WO2018192469A1 - Inhibitors of fabp4 and methods of treating arthritis - Google Patents

Inhibitors of fabp4 and methods of treating arthritis Download PDF

Info

Publication number
WO2018192469A1
WO2018192469A1 PCT/CN2018/083306 CN2018083306W WO2018192469A1 WO 2018192469 A1 WO2018192469 A1 WO 2018192469A1 CN 2018083306 W CN2018083306 W CN 2018083306W WO 2018192469 A1 WO2018192469 A1 WO 2018192469A1
Authority
WO
WIPO (PCT)
Prior art keywords
adipokine
inhibitor
fabp4
subject
osteoarthritis
Prior art date
Application number
PCT/CN2018/083306
Other languages
French (fr)
Inventor
Chun Hoi YAN
Chaofan ZHANG
Aimin Xu
Kwong Yuen CHIU
Original Assignee
The University Of Hong Kong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Hong Kong filed Critical The University Of Hong Kong
Publication of WO2018192469A1 publication Critical patent/WO2018192469A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles

Definitions

  • the disclosed invention is generally in the fields of medicine, pharmaceuticals, and rheumatology, and specifically in the area of osteoarthritis.
  • Osteoarthritis also known as degenerative arthritis or degenerative joint disease or osteoarthrosis, is the most common form of arthritis, and the leading cause of chronic disability in elderly people.
  • OA involves degradation of the joints, including that of articular cartilage and subchondral bone. This disease, which is structurally characterized by articular cartilage degradation and subchondral bone remodeling, often leads to joint pain and deformity, preventing individuals from performing normal daily activities.
  • OA affects roughly 68 million people worldwide. The prevalence of OA increases significantly with age; with 13.9%of adults over 25 years old having clinical OA of at least one joint, and 33.6%of adults age 65 and older having OA.
  • Symptoms of OA may include joint pain, swelling, tenderness, stiffness, locking, and sometimes an effusion; particularly in the hips, knees, and lower back; and particularly after inactivity or overuse. Additional symptoms may include limited range of motion or stiffness that goes away after movement, clicking or cracking sound when a joint bends, and pain that is worse after activity or toward the end of the day.
  • OA can be subdivided into various stages, depending on the condition of the cartilage and the presence of osteophytes.
  • the progression of OA is also typically defined by these stages.
  • Stage I is associated with minimal disruption and only about 10%loss of cartilage.
  • Stage II is associated with a mild narrowing of the joint space, the beginning of cartilage break-down, and the presence of some osteophytes.
  • Stage III is associated with moderate joint space reduction. At this stage the gaps in cartilage can expand until they reach the bone.
  • Stage IV is associated with greatly reduced joint space, a 60%loss of cartilage, and the presence of large osteophytes.
  • OA OA
  • Pharmaceuticals for osteoarthritis may be administered as pills, syrups, creams or lotions, or they may be injected into a joint.
  • Such pharmaceuticals may include analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs) , corticosteroids, and hyaluronic acid.
  • Analgesics are pain relievers that are available over the counter or by prescription, and may include acetaminophen, opioids (narcotics) , and an atypical opioid called tramadol.
  • NSAIDs which are also available over the counter or by prescription, are the most commonly used drugs to ease inflammation and related pain.
  • NSAIDs include aspirin, ibuprofen, naproxen and celecoxib. Although these drugs are effective in relieving symptoms such as pain, they cannot retard or reverse the progression of OA. Drugs like NSAIDs are even associated with side effects like gastric bleeding.
  • Corticosteroids are powerful anti-inflammatory medicines that are taken by mouth or injected directly into a joint at a doctor’s office.
  • Hyaluronic acid occurs naturally in joint fluid, acting as a shock absorber and lubricant.
  • injections of a synthetic form of this substance may be done in a doctor’s office.
  • Other agents such as growth factors and platelet rich plasma may also be injected at the joint cavity.
  • these procedures are invasive and usually require repetition. Again, the evidence for efficacy is poor.
  • joint replacement surgery may improve quality of life in cases of end-stage OA.
  • Procedures include arthroscopy with lavage and/or debridement, proximal tibial osteotomy, and joint replacement surgery. Except for joint replacement surgery, the effectiveness of other surgeries is controversial. All surgeries are invasive procedures that are associated with complications, some of which can be devastating.
  • FABP4 fatty acid binding protein 4
  • FABP4 is a 14.6 kDa cytosolic adipokine expressed in adipocytes and macrophages, where it acts as a lipid chaperone for the transportation and metabolism of free fatty acid.
  • FABP4 is strongly associated with chronic inflammation and metabolic diseases.
  • BMS309403 is a rationally designed, selective and potent biphenyl azole inhibitor of FABP4. Use of BMS309403 in mice has previously been shown to significantly decrease the risk of metabolic diseases such as diabetes, insulin resistance, and lipidemia. Oral gavage of BMS309403 has been shown to be an effective therapeutic strategy against severe atherosclerosis and type 2 diabetes in mouse models. BMS309403 increased the sensitivity of insulin in mice homozygous for the obese gene (ob/ob mice) , significantly decreasing the risk of diabetes and lipidemia. Long term use of BMS309403 in Apo E-deficient mice has been shown to significantly improve the function of the cardiovascular endothelium.
  • FABP4 in adipocytes and macrophages is associated with metabolic and cardiovascular diseases.
  • FABP4 acts at the interface of metabolic and inflammatory pathways and plays important roles in the development of insulin resistance, diabetes mellitus, and atherosclerosis.
  • FABP4 can be involved in the development of insulin resistance, diabetes mellitus, and atherosclerosis.
  • FABP4 is inhibited, such as by being bound to an inhibitor, FABP4 is inhibited and its role in development of insulin resistance, diabetes mellitus, and atherosclerosis is inhibited. Inhibition of FABP4 can thus be used therapeutically against metabolic and cardiovascular diseases.
  • mice were fed a very high-fat diet (HFD) to induce obesity, while control C57/Bl6 mice were fed a standard diet (STD) . Simultaneously, the mice were either treated with BMS309403 or PBS solution by daily oral gavage, for a period of 4 months and 6 months. Any potential side effects due to BMS309403 were strictly monitored during the whole study period. There were no deaths, and no significant side effects were observed.
  • HFD very high-fat diet
  • STD standard diet
  • mice treated with BMS309403 showed significantly higher body weight and body fat than mice with PBS.
  • difference of serum COMP did not reach significance though higher concentrations were observed in the BMS309403 group.
  • Histological analysis also showed less severe cartilage degradation in the BMS309403 group.
  • the cartilage of mice receiving PBS continued to undergo severe degradation.
  • the presence of osteophytes was noted in mice receiving PBS at this stage. Animals receiving a STD were lean and BMS309403 didn’t seem to have any significant effects on their cartilage.
  • the present invention discloses the use of FABP4 inhibitors for treating OA.
  • the present invention provides methods of treating a subject having osteoarthritis by administering to the subject an effective amount of a FABP4 inhibitor.
  • a FABP4 inhibitor Preferably, FABP4 is inhibited by use of the FABP4 inhibitor denoted herein as “BMS309403” .
  • compositions and methods of treating a subject having osteoarthritis or of reducing the risk of development of osteoarthritis in a subject generally involve administering to the subject a pharmaceutical composition comprising an effective amount of an adipokine inhibitor, wherein the adipokine inhibitor inhibits one or more functions of an adipokine.
  • the adipokine can be fatty acid binding protein 4 (FABP4) and the adipokine inhibitor can be a FABP4 inhibitor.
  • the level of FABP4 in the subject can be higher than the level of FABP4 in a subject that does not have osteoarthritis.
  • the adipokine inhibitor can be BMS309403.
  • the subject is at risk of developing osteoarthritis prior to the administration of the adipokine inhibitor.
  • the level of FABP4 in the subject is higher than the level of FABP4 in a healthy subject.
  • the pharmaceutical composition can include or consists of an effective amount of BMS309403 and one or more pharmaceutically acceptable carriers or excipients. In some forms, the pharmaceutical composition can be administered orally.
  • one or more symptoms of osteoarthritis can be reduced or prevented in the subject following the administration of the adipokine inhibitor.
  • at least one of the symptoms is joint pain, swelling, tenderness, stiffness, locking, effusion, limited range of motion, or clicking or cracking sounds when a joint bends.
  • progression of osteoarthritis is retarded in the subject following the administration of the adipokine inhibitor.
  • one or more of the effects of osteoarthritis are revered in the subject following the administration of the adipokine inhibitor.
  • osteoarthritis is prevented in the subject following the administration of the adipokine inhibitor.
  • the osteoarthritis is metabolic osteoarthritis. In some forms, the subject is obese.
  • Figures 1A-1D are graphs showing that use of BMS309403 significantly increased animal’s body weight and body fat, and decreased FABP4 expression in chondrocyte.
  • Figures 2A-2D are graphs showing that use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
  • Figures 3A-3E are graphs showing that use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
  • Figures 4A-4C are graphs showing that use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
  • Figures 5A-5B are graphs showing that use of BMS309403 for 4 months and 6 months did not seem to have significant effects on the subchodnral bone.
  • Figure 6 is a graph showing that use of BMS309403 also significantly alleviated cartilage degeneration in surgery-induced OA model.
  • Figures 7A-7E are graphs showing that FABP4 induced the expression of catabolic markers in chondrocyte.
  • adipose tissue which is abundant in obese patients, is not simply an inert energy storage depot, but rather an active endocrine organ that secretes numerous cytokines and cytokine-like molecules termed adipokines. These adipokines regulate a number of cell types in joint tissues; including synovial cells, bone cells and infiltrating immune cells.
  • Adipokines such as leptin, adiponectin, and visfatin have been shown to induce the expression of inflammatory cytokines in chondrocytes, consequently inducing the secretion of other enzymes and mediators such as nitric oxide synthase (iNOS) , prostaglandin E2 (PGE2) , or matrix metalloproteainases (MMPs) , which subsequently lead to the break-down of extracellular matrix.
  • iNOS nitric oxide synthase
  • PGE2 prostaglandin E2
  • MMPs matrix metalloproteainases
  • adipokines The cell types in joint tissues that can be regulated by adipokines include macrophages, osteoblasts, osteoclasts, neutrophils, adipocytes, chondrocytes, dendritic cells, synovial fibroblasts, B lymphocytes, and T lymphocytes.
  • adipokines that can regulate cells in joint tissues include leptin, adiponectin, visfatin, resistin, chemerin, lipocalin 2, and serum amyloid A 3 (SAA3) .
  • FABP4 Fatty acid binding protein
  • a drug or chemical that targets adipokines or FABP4 specifically is useful as a therapeutic for OA.
  • Such drugs are not only appropriate for treating symptoms, but can also act as prophylactics or even reverse the effects of OA.
  • administer refers to the dispensing, issuing, giving, providing, applying, allotting, distributing, handing out, or disbursing of a drug to a subject.
  • carrier or “excipient” refers to an organic or inorganic ingredient, natural or synthetic inactive ingredient in a formulation, with which one or more active ingredients are combined.
  • an effective amount of a compound as provided herein is meant a nontoxic but sufficient amount of the compound to provide the desired result.
  • the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease that is being treated, the particular compound used, its mode of administration, and the like. Thus, it is not possible to specify an exact “effective amount” . However, an appropriate effective amount can be determined by one of ordinary skill in the art using only routine experimentation.
  • the terms “high” , “higher” , “increases” , “elevates” , or “elevation” refer to increases above basal levels, e.g., as compared to a control.
  • the terms “low” , “lower” , “reduces” , or “reduction” refer to decreases below basal levels, e.g., as compared to a control.
  • inhibitor means to reduce or decrease in activity or expression. This can be a complete inhibition of activity or expression, or a partial inhibition. Inhibition can be compared to a control or to a standard level. Inhibition can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
  • in need of treatment refers to a judgment made by a caregiver (e.g. physician, nurse, nurse practitioner, or individual in the case of humans; veterinarian in the case of animals, including non-human mammals) that a subject requires or will benefit from treatment. This judgment is made based on a variety of factors that are in the realm of a care giver's expertise, but that include the knowledge that the subject is ill, or will be ill, as the result of a condition that is treatable by the compounds of the invention.
  • a caregiver e.g. physician, nurse, nurse practitioner, or individual in the case of humans; veterinarian in the case of animals, including non-human mammals
  • pharmaceutically acceptable is meant a material that is not biologically or otherwise undesirable, i.e., the material can be administered to a subject along with the selected compound without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained.
  • preventing refers to administering a compound prior to the onset of clinical symptoms of a disease or conditions so as to prevent a physical manifestation of aberrations associated with the disease or condition.
  • subject includes, but is not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity.
  • the subject can be a vertebrate, more specifically a mammal (e.g., a human, horse, pig, rabbit, dog, sheep, goat, non-human primate, cow, cat, guinea pig or rodent) , a fish, a bird or a reptile or an amphibian.
  • the subject can be an invertebrate, more specifically an arthropod (e.g., insects and crustaceans) .
  • arthropod e.g., insects and crustaceans
  • the term does not denote a particular age or sex. Thus, adult and newborn subjects, as well as fetuses, whether male or female, are intended to be covered.
  • a patient refers to a subject afflicted with a disease or disorder.
  • patient includes human and veterinary subjects.
  • treatment and “treating” is meant the medical management of a subject with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder.
  • This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder.
  • this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder.
  • palliative treatment that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder
  • preventative treatment that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder
  • supportive treatment that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder.
  • treatment while intended to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder, need not actually result in the cure, amelioration, stabilization or prevention.
  • the effects of treatment can be measured or assessed as described herein and as known in the art
  • the structure of FABP4 has previously been described as a 10-stranded, 136-amino acid, 2-sheeted anti-parallel b-barrel with two short helixes forming a ‘cap’ .
  • the protein contains essentially one large cavity with a volume of approximately 950 cubic angstroms. From crystallographic data of ligands bound to the protein, the interior amino acids that are known to specifically bind to endogenous fatty acids include Arg126 and Tyr128, which usually ligate an acidic moiety directly, and Arg106, which often ligates via a water bridge. A number of hydrophobic residues also line the pocket. An unusual feature of this pocket is that, dependent on substrate, it typically binds nine or ten water molecules tightly. The bound water molecules form part of the surface against which ligands contact (Sulsky et al. Bioorg Med Chem Lett 17: 3511-3515; 2007) .
  • Additional adipokines which may be inhibited include for the treatment or prevention of OA, but are not necessarily limited to, leptin, adiponectin, visfatin, resistin, chemerin, lipocalin 2, and SAA3.
  • Inhibitors of adipokines generally will inhibit a function of the adipokine.
  • inhibitors of FABP4 will inhibit one or more of the functions of FABP4.
  • Examples of FABP4 inhibitors include BMS309403, fluorescein, ketazolam, antrafenine, darifenacin, fosaprepitant, paliperidone, risperidone, pimozide, trovafloxacin, and levofloxacin.
  • a preferred FABP4 inhibitor is BMS309403.
  • BMS309403 is a rationally designed, selective biphenyl-azole-based inhibitor of FABP4, with an up to thousand-fold selectivity against muscle fatty acid binding protein and epidermal fatty acid binding protein (Furuhashi; Nat Rev Drug Discov 7: 489-503; 2010) .
  • BMS309403 was shown to have Ki values ⁇ 2 nM for A-FABP compared with 250 nM for H-FABP and 350 nM for E-FABP.
  • the endogenous fatty acids, palmitic acid and oleic acid had A-FABP Ki values of 336 nM and 185 nM, respectively.
  • BMS309403 seems to have greater potency compared with the other reported potential inhibitors, which have IC 50 values >0.5 ⁇ M (Furuhashi et al. Nat Rev Drug Discov 2010; 7: 489–503) .
  • BMS309403 interacts with the fatty-acid binding pocket within the interior of FABP4 to inhibit binding of endogenous fatty acids.
  • X-ray crystallography studies have identified the specific interactions of BMS309403 with key residues on FABP4, such as Ser53, Arg106, Arg126 and Tyr128. These residues are located within the fatty-acid binding pocket, and this is thought to be the basis of the high in vitro binding affinity and selectivity of BMS309406 for FABP4 over other FABPs.
  • Ser53 which is a Thr in H-FABP and E-FABP, is proximal to the ethyl substituent of the pyrazole ring and might act as a critical residue to influence ligand interactions (Sulsky et al. Bioorg Med Chem Lett 17: 3511-3515; 2007) .
  • BMS309403 When bound to FABP4, BMS309403 occupies the internal binding pocket of FABP4. One side of the internal surface of the binding pocket is where the designed surface interaction with the synthetic inhibitor takes place.
  • the amino acids in FABP4 that surround BMS309403 include Ser53, Phe57, Ala75, Arg106, Tyr128, and Arg126.
  • Two water molecules, designated HOH634 and HOH664 are also involved in the interaction of BMS309403 and FABP4.
  • Ser53 which is a Thr in m-and eFABP4 is proximal (3.8A) to the ethyl substituent of the pyrrozole ring.
  • Tyr128 and Arg126 are proximal (2.5A and 3.2A, respectively) to one oxygen of the carboxyl.
  • HOH634 is proximal (2.8A) to the other oxygen of the carboxyl.
  • Two nitrogens of Arg106 are proximate (2.8A) to HOH634.
  • Ala75 is proximal (2.9A) to HOH664, which is proximal (2.7A) to the unsubstituted nitrogen of the pyrrozole ring.
  • Phe57 is adjacent to the phenyl substituents of the pyrrozole ring.
  • FABP4 may be inhibited by use of HM50316.
  • FABP4 may be inhibited using fluorescein, ketazolam, antrafenine, darifenacin, fosaprepitant, paliperidone, risperidone, pimozide, trovafloxacin, and levofloxacin (Wang et al., J. Chem. Info. Model. 54 (11) : 3046-3050 (2014) ) .
  • compositions described herein will generally contain an effective amount of an adipokine inhibitor and one or more pharmaceutically acceptable carriers or excipients.
  • Suitable oral dosage forms include tablets, capsules, solutions, suspensions, syrups, and lozenges. Tablets can be made using compression or molding techniques well known in the art. Gelatin or non-gelatin capsules can prepared as hard or soft capsule shells, which can encapsulate liquid, solid, and semi-solid fill materials, using techniques well known in the art.
  • suitable coating materials include, but are not limited to, cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and methacrylic resins that are commercially available under the trade name (Roth Pharma, Westerstadt, Germany) , Zein, shellac, and polysaccharides.
  • cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate
  • polyvinyl acetate phthalate acrylic acid polymers and copolymers
  • methacrylic resins that are commercially available under the trade name (Roth Pharma, Westerstadt, Germany) , Zein, shellac, and poly
  • the coating material may contain conventional carriers such as plasticizers, pigments, colorants, glidants, stabilization agents, pore formers and surfactants.
  • Optional pharmaceutically acceptable excipients present in the drug-containing tablets, beads, granules or particles include, but are not limited to, diluents, binders, lubricants, disintegrants, colorants, stabilizers, and surfactants.
  • Diluents also termed “fillers” are typically necessary to increase the bulk of a solid dosage form so that a practical size is provided for compression of tablets or formation of beads and granules.
  • Suitable diluents include, but are not limited to, dicalcium phosphate dihydrate, calcium sulfate, lactose, sucrose, mannitol, sorbitol, cellulose, microcrystalline cellulose, kaolin, sodium chloride, dry starch, hydrolyzed starches, pregelatinized starch, silicone dioxide, titanium oxide, magnesium aluminum silicate and powder sugar.
  • Binders are used to impart cohesive qualities to a solid dosage formulation, and thus ensure that a tablet or bead or granule remains intact after the formation of the dosage forms.
  • Suitable binder materials include, but are not limited to, starch, pregelatinized starch, gelatin, sugars (including sucrose, glucose, dextrose, lactose and sorbitol) , polyethylene glycol, waxes, natural and synthetic gums such as acacia, tragacanth, sodium alginate, cellulose, including hydorxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose, and veegum, and synthetic polymers such as acrylic acid and methacrylic acid copolymers, methacrylic acid copolymers, methyl methacrylate copolymers, aminoalkyl methacrylate copolymers, polyacrylic acid/polymethacrylic acid and polyvinylpyrrolidone.
  • Lubricants are used to facilitate tablet manufacture.
  • suitable lubricants include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, glycerol behenate, polyethylene glycol, talc, and mineral oil.
  • Disintegrants are used to facilitate dosage form disintegration or "breakup" after administration, and generally include, but are not limited to, starch, sodium starch glycolate, sodium carboxymethyl starch, sodium carboxymethylcellulose, hydroxypropyl cellulose, pregelatinized starch, clays, cellulose, alginine, gums or cross linked polymers, such as cross-linked PVP (Polyplasdone XL from GAF Chemical Corp) .
  • PVP Polyplasdone XL from GAF Chemical Corp
  • Stabilizers are used to inhibit or retard drug decomposition reactions which include, by way of example, oxidative reactions.
  • Surfactants may be anionic, cationic, amphoteric or nonionic surface active agents.
  • Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions.
  • anionic surfactants include sodium, potassium, ammonium of long chain alkyl sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis- (2-ethylthioxyl) -sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate.
  • Cationic surfactants include, but are not limited to, quaternary ammonium compounds such as benzalkonium chloride, benzethonium chloride, cetrimonium bromide, stearyl dimethylbenzyl ammonium chloride, polyoxyethylene and coconut amine.
  • nonionic surfactants include ethylene glycol monostearate, propylene glycol myristate, glyceryl monostearate, glyceryl stearate, polyglyceryl-4-oleate, sorbitan acylate, sucrose acylate, PEG-150 laurate, PEG-400 monolaurate, polyoxyethylene monolaurate, polysorbates, polyoxyethylene octylphenylether, PEG-1000 cetyl ether, polyoxyethylene tridecyl ether, polypropylene glycol butyl ether, 401, stearoyl monoisopropanolamide, and polyoxyethylene hydrogenated tallow amide.
  • amphoteric surfactants include sodium N-dodecyl-beta-alanine, sodium N-lauryl-beta-iminodipropionate, myristoamphoacetate, lauryl betaine and lauryl sulfobetaine.
  • the tablets, beads granules or particles may also contain minor amount of nontoxic auxiliary substances such as wetting or emulsifying agents, dyes, pH buffering agents, and preservatives.
  • the extended release formulations are generally prepared as diffusion or osmotic systems, for example, as described in “Remington –The science and practice of pharmacy” (20th ed., Lippincott Williams &Wilkins, Baltimore, MD, 2000) .
  • a diffusion system typically consists of two types of devices, reservoir and matrix, and is well known and described in the art.
  • the matrix devices are generally prepared by compressing the drug with a slowly dissolving polymer carrier into a tablet form.
  • the three major types of materials used in the preparation of matrix devices are insoluble plastics, hydrophilic polymers, and fatty compounds.
  • Plastic matrices include, but not limited to, methyl acrylate-methyl methacrylate, polyvinyl chloride, and polyethylene.
  • Hydrophilic polymers include, but are not limited to, methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and carbopol 934, polyethylene oxides.
  • Fatty compounds include, but are not limited to, various waxes such as carnauba wax and glyceryl tristearate.
  • extended release formulations can be prepared using osmotic systems or by applying a semi-permeable coating to the dosage form.
  • the desired drug release profile can be achieved by combining low permeable and high permeable coating materials in suitable proportion.
  • the devices with different drug release mechanisms described above could be combined in a final dosage form comprising single or multiple units.
  • Examples of multiple units include multilayer tablets, capsules containing tablets, beads, granules, etc.
  • An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core using coating or compression process or in a multiple unit system such as a capsule containing extended and immediate release beads.
  • Extended release tablets containing hydrophilic polymers are prepared by techniques commonly known in the art such as direct compression, wet granulation, or dry granulation processes. Their formulations usually incorporate polymers, diluents, binders, and lubricants as well as the active pharmaceutical ingredient.
  • the usual diluents include inert powdered substances such as any of many different kinds of starch, powdered cellulose, especially crystalline and microcrystalline cellulose, sugars such as fructose, mannitol and sucrose, grain flours and similar edible powders.
  • Typical diluents include, for example, various types of starch, lactose, mannitol, kaolin, calcium phosphate or sulfate, inorganic salts such as sodium chloride and powdered sugar. Powdered cellulose derivatives are also useful.
  • Typical tablet binders include substances such as starch, gelatin and sugars such as lactose, fructose, and glucose. Natural and synthetic gums, including acacia, alginates, methylcellulose, and polyvinylpyrrolidine can also be used. Polyethylene glycol, hydrophilic polymers, ethylcellulose and waxes can also serve as binders.
  • a lubricant is necessary in a tablet formulation to prevent the tablet and punches from sticking in the die. The lubricant is chosen from such slippery solids as talc, magnesium and calcium stearate, stearic acid and hydrogenated vegetable oils.
  • Extended release tablets containing wax materials are generally prepared using methods known in the art such as a direct blend method, a congealing method, and an aqueous dispersion method.
  • a congealing method the drug is mixed with a wax material and either spray-congealed or congealed and screened and processed.
  • Delayed release formulations are created by coating a solid dosage form with a film of a polymer which is insoluble in the acid environment of the stomach, and soluble in the neutral environment of small intestines.
  • the delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material.
  • the drug-containing composition may be, e.g., a tablet for incorporation into a capsule, a tablet for use as an inner core in a "coated core” dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or capsule.
  • Preferred coating materials include bioerodible, gradually hydrolyzable, gradually water-soluble, and/or enzymatically degradable polymers, and may be conventional "enteric" polymers.
  • Enteric polymers become soluble in the higher pH environment of the lower gastrointestinal tract or slowly erode as the dosage form passes through the gastrointestinal tract, while enzymatically degradable polymers are degraded by bacterial enzymes present in the lower gastrointestinal tract, particularly in the colon.
  • Suitable coating materials for effecting delayed release include, but are not limited to, cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropylmethyl cellulose phthalate, methylcellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate and carboxymethylcellulose sodium; acrylic acid polymers and copolymers, preferably formed from acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate, and other methacrylic resins that are commercially available under the tradename (Rohm Pharma; Westerstadt, Germany) , including L30D-55 and L100-55 (soluble at pH 5.5 and above) , L-100 (soluble at pH 6.0 and above) , S
  • the preferred coating weights for particular coating materials may be readily determined by those skilled in the art by evaluating individual release profiles for tablets, beads and granules prepared with different quantities of various coating materials. It is the combination of materials, method and form of application that produce the desired release characteristics, which one can determine only from the clinical studies.
  • the coating composition may include conventional additives, such as plasticizers, pigments, colorants, stabilizing agents, glidants, etc.
  • a plasticizer is normally present to reduce the fragility of the coating, and will generally represent about 10 wt. %to 50 wt. %relative to the dry weight of the polymer.
  • typical plasticizers include polyethylene glycol, propylene glycol, triacetin, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dibutyl sebacate, triethyl citrate, tributyl citrate, triethyl acetyl citrate, castor oil and acetylated monoglycerides.
  • a stabilizing agent is preferably used to stabilize particles in the dispersion.
  • Typical stabilizing agents are nonionic emulsifiers such as sorbitan esters, polysorbates and polyvinylpyrrolidone. Glidants are recommended to reduce sticking effects during film formation and drying, and will generally represent approximately 25 wt. %to 100 wt. %of the polymer weight in the coating solution.
  • One effective glidant is talc.
  • Other glidants such as magnesium stearate and glycerol monostearates may also be used.
  • Pigments such as titanium dioxide may also be used.
  • Small quantities of an anti-foaming agent such as a silicone (e.g., simethicone) , may also be added to the coating composition.
  • Such methods include, but are not limited to, the following: coating a drug or drug-containing composition with an appropriate coating material, typically although not necessarily incorporating a polymeric material, increasing drug particle size, placing the drug within a matrix, and forming complexes of the drug with a suitable complexing agent.
  • the delayed release dosage units may be coated with the delayed release polymer coating using conventional techniques, e.g., using a conventional coating pan, an airless spray technique, fluidized bed coating equipment (with or without a Wurster insert) .
  • conventional techniques e.g., using a conventional coating pan, an airless spray technique, fluidized bed coating equipment (with or without a Wurster insert) .
  • Pharmaceutical Dosage Forms Tablets, eds. Lieberman et al. (New York: Marcel Dekker, Inc., 1989)
  • Ansel et al. Pharmaceutical Dosage Forms and Drug Delivery Systems, 6. sup. th Ed. (Media, PA: Williams &Wilkins, 1995) .
  • a preferred method for preparing extended release tablets is by compressing a drug-containing blend, e.g., blend of granules, prepared using a direct blend, wet-granulation, or dry-granulation process.
  • Extended release tablets may also be molded rather than compressed, starting with a moist material containing a suitable water-soluble lubricant. However, tablets are preferably manufactured using compression rather than molding.
  • a preferred method for forming extended release drug-containing blend is to mix drug particles directly with one or more excipients such as diluents (or fillers) , binders, disintegrants, lubricants, glidants, and colorants.
  • a drug-containing blend may be prepared by using wet-granulation or dry-granulation processes.
  • Beads containing the active agent may also be prepared by any one of a number of conventional techniques, typically starting from a fluid dispersion.
  • a typical method for preparing drug-containing beads involves dispersing or dissolving the active agent in a coating suspension or solution containing pharmaceutical excipients such as polyvinylpyrrolidone, methylcellulose, talc, metallic stearates, silicone dioxide, plasticizers or the like.
  • the admixture is used to coat a bead core such as a sugar sphere (or so-called "non-pareil” ) having a size of approximately 60 to 20 mesh.
  • An alternative procedure for preparing drug beads is by blending drug with one or more pharmaceutically acceptable excipients, such as microcrystalline cellulose, lactose, cellulose, polyvinyl pyrrolidone, talc, magnesium stearate, a disintegrant, etc., extruding the blend, spheronizing the extrudate, drying and optionally coating to form the immediate release beads.
  • excipients such as microcrystalline cellulose, lactose, cellulose, polyvinyl pyrrolidone, talc, magnesium stearate, a disintegrant, etc.
  • the disclosed methods and compositions are applicable to numerous areas including, but not limited to the treatment and/or prevention of osteoarthritis.
  • the methods and compositions disclosed herein may be used to retard the progression of osteoarthritis.
  • Other uses are disclosed, apparent from the disclosure, and/or will be understood by those in the art.
  • compositions are typically administered to subjects with osteoarthritis, metabolic osteoarthritis, or related inflammatory disorders.
  • the subject may be at risk of developing osteoarthritis.
  • the subject may be obese.
  • the subject may exhibit high levels of FABP4 compared to a healthy subject, or a subject who does not have osteoarthritis or metabolic osteoarthritis.
  • subjects having osteoarthritis or subjects at risk of developing osteoarthritis may suffer from a variety of symptoms including but not limited to joint pain, swelling, tenderness, stiffness, locking, effusion, limited range of motion, clicking or cracking sounds when a joint bends.
  • Disclosed are methods comprising treating, monitoring, following-up with, advising, etc. a subject identified in any of the disclosed methods. Also disclosed are methods comprising treating, monitoring, following-up with, advising, etc. a subject for which a record of an identification from any of the disclosed methods has been made. For example, particular treatments, monitorings, follow-ups, advice, etc. can be used based on an identification and/or based on a record of an identification. For example, a subject identified as having a disease or condition with a high level of a particular component or characteristic (and/or a subject for which a record has been made of such an identification) can be treated with a therapy based on or directed to the high level component or characteristic.
  • Such treatments, monitorings, follow-ups, advice, etc. can be based, for example, directly on identifications, a record of such identifications, or a combination.
  • Such treatments, monitorings, follow-ups, advice, etc. can be performed, for example, by the same individual or entity as, by a different individual or entity than, or a combination of the same individual or entity as and a different individual or entity than, the individual or entity that made the identifications and/or record of the identifications.
  • the disclosed methods of treating, monitoring, following-up with, advising, etc. can be combined with any one or more other methods disclosed herein, and in particular, with any one or more steps of the disclosed methods of identification.
  • a patient having osteoarthritis and being in need of treatment may exhibit high levels of adipokines in one or more body fluids.
  • these adipokines include FABP4, leptin, adiponectin, visfatin, and restin. These and other adipokines are implicated in osteoarthritis (Poonpet and Honsawek, World J. Orthop. 5 (3) : 319-327 (2014) ) .
  • the subject having osteoarthritis and being in need of treatment has high levels of FABP4 in the plasma, serum, synovial fluid, or other body fluid, or in a combination of these body fluids.
  • the levels of FABP4 in the plasma, serum, synovial fluid or other body fluid of a patient with osteoarthritis may be two, three, four, or more times higher than the levels of FABP4 in the plasma, serum, synovial fluid or other body fluid of a healthy subject.
  • the compounds described herein can be administered to a subject comprising a human or an animal including, but not limited to, a mouse, dog, cat, horse, bovine or ovine and the like, that is in need of alleviation or amelioration from a recognized medical condition.
  • the dosages or amounts of the compounds described herein are large enough to produce the desired effect in the method by which delivery occurs.
  • the dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like.
  • the dosage will vary with the age, condition, sex and extent of the disease in the subject and can be determined by one of skill in the art.
  • the dosage can be adjusted by the individual physician based on the clinical condition of the subject involved.
  • the dose, schedule of doses and route of administration can be varied.
  • the dosage can be 20 mg/kg/day of active agent. In other forms, the dosage can be 15 mg/kg/day of active agent. In yet other forms, the dosage can be 10, 15, 20, 25, 30 mg/kg/day.
  • the efficacy of administration of a particular dose of the compounds or compositions according to the methods described herein can be determined by evaluating the particular aspects of the medical history, signs, symptoms, and objective laboratory tests that are known to be useful in evaluating the status of a subject in need for the treatment of osteoarthritis or other diseases and/or conditions. These signs, symptoms, and objective laboratory tests will vary, depending upon the particular disease or condition being treated or prevented, as will be known to any clinician who treats such patients or a researcher conducting experimentation in this field.
  • a subject for example, if, based on a comparison with an appropriate control group and/or knowledge of the normal progression of the disease in the general population or the particular individual: (1) a subject’s physical condition is shown to be improved (e.g., a tumor has partially or fully regressed) , (2) the progression of the disease or condition is shown to be stabilized, or slowed, or reversed, or (3) the need for other medications for treating the disease or condition is lessened or obviated, then a particular treatment regimen will be considered efficacious.
  • a compound or pharmaceutical composition described herein can be administered to the subject in a number of ways depending on whether local or systemic treatment is desired, and on the area to be treated.
  • a compound or pharmaceutical composition described herein can be administered as an ophthalmic solution and/or ointment to the surface of the eye.
  • a compound or pharmaceutical composition can be administered to a subject vaginally, rectally, intranasally, orally, by inhalation, or parenterally, for example, by intradermal, subcutaneous, intramuscular, intraperitoneal, intrarectal, intraarterial, intralymphatic, intravenous, intrathecal and intratracheal routes. Parenteral administration, if used, is generally characterized by injection.
  • Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
  • a more recently revised approach for parenteral administration involves use of a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein.
  • Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions which can also contain buffers, diluents and other suitable additives.
  • non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
  • Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's , or fixed oils.
  • Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose) , and the like. Preservatives and other additives can also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.
  • Formulations for topical administration can include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
  • Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like can be necessary or desirable.
  • compositions described herein are administered orally.
  • Compositions for oral administration can include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets, or tablets. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders can be desirable.
  • BMS309403 was purchased from Chemrenblock (Jiangsu, China) in powder form. The powder was dissolved in phosphate-buffered saline (PBS) with 2%Tween 80 (P4780 Sigma, St. Louis, MO, USA) and the prepared BMS309403 solution was stored at room temperature. C57BL/6J Mice were fed with a very high-fat diet or standard diet starting at 6 weeks of age. The body weight was measured every day before treatment with BMS309403 or vehicle. Then the BMS309403 solution was administered by daily oral gavage (15mg/kg/d, gavage volume 0.2ml/10g) . In the vehicle group, an equivalent PBS solution with 2%Tween 80 was administered in the same fashion. This treatment was sustained for the duration of 4 months and 6 months, respectively.
  • PBS phosphate-buffered saline
  • 2%Tween 80 P4780 Sigma, St. Louis, MO, USA
  • Example 1 Use of BMS309403 in mice significantly increases body weight and percent body fat.
  • mice Forty-eight male C57/Bl6 mice were included in the study. Mice were fed with a very high-fat diet (HFD, with 60%of the calories coming from fat) or a standard diet (STD, with 11.6%of the calories coming from fat) starting from the age of 6 weeks, and simultaneously treated with a daily oral gavage of BMS309403 (15mg/kg/d) or an equivalent PBS solution. This treatment was sustained for 4 months and 6 months, respectively. Then the body weight, body fat, and serum concentration of cartilage oligomeric matrix protein (COMP) , a cartilage degradation biomarker, were measured. In addition, the bilateral knee joints were harvested and scanned in a micro-CT system, to analyze the knee subchondral bone micro-structure. Finally, the knees were processed for histologic analysis. Several staining tests were performed to evaluate knee cartilage degradation, including the immunohistochemistry staining, which aimed to examine the expression level of specific biomarkers for cartilage degradation.
  • HFD very high-fat diet
  • Example 2 Use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
  • the modified Mankin OA score (used to evaluate the severity of OA) was significantly lower in BMS309403 groups (Figure 2C) . However, no statistical difference was seen in osteophyte area ( Figure 2D) . For animals fed with STD, treatment of BMS309403 did not have significant effects on cartilage degradation.
  • the immunohistochemical (IHC) staining of the sections for MMP-13, ADAMTS4, and Caspase 3 was performed subsequently.
  • MMP-13 and ADAMTS4 are degenerative biomarkers of cartilage, while caspase 3 is the biomarker for chondrocyte apoptosis.
  • Treatment of BMS309403 for 4 months also significantly decreased the number of chondrocytes with MMP-13 staining ( Figure 3A, D) .
  • the IHC staining for ADAMTS4 was consistent with that of MMP-13 ( Figure 3B, E) .
  • These data indicate that treatment of BMS309403 had decreased the expression of degenerative enzymes in chondrocyte.
  • the IHC staining for caspase 3 demonstrated that use of BMS309403 also significantly alleviated chondrocyte apoptosis ( Figure 3C) .
  • Example 4 Use of BMS309403 also significantly alleviated cartilage degeneration in surgery-induced OA model.
  • mice treated with BMS309403 had alleviated cartilage degeneration than the mice treated with PBS solution. After 2 months of treatments, both groups underwent severe cartilage degeneration, but still the mice treated with BMS309403 had alleviated cartilage degeneration than the PBS mice ( Figure 6) . These data confirmed BMS309403 as a potential treatment for OA.
  • the in-vitro cell culture study was then performed to investigate the mechanism of FABP4 in inducing chondrocyte degeneration.
  • the ATDC-5 murine chondrogenic cell line was cultured in 6-well plates in DMEM/Ham’s F-12 medium supplemented with 10%fetal bovine serum (FBS) .
  • FBS fetal bovine serum
  • cell underwent 12-hour serum starvation, and was then stimulated with serial concentrations of murine FABP-4 (0, 4.8, 24, 120, and 600 ng/ml) for 24 hours.
  • Catabolic markers including MMP-3, ADAMTS4, and inducible nitric oxide synthase (iNOS) were analyzed by quantitative real-time PCR (RT-PCR) and Western Blot tests.
  • FABP4 120ng/ml was also co-cultured with chondrocyte for different time points (0h, 6h, 12h, 24h, 48h, and 72h) . RT-PCR and WB analysis were performed again to investigate the expression levels of above catabolic markers.

Abstract

Disclosed herein are methods for treating, preventing, or retarding the progression of osteoarthritis (OA) by inhibiting one or more functions of fatty acid binding protein 4 (FABP4). FABP4 is a 14.6 kDa cytosolic adipokine expressed in adipocytes and macrophages, where it acts as a lipid chaperone for the transportation and metabolism of free fatty acid. FABP4 is strongly associated with chronic inflammation and metabolic disease, and has previously been shown to play a key role in the pathogenesis of OA. Disclosed herein as an example is the use of the FABP4 inhibitor BMS309403 as a potential drug therapy for OA.

Description

INHIBITORS OF FABP4 AND METHODS OF TREATING ARTHRITIS FIELD OF THE INVENTION
The disclosed invention is generally in the fields of medicine, pharmaceuticals, and rheumatology, and specifically in the area of osteoarthritis.
BACKGROUND OF THE INVENTION
Osteoarthritis (OA) , also known as degenerative arthritis or degenerative joint disease or osteoarthrosis, is the most common form of arthritis, and the leading cause of chronic disability in elderly people. OA involves degradation of the joints, including that of articular cartilage and subchondral bone. This disease, which is structurally characterized by articular cartilage degradation and subchondral bone remodeling, often leads to joint pain and deformity, preventing individuals from performing normal daily activities.
OA affects roughly 68 million people worldwide. The prevalence of OA increases significantly with age; with 13.9%of adults over 25 years old having clinical OA of at least one joint, and 33.6%of adults age 65 and older having OA. Symptoms of OA may include joint pain, swelling, tenderness, stiffness, locking, and sometimes an effusion; particularly in the hips, knees, and lower back; and particularly after inactivity or overuse. Additional symptoms may include limited range of motion or stiffness that goes away after movement, clicking or cracking sound when a joint bends, and pain that is worse after activity or toward the end of the day.
For ease of diagnosis, OA can be subdivided into various stages, depending on the condition of the cartilage and the presence of osteophytes. The progression of OA is also typically defined by these stages. Stage I is associated with minimal disruption and only about 10%loss of cartilage. Stage II is associated with a mild narrowing of the joint space, the beginning of cartilage break-down, and the presence of some osteophytes. Stage III is associated with moderate joint space reduction. At this stage the gaps in cartilage can expand until they reach the bone. Stage IV is associated with greatly reduced joint space, a 60%loss of cartilage, and the presence of large osteophytes.
Current treatments for OA are mostly symptomatic treatments with various drawbacks. Conservative treatment includes weight loss, use of a knee brace, or lateral wedge insoles. Except for weight loss, there is very little evidence as to the efficacy of these treatments.
Other treatments for OA generally involve physiotherapy, lifestyle modification, and pharmaceuticals. Pharmaceuticals for osteoarthritis may be administered as pills, syrups, creams or lotions, or they may be injected into a joint. Such pharmaceuticals may include analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs) , corticosteroids, and hyaluronic acid. Analgesics are pain relievers that are available over the counter or by prescription, and may include acetaminophen, opioids (narcotics) , and an atypical opioid called tramadol. NSAIDs, which are also available over the counter or by prescription, are the most commonly used drugs to ease inflammation and related pain. NSAIDs include aspirin, ibuprofen, naproxen and celecoxib. Although these drugs are effective in relieving symptoms such as pain, they cannot retard or reverse the progression of OA. Drugs like NSAIDs are even associated with side effects like gastric bleeding.
Corticosteroids are powerful anti-inflammatory medicines that are taken by mouth or injected directly into a joint at a doctor’s office. Hyaluronic acid occurs naturally in joint fluid, acting as a shock absorber and lubricant. However, as the acid appears to break down in people with OA, injections of a synthetic form of this substance may be done in a doctor’s office. Other agents such as growth factors and platelet rich plasma may also be injected at the joint cavity. However, these procedures are invasive and usually require repetition. Again, the evidence for efficacy is poor.
If pain becomes debilitating, joint replacement surgery may improve quality of life in cases of end-stage OA. Procedures include arthroscopy with lavage and/or debridement, proximal tibial osteotomy, and joint replacement surgery. Except for joint replacement surgery, the effectiveness of other surgeries is controversial. All surgeries are invasive procedures that are associated with complications, some of which can be devastating.
With the aging of the population, the incidence of OA is drastically increasing. To date, there are neither effective biomarkers for early diagnosis nor any disease modifying therapies for OA, as currently available therapies offer only symptom relief. The development of an effective treatment that can prevent, retard or even reverse the progression of OA is therefore critical.
Even though the pathophysiology of OA has been heavily investigated, it is still very poorly understood. A variety of causes, including genetics, developmental factors, metabolic factors, obesity, trauma, and mechanical deficits are thought to underlie OA, and these causes may initiate processes leading to loss of cartilage. Among these factors, obesity is one of the modifiable risk factors for OA, and was traditionally considered to cause OA through mechanical loadings. High loading on a joint causes repetitive injury to the cartilage, subsequently breaking it down. When bone surfaces become less well protected by cartilage, bone may be exposed and damaged. This is also known as the ‘wear and tear’ theory. However, this theory cannot answer the question of why OA also happens in non-weight bearing joints, such as in those of the hand.
It is an object of the invention to provide improved methods for treating OA.
It is a further object of the invention to provide improved methods for preventing and/or retarding the progression of OA.
It is a further object of the invention to provide improved methods for reversing the effects of OA.
It is a further object of the invention to provide methods of treating OA by inhibiting a function of FABP4.
BRIEF SUMMARY OF THE INVENTION
Disclosed herein are methods for treating, preventing, or retarding the progression of osteoarthritis (OA) by inhibiting one or more functions of fatty acid binding protein 4 (FABP4) . FABP4 is a 14.6 kDa cytosolic adipokine expressed in adipocytes and macrophages, where it acts as a lipid chaperone for the transportation and metabolism of free fatty acid. FABP4 is strongly associated with chronic inflammation and metabolic diseases.
BMS309403 is a rationally designed, selective and potent biphenyl azole inhibitor of FABP4. Use of BMS309403 in mice has previously been shown to significantly decrease the risk of metabolic diseases such as diabetes, insulin resistance, and lipidemia. Oral gavage of BMS309403 has been shown to be an effective therapeutic strategy against severe atherosclerosis and type 2 diabetes in mouse models. BMS309403 increased the sensitivity of insulin in mice homozygous for the obese gene (ob/ob mice) , significantly decreasing the risk of diabetes and lipidemia. Long term use  of BMS309403 in Apo E-deficient mice has been shown to significantly improve the function of the cardiovascular endothelium.
Chemical inhibition of FABP4 (such as with BMS309403) can be a therapeutic strategy against metabolic and cardiovascular diseases. FABP4 in adipocytes and macrophages is associated with metabolic and cardiovascular diseases. FABP4 acts at the interface of metabolic and inflammatory pathways and plays important roles in the development of insulin resistance, diabetes mellitus, and atherosclerosis. When bound to fatty acids, FABP4 can be involved in the development of insulin resistance, diabetes mellitus, and atherosclerosis. When FABP4 is inhibited, such as by being bound to an inhibitor, FABP4 is inhibited and its role in development of insulin resistance, diabetes mellitus, and atherosclerosis is inhibited. Inhibition of FABP4 can thus be used therapeutically against metabolic and cardiovascular diseases.
To investigate BMS309403 as a drug therapy for OA, experimental C57/Bl6 mice were fed a very high-fat diet (HFD) to induce obesity, while control C57/Bl6 mice were fed a standard diet (STD) . Simultaneously, the mice were either treated with BMS309403 or PBS solution by daily oral gavage, for a period of 4 months and 6 months. Any potential side effects due to BMS309403 were strictly monitored during the whole study period. There were no deaths, and no significant side effects were observed.
Serious obesity was observed in all animals fed with HFD, whether they received BMS309403 or PBS. However, mice treated with BMS309403 showed significantly higher body weight and body fat than mice with PBS. After 4 months of HFD, difference of serum COMP did not reach significance though higher concentrations were observed in the BMS309403 group. Histological analysis also showed less severe cartilage degradation in the BMS309403 group. In contrast, after 6 months of HFD, the cartilage of mice receiving PBS continued to undergo severe degradation. In addition, the presence of osteophytes was noted in mice receiving PBS at this stage. Animals receiving a STD were lean and BMS309403 didn’t seem to have any significant effects on their cartilage.
These findings were consistent with data obtained from studies using FABP4 deficient mice (FABP4 knockout (KO) ) and WT mice, in which FABP4 deficient mice demonstrated less severe OA than WT mice. Oral gavage with BMS309403 significantly alleviated OA in obese mice.
As such, the present invention discloses the use of FABP4 inhibitors for treating OA.
In one aspect, the present invention provides methods of treating a subject having osteoarthritis by administering to the subject an effective amount of a FABP4 inhibitor. Preferably, FABP4 is inhibited by use of the FABP4 inhibitor denoted herein as “BMS309403” .
Disclosed are compositions and methods of treating a subject having osteoarthritis or of reducing the risk of development of osteoarthritis in a subject. The methods generally involve administering to the subject a pharmaceutical composition comprising an effective amount of an adipokine inhibitor, wherein the adipokine inhibitor inhibits one or more functions of an adipokine.
In some forms, the adipokine can be fatty acid binding protein 4 (FABP4) and the adipokine inhibitor can be a FABP4 inhibitor. In some forms, the level of FABP4 in the subject can be higher than the level of FABP4 in a subject that does not have osteoarthritis. In some forms, the adipokine inhibitor can be BMS309403. In some forms, the subject is at risk of developing osteoarthritis prior to the administration of the adipokine inhibitor. In some forms, the level of FABP4 in the subject is higher than the level of FABP4 in a healthy subject.
In some forms, the pharmaceutical composition can include or consists of an effective amount of BMS309403 and one or more pharmaceutically acceptable carriers or excipients. In some forms, the pharmaceutical composition can be administered orally.
In some forms, one or more symptoms of osteoarthritis can be reduced or prevented in the subject following the administration of the adipokine inhibitor. In some forms, at least one of the symptoms is joint pain, swelling, tenderness, stiffness, locking, effusion, limited range of motion, or clicking or cracking sounds when a joint bends.
In some forms, progression of osteoarthritis is retarded in the subject following the administration of the adipokine inhibitor. In some forms, one or more of the effects of osteoarthritis are revered in the subject following the administration of the adipokine inhibitor. In some forms, osteoarthritis is prevented in the subject following the administration of the adipokine inhibitor.
In some forms, the osteoarthritis is metabolic osteoarthritis. In some forms, the subject is obese.
The methods and compositions described herein can be used in connection with pharmaceutical, medical, and veterinary applications, as well as fundamental scientific research and methodologies, as would be identifiable by a skilled person upon reading of the present disclosure. These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the disclosed method and compositions and together with the description, serve to explain the principles of the disclosed method and compositions.
Figures 1A-1D are graphs showing that use of BMS309403 significantly increased animal’s body weight and body fat, and decreased FABP4 expression in chondrocyte.
Figures 2A-2D are graphs showing that use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
Figures 3A-3E are graphs showing that use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
Figures 4A-4C are graphs showing that use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
Figures 5A-5B are graphs showing that use of BMS309403 for 4 months and 6 months did not seem to have significant effects on the subchodnral bone.
Figure 6 is a graph showing that use of BMS309403 also significantly alleviated cartilage degeneration in surgery-induced OA model.
Figures 7A-7E are graphs showing that FABP4 induced the expression of catabolic markers in chondrocyte.
DETAILED DESCRIPTION OF THE INVENTION
Several aspects of the invention are described below, with reference to examples for illustrative purposes only. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the  invention can be practiced without one or more of the specific details or practiced with other methods, protocols, reagents, cell lines and animals. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts, steps or events are required to implement a methodology in accordance with the present invention. Many of the techniques and procedures described, or referenced herein, are well understood and commonly employed using conventional methodology by those skilled in the art.
Prior to setting forth the invention in detail, it may be helpful to the understanding thereof to define several terms, and these are accordingly set forth in the next section, below. Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or as otherwise defined herein.
Recent studies have shown that adipose tissue, which is abundant in obese patients, is not simply an inert energy storage depot, but rather an active endocrine organ that secretes numerous cytokines and cytokine-like molecules termed adipokines. These adipokines regulate a number of cell types in joint tissues; including synovial cells, bone cells and infiltrating immune cells. Adipokines such as leptin, adiponectin, and visfatin have been shown to induce the expression of inflammatory cytokines in chondrocytes, consequently inducing the secretion of other enzymes and mediators such as nitric oxide synthase (iNOS) , prostaglandin E2 (PGE2) , or matrix metalloproteainases (MMPs) , which subsequently lead to the break-down of extracellular matrix. Hence, since adipokines are strongly associated with chronic inflammation and metabolic syndromes, including diabetes, lipidemia, insulin resistance, etc., their presence may induce chronic inflammation in the joint, consequently causing OA. The cell types in joint tissues that can be regulated by adipokines include macrophages, osteoblasts, osteoclasts, neutrophils, adipocytes, chondrocytes, dendritic cells, synovial fibroblasts, B  lymphocytes, and T lymphocytes. Examples of adipokines that can regulate cells in joint tissues include leptin, adiponectin, visfatin, resistin, chemerin, lipocalin 2, and serum amyloid A 3 (SAA3) .
Fatty acid binding protein (FABP4) is a well studied adipokine that was first described in the 1980s (Hunt et al. PNAS USA 83: 3786-3790; 1986) , and has been strongly associated with obesity, chronic inflammation, and metabolic syndromes. FABP4 is mainly expressed in adipocytes and macrophages, where it is responsible for the transportation and metabolism of free fatty acid (Furuhashi M. et al. Clin Med Insights Cardiol 8: 23-33; 2014) . Recent studies have shown high levels of FABP4 to be a risk factor for metabolic diseases such as obesity, insulin resistance, diabetes, and atherosclerosis, among others. It was realized that FABP4 may also be involved in the pathogenesis of OA. However, studies implicating FABP4 in the context of rheumatic diseases are limited.
One clinical study compared the levels of FABP4 in the plasma and synovial fluid of OA patients to those of non-OA controls. The FABP4 levels were significantly higher in OA patients, both locally, as analysed from synovial fluid, as well as systemically, as analysed from plasma (Zhang et al. Biomarkers in Medicine; 2018) . However, no role of FABP4 in the pathogenesis of OA was discerned.
It was discovered that a drug or chemical that targets adipokines or FABP4 specifically is useful as a therapeutic for OA. Such drugs are not only appropriate for treating symptoms, but can also act as prophylactics or even reverse the effects of OA.
I. Definitions
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the indefinite articles "a" , "an" and "the" should be understood to include plural reference unless the context clearly indicates otherwise.
As used herein, the term “administer” , “administering” , or “administration” refers to the dispensing, issuing, giving, providing, applying, allotting, distributing, handing out, or disbursing of a drug to a subject.
The phrase "and/or" , as used herein, should be understood to mean "either or both" of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases.
As used herein, the term “carrier” or “excipient” refers to an organic or inorganic ingredient, natural or synthetic inactive ingredient in a formulation, with which one or more active ingredients are combined.
By the term “effective amount” of a compound as provided herein is meant a nontoxic but sufficient amount of the compound to provide the desired result. As will be pointed out below, the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease that is being treated, the particular compound used, its mode of administration, and the like. Thus, it is not possible to specify an exact “effective amount” . However, an appropriate effective amount can be determined by one of ordinary skill in the art using only routine experimentation.
The terms “high” , “higher” , “increases” , “elevates” , or “elevation” refer to increases above basal levels, e.g., as compared to a control. The terms “low” , “lower” , “reduces” , or “reduction” refer to decreases below basal levels, e.g., as compared to a control.
As used herein, the terms "including" , "includes" , "having" , "has" , "with" , or variants thereof, are intended to be inclusive similar to the term "comprising" .
The term “inhibit” means to reduce or decrease in activity or expression. This can be a complete inhibition of activity or expression, or a partial inhibition. Inhibition can be compared to a control or to a standard level. Inhibition can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%.
The term “in need of treatment” as used herein refers to a judgment made by a caregiver (e.g. physician, nurse, nurse practitioner, or individual in the case of humans; veterinarian in the case of animals, including non-human mammals) that a subject requires or will benefit from treatment. This judgment is made based on a variety of factors that are in the realm of a care giver's expertise, but that include the knowledge that the subject is ill, or will be ill, as the result of a condition that is treatable by the compounds of the invention.
As used herein, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when separating a listing of items, "and/or" or "or" shall  be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number of items, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as "only one of" or "exactly one of" , or when used in the claims, "consisting of" will refer to the inclusion of exactly one element of a number or list of elements. In general, the term "or" as used herein shall only be interpreted as indicating exclusive alternatives (i.e., "one or the other but not both" ) when preceded by terms of exclusivity, such as "either" , "one of" , "only one of" or "exactly one of" .
By “pharmaceutically acceptable” is meant a material that is not biologically or otherwise undesirable, i.e., the material can be administered to a subject along with the selected compound without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained.
The term “preventing” as used herein refers to administering a compound prior to the onset of clinical symptoms of a disease or conditions so as to prevent a physical manifestation of aberrations associated with the disease or condition.
As used herein, “subject” includes, but is not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity. The subject can be a vertebrate, more specifically a mammal (e.g., a human, horse, pig, rabbit, dog, sheep, goat, non-human primate, cow, cat, guinea pig or rodent) , a fish, a bird or a reptile or an amphibian. The subject can be an invertebrate, more specifically an arthropod (e.g., insects and crustaceans) . The term does not denote a particular age or sex. Thus, adult and newborn subjects, as well as fetuses, whether male or female, are intended to be covered. A patient refers to a subject afflicted with a disease or disorder. The term “patient” includes human and veterinary subjects.
By “treatment” and "treating" is meant the medical management of a subject with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder. This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder. In addition, this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is,  treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder. It is understood that treatment, while intended to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder, need not actually result in the cure, amelioration, stabilization or prevention. The effects of treatment can be measured or assessed as described herein and as known in the art as is suitable for the disease, pathological condition, or disorder involved. Such measurements and assessments can be made in qualitative and/or quantitative terms. Thus, for example, characteristics or features of a disease, pathological condition, or disorder and/or symptoms of a disease, pathological condition, or disorder can be reduced to any effect or to any amount.
II. Compositions for Treatment or Prevention of Osteoarthritis
Adipokines
The structure of FABP4 has previously been described as a 10-stranded, 136-amino acid, 2-sheeted anti-parallel b-barrel with two short helixes forming a ‘cap’ . The protein contains essentially one large cavity with a volume of approximately 950 cubic angstroms. From crystallographic data of ligands bound to the protein, the interior amino acids that are known to specifically bind to endogenous fatty acids include Arg126 and Tyr128, which usually ligate an acidic moiety directly, and Arg106, which often ligates via a water bridge. A number of hydrophobic residues also line the pocket. An unusual feature of this pocket is that, dependent on substrate, it typically binds nine or ten water molecules tightly. The bound water molecules form part of the surface against which ligands contact (Sulsky et al. Bioorg Med Chem Lett 17: 3511-3515; 2007) .
Additional adipokines which may be inhibited include for the treatment or prevention of OA, but are not necessarily limited to, leptin, adiponectin, visfatin, resistin, chemerin, lipocalin 2, and SAA3.
Adipokine Inhibitors
Inhibitors of adipokines generally will inhibit a function of the adipokine. For example, inhibitors of FABP4 will inhibit one or more of the functions of FABP4. Examples of FABP4 inhibitors include BMS309403, fluorescein, ketazolam, antrafenine, darifenacin, fosaprepitant, paliperidone, risperidone, pimozide, trovafloxacin, and levofloxacin. A preferred FABP4 inhibitor is BMS309403.
Figure PCTCN2018083306-appb-000001
BMS309403 is a rationally designed, selective biphenyl-azole-based inhibitor of FABP4, with an up to thousand-fold selectivity against muscle fatty acid binding protein and epidermal fatty acid binding protein (Furuhashi; Nat Rev Drug Discov 7: 489-503; 2010) . BMS309403 was shown to have Ki values < 2 nM for A-FABP compared with 250 nM for H-FABP and 350 nM for E-FABP. By contrast, the endogenous fatty acids, palmitic acid and oleic acid, had A-FABP Ki values of 336 nM and 185 nM, respectively. BMS309403 seems to have greater potency compared with the other reported potential inhibitors, which have IC 50 values >0.5μM (Furuhashi et al. Nat Rev Drug Discov 2010; 7: 489–503) .
BMS309403 interacts with the fatty-acid binding pocket within the interior of FABP4 to inhibit binding of endogenous fatty acids. X-ray crystallography studies have identified the specific interactions of BMS309403 with key residues on FABP4, such as Ser53, Arg106, Arg126 and Tyr128. These residues are located within the fatty-acid binding pocket, and this is thought to be the basis of the high in vitro binding affinity and selectivity of BMS309406 for FABP4 over other FABPs. In particular, Ser53, which is a Thr in H-FABP and E-FABP, is proximal to the ethyl substituent of the pyrazole ring and might act as a critical residue to influence ligand interactions (Sulsky et al. Bioorg Med Chem Lett 17: 3511-3515; 2007) .
When bound to FABP4, BMS309403 occupies the internal binding pocket of FABP4. One side of the internal surface of the binding pocket is where the designed surface interaction with the synthetic inhibitor takes place. As shown by an initial 2Fo-Fc electron density map contoured at 1r, the amino acids in FABP4 that surround BMS309403 include Ser53, Phe57, Ala75, Arg106, Tyr128, and Arg126. Two water molecules, designated HOH634 and HOH664, are also involved in the interaction of BMS309403 and FABP4. Ser53, which is a Thr in m-and eFABP4, is proximal (3.8A) to the ethyl substituent of the pyrrozole ring. Tyr128 and Arg126 are proximal (2.5A and  3.2A, respectively) to one oxygen of the carboxyl. HOH634 is proximal (2.8A) to the other oxygen of the carboxyl. Two nitrogens of Arg106 are proximate (2.8A) to HOH634. Ala75 is proximal (2.9A) to HOH664, which is proximal (2.7A) to the unsubstituted nitrogen of the pyrrozole ring. Phe57 is adjacent to the phenyl substituents of the pyrrozole ring.
In other forms, FABP4 may be inhibited by use of HM50316. In yet other forms, FABP4 may be inhibited using fluorescein, ketazolam, antrafenine, darifenacin, fosaprepitant, paliperidone, risperidone, pimozide, trovafloxacin, and levofloxacin (Wang et al., J. Chem. Info. Model. 54 (11) : 3046-3050 (2014) ) .
Pharmaceutical compositions described herein will generally contain an effective amount of an adipokine inhibitor and one or more pharmaceutically acceptable carriers or excipients.
Formulations
Oral Immediate Release Formulations
Suitable oral dosage forms include tablets, capsules, solutions, suspensions, syrups, and lozenges. Tablets can be made using compression or molding techniques well known in the art. Gelatin or non-gelatin capsules can prepared as hard or soft capsule shells, which can encapsulate liquid, solid, and semi-solid fill materials, using techniques well known in the art.
Examples of suitable coating materials include, but are not limited to, cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and methacrylic resins that are commercially available under the trade name 
Figure PCTCN2018083306-appb-000002
 (Roth Pharma, Westerstadt, Germany) , Zein, shellac, and polysaccharides.
Additionally, the coating material may contain conventional carriers such as plasticizers, pigments, colorants, glidants, stabilization agents, pore formers and surfactants.
Optional pharmaceutically acceptable excipients present in the drug-containing tablets, beads, granules or particles include, but are not limited to, diluents, binders, lubricants, disintegrants, colorants, stabilizers, and surfactants. Diluents, also termed "fillers" are typically necessary to increase the bulk of a solid dosage form so that a practical size is provided for compression of tablets or formation of beads and granules.  Suitable diluents include, but are not limited to, dicalcium phosphate dihydrate, calcium sulfate, lactose, sucrose, mannitol, sorbitol, cellulose, microcrystalline cellulose, kaolin, sodium chloride, dry starch, hydrolyzed starches, pregelatinized starch, silicone dioxide, titanium oxide, magnesium aluminum silicate and powder sugar.
Binders are used to impart cohesive qualities to a solid dosage formulation, and thus ensure that a tablet or bead or granule remains intact after the formation of the dosage forms. Suitable binder materials include, but are not limited to, starch, pregelatinized starch, gelatin, sugars (including sucrose, glucose, dextrose, lactose and sorbitol) , polyethylene glycol, waxes, natural and synthetic gums such as acacia, tragacanth, sodium alginate, cellulose, including hydorxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose, and veegum, and synthetic polymers such as acrylic acid and methacrylic acid copolymers, methacrylic acid copolymers, methyl methacrylate copolymers, aminoalkyl methacrylate copolymers, polyacrylic acid/polymethacrylic acid and polyvinylpyrrolidone.
Lubricants are used to facilitate tablet manufacture. Examples of suitable lubricants include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, glycerol behenate, polyethylene glycol, talc, and mineral oil.
Disintegrants are used to facilitate dosage form disintegration or "breakup" after administration, and generally include, but are not limited to, starch, sodium starch glycolate, sodium carboxymethyl starch, sodium carboxymethylcellulose, hydroxypropyl cellulose, pregelatinized starch, clays, cellulose, alginine, gums or cross linked polymers, such as cross-linked PVP (Polyplasdone XL from GAF Chemical Corp) .
Stabilizers are used to inhibit or retard drug decomposition reactions which include, by way of example, oxidative reactions.
Surfactants may be anionic, cationic, amphoteric or nonionic surface active agents. Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions. Examples of anionic surfactants include sodium, potassium, ammonium of long chain alkyl sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis- (2-ethylthioxyl) -sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate. Cationic surfactants include, but are not limited to, quaternary ammonium compounds such as benzalkonium chloride, benzethonium chloride, cetrimonium bromide, stearyl  dimethylbenzyl ammonium chloride, polyoxyethylene and coconut amine. Examples of nonionic surfactants include ethylene glycol monostearate, propylene glycol myristate, glyceryl monostearate, glyceryl stearate, polyglyceryl-4-oleate, sorbitan acylate, sucrose acylate, PEG-150 laurate, PEG-400 monolaurate, polyoxyethylene monolaurate, polysorbates, polyoxyethylene octylphenylether, PEG-1000 cetyl ether, polyoxyethylene tridecyl ether, polypropylene glycol butyl ether, 
Figure PCTCN2018083306-appb-000003
401, stearoyl monoisopropanolamide, and polyoxyethylene hydrogenated tallow amide. Examples of amphoteric surfactants include sodium N-dodecyl-beta-alanine, sodium N-lauryl-beta-iminodipropionate, myristoamphoacetate, lauryl betaine and lauryl sulfobetaine.
If desired, the tablets, beads granules or particles may also contain minor amount of nontoxic auxiliary substances such as wetting or emulsifying agents, dyes, pH buffering agents, and preservatives.
Extended Release Formulations
The extended release formulations are generally prepared as diffusion or osmotic systems, for example, as described in “Remington –The science and practice of pharmacy” (20th ed., Lippincott Williams &Wilkins, Baltimore, MD, 2000) . A diffusion system typically consists of two types of devices, reservoir and matrix, and is well known and described in the art. The matrix devices are generally prepared by compressing the drug with a slowly dissolving polymer carrier into a tablet form. The three major types of materials used in the preparation of matrix devices are insoluble plastics, hydrophilic polymers, and fatty compounds. Plastic matrices include, but not limited to, methyl acrylate-methyl methacrylate, polyvinyl chloride, and polyethylene. Hydrophilic polymers include, but are not limited to, methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and carbopol 934, polyethylene oxides. Fatty compounds include, but are not limited to, various waxes such as carnauba wax and glyceryl tristearate.
Alternatively, extended release formulations can be prepared using osmotic systems or by applying a semi-permeable coating to the dosage form. In the latter case, the desired drug release profile can be achieved by combining low permeable and high permeable coating materials in suitable proportion.
The devices with different drug release mechanisms described above could be combined in a final dosage form comprising single or multiple units. Examples of multiple units include multilayer tablets, capsules containing tablets, beads, granules, etc.
An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core using coating or compression process or in a multiple unit system such as a capsule containing extended and immediate release beads.
Extended release tablets containing hydrophilic polymers are prepared by techniques commonly known in the art such as direct compression, wet granulation, or dry granulation processes. Their formulations usually incorporate polymers, diluents, binders, and lubricants as well as the active pharmaceutical ingredient. The usual diluents include inert powdered substances such as any of many different kinds of starch, powdered cellulose, especially crystalline and microcrystalline cellulose, sugars such as fructose, mannitol and sucrose, grain flours and similar edible powders. Typical diluents include, for example, various types of starch, lactose, mannitol, kaolin, calcium phosphate or sulfate, inorganic salts such as sodium chloride and powdered sugar. Powdered cellulose derivatives are also useful. Typical tablet binders include substances such as starch, gelatin and sugars such as lactose, fructose, and glucose. Natural and synthetic gums, including acacia, alginates, methylcellulose, and polyvinylpyrrolidine can also be used. Polyethylene glycol, hydrophilic polymers, ethylcellulose and waxes can also serve as binders. A lubricant is necessary in a tablet formulation to prevent the tablet and punches from sticking in the die. The lubricant is chosen from such slippery solids as talc, magnesium and calcium stearate, stearic acid and hydrogenated vegetable oils.
Extended release tablets containing wax materials are generally prepared using methods known in the art such as a direct blend method, a congealing method, and an aqueous dispersion method. In a congealing method, the drug is mixed with a wax material and either spray-congealed or congealed and screened and processed.
Delayed Release Formulations
Delayed release formulations are created by coating a solid dosage form with a film of a polymer which is insoluble in the acid environment of the stomach, and soluble in the neutral environment of small intestines.
The delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material. The drug-containing composition may be, e.g., a tablet for incorporation into a capsule, a tablet for use as an inner core in a "coated core" dosage form, or a plurality of drug-containing beads,  particles or granules, for incorporation into either a tablet or capsule. Preferred coating materials include bioerodible, gradually hydrolyzable, gradually water-soluble, and/or enzymatically degradable polymers, and may be conventional "enteric" polymers. Enteric polymers, as will be appreciated by those skilled in the art, become soluble in the higher pH environment of the lower gastrointestinal tract or slowly erode as the dosage form passes through the gastrointestinal tract, while enzymatically degradable polymers are degraded by bacterial enzymes present in the lower gastrointestinal tract, particularly in the colon. Suitable coating materials for effecting delayed release include, but are not limited to, cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropylmethyl cellulose phthalate, methylcellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate and carboxymethylcellulose sodium; acrylic acid polymers and copolymers, preferably formed from acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate, and other methacrylic resins that are commercially available under the tradename
Figure PCTCN2018083306-appb-000004
 (Rohm Pharma; Westerstadt, Germany) , including
Figure PCTCN2018083306-appb-000005
L30D-55 and L100-55 (soluble at pH 5.5 and above) , 
Figure PCTCN2018083306-appb-000006
L-100 (soluble at pH 6.0 and above) , 
Figure PCTCN2018083306-appb-000007
S (soluble at pH 7.0 and above, as a result of a higher degree of esterification) , and
Figure PCTCN2018083306-appb-000008
NE, RL and RS (water-insoluble polymers having different degrees of permeability and expandability) ; vinyl polymers and copolymers such as polyvinyl pyrrolidone, vinyl acetate, vinylacetate phthalate, vinylacetate crotonic acid copolymer, and ethylene-vinyl acetate copolymer; enzymatically degradable polymers such as azo polymers, pectin, chitosan, amylose and guar gum; zein and shellac. Combinations of different coating materials may also be used. Multi-layer coatings using different polymers may also be applied.
The preferred coating weights for particular coating materials may be readily determined by those skilled in the art by evaluating individual release profiles for tablets, beads and granules prepared with different quantities of various coating materials. It is the combination of materials, method and form of application that produce the desired release characteristics, which one can determine only from the clinical studies.
The coating composition may include conventional additives, such as plasticizers, pigments, colorants, stabilizing agents, glidants, etc. A plasticizer is normally present to reduce the fragility of the coating, and will generally represent about 10 wt. %to 50  wt. %relative to the dry weight of the polymer. Examples of typical plasticizers include polyethylene glycol, propylene glycol, triacetin, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dibutyl sebacate, triethyl citrate, tributyl citrate, triethyl acetyl citrate, castor oil and acetylated monoglycerides. A stabilizing agent is preferably used to stabilize particles in the dispersion. Typical stabilizing agents are nonionic emulsifiers such as sorbitan esters, polysorbates and polyvinylpyrrolidone. Glidants are recommended to reduce sticking effects during film formation and drying, and will generally represent approximately 25 wt. %to 100 wt. %of the polymer weight in the coating solution. One effective glidant is talc. Other glidants such as magnesium stearate and glycerol monostearates may also be used. Pigments such as titanium dioxide may also be used. Small quantities of an anti-foaming agent, such as a silicone (e.g., simethicone) , may also be added to the coating composition.
III. Methods of Making Compositions for Treatment or Prevention of Osteoarthritis
As will be appreciated by those skilled in the art and as described in the pertinent texts and literature, a number of methods are available for preparing drug-containing tablets, beads, granules or particles that provide a variety of drug release profiles. Such methods include, but are not limited to, the following: coating a drug or drug-containing composition with an appropriate coating material, typically although not necessarily incorporating a polymeric material, increasing drug particle size, placing the drug within a matrix, and forming complexes of the drug with a suitable complexing agent.
The delayed release dosage units may be coated with the delayed release polymer coating using conventional techniques, e.g., using a conventional coating pan, an airless spray technique, fluidized bed coating equipment (with or without a Wurster insert) . For detailed information concerning materials, equipment and processes for preparing tablets and delayed release dosage forms, see Pharmaceutical Dosage Forms: Tablets, eds. Lieberman et al. (New York: Marcel Dekker, Inc., 1989) , and Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, 6. sup. th Ed. (Media, PA: Williams &Wilkins, 1995) .
A preferred method for preparing extended release tablets is by compressing a drug-containing blend, e.g., blend of granules, prepared using a direct blend, wet-granulation, or dry-granulation process. Extended release tablets may also be molded rather than compressed, starting with a moist material containing a suitable water-soluble  lubricant. However, tablets are preferably manufactured using compression rather than molding. A preferred method for forming extended release drug-containing blend is to mix drug particles directly with one or more excipients such as diluents (or fillers) , binders, disintegrants, lubricants, glidants, and colorants. As an alternative to direct blending, a drug-containing blend may be prepared by using wet-granulation or dry-granulation processes. Beads containing the active agent may also be prepared by any one of a number of conventional techniques, typically starting from a fluid dispersion. For example, a typical method for preparing drug-containing beads involves dispersing or dissolving the active agent in a coating suspension or solution containing pharmaceutical excipients such as polyvinylpyrrolidone, methylcellulose, talc, metallic stearates, silicone dioxide, plasticizers or the like. The admixture is used to coat a bead core such as a sugar sphere (or so-called "non-pareil" ) having a size of approximately 60 to 20 mesh.
An alternative procedure for preparing drug beads is by blending drug with one or more pharmaceutically acceptable excipients, such as microcrystalline cellulose, lactose, cellulose, polyvinyl pyrrolidone, talc, magnesium stearate, a disintegrant, etc., extruding the blend, spheronizing the extrudate, drying and optionally coating to form the immediate release beads.
IV. Methods of Using Compositions for Treatment or Prevention of Osteoarthritis
The disclosed methods and compositions are applicable to numerous areas including, but not limited to the treatment and/or prevention of osteoarthritis. Alternatively, the methods and compositions disclosed herein may be used to retard the progression of osteoarthritis. Other uses are disclosed, apparent from the disclosure, and/or will be understood by those in the art.
Subjects
The disclosed compositions are typically administered to subjects with osteoarthritis, metabolic osteoarthritis, or related inflammatory disorders. In some forms, the subject may be at risk of developing osteoarthritis. In some forms, the subject may be obese. In some forms, the subject may exhibit high levels of FABP4 compared to a healthy subject, or a subject who does not have osteoarthritis or metabolic osteoarthritis. In some forms, subjects having osteoarthritis or subjects at risk of developing osteoarthritis may suffer from a variety of symptoms including but not limited to joint  pain, swelling, tenderness, stiffness, locking, effusion, limited range of motion, clicking or cracking sounds when a joint bends.
Disclosed are methods comprising treating, monitoring, following-up with, advising, etc. a subject identified in any of the disclosed methods. Also disclosed are methods comprising treating, monitoring, following-up with, advising, etc. a subject for which a record of an identification from any of the disclosed methods has been made. For example, particular treatments, monitorings, follow-ups, advice, etc. can be used based on an identification and/or based on a record of an identification. For example, a subject identified as having a disease or condition with a high level of a particular component or characteristic (and/or a subject for which a record has been made of such an identification) can be treated with a therapy based on or directed to the high level component or characteristic. Such treatments, monitorings, follow-ups, advice, etc. can be based, for example, directly on identifications, a record of such identifications, or a combination. Such treatments, monitorings, follow-ups, advice, etc. can be performed, for example, by the same individual or entity as, by a different individual or entity than, or a combination of the same individual or entity as and a different individual or entity than, the individual or entity that made the identifications and/or record of the identifications. The disclosed methods of treating, monitoring, following-up with, advising, etc. can be combined with any one or more other methods disclosed herein, and in particular, with any one or more steps of the disclosed methods of identification.
Typically, a patient having osteoarthritis and being in need of treatment may exhibit high levels of adipokines in one or more body fluids. In some forms, these adipokines include FABP4, leptin, adiponectin, visfatin, and restin. These and other adipokines are implicated in osteoarthritis (Poonpet and Honsawek, World J. Orthop. 5 (3) : 319-327 (2014) ) .
Preferably, the subject having osteoarthritis and being in need of treatment has high levels of FABP4 in the plasma, serum, synovial fluid, or other body fluid, or in a combination of these body fluids. In some forms, the levels of FABP4 in the plasma, serum, synovial fluid or other body fluid of a patient with osteoarthritis may be two, three, four, or more times higher than the levels of FABP4 in the plasma, serum, synovial fluid or other body fluid of a healthy subject.
Administration
In one aspect, the compounds described herein can be administered to a subject comprising a human or an animal including, but not limited to, a mouse, dog, cat, horse, bovine or ovine and the like, that is in need of alleviation or amelioration from a recognized medical condition.
The dosages or amounts of the compounds described herein are large enough to produce the desired effect in the method by which delivery occurs. The dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the subject and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician based on the clinical condition of the subject involved. The dose, schedule of doses and route of administration can be varied. Preferably, the dosage can be 20 mg/kg/day of active agent. In other forms, the dosage can be 15 mg/kg/day of active agent. In yet other forms, the dosage can be 10, 15, 20, 25, 30 mg/kg/day.
The efficacy of administration of a particular dose of the compounds or compositions according to the methods described herein can be determined by evaluating the particular aspects of the medical history, signs, symptoms, and objective laboratory tests that are known to be useful in evaluating the status of a subject in need for the treatment of osteoarthritis or other diseases and/or conditions. These signs, symptoms, and objective laboratory tests will vary, depending upon the particular disease or condition being treated or prevented, as will be known to any clinician who treats such patients or a researcher conducting experimentation in this field. For example, if, based on a comparison with an appropriate control group and/or knowledge of the normal progression of the disease in the general population or the particular individual: (1) a subject’s physical condition is shown to be improved (e.g., a tumor has partially or fully regressed) , (2) the progression of the disease or condition is shown to be stabilized, or slowed, or reversed, or (3) the need for other medications for treating the disease or condition is lessened or obviated, then a particular treatment regimen will be considered efficacious.
The compounds and pharmaceutical compositions described herein can be administered to the subject in a number of ways depending on whether local or systemic treatment is desired, and on the area to be treated. Thus, for example, a compound or pharmaceutical composition described herein can be administered as an ophthalmic  solution and/or ointment to the surface of the eye. Moreover, a compound or pharmaceutical composition can be administered to a subject vaginally, rectally, intranasally, orally, by inhalation, or parenterally, for example, by intradermal, subcutaneous, intramuscular, intraperitoneal, intrarectal, intraarterial, intralymphatic, intravenous, intrathecal and intratracheal routes. Parenteral administration, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. A more recently revised approach for parenteral administration involves use of a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein.
Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions which can also contain buffers, diluents and other suitable additives. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's , or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose) , and the like. Preservatives and other additives can also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.
Formulations for topical administration can include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like can be necessary or desirable.
Preferably, the compositions described herein are administered orally. Compositions for oral administration can include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets, or tablets. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders can be desirable.
It is to be understood that the disclosed method and compositions are not limited to specific synthetic methods, specific analytical techniques, or to particular reagents unless otherwise specified, and, as such, may vary. It is also to be understood that the  terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
Examples
Materials
BMS309403
BMS309403 was purchased from Chemrenblock (Jiangsu, China) in powder form. The powder was dissolved in phosphate-buffered saline (PBS) with 2%Tween 80 (P4780 Sigma, St. Louis, MO, USA) and the prepared BMS309403 solution was stored at room temperature. C57BL/6J Mice were fed with a very high-fat diet or standard diet starting at 6 weeks of age. The body weight was measured every day before treatment with BMS309403 or vehicle. Then the BMS309403 solution was administered by daily oral gavage (15mg/kg/d, gavage volume 0.2ml/10g) . In the vehicle group, an equivalent PBS solution with 2%Tween 80 was administered in the same fashion. This treatment was sustained for the duration of 4 months and 6 months, respectively.
Example 1. Use of BMS309403 in mice significantly increases body weight and percent body fat.
Methods
Forty-eight male C57/Bl6 mice were included in the study. Mice were fed with a very high-fat diet (HFD, with 60%of the calories coming from fat) or a standard diet (STD, with 11.6%of the calories coming from fat) starting from the age of 6 weeks, and simultaneously treated with a daily oral gavage of BMS309403 (15mg/kg/d) or an equivalent PBS solution. This treatment was sustained for 4 months and 6 months, respectively. Then the body weight, body fat, and serum concentration of cartilage oligomeric matrix protein (COMP) , a cartilage degradation biomarker, were measured. In addition, the bilateral knee joints were harvested and scanned in a micro-CT system, to analyze the knee subchondral bone micro-structure. Finally, the knees were processed for histologic analysis. Several staining tests were performed to evaluate knee cartilage degradation, including the immunohistochemistry staining, which aimed to examine the expression level of specific biomarkers for cartilage degradation.
Results
Data was expressed as mean [95%confidence interval (CI) ] , and the error bars of all figures represent 95%CI. Data was analyzed by two-way analysis of variance (ANOVA) followed by Bonferroni's multiple comparisons if two independent variables existed (diet &FABP4 inhibitor) , otherwise student's t-test was used. P value less than 0.05 was considered significant. Analyses were performed in SPSS 23.0 software (IBM, USA) .
After 4months and 6 months of daily oral gavage of BMS309403 (15 mg/kg/d) , animals’body weight was significantly increased (Figure 1A) . Treatment of BMS309403 significantly increased animal’s body fat percentage but only after 6 months of HFD (Figure 1B) . BMS309403 significantly decreased serum FABP4 concentration in mice feeding HFD, but had no effects on lean mice feeding STD (Figure 1C) . In addition, immunofluorescence staining of FABP4 in the cartilage of animals after 6-month of HFD showed no positive staining in KO (FABP4 knock-out) mice whereas strong staining was observed in WT mice. The density was decreased in mice treated with BMS309403.  These data indicate that BMS309403 is a potent and selective inhibitor of  FABP4, and could act similarly to the effects of knocking out FABP4.
Example 2. Use of BMS309403 significantly alleviated cartilage degradation at early stage of OA in animals fed with HFD.
The coronal paraffin sections of knees were stained with Safranin O and Fast Green. Loss of Safranin O staining in cartilage indicated loss of glycosaminoglycan (GAG) content and suggested cartilage degeneration. Similar to the effects of knocking out FABP4, use of BMS309403 significantly alleviated cartilage degradation in animals fed with HFD. Mice treated with 4-month and 6-month of BMS309403 showed less staining loss of cartilage compared to the animals treated with PBS (Figure 2A) . However, difference of serum COMP did not reach significance though higher concentrations were observed in the BMS309403 group (Figure 2B) . The modified Mankin OA score (used to evaluate the severity of OA) was significantly lower in BMS309403 groups (Figure 2C) . However, no statistical difference was seen in osteophyte area (Figure 2D) . For animals fed with STD, treatment of BMS309403 did not have significant effects on cartilage degradation.
The immunohistochemical (IHC) staining of the sections for MMP-13, ADAMTS4, and Caspase 3 was performed subsequently. MMP-13 and ADAMTS4 are  degenerative biomarkers of cartilage, while caspase 3 is the biomarker for chondrocyte apoptosis. Treatment of BMS309403 for 4 months also significantly decreased the number of chondrocytes with MMP-13 staining (Figure 3A, D) . The IHC staining for ADAMTS4 was consistent with that of MMP-13 (Figure 3B, E) .  These data indicate that  treatment of BMS309403 had decreased the expression of degenerative enzymes in  chondrocyte. The IHC staining for caspase 3 demonstrated that use of BMS309403 also  significantly alleviated chondrocyte apoptosis (Figure 3C) .
The IHC staining for CD68 (Figure 4A, marker of macrophage) and IL6 (an inflammatory marker, Figure 4B) was then performed, aiming to investigate the severity of joint inflammation and synovitis. The result demonstrated that  the treatment of  BMS309403 for 4 months had significantly alleviated synovium hypertrophy and  macrophage infiltration. The synovitis score demonstrated lowered scores in the mice treated with BMS309403 for 4 months (Figure 4C) .
Example 3. Use of BMS309403 for 4 months and 6 months did not seem to have significant effects on the subchodnral bone.
The micro-CT analysis of the subchondral bone was also performed. However, use of BMS309403 for 4 months and 6 months did not seem to have significant effects on the subchodnral bone (Figure 5) . The 3D analysis did not show significant differences of the parameters for bone remodeling (Table 1) .
Table 1. 3D Micro-CT analysis of subchondral bone of knee in mice fed with HFD and treated with daily oral gavage of BMS309403 or PBS for 4 months and 6 months (*=p<0.05; **=p<0.01) .
Figure PCTCN2018083306-appb-000009
Example 4. Use of BMS309403 also significantly alleviated cartilage degeneration in surgery-induced OA model.
The above studies were performed in obesity-induced OA model. In addition to this, a new study to investigate the effects of BMS309403 on OA development was also performed in surgery-induced OA model. In this study, 24 FABP4 WT mice were included. Mice were fed with HFD from 6-week-old for 4 months, and simultaneously treated with daily oral gavage of BMS309403 or equivalent PBS. At 4-month, the destabilization of medial meniscus (DMM) surgery were performed on the right knees, and sham surgeries were performed on the other side. After the surgery, HFD and BMS309403/PBS sustained for an extra 1 month and 2 months before mice were sacrificed. The knee joints were harvested, paraffin sections and safranin O and fast Green staining were performed.
It was found that at 1 month after the OA surgery, mice treated with BMS309403 had alleviated cartilage degeneration than the mice treated with PBS solution. After 2 months of treatments, both groups underwent severe cartilage degeneration, but still the mice treated with BMS309403 had alleviated cartilage degeneration than the PBS mice (Figure 6) .  These data confirmed BMS309403 as a potential treatment for OA.
Example 5. FABP4 induced the expression of catabolic markers in chondrocyte.
The in-vitro cell culture study was then performed to investigate the mechanism of FABP4 in inducing chondrocyte degeneration. The ATDC-5 murine chondrogenic cell line was cultured in 6-well plates in DMEM/Ham’s F-12 medium supplemