いて実現できる。 Furthermore, in the above description, the image captured by the video camera is described as the high-definition moving image generated at each point. However, during the course of the conference, for example, a high-definition image (still image or moving image) generated by a computer, A high-definition image source (for example, a video recording device, etc.) can be connected and used for explanation. Switching between the high-definition moving image captured by the video camera and the source of these high-definition video can be realized by using the conventional technology, and transmission of this to multiple points can also be realized by the method of the present invention. In this case, the audio information can be superimposed on a high-definition image in the same manner as in the case of a video camera using the conventional technology.
<第2実施形態>
 図6は、本発明の他の一実施形態のビデオ会議システムの全体構成を示す図である。図6のビデオ会議システム110では、各地点A~D(1~4)のビデオカメラ5を一つに限定し、交換局10に送る動画像の信号を一つに限定する。各地点の光送信機Tは、1つのビデオカメラ5からの動画像信号を光信号に変換して、光ファイバ20を介して交換局10へ送る。図3の場合と違って光合波器(Coupler)は不要である。他の構成及びその動作は基本的に図3の構成の場合と同様である。
Second Embodiment
FIG. 6 is a diagram showing an overall configuration of a video conference system according to another embodiment of the present invention. In the video conference system 110 in FIG. 6, the video cameras 5 at each of the points A to D (1 to 4) are limited to one, and the moving image signal sent to the exchange 10 is limited to one. The optical transmitter T at each point converts a moving image signal from one video camera 5 into an optical signal and sends the optical signal to the exchange 10 via the optical fiber 20. Unlike the case of FIG. 3, an optical coupler is not necessary. Other configurations and operations thereof are basically the same as those in the configuration of FIG.
 各地点A~Dから交換局10に送る光信号は波長多重した信号ではなく単一波長の光信号である。この場合も各地点から交換局に送る光信号の波長は、それぞれ異なるものとする。すなわち地点Aから交換局に送る信号の光波長をλA、地点Bから交換局に送る信号の光波長をλB、地点Cから交換局に送る信号の光波長をλC、地点Dから交換局に送る信号の光波長をλDとしたとき、λA、λB、λC、λDはすべて異なるものとする。特に図示しないが、伝送距離が長いことによって光信号が減衰してしまう場合には伝送路の途中に光アンプを挿入したり、光分散が大きい場合にはそれを補償する分散補償器を挿入したりすればよい。交換局に送られた光信号は、図3の場合と同様に、合波器によって合波され、波長λA、λB、λC、λDを含む波長多重信号λA~Dとなり、光ファイバ21を介して各地点へ送られる。 The optical signal sent from each point A to D to the switching center 10 is not a wavelength multiplexed signal but a single wavelength optical signal. Also in this case, the wavelength of the optical signal sent from each point to the exchange is different. That is, the optical wavelength of the signal sent from the point A to the exchange is λ A , the optical wavelength of the signal sent from the point B to the exchange is λ B , the optical wavelength of the signal sent from the point C to the exchange is λ C , and the signal is exchanged from the point D When the optical wavelength of the signal sent to the station is λ D , λ A , λ B , λ C , and λ D are all different. Although not shown in the figure, an optical amplifier is inserted in the middle of the transmission path when the optical signal is attenuated due to a long transmission distance, or a dispersion compensator is inserted to compensate for it when the optical dispersion is large. Just do it. As in the case of FIG. 3, the optical signal sent to the switching center is multiplexed by a multiplexer to become wavelength multiplexed signals λ A to D including wavelengths λ A , λ B , λ C , λ D , It is sent to each point via the fiber 21.
 各地点に到着した波長多重信号λA~Dは、波長選択器Fによって各ディスプレイ6で表示すべき動画像を含む波長の光信号を選択する。例えば、地点Aでは、波長選択器Fは地点Bのビデオカメラ5が撮影した動画像信号に対応する光信号λBを選択する。同様に、波長選択器Fは地点Cからの光信号λCを選択し、波長選択器Fは地点Cからの光信号λDを選択する。他の地点B~Dにおいても同様にして選択される。この波長選択器には光フィルタを用いることができ、あるいはAWG(Arrayed Waveguide Grating)を用いてもよい。選択された各光信号は光受信機Rにて対応するディスプレイ6で表示可能な駆動信号に変換され、各ディスプレイにて他地点の動画像として表示される。 The wavelength multiplexed signals λ A to D arriving at the respective points select optical signals having wavelengths including moving images to be displayed on the respective displays 6 by the wavelength selector F. For example, the point A, the wavelength selector F B selects an optical signal lambda B corresponding to the moving image signal is a video camera 5 point B taken. Likewise, wavelength selector F C selects the optical signal lambda C from the point C, the wavelength selector F D selects the optical signal lambda D from the point C. The other points B to D are similarly selected. An optical filter can be used for the wavelength selector, or an AWG (Arrayed Waveguide Grating) may be used. Each selected optical signal is converted into a drive signal that can be displayed on the corresponding display 6 by the optical receiver R, and displayed as a moving image at another point on each display.
<第3実施形態>
 上述した実施形態では4地点を結ぶシステムを説明してきた。一般にはさらに多くの地点を結ぶ会議システムが考えられる。その場合、上述した方法で地点数を4地点よりも多くの場合に拡張することが可能である。すなわち、図3の光マトリックススイッチ14のポート数を増やせばよい。一方、各地点に配することができるディスプレイ6の数に限りがあるような場合や、会議のポリシーとして地点の最大数を限る場合も考えられる。図7はこのような場合に関しての構成例を示すもので、地点の数は12地点、複数地点の会議に同時に参加できる地点数を4地点までに限った場合である。ここでは、16入力(IN)×16出力(OUT)の光マトリックススイッチ14を用いている。
<Third Embodiment>
In the embodiment described above, a system for connecting four points has been described. In general, a conference system that connects more points can be considered. In that case, the number of points can be expanded to more than four points by the method described above. That is, the number of ports of the optical matrix switch 14 in FIG. 3 may be increased. On the other hand, there may be a case where the number of displays 6 that can be arranged at each point is limited, or a case where the maximum number of points is limited as a conference policy. FIG. 7 shows a configuration example regarding such a case, where the number of points is 12 and the number of points that can participate in a multi-point conference is limited to 4 points. Here, a 16-input (IN) × 16-output (OUT) optical matrix switch 14 is used.
 複数地点の会議に参加する地点からの光信号は、光マトリックススイッチ14によって光合波器(Coupler)16の入力にスイッチングされる。光アンプ12を通った後の光分波器(Distributor)18の波長多重信号は、その参加地点に接続されるようスイッチングする。さらに、同時にこの複数地点の会議に参加していない地点同士は、光マトリックススイッチ14を介して互いに接続することにより、2地点間の会議を開催することが可能である。例えば図7の光マトリックススイッチ14内のような接続を行うことにより、地点A、地点B、地点C、地点Dの4地点にて会議をしている間に、同時に地点Eと地点Zの2地点間で会議を行うことができる。 The optical signals from the points participating in the multipoint conference are switched to the input of the optical coupler 16 by the optical matrix switch 14. The wavelength multiplexed signal of the optical demultiplexer (Distributor) 18 after passing through the optical amplifier 12 is switched so as to be connected to the participation point. Furthermore, it is possible to hold a conference between two points by connecting points that do not participate in the conference of the plurality of points at the same time via the optical matrix switch 14. For example, by performing a connection as in the optical matrix switch 14 of FIG. 7, while a meeting is held at four points of point A, point B, point C, and point D, two points E and Z are simultaneously displayed. Conferences can be held between points.
 このように各ディスプレイに表示する相手方地点が変化する場合には、光受信機Rの前に配する波長選択器Fの通過域の波長を相手方波長に合わせるようにする制御が必要である。このような波長選択器Fは、例えば従来の波長可変フィルタを用いて実現可能である。この波長制御はコントローラ(Controller)25の制御下で実行される。図7の第3実施形態では、ある会議に参加する地点とそうでない地点とを、光マトリックススイッチ14によって分離するようにしているので、会議内容の秘匿性を保つことができる。すなわち会議に参加していない地点にはその会議の情報が送られないので、故意に盗聴を行うことができないのでセキュリティが確保される。 In this way, when the counterpart point displayed on each display changes, it is necessary to control the wavelength of the wavelength selector F disposed in front of the optical receiver R so as to match the wavelength of the counterpart. Such a wavelength selector F can be realized using, for example, a conventional wavelength tunable filter. This wavelength control is executed under the control of the controller 25. In the third embodiment shown in FIG. 7, since the points participating in a certain conference and the points not participating in the conference are separated by the optical matrix switch 14, the confidentiality of the content of the conference can be maintained. That is, since information on the conference is not sent to a point not participating in the conference, it is not possible to intentionally eavesdrop, so security is ensured.
<第4実施形態>
 図7の構成では多地点(3地点以上の)会議の同時開催数は一つに限られる。そこで、図8に示すように、光合波器(Coupler)16、光アンプ12、光分波器(Distributor)18の組を複数配することにより、複数地点の会議の同時開催数をその組数に応じた数(二以上)まで増やすことができる。
<Fourth embodiment>
In the configuration of FIG. 7, the number of simultaneous multi-point (three or more) meetings is limited to one. Therefore, as shown in FIG. 8, by arranging a plurality of sets of optical multiplexers (Couplers) 16, optical amplifiers 12, and optical demultiplexers (Distributors) 18, the number of simultaneous meetings held at a plurality of points can be determined. The number can be increased up to two (two or more).
<第5実施形態>
 図3または図6の実施形態のビデオ会議システムにおいて、各地点と交換局とを接続する光ファイバを1本の1芯の共通の光ファイバ24とするために、図9に示すように、光サーキュレータ8、13を各地点と交換局にそれぞれ設置する。すなわち各地点においては、光合波器(Coupler)25もしくは送信機Tからの光信号を光サーキュレータ8に入力して共通ポート側だけに伝送する。光サーキュレータ8の共通ポート側からの光信号は、波長選択器F側だけに出力される。交換局10においては、光サーキュレータ13の共通ポート側からの光信号は光合波器(Coupler)16側だけに出力され、光分波器(Distributor)18からの光信号は共通ポート側だけに出力される。
<Fifth Embodiment>
In the video conference system according to the embodiment of FIG. 3 or FIG. 6, in order to make the optical fiber connecting each point and the switching center into one single-core common optical fiber 24, as shown in FIG. Circulators 8 and 13 are installed at each point and exchange. That is, at each point, the optical signal from the optical coupler (Coupler) 25 or the transmitter T is input to the optical circulator 8 and transmitted only to the common port side. The optical signal from the common port side of the optical circulator 8 is output only to the wavelength selector F side. In the switching center 10, the optical signal from the common port side of the optical circulator 13 is output only to the optical coupler (Coupler) 16 side, and the optical signal from the optical demultiplexer (Distributor) 18 is output only to the common port side. Is done.
 図9では省略しているが他の地点(1つまたは複数)と交換局とを接続する光ファイバ回線においても同様な光サーキュレータを選択的に導入することができる。このように構成することにより、各地点と交換局とを接続する光ファイバが2本から1本に減少し、コスト低減が図れる。なお、上述した光伝送ラインにおいて伝送距離が長いことによって光信号が減衰してしまうのを補償するために伝送路の途中に光アンプを挿入する場合は、その前後に光サーキュレータを配して各伝送方向の光を分けて増幅するようにする。 Although omitted in FIG. 9, a similar optical circulator can be selectively introduced in an optical fiber line connecting another point (one or more) and the exchange. By configuring in this way, the number of optical fibers connecting each point and the exchange is reduced from two to one, and the cost can be reduced. In addition, when an optical amplifier is inserted in the middle of the transmission path in order to compensate for the attenuation of the optical signal due to the long transmission distance in the optical transmission line described above, an optical circulator is disposed before and after the optical path. Separate and amplify the light in the transmission direction.
 また、図10に示すように、光フィルタを用いて光サーキュレータの数を減らすことも可能である。(a)は、各地点において光サーキュレータを設けずに、光合波器15と、送信側光フィルタFと、受信側光フィルタFを設けた場合である。(b)は、交換局10において光サーキュレータを設けずに、光合波器15と、送信側光フィルタFと、受信側光フィルタFを設けた場合である。(c)は、各地点において光サーキュレータを設けずに、光合波器15と、受信側光フィルタFを設けた場合である。(d)は、交換局10において光サーキュレータを設けずに、光合波器15と、送信側光フィルタFを設けた場合である。光フィルタF、Fは所望の波長の光信号を通すように、もしくは不要の光信号を阻止するように設定する。受信機側光フィルタFは、既に説明した図3の各地点の波長選択器Fの光フィルタで代用することができる。一般に光カプラで原理的損失があることと、光フィルタの通過損失・不要波阻止能力などの制限があるためサーキュレータであることが望ましいが、適宜設計的判断で光サーキュレータの数を減らすことは可能である。 Also, as shown in FIG. 10, it is possible to reduce the number of optical circulators using an optical filter. (A) it is without providing the optical circulator at each point, the optical multiplexer 15, a case where the transmitting-side optical filter F x, provided the reception side optical filter F Y. (B) it is without providing the optical circulator in the exchange station 10, the optical multiplexer 15, a case where the transmitting-side optical filter F x, provided the reception side optical filter F Y. (C) is without providing the optical circulator at each point, the optical multiplexer 15, a case in which the receiving-side optical filter F Y. (D) is without providing the optical circulator in the exchange station 10, the optical multiplexer 15, a case in which the transmitting-side optical filter F x. The optical filters F x and F Y are set so as to pass an optical signal having a desired wavelength or to block unnecessary optical signals. The receiver-side optical filter F Y can be substituted by already optical filter wavelength selector F of each point in FIG. 3 described. In general, it is desirable to use a circulator because there is a fundamental loss in optical couplers, and there are restrictions on the optical filter's passing loss and unwanted wave blocking capability. However, it is possible to reduce the number of optical circulators by appropriate design judgment. It is.
<第6実施形態>
 本発明の実施形態(適用例)は、図3に示すようなビデオ会議だけでなく様々な形態が考えられる。図11にいわゆるビデオウォールシステムとして実施する場合の構成例を示す。(a)のように、地点A、地点B、地点C、地点Dの互いに離れた遠隔地間を双方向接続し、各ディスプレイの前に人が立ちそれぞれが独立に相手地点の人と話をする、すなわち4地点間で6組の会話をする状況を示している。ビデオウォールは人が居ようが居まいが常時接続が原則である。(a)の状態からA1-B3, A2-C2, C3-B1の位置の6人が一緒に話をしたくなったとすると、(b)に示すように別の会話をしているB2とD2の映像が邪魔となる。そこで、(c)に示すように、B1とB2の位置を交代し、ビデオカメラとディスプレイの組を変更できることが望ましい。このために、何らかの方法でコントローラ(Controller)25(図3参照、以下同様)を介して指令を送り、ビデオカメラ5の出力波長を交換するか、ディスプレイ6側の光フィルタFの波長を交換すればよい。6人の話し合いの終了後、元の状態に戻すか、最後の状態のままを保持するかは、個別運用のポリシーで決めればよい。さらにビデオウォールにおいても、図3のように交換局に光マトリックススイッチ14を設置することにより通信相手を変更することも可能である。このように、常時接続が原則であるビデオウォールにおいても本発明の構成が適応でき、単純な機能に加えて柔軟な運用が可能となる。
<Sixth Embodiment>
The embodiment (application example) of the present invention can be considered not only as a video conference as shown in FIG. FIG. 11 shows a configuration example in the case of implementation as a so-called video wall system. As shown in (a), two remote connections between point A, point B, point C, and point D are mutually connected so that a person stands in front of each display and talks with the person at the other point independently. In other words, a situation is shown in which six conversations are made between four points. The video wall is always connected regardless of whether people are present or not. If six people at positions A1-B3, A2-C2, and C3-B1 want to talk together from the state of (a), B2 and D2 have another conversation as shown in (b) The video will be in the way. Therefore, as shown in (c), it is desirable to change the pair of the video camera and the display by changing the positions of B1 and B2. For this purpose, an instruction is sent via a controller 25 (see FIG. 3; the same applies hereinafter) to exchange the output wavelength of the video camera 5 or the wavelength of the optical filter F on the display 6 side. That's fine. After the discussion of the six people, whether to return to the original state or keep the last state may be determined by the individual operation policy. Further, in the video wall, it is possible to change the communication partner by installing the optical matrix switch 14 in the exchange as shown in FIG. In this way, the configuration of the present invention can be applied to a video wall whose principle is always-on connection, and flexible operation is possible in addition to simple functions.
 本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。さらに、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。 The embodiment of the present invention has been described with reference to the drawings. However, the present invention is not limited to these embodiments. Furthermore, the present invention can be implemented in variously modified, modified, and modified forms based on the knowledge of those skilled in the art without departing from the spirit of the present invention.
 本発明のビデオ会議システムは、会議室どうしを結ぶビデオ会議だけに限らず、音楽合奏、遠隔講義、医療応用、複数の作業現場とその操作卓などの、高精細画像を低遅延すなわちリアルタイムで相互に伝送して、3地点以上の遠隔地があたかもすぐ近くにあるような臨場感ある状況を作り出すことが有効であるような場合に、広く適用することができる。 The video conference system of the present invention is not limited to video conferences that connect conference rooms, but also high-definition images such as music ensembles, remote lectures, medical applications, multiple work sites and their consoles, etc., with low delay, that is, in real time. It can be widely applied to the case where it is effective to create a realistic situation where three or more remote locations are in the immediate vicinity.
 1、2、3、4 地点
 5 ビデオカメラ
 6 ディスプレイ
 7 人(会議参加者)
 8、13 光サーキュレータ
 10、31 交換局
 11、25 コントローラ
 12、34 光アンプ
 14 光マトリックススイッチ
 15、16、23、30、33 光合波器
 18、32、35 光分波器
 20、21、24 光ファイバ  
 100、110 ビデオ会議システム
1, 2, 3, 4 points 5 Video camera 6 Display 7 (Meeting participants)
8, 13 Optical circulator 10, 31 Switching office 11, 25 Controller 12, 34 Optical amplifier 14 Optical matrix switch 15, 16, 23, 30, 33 Optical multiplexer 18, 32, 35 Optical demultiplexer 20, 21, 24 Light fiber
100, 110 video conferencing system

Claims (8)

  1.  複数の地点間を少なくとも1つの交換局を介して光ファイバによって双方向に結ぶ光パスネットワークを利用するビデオ会議システムであって、
     各地点において、
     複数のビデオカメラと、
     複数のディスプレイと、
     前記複数のビデオカメラからの動画像信号の各々を前記ビデオカメラ毎に割り当てられた異なる波長の光信号に変換する光送信機と、
     前記光送信機からの波長の異なる光信号を合波して、光ファイバを介して交換局へ向けて第1の波長多重信号として出力する第1の光合波器と、
     前記交換局から光ファイバを介して送られる当該地点以外の他の地点からの光信号を含む第2の波長多重信号を分波して出力する第1の波長選択器と、
     前記第1の波長選択器からの光信号の各々を、対応するディスプレイで動画像を表示するための駆動信号に変換する第1の光受信機と、を備え、
     前記交換局は、
     各地点から送られる前記第1の波長多重信号の各々を合波して第3の波長多重信号として出力する第3の光合波器と、
     前記第3の光合波器からの第3の波長多重信号を、各地点に接続する光ファイバの各々に向けて出力する光分波器と、
     各地点から送られる前記第1の波長多重信号を選択された地点に送るために、前記第3の光合波器への前記第1の波長多重信号の入力を切り替え、前記光分波器から各地点に接続する光ファイバへの前記第3の波長多重信号の出力を切り替える光マトリックススイッチと、を備えるビデオ会議システム。
    A video conferencing system that uses an optical path network that connects a plurality of points bidirectionally via optical fibers via at least one exchange,
    At each point
    Multiple video cameras,
    Multiple displays,
    An optical transmitter for converting each of the moving image signals from the plurality of video cameras into optical signals of different wavelengths assigned to the video cameras;
    A first optical multiplexer that multiplexes optical signals of different wavelengths from the optical transmitter and outputs them as a first wavelength multiplexed signal to an exchange via an optical fiber;
    A first wavelength selector for demultiplexing and outputting a second wavelength multiplexed signal including an optical signal from a point other than the point sent from the exchange via an optical fiber;
    A first optical receiver that converts each of the optical signals from the first wavelength selector into a driving signal for displaying a moving image on a corresponding display;
    The exchange is
    A third optical multiplexer that multiplexes each of the first wavelength multiplexed signals transmitted from each point and outputs the multiplexed signal as a third wavelength multiplexed signal;
    An optical demultiplexer that outputs the third wavelength multiplexed signal from the third optical multiplexer toward each of the optical fibers connected to each point;
    In order to send the first wavelength multiplexed signal transmitted from each point to a selected point, the input of the first wavelength multiplexed signal to the third optical multiplexer is switched, and the optical demultiplexer An optical matrix switch that switches an output of the third wavelength multiplexed signal to an optical fiber connected to a point.
  2.  複数の地点間を少なくとも1つの交換局を介して光ファイバによって双方向に結ぶ光パスネットワークを利用するビデオ会議システムであって、
     各地点において、
     少なくとも1つのビデオカメラと、
     複数のディスプレイと、
     前記ビデオカメラからの動画像信号を当該ビデオカメラに割り当てられた波長の第1の光信号に変換して、光ファイバを介して交換局へ向けて送信する光送信機と、
     前記交換局から光ファイバを介して送られる当該地点以外の他の地点からの光信号を含む第2の波長多重信号を分波して出力する第2の波長選択器と、
     前記第2の波長選択器からの光信号の各々を、対応するディスプレイで動画像を表示するための駆動信号に変換する第2の光受信機と、を備え、
     前記交換局は、
     各地点から送られる前記第1の光信号の各々を合波して第3の波長多重信号として出力する第3の光合波器と、
     前記第3の光合波器からの前記第3の波長多重信号を、各地点に接続する前記光ファイバの各々に出力する光分波器と、
     各地点から送られる前記第1の波長多重信号を選択された地点に送るために、前記第3の光合波器への前記第1の波長多重信号の入力を切り替え、前記光分波器から各地点に接続する前記光ファイバへの前記第3の波長多重信号の出力を切り替える光マトリックススイッチと、を備えるビデオ会議システム。
    A video conferencing system that uses an optical path network that connects a plurality of points bidirectionally via optical fibers via at least one exchange,
    At each point
    At least one video camera;
    Multiple displays,
    An optical transmitter that converts a moving image signal from the video camera into a first optical signal having a wavelength assigned to the video camera, and transmits the first optical signal to an exchange through an optical fiber;
    A second wavelength selector for demultiplexing and outputting a second wavelength multiplexed signal including an optical signal from a point other than the point sent from the exchange via an optical fiber;
    A second optical receiver that converts each of the optical signals from the second wavelength selector into a driving signal for displaying a moving image on a corresponding display;
    The exchange is
    A third optical multiplexer that multiplexes each of the first optical signals transmitted from each point and outputs a third wavelength multiplexed signal;
    An optical demultiplexer that outputs the third wavelength multiplexed signal from the third optical multiplexer to each of the optical fibers connected to each point;
    In order to send the first wavelength multiplexed signal transmitted from each point to a selected point, the input of the first wavelength multiplexed signal to the third optical multiplexer is switched, and the optical demultiplexer An optical matrix switch that switches an output of the third wavelength multiplexed signal to the optical fiber connected to a point.
  3.  前記光ファイバは、1芯の共通の光ファイバからなり、
     各地点において、前記第1の光合波器からの前記第1の波長多重信号を前記共通の光ファイバへ出力し、前記共通の光ファイバを介して送られる前記第2の波長多重信号を前記第1の波長選択器へ出力する、光サーキュレータをさらに含む、請求項1に記載のビデオ会議システム。
    The optical fiber comprises a single core common optical fiber,
    At each point, the first wavelength multiplexed signal from the first optical multiplexer is output to the common optical fiber, and the second wavelength multiplexed signal transmitted through the common optical fiber is output to the first optical multiplexer. The video conferencing system according to claim 1, further comprising an optical circulator that outputs to one wavelength selector.
  4.  前記光ファイバは1芯の共通の光ファイバからなり、
     各地点において、前記光送信機からの前記第1の光信号を前記共通の光ファイバへ出力し、前記共通の光ファイバを介して送られる前記第2の波長多重信号を前記第2の波長選択器へ出力する、光サーキュレータをさらに含む、請求項2に記載のビデオ会議システム。
    The optical fiber comprises a single core common optical fiber,
    At each point, the first optical signal from the optical transmitter is output to the common optical fiber, and the second wavelength multiplexed signal transmitted through the common optical fiber is selected as the second wavelength selection signal. The video conferencing system of claim 2, further comprising an optical circulator that outputs to the instrument.
  5.  前記交換局は、前記光ファイバを介して送られる前記第1の波長多重信号を前記第3の光合波器へ出力し、前記光分波器からの前記第3の波長多重信号を前記光ファイバへ出力する、光サーキュレータをさらに含む、請求項3に記載のビデオ会議システム。 The switching center outputs the first wavelength multiplexed signal transmitted via the optical fiber to the third optical multiplexer, and the third wavelength multiplexed signal from the optical demultiplexer is output to the optical fiber. The video conferencing system of claim 3, further comprising an optical circulator that outputs to.
  6.  前記交換局は、前記光ファイバを介して送られる前記第1の光信号を前記第3の光合波器へ出力し、前記光分波器からの前記第3の波長多重信号を前記光ファイバへ出力する、光サーキュレータをさらに含む、請求項4に記載のビデオ会議システム。 The switching center outputs the first optical signal sent via the optical fiber to the third optical multiplexer, and the third wavelength multiplexed signal from the optical demultiplexer to the optical fiber. 5. The video conferencing system of claim 4, further comprising an optical circulator for outputting.
  7.  前記交換局は、前記第3の光合波器からの前記第3の波長多重信号を増幅して前記光分波器へ送る光アンプをさらに含む、請求項1または2に記載のビデオ会議システム。 3. The video conference system according to claim 1, wherein the exchange further includes an optical amplifier that amplifies the third wavelength multiplexed signal from the third optical multiplexer and sends the amplified signal to the optical demultiplexer.
  8.  前記交換局は、前記第3の光合波器と前記光分波器を複数組設けるようにした、請求項1または2に記載のビデオ会議システム。

     
    The video conferencing system according to claim 1 or 2, wherein the switching center is provided with a plurality of sets of the third optical multiplexer and the optical demultiplexer.

PCT/JP2018/009302 2017-04-18 2018-03-09 Video conferencing system WO2018193750A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082233 2017-04-18
JP2017-082233 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018193750A1 true WO2018193750A1 (en) 2018-10-25

Family

ID=63856621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009302 WO2018193750A1 (en) 2017-04-18 2018-03-09 Video conferencing system

Country Status (1)

Country Link
WO (1) WO2018193750A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351509A (en) * 2018-04-03 2019-10-18 北京小鸟科技股份有限公司 A kind of multichannel high band wide data exchange method stacked based on FPGA
WO2020128113A3 (en) * 2019-05-31 2020-09-17 Neuro Device Group S.A. A transmission system for transmitting output unit signals and control signals to at least one interface connected with optical fiber
WO2021244340A1 (en) * 2020-06-05 2021-12-09 中兴通讯股份有限公司 Camera, camera control method, terminal, electronic device, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057536A (en) * 1999-08-17 2001-02-27 Toshiba Corp Multi-channel video transmission system and television camera
US20120148242A1 (en) * 2010-12-14 2012-06-14 University Of Houston Dense Wavelength Division Multiplexing Multi-Mode Switching Systems and Methods for Concurrent and Dynamic Reconfiguration with Different Switching Modes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057536A (en) * 1999-08-17 2001-02-27 Toshiba Corp Multi-channel video transmission system and television camera
US20120148242A1 (en) * 2010-12-14 2012-06-14 University Of Houston Dense Wavelength Division Multiplexing Multi-Mode Switching Systems and Methods for Concurrent and Dynamic Reconfiguration with Different Switching Modes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351509A (en) * 2018-04-03 2019-10-18 北京小鸟科技股份有限公司 A kind of multichannel high band wide data exchange method stacked based on FPGA
CN110351509B (en) * 2018-04-03 2021-12-14 北京小鸟科技股份有限公司 Multi-channel high-bandwidth data exchange method based on FPGA (field programmable Gate array) stack
WO2020128113A3 (en) * 2019-05-31 2020-09-17 Neuro Device Group S.A. A transmission system for transmitting output unit signals and control signals to at least one interface connected with optical fiber
US20220223031A1 (en) * 2019-05-31 2022-07-14 Neuro Device Group S.A. Transmission system for transmitting output unit signals and control signals to at least one interface connected with optical fiber
US11915582B2 (en) 2019-05-31 2024-02-27 Neuro Device Group S.A. Transmission system for transmitting output unit signals and control signals to at least one interface connected with optical fiber
WO2021244340A1 (en) * 2020-06-05 2021-12-09 中兴通讯股份有限公司 Camera, camera control method, terminal, electronic device, and storage medium

Similar Documents

Publication Publication Date Title
US7164861B2 (en) Node apparatus, optical wavelength division multiplexing network, and system switching method
US8861968B2 (en) Reconfigurable optical add/drop multiplexing device for enabling totally inresistant colorless
WO2018193750A1 (en) Video conferencing system
US20100027996A1 (en) Multi-degree cross-connector system, operating method and optical communication network using the same
JP5410620B2 (en) Elements of wavelength division multiplexing optical network
JP2006191643A (en) Optical network, hub node, and access node
CN103262519B (en) Remote video production
US8494316B2 (en) Device and method for colorless optical switching
JP6622113B2 (en) Optical cross-connect device and module
US7653307B2 (en) Optical switching device for a transparent node of high switching degree adapted to spectral equalization
US9025915B2 (en) Method and module for switching optical signals having different modes of propagation
JP4713837B2 (en) Optical add / drop multiplexer
JP2003046451A (en) Method for multiplexing optical information transport
CN202818483U (en) Television conference system
US10028040B1 (en) Colorless, directionless, contentionless optical network using MxN wavelength selective switches
JP5450274B2 (en) Optical path control method
US20050129403A1 (en) Method and system for communicating optical traffic at a node
US10476624B2 (en) Colorless, directionless, contentionless optical network using MXN wavelength selective switches
WO2023042396A1 (en) Optical transmission device and communication method
WO2024161646A1 (en) Communication device, optical add/drop device, and signal processing method
US20240322932A1 (en) Optical virtual-circuit-switching network system and optical switch thereof
JPH07284079A (en) Remote lecture system
WO2023062717A1 (en) Optical communication device, optical communication system, and transfer method
WO2023062716A1 (en) Optical communication device, optical communication system, and transfer method
WO2024053016A1 (en) Communication system and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP