WO2018193215A1 - Robot lineaire de type delta equipe de moteurs lineaires - Google Patents

Robot lineaire de type delta equipe de moteurs lineaires Download PDF

Info

Publication number
WO2018193215A1
WO2018193215A1 PCT/FR2018/050979 FR2018050979W WO2018193215A1 WO 2018193215 A1 WO2018193215 A1 WO 2018193215A1 FR 2018050979 W FR2018050979 W FR 2018050979W WO 2018193215 A1 WO2018193215 A1 WO 2018193215A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear
linear robot
nacelle
robot
uprights
Prior art date
Application number
PCT/FR2018/050979
Other languages
English (en)
Inventor
Marc Dubois
Original Assignee
Lemoine - Lmy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lemoine - Lmy filed Critical Lemoine - Lmy
Publication of WO2018193215A1 publication Critical patent/WO2018193215A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0033Programme-controlled manipulators having parallel kinematics with kinematics chains having a prismatic joint at the base
    • B25J9/0039Programme-controlled manipulators having parallel kinematics with kinematics chains having a prismatic joint at the base with kinematics chains of the type prismatic-spherical-spherical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/123Linear actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to the field of linear robots of DELTA type and is particularly intended to improve the performance of such linear robots.
  • a particular application of the linear robot according to the invention concerns the printing in three dimensions for the manufacture of orthoses.
  • DELTA-type robots are well known in robotics, for example the European patent published under the number EP 0250470 Bl in the name of SOGEVA. Such robots make it possible to move a load (a tool, a component, a product, etc.) while keeping it with the same orientation, by means of a handling element formed of three variable parallelograms.
  • Such robots are for example used to handle products in the food, industrial and pharmaceutical fields, to handle a microscope or a tool in the operating room in the medical field, or for high precision machining and printing. in three dimensions (3D printing).
  • the linear robot consists of a particular implementation of a DELTA-type robot, which, by means of three linear displacements along three axes which are generally parallel to each other (ZI, Z2, Z3), reaches a moving a load according to a three-axis coordinate system (X, Y, Z) while maintaining the same orientation of this load in said three-dimensional coordinate system.
  • the linear robot comprises a frame provided with three uprights arranged along the three axes which are generally parallel to each other (ZI, Z2, Z3), for example positioned vertically.
  • the linear robot also comprises a nacelle which receives a tool (for example a material fusion head, a cutting tool, a laser, etc.) and a handling element formed of three systems of two arms distributed around the nacelle.
  • the linear robot comprises motorization means configured to move the slides along the uprights, which ultimately allows the nacelle to move in the three-dimensional coordinate system (X, Y, Z) while keeping it parallel to the same plane.
  • these drive means are formed of a motor and a belt or screw transmission system arranged between the motor and the slider.
  • Such motorization means do not offer a high accuracy of movement of the slides along the uprights, which has a direct impact on the accuracy of the movements of the nacelle. In addition, these motorization means do not allow to work with very high speeds of movement of the nacelle.
  • the present invention overcomes the drawbacks of DELTA-type linear robots by providing a design which makes it possible to optimize the accuracy and the speed of movement of the nacelle, which implies an increase in the accuracy of position measurement and the speed of displacement. sliders on the uprights.
  • the linear robot comprises a frame provided with three uprights, three slides respectively mounted in sliding connection on the uprights, a pod for receiving a tool, for example a print head, a laser or a tool section, and three pairs of arms arranged between the three respective slides and the nacelle each forming a variable parallelogram.
  • the first ends of the arms are mounted in ball joint on the slides and the second ends of said arms are mounted in ball joint connection on the nacelle.
  • the linear robot comprises three linear motors each arranged between an upright and a slide.
  • Each motor comprises magnets fixed with a regular pitch on the upright and a winding wound around a packet of air gap plates supported by the slide so as to create an electromagnetic field moving the slide along the amount.
  • the invention implements linear motors rather than rotary motors with belt or screw transmission systems, which makes it possible to considerably increase the speed of movement of the machines. sliders and the basket, with greater precision of movements.
  • the magnets are fixed on one of the faces of each amount.
  • the magnets are fixed on a lateral side of the upright, but one could consider alternatively to fix them on the front face or the rear face of the upright.
  • the magnets are inclined relative to the axis of displacement of the slide on the amount.
  • the angle formed between each magnet and an axis perpendicular to said axis of displacement is between ten degrees and twenty degrees. This inclination of the magnets obtained by calculation makes it possible to eliminate the phenomenon of magnetic shock generating saccades, commonly called "cogging".
  • the magnets are fixed by gluing on one side of the upright, preferably a lateral side. Gluing makes it possible to limit the weight of the robot.
  • at least two cords of constant thickness are positioned in the adhesive thickness between the magnets and said face, preferably two cords. This makes it possible to ensure a constant thickness of glue on the entire face of the upright receiving the magnets in order to ensure that all the magnets are in the same plane on said face, which makes it possible to minimize the variations in the air gap of the motor and thus the fluctuations of the magnetic field.
  • the cords are preferably made of metal, other materials remaining possible as long as these cords do not crush when positioning the magnets, in order to maintain a constant thickness of glue.
  • the coils of the motors comprise an identical number of windings. The meticulous counting of the number of turns of copper wire on the motor windings ensures reproducibility of the electrical parameters.
  • the sliders are slidably mounted on the uprights by means of guide rails with ball pads. This ensures the accuracy of guiding the slides on the uprights.
  • the pack of gap sheets is made from varnished sheets of a thickness of 0.35 mm and cut in electroerosion.
  • This sheet thickness and varnishing optimize the magnetic effects of the windings.
  • Electroerosion cutting reduces the edge effects that occur with known machining methods.
  • the linear robot comprises brakes with lack of current implanted on the three uprights in order to block the slides in position during a piloting stop.
  • the use of these brakes makes it possible to block the robot in place without descent of the sliders during voluntary piloting stops (end of work) or involuntary (cut of energy).
  • the linear robot comprises ventilation systems of the windings. A ventilation of the coils is made necessary by the current consumption at the stop because of the weight of the assembly to be carried due to the vertical structure of the machine
  • the linear robot comprises linear rules arranged along the uprights, reading heads arranged on the sliders and a coding system configured to calculate the absolute positions of the sliders on the uprights from the read head measurements.
  • a linear rule makes it possible to reduce measurement errors that could be due to bad geometry.
  • the precision of the control makes it possible to reduce the variations of pitch of reading head with respect to the reading track on the linear rule.
  • the calculation of the absolute positions makes it possible to eliminate the parasitic movements due to the engine stalling procedure, called "phasing", during commissioning (necessary with axle brakes). This also makes it possible to eliminate the homing phase of the three vertical axes of displacement of the slides. This saves time on startup because it is not necessary to go through a reference position on the linear rule.
  • the arms and the nacelle are made of aluminum or carbon fibers.
  • this nacelle is hollowed out. This makes it possible to limit the mass movement while maintaining rigidity and the possibility of attaching work equipment (material fusion head, cutting tool, laser ...)
  • the linear robot comprises a numerically controlled control system which uses high speed machining type algorithms to slave the three slides moving along the uprights at speeds up to 4m / s and with accelerations. up to 4g (4 x 9.80665 m-sec- 2 , or about 39.23 m-sec- 2 ).
  • said control system uses direct and inverse geometrical matrices allowing the calculation of the positions of the nacelle.
  • said control system uses direct and inverse Jacobian matrices for calculating the speeds of the nacelle and the motors at determined positions.
  • said control system uses a matrix of geometric defects that makes it possible to calculate corrections to be made. This makes it possible to manage corrections by axis (position of the slides on the uprights) but also a correction in the volume of its trajectories thanks to a three-dimensional grid of distribution of the defects, in order to minimize the errors.
  • the standard used for the transfer of speeds to the variators and the position of the machine to the numerically controlled control system is of the Ethercat® type.
  • This very fast protocol allows with management by the numerical control system and thanks to program developments in Fortran® language, up to twenty thousand interactions per second with the robot.
  • the ball joints are configured to ensure with angular displacement of +/- 35 ° so as to allow the most extreme positions of the nacelle and ensure a tooling work on maximum diameters parts to work or manufacture.
  • the invention also relates to a three-dimensional printing machine, which comprises a linear robot having the aforementioned characteristics and a printing system in three dimensions, said printing system being mounted on the nacelle of said linear robot.
  • the printing system comprises a plastic melting head (eg polyethylene) which is fed by a plastic conveying system whose flow is controlled by the movement of the nacelle by means of the numerical control.
  • Figures 1 and 2 illustrate a three-dimensional overview and from above of the linear robot according to the invention
  • FIG. 3 illustrates an enlarged top view of a slide on an upright
  • Figure 4 illustrates a three-dimensional view of a slider
  • FIG. 5 illustrates an embodiment of the stator
  • Figures 6 and 7 illustrate a partial view of the magnets of the engine on an amount.
  • the robot 1 comprises three uprights 21, 22, 23 which are fixed vertically on a base 3 and define three vertical axes ZI, Z2, Z3.
  • ZI three vertical axes
  • Z2 three vertical axes
  • the robot 1 comprises a nacelle 4 which, in Figures 1 and 2, has a hexagonal shape, this form is not however limiting.
  • the nacelle 4 is intended to receive a tool which, for example, may be a laser, a cutting tool such as a cutter or a drilling forest, or a print head.
  • the robot 1 also comprises three sliders 51, 52, 53 mounted in sliding connection respectively on the three uprights 21, 22, 23. These sliders 51, 52, 53 are actuated in translation along the vertical axes ZI, Z2, Z3 by means of linear motors that will be detailed in the following description.
  • the robot 1 also comprises three pairs of arms 61, 62, 63 which are respectively mounted between the slides 51, 52, 53 and the nacelle 4. As illustrated in FIGS. 1 and 2, the first 61 end and the second end 61 lb of the first arm 611 of the first pair of arms 61 are respectively mounted in ball joint 7 vis-à-vis the first slide 51 and the nacelle 4. It is the same for the first end 612a and the second end 612b of the second arm 612 of the first pair of arms 61.
  • the same assemblies in ball joint 7 exist between the arms 621, 622 of the second pair of arms 62 and the second slide 51 and the nacelle 4. It is the same between the arms 631, 632 of the third pair of arms 63 and the third slide 53 and the nacelle 4.
  • the displacements of the sliders 51, 52, 53 along the uprights 21, 22, 23 along the axes ZI, Z2, Z3 vary the three parallelograms formed by the three pairs of arms 61, 62, 63, respectively, which makes it possible to moving the platform 4 in a three-dimensional coordinate system X, Y, Z while keeping the platform 4 in a plane defined by the axes X, Y.
  • the six arms 611, 612, 621, 622, 631, 632 are made of aluminum tube or carbon fibers to limit the mass in motion.
  • the nacelle 4 is made of aluminum or carbon fibers and is hollowed out so as to also limit the mass while maintaining the rigidity and the possibility of fixing a working tool such as a material fusion head. a three-dimensional printer, a cutting tool such as a cutter, a laser or other.
  • the ball joints 7 are furthermore designed to provide an angular displacement of +/- 35 °, which makes it possible to move the platform 4 in extreme positions so as to work with the tooling on a maximum diameter of the workpieces (printing , machining, cutting ).
  • the robot 1 may also include a cabin (not shown) that will integrate all the aforementioned elements of said robot 1, and a temperature control system to manage the temperature inside thereof.
  • Figures 3 and 4 describe in more detail the design of the linear motor 8 and the slide connection 9 between an upright 21, 22, 23 and a slider 51, 52, 53, the design being identical for each upright / slider assembly; only one set will be described next and we will use the reference “2" to designate the amounts 21, 22, 23 and the reference “5" to designate the slides 51, 52, 53.
  • the upright 2 preferably has a square tubular section.
  • This amount 2 comprises on its front face 2a a guide rail 10 which is provided on its lateral sides 10a, 10b of two circular grooves 101, 102.
  • the post 2 is machined under prestressing in order to limit its deformation during assembly with the guide rail 10.
  • the slider 5 preferably has a square shape.
  • the slider 5 comprises on its inner front 5 has a shoe 11 which comprises a groove 111 provided on its lateral sides 111a, 11 lb. of balls schematized by circular ribs 112, 113, as shown in Figure 4.
  • the circular ribs 112, 113 are housed respectively in the circular grooves 101, 102, as shown in Figure 3, thus allowing the implementation of the slide connection 9.
  • a reading system 12 is implemented between the upright 2 and the slider 5.
  • a linear rule 121 is mounted on the front face 2a of the upright 2 and extends over the length 5.
  • This linear rule 121 is encoded.
  • the pad 11 comprises on its rear face 11a optical reading head 122 arranged opposite the linear rule 121 and for reading a code on the linear rule, said code being a function of the position of the read head 122 on said linear rule 121.
  • the robot 1 comprises a coding system (not shown) for transcribing the code read in an absolute position along the axis ZI, Z2 or Z3 of the slider 5 on the amount 2.
  • Such system absolute position reading 12 are known to those skilled in the art; mention for example those marketed under the brand RESOLUTE® by the company RENISHAW®.
  • the upright 2 comprises on one of its lateral sides 2b magnets 81 which are fixed on said lateral side 2b with a regular pitch Pl.
  • These magnets 81 constitute the stator 8a of the linear motor 8.
  • the slider 5 comprises on its inner lateral face 5b a packet of air gap plates 82 on which is wound a winding 83, illustrated in FIG. constitution of the moving part 8b of the linear motor 8.
  • the positioning of the magnets 81 could be envisaged on another face of the upright 2, according to other configurations of the slider 5.
  • the magnets 81 are fixed by gluing with a regular pitch PI directly on the lateral side 2b.
  • a bonding jig is used which allows a fixing with a removal accuracy of the magnets 81 on the lateral side 2b, less than one-tenth of a millimeter.
  • two cords 84a, 84b are positioned between the lateral side 2b and the inner face 81a of the magnets 81, these cords 84a, 84b having a constant thickness over their entire length. These cords 84a, 84b are embedded in the adhesive layer 85 and guarantee a constant thickness of said adhesive layer 85 under the magnets 81.
  • all the magnets 81 are in the same alignment, which makes it possible to have a gap 86 constant between the magnets 81 and the packet of air gap plates 82. This allows to minimize the variation of the air gap 86 of the motor 8 and the fluctuations of the magnetic field.
  • the diameter of the cords 84a, 84b has been voluntarily increased in order to highlight them; it goes without saying that this diameter will actually be minimized to limit the thickness of glue while ensuring effective bonding of the magnets 81 on the lateral side 2b of the upright 2.
  • These cords 84a, 84b are preferably made of metal to avoid that they do not crush when sandwiched between the lateral side 2b of the upright 2 and the magnets 81.
  • each magnet 81 is spaced from each other by a pitch PI which is preferably between twenty millimeters (20 mm) and thirty millimeters (30 mm).
  • each magnet 81 is inclined at an angle ⁇ , illustrated in Figure 6, which is preferably between ten degrees and twenty degrees. This inclination avoids the problems of jerking on the engines 8.
  • the gap sheet package 82 is designed from ferromagnetic varnished (not shown) sheet of a preferential thickness of 0.35mm, said sheets being cut by EDM.
  • the winding 83 is made of copper wire wound very precisely around the packet of air gap sheets 82 with a number of turns defined and identical in all the notches 821 of said packet of air gap plates 82, for each of the motors 8, this which makes it possible to reproduce the electrical parameters.
  • a power failure brake (not shown), also called safety brake, is arranged between the upright 2 and the slider 5.
  • This brake comprises an electromagnetic coil which is excited at the same time as the motor 8 and attracts a braking disc to remove it from the amount 2.
  • the electromagnetic coil is deactivated, which allows a spring of come to press the brake disc on a friction bar arranged along said upright 2, which blocks the slide 5 on the upright 2.
  • a fan 14, illustrated in FIG. 3, is arranged on the slider 5 and allows cooling of the winding 83 of the motor 8. This ventilation of the winding 83 is necessary because of the power consumption at standstill.
  • the position of the fan 14 illustrated in FIG. 3 is not limiting, other positioning being conceivable.
  • the robot 1 comprises a digitally controlled control system (not shown) which recovers the positions along the axes ZI, Z2, Z3 of the sliders 5 on the uprights 2 calculated by the reading systems 12.
  • the control system with numerical control comprises a first module (not illustrated) which integrates calculation algorithms of the high speed machining type in order to slave the sliders 5 along the three linear axes ZI, Z2, Z3, said sliders 5 being able to move at speeds of the order of 4m / s with an acceleration of 4g (ie approximately 39.23 m -s "2 )
  • the numerical control control system comprises a second module (not illustrated) which integrates direct and inverse Geometric type matrices for the calculation of the positions sliders 2 along the axes ZI, Z2, Z3 as a function of the movements to be made by the nacelle 4 in the three-dimensional space X, Y, Z.
  • This second module also integrates direct and inverse matrices of Jacobian type for calculating the speeds of the nacelle 4 and the engines 8 at specific positions of said nacelle 4 in the three-dimensional space X, Y, Z and the positions of the sliders 5 along the axes ZI, Z2, Z3.
  • a trajectory of the reference point on the nacelle which can for example be likened to the reference of the tooling it receives, must lead to a calculation of the movement of the motors 8 along the axes ZI, Z2, Z3 in order to realize this trajectory.
  • the numerical control control system also comprises a third module (not shown) which includes an algorithm for making corrections by axis but also a correction in the volume of its trajectories.
  • a control in the space of the machine can generate a matrix of the geometrical defects thanks to a framing three dimensions of distribution of the defects, this matrix being taken into account by the command in order to minimize the errors.
  • the algorithms of the control system are preferably developed in Fortran programming language.
  • the robot 1 uses a technology of ETHERCAT® type for the telecommunication of the digitally controlled control system with the motors 8 and the reading systems 12. This very fast protocol makes it possible with the digital control system implemented on said robot 1, up to twenty thousand interactions per second.
  • the robot 1 is an element of a three-dimensional printing machine, referred to as a machine.
  • This machine comprises, in addition to the robot 1, a three-dimensional printing system (not shown) which comprises a melting head of a plastic material, for example polyethylene, this plastic material being conveyed up to the melting head through a routing system which may be, for example, a worm.
  • a three-dimensional printing system (not shown) which comprises a melting head of a plastic material, for example polyethylene, this plastic material being conveyed up to the melting head through a routing system which may be, for example, a worm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)
  • Linear Motors (AREA)

Abstract

L'invention concerne un robot linéaire (1) comprenant un bâti muni de trois montants (21,22, 23), trois coulisseaux (51, 52, 53) montés respectivement en liaison glissière sur les montants, une nacelle (4) et trois paires de bras (61, 62, 63) agencées entre les trois coulisseaux respectifs et la nacelle en formant chacune un parallélogramme variable, les premières extrémités des bras étant montées en liaison rotule (7) sur les coulisseaux et les secondes extrémités desdits bras étant montées en liaison rotule (7) sur la nacelle. Le robot linéaire comprend trois moteurs linéaires agencés chacun entre un montant et un coulisseau, chaque moteur comprenant des aimants fixés avec un pas régulier sur le montant et un bobinage enroulé autour d'un paquet de tôles d'entrefer supporté par le coulisseau de sorte à créer un champ électromagnétique de déplacement du coulisseau.L'invention concerne également une machine d'impression en trois dimensions quicomprend un robot linéaire (1) et un système d'impression en trois dimensions, monté sur la nacelle (4).

Description

ROBOT LINEAIRE DE TYPE DELTA EQUIPE DE MOTEURS LINEAIRES
Domaine technique
La présente invention se rapporte au domaine des robots linéaires de type DELTA et vise tout particulièrement à améliorer les performances de tels robots linéaires. Une application particulière du robot linéaire selon l'invention concerne l'impression en trois dimensions pour la fabrication d'orthèses.
Etat de la technique
Les robots de type DELTA sont bien connus en robotique, on citera à ce titre le brevet européen publié sous le numéro EP 0250470 Bl au nom de la société SOGEVA. De tels robots permettent de déplacer une charge (un outillage, un composant, un produit ...) en la conservant avec une même orientation, au moyen d'un élément de manipulation formé de trois parallélogrammes variables.
De tels robots sont par exemple utilisés pour manipuler des produits dans les domaines agroalimentaire, industriel et pharmaceutique, pour manipuler un microscope ou un outil en salle d'opération dans le domaine médical, ou encore pour l'usinage de haute précision et l'impression en trois dimensions (impression 3D).
Le robot linéaire consiste en une mise en œuvre particulière d'un robot de type DELTA, celui- ci permettant par le biais de trois déplacements linéaires selon trois axes qui sont généralement parallèles entre eux (ZI, Z2, Z3), de parvenir à un déplacement d'une charge selon un repère à trois axes (X, Y, Z) tout en conservant la même orientation de cette charge dans ledit repère tridimensionnel.
Le robot linéaire comprend un bâti muni de trois montants agencés selon les trois axes qui sont généralement parallèles entre eux (ZI , Z2, Z3), par exemple positionnés verticalement. Le robot linéaire comprend également une nacelle qui reçoit un outillage (par exemple une tête de fusion de matière, un outil coupant, un laser ...) et un élément de manipulation formé de trois systèmes de deux bras répartis autour de la nacelle.
Pour chaque système de deux bras, les premières extrémités desdits bras sont montées en liaison rotule sur la nacelle et les secondes extrémités des bras montées en liaison rotule sur trois coulisseaux, un coulisseau pour chacun desdits systèmes. Ces trois coulisseaux sont montés en liaison glissière respectivement sur les trois montants. Le robot linéaire comprend des moyens de motorisation configurés pour déplacer les coulisseaux le long des montants, ce qui permet au final de déplacer la nacelle dans le repère tridimensionnel (X, Y, Z) en la conservant parallèle à un même plan. Traditionnellement, pour chaque coulisseau monté en glissière sur un montant, ces moyens de motorisation sont formés d'un moteur et d'un système de transmission à courroie ou à vis agencé entre le moteur et le coulisseau.
De tels moyens de motorisation n'offrent pas une grande précision de déplacement des coulisseaux le long des montants, ce qui a une répercussion directe sur la précision des déplacements de la nacelle. En outre, ces moyens de motorisation ne permettent pas de travailler avec de très grandes vitesses de déplacement de la nacelle.
Il est également connu le modèle d'utilité chinois publié sous le numéro CN204263548U qui décrit une machine d'impression en trois dimensions comprenant un élément de manipulation agencé entre trois montants verticaux d'un bâti et une nacelle. L'élément de manipulation comprend trois bras dont les extrémités sont montées en liaison rotule, d'un côté sur la nacelle et, de l'autre, sur trois coulisseaux montés en liaisons glissières respectivement sur les trois montants. Trois moteurs linéaires sont mis en œuvre respectivement entre les trois montants et les trois coulisseaux. Cette conception de machine ne peut toutefois pas fonctionner correctement du fait de l'absence des trois parallélogrammes variables fournis par les trois paires de bras, ce qui rend cette machine instable et inconcevable.
Résumé de l 'invention
La présente invention pallie les inconvénients des robots linéaires de type DELTA en proposant une conception qui permet d'optimiser la précision et la vitesse de déplacement de la nacelle, ce qui implique une augmentation de la précision de mesure de position et de la vitesse de déplacement des coulisseaux sur les montants.
Selon l'invention, le robot linéaire comprend un bâti muni de trois montants, trois coulisseaux montés respectivement en liaison glissière sur les montants, une nacelle permettant la réception d'un outillage, par exemple une tête d'impression, un laser ou un outil de coupe, et trois paires de bras agencées entre les trois coulisseaux respectifs et la nacelle en formant chacune un parallélogramme variable. Les premières extrémités des bras sont montées en liaison rotule sur les coulisseaux et les secondes extrémités desdits bras sont montées en liaison rotule sur la nacelle.
En outre, selon l'invention, le robot linéaire comprend trois moteurs linéaires agencés chacun entre un montant et un coulisseau. Chaque moteur comprend des aimants fixés avec un pas régulier sur le montant et un bobinage enroulé autour d'un paquet de tôles d'entrefer supporté par le coulisseau de sorte à créer un champ électromagnétique de déplacement du coulisseau le long du montant.
Ainsi, contrairement au robot linéaire de type DELTA de conception traditionnelle, l'invention met en œuvre des moteurs linéaires plutôt que des moteurs rotatifs avec des systèmes de transmission à courroie ou à vis, ce qui permet d'augmenter considérablement la vitesse de déplacement des coulisseaux et de la nacelle, avec une plus grande précision des déplacements.
Selon le robot linéaire objet de l'invention, les aimants sont fixés sur une des faces de chaque montant. De préférence, les aimants sont fixés sur un côté latéral du montant, mais on pourrait envisager en variante de les fixer sur la face avant ou la face arrière du montant. Selon le robot linéaire objet de l'invention, les aimants sont inclinés par rapport à l'axe de déplacement du coulisseau sur le montant. De préférence, l'angle formé entre chaque aimant et un axe perpendiculaire audit axe de déplacement est compris entre dix degrés et vingt degrés. Cette inclinaison des aimants obtenue par calcul permet de supprimer le phénomène de choc magnétique engendrant des saccades, couramment appelé « cogging ». Selon le robot linéaire objet de l'invention, les aimants sont fixés par collage sur une face du montant, de préférence un côté latéral. Le collage permet de limiter le poids du robot. En outre, au moins deux cordons d'épaisseur constante sont positionnés dans l'épaisseur de colle entre les aimants et ladite face, de préférence deux cordons. Cela permet d'assurer une épaisseur de colle constante sur toute la face du montant recevant les aimants afin de s'assurer que tous les aimants soient dans le même plan sur ladite face, ce qui permet de minimiser les variations d'entrefer du moteur et ainsi les fluctuations du champ magnétique. Les cordons sont de préférence en métal, d'autres matières restant envisageables pour autant que ces cordons ne se s'écrasent pas lors du positionnement des aimants, afin de conserver une épaisseur de colle constante. On pourrait envisager d'autres moyens de positionnement des aimants sur la face du montant permettant de garantir une épaisseur de colle constante lors du collage de ces aimants sur la face du montant. Selon le robot linéaire objet de l'invention, les bobinages des moteurs comportent un nombre identique d'enroulements. Le comptage minutieux du nombre de tours de fil de cuivre sur les bobinages des moteurs assure une reproductibilité des paramètres électriques.
Selon le robot linéaire objet de l'invention, les coulisseaux sont montés en glissière sur les montants au moyen de rails de guidage avec patins à billes. Cela assure la précision du guidage des coulisseaux sur les montants.
Selon le robot linéaire objet de l'invention, le paquet de tôles d'entrefer est réalisé à partir de tôles vernies d'une épaisseur 0,35 mm et découpées en électroérosion. Cette épaisseur de tôle et le vernissage optimisent les effets magnétiques des bobinages. Le découpage en électroérosion diminue les effets de bords apparaissant avec les méthodes d'usinage connues.
Selon l'invention, le robot linéaire comprend des freins à manque de courant implantés sur les trois montants afin de bloquer les coulisseaux en position lors d'un arrêt de pilotage. L'utilisation de ces freins permet de bloquer le robot en place sans descente des coulisseaux lors des arrêts de pilotage volontaires (fin de travail) ou involontaires (coupure d'énergie). Selon l'invention, le robot linéaire comprend des systèmes de ventilation des bobinages. Une ventilation des bobinages est rendue nécessaire par la consommation de courant à l'arrêt pour cause de poids de l'ensemble à porter dû à la structure verticale de la machine
Selon l'invention, le robot linéaire comprend des règles linéaires agencées le long des montants, des têtes de lecture agencées sur les coulisseaux et un système de codage configuré pour calculer les positions absolues des coulisseaux sur les montants à partir des mesures des têtes de lecture. L'utilisation d'une règle linéaire permet de diminuer les erreurs de mesure qui pourraient être dues à une mauvaise géométrie. La précision du pilotage permet de diminuer les variations de hauteur de tête de lecture par rapport à la piste de lecture sur la règle linéaire. Le calcul des positions absolues permet de supprimer les mouvements parasites dus à la procédure de calage des moteurs, dite « phasing », lors de la mise en service (nécessaire avec des freins d'axes). Cela permet aussi de supprimer la phase de prise d'origine des trois axes verticaux de déplacement des coulisseaux. Cela permet un gain de temps au démarrage car il n'est pas nécessaire de passer par une position de référence sur la règle linéaire.
Selon le robot linéaire objet de l'invention, les bras et la nacelle sont en aluminium ou en fibres de carbone. De préférence, cette nacelle est évidée. Cela permet de limiter la masse en mouvement tout en conservant la rigidité et la possibilité de fixer un équipement de travail (tête de fusion de matière, outil coupant, laser ...)
Selon l'invention, le robot linéaire comprend un système de pilotage à commande numérique qui utilise des algorithmes de type usinage grande vitesse afin d'asservir les trois coulisseaux se déplaçant le long des montants à des vitesses pouvant atteindre 4m/s et avec des accélérations pouvant atteindre 4g (4 x 9,80665 m- s"2, soit environ 39,23 m- s"2).
Selon le robot linéaire objet de l'invention, ledit système de pilotage utilise des matrices géométriques directes et inverses permettant le calcul des positions de la nacelle.
Selon le robot linéaire objet de l'invention, ledit système de pilotage utilise des matrices Jacobienne directes et inverses permettant le calcul des vitesses de la nacelle et des moteurs à des positions déterminées.
Ainsi une trajectoire du point de référence sur la nacelle que l'on peut assimiler au repère de l'outillage agencé sur cette nacelle, doit mener à un calcul du mouvement des coulisseaux sur les montants afin de réaliser cette trajectoire. Selon le robot linéaire objet de l'invention, ledit système de pilotage utilise une matrice des défauts géométriques permettant le calcul de corrections à apporter. Cela permet de gérer des corrections par axe (position des coulisseaux sur les montants) mais aussi une correction dans le volume de ses trajectoires grâce à un cadrillage trois dimensions de répartition des défauts, afin de minimiser les erreurs. Selon le robot linéaire objet de l'invention, le standard utilisé pour le transfert des vitesses aux variateurs et de la position de la machine au système de pilotage à commande numérique est du type Ethercat®. Ce protocole très rapide permet avec la gestion par le système de pilotage à commande numérique et grâce à des développements de programme en langage Fortran®, jusqu'à vingt mille interactions par secondes avec le robot. Selon le robot linéaire objet de l'invention, les liaisons rotules sont configurées pour assurer avec débattement angulaire de +/- 35° de sorte à autoriser des positions les plus extrêmes de la nacelle et assurer un travail de l'outillage sur des diamètres maximal de pièces à travailler ou fabriquer.
L'invention concerne également une machine d'impression en trois dimensions, laquelle comprend un robot linéaire présentant les caractéristiques précitées et un système d'impression en trois dimensions, ledit système d'impression étant monté sur la nacelle dudit robot linéaire. Le système d'impression comprend une tête de fusion de matière plastique (par exemple Polyéthylène) qui est alimentée par un système d'acheminement de la matière plastique dont le débit est asservi au déplacement de la nacelle grâce à la commande numérique. Brève description des figures
