WO2018193685A1 - Suspension control device - Google Patents

Suspension control device Download PDF

Info

Publication number
WO2018193685A1
WO2018193685A1 PCT/JP2018/003142 JP2018003142W WO2018193685A1 WO 2018193685 A1 WO2018193685 A1 WO 2018193685A1 JP 2018003142 W JP2018003142 W JP 2018003142W WO 2018193685 A1 WO2018193685 A1 WO 2018193685A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
actuator
force
speed
control command
Prior art date
Application number
PCT/JP2018/003142
Other languages
French (fr)
Japanese (ja)
Inventor
朋之 工藤
友夫 窪田
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018193685A1 publication Critical patent/WO2018193685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind

Definitions

  • the present invention relates to a suspension control device.
  • the unsprung speed of the front wheel is detected, and the vibration generated in the sprung member when the rear wheel passes the same road surface as the front wheel.
  • the rear wheel is displaced by the unevenness of the road surface, and control is performed to cancel the transmission force transmitted from the rear wheel to the sprung member through the suspension spring. Vibration is suppressed.
  • a hydraulic cylinder is used as an actuator, and in order to cope with a change in response characteristics due to a change in the oil temperature of the hydraulic cylinder, the oil temperature is detected and the predictive control force by the predictive control is corrected.
  • an object of the present invention is to provide a suspension control device that can improve the vibration suppression effect of the sprung member even if the parameters of the actuator and the suspension spring change.
  • the suspension control device of the present invention obtains a control command for canceling the transmission force transmitted from the unsprung member to the sprung member based on the vibration information of the unsprung member and the vibration information of the sprung member.
  • the suspension control device it is possible to correct the control command so as to correspond to the change in parameters such as the response of the actuator and the spring constant of the suspension spring.
  • FIG. 1 is a model diagram of a vehicle to which a suspension control device according to an embodiment is applied.
  • FIG. 2 is a control block diagram of a controller in the suspension control apparatus according to the embodiment.
  • FIG. 3A shows the spring force of the suspension spring, the force of the actuator, and the spring top when the actuator force is small relative to the spring force of the suspension spring and the phase of the actuator force is delayed from the phase that can cancel the transmission force. It is the graph which showed the relationship of the acceleration of a member.
  • FIG. 3B shows the acceleration of the sprung member, the speed of the unsprung member, and the case where the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force is delayed from the phase that can cancel the transmission force.
  • FIG. 3 (c) shows the acceleration of the sprung member, the displacement of the unsprung member, and the displacement of the unsprung member when the actuator force is smaller than the suspension spring and the phase of the actuator force is delayed from the phase that can cancel the transmission force. It is the graph which showed the multiplication value of the acceleration of the sprung member, and the displacement of the unsprung member.
  • FIG. 4A shows the spring force of the suspension spring, the force of the actuator, and the spring top when the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force advances from the phase that can cancel the transmission force. It is the graph which showed the relationship of the acceleration of a member.
  • FIG. 4B shows the acceleration of the sprung member, the speed of the unsprung member, and the spring when the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force advances from the phase that can cancel the transmission force. It is the graph which showed the multiplication value of the acceleration of the upper member, and the speed of the unsprung member.
  • FIG. 4C shows the acceleration of the sprung member, the displacement of the unsprung member, and the spring when the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force advances from the phase that can cancel the transmission force. It is the graph which showed the multiplication value of the acceleration of the upper member, and the displacement of the unsprung member.
  • FIG. 5 shows the relationship between the spring force of the suspension spring and the force of the actuator when the spring force of the suspension spring is equal to the force of the actuator and the phase of the actuator force coincides with the phase that can cancel the transmission force. It is a graph.
  • FIG. 6 is a control block diagram of the controller of the suspension control device according to the first modification of the embodiment.
  • FIG. 7 is a control block diagram of a controller of a suspension control device according to a second modification of the embodiment.
  • FIG. 8 is a control block diagram of a controller of a suspension control device according to a third modification of the embodiment.
  • a suspension control device C includes an actuator A that is interposed together with a suspension spring S between a wheel W that is an unsprung member of a vehicle V and a vehicle body B that is a sprung member. Is controlled to suppress the vibration of the vehicle body B.
  • a vehicle V as a system includes a wheel W having a tire Ti on its outer periphery, a vehicle body B, and a suspension spring S that is interposed between the wheel W and the vehicle body B and elastically supports the vehicle body B. It consists of and.
  • Vehicle V the tire Ti and spring of spring constant K t, the wheel W and the mass of the mass M 2, the suspension spring S and a spring of spring constant K S, two mass two to the vehicle body B and the mass of the mass M 1
  • This is a spring mass system having a degree of freedom, and can be expressed by a model of the spring mass system shown in FIG.
  • the road surface displacement is X 0
  • the vertical displacement of the vehicle body B is X 1
  • the vertical displacement of the wheel W is X 2
  • the upward direction in FIG. 1 is positive.
  • the suspension control device C includes a first sensor 1 for detecting vibration information of the wheel W as an unsprung member, a second sensor 2 for detecting vibration information of the vehicle body B as a sprung member, and an actuator A. And a controller 3 for obtaining a final control command F to be provided.
  • the suspension control device C detects the displacement X 2 in the vertical direction of the wheel W and the speed dX 2 / dt as vibration information of the wheel W that is an unsprung member. It is said that.
  • the first sensor 1 detects the acceleration d 2 X 2 / dt 2 in the vertical direction of the wheel W and inputs it to the controller 3.
  • the suspension control device C detects the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B as vibration information of the vehicle body B that is a sprung member. It is considered as a sensor.
  • the second sensor 2 detects the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B and inputs it to the controller 3.
  • the controller 3 integrates the acceleration d 2 X 2 / dt 2 input from the first sensor 1 to obtain a speed dX 2 / dt in the vertical direction of the wheel W; Based on the displacement calculation unit 32 that integrates the speed dX 2 / dt obtained by the speed calculation unit 31 to obtain the vertical displacement X 2 of the wheel W and the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B.
  • a speed correction unit 33 that corrects the speed dX 2 / dt
  • a displacement correction unit 34 that corrects the displacement X 2 based on the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B, and a corrected speed dX 2.
  • a final control command calculation unit 39 that generates a final control command F by adding the command f V , the displacement corresponding control command f X, and the skyhook control command f SKY and inputs it to the actuator A is provided.
  • the controller 3 obtains a speed-corresponding control command f V and a displacement-corresponding control command f X in order to cancel the transmission force transmitted from the wheel W to the vehicle body B, and suppresses this vibration when the vehicle body B vibrates.
  • the skyhook control command f SKY is obtained. That is, the control command f W # ref obtained by adding the speed corresponding control command f V and the displacement corresponding control command f X is a control command for causing the actuator A to exert a force to cancel the transmission force.
  • the skyhook control command f SKY is a control command for causing the actuator A to exert a control force based on the skyhook control.
  • the controller 3 determines the vertical displacement X 2 and speed dX 2 / dt of the wheel W as vibration information of the unsprung member and the vertical acceleration d 2 of the vehicle body B as vibration information of the sprung member.
  • a final control command F to be given to the actuator A is generated based on X 1 / dt 2 and given to the actuator A.
  • the final control command F is a command for instructing the actuator A the direction of expansion and contraction and the magnitude of the thrust.
  • the actuator A is arranged in parallel with the suspension spring S and is interposed between the vehicle body B and the wheel W.
  • the actuator A is a telescopic cylinder or an electric linear actuator using hydraulic pressure or pneumatic pressure. It has a power source such as a pump driven by. Then, the actuator A expands and contracts in response to the input of the final control command F by exerting a thrust in the direction and size as in the control command, and vibrates the vehicle body B and the wheels W in the vertical direction.
  • control command f W # ref is obtained by adding the speed corresponding control command f V and the displacement corresponding control command f X in the control for canceling the transmission force transmitted from the wheel W to the vehicle body B.
  • the road surface displacement is X 0
  • the vertical displacement of the wheel W is X 2
  • the vertical displacement of the vehicle body B is X 1
  • the thrust that is the output of the actuator A is f W
  • the equation of motion of the vehicle body B can be expressed as the following equation (1) from the balance in the vertical direction of the vehicle body B that is a sprung member.
  • equation of motion of the wheel W can be shown as the following equation (2) from the balance in the vertical direction of the wheel W which is an unsprung member.
  • the differential equation related to the response of the actuator A is given by It can be shown as (3).
  • the wheel W vibrates due to the fluctuation (disturbance) of the road surface displacement X 0 , but if the transmission force transmitted to the vehicle body B is canceled by the vibration of the wheel W, the transmission of the vibration of the wheel W to the vehicle body B is canceled.
  • (X 2 ⁇ X 1 ) is a relative displacement between the vehicle body B and the wheel W, and the change in the relative displacement is caused by a change in the posture of the vehicle body B due to turning, braking, or acceleration, and a change in the load on the vehicle body B. Whether it is caused by road surface displacement cannot be determined.
  • the force f W of the actuator A can be obtained so that the force F W of the actuator A can be canceled by using the spring force K S ⁇ X 2 exerted by the suspension spring S due to the displacement X 2 of the wheel W as a transmission force. That's fine.
  • the following equation (5) may be established.
  • equation (7) is obtained.
  • k is a gain.
  • This equation (7) is an equation that takes into account the response delay from the input of the control command f W # ref of the actuator A to the output of the force f W.
  • the control command f W # ref that can compensate for the response delay of the actuator A is obtained using the speed at which the phase advances with respect to the displacement X 2 .
  • the displacement X 2 and the speed dX 2 / dt are obtained from the acceleration d 2 X 2 / dt 2 detected by the first sensor 1. Therefore, the control command calculation unit 23 can obtain the control command f W # ref by calculating equation (8).
  • the actuator A can exert the force f W and cancel the transmission force from the wheel W, so that the vibration of the vehicle body B due to disturbance input from the road surface can be avoided. By canceling out, the vibration of the vehicle body B can be suppressed.
  • the controller 3 integrates the acceleration d 2 X 2 / dt 2 to calculate the speed dX 2 / dt in the vertical direction of the wheel W, and the acceleration d in order to perform control to cancel the transmission force.
  • 2 X 2 / dt 2 is second-order integrated to obtain the displacement calculation unit 32 for obtaining the vertical displacement X 2 of the wheel W, and the speed correspondence control for obtaining the speed correspondence control command f V based on the corrected speed dX 2 / dt.
  • a command calculation unit 35 and a displacement response control command calculation unit 36 for obtaining a displacement response control command f X based on the corrected displacement X 2 are provided.
  • the speed calculation unit 31 integrates the acceleration d 2 X 2 / dt 2 to obtain the vertical speed dX 2 / dt of the wheel W, and the obtained speed dX 2 / dt.
  • the filter unit 31b removes noise and drift components by extracting only the components in the unsprung resonance frequency band.
  • the filter unit 31b includes a two-stage high-pass filter and a two-stage low-pass filter, and the processed speed dX 2 / dt is shifted to the actual gain and phase in the unsprung resonance frequency band. It is processed so as not to occur.
  • the displacement calculation unit 32 integrates the speed dX 2 / dt obtained by the speed calculation unit 31 to obtain the vertical displacement X 2 of the wheel W, and the unsprung resonance frequency band from the obtained displacement X 2 .
  • a filter unit 32b that extracts only components and removes noise and drift components is provided.
  • the filter unit 32b is composed of a two-stage high-pass filter and a two-stage low-pass filter, and the processed displacement X 2 causes a shift in actual gain and phase in the unsprung resonance frequency band. Process so that there is no.
  • the displacement calculation unit 32 does not receive the input of the speed dX 2 / dt obtained by the speed calculation unit 31, but receives the input of the acceleration d 2 X 2 / dt 2 from the first sensor 1 and the integration unit 32a.
  • the acceleration d 2 X 2 / dt 2 may be second-order integrated to determine the vertical displacement X 2 of the wheel W.
  • the unsprung resonance frequency varies depending on the vehicle, but is generally in the range of 10 Hz to 17 Hz.
  • the cutoff frequency of the high-pass filter in the filter units 31b and 32b is set to 0.5 Hz, and the cutoff frequency of the low-pass filter is set to 150 Hz. It is. With this setting, the speed dX 2 / dt and the displacement X 2 after processing have little difference in gain and phase with respect to the actual speed and displacement, and the speed and displacement of the wheel W can be detected with high accuracy.
  • both the filter parts 31b and 32b may be comprised with a band pass filter instead of being comprised with a low-pass filter and a high-pass filter.
  • the speed corresponding control command calculation unit 35 sets the spring constant of the suspension spring S as K S , the time constant in the response of the actuator A as T, the gain as k, and the speed dX 2 / dt as the speed gain ⁇ (K S ⁇ T) / is multiplied by k determine the speed corresponding control command f V.
  • This speed-corresponding control command f V corresponds to the first term on the right side of the equation (8), and is a force component that depends on the speed dX 2 / dt of the force that cancels the transmission force.
  • Displacement corresponding control command calculating section 36 the spring constant K S of the suspension spring S, the gain as k, it is multiplied by -K S / k as a displacement gain to the displacement X 2 Request displacement corresponding control instruction f X.
  • the displacement corresponding control instruction f X is equivalent to the second term of the right side of the equation (8), a force component that depends on the displacement X 2 of the force counteracting the transmission force.
  • the speed corresponding control command calculation unit 35 multiplies the speed dX 2 / dt obtained by the speed calculation unit 31 by the speed gain to obtain the speed corresponding control command f V , and the displacement corresponding control command calculation unit 36 determines the displacement calculation unit 32. obtains the displacement corresponding control command f X by multiplying the displacement gain to the displacement X 2 obtained by, if added to the speed corresponding control command f V the displacement corresponding control command f X, to exert a force for canceling the transmission force to the actuator a It is a trap to get
  • the speed dX 2 / dt is corrected so as to automatically cope with the change.
  • a speed correction unit 33 and a displacement correction unit 34 that corrects the displacement X 2 are provided.
  • the corrected speed dX 2 / dt as the corrected unsprung vibration information is input to the speed corresponding control command calculating unit 35, and the corrected corresponding control command calculating unit 36 is used as the corrected unsprung vibration information.
  • the corrected displacement X 2 is input to obtain the speed corresponding control command f V and the displacement corresponding control command f X. Therefore, even if the time constant T of the actuator A and the spring constant K S of the suspension spring change, the actuator A exerts a force commensurate with the actual transmission force, and the vibration input from the wheel W to the vehicle body B is insulated. it can.
  • the speed correction unit 33 processes the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B by filtering, and the speed dX 2 / dt obtained by the speed calculation unit 31 and the phase compensation unit 33 a.
  • Multiplication unit 33b that multiplies the acceleration d 2 X 1 / dt 2
  • a gain multiplication unit 33c that multiplies the value obtained by the multiplication unit 33b by the correction gain k V
  • an integration that sequentially integrates the values obtained by the gain multiplication unit 33c.
  • the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B theoretically becomes zero if the actuator A exerts a force that cancels the transmission force cleanly.
  • the fact that the acceleration d 2 X 1 / dt 2 of the vehicle body B is not zero means that the force exerted by the actuator A cannot completely cancel the transmission force.
  • the ride comfort in the vehicle is ideal when the acceleration d 2 X 1 / dt 2 of the vehicle body B is zero.
  • the calculation result of the multiplication unit 33b is multiplied and integrated by the correction gain k V , and the speed dX 2 / dt is multiplied by the integral value I V to obtain the speed correction value C V.
  • the speed correction value C V is added to the speed dX 2 / dt obtained by the speed calculation unit 31, and the added value becomes the corrected speed dX 2 / dt.
  • the calculation result of the multiplication unit 33b outputs a non-zero value, so that the integral value I V is always updated.
  • the integral value I V can be regarded as a gain for obtaining the speed correction value C V, and by updating the gain value, the acceleration d 2 X 1 / dt 2 of the vehicle body B, which is the sprung member, is updated by the speed correction unit 33.
  • the velocity dX 2 / dt is corrected in the direction of convergence toward 0.
  • the speed correction unit 33 updates the integrated value I V until the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to zero. When it converges to 0, the value of the integral value I V is held to correct the speed dX 2 / dt.
  • the phase compensation unit 33a filters the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B and extracts only the component of the unsprung resonance frequency band from the acceleration d 2 X 1 / dt 2. And a high-pass filter.
  • the acceleration d 2 X 1 / dt 2 is processed by the phase compensator 33 a, only the component of the unsprung resonance frequency band caused by the vibration transmitted from the wheel W side can be extracted from the acceleration d 2 X 1 / dt 2 .
  • the low frequency component that causes a large phase shift between the removal and the speed dX 2 / dt of the wheel W is removed.
  • the phase compensation unit 33a may be configured with a bandpass filter.
  • the displacement correction unit 34 filters the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B, the displacement X 2 obtained by the displacement calculation unit 32, and the acceleration processed by the phase compensation unit 33a.
  • a multiplication unit 34b for multiplying d 2 X 1 / dt 2
  • a gain multiplication unit 34c for multiplying a value obtained by the multiplication unit 34b by a correction gain k X
  • an integral value calculation for sequentially integrating the values obtained by the gain multiplication unit 34c 34d
  • a correction value calculation unit 34e for obtaining a displacement correction value C X by multiplying the integral value I X obtained by the integral value calculation unit 34d by the displacement X 2 obtained by the displacement calculation unit 32
  • a displacement X 2 obtained by the displacement calculation unit 32 adds the displacement correction value C X to the displacement X 2 obtained by correcting and an adding unit 34f for obtaining the displacement X 2 of the corrected.
  • the displacement correction unit 34 multiplies the calculation result of the multiplication unit 34 b by the correction gain k X and integrates, and multiplies the integration value I X by the displacement X 2 to obtain the displacement correction value C X.
  • the displacement correction value C X is added to the displacement X 2 obtained by the displacement calculator 32, and the added value becomes the corrected displacement X 2 . Therefore, when the acceleration d 2 X 1 / dt 2 of the vehicle body B is not 0, the calculation result of the multiplication unit 34b outputs a non-zero value, so that the value of the integral value I X is always updated.
  • the integral value I X can be regarded as a gain for obtaining the displacement correction value C X, and by updating the gain value, the acceleration d 2 X 1 / dt 2 of the vehicle body B, which is a sprung member, is updated by the displacement correction unit 34.
  • the displacement X 2 is corrected in the direction of convergence toward 0.
  • the output of the multiplication unit 34b also becomes 0, so that the value of the integral value I X is not updated any more, and the displacement correction unit 34
  • the displacement correction value C X is obtained with a constant gain.
  • the displacement correction unit 34 updates the integrated value I X until the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to zero. When the value converges to 0, the integrated value I X is held and the displacement X 2 is corrected.
  • the phase compensation unit 34a filters the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B to obtain the unsprung resonance frequency band from the acceleration d 2 X 1 / dt 2 .
  • it is composed of a low-pass filter and a high-pass filter. Therefore, when the phase compensation unit 34a is provided in the displacement correction unit 34, only the component of the unsprung resonance frequency band caused by the vibration transmitted from the wheel W side can be extracted from the acceleration d 2 X 1 / dt 2 , and noise can be removed. And a low frequency component that causes a large phase shift between the wheel W and the speed dX 2 / dt of the wheel W can be removed.
  • the phase compensation unit 34a may be configured with a band pass filter.
  • phase compensation units 33a and 34a that perform the filter processing of the acceleration d 2 X 1 / dt 2 are provided for optimization by the speed correction unit 33 and the displacement correction unit 34, respectively.
  • the unit 33 and the displacement correction unit 34 may share one phase compensation unit.
  • the acceleration d 2 X 1 / dt 2 of the vehicle body B is used as the vibration information of the sprung member in the correction of the speed dX 2 / dt and the displacement X 2 of the wheel W. Since it is sufficient to know how much vibration is present, the vibration information of the sprung member necessary for correction may be the speed dX 1 / dt. In that case, the speed dX 1 / dt may be obtained by integrating the acceleration d 2 X 1 / dt 2 detected by the second sensor 2 into the speed correction unit 33 and the displacement correction unit 34.
  • the speed correction unit 33 and the displacement correction unit 34 update the integral values I V and I X that are gains so that the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to 0, respectively.
  • Corresponding speed dX 2 / dt and displacement X 2 are corrected. Therefore, the speed corresponding control command f V and the displacement corresponding control command f X obtained by the controller 3 are both optimized in response to the response of the actuator A and the change in the spring constant of the suspension spring S.
  • the vibration of the vehicle body B can be effectively suppressed even if parameters such as the response of the motor and the spring constant of the suspension spring S change.
  • the force exerted by the actuator A (solid line in the figure), the spring force of the suspension spring S (broken line in the figure), and the acceleration d 2 X 1 / dt 2 (dashed line in the figure) of the sprung member are oscillating. Indicates the state. Since the spring force of the suspension spring S is a transmission force transmitted from the wheel W to the vehicle body B, in the graph of FIG. 3A, the phase of the force exerted by the actuator A with respect to the phase at which the transmission force can be canceled out. Running late. In the situation of FIG. 3A, as shown in the graph of FIG.
  • the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the speed dX 2 / wheel of the wheel W indicated by the broken line takes a value of approximately 0 or more although it is oscillatory.
  • the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the displacement X of the wheel W indicated by the broken line is a vibrational value, but generally takes a value of 0 or more.
  • the transmission force is expansion / contraction of the suspension spring S, that is, a force generated by the displacement of the wheel W. If the gain of the speed dX 2 / dt at which the phase is advanced is increased, the phase of the force exerted by the actuator A is advanced. . Therefore, the integral value I V that can be regarded as a gain for the speed dX 2 / dt of the wheel W is increased to correct the speed dX 2 / dt.
  • the transmission force can be canceled by increasing this force.
  • transmission power, expansion and contraction of the suspension spring S that is, since the force the wheel W is generated by displacement, by raising the gain with respect to the displacement X 2
  • the integral value I X that can be regarded as a gain with respect to the displacement X 2 of the wheel W may be increased to correct the displacement X 2 .
  • both the multiplication values are approximately 0 or more, so that the integral values I V and I X are changed.
  • the transmission force can be canceled by the force of the actuator A.
  • the velocity dX 2 / dt and the displacement X 2 can be corrected.
  • the graph of FIG. 4A shows the force exerted by the actuator A when the force exerted by the actuator A is small with respect to the spring force of the suspension spring S and the phase advances from the phase that can cancel the transmission force (in the figure).
  • the solid line), the spring force of the suspension spring S (broken line in the figure), and the acceleration d 2 X 1 / dt 2 of the sprung member (dashed line in the figure) are in a state of oscillating.
  • the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the speed dX 2 / wheel of the wheel W indicated by the broken line takes a value of approximately 0 or less although it is oscillatory.
  • the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the displacement X of the wheel W indicated by the broken line is a vibrational value, but generally takes a value of 0 or more.
  • the transmission force can be canceled by delaying the phase.
  • the transmission force is expansion / contraction of the suspension spring S, that is, a force generated by the displacement of the wheel W. If the gain of the speed dX 2 / dt at which the phase is advanced is lowered, the phase of the force exerted by the actuator A is delayed. .
  • correction may be made so that the speed dX 2 / dt is reduced by setting the integral value I V regarded as a gain with respect to the speed dX2 / dt of the wheel W as a negative value. Further, since the force exerted by the actuator A is smaller than the transmission force, the transmission force can be canceled out by increasing the force. As described above, transmission power, expansion and contraction of the suspension spring S, that is, since the force the wheel W is generated by displacement, by raising the gain with respect to the displacement X 2, can be increased force actuator A exerts. Therefore, the integral value I X that can be regarded as a gain with respect to the displacement X 2 of the wheel W may be increased to correct the displacement X 2 .
  • the multiplication value of the speed dX 2 / dt and the acceleration d 2 X 1 / dt 2 is approximately 0 or less, and the integral value I V decreases. Since the multiplication value of the displacement X 2 and the acceleration d 2 X 1 / dt 2 is substantially equal to or greater than 0, the integral value I X is increased. As described above, by using the multiplication results of the multipliers 33b and 34b, the transmission force can be canceled by the force of the actuator A even when the phase of the force exerted by the actuator A advances with respect to the phase where the transmission force can be canceled. The speed dX 2 / dt and the displacement X 2 can be corrected.
  • the integrated value I V can be regarded as a gain. , I X no longer fluctuates.
  • the controller 3 increases the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B in order to perform skyhook control that suppresses vibration of the vehicle body B.
  • An integrating unit 37 for integrating and a skyhook control command calculating unit 38 for obtaining a skyhook control command f SKY are provided.
  • the integrating unit 37 integrates the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B to obtain the vertical velocity dX 1 / dt of the vehicle body B.
  • the integration unit 37 performs high-pass filter processing to remove low-frequency drift components.
  • the skyhook control command calculation unit 38 obtains the skyhook control command f SKY by multiplying the vertical speed dX 1 / dt of the vehicle body B by the skyhook gain.
  • the skyhook control command f SKY is a control command for causing the actuator A to exert a control force based on the skyhook control.
  • the final control command calculation unit 39 adds the speed corresponding control command f V , the displacement corresponding control command f X and the skyhook control command f SKY to generate a final control command F and outputs it to the actuator A.
  • the actuator A expands and contracts by exerting thrust in the direction and size as in the control command, and vibrates the vehicle body B and the wheels W in the vertical direction.
  • the suspension control device C controls to cancel the transmission force transmitted from the wheel W to the vehicle body B based on the vibration information of the wheel W that is an unsprung member in the vehicle and the vibration information of the vehicle body B that is a sprung member.
  • the command f W # ref is obtained.
  • the control command f W # ref can be corrected to be appropriate in response to changes in parameters such as the response of the actuator A and the spring constant of the suspension spring S, and Riding comfort in the vehicle can be improved by improving the vibration suppressing effect of the member.
  • the acceleration d 2 X 1 / dt 2 of the sprung member is immediately affected.
  • the acceleration of the sprung member is used as vibration information of the sprung member.
  • the vibration information of the unsprung member is corrected with good responsiveness to parameter changes, and the riding comfort in the vehicle can be further improved. Since the vibration of the vehicle body B can be monitored even at the speed dX 1 / dt, the vibration information of the sprung member may be the speed dX 1 / dt as described above.
  • the vibration information of the sprung member is the speed dX 1 / dt, the phase is shifted from the acceleration d 2 X 1 / dt 2 and the correction direction is changed.
  • the controller 3 corrects the vibration information of the unsprung member based on the vibration information of the sprung member to obtain corrected unsprung vibration information, and the corrected spring. Since the control command is obtained based on the lower vibration information, it is not necessary to directly detect fluctuations in parameters such as the response of the actuator A and the spring constant of the suspension spring S.
  • the actuator A in addition to the change in the temperature of the working fluid, the responsiveness changes due to the friction of the sliding portion and the change in the pump efficiency due to deterioration over time, and the suspension spring S is also an air spring. In such a case, in addition to the change in the internal pressure, the spring constant changes due to the temperature change of the gas.
  • the suspension spring is a metal spring, the spring constant may be changed by replacement.
  • the actuator A and the suspension spring S there are a plurality of parameter fluctuation factors of the actuator A and the suspension spring S, and it is difficult to detect the parameter fluctuation by sensing, and even if possible, a large number of sensors are required.
  • the variation of the parameter is not directly detected, but the vibration of the vehicle body B as the sprung member as a result of the parameter variation is detected to detect the unsprung member. Since the vibration information is corrected, it is sufficient to install only the second sensor 2 to cope with the parameter fluctuation.
  • the installation of only the second sensor 2 improves the riding comfort in the vehicle corresponding to the fluctuations regardless of the parameter fluctuation factors of the actuator A and the suspension spring S.
  • the manufacturing cost can be reduced.
  • the controller 3 corrects the vibration information of the unsprung member based on the vibration information of the sprung member.
  • the speed corresponding control command calculating unit 35 and the displacement are corrected based on the vibration information of the sprung member.
  • the speed gain ⁇ (K S ⁇ T) / k and displacement gain ⁇ K S / k multiplied by the corresponding control command calculation unit 36 may be corrected.
  • the multiplication results of the multipliers 33b and 34b serve as indexes for determining the direction of increase / decrease of the speed X 1 / dt and acceleration d 2 X 1 / dt 2 of the sprung member, and the integral value I V and the integral value I X becomes a constant value when it becomes possible to cancel the transmission force transmitted from the wheel W to the vehicle body B by the force exerted by the actuator A by the integral value of the multiplication results of the multiplication units 33b and 34b.
  • the integral value I V and the integral value I X are obtained, and the integral Using the value I V and the integral value I X , the velocity gain ⁇ (K S ⁇ T) / k and the displacement gain ⁇ K S / k corresponding to each may be corrected.
  • the controller 3 is configured to correct the vibration information of the unsprung member based on a multiplication value of the vibration information of the unsprung member and the vibration information of the sprung member. ing.
  • the suspension control apparatus C configured in this way, since the multiplication value is used, if the phase and magnitude of the force of the actuator A do not match the phase and magnitude that can cancel the transmission force, these are matched. Thus, the vibration information of the unsprung member can be corrected. Therefore, according to the suspension control apparatus C of this example, even if parameters such as the response of the actuator A and the spring constant of the suspension spring S change, the control command f W # ref can be automatically corrected appropriately. Further, since the multiplication value is used, the vibration information of the unsprung member is corrected according to the magnitude of the vibration of the sprung member, so that the time until the force exerted by the actuator A coincides with the transmission force is shortened.
  • the controller 3 integrates the product of the vibration information of the unsprung member and the vibration information of the sprung member, which are sequentially obtained, to obtain integrated values I V and I X.
  • the vibration information of the unsprung member is corrected based on the integral values I V and I X.
  • the suspension control device C configured as described above, since the integral values I V and I X are used, the phase and magnitude of the force of the actuator A coincide with the phase and magnitude that can cancel the transmission force.
  • the integral values I V and I X can be fixed. Therefore, according to the suspension control apparatus C of this example, when parameters such as the response of the actuator A and the spring constant of the suspension spring S change, the control command is appropriately corrected and the force of the actuator A is corrected.
  • the learning is terminated and the control command f W # ref can be maintained in an appropriate state.
  • the suspension control device C of this example uses the skyhook control together with the control for canceling the transmission force, and the skyhook control is used for the low-frequency vibration of the vehicle body B that is difficult to suppress by the control for canceling the transmission force.
  • the control force is exerted on the actuator A. Therefore, the suspension control apparatus C of the present example can more effectively suppress the vibration of the vehicle body B that is the sprung member and improve the riding comfort in the vehicle by using the control for canceling the transmission force and the skyhook control in combination.
  • the acceleration d 2 X 1 / dt 2 of the vehicle body B is detected by the second sensor 2 and the acceleration d 2 X 1 / dt 2 is integrated to obtain the speed dX 1 / dt.
  • the skyhook control command f SKY was obtained.
  • a camera is installed on the vehicle body B, an image taken by the camera is processed to obtain information on the posture of the vehicle body B such as pitch, bounce, and roll, the speed of the vehicle body B is obtained from the posture information, and the skyhook is obtained. It can be used for control. Since the posture information of the vehicle body B obtained in this way is displacement information, the posture information may be differentiated to obtain the vertical speed of the vehicle body B. Differentiating the posture information requires low-pass filter processing to remove high-frequency noise, but does not require high-pass filter processing. Therefore, the speed dX 1 / dt of the vehicle body B with no phase change can be obtained in the low-frequency region. It becomes like this.
  • the vertical displacement X 1 of the vehicle body B obtained by processing the image obtained from the camera is differentiated to obtain the velocity dX 1 / dt, and the acceleration detected by the second sensor 2 in the high frequency region.
  • you get the speed dX 1 / dt by integrating d 2 X 1 / dt 2 it may determine the free velocity dX 1 / dt of the phase shift in the actual speed. If the speed dX 1 / dt thus determined is used for skyhook control, there is no fear of oscillation even if the skyhook gain is increased.
  • the image taken by the camera 5a is processed for the controller 3 in FIG.
  • a speed detection unit 5 having a displacement calculation unit 5b and a differentiation unit 5c for differentiating the displacement detected by the displacement calculation unit 5b is provided in parallel with the integration unit 37, and the speed output by the integration unit 37 and the speed detection unit 5 are output. What is necessary is just to provide the speed calculating part 6 which calculates the speed of the vehicle body B by processing the speed to perform. In this way, the skyhook gain can be increased, and the ride comfort in the vehicle can be further improved by effectively suppressing the vibration of the vehicle body B.
  • the vibration information of the unsprung member may be controlled by taking into account the acceleration with further advanced phase in addition to the displacement and speed. That is, when the actuator A has a second order delay characteristic, the control command f W # ref can be obtained by adding the acceleration corresponding control command f a in addition to the speed corresponding control command f V and the displacement corresponding control command f X. That's fine.
  • equation (10) is an expression that takes into account a secondary response delay from the input of the control command f W # ref of the actuator A to the output of the force f W.
  • the actuator A has a second-order response delay characteristic
  • the velocity dX 2 / dt in which the phase has advanced from the displacement X 2 compared to the first-order delay actuator A may be obtained in consideration of the acceleration d 2 X 2 / dt 2 with further advanced phase. That is, in the case of the second-order lag actuator A, the vibration information of the wheel W, which is the unsprung member used to obtain the control command f W # ref , is displacement X 2 , speed dX 2 / dt, and acceleration d 2 X 2. / Dt 2 .
  • the vibration of the vehicle body B can be suppressed by compensating for the response delay of the actuator A and canceling the vibration of the vehicle body B due to disturbance input from the road surface. Therefore, if the actuator A has a high-order response delay, the vibration of the vehicle body B is suppressed corresponding to the response delay characteristic of the actuator A if the information whose phase is advanced by the order from the displacement X 2 of the wheel W is added. it can. Therefore, the vibration information of the wheel W that is an unsprung member for obtaining the control command f W # ref may be determined as described above according to the order of the response delay of the actuator A.
  • the acceleration d 2 X 2 / dt 2 is transmitted to the controller 3 of FIG. 2 as in the second modification of the suspension control device C shown in FIG.
  • the acceleration correction unit 40 for correcting, from the corrected acceleration d 2 X 2 / dt 2 is provided an acceleration corresponding control command calculating section 41 for determining the acceleration corresponding control instruction f a, the speed corresponding with final control command computation unit 39
  • the final control command F may be obtained by adding the control command f V , the displacement control command f X , the acceleration control command f a, and the skyhook control command f SKY .
  • the control command f W # ref is a sum of the speed corresponding control command f V , the displacement corresponding control command f X and the acceleration corresponding control command f a .
  • the acceleration correction unit 40 filters the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B, and the acceleration d 2 X 2 / dt. 2 and the acceleration d 2 X 1 / dt 2 processed by the phase compensation unit 40a, a gain multiplication unit 40c that multiplies the value obtained by the multiplication unit 40b by the correction gain ka, and a gain multiplication unit 40c.
  • An integration value calculation unit 40d that sequentially integrates the obtained values, and a correction value calculation unit 40e that obtains an acceleration correction value C a by multiplying the integration value I a obtained by the integration value calculation unit 40d by the acceleration d 2 X 2 / dt 2.
  • an addition unit 40f for obtaining the acceleration d 2 X 2 / dt 2 after correction by correcting the acceleration d 2 X 2 / dt 2 by adding the acceleration correction value C a of the acceleration d 2 X 2 / dt 2 Prepare.
  • the acceleration corresponding control command calculation unit 41 sets the suspension spring S as a spring constant K S , the natural angular frequency as ⁇ , and multiplies the acceleration d 2 X 2 / dt 2 by ⁇ K S / ⁇ 2 as an acceleration gain, thereby responding to the acceleration corresponding control command.
  • Find f a The acceleration corresponding control command f a corresponds to the first term on the right side of the equation (11), and is a force component depending on the acceleration d 2 X 2 / dt 2 in the force for canceling the transmission force.
  • the speed corresponding control command calculation unit 35 may obtain the speed corresponding control command f V by multiplying the corrected speed dX 2 / dt by ⁇ 2 ⁇ K S / ⁇ .
  • the vibration information of the wheel W as the unsprung member is corrected by multiplying the variable gain, and the variable gain may be increased as the vibration of the vehicle body B continues. .
  • the speed correction unit 33 and the displacement correction unit 34 may correct the speed and displacement as follows.
  • the speed correction unit 33 and the displacement correction unit 34 are both a multiplication unit, in addition to the configuration of the speed correction unit 33 and the displacement correction unit 34 of FIG. 2, as in the third modification of the suspension control apparatus C shown in FIG.
  • Low-pass filters 33h and 34h provided between code extraction units 33g and 34g provided between 33b and 34b and gain multiplication units 33c and 34c, and integral value calculation units 33d and 34d and correction value calculation units 33e and 34e.
  • dead zone processing units 33i and 34i provided between the phase compensation units 33a and 34a and the multiplication units 33b and 34b.
  • the code extraction units 33g and 34g extract the code from the calculation results of the corresponding multiplication units 33b and 34b, and output 1, 0 or ⁇ 1 from the code to the gain multiplication units 33c and 34c. That is, each of the code extraction units 33g and 34g outputs 1 if the calculation result of the corresponding multiplication unit 33b or 34b is a positive value, 0 if the calculation result is 0, and -1 if the calculation result is a negative value. To do.
  • the gain multiplication units 33c and 34c multiply the values output by the code extraction units 33g and 34g by the correction gains k V and k X , respectively, and output the multiplication values to the integration value calculation units 33d and 34d. That is, in this example, when the calculation results of the gain multipliers 33c and 34c are not 0, the integral values I V and I X increase or decrease by the correction gains k V and k X.
  • Low pass filter 33h, 34h is, when the gain multiplication unit 33c, 34c of the operation result is not zero, the integral value I V, since I X is increased or decreased by the correction gain k V, k X, variation of the integrated value I V, I X To smooth.
  • a low-pass filter may be provided at the subsequent stage of the integral value calculation units 33d and 34d of the controller 3 in FIG.
  • the dead band processing units 33i and 34i receive the input of the acceleration d 2 X 1 / dt 2 of the vehicle body B, which is a sprung member, and perform the dead band processing.
  • the dead zone processing units 33i and 34i have an acceleration d 2 of the vehicle body B that is a sprung member when the rate of change of the integral values I V and I X output by the corresponding integral value calculation units 33d and 34d is large.
  • the dead zone for X 1 / dt 2 is reduced, and the dead zone is increased when the rate of change is reduced.
  • the dead zone processing units 33i and 34i differentiate the integral values I V and I X and perform absolute value processing to obtain the rate of change of the integral values I V and I X , respectively.
  • the dead zone processing units 33i and 34i set the dead zone value as a predetermined value when the rate of change of the integrated values I V and I X is less than the threshold value, respectively.
  • the dead zone processing unit 33i, 34i is 0 if the absolute value is less than the dead band value of the acceleration d 2 X 1 / dt 2 of the vehicle body B, the absolute value of the acceleration d 2 X 1 / dt 2 of the vehicle body B If it is equal to or greater than the dead zone value, the acceleration d 2 X 1 / dt 2 is output as it is and input to the multipliers 33b and 34b.
  • the dead zone processing units 33i and 34i are provided in this way, when the vibration of the vehicle body B converges and becomes very small, the integrated values I V and I X are not updated and the transmission force can be canceled by the force of the actuator A. Can be maintained. If the dead zone processing units 33i and 34i are not provided, the integrated values I V and I X are updated when the vehicle body B vibrates even a little. When the values of the integral values I V and I X are updated, the force of the actuator A shifts from the phase where the transmission force can be canceled or the transmission force and the magnitude differ, but the dead zone processing unit 33i, Such a situation can be avoided by providing 34i.
  • the integral value I is calculated from the sign of the calculation result of the multipliers 33b and 34b.
  • the control command f W # ref can be generated so as to be optimal for canceling the transmission force.
  • a dynamic damper that suppresses the vibration of the wheel W may be provided to suppress the vibration of the wheel W. If the natural frequency of the dynamic damper matches the natural frequency of the wheel W, the vibration of the wheel W can be suppressed. If the dynamic damper is used in addition to the control for canceling the transmission force in this way, even if the wheel W vibrates, this vibration can be reduced and the vibration of the vehicle body B can be effectively suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

This suspension control device (C) is provided with a controller (3) for controlling an actuator (A) interposed, along with a suspension spring (S), between an unsprung member (W) and a sprung member (B) of a vehicle V. The controller (3) obtains, on the basis of vibration information for the unsprung member (W) and vibration information for the sprung member (B), a control command for cancelling out transmission force transmitted from the unsprung member (W) to the sprung member (B).

Description

サスペンション制御装置Suspension control device
 本発明は、サスペンション制御装置に関する。 The present invention relates to a suspension control device.
 車両が走行中にばね下部材が路面の凹凸を乗り越えると、懸架ばねが伸縮して懸架ばねがばね上部材を支持する支持力が変動するため、ばね上部材が振動する。このばね上部材の振動を抑制するために、車両におけるばね下部材とばね上部材との間に介装されるアクチュエータを介装し、このアクチュエータが発揮する推力を制御して、ばね上部材の振動を抑制するサスペンション制御装置がある。 When the unsprung member gets over the road surface unevenness while the vehicle is running, the suspension spring expands and contracts, and the support force of the suspension spring to support the sprung member fluctuates, so the sprung member vibrates. In order to suppress the vibration of the sprung member, an actuator interposed between the unsprung member and the sprung member in the vehicle is interposed, and the thrust exerted by the actuator is controlled to There are suspension control devices that suppress vibrations.
 このようなサスペンション制御装置には、たとえば、JPH05-319054Aに開示されているように、前輪のばね下速度を検知して、後輪が前輪と同じ路面を通過する際におけるばね上部材に生じる振動を予測する予見制御を行うものがある。このような予見制御では、後輪が路面の凹凸で変位して、懸架ばねを通じて後輪からばね上部材に伝わる伝達力を打ち消す制御を実行し、さらには、スカイフック制御を併用して車体の振動を抑制している。 In such a suspension control device, for example, as disclosed in JPH05-319054A, the unsprung speed of the front wheel is detected, and the vibration generated in the sprung member when the rear wheel passes the same road surface as the front wheel. Some perform predictive control to predict the above. In such predictive control, the rear wheel is displaced by the unevenness of the road surface, and control is performed to cancel the transmission force transmitted from the rear wheel to the sprung member through the suspension spring. Vibration is suppressed.
 このようなサスペンション制御装置では、アクチュエータに油圧シリンダを利用しており、油圧シリンダの油温変化による応答特性の変化に対応するため、油温を検知して予見制御による予見制御力を補正する。 In such a suspension control device, a hydraulic cylinder is used as an actuator, and in order to cope with a change in response characteristics due to a change in the oil temperature of the hydraulic cylinder, the oil temperature is detected and the predictive control force by the predictive control is corrected.
 しかしながら、油温変化を検知しただけでは、アクチュエータの応答特性を正確に把握するのは難しく、また、懸架ばねにエアばねを採用する車両では車高調整時などでばね定数も変化してしまうので、アクチュエータや懸架ばねのパラメータ変化に十分対応できない。 However, it is difficult to accurately understand the response characteristics of the actuator simply by detecting changes in the oil temperature, and the spring constant also changes when adjusting the vehicle height in vehicles that employ an air spring as the suspension spring. Insufficient response to changes in actuator and suspension spring parameters.
 よって、従来のサスペンション制御装置では、ばね下部材からばね上部材に伝わる振動をうまく打ち消せない場合があり、振動抑制効果の向上が求められる。 Therefore, in the conventional suspension control device, there is a case where the vibration transmitted from the unsprung member to the sprung member cannot be canceled well, and an improvement in the vibration suppression effect is required.
 そこで、本発明は、アクチュエータや懸架ばねにおけるパラメータが変化してもばね上部材の振動抑制効果を向上できるサスペンション制御装置の提供を目的としている。 Therefore, an object of the present invention is to provide a suspension control device that can improve the vibration suppression effect of the sprung member even if the parameters of the actuator and the suspension spring change.
 そのため、本発明のサスペンション制御装置は、ばね下部材の振動情報とばね上部材の振動情報とに基づいてばね下部材からばね上部材に伝達される伝達力を打ち消す制御指令を求める。このようにサスペンション制御装置によれば、アクチュエータの応答性や懸架ばねのばね定数といったパラメータの変化に対応して制御指令を適切となるよう補正できる。 Therefore, the suspension control device of the present invention obtains a control command for canceling the transmission force transmitted from the unsprung member to the sprung member based on the vibration information of the unsprung member and the vibration information of the sprung member. As described above, according to the suspension control device, it is possible to correct the control command so as to correspond to the change in parameters such as the response of the actuator and the spring constant of the suspension spring.
図1は、一実施の形態におけるサスペンション制御装置が適用される車両のモデル図である。FIG. 1 is a model diagram of a vehicle to which a suspension control device according to an embodiment is applied. 図2は、一実施の形態のサスペンション制御装置における制御器の制御ブロック図である。FIG. 2 is a control block diagram of a controller in the suspension control apparatus according to the embodiment. 図3(a)は、懸架ばねのばね力に対してアクチュエータの力が小さく、アクチュエータの力の位相が伝達力を打ち消せる位相より遅れる場合において、懸架ばねのばね力、アクチュエータの力およびばね上部材の加速度の関係を示したグラフである。図3(b)は、懸架ばねのばね力に対してアクチュエータの力が小さく、アクチュエータの力の位相が伝達力を打ち消せる位相より遅れる場合において、ばね上部材の加速度、ばね下部材の速度およびばね上部材の加速度およびばね下部材の速度の乗算値を示したグラフである。図3(c)は、懸架ばねのばね力に対してアクチュエータの力が小さく、アクチュエータの力の位相が伝達力を打ち消せる位相より遅れる場合において、ばね上部材の加速度、ばね下部材の変位およびばね上部材の加速度およびばね下部材の変位の乗算値を示したグラフである。FIG. 3A shows the spring force of the suspension spring, the force of the actuator, and the spring top when the actuator force is small relative to the spring force of the suspension spring and the phase of the actuator force is delayed from the phase that can cancel the transmission force. It is the graph which showed the relationship of the acceleration of a member. FIG. 3B shows the acceleration of the sprung member, the speed of the unsprung member, and the case where the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force is delayed from the phase that can cancel the transmission force. It is the graph which showed the multiplication value of the acceleration of the sprung member, and the speed of the unsprung member. FIG. 3 (c) shows the acceleration of the sprung member, the displacement of the unsprung member, and the displacement of the unsprung member when the actuator force is smaller than the suspension spring and the phase of the actuator force is delayed from the phase that can cancel the transmission force. It is the graph which showed the multiplication value of the acceleration of the sprung member, and the displacement of the unsprung member. 図4(a)は、懸架ばねのばね力に対してアクチュエータの力が小さく、アクチュエータの力の位相が伝達力を打ち消せる位相より進む場合において、懸架ばねのばね力、アクチュエータの力およびばね上部材の加速度の関係を示したグラフである。図4(b)は、懸架ばねのばね力に対してアクチュエータの力が小さく、アクチュエータの力の位相が伝達力を打ち消せる位相より進む場合のばね上部材の加速度、ばね下部材の速度およびばね上部材の加速度およびばね下部材の速度の乗算値を示したグラフである。図4(c)は、懸架ばねのばね力に対してアクチュエータの力が小さく、アクチュエータの力の位相が伝達力を打ち消せる位相より進む場合のばね上部材の加速度、ばね下部材の変位およびばね上部材の加速度およびばね下部材の変位の乗算値を示したグラフである。FIG. 4A shows the spring force of the suspension spring, the force of the actuator, and the spring top when the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force advances from the phase that can cancel the transmission force. It is the graph which showed the relationship of the acceleration of a member. FIG. 4B shows the acceleration of the sprung member, the speed of the unsprung member, and the spring when the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force advances from the phase that can cancel the transmission force. It is the graph which showed the multiplication value of the acceleration of the upper member, and the speed of the unsprung member. FIG. 4C shows the acceleration of the sprung member, the displacement of the unsprung member, and the spring when the actuator force is smaller than the spring force of the suspension spring and the phase of the actuator force advances from the phase that can cancel the transmission force. It is the graph which showed the multiplication value of the acceleration of the upper member, and the displacement of the unsprung member. 図5は、懸架ばねのばね力とアクチュエータの力とが等しく、アクチュエータの力の位相が伝達力を打ち消せる位相に一致となる場合において、懸架ばねのばね力、アクチュエータの力の関係を示したグラフである。FIG. 5 shows the relationship between the spring force of the suspension spring and the force of the actuator when the spring force of the suspension spring is equal to the force of the actuator and the phase of the actuator force coincides with the phase that can cancel the transmission force. It is a graph. 図6は、一実施の形態における第一変形例のサスペンション制御装置の制御器の制御ブロック図である。FIG. 6 is a control block diagram of the controller of the suspension control device according to the first modification of the embodiment. 図7は、一実施の形態における第二変形例のサスペンション制御装置の制御器の制御ブロック図である。FIG. 7 is a control block diagram of a controller of a suspension control device according to a second modification of the embodiment. 図8は、一実施の形態における第三変形例のサスペンション制御装置の制御器の制御ブロック図である。FIG. 8 is a control block diagram of a controller of a suspension control device according to a third modification of the embodiment.
 以下、図に示した実施の形態に基づき、本発明を説明する。図1に示すように、一実施の形態におけるサスペンション制御装置Cは、車両Vのばね下部材である車輪Wとばね上部材である車体Bとの間に懸架ばねSとともに介装されるアクチュエータAを制御して車体Bの振動を抑制する。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings. As shown in FIG. 1, a suspension control device C according to an embodiment includes an actuator A that is interposed together with a suspension spring S between a wheel W that is an unsprung member of a vehicle V and a vehicle body B that is a sprung member. Is controlled to suppress the vibration of the vehicle body B.
 以下、各部について詳細に説明する。図1に示すように、システムである車両Vは、外周にタイヤTiを有する車輪Wと、車体Bと、車輪Wと車体Bとの間に介装されて車体Bを弾性支持する懸架ばねSとで構成されている。 Hereinafter, each part will be described in detail. As shown in FIG. 1, a vehicle V as a system includes a wheel W having a tire Ti on its outer periphery, a vehicle body B, and a suspension spring S that is interposed between the wheel W and the vehicle body B and elastically supports the vehicle body B. It consists of and.
 車両Vは、タイヤTiをばね定数Ktのばねとし、車輪Wを質量M2のマスとし、懸架ばねSをばね定数KSのばねとし、車体Bを質量M1のマスとする二質点二自由度のばねマスシステムであり、図1に示すばねマスシステムのモデルで表現できる。また、路面変位をX0とし、車体Bの上下方向の変位をX1とし、車輪Wの上下方向の変位をX2とし、図1中で上向きを正としている。 Vehicle V, the tire Ti and spring of spring constant K t, the wheel W and the mass of the mass M 2, the suspension spring S and a spring of spring constant K S, two mass two to the vehicle body B and the mass of the mass M 1 This is a spring mass system having a degree of freedom, and can be expressed by a model of the spring mass system shown in FIG. Further, the road surface displacement is X 0 , the vertical displacement of the vehicle body B is X 1 , the vertical displacement of the wheel W is X 2, and the upward direction in FIG. 1 is positive.
 サスペンション制御装置Cは、ばね下部材である車輪Wの振動情報を検知するための第一センサ1と、ばね上部材である車体Bの振動情報を検知するための第二センサ2と、アクチュエータAに与える最終制御指令Fを求める制御器3とを備えている。 The suspension control device C includes a first sensor 1 for detecting vibration information of the wheel W as an unsprung member, a second sensor 2 for detecting vibration information of the vehicle body B as a sprung member, and an actuator A. And a controller 3 for obtaining a final control command F to be provided.
 サスペンション制御装置Cは、本例では、ばね下部材である車輪Wの振動情報として車輪Wの上下方向の変位X2と速度dX2/dtを検知するために、第一センサ1は、加速度センサとされている。第一センサ1は、車輪Wの上下方向の加速度d22/dt2を検出し、制御器3へ入力する。また、サスペンション制御装置Cは、本例では、ばね上部材である車体Bの振動情報として車体Bの上下方向の加速度d21/dt2を検知するために、第二センサ2は、加速度センサとされている。第二センサ2は、車体Bの上下方向の加速度d21/dt2を検出し、制御器3へ入力する。 In this example, the suspension control device C detects the displacement X 2 in the vertical direction of the wheel W and the speed dX 2 / dt as vibration information of the wheel W that is an unsprung member. It is said that. The first sensor 1 detects the acceleration d 2 X 2 / dt 2 in the vertical direction of the wheel W and inputs it to the controller 3. In addition, in this example, the suspension control device C detects the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B as vibration information of the vehicle body B that is a sprung member. It is considered as a sensor. The second sensor 2 detects the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B and inputs it to the controller 3.
 制御器3は、図2に示すように、第一センサ1から入力される加速度d22/dt2を積分して車輪Wの上下方向の速度dX2/dtを求める速度演算部31と、速度演算部31が求めた速度dX2/dtを積分して車輪Wの上下方向の変位X2を求める変位演算部32と、車体Bの上下方向の加速度d21/dt2に基づいて速度dX2/dtを補正する速度補正部33と、車体Bの上下方向の加速度d21/dt2に基づいて変位X2を補正する変位補正部34と、補正後の速度dX2/dtに基づいて速度対応制御指令fVを求める速度対応制御指令演算部35と、補正後の変位X2に基づいて変位対応制御指令fXを求める変位対応制御指令演算部36と、車体Bの上下方向の加速度d21/dt2を積分して車体Bの上下方向の速度dX1/dtを求める積分部37と、車体Bの上下方向の速度dX1/dtにスカイフックゲインを乗じてスカイフック制御指令fSKYを求めるスカイフック制御指令演算部38と、速度対応制御指令fVと変位対応制御指令fXとスカイフック制御指令fSKYを合算して最終制御指令Fを生成してアクチュエータAへ入力する最終制御指令演算部39とを備えている。制御器3は、車輪Wから車体Bへ伝わる伝達力を打ち消すために、速度対応制御指令fVと変位対応制御指令fXとを求め、加えて、車体Bが振動した場合にこの振動を抑制するスカイフック制御を行うためにスカイフック制御指令fSKYを求めている。つまり、速度対応制御指令fVと変位対応制御指令fXとを加算して得られる制御指令fW#refは、アクチュエータAに前記伝達力を打ち消す力を発揮させるための制御指令となる。また、スカイフック制御指令fSKYは、アクチュエータAにスカイフック制御に基づく制御力を発揮させるための制御指令となる。 As shown in FIG. 2, the controller 3 integrates the acceleration d 2 X 2 / dt 2 input from the first sensor 1 to obtain a speed dX 2 / dt in the vertical direction of the wheel W; Based on the displacement calculation unit 32 that integrates the speed dX 2 / dt obtained by the speed calculation unit 31 to obtain the vertical displacement X 2 of the wheel W and the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B. A speed correction unit 33 that corrects the speed dX 2 / dt, a displacement correction unit 34 that corrects the displacement X 2 based on the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B, and a corrected speed dX 2. A speed-corresponding control command calculating unit 35 for determining a speed-corresponding control command f V based on / dt, a displacement-corresponding control command calculating unit 36 for determining a displacement-corresponding control command f X based on the corrected displacement X 2 , and the vehicle body B the vertical direction of the vehicle body B vertical to integrating the acceleration d 2 X 1 / dt 2 of An integration unit 37 for determining the degree dX 1 / dt, the skyhook control command calculating section 38 for determining the skyhook control command f SKY by multiplying a skyhook gain in the vertical direction of the velocity dX 1 / dt of the vehicle body B, rate response control A final control command calculation unit 39 that generates a final control command F by adding the command f V , the displacement corresponding control command f X, and the skyhook control command f SKY and inputs it to the actuator A is provided. The controller 3 obtains a speed-corresponding control command f V and a displacement-corresponding control command f X in order to cancel the transmission force transmitted from the wheel W to the vehicle body B, and suppresses this vibration when the vehicle body B vibrates. In order to perform the skyhook control, the skyhook control command f SKY is obtained. That is, the control command f W # ref obtained by adding the speed corresponding control command f V and the displacement corresponding control command f X is a control command for causing the actuator A to exert a force to cancel the transmission force. The skyhook control command f SKY is a control command for causing the actuator A to exert a control force based on the skyhook control.
 このように、制御器3は、ばね下部材の振動情報としての車輪Wの上下方向の変位X2と速度dX2/dtおよびばね上部材の振動情報としての車体Bの上下方向の加速度d21/dt2に基づいてアクチュエータAへ与える最終制御指令Fを生成してアクチュエータAへ与える。最終制御指令Fは、アクチュエータAへ伸縮の方向と推力の大きさを指示する指令である。 In this way, the controller 3 determines the vertical displacement X 2 and speed dX 2 / dt of the wheel W as vibration information of the unsprung member and the vertical acceleration d 2 of the vehicle body B as vibration information of the sprung member. A final control command F to be given to the actuator A is generated based on X 1 / dt 2 and given to the actuator A. The final control command F is a command for instructing the actuator A the direction of expansion and contraction and the magnitude of the thrust.
 アクチュエータAは、懸架ばねSに並列されて車体Bと車輪Wとの間に介装されており、たとえば、油圧や空圧を利用したテレスコピック型のシリンダや電動リニアアクチュエータ等とされており、モータで駆動されるポンプ等といった動力源を有している。そして、アクチュエータAは、最終制御指令Fの入力により制御指令通りの方向と大きさの推力を発揮して伸縮し、車体Bおよび車輪Wを上下方向へ加振する。 The actuator A is arranged in parallel with the suspension spring S and is interposed between the vehicle body B and the wheel W. For example, the actuator A is a telescopic cylinder or an electric linear actuator using hydraulic pressure or pneumatic pressure. It has a power source such as a pump driven by. Then, the actuator A expands and contracts in response to the input of the final control command F by exerting a thrust in the direction and size as in the control command, and vibrates the vehicle body B and the wheels W in the vertical direction.
 まず、車輪Wから車体Bへ伝わる伝達力を打ち消す制御にて、制御指令fW#refを速度対応制御指令fVと変位対応制御指令fXと加算して求める理由について説明する。 First, the reason why the control command f W # ref is obtained by adding the speed corresponding control command f V and the displacement corresponding control command f X in the control for canceling the transmission force transmitted from the wheel W to the vehicle body B will be described.
 図1に示すように、路面変位をX0とし、車輪Wの上下方向の変位をX2とし、車体Bの上下方向の変位をX1とし、アクチュエータAの出力である推力をfWとし、上向きを正として考えると、ばね上部材である車体Bの上下方向の釣り合いから車体Bの運動方程式は、以下の式(1)のように示せる。 As shown in FIG. 1, the road surface displacement is X 0 , the vertical displacement of the wheel W is X 2 , the vertical displacement of the vehicle body B is X 1, and the thrust that is the output of the actuator A is f W , When the upward direction is considered as positive, the equation of motion of the vehicle body B can be expressed as the following equation (1) from the balance in the vertical direction of the vehicle body B that is a sprung member.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、ばね下部材である車輪Wの上下方向の釣り合いから車輪Wの運動方程式は、以下の式(2)のように示せる。 Also, the equation of motion of the wheel W can be shown as the following equation (2) from the balance in the vertical direction of the wheel W which is an unsprung member.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 さらに、アクチュエータAを一次遅れ系とし、アクチュエータAの制御指令fW#refから出力である推力fWまでの応答遅れにおける時定数をTとすると、アクチュエータAの応答に関する微分方程式は、以下の式(3)のように示せる。 Further, if the actuator A is a first-order lag system and the time constant in the response delay from the control command f W # ref of the actuator A to the thrust f W as an output is T, the differential equation related to the response of the actuator A is given by It can be shown as (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(1)を分解すると以下の式(4)となる。 When the equation (1) is decomposed, the following equation (4) is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、路面変位X0の変動(外乱)によって車輪Wが振動するが、車輪Wの振動によって車体Bへ伝達される伝達力を打ち消せば、車体Bへ車輪Wの振動の伝達をキャンセルして絶縁できる。つまり、路面変位X0の変動(外乱)によって動かされる車体Bの変位X1と、アクチュエータAが力fWを発揮して動かされる車体Bの変位X1が全く逆の大きさになれば両者が相殺される。車輪Wの変位X2によって車体Bに作用する伝達力は、車輪Wの変位X2によって懸架ばねSが伸縮して懸架ばねSが発揮するばね力となるから、アクチュエータAの力fWが車輪Wの変位によって懸架ばねSが発揮するばね力Ks2の符号を反転した値に等しくなればよい。 Here, the wheel W vibrates due to the fluctuation (disturbance) of the road surface displacement X 0 , but if the transmission force transmitted to the vehicle body B is canceled by the vibration of the wheel W, the transmission of the vibration of the wheel W to the vehicle body B is canceled. Can be insulated. Both words, the displacement X 1 of the vehicle body B which is moved by the fluctuation of the road surface displacement X 0 (the disturbance), the actuator A is of the vehicle body B to be moved by exerting a force f W displacement X 1 is completely reversed if the magnitude Is offset. Transmitting force acting on the vehicle body B by a displacement X 2 of the wheel W, since the suspension spring S and the suspension spring S is stretching the displacement X 2 of the wheel W is a spring force that exerts a force f W of the actuator A the wheel It only needs to be equal to a value obtained by inverting the sign of the spring force K s X 2 exerted by the suspension spring S due to the displacement of W.
 なお、式(1)では、KS(X2-X1)と力fWの値が異符号で数値が等しい関係となれば、車体Bには加速度が生じないことを示しているように思える。つまり、力fW=-KS(X2-X1)とすればよいようにも思える。ところが、(X2-X1)は、車体Bと車輪Wの相対変位であり、相対変位の変化は、旋回、制動或いは加速による車体Bの姿勢変化や車体Bへの積載荷重の変化によるものか路面変位に起因するものか判別がつかない。たとえば、ピッチングによって車体Bの前方が沈み込んで懸架ばねSを縮める場合、fW=-KS(X2-X1)としてアクチュエータAに力を発揮させると、車体Bの沈み込みを助長する方向に力を発揮してしまう。車体Bが浮き上がる場合には、浮き上がりを助長してしまう。このように、車体Bと車輪Wの相対変位をフィードバックする制御では、車体Bの姿勢が安定せず、却って、車体Bの振動が発振してしまうモードが存在する。よって、アクチュエータAの力fWが車輪Wの変位X2によって懸架ばねSが発揮するばね力KS・X2を伝達力として、この伝達力を打ち消すように、アクチュエータAの力fWを求めればよい。以上を踏まえると、以下の式(5)が成り立てばよい。 It should be noted that the expression (1) indicates that the acceleration is not generated in the vehicle body B if the values of K S (X 2 −X 1 ) and the force f W have different signs and the numerical values are equal. I think. In other words, it seems that the force f W = −K S (X 2 −X 1 ) may be used. However, (X 2 −X 1 ) is a relative displacement between the vehicle body B and the wheel W, and the change in the relative displacement is caused by a change in the posture of the vehicle body B due to turning, braking, or acceleration, and a change in the load on the vehicle body B. Whether it is caused by road surface displacement cannot be determined. For example, when the front of the vehicle body B sinks due to pitching and the suspension spring S is contracted, if the actuator A exerts a force as f W = −K S (X 2 −X 1 ), the vehicle body B is submerged. Demonstrate power in the direction. When the vehicle body B is lifted, the lift is promoted. As described above, in the control that feeds back the relative displacement between the vehicle body B and the wheel W, there is a mode in which the posture of the vehicle body B is not stable and the vibration of the vehicle body B oscillates. Therefore, the force f W of the actuator A can be obtained so that the force F W of the actuator A can be canceled by using the spring force K S · X 2 exerted by the suspension spring S due to the displacement X 2 of the wheel W as a transmission force. That's fine. Considering the above, the following equation (5) may be established.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 他方、ラプラス演算子をsとして、式(3)の制御指令とアクチュエータAの推力の関係を伝達関数で表現すると、伝達関数は、以下の式(6)で表現される。 On the other hand, when the Laplace operator is s, and the relationship between the control command in equation (3) and the thrust of actuator A is expressed by a transfer function, the transfer function is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 この式(6)を式(5)に代入すると、式(7)となる。なお、式(7)中で、kはゲインである。この式(7)は、アクチュエータAの制御指令fW#refの入力から力fWを出力するまでの応答遅れが勘案された式となる。 When this equation (6) is substituted into equation (5), equation (7) is obtained. In Expression (7), k is a gain. This equation (7) is an equation that takes into account the response delay from the input of the control command f W # ref of the actuator A to the output of the force f W.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ラプラス演算子sが乗算される変数は微分されるので、式(7)を展開して整理すると、以下の式(8)が得られる。 Since the variable multiplied by the Laplace operator s is differentiated, the following equation (8) is obtained by expanding and organizing equation (7).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)から理解できるように、変位X2に対して位相が進む速度を利用してアクチュエータAの応答遅れを補償できる制御指令fW#refを求める。この式(8)において、アクチュエータAの制御指令fW#refの入力から力fWを出力するまでの応答遅れについて、予め、実機において時定数Tとゲインkを計測すれば足り、車輪Wの変位X2と速度dX2/dtを第一センサ1で検知する加速度d22/dt2から得られる。よって、制御指令演算部23は、式(8)を演算すれば制御指令fW#refを求め得る。このように制御指令fW#refを求めてアクチュエータAへ入力するとアクチュエータAは、力fWを発揮して車輪Wからの伝達力を打ち消せるので、路面からの外乱入力による車体Bの振動を相殺して、車体Bの振動を抑制できる。 As can be understood from the equation (8), the control command f W # ref that can compensate for the response delay of the actuator A is obtained using the speed at which the phase advances with respect to the displacement X 2 . In this equation (8), it is sufficient to measure the time constant T and the gain k in advance in the actual machine for the response delay from the input of the control command f W # ref of the actuator A to the output of the force f W. The displacement X 2 and the speed dX 2 / dt are obtained from the acceleration d 2 X 2 / dt 2 detected by the first sensor 1. Therefore, the control command calculation unit 23 can obtain the control command f W # ref by calculating equation (8). When the control command f W # ref is obtained and input to the actuator A in this way, the actuator A can exert the force f W and cancel the transmission force from the wheel W, so that the vibration of the vehicle body B due to disturbance input from the road surface can be avoided. By canceling out, the vibration of the vehicle body B can be suppressed.
 よって、制御器3は、伝達力を打ち消す制御を実施するため、加速度d22/dt2を積分して車輪Wの上下方向の速度dX2/dtを求める速度演算部31と、加速度d22/dt2を二階積分して車輪Wの上下方向の変位X2を求める変位演算部32と、補正後の速度dX2/dtに基づいて速度対応制御指令fVを求める速度対応制御指令演算部35と、補正後の変位X2に基づいて変位対応制御指令fXを求める変位対応制御指令演算部36とを備えている。 Therefore, the controller 3 integrates the acceleration d 2 X 2 / dt 2 to calculate the speed dX 2 / dt in the vertical direction of the wheel W, and the acceleration d in order to perform control to cancel the transmission force. 2 X 2 / dt 2 is second-order integrated to obtain the displacement calculation unit 32 for obtaining the vertical displacement X 2 of the wheel W, and the speed correspondence control for obtaining the speed correspondence control command f V based on the corrected speed dX 2 / dt. A command calculation unit 35 and a displacement response control command calculation unit 36 for obtaining a displacement response control command f X based on the corrected displacement X 2 are provided.
 速度演算部31は、図2に示すように、加速度d22/dt2を積分して車輪Wの上下方向の速度dX2/dtを求める積分部31aと、求めた速度dX2/dtからばね下共振周波数帯域の成分のみを抽出してノイズとドリフト成分を取り除くフィルタ部31bと備えている。フィルタ部31bは、詳しく図示はしないが、2段のハイパスフィルタと2段のローパスフィルタとで構成されており、処理した速度dX2/dtがばね下共振周波数帯域で実際のゲインおよび位相にずれが生じないように処理する。 As shown in FIG. 2, the speed calculation unit 31 integrates the acceleration d 2 X 2 / dt 2 to obtain the vertical speed dX 2 / dt of the wheel W, and the obtained speed dX 2 / dt. The filter unit 31b removes noise and drift components by extracting only the components in the unsprung resonance frequency band. Although not shown in detail, the filter unit 31b includes a two-stage high-pass filter and a two-stage low-pass filter, and the processed speed dX 2 / dt is shifted to the actual gain and phase in the unsprung resonance frequency band. It is processed so as not to occur.
 変位演算部32は、速度演算部31が求めた速度dX2/dtを積分して車輪Wの上下方向の変位X2を求める積分部32aと、求めた変位X2からばね下共振周波数帯域の成分のみを抽出してノイズとドリフト成分を取り除くフィルタ部32bと備えている。フィルタ部32bは、詳しく図示はしないが、2段のハイパスフィルタと2段のローパスフィルタとで構成されており、処理した変位X2がばね下共振周波数帯域で実際のゲインおよび位相にずれが生じないように処理する。なお、変位演算部32は、速度演算部31が求めた速度dX2/dtの入力を受けるのではなく、第一センサ1から加速度d22/dt2の入力を受けて積分部32aで加速度d22/dt2を二階積分して車輪Wの上下方向の変位X2を求めるようにしてもよい。 The displacement calculation unit 32 integrates the speed dX 2 / dt obtained by the speed calculation unit 31 to obtain the vertical displacement X 2 of the wheel W, and the unsprung resonance frequency band from the obtained displacement X 2 . A filter unit 32b that extracts only components and removes noise and drift components is provided. Although not shown in detail, the filter unit 32b is composed of a two-stage high-pass filter and a two-stage low-pass filter, and the processed displacement X 2 causes a shift in actual gain and phase in the unsprung resonance frequency band. Process so that there is no. The displacement calculation unit 32 does not receive the input of the speed dX 2 / dt obtained by the speed calculation unit 31, but receives the input of the acceleration d 2 X 2 / dt 2 from the first sensor 1 and the integration unit 32a. The acceleration d 2 X 2 / dt 2 may be second-order integrated to determine the vertical displacement X 2 of the wheel W.
 なお、ばね下共振周波数は、車両によって異なるが概ね10Hzから17Hzの範囲にあり、フィルタ部31b,32bにおけるハイパスフィルタのカットオフ周波数を0.5Hzとし、ローパスフィルタのカットオフ周波数を150Hzに設定してある。このように設定すると、処理後の速度dX2/dtと変位X2が実際の速度と変位に対してゲインと位相のずれが少なく、精度よく、車輪Wの速度と変位を検知できる。また、両フィルタ部31b,32bは、ローパスフィルタとハイパスフィルタとで構成される代わりに、バンドパスフィルタで構成されてもよい。 The unsprung resonance frequency varies depending on the vehicle, but is generally in the range of 10 Hz to 17 Hz. The cutoff frequency of the high-pass filter in the filter units 31b and 32b is set to 0.5 Hz, and the cutoff frequency of the low-pass filter is set to 150 Hz. It is. With this setting, the speed dX 2 / dt and the displacement X 2 after processing have little difference in gain and phase with respect to the actual speed and displacement, and the speed and displacement of the wheel W can be detected with high accuracy. Moreover, both the filter parts 31b and 32b may be comprised with a band pass filter instead of being comprised with a low-pass filter and a high-pass filter.
 速度対応制御指令演算部35は、懸架ばねSのばね定数をKS、アクチュエータAの応答における時定数をT、ゲインをkとして、速度dX2/dtに速度ゲインとして-(KS・T)/kを乗じて速度対応制御指令fVを求める。この速度対応制御指令fVは、式(8)の右辺の第一項に相当しており、伝達力を打ち消す力のうち速度dX2/dtに依存した力成分である。 The speed corresponding control command calculation unit 35 sets the spring constant of the suspension spring S as K S , the time constant in the response of the actuator A as T, the gain as k, and the speed dX 2 / dt as the speed gain − (K S · T) / is multiplied by k determine the speed corresponding control command f V. This speed-corresponding control command f V corresponds to the first term on the right side of the equation (8), and is a force component that depends on the speed dX 2 / dt of the force that cancels the transmission force.
 変位対応制御指令演算部36は、懸架ばねSのばね定数をKS、ゲインをkとして、変位X2に変位ゲインとして-KS/kを乗じて変位対応制御指令fXを求める。この変位対応制御指令fXは、式(8)の右辺の第二項に相当しており、伝達力を打ち消す力のうち変位X2に依存した力成分である。 Displacement corresponding control command calculating section 36, the spring constant K S of the suspension spring S, the gain as k, it is multiplied by -K S / k as a displacement gain to the displacement X 2 Request displacement corresponding control instruction f X. The displacement corresponding control instruction f X is equivalent to the second term of the right side of the equation (8), a force component that depends on the displacement X 2 of the force counteracting the transmission force.
 よって、速度対応制御指令演算部35が速度演算部31により求められた速度dX2/dtに速度ゲインを乗じて速度対応制御指令fVを求め、変位対応制御指令演算部36が変位演算部32により求められた変位X2に変位ゲイン乗じて変位対応制御指令fXを求め、速度対応制御指令fVと変位対応制御指令fXを加算すれば、伝達力を打ち消す力をアクチュエータAに発揮させ得る筈である。 Accordingly, the speed corresponding control command calculation unit 35 multiplies the speed dX 2 / dt obtained by the speed calculation unit 31 by the speed gain to obtain the speed corresponding control command f V , and the displacement corresponding control command calculation unit 36 determines the displacement calculation unit 32. obtains the displacement corresponding control command f X by multiplying the displacement gain to the displacement X 2 obtained by, if added to the speed corresponding control command f V the displacement corresponding control command f X, to exert a force for canceling the transmission force to the actuator a It is a trap to get
 ところが、アクチュエータA内の作動流体の温度変化等による応答性変化や、懸架ばねSがエアばねとされて内圧が変更されたり温度変化により内圧が変化したりする場合には、アクチュエータAの時定数Tや懸架ばねのばね定数KSといった伝達力を打ち消す力を得るためのパラメータが変化してしまう。これらのパラメータが変化すると、演算処理によって求められた伝達力を打ち消す力と実際の伝達力とに誤差が生じて、伝達力をアクチュエータAが発揮する力で打ち消せなくなってしまう。 However, when the responsiveness changes due to a temperature change of the working fluid in the actuator A or the internal pressure is changed due to the suspension spring S being an air spring or the internal pressure changes due to a temperature change, the time constant of the actuator A Parameters for obtaining a force that cancels the transmission force, such as T and the spring constant K S of the suspension spring, change. When these parameters change, an error occurs between the force for canceling the transmission force obtained by the arithmetic processing and the actual transmission force, and the transmission force cannot be canceled by the force exerted by the actuator A.
 そこで、本例の制御器3では、アクチュエータAの時定数Tや懸架ばねSのばね定数KSが変化しても、自動的に前記変化に対応できるように、速度dX2/dtを補正する速度補正部33と、変位X2を補正する変位補正部34とを備えている。そして、速度対応制御指令演算部35には、補正後ばね下振動情報としての補正後の速度dX2/dtを入力し、変位対応制御指令演算部36には、補正後ばね下振動情報としての補正後の変位X2を入力して速度対応制御指令fVと変位対応制御指令fXを求める。よって、アクチュエータAの時定数Tや懸架ばねのばね定数KSが変化しても、実際の伝達力に見合った力をアクチュエータAに発揮させて、車輪Wから車体Bへの振動の入力を絶縁できる。 Therefore, in the controller 3 of this example, even if the time constant T of the actuator A and the spring constant K S of the suspension spring S change, the speed dX 2 / dt is corrected so as to automatically cope with the change. A speed correction unit 33 and a displacement correction unit 34 that corrects the displacement X 2 are provided. Then, the corrected speed dX 2 / dt as the corrected unsprung vibration information is input to the speed corresponding control command calculating unit 35, and the corrected corresponding control command calculating unit 36 is used as the corrected unsprung vibration information. The corrected displacement X 2 is input to obtain the speed corresponding control command f V and the displacement corresponding control command f X. Therefore, even if the time constant T of the actuator A and the spring constant K S of the suspension spring change, the actuator A exerts a force commensurate with the actual transmission force, and the vibration input from the wheel W to the vehicle body B is insulated. it can.
 以下、速度補正部33と変位補正部34について詳述する。速度補正部33は、車体Bの上下方向の加速度d21/dt2をフィルタ処理する位相補償部33aと、速度演算部31により求められた速度dX2/dtと位相補償部33aで処理した加速度d21/dt2とを乗じる乗算部33bと、乗算部33bで求めた値に補正ゲインkVを乗じるゲイン乗算部33cと、ゲイン乗算部33cが求めた値を順次積分する積分値演算部33dと、積分値演算部33dが求めた積分値IVに速度演算部31により求められた速度dX2/dtを乗じて速度補正値CVを求める補正値演算部33eと、速度演算部31により求められた速度dX2/dtに速度補正値CVを加算して速度演算部31により求められた速度dX2/dtを補正して補正後の速度dX2/dtを求める加算部33fとを備えている。 Hereinafter, the speed correction unit 33 and the displacement correction unit 34 will be described in detail. The speed correction unit 33 processes the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B by filtering, and the speed dX 2 / dt obtained by the speed calculation unit 31 and the phase compensation unit 33 a. Multiplication unit 33b that multiplies the acceleration d 2 X 1 / dt 2 , a gain multiplication unit 33c that multiplies the value obtained by the multiplication unit 33b by the correction gain k V , and an integration that sequentially integrates the values obtained by the gain multiplication unit 33c. A value calculating unit 33d, a correction value calculating unit 33e that obtains a speed correction value C V by multiplying the integral value I V obtained by the integral value calculating unit 33d by the speed dX 2 / dt obtained by the speed calculating unit 31, and a speed adding for obtaining the velocity dX 2 / dt corrected by correcting the speed dX 2 / dt determined by the speed calculator 31 adds the speed correction value C V to the speed dX 2 / dt determined by the arithmetic unit 31 Part 33f and .
 車体Bの上下方向の加速度d21/dt2は、アクチュエータAが伝達力を綺麗に打ち消す力を発揮すれば、理論上、0になる。車体Bの加速度d21/dt2が0にならない状態となっているということは、アクチュエータAが発揮する力では伝達力を完全に打ち消せていない状態となっている。また、車両における乗心地は、理想的となるのは、車体Bの前記加速度d21/dt2が0となる状況である。 The acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B theoretically becomes zero if the actuator A exerts a force that cancels the transmission force cleanly. The fact that the acceleration d 2 X 1 / dt 2 of the vehicle body B is not zero means that the force exerted by the actuator A cannot completely cancel the transmission force. Also, the ride comfort in the vehicle is ideal when the acceleration d 2 X 1 / dt 2 of the vehicle body B is zero.
 乗算部33bの演算結果は、前述したように補正ゲインkVが乗じられて積分され、積分値IVが速度dX2/dtに乗じられて速度補正値CVが求められる。速度補正値CVは、速度演算部31により求められた速度dX2/dtに加算され、加算された値が補正後の速度dX2/dtとなる。前述したところから、車体Bの前記加速度d21/dt2が0でない場合には、乗算部33bの演算結果は0ではない値を出力するから、積分値IVの値が必ず更新される。よって、車体Bの前記加速度d21/dt2が0にならない限り、制御周期毎に積分値IVの値が更新され続ける。積分値IVは、速度補正値CVを得るためのゲインと看做せ、ゲインの値の更新によって、速度補正部33によってばね上部材である車体Bの加速度d21/dt2が0に向けて収束する方向に速度dX2/dtが補正される。そして、車体Bの前記加速度d21/dt2が0に収束すると、乗算部33bの出力も0となるので、積分値IVの値はそれ以上更新されなくなり、速度補正部33は、一定のゲインで速度補正値CVを求めるようになる。 As described above, the calculation result of the multiplication unit 33b is multiplied and integrated by the correction gain k V , and the speed dX 2 / dt is multiplied by the integral value I V to obtain the speed correction value C V. The speed correction value C V is added to the speed dX 2 / dt obtained by the speed calculation unit 31, and the added value becomes the corrected speed dX 2 / dt. As described above, when the acceleration d 2 X 1 / dt 2 of the vehicle body B is not 0, the calculation result of the multiplication unit 33b outputs a non-zero value, so that the integral value I V is always updated. The Therefore, unless the acceleration d 2 X 1 / dt 2 of the vehicle body B becomes 0, the value of the integral value I V is continuously updated every control cycle. The integral value I V can be regarded as a gain for obtaining the speed correction value C V, and by updating the gain value, the acceleration d 2 X 1 / dt 2 of the vehicle body B, which is the sprung member, is updated by the speed correction unit 33. The velocity dX 2 / dt is corrected in the direction of convergence toward 0. When the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to 0, the output of the multiplication unit 33b also becomes 0, so that the value of the integral value I V is not updated any more, and the speed correction unit 33 The speed correction value C V is obtained with a constant gain.
 つまり、アクチュエータAの応答や懸架ばねSのばね定数が変化した場合、速度補正部33は、車体Bの加速度d21/dt2が0に収束するまで、積分値IVの値を更新し、0に収束すると積分値IVの値をホールドして速度dX2/dtを補正する。 That is, when the response of the actuator A or the spring constant of the suspension spring S changes, the speed correction unit 33 updates the integrated value I V until the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to zero. When it converges to 0, the value of the integral value I V is held to correct the speed dX 2 / dt.
 なお、位相補償部33aは、車体Bの上下方向の加速度d21/dt2をフィルタ処理して加速度d21/dt2からばね下共振周波数帯の成分のみを抽出するためローパスフィルタとハイパスフィルタとで構成されている。位相補償部33aで加速度d21/dt2を処理すると加速度d21/dt2から車輪W側から伝達される振動に起因したばね下共振周波数帯の成分のみを抽出でき、ノイズの除去と車輪Wの速度dX2/dtとの位相ずれが大きくなる低周波成分が除去される。このように前述の位相ずれが解消されると、積分値IVの増減が伝達力を効率よく打ち消す方向に推移するので、積分値IVの値が速く収束するようになり、アクチュエータAの応答や懸架ばねSのばね定数が変化した際に応答性よく伝達力を打ち消せるようになる。なお、位相補償部33aは、バンドパスフィルタで構成されてもよい。 The phase compensation unit 33a filters the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B and extracts only the component of the unsprung resonance frequency band from the acceleration d 2 X 1 / dt 2. And a high-pass filter. When the acceleration d 2 X 1 / dt 2 is processed by the phase compensator 33 a, only the component of the unsprung resonance frequency band caused by the vibration transmitted from the wheel W side can be extracted from the acceleration d 2 X 1 / dt 2 . The low frequency component that causes a large phase shift between the removal and the speed dX 2 / dt of the wheel W is removed. When the phase shift is eliminated in this way, the increase / decrease in the integral value I V shifts in a direction that effectively cancels the transmission force, so that the value of the integral value I V converges quickly, and the response of the actuator A When the spring constant of the suspension spring S changes, the transmission force can be canceled with good responsiveness. The phase compensation unit 33a may be configured with a bandpass filter.
 変位補正部34は、車体Bの上下方向の加速度d21/dt2をフィルタ処理する位相補償部34aと、変位演算部32により求められた変位X2と位相補償部33aで処理した加速度d21/dt2とを乗じる乗算部34bと、乗算部34bで求めた値に補正ゲインkXを乗じるゲイン乗算部34cと、ゲイン乗算部34cが求めた値を順次積分する積分値演算部34dと、積分値演算部34dが求めた積分値IXに変位演算部32により求められた変位X2を乗じて変位補正値CXを求める補正値演算部34eと、変位演算部32により求められた変位X2に変位補正値CXを加算して変位演算部32により求められた変位X2を補正して補正後の変位X2を求める加算部34fとを備えている。 The displacement correction unit 34 filters the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B, the displacement X 2 obtained by the displacement calculation unit 32, and the acceleration processed by the phase compensation unit 33a. a multiplication unit 34b for multiplying d 2 X 1 / dt 2 , a gain multiplication unit 34c for multiplying a value obtained by the multiplication unit 34b by a correction gain k X , and an integral value calculation for sequentially integrating the values obtained by the gain multiplication unit 34c 34d, a correction value calculation unit 34e for obtaining a displacement correction value C X by multiplying the integral value I X obtained by the integral value calculation unit 34d by the displacement X 2 obtained by the displacement calculation unit 32, and the displacement calculation unit 32 a displacement X 2 obtained by the displacement calculation unit 32 adds the displacement correction value C X to the displacement X 2 obtained by correcting and an adding unit 34f for obtaining the displacement X 2 of the corrected.
 変位補正部34は、速度補正部33と同様に、乗算部34bの演算結果に補正ゲインkXを乗じて積分し、積分値IXを変位X2に乗じて変位補正値CXを求める。変位補正値CXは、変位演算部32により求められた変位X2に加算され、加算された値が補正後の変位X2となる。よって、車体Bの前記加速度d21/dt2が0でない場合には、乗算部34bの演算結果は0ではない値を出力するから、積分値IXの値が必ず更新される。よって、車体Bの前記加速度d21/dt2が0にならない限り、制御周期毎に積分値IXの値が更新され続ける。積分値IXは、変位補正値CXを得るためのゲインと看做せ、ゲインの値の更新によって、変位補正部34によってばね上部材である車体Bの加速度d21/dt2が0に向けて収束する方向に変位X2が補正される。そして、車体Bの前記加速度d21/dt2が0に収束すると、乗算部34bの出力も0となるので、積分値IXの値はそれ以上更新されなくなり、変位補正部34は、一定のゲインで変位補正値CXを求めるようになる。 Similar to the speed correction unit 33, the displacement correction unit 34 multiplies the calculation result of the multiplication unit 34 b by the correction gain k X and integrates, and multiplies the integration value I X by the displacement X 2 to obtain the displacement correction value C X. The displacement correction value C X is added to the displacement X 2 obtained by the displacement calculator 32, and the added value becomes the corrected displacement X 2 . Therefore, when the acceleration d 2 X 1 / dt 2 of the vehicle body B is not 0, the calculation result of the multiplication unit 34b outputs a non-zero value, so that the value of the integral value I X is always updated. Therefore, unless the acceleration d 2 X 1 / dt 2 of the vehicle body B becomes 0, the value of the integral value I X is continuously updated every control cycle. The integral value I X can be regarded as a gain for obtaining the displacement correction value C X, and by updating the gain value, the acceleration d 2 X 1 / dt 2 of the vehicle body B, which is a sprung member, is updated by the displacement correction unit 34. The displacement X 2 is corrected in the direction of convergence toward 0. When the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to 0, the output of the multiplication unit 34b also becomes 0, so that the value of the integral value I X is not updated any more, and the displacement correction unit 34 The displacement correction value C X is obtained with a constant gain.
 つまり、アクチュエータAの応答や懸架ばねSのばね定数が変化した場合、変位補正部34は、車体Bの加速度d21/dt2が0に収束するまで、積分値IXの値を更新し、0に収束すると積分値IXの値をホールドして変位X2を補正する。 That is, when the response of the actuator A or the spring constant of the suspension spring S changes, the displacement correction unit 34 updates the integrated value I X until the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to zero. When the value converges to 0, the integrated value I X is held and the displacement X 2 is corrected.
 なお、位相補償部34aは、位相補償部33aと同様に、車体Bの上下方向の加速度d21/dt2をフィルタ処理して加速度d21/dt2からばね下共振周波数帯の成分のみを抽出するためローパスフィルタとハイパスフィルタとで構成されている。よって、位相補償部34aを変位補正部34に設けると、加速度d21/dt2から車輪W側から伝達される振動に起因したばね下共振周波数帯の成分のみを抽出でき、ノイズの除去と車輪Wの速度dX2/dtとの位相ずれが大きくなる低周波成分を除去できる。このように前述の位相ずれが解消されると、積分値IXの増減が伝達力を効率よく打ち消す方向に推移するので、積分値IXの値が速く収束するようになり、アクチュエータAの応答や懸架ばねSのばね定数が変化した際に応答性よく伝達力を打ち消せるようになる。なお、位相補償部34aは、バンドパスフィルタで構成されてもよい。 Similarly to the phase compensation unit 33a, the phase compensation unit 34a filters the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B to obtain the unsprung resonance frequency band from the acceleration d 2 X 1 / dt 2 . In order to extract only the component, it is composed of a low-pass filter and a high-pass filter. Therefore, when the phase compensation unit 34a is provided in the displacement correction unit 34, only the component of the unsprung resonance frequency band caused by the vibration transmitted from the wheel W side can be extracted from the acceleration d 2 X 1 / dt 2 , and noise can be removed. And a low frequency component that causes a large phase shift between the wheel W and the speed dX 2 / dt of the wheel W can be removed. When the phase shift is eliminated in this way, the increase / decrease in the integral value I X shifts in a direction that effectively cancels the transmission force, so that the value of the integral value I X converges quickly, and the response of the actuator A When the spring constant of the suspension spring S changes, the transmission force can be canceled with good responsiveness. The phase compensation unit 34a may be configured with a band pass filter.
 また、本例では、速度補正部33と変位補正部34のそれぞれで最適化するために加速度d21/dt2のフィルタ処理をする位相補償部33a,34aを備えているが、速度補正部33と変位補正部34で一つの位相補償部を共有してもよい。 Further, in this example, the phase compensation units 33a and 34a that perform the filter processing of the acceleration d 2 X 1 / dt 2 are provided for optimization by the speed correction unit 33 and the displacement correction unit 34, respectively. The unit 33 and the displacement correction unit 34 may share one phase compensation unit.
 さらに、前述したところでは、車輪Wの速度dX2/dtと変位X2の補正にあったって、車体Bの加速度d21/dt2をばね上部材の振動情報としているが、車体Bがどの程度振動しているかが分かればよいので、補正に必要なばね上部材の振動情報は、速度dX1/dtとされてもよい。その場合、速度補正部33および変位補正部34に、第二センサ2が検知した加速度d21/dt2を積分して速度dX1/dtを求めて入力すればよい。 Further, in the above description, the acceleration d 2 X 1 / dt 2 of the vehicle body B is used as the vibration information of the sprung member in the correction of the speed dX 2 / dt and the displacement X 2 of the wheel W. Since it is sufficient to know how much vibration is present, the vibration information of the sprung member necessary for correction may be the speed dX 1 / dt. In that case, the speed dX 1 / dt may be obtained by integrating the acceleration d 2 X 1 / dt 2 detected by the second sensor 2 into the speed correction unit 33 and the displacement correction unit 34.
 このように、速度補正部33と変位補正部34は、車体Bの加速度d21/dt2が0に収束するようにゲインである積分値IV,IXを更新して、それぞれ、対応する速度dX2/dtと変位X2を補正する。よって、制御器3が求めた速度対応制御指令fVと変位対応制御指令fXは、共に、アクチュエータAの応答や懸架ばねSのばね定数の変化に対応して最適化されるので、アクチュエータAの応答や懸架ばねSのばね定数といったパラメータが変化しても車体Bの振動を効果的に抑制できる。 In this way, the speed correction unit 33 and the displacement correction unit 34 update the integral values I V and I X that are gains so that the acceleration d 2 X 1 / dt 2 of the vehicle body B converges to 0, respectively. Corresponding speed dX 2 / dt and displacement X 2 are corrected. Therefore, the speed corresponding control command f V and the displacement corresponding control command f X obtained by the controller 3 are both optimized in response to the response of the actuator A and the change in the spring constant of the suspension spring S. The vibration of the vehicle body B can be effectively suppressed even if parameters such as the response of the motor and the spring constant of the suspension spring S change.
 ここで、乗算部33b,34bの演算結果を用いて速度dX2/dtと変位X2を補正すると、前記パラメータの変動に対応して速度対応制御指令fVと変位対応制御指令fXを効率よく最適化できる点について詳細に説明する。図3(a)のグラフは、伸縮によって懸架ばねSが発揮するばね力に対してアクチュエータAが発揮する力が小さく、アクチュエータAの力の位相が伝達力を打ち消せる位相よりも遅れる場合において、アクチュエータAが発揮する力(図中実線)と懸架ばねSのばね力(図中破線)とばね上部材の加速度d21/dt2(図中一点鎖線)が振動的に推移している状態を示している。懸架ばねSのばね力は、車輪Wから車体Bに伝達される伝達力であるから、図3(a)のグラフでは、伝達力を打ち消せる位相に対してアクチュエータAが発揮する力の位相が遅れている。図3(a)の状況において、図3(b)のグラフに示したように、一点鎖線で示した車体Bの加速度d21/dt2と破線で示した車輪Wの速度dX2/dtとを乗じて得られる図中実線で示した乗算値は、振動的ではあるが概ね0以上の値を採る。また、図3(a)の状況において、図3(c)のグラフに示したように、一点鎖線で示した車体Bの加速度d21/dt2と破線で示した車輪Wの変位X2とを乗じて得られる図中実線で示した乗算値は、振動的ではあるが、概ね0以上の値を採る。図3(a)のグラフから理解できるように、アクチュエータAが発揮する力の位相が伝達力(懸架ばねSのばね力)を打ち消せる位相に対して遅れている場合、アクチュエータAが発揮する力の位相を進ませれば伝達力を打ち消せるようになる。伝達力は、懸架ばねSの伸縮、つまり、車輪Wが変位して発生する力であり、位相が進んでいる速度dX2/dtのゲインを上げれば、アクチュエータAが発揮する力の位相が進む。よって、車輪Wの速度dX2/dtに対するゲインと看做せる積分値IVを大きくして速度dX2/dtを大きくするように補正すればよい。また、アクチュエータAが発揮する力は、伝達力よりも小さいのでこの力を大きくすれば伝達力を打ち消せるようになる。前述の通り、伝達力は、懸架ばねSの伸縮、つまり、車輪Wが変位して発生する力であるから、変位X2に対するゲインを上げれば、アクチュエータAが発揮する力を大きくできる。よって、車輪Wの変位X2に対するゲインと看做せる積分値IXを大きくして変位X2を大きくするように補正すればよい。ここで、図3(b)と図3(c)を見ると、乗算値は、共に概ね0以上となるので、積分値IV,IXを増加させるように推移する。このように、乗算部33b,34bの乗算結果を用いれば、伝達力を打ち消せる位相に対してアクチュエータAが発揮する力の位相が遅れている場合、アクチュエータAの力で伝達力を打ち消せるように速度dX2/dtと変位X2とを補正できる。 Here, when the speed dX 2 / dt and the displacement X 2 are corrected using the calculation results of the multipliers 33b and 34b, the speed corresponding control command f V and the displacement corresponding control command f X are efficiently used in accordance with the variation of the parameters. The points that can be optimized well will be described in detail. In the graph of FIG. 3A, when the force exerted by the actuator A is small with respect to the spring force exerted by the suspension spring S due to expansion and contraction, the phase of the force of the actuator A lags behind the phase that can cancel the transmission force. The force exerted by the actuator A (solid line in the figure), the spring force of the suspension spring S (broken line in the figure), and the acceleration d 2 X 1 / dt 2 (dashed line in the figure) of the sprung member are oscillating. Indicates the state. Since the spring force of the suspension spring S is a transmission force transmitted from the wheel W to the vehicle body B, in the graph of FIG. 3A, the phase of the force exerted by the actuator A with respect to the phase at which the transmission force can be canceled out. Running late. In the situation of FIG. 3A, as shown in the graph of FIG. 3B, the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the speed dX 2 / wheel of the wheel W indicated by the broken line. The multiplication value indicated by the solid line in the figure obtained by multiplying by dt takes a value of approximately 0 or more although it is oscillatory. Further, in the situation of FIG. 3A, as shown in the graph of FIG. 3C, the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the displacement X of the wheel W indicated by the broken line The multiplication value indicated by the solid line in the figure obtained by multiplying by 2 is a vibrational value, but generally takes a value of 0 or more. As can be understood from the graph of FIG. 3A, the force exerted by the actuator A when the phase of the force exerted by the actuator A is delayed with respect to the phase capable of canceling the transmission force (spring force of the suspension spring S). If the phase is advanced, the transmission force can be canceled. The transmission force is expansion / contraction of the suspension spring S, that is, a force generated by the displacement of the wheel W. If the gain of the speed dX 2 / dt at which the phase is advanced is increased, the phase of the force exerted by the actuator A is advanced. . Therefore, the integral value I V that can be regarded as a gain for the speed dX 2 / dt of the wheel W is increased to correct the speed dX 2 / dt. Further, since the force exerted by the actuator A is smaller than the transmission force, the transmission force can be canceled by increasing this force. As described above, transmission power, expansion and contraction of the suspension spring S, that is, since the force the wheel W is generated by displacement, by raising the gain with respect to the displacement X 2, can be increased force actuator A exerts. Therefore, the integral value I X that can be regarded as a gain with respect to the displacement X 2 of the wheel W may be increased to correct the displacement X 2 . Here, when looking at FIG. 3 (b) and FIG. 3 (c), both the multiplication values are approximately 0 or more, so that the integral values I V and I X are changed. Thus, by using the multiplication results of the multipliers 33b and 34b, when the phase of the force exerted by the actuator A is delayed with respect to the phase that can cancel the transmission force, the transmission force can be canceled by the force of the actuator A. In addition, the velocity dX 2 / dt and the displacement X 2 can be corrected.
 これに対して、懸架ばねSのばね力に対してアクチュエータAが発揮する力が小さく位相が伝達力を打ち消せる位相よりも進む場合について説明する。図4(a)のグラフは、懸架ばねSのばね力に対してアクチュエータAが発揮する力が小さく、その位相が伝達力を打ち消せる位相より進む場合において、アクチュエータAが発揮する力(図中実線)と懸架ばねSのばね力(図中破線)とばね上部材の加速度d21/dt2(図中一点鎖線)が振動的に推移している状態を示している。図4(a)の状況において、図4(b)のグラフに示したように、一点鎖線で示した車体Bの加速度d21/dt2と破線で示した車輪Wの速度dX2/dtとを乗じて得られる図中実線で示した乗算値は、振動的ではあるが概ね0以下の値を採る。また、図4(a)の状況において、図4(c)のグラフに示したように、一点鎖線で示した車体Bの加速度d21/dt2と破線で示した車輪Wの変位X2とを乗じて得られる図中実線で示した乗算値は、振動的ではあるが、概ね0以上の値を採る。図4(a)のグラフから理解できるように、アクチュエータAが発揮する力の位相が伝達力(懸架ばねSのばね力)を打ち消せる位相に対して進んでいる場合、アクチュエータAが発揮する力の位相を遅らせれば伝達力を打ち消せるようになる。伝達力は、懸架ばねSの伸縮、つまり、車輪Wが変位して発生する力であり、位相が進んでいる速度dX2/dtのゲインを下げれば、アクチュエータAが発揮する力の位相が遅れる。よって、車輪Wの速度dX2/dtに対するゲインと看做せる積分値IVを負の値として速度dX2/dtを小さくするように補正すればよい。また、アクチュエータAが発揮する力は、伝達力よりも小さいので力を大きくすれば伝達力を打ち消せるようになる。前述の通り、伝達力は、懸架ばねSの伸縮、つまり、車輪Wが変位して発生する力であるから、変位X2に対するゲインを上げれば、アクチュエータAが発揮する力を大きくできる。よって、車輪Wの変位X2に対するゲインと看做せる積分値IXを大きくして変位X2を大きくするように補正すればよい。ここで、図4(b)と図4(c)を見ると、速度dX2/dtと加速度d21/dt2との乗算値は、概ね0以下であり、積分値IVを減少させるように推移し、変位X2と加速度d21/dt2との乗算値は、概ね0以上となるので積分値IXを増加させるように推移する。このように、乗算部33b,34bの乗算結果を用いれば、伝達力を打ち消せる位相に対してアクチュエータAが発揮する力の位相が進む場合でも、アクチュエータAの力で伝達力を打ち消せるように速度dX2/dtと変位X2とを補正できる。 In contrast, a case will be described in which the force exerted by the actuator A with respect to the spring force of the suspension spring S is small and the phase advances beyond the phase that can cancel the transmission force. The graph of FIG. 4A shows the force exerted by the actuator A when the force exerted by the actuator A is small with respect to the spring force of the suspension spring S and the phase advances from the phase that can cancel the transmission force (in the figure). The solid line), the spring force of the suspension spring S (broken line in the figure), and the acceleration d 2 X 1 / dt 2 of the sprung member (dashed line in the figure) are in a state of oscillating. In the situation of FIG. 4A, as shown in the graph of FIG. 4B, the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the speed dX 2 / wheel of the wheel W indicated by the broken line. The multiplication value indicated by the solid line in the figure obtained by multiplying by dt takes a value of approximately 0 or less although it is oscillatory. Also, in the situation of FIG. 4A, as shown in the graph of FIG. 4C, the acceleration d 2 X 1 / dt 2 of the vehicle body B indicated by the alternate long and short dash line and the displacement X of the wheel W indicated by the broken line The multiplication value indicated by the solid line in the figure obtained by multiplying by 2 is a vibrational value, but generally takes a value of 0 or more. As can be understood from the graph of FIG. 4A, the force exerted by the actuator A when the phase of the force exerted by the actuator A is advanced with respect to the phase capable of canceling the transmission force (spring force of the suspension spring S). The transmission force can be canceled by delaying the phase. The transmission force is expansion / contraction of the suspension spring S, that is, a force generated by the displacement of the wheel W. If the gain of the speed dX 2 / dt at which the phase is advanced is lowered, the phase of the force exerted by the actuator A is delayed. . Therefore, correction may be made so that the speed dX 2 / dt is reduced by setting the integral value I V regarded as a gain with respect to the speed dX2 / dt of the wheel W as a negative value. Further, since the force exerted by the actuator A is smaller than the transmission force, the transmission force can be canceled out by increasing the force. As described above, transmission power, expansion and contraction of the suspension spring S, that is, since the force the wheel W is generated by displacement, by raising the gain with respect to the displacement X 2, can be increased force actuator A exerts. Therefore, the integral value I X that can be regarded as a gain with respect to the displacement X 2 of the wheel W may be increased to correct the displacement X 2 . Here, looking at FIG. 4B and FIG. 4C, the multiplication value of the speed dX 2 / dt and the acceleration d 2 X 1 / dt 2 is approximately 0 or less, and the integral value I V decreases. Since the multiplication value of the displacement X 2 and the acceleration d 2 X 1 / dt 2 is substantially equal to or greater than 0, the integral value I X is increased. As described above, by using the multiplication results of the multipliers 33b and 34b, the transmission force can be canceled by the force of the actuator A even when the phase of the force exerted by the actuator A advances with respect to the phase where the transmission force can be canceled. The speed dX 2 / dt and the displacement X 2 can be corrected.
 なお、図5に示すように、懸架ばねSのばね力(図中破線)に対してアクチュエータAが発揮する力(図中実線)の位相が逆で大きさが一致する場合、つまり、アクチュエータAの力が伝達力を打ち消せる位相に一致していて両者の大きさが等しい場合、伝達力が打ち消さればね上部材の加速度d21/dt2は0となる。このような状況では、速度dX2/dtと加速度d21/dt2との乗算値および変位X2と加速度d21/dt2との乗算値は、0となる。よって、懸架ばねSのばね力(図中破線)に対してアクチュエータAが発揮する力(図中実線)の位相と逆であって大きさが一致する限り、ゲインと看做せる積分値IV,IXが変動しなくなる。このように、乗算部33b,34bの乗算結果を用いれば、アクチュエータAが発揮する力の位相と大きさが伝達力を打ち消せる位相と大きさに一致するようになれば、速度dX2/dtを補正する速度補正値CVと変位X2を補正する変位補正値CXがともに一定値を採るようになり、アクチュエータAの力の位相と大きさが伝達力を打ち消せる位相と大きさに一致する状態を維持できる。 As shown in FIG. 5, when the phase of the force (solid line in the figure) exerted by the actuator A is opposite to the spring force of the suspension spring S (broken line in the figure), that is, the actuator A Is equal to the phase at which the transmission force can be canceled and the magnitudes of both are equal, the transmission force is canceled and the acceleration d 2 X 1 / dt 2 of the sprung member becomes zero. In such a situation, the product of the speed dX 2 / dt and the acceleration d 2 X 1 / dt 2 and the product of the displacement X 2 and the acceleration d 2 X 1 / dt 2 are zero. Therefore, as long as the magnitude is the same as the phase of the force (solid line in the figure) opposite to the force exerted by the actuator A (solid line in the figure) with respect to the spring force of the suspension spring S (broken line in the figure), the integrated value I V can be regarded as a gain. , I X no longer fluctuates. In this way, if the multiplication results of the multipliers 33b and 34b are used, if the phase and magnitude of the force exerted by the actuator A coincide with the phase and magnitude that can cancel the transmission force, the speed dX 2 / dt Both the speed correction value C V for correcting the displacement and the displacement correction value C X for correcting the displacement X 2 both take a constant value, and the phase and magnitude of the force of the actuator A become the phase and magnitude that can cancel the transmission force. You can maintain a consistent state.
 制御器3は、図2に示すように、前述の構成に加えて、車体Bの振動を抑制するスカイフック制御を実施するために、車体Bの上下方向の加速度d21/dt2を積分する積分部37と、スカイフック制御指令fSKYを求めるスカイフック制御指令演算部38とを備えている。 As shown in FIG. 2, in addition to the above-described configuration, the controller 3 increases the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B in order to perform skyhook control that suppresses vibration of the vehicle body B. An integrating unit 37 for integrating and a skyhook control command calculating unit 38 for obtaining a skyhook control command f SKY are provided.
 積分部37は、車体Bの上下方向の加速度d21/dt2を積分して車体Bの上下方向の速度dX1/dtを求める。なお、積分部37では、低周波のドリフト成分を除去するためにハイパスフィルタ処理を行っている。スカイフック制御指令演算部38は、車体Bの上下方向の速度dX1/dtにスカイフックゲインを乗じてスカイフック制御指令fSKYを求める。スカイフック制御指令fSKYは、アクチュエータAにスカイフック制御に基づく制御力を発揮させるための制御指令である。 The integrating unit 37 integrates the vertical acceleration d 2 X 1 / dt 2 of the vehicle body B to obtain the vertical velocity dX 1 / dt of the vehicle body B. The integration unit 37 performs high-pass filter processing to remove low-frequency drift components. The skyhook control command calculation unit 38 obtains the skyhook control command f SKY by multiplying the vertical speed dX 1 / dt of the vehicle body B by the skyhook gain. The skyhook control command f SKY is a control command for causing the actuator A to exert a control force based on the skyhook control.
 最終制御指令演算部39は、速度対応制御指令fVと変位対応制御指令fXとスカイフック制御指令fSKYとを合算して最終制御指令Fを生成し、アクチュエータAへ出力する。アクチュエータAは、前述したように、最終制御指令Fの入力により制御指令通りの方向と大きさの推力を発揮して伸縮し、車体Bおよび車輪Wを上下方向へ加振する。 The final control command calculation unit 39 adds the speed corresponding control command f V , the displacement corresponding control command f X and the skyhook control command f SKY to generate a final control command F and outputs it to the actuator A. As described above, when the final control command F is input, the actuator A expands and contracts by exerting thrust in the direction and size as in the control command, and vibrates the vehicle body B and the wheels W in the vertical direction.
 このようにサスペンション制御装置Cは、車両におけるばね下部材である車輪Wの振動情報とばね上部材である車体Bの振動情報とに基づいて車輪Wから車体Bに伝達される伝達力を打ち消す制御指令fW#refを求める。このように構成されたサスペンション制御装置Cによれば、アクチュエータAの応答性や懸架ばねSのばね定数といったパラメータの変化に対応して制御指令fW#refが適切となるよう補正でき、ばね上部材の振動抑制効果を向上させて車両における乗り心地を向上できる。なお、アクチュエータAが発する力の過不足によって車体Bが振動する場合、ばね上部材の加速度d21/dt2に直ちに影響が現れるので、ばね上部材の振動情報として、ばね上部材の加速度d21/dt2を利用するとパラメータの変化に対して応答性よくばね下部材の振動情報の補正が実施され、車両における乗心地をより一層向上できる。車体Bの振動は、速度dX1/dtでも監視できるので、前述したようにばね上部材の振動情報は速度dX1/dtでもよい。ばね上部材の振動情報を速度dX1/dtとする場合、加速度d21/dt2とは位相がずれていて補正の方向が変わるが、符号を考慮すれば対応できる。 Thus, the suspension control device C controls to cancel the transmission force transmitted from the wheel W to the vehicle body B based on the vibration information of the wheel W that is an unsprung member in the vehicle and the vibration information of the vehicle body B that is a sprung member. The command f W # ref is obtained. According to the suspension control device C configured as described above, the control command f W # ref can be corrected to be appropriate in response to changes in parameters such as the response of the actuator A and the spring constant of the suspension spring S, and Riding comfort in the vehicle can be improved by improving the vibration suppressing effect of the member. When the vehicle body B vibrates due to excess or deficiency of the force generated by the actuator A, the acceleration d 2 X 1 / dt 2 of the sprung member is immediately affected. Therefore, the acceleration of the sprung member is used as vibration information of the sprung member. When d 2 X 1 / dt 2 is used, the vibration information of the unsprung member is corrected with good responsiveness to parameter changes, and the riding comfort in the vehicle can be further improved. Since the vibration of the vehicle body B can be monitored even at the speed dX 1 / dt, the vibration information of the sprung member may be the speed dX 1 / dt as described above. When the vibration information of the sprung member is the speed dX 1 / dt, the phase is shifted from the acceleration d 2 X 1 / dt 2 and the correction direction is changed.
 さらに、本例のサスペンション制御装置Cにあっては、制御器3がばね下部材の振動情報を前記ばね上部材の振動情報に基づいて補正して補正後ばね下振動情報を求め、補正後ばね下振動情報に基づいて前記制御指令を求めるので、アクチュエータAの応答性や懸架ばねSのばね定数といったパラメータの変動を直接検知する必要がない。たとえば、アクチュエータAについてみても、作動流体の温度変化によるものの他にも、経年劣化による摺動部の摩擦やポンプの効率の変化によって応答性が変化するし、懸架ばねSについてもエアばねであるような場合には、内圧の変化の他にも気体の温度変化によってばね定数が変化する。懸架ばねが金属ばねであっても交換によってばね定数が変化する場合がある。このように、アクチュエータAおよび懸架ばねSのパラメータ変動の因子は複数あって、パラメータ変動をセンシングによって検知するのは難しく、可能であっても多数のセンサが必要となる。これに対して、本例のサスペンション制御装置Cでは、前記パラメータの変動を直接検知するのではなく、パラメータ変動の結果としてばね上部材としての車体Bが振動するのを検知してばね下部材の振動情報を補正するので、パラメータ変動に対応するのに第二センサ2一つのみの設置で足りる。このように、本例のサスペンション制御装置Cにあっては、第二センサ2のみの設置でアクチュエータAと懸架ばねSのパラメータ変動の因子によらず当該変動に対応して車両における乗心地を向上できるとともにセンサ設置数も少ないので製造コストを低減できる。 Further, in the suspension control apparatus C of this example, the controller 3 corrects the vibration information of the unsprung member based on the vibration information of the sprung member to obtain corrected unsprung vibration information, and the corrected spring. Since the control command is obtained based on the lower vibration information, it is not necessary to directly detect fluctuations in parameters such as the response of the actuator A and the spring constant of the suspension spring S. For example, in regard to the actuator A, in addition to the change in the temperature of the working fluid, the responsiveness changes due to the friction of the sliding portion and the change in the pump efficiency due to deterioration over time, and the suspension spring S is also an air spring. In such a case, in addition to the change in the internal pressure, the spring constant changes due to the temperature change of the gas. Even if the suspension spring is a metal spring, the spring constant may be changed by replacement. As described above, there are a plurality of parameter fluctuation factors of the actuator A and the suspension spring S, and it is difficult to detect the parameter fluctuation by sensing, and even if possible, a large number of sensors are required. On the other hand, in the suspension control device C of this example, the variation of the parameter is not directly detected, but the vibration of the vehicle body B as the sprung member as a result of the parameter variation is detected to detect the unsprung member. Since the vibration information is corrected, it is sufficient to install only the second sensor 2 to cope with the parameter fluctuation. As described above, in the suspension control device C of this example, the installation of only the second sensor 2 improves the riding comfort in the vehicle corresponding to the fluctuations regardless of the parameter fluctuation factors of the actuator A and the suspension spring S. In addition, since the number of sensors installed is small, the manufacturing cost can be reduced.
 なお、本例では、制御器3がばね下部材の振動情報をばね上部材の振動情報に基づいて補正しているが、ばね上部材の振動情報に基づいて速度対応制御指令演算部35および変位対応制御指令演算部36で乗じる速度ゲイン-(KS・T)/kと変位ゲイン-KS/kを補正してもよい。ここで、乗算部33b,34bの乗算結果は、ばね上部材の速度X1/dtと加速度d21/dt2の増減の方向を決する指標となっており、積分値IVおよび積分値IXは、乗算部33b,34bの乗算結果の積分値でアクチュエータAが発揮する力で車輪Wから車体Bに伝達される伝達力を打ち消せるようになると値が一定値となる。よって、このように速度ゲイン-(KS・T)/kと変位ゲイン-KS/kを補正する場合、たとえば、本例と同様に、積分値IVおよび積分値IXを求め、積分値IVおよび積分値IXを用いて、それぞれに対応する速度ゲイン-(KS・T)/kと変位ゲイン-KS/kを補正すればよい。 In this example, the controller 3 corrects the vibration information of the unsprung member based on the vibration information of the sprung member. However, the speed corresponding control command calculating unit 35 and the displacement are corrected based on the vibration information of the sprung member. The speed gain − (K S · T) / k and displacement gain −K S / k multiplied by the corresponding control command calculation unit 36 may be corrected. Here, the multiplication results of the multipliers 33b and 34b serve as indexes for determining the direction of increase / decrease of the speed X 1 / dt and acceleration d 2 X 1 / dt 2 of the sprung member, and the integral value I V and the integral value I X becomes a constant value when it becomes possible to cancel the transmission force transmitted from the wheel W to the vehicle body B by the force exerted by the actuator A by the integral value of the multiplication results of the multiplication units 33b and 34b. Therefore, when correcting the speed gain − (K S · T) / k and the displacement gain −K S / k in this way, for example, as in the present example, the integral value I V and the integral value I X are obtained, and the integral Using the value I V and the integral value I X , the velocity gain − (K S · T) / k and the displacement gain −K S / k corresponding to each may be corrected.
 さらに、本例のサスペンション制御装置Cにあっては、制御器3がばね下部材の振動情報とばね上部材の振動情報の乗算値に基づいて前記ばね下部材の振動情報を補正するよう構成されている。このように構成されたサスペンション制御装置Cによれば、乗算値を用いるので、アクチュエータAの力の位相と大きさが伝達力を打ち消せる位相と大きさとに一致しない場合には、これらを一致させるようにばね下部材の振動情報を補正できる。よって、本例のサスペンション制御装置Cによれば、アクチュエータAの応答性や懸架ばねSのばね定数といったパラメータが変化しても、自動的に制御指令fW#refを適切に補正できる。また、乗算値を用いるので、ばね上部材の振動の大きさ応じてばね下部材の振動情報を補正するので、アクチュエータAが発揮する力が伝達力に一致するまでの時間も短くなる。 Further, in the suspension control device C of this example, the controller 3 is configured to correct the vibration information of the unsprung member based on a multiplication value of the vibration information of the unsprung member and the vibration information of the sprung member. ing. According to the suspension control apparatus C configured in this way, since the multiplication value is used, if the phase and magnitude of the force of the actuator A do not match the phase and magnitude that can cancel the transmission force, these are matched. Thus, the vibration information of the unsprung member can be corrected. Therefore, according to the suspension control apparatus C of this example, even if parameters such as the response of the actuator A and the spring constant of the suspension spring S change, the control command f W # ref can be automatically corrected appropriately. Further, since the multiplication value is used, the vibration information of the unsprung member is corrected according to the magnitude of the vibration of the sprung member, so that the time until the force exerted by the actuator A coincides with the transmission force is shortened.
 また、本例のサスペンション制御装置Cにあっては、制御器3が順次求められるばね下部材の振動情報とばね上部材の振動情報の乗算値を積分して積分値IV,IXを求め、積分値IV,IXに基づいて前記ばね下部材の振動情報を補正するよう構成されている。このように構成されたサスペンション制御装置Cによれば、積分値IV,IXを用いるので、アクチュエータAの力の位相と大きさが伝達力を打ち消せる位相と大きさに一致するようになると積分値IV,IXを固定できる。よって、本例のサスペンション制御装置Cによれば、アクチュエータAの応答性や懸架ばねSのばね定数といったパラメータが変化すると、自動的に学習して制御指令を適切に補正し、アクチュエータAの力の位相と大きさが伝達力を打ち消せる位相と大きさに一致すると学習を終了して制御指令fW#refを適切な状態に維持できる。 In the suspension control device C of this example, the controller 3 integrates the product of the vibration information of the unsprung member and the vibration information of the sprung member, which are sequentially obtained, to obtain integrated values I V and I X. The vibration information of the unsprung member is corrected based on the integral values I V and I X. According to the suspension control device C configured as described above, since the integral values I V and I X are used, the phase and magnitude of the force of the actuator A coincide with the phase and magnitude that can cancel the transmission force. The integral values I V and I X can be fixed. Therefore, according to the suspension control apparatus C of this example, when parameters such as the response of the actuator A and the spring constant of the suspension spring S change, the control command is appropriately corrected and the force of the actuator A is corrected. When the phase and magnitude match the phase and magnitude that can cancel the transmission force, the learning is terminated and the control command f W # ref can be maintained in an appropriate state.
 そして、本例のサスペンション制御装置Cは、伝達力を打ち消す制御にスカイフック制御を併用しており、伝達力を打ち消す制御では抑制が難しい車体Bの低周波振動等に対してはスカイフック制御による制御力をアクチュエータAに発揮させる。よって、本例のサスペンション制御装置Cは、伝達力を打ち消す制御とスカイフック制御との併用により、ばね上部材である車体Bの振動をより効果的に抑制でき車両における乗心地を向上できる。 The suspension control device C of this example uses the skyhook control together with the control for canceling the transmission force, and the skyhook control is used for the low-frequency vibration of the vehicle body B that is difficult to suppress by the control for canceling the transmission force. The control force is exerted on the actuator A. Therefore, the suspension control apparatus C of the present example can more effectively suppress the vibration of the vehicle body B that is the sprung member and improve the riding comfort in the vehicle by using the control for canceling the transmission force and the skyhook control in combination.
 なお、前述したところでは、スカイフック制御に当たって、車体Bの加速度d21/dt2を第二センサ2で検知し、加速度d21/dt2を積分して速度dX1/dtを得て、スカイフック制御指令fSKYを求めていた。このように積分演算を用いる場合、低周波のドリフト成分を除去するためにハイパスフィルタ処理を行う必要があり、スカイフックゲインを高くすると低周波成分で発振しやすくなる。そこで、車体Bにカメラを設置して、カメラが撮影した画像を処理して車体Bのピッチ、バウンス、ロールといった姿勢に関する情報を得るようにし、姿勢情報から車体Bの速度を得て、スカイフック制御に利用することが考えられる。このようにして得られる車体Bの姿勢情報は、変位情報であるから、車体Bの上下方向の速度を得るには姿勢情報を微分すればよい。姿勢情報の微分には、高周波ノイズの除去のためローパスフィルタ処理が必要であるが、ハイパスフィルタ処理は不要であるから、低周波領域で位相変化のない車体Bの速度dX1/dtが得られるようになる。よって、低周波領域ではカメラから得られる画像を処理して得られる車体Bの上下方向の変位X1を微分して速度dX1/dtを得て、高周波領域では第二センサ2で検知した加速度d21/dt2を積分して速度dX1/dtを得れば、実際の速度に位相ずれの無い速度dX1/dtを求め得る。このようにして求めた速度dX1/dtをスカイフック制御に用いれば、スカイフックゲインを高くしても発振の恐れが無くなる。これを実現するには、図6に示すサスペンション制御装置Cの第一変形例のように、図2の制御器3に対して、カメラ5aが撮影した画像を処理して車体Bの変位を求める変位演算部5bと変位演算部5bが検知した変位を微分する微分部5cとを有する速度検知部5を積分部37に並列に設けるとともに、積分部37が出力する速度と速度検知部5が出力する速度を処理して車体Bの速度を求める速度演算部6を設ければよい。このようにすれば、スカイフックゲインを高くでき、車体Bの振動を効果的に抑制して車両における乗心地がより一層向上する。 As described above, in the skyhook control, the acceleration d 2 X 1 / dt 2 of the vehicle body B is detected by the second sensor 2 and the acceleration d 2 X 1 / dt 2 is integrated to obtain the speed dX 1 / dt. The skyhook control command f SKY was obtained. In the case of using the integral calculation as described above, it is necessary to perform a high-pass filter process in order to remove the low-frequency drift component, and if the skyhook gain is increased, the low-frequency component tends to oscillate. Therefore, a camera is installed on the vehicle body B, an image taken by the camera is processed to obtain information on the posture of the vehicle body B such as pitch, bounce, and roll, the speed of the vehicle body B is obtained from the posture information, and the skyhook is obtained. It can be used for control. Since the posture information of the vehicle body B obtained in this way is displacement information, the posture information may be differentiated to obtain the vertical speed of the vehicle body B. Differentiating the posture information requires low-pass filter processing to remove high-frequency noise, but does not require high-pass filter processing. Therefore, the speed dX 1 / dt of the vehicle body B with no phase change can be obtained in the low-frequency region. It becomes like this. Therefore, in the low frequency region, the vertical displacement X 1 of the vehicle body B obtained by processing the image obtained from the camera is differentiated to obtain the velocity dX 1 / dt, and the acceleration detected by the second sensor 2 in the high frequency region. if you get the speed dX 1 / dt by integrating d 2 X 1 / dt 2, it may determine the free velocity dX 1 / dt of the phase shift in the actual speed. If the speed dX 1 / dt thus determined is used for skyhook control, there is no fear of oscillation even if the skyhook gain is increased. In order to realize this, as in the first modification of the suspension control apparatus C shown in FIG. 6, the image taken by the camera 5a is processed for the controller 3 in FIG. A speed detection unit 5 having a displacement calculation unit 5b and a differentiation unit 5c for differentiating the displacement detected by the displacement calculation unit 5b is provided in parallel with the integration unit 37, and the speed output by the integration unit 37 and the speed detection unit 5 are output. What is necessary is just to provide the speed calculating part 6 which calculates the speed of the vehicle body B by processing the speed to perform. In this way, the skyhook gain can be increased, and the ride comfort in the vehicle can be further improved by effectively suppressing the vibration of the vehicle body B.
 つづいて、アクチュエータAが二次遅れの特性を備えている場合には、ばね下部材の振動情報としては、変位、速度に加えて、更に位相が進んだ加速度を加味して制御すればよい。つまり、アクチュエータAが二次遅れの特性を備えている場合、速度対応制御指令fVと変位対応制御指令fXに加えて加速度対応制御指令faを加算して制御指令fW#refを求めればよい。 Subsequently, when the actuator A has a second-order lag characteristic, the vibration information of the unsprung member may be controlled by taking into account the acceleration with further advanced phase in addition to the displacement and speed. That is, when the actuator A has a second order delay characteristic, the control command f W # ref can be obtained by adding the acceleration corresponding control command f a in addition to the speed corresponding control command f V and the displacement corresponding control command f X. That's fine.
 ここで、固有角周波数をωとし、減衰率をζとすると、ゲインをkとすると、制御指令fW#refから力fWまでの伝達関数は、以下の式(9)のように示される。 Here, when the natural angular frequency is ω, the attenuation rate is ζ, and the gain is k, the transfer function from the control command f W # ref to the force f W is expressed as in the following equation (9). .
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 この式(9)を式(5)に代入すると、式(10)となる。式(10)は、アクチュエータAの制御指令fW#refの入力から力fWを出力するまでの二次の応答遅れが勘案された式となる。 When this equation (9) is substituted into equation (5), equation (10) is obtained. Expression (10) is an expression that takes into account a secondary response delay from the input of the control command f W # ref of the actuator A to the output of the force f W.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ラプラス演算子sが乗算される変数は微分され、ラプラス演算子sの二乗が乗算される変数は二階微分となるので、式(10)を展開して整理すると、以下の式(11)が得られる。 Since the variable multiplied by the Laplace operator s is differentiated and the variable multiplied by the square of the Laplace operator s is the second derivative, the following equation (11) is obtained by expanding and organizing the equation (10). It is done.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(11)から理解できるように、アクチュエータAが二次の応答遅れの特性を備えている場合、一次遅れのアクチュエータAに比較して、変位X2から位相が進んだ速度dX2/dtに加えて、更に位相が進んだ加速度d22/dt2を加味して、制御指令fW#refを求めればよい。つまり、二次遅れのアクチュエータAの場合、制御指令fW#refを求めるために利用するばね下部材である車輪Wの振動情報は、変位X2、速度dX2/dtおよび加速度d22/dt2となる。このようにすれば、アクチュエータAの応答遅れを補償しつつ、路面からの外乱入力による車体Bの振動を相殺して、車体Bの振動を抑制できる。よって、アクチュエータAが高次の応答遅れとなれば、車輪Wの変位X2から位相が次数分進んだ情報を加味すれば、アクチュエータAの応答遅れの特性に対応して車体Bの振動を抑制できる。よって、制御指令fW#refを得るためのばね下部材である車輪Wの振動情報は、アクチュエータAの応答遅れの次数に応じて、前述のように決定すればよい。 As can be understood from the equation (11), when the actuator A has a second-order response delay characteristic, the velocity dX 2 / dt in which the phase has advanced from the displacement X 2 compared to the first-order delay actuator A. In addition, the control command f W # ref may be obtained in consideration of the acceleration d 2 X 2 / dt 2 with further advanced phase. That is, in the case of the second-order lag actuator A, the vibration information of the wheel W, which is the unsprung member used to obtain the control command f W # ref , is displacement X 2 , speed dX 2 / dt, and acceleration d 2 X 2. / Dt 2 . In this way, the vibration of the vehicle body B can be suppressed by compensating for the response delay of the actuator A and canceling the vibration of the vehicle body B due to disturbance input from the road surface. Therefore, if the actuator A has a high-order response delay, the vibration of the vehicle body B is suppressed corresponding to the response delay characteristic of the actuator A if the information whose phase is advanced by the order from the displacement X 2 of the wheel W is added. it can. Therefore, the vibration information of the wheel W that is an unsprung member for obtaining the control command f W # ref may be determined as described above according to the order of the response delay of the actuator A.
 以上より、アクチュエータAが二次の応答遅れの特性である場合、図7に示すサスペンション制御装置Cの第二変形例のように、図2の制御器3に、加速度d22/dt2を補正する加速度補正部40と、補正された加速度d22/dt2から加速度対応制御指令faを求める加速度対応制御指令演算部41とを設けて、最終制御指令演算部39で速度対応制御指令fVと変位対応制御指令fXと加速度対応制御指令faとスカイフック制御指令fSKYを合算して最終制御指令Fを求めればよい。なお、この場合、制御指令fW#refは、速度対応制御指令fVと変位対応制御指令fXと加速度対応制御指令faとを合算したものとなる。 From the above, when the actuator A has a second-order response delay characteristic, the acceleration d 2 X 2 / dt 2 is transmitted to the controller 3 of FIG. 2 as in the second modification of the suspension control device C shown in FIG. the acceleration correction unit 40 for correcting, from the corrected acceleration d 2 X 2 / dt 2 is provided an acceleration corresponding control command calculating section 41 for determining the acceleration corresponding control instruction f a, the speed corresponding with final control command computation unit 39 The final control command F may be obtained by adding the control command f V , the displacement control command f X , the acceleration control command f a, and the skyhook control command f SKY . In this case, the control command f W # ref is a sum of the speed corresponding control command f V , the displacement corresponding control command f X and the acceleration corresponding control command f a .
 加速度補正部40は、速度補正部33および変位補正部34と同様に、車体Bの上下方向の加速度d21/dt2をフィルタ処理する位相補償部40aと、加速度d22/dt2と位相補償部40aで処理した加速度d21/dt2とを乗じる乗算部40bと、乗算部40bで求めた値に補正ゲインkaを乗じるゲイン乗算部40cと、ゲイン乗算部40cが求めた値を順次積分する積分値演算部40dと、積分値演算部40dが求めた積分値Iaに加速度d22/dt2を乗じて加速度補正値Caを求める補正値演算部40eと、加速度d22/dt2に加速度補正値Caを加算して加速度d22/dt2を補正して補正後の加速度d22/dt2を求める加算部40fとを備える。 Like the speed correction unit 33 and the displacement correction unit 34, the acceleration correction unit 40 filters the acceleration d 2 X 1 / dt 2 in the vertical direction of the vehicle body B, and the acceleration d 2 X 2 / dt. 2 and the acceleration d 2 X 1 / dt 2 processed by the phase compensation unit 40a, a gain multiplication unit 40c that multiplies the value obtained by the multiplication unit 40b by the correction gain ka, and a gain multiplication unit 40c. An integration value calculation unit 40d that sequentially integrates the obtained values, and a correction value calculation unit 40e that obtains an acceleration correction value C a by multiplying the integration value I a obtained by the integration value calculation unit 40d by the acceleration d 2 X 2 / dt 2. When, an addition unit 40f for obtaining the acceleration d 2 X 2 / dt 2 after correction by correcting the acceleration d 2 X 2 / dt 2 by adding the acceleration correction value C a of the acceleration d 2 X 2 / dt 2 Prepare.
 加速度対応制御指令演算部41は、懸架ばねSをばね定数KS、固有角周波数をωとして、加速度d22/dt2に加速度ゲインとして-KS/ω2を乗じて加速度対応制御指令faを求める。この加速度対応制御指令faは、式(11)の右辺の第一項に相当しており、伝達力を打ち消す力のうち加速度d22/dt2に依存した力成分である。なお、速度対応制御指令演算部35では、補正後の速度dX2/dtに-2ζKS/ωを乗じて速度対応制御指令fVを求めればよい。 The acceleration corresponding control command calculation unit 41 sets the suspension spring S as a spring constant K S , the natural angular frequency as ω, and multiplies the acceleration d 2 X 2 / dt 2 by −K S / ω 2 as an acceleration gain, thereby responding to the acceleration corresponding control command. Find f a . The acceleration corresponding control command f a corresponds to the first term on the right side of the equation (11), and is a force component depending on the acceleration d 2 X 2 / dt 2 in the force for canceling the transmission force. The speed corresponding control command calculation unit 35 may obtain the speed corresponding control command f V by multiplying the corrected speed dX 2 / dt by −2ζK S / ω.
 なお、ばね上部材である車体Bが振動すると、ばね下部材である車輪Wの振動情報に可変ゲインを乗じて補正し、可変ゲインを車体Bの振動継続に応じて大きくするようにしてもよい。 When the vehicle body B as the sprung member vibrates, the vibration information of the wheel W as the unsprung member is corrected by multiplying the variable gain, and the variable gain may be increased as the vibration of the vehicle body B continues. .
 さらには、速度補正部33と変位補正部34は、以下のようにして、速度と変位を補正してもよい。速度補正部33および変位補正部34は、図8に示すサスペンション制御装置Cの第三変形例のように、共に、図2の速度補正部33および変位補正部34の構成に加えて、乗算部33b,34bとゲイン乗算部33c,34cとの間に設けた符号抽出部33g,34gと、積分値演算部33d,34dと補正値演算部33e,34eとの間に設けたローパスフィルタ33h,34hと、位相補償部33a,34aと乗算部33b,34bとの間に設けた不感帯処理部33i,34iとを備えている。 Furthermore, the speed correction unit 33 and the displacement correction unit 34 may correct the speed and displacement as follows. The speed correction unit 33 and the displacement correction unit 34 are both a multiplication unit, in addition to the configuration of the speed correction unit 33 and the displacement correction unit 34 of FIG. 2, as in the third modification of the suspension control apparatus C shown in FIG. Low- pass filters 33h and 34h provided between code extraction units 33g and 34g provided between 33b and 34b and gain multiplication units 33c and 34c, and integral value calculation units 33d and 34d and correction value calculation units 33e and 34e. And dead zone processing units 33i and 34i provided between the phase compensation units 33a and 34a and the multiplication units 33b and 34b.
 符号抽出部33g,34gは、それぞれ自身が対応する乗算部33b,34bの演算結果から符号を抽出して、符号から1、0或いは-1をゲイン乗算部33c,34cへ出力する。つまり、符号抽出部33g,34gは、それぞれ自身が対応する乗算部33b,34bの演算結果が正の値であると1を、0であると0を、負の値であると-1を出力する。 The code extraction units 33g and 34g extract the code from the calculation results of the corresponding multiplication units 33b and 34b, and output 1, 0 or −1 from the code to the gain multiplication units 33c and 34c. That is, each of the code extraction units 33g and 34g outputs 1 if the calculation result of the corresponding multiplication unit 33b or 34b is a positive value, 0 if the calculation result is 0, and -1 if the calculation result is a negative value. To do.
 ゲイン乗算部33c,34cは、符号抽出部33g,34gが出力した値にそれぞれ補正ゲインkV,kXを乗じて、積分値演算部33d,34dへ出力する。つまり、本例では、ゲイン乗算部33c,34cの演算結果が0でない場合、積分値IV,IXは、補正ゲインkV,kXだけ増減する。 The gain multiplication units 33c and 34c multiply the values output by the code extraction units 33g and 34g by the correction gains k V and k X , respectively, and output the multiplication values to the integration value calculation units 33d and 34d. That is, in this example, when the calculation results of the gain multipliers 33c and 34c are not 0, the integral values I V and I X increase or decrease by the correction gains k V and k X.
 ローパスフィルタ33h,34hは、ゲイン乗算部33c,34cの演算結果が0でない場合、積分値IV,IXが補正ゲインkV,kXだけ増減するので、積分値IV,IXの変化を滑らかにする。このように、ローパスフィルタ33h,34hを挿入すると、アクチュエータAが発揮する力の急変が緩和されるので車両における乗心地が向上する。なお、同じ目的で、第2図の制御器3の積分値演算部33d,34dの後段にローパスフィルタを設けてもよい。 Low pass filter 33h, 34h is, when the gain multiplication unit 33c, 34c of the operation result is not zero, the integral value I V, since I X is increased or decreased by the correction gain k V, k X, variation of the integrated value I V, I X To smooth. Thus, when the low- pass filters 33h and 34h are inserted, sudden changes in the force exerted by the actuator A are alleviated, so that the riding comfort in the vehicle is improved. For the same purpose, a low-pass filter may be provided at the subsequent stage of the integral value calculation units 33d and 34d of the controller 3 in FIG.
 不感帯処理部33i,34iは、ばね上部材である車体Bの加速度d21/dt2の入力を受けて不感帯処理を実施する。不感帯処理部33i,34iは、それぞれ自身が対応する積分値演算部33d,34dが出力する積分値IV,IXの変化率が大きな場合には、ばね上部材である車体Bの加速度d21/dt2に対する不感帯を小さくし、前記変化率が小さくなると不感帯を大きくする。具体的には、不感帯処理部33i,34iは、それぞれ、積分値IV,IXを微分して絶対値処理を行って積分値IV,IXの変化率を求め、変化率が閾値を超えると、変化率の増加にしたがって不感帯の値を減少させて最終的には0とする。不感帯処理部33i,34iは、それぞれ、積分値IV,IXの変化率が閾値未満であると、不感帯の値を所定値とする。そして、不感帯処理部33i,34iは、車体Bの加速度d21/dt2の絶対値が不感帯の値未満であると0を、車体Bの加速度d21/dt2の絶対値が不感帯の値以上であると加速度d21/dt2をそのまま出力して乗算部33b,34bへ入力する。このように不感帯処理部33i,34iを設けると、車体Bの振動が収束して非常に小さくなると積分値IV,IXの値が更新されなくなってアクチュエータAの力で伝達力を打ち消せる状態を維持できる。不感帯処理部33i,34iを設けない場合、車体Bが少しでも振動すると、積分値IV,IXの値が更新される。積分値IV,IXの値が更新されると、アクチュエータAの力が伝達力を打ち消せる位相に対してずれたり、伝達力と大きさが異なってしまったりするが、不感帯処理部33i,34iを設けるとそのような事態を回避できる。 The dead band processing units 33i and 34i receive the input of the acceleration d 2 X 1 / dt 2 of the vehicle body B, which is a sprung member, and perform the dead band processing. The dead zone processing units 33i and 34i have an acceleration d 2 of the vehicle body B that is a sprung member when the rate of change of the integral values I V and I X output by the corresponding integral value calculation units 33d and 34d is large. The dead zone for X 1 / dt 2 is reduced, and the dead zone is increased when the rate of change is reduced. Specifically, the dead zone processing units 33i and 34i differentiate the integral values I V and I X and perform absolute value processing to obtain the rate of change of the integral values I V and I X , respectively. If it exceeds, the value of the dead zone is decreased as the rate of change increases and finally set to zero. The dead zone processing units 33i and 34i set the dead zone value as a predetermined value when the rate of change of the integrated values I V and I X is less than the threshold value, respectively. The dead zone processing unit 33i, 34i is 0 if the absolute value is less than the dead band value of the acceleration d 2 X 1 / dt 2 of the vehicle body B, the absolute value of the acceleration d 2 X 1 / dt 2 of the vehicle body B If it is equal to or greater than the dead zone value, the acceleration d 2 X 1 / dt 2 is output as it is and input to the multipliers 33b and 34b. When the dead zone processing units 33i and 34i are provided in this way, when the vibration of the vehicle body B converges and becomes very small, the integrated values I V and I X are not updated and the transmission force can be canceled by the force of the actuator A. Can be maintained. If the dead zone processing units 33i and 34i are not provided, the integrated values I V and I X are updated when the vehicle body B vibrates even a little. When the values of the integral values I V and I X are updated, the force of the actuator A shifts from the phase where the transmission force can be canceled or the transmission force and the magnitude differ, but the dead zone processing unit 33i, Such a situation can be avoided by providing 34i.
 このようにサスペンション制御装置Cの第三変形例にあっても、アクチュエータAの応答性や懸架ばねSのばね定数に変動があっても、乗算部33b,34bの演算結果の符号から積分値IV,IXの値を更新して、伝達力を打ち消すのに最適となるように制御指令fW#refを生成できる。 As described above, even in the third modified example of the suspension control device C, even if the response of the actuator A and the spring constant of the suspension spring S vary, the integral value I is calculated from the sign of the calculation result of the multipliers 33b and 34b. By updating the values of V and I X , the control command f W # ref can be generated so as to be optimal for canceling the transmission force.
 また、図示はしないが、車輪Wの振動を抑制するダイナミックダンパを設けて車輪Wの振動を抑制してもよい。車輪Wの固有振動数にダイナミックダンパの固有振動数を一致させると車輪Wの振動を抑制できる。このように伝達力を打ち消す制御に加えてダイナミックダンパを併用すれば、車輪Wが振動しても、この振動を低減でき、車体Bの振動も効果的に抑制できる。 Although not shown, a dynamic damper that suppresses the vibration of the wheel W may be provided to suppress the vibration of the wheel W. If the natural frequency of the dynamic damper matches the natural frequency of the wheel W, the vibration of the wheel W can be suppressed. If the dynamic damper is used in addition to the control for canceling the transmission force in this way, even if the wheel W vibrates, this vibration can be reduced and the vibration of the vehicle body B can be effectively suppressed.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、及び変更が可能である。 The preferred embodiments of the present invention have been described above in detail, but modifications, changes, and modifications can be made without departing from the scope of the claims.
 本願は、2017年4月19日に日本国特許庁に出願された特願2017-082846に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-082846 filed with the Japan Patent Office on April 19, 2017, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  サスペンション制御装置であって、
     車両におけるばね下部材とばね上部材との間に懸架ばねとともに介装されるアクチュエータを制御する制御器を備え、
     前記制御器は、前記ばね下部材の振動情報と前記ばね上部材の振動情報とに基づいて、前記ばね下部材から前記ばね上部材に伝達される伝達力を打ち消す制御指令を求める
     サスペンション制御装置。
    A suspension control device,
    A controller for controlling an actuator interposed with a suspension spring between an unsprung member and a sprung member in a vehicle;
    The controller determines a control command for canceling a transmission force transmitted from the unsprung member to the sprung member based on vibration information of the unsprung member and vibration information of the sprung member.
  2.  請求項1に記載のサスペンション制御装置であって、
     前記制御器は、前記ばね下部材の振動情報を前記ばね上部材の振動情報に基づいて補正して補正後ばね下振動情報を求め、補正後ばね下振動情報に基づいて前記制御指令を求める
     サスペンション制御装置。
    The suspension control device according to claim 1,
    The controller corrects the vibration information of the unsprung member based on the vibration information of the sprung member to obtain corrected unsprung vibration information, and obtains the control command based on the corrected unsprung vibration information. Control device.
  3.  請求項2に記載のサスペンション制御装置であって、
     前記制御器は、
     前記ばね下部材の振動情報と前記ばね上部材の振動情報の乗算値に基づいて前記ばね下部材の振動情報を補正する
     サスペンション制御装置。
    The suspension control device according to claim 2,
    The controller is
    A suspension control device that corrects vibration information of the unsprung member based on a multiplication value of vibration information of the unsprung member and vibration information of the sprung member.
  4.  請求項3に記載のサスペンション制御装置であって、
     前記制御器は、
     順次求められる前記乗算値を積分して積分値を求め、
     前記積分値に基づいて前記ばね下部材の振動情報を補正する
     サスペンション制御装置。
    The suspension control device according to claim 3,
    The controller is
    Integrating the multiplication values obtained sequentially to obtain an integral value,
    A suspension control device that corrects vibration information of the unsprung member based on the integral value.
  5.  請求項1に記載のサスペンション制御装置であって、
     前記制御器は、
     スカイフック制御に基づいて前記ばね上部材の振動を抑制するスカイフック制御指令を求め、前記伝達力を打ち消す前記制御指令と前記スカイフック制御指令に基づいて前記アクチュエータへ与える最終制御指令を求める
     サスペンション制御装置。
    The suspension control device according to claim 1,
    The controller is
    Suspension control for obtaining a skyhook control command for suppressing vibration of the sprung member based on skyhook control, and for obtaining a final control command to be applied to the actuator based on the control command for canceling the transmission force and the skyhook control command apparatus.
PCT/JP2018/003142 2017-04-19 2018-01-31 Suspension control device WO2018193685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082846A JP6924062B2 (en) 2017-04-19 2017-04-19 Suspension control device
JP2017-082846 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018193685A1 true WO2018193685A1 (en) 2018-10-25

Family

ID=63857051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003142 WO2018193685A1 (en) 2017-04-19 2018-01-31 Suspension control device

Country Status (2)

Country Link
JP (1) JP6924062B2 (en)
WO (1) WO2018193685A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097474A1 (en) * 2020-09-30 2022-03-31 Autobrains Technologies Ltd Configuring an active suspension
US11351833B2 (en) * 2019-08-01 2022-06-07 Honda Motor Co., Ltd. Electric suspension device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253989A (en) * 2009-04-21 2010-11-11 Nissan Motor Co Ltd Apparatus and method for controlling suspension
JP2012091763A (en) * 2010-09-29 2012-05-17 Toyota Motor Corp Suspension apparatus
US20140005888A1 (en) * 2012-06-27 2014-01-02 Amar G. Bose Active wheel damping
JP2016088359A (en) * 2014-11-07 2016-05-23 Kyb株式会社 Suspension device and suspension control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253989A (en) * 2009-04-21 2010-11-11 Nissan Motor Co Ltd Apparatus and method for controlling suspension
JP2012091763A (en) * 2010-09-29 2012-05-17 Toyota Motor Corp Suspension apparatus
US20140005888A1 (en) * 2012-06-27 2014-01-02 Amar G. Bose Active wheel damping
JP2016088359A (en) * 2014-11-07 2016-05-23 Kyb株式会社 Suspension device and suspension control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11351833B2 (en) * 2019-08-01 2022-06-07 Honda Motor Co., Ltd. Electric suspension device
US20220097474A1 (en) * 2020-09-30 2022-03-31 Autobrains Technologies Ltd Configuring an active suspension

Also Published As

Publication number Publication date
JP2018177117A (en) 2018-11-15
JP6924062B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
KR102174283B1 (en) Suspension control unit
CN110267832B (en) Vehicle fluctuation control device
JP5015253B2 (en) Control device for controlling an active chassis system of a vehicle
WO2010073412A1 (en) Damping force controller
WO2014004119A1 (en) Active wheel damping
EP3216634A1 (en) Suspension device and suspension control device
US20220161624A1 (en) Suspension control apparatus
JP6638703B2 (en) Suspension control system
WO2014142268A1 (en) Damper control device
JP2017082667A (en) Drive force control device of vehicle
WO2018193685A1 (en) Suspension control device
JP5834368B2 (en) Damper control device
JP2019051781A (en) Unsprung vibration detection device and suspension control device
US20180326809A1 (en) Suspension system
JP5702200B2 (en) Shock absorber controller
KR20160066411A (en) Apparatus and method for control of vehicle suspension damping force
JP2018154283A (en) Suspension control device
JP6924043B2 (en) Vibration damping device for railway vehicles
JP6408828B2 (en) Suspension device
JP2019142244A (en) Suspension control device
JP6059564B2 (en) Damper speed detection device
JP2011213198A (en) Control device of variable damping force damper
KR20080024878A (en) A control strategies of semi-active suspension system
KR101980421B1 (en) Active mass damping system and vibration control method for structure using the same
JP7253516B2 (en) suspension system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787973

Country of ref document: EP

Kind code of ref document: A1