Les caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante s'appuyant sur des figures, parmi lesquelles :
Les figures 1 et 2 illustrent une vue d'ensemble tridimensionnelle et de dessus du robot linéaire selon l'invention ;
- La figure 3 illustre une vue de dessus agrandie d'un coulisseau sur un montant
La figure 4 illustre une vue tridimensionnelle d'un coulisseau ;
La figure 5 illustre une réalisation du stator ;
Les figures 6 et 7 illustrent une vue partielle des aimants du moteur sur un montant.
Description détaillée Dans la suite de la description, le robot linéaire de type delta objet de l'invention sera dénommé « robot », sauf indication contraire.
Tel qu'illustré sur les figures 1 et 2, le robot 1 comprend trois montants 21, 22, 23 qui sont fixés verticalement sur un socle 3 et définissent trois axes verticaux ZI, Z2, Z3. On pourrait toutefois prévoir trois orientations différentes de ces montants, parallèles ou non entre eux, selon des variantes de machines objets de l'invention.
Le robot 1 comprend une nacelle 4 qui, sur les figures 1 et 2, présente une forme hexagonale, cette forme n'étant toutefois pas limitative. La nacelle 4 est destinée à recevoir un outillage qui, à titre d'exemple, peut être un laser, un outil de découpage tel qu'une fraise ou un forêt de perçage, ou encore une tête d'impression. Le robot 1 comprend également trois coulisseaux 51, 52, 53 montés en liaison glissière respectivement sur les trois montants 21, 22, 23. Ces coulisseaux 51 , 52, 53 sont actionnés en translation selon les axes verticaux ZI, Z2, Z3 au moyen de moteurs linéaire que l'on détaillera dans la suite de la description.
Le robot 1 comprend également trois paires de bras 61, 62, 63 qui sont montés respectivement entre les coulisseaux 51, 52, 53 et la nacelle 4. Comme l'illustrent les figures 1 et 2, la première extrémité 61 la et la seconde extrémité 61 lb du premier bras 611 de la première paire de bras 61 sont respectivement montées en liaison rotule 7 vis-à-vis du premier coulisseau 51 et de la nacelle 4. Il en est de même pour la première extrémité 612a et la seconde extrémité 612b du second bras 612 de la première paire de bras 61. Les mêmes montages en liaison rotule 7 existent entre les bras 621, 622 de la seconde paire de bras 62 et le second coulisseau 51 et la nacelle 4. Il en est de même entre les bras 631 , 632 de la troisième paire de bras 63 et le troisième coulisseau 53 et la nacelle 4.
Les déplacements des coulisseaux 51, 52, 53 le long des montants 21, 22, 23 selon les axes ZI, Z2, Z3 font varier les trois parallélogrammes formés par respectivement par les trois paires de bras 61 , 62, 63, ce qui permet de déplacer la nacelle 4 dans un repère tridimensionnel X, Y, Z en conservant la nacelle 4 dans un plan défini par les axes X, Y.
Les six bras 611, 612, 621, 622, 631, 632 sont réalisés en tube d'aluminium ou en fibres de carbone pour limiter la masse en mouvement. De même, la nacelle 4 est réalisée en aluminium ou en fibres de carbone et elle est évidée afin de limiter aussi la masse tout en conservant la rigidité et la possibilité de fixer un outillage de travail tel qu'une tête de fusion de matière d'une imprimante en trois dimensions, un outil de coupe tel qu'une fraise, un laser ou autre. Les liaisons rotules 7 sont en outre conçues pour assurer un débattement angulaire de +/- 35°, ce qui permet de déplacer la nacelle 4 dans des positions extrêmes de sorte à travailler avec l'outillage sur un diamètre maximum des pièces à travailler (impression, usinage, découpe ...). Le robot 1 pourra également comprendre une cabine (non illustrée) qui intégrera tous les éléments précités dudit robot 1, ainsi qu'un système de régulation de la température afin de gérer la température à l'intérieur de celle-ci.
Les figures 3 et 4 décrivent plus en détail la conception du moteur linéaire 8 et de la liaison glissière 9 entre un montant 21, 22, 23 et un coulisseau 51, 52, 53, la conception étant identique pour chaque ensemble montant/coulisseau ; un seul ensemble sera donc décrit ensuite et on utilisera la référence « 2 » pour désigner les montants 21, 22, 23 et la référence « 5 » pour désigner les coulisseaux 51, 52, 53.
Comme l'illustre la figure 3, le montant 2 a de préférence une section tubulaire carrée. Ce montant 2 comprend sur sa face avant 2a un rail de guidage 10 qui est muni sur ses côtés latéraux 10a, 10b de deux rainures circulaires 101, 102. Le montant 2 est usiné sous précontrainte afin de limiter sa déformation lors de son assemblage avec le rail de guidage 10. Comme l'illustrent les figures 3 et 4, le coulisseau 5 a de préférence une forme en équerre. Le coulisseau 5 comprend sur sa face avant interne 5 a un patin 11 qui comprend une rainure 111 munie sur ses côtés latéraux 111a, 11 lb de billes schématisées par des nervures circulaires 112, 113, comme l'illustre la figure 4. Les nervures circulaires 112, 113 viennent se loger respectivement dans les rainures circulaires 101, 102, comme l'illustre la figure 3, permettant ainsi la mise en œuvre de la liaison glissière 9.
Comme l'illustre la figure 3, un système de lecture 12 est mis en œuvre entre le montant 2 et le coulisseau 5. Pour cela, une règle linéaire 121 est montée sur la face avant 2a du montant 2 et s'étend sur la longueur de déplacement du coulisseau 5. Bien entendu, on pourrait envisager un positionnement différent de ce système de lecture 12. Cette règle linéaire 121 est encodée. Le patin 11 comprend sur sa face arrière l ia une tête de lecture 122 optique agencée en regard de la règle linéaire 121 et permettant de lire un code sur la règle linéaire, ledit code étant fonction de la position de la tête de lecture 122 sur ladite règle linéaire 121. En outre le robot 1 comprend un système de codage (non illustrée) permettant de transcrire le code lu en une position absolue le long de l'axe ZI, Z2 ou Z3 du coulisseau 5 sur le montant 2. De tels système de lecture 12 de position absolue sont connus de l'homme du métier ; on citera par exemple ceux commercialisé sous la marque RESOLUTE® par la société RENISHAW®.
Comme l'illustrent les figures 3 à 5, le montant 2 comprend sur un de ses côtés latéraux 2b des aimants 81 qui sont fixés sur ledit côté latéral 2b avec un pas régulier Pl . Ces aimants 81 constituent le stator 8a du moteur linéaire 8. En outre, le coulisseau 5 comprend sur sa face latérale interne 5b un paquet de tôles d'entrefer 82 sur lequel est enroulé un bobinage 83, illustré en figure 5, ce qui permet la constitution de la partie mobile 8b du moteur linéaire 8. On pourrait envisager le positionnement des aimants 81 sur une autre face du montant 2, selon d'autres configurations du coulisseau 5.
Les aimants 81 sont fixés par collage avec un pas régulier PI directement sur le côté latéral 2b. Pour cela, on utilise un gabarit de collage qui permet une fixation avec une précision de dépose des aimants 81 sur le côté latéral 2b, inférieure au dixième de millimètre. En outre, comme l'illustrent les figures 6 et 7, deux cordons 84a, 84b sont positionnés entre le côté latéral 2b et la face interne 81a des aimants 81, ces cordons 84a, 84b disposant d'une épaisseur constante sur toute leur longueur. Ces cordons 84a, 84b sont noyés dans la couche de colle 85 et garantissent une épaisseur constante de ladite couche de colle 85 sous les aimants 81. Ainsi, tous les aimants 81 sont dans le même alignement, ce qui permet d'avoir un entrefer 86 constant entre les aimants 81 et le paquet de tôles d'entrefer 82. Cela permet de minimiser la variation de l'entrefer 86 du moteur 8 et les fluctuations du champ magnétique. Sur ces figures 6 et 7, le diamètre des cordons 84a, 84b a été volontairement augmenté afin de les mettre en évidence ; il va de soi que ce diamètre sera minimiser en réalité pour limiter l'épaisseur de colle tout en garantissant un collage efficace des aimants 81 sur le côté latéral 2b du montant 2. Ces cordons 84a, 84b sont de préférence en métal pour éviter qu'ils ne s'écrasent lorsqu'ils sont pris en sandwich entre le côté latéral 2b du montant 2 et les aimants 81. On pourrait envisager d'autres moyens pour garantir une épaisseur de colle constante entre le côté latéral 2b du montant 2 et la face interne 81a des aimants 81 , par exemple une bande de fine épaisseur constante présentant une maille ouverte afin de laisser pénétrer la colle dans cette maille pour éviter des surépaisseurs de colle. Tel qu'illustré en figure 7, les aimants 81 sont espacés entre eux d'un pas PI qui de préférence est comprise entre vingt millimètres (20 mm) et trente millimètres (30 mm). En outre, chaque aimant 81 est incliné d'un angle a, illustré en figure 6, qui est de préférence compris entre dix degrés et vingt degrés. Cette inclinaison évite les problèmes de saccades sur les moteurs 8.
Le paquet de tôle d'entrefer 82 est conçu à partir de tôles vernies (non illustrées) ferromagnétique d'une épaisseur préférentielle de 0,35mm, lesdites tôles étant découpées par électroérosion.
Le bobinage 83 est réalisé en fil de cuivre enroulé très précisément autour du paquet de tôles d'entrefer 82 avec un nombre de tours défini et identique dans toutes les encoches 821 dudit paquet de tôles d'entrefer 82, pour chacun des moteurs 8, ce qui permet d'assurer une reproductibilité des paramètres électriques.
Un frein à manque de courant (non illustré), encore appelé frein de sécurité, est agencé entre le montant 2 et le coulisseau 5. Ce frein comprend une bobine électromagnétique qui est excitée en même temps que le moteur 8 et attire un disque de freinage pour le dégager du montant 2. Lors d'une interruption volontaire du moteur 8 correspondant à un arrêt de pilotage ou lors d'une interruption involontaire correspondant à une coupure d'énergie, la bobine électromagnétique est désactivée, ce qui permet à un ressort de venir plaquer le disque de freinage sur une barre de frottement agencée le long dudit montant 2, ce qui bloque le coulisseau 5 sur le montant 2.
Un ventilateur 14, illustré en figure 3, est agencé sur le coulisseau 5 est permet le refroidissement du bobinage 83 du moteur 8. Cette ventilation du bobinage 83 est nécessaire du fait de la consommation de courant à l'arrêt. La position du ventilateur 14 illustrée sur la figure 3 n'est pas limitative, d'autres positionnement étant envisageables. Le robot 1 comprend un système de pilotage à commande numérique (non illustré) qui récupère les positions selon les axes ZI, Z2, Z3 des coulisseaux 5 sur les montants 2 calculées par les systèmes de lecture 12. Le système de pilotage à commande numérique comprend un premier module (non illustré) qui intègre des algorithmes de calcul de type usinage grande vitesse afin d'asservir les coulisseaux 5 selon les trois axes linéaires ZI, Z2, Z3, lesdits coulisseaux 5 pouvant bouger à des vitesses de l'ordre de 4m/s avec une accélération de 4g (soit environ 39,23 m -s"2). Le système de pilotage à commande numérique comprend un deuxième module (non illustré) qui intègre des matrices directes et inverses de type Géométrique pour le calcul des positions des coulisseaux 2 selon les axes ZI, Z2, Z3 en fonction des déplacements à réaliser par la nacelle 4 dans l'espace tridimensionnel X, Y, Z. Ce deuxième module intègre également des matrices directes et inverses de type Jacobienne pour le calcul des vitesses de la nacelle 4 et des moteurs 8 à des positions déterminées de ladite nacelle 4 dans l'espace tridimensionnel X, Y, Z et des positions des coulisseaux 5 selon les axes ZI, Z2, Z3. Ainsi une trajectoire du point de référence sur la nacelle, que l'on peut par exemple assimiler au repère de l'outillage qu'elle réceptionne, doit mener à un calcul du mouvement des moteurs 8 selon les axes ZI, Z2, Z3 afin de réaliser cette trajectoire.
Le système de pilotage à commande numérique comprend également un troisième module (non illustré) qui comporte un algorithme permettant de réaliser des corrections par axe mais aussi une correction dans le volume de ses trajectoires. Un contrôle dans l'espace de la machine peut générer une matrice des défauts géométriques grâce à un cadrillage trois dimensions de répartition des défauts, cette matrice étant prise en compte par la commande afin de minimiser les erreurs.
Les algorithmes du système de pilotage sont préférentiellement développés en langage de programmation de type Fortran. Le robot 1 utilise une technologie de type ETHERCAT® pour la télécommunication du système de pilotage à commande numérique avec les moteurs 8 et les systèmes de lecture 12. Ce protocole très rapide permet avec le système de pilotage à commande numérique mis en œuvre sur ledit robot 1, jusqu'à vingt mille interactions par secondes.
Dans une application particulière et non limitative, le robot 1 est un élément d'une machine d'impression en trois dimensions, dénommé machine. Cette machine comprend, outre le robot 1, un système d'impression en trois dimension (non illustré) qui comporte une tête de fusion de d'une matière plastique, par exemple du polyéthylène, cette matière plastique étant acheminée jusqu'à la tête de fusion grâce à un système d'acheminement qui peut être, par exemple, une vis sans fin.
La présente description n'a aucun caractère limitatif, des variantes pouvant être envisagées sans sortir du cadre de l'invention. On pourrait notamment envisager des positionnements différents des montants 21, 22, 23 dans le repère trois axes (X, Y, Z) illustré en figures 1 et 2, en les conservant parallèles ou non entre eux.

Claims

REVENDICATIONS
1. Robot linéaire (1) comprenant un bâti muni de trois montants (2, 21, 22, 23), trois coulisseaux (5, 51, 52, 53) montés respectivement en liaison glissière sur les montants, une nacelle (4) et trois paires de bras (61, 62, 63) agencées entre les trois coulisseaux respectifs et la nacelle en formant chacune un parallélogramme variable, les premières extrémités des bras étant montées en liaison rotule (7) sur les coulisseaux et les secondes extrémités desdits bras étant montées en liaison rotule (7) sur la nacelle, caractérisé en ce qu'il comprend trois moteurs linéaires (8) agencés chacun entre un montant et un coulisseau, chaque moteur comprenant des aimants (81) fixés avec un pas régulier (PI) sur le montant et un bobinage (83) enroulé autour d'un paquet de tôles d'entrefer (82) supporté par le coulisseau de sorte à créer un champ électromagnétique de déplacement du coulisseau.
2. Robot linéaire (1) selon la revendication 1, dans lequel les aimants (81) sont fixés sur une face (2b) de chaque montant (2, 21, 22, 23),
3. Robot linéaire (1) selon l'une des revendications précédentes, dans lequel les aimants (81) sont inclinés par rapport à un axe de déplacement des coulisseaux (5, 51, 52, 53) le long des montants (2, 21, 22, 23).
4. Robot linéaire (1) selon l'une des revendications précédentes, dans lequel aimants (81) sont fixés par collage sur une face (2b) du montant (2, 21, 22, 23), au moins deux cordons (84a, 84b) d'épaisseur constante étant positionnés dans l'épaisseur de colle entre les aimants et ladite face.
5. Robot linéaire (1) selon l'une des revendications précédentes, dans lequel les bobinages (83) des moteurs (8) comportent un nombre identique d'enroulements.
6. Robot linéaire (1) selon l'une des revendications précédentes, dans lequel les coulisseaux (5, 51, 52, 53) sont montés en glissière sur les montants (2, 21, 22, 23) au moyen de rails de guidage (10) avec patins (11) à billes.
7. Robot linéaire (1) selon l'une des revendications précédentes, dans lequel le paquet de tôles d'entrefer (82) est réalisé à partir de tôles vernies d'une épaisseur 0,35 mm et découpées en électroérosion.
8. Robot linéaire (1) selon l'une des revendications précédentes, lequel comprend des freins à manque de courant implantés sur les trois montants (2, 21, 22, 23) afin de bloquer les coulisseaux (5, 51, 52, 53) en position lors d'un arrêt de pilotage.
9. Robot linéaire (1) selon l'une des revendications précédentes, lequel comprend des systèmes de ventilation (14) des bobinages (83).
10. Robot linéaire (1) selon l'une des revendications précédentes, lequel comprend des règles linéaires (121) agencées le long des montants (2, 21, 22, 23), des têtes de lecture (122) agencées sur les coulisseaux (5, 51, 52, 53) et un système de codage configuré pour calculer les positions absolues des coulisseaux sur les montants à partir des mesures des têtes de lecture.
11. Robot linéaire (1) selon l'une des revendications précédentes, dans lequel les bras (611, 612, 621, 622, 631, 632) et la nacelle (4) sont en aluminium ou en fibres de carbone.
12. Robot linéaire (1) selon l'une des revendications précédentes, lequel comprend un système de pilotage à commande numérique qui utilise des algorithmes de type usinage grande vitesse afin d'asservir les trois coulisseaux (51, 52, 53) se déplaçant le long des montants (21, 22, 23).
13. Robot linéaire (1) selon la revendication 12, dans lequel le système de pilotage à commande numérique utilise des matrices géométriques directes et inverses permettant le calcul des positions de la nacelle (4).
14. Robot linéaire selon l'une des revendications 12 ou 13, dans lequel le système de pilotage à commande numérique utilise des matrices Jacobienne directes et inverses permettant le calcul des vitesses de la nacelle (4) et des moteurs (8) à des positions déterminées.
15. Robot linéaire (1) selon l'une des revendications 12 à 14, dans lequel le système de pilotage à commande numérique utilise une matrice des défauts géométriques permettant le calcul de corrections à apporter.
16. Machine d'impression en trois dimensions, laquelle comprend un robot linéaire (1) selon l'une des revendications 1 à 15 et un système d'impression en trois dimensions, monté sur la nacelle (4).
PCT/FR2018/050979 2017-04-19 2018-04-18 Robot lineaire de type delta equipe de moteurs lineaires WO2018193215A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753369A FR3065386B1 (fr) 2017-04-19 2017-04-19 Robot lineaire de type delta equipe de moteurs lineaires
FR1753369 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018193215A1 true WO2018193215A1 (fr) 2018-10-25

Family

ID=59381428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050979 WO2018193215A1 (fr) 2017-04-19 2018-04-18 Robot lineaire de type delta equipe de moteurs lineaires

Country Status (2)

Country Link
FR (1) FR3065386B1 (fr)
WO (1) WO2018193215A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114043465A (zh) * 2021-12-09 2022-02-15 山东建筑大学 动态建筑实时模拟与验证系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250470B1 (fr) 1985-12-16 1991-07-17 Sogeva S.A. Dispositif pour le deplacement et le positionnement d'un element dans l'espace
US20100207464A1 (en) * 2007-09-14 2010-08-19 Thk Co., Ltd. Linear motor and linear motor cogging reduction method
CN204263548U (zh) 2014-11-21 2015-04-15 潘祥生 并联式3d打印机
CN104859147A (zh) * 2015-04-24 2015-08-26 常州大学 一种基于并联机构的四自由度3d打印设备
KR101664988B1 (ko) * 2015-07-16 2016-10-11 주식회사 티피씨애니웍스 3d 프린터의 로드 어셈블리
US20160332296A1 (en) * 2015-05-14 2016-11-17 Daniel Kurnianto Control Mechanism for End-effector Maneuver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250470B1 (fr) 1985-12-16 1991-07-17 Sogeva S.A. Dispositif pour le deplacement et le positionnement d'un element dans l'espace
US20100207464A1 (en) * 2007-09-14 2010-08-19 Thk Co., Ltd. Linear motor and linear motor cogging reduction method
CN204263548U (zh) 2014-11-21 2015-04-15 潘祥生 并联式3d打印机
CN104859147A (zh) * 2015-04-24 2015-08-26 常州大学 一种基于并联机构的四自由度3d打印设备
US20160332296A1 (en) * 2015-05-14 2016-11-17 Daniel Kurnianto Control Mechanism for End-effector Maneuver
KR101664988B1 (ko) * 2015-07-16 2016-10-11 주식회사 티피씨애니웍스 3d 프린터의 로드 어셈블리

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114043465A (zh) * 2021-12-09 2022-02-15 山东建筑大学 动态建筑实时模拟与验证系统

Also Published As

Publication number Publication date
FR3065386A1 (fr) 2018-10-26
FR3065386B1 (fr) 2019-04-19

Similar Documents

Publication Publication Date Title
EP2953763B1 (fr) Procédé de découpage de pièces dans une bande de matière et machine de découpage mettant en oeuvre ledit procédé
EP2785492B1 (fr) Dispositif d'usinage par addition de matière et mise en forme combinées
EP1593173B1 (fr) ARCHITECTURE DE DISPOSITIF DE BOBINAGE D’ENSEMBLE DE STOCKAGE D’ENERGIE-ELECTRIQUE
US7373706B2 (en) Apparatus and method for generating an optical surface on a workpiece
FR2683012A1 (fr) Ensemble mobile lineairement pour robot et instrument de mesure.
EP3156162B1 (fr) Structure de positionnement pour roue à vis sans fin
FR2556262A1 (fr) La presente invention concerne un centre de faconnage de materiaux en feuilles a commande numerique
EP3880453B1 (fr) Dispositif manipulateur a architecture triangulaire et installation de fabrication de bandages utilisant un tel dispositif manipulateur pour la pose de bandelettes
EP0958105B1 (fr) Dispositif d'usinage par enlevement de copeaux, a bloc massif et colonne coulissante, et machine incorporant ce dispositif
WO2018193215A1 (fr) Robot lineaire de type delta equipe de moteurs lineaires
CN104883011A (zh) 转子线圈的制造方法和旋转电机
CA2875601A1 (fr) Tete de calibrage pour le forage d'arbres
FR1410534A (fr) Dispositif pour l'usinage de pièces, par exemple dispositif de perçage
CH691719A5 (fr) Table X-Y pour déplacer une charge, telle qu'un outil, selon deux directions perpendiculaires.
KR20180100875A (ko) 3d 프린터 및 이를 구비한 생산 시스템
EP1677944B1 (fr) Dispositif porte-piece modulaire et polyvalent
EP0641626B1 (fr) Procédé et dispositif d'usinage, notamment rectifieuse avec mouvement oscillant équilibré
FR2464793A1 (fr) Mecanisme d'ejection d'outil et machine equipes d'un tel mecanisme
EP1522378B1 (fr) Machine-outil à 5 axes d'usinage avec système de taillage de meule en continu
EP0871284B1 (fr) Table X-Y pour déplacer des charges avec une haute précision et une très grande dynamique
EP0328610B1 (fr) Procede de tronconnage de lingots de materiaux durs et appareillage de mise en oeuvre de ce procede
CA3139740A1 (fr) Broche a actionneurs piezoelectriques
FR2510838A1 (fr) Moteur electrique lineaire a deux coordonnees
EP0125348A1 (fr) Machine pour le reprofilage du champignon des rails
CN211661245U (zh) 一种用于加工弧型体磁钢片的多线切割机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18722132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18722132

Country of ref document: EP

Kind code of ref document: A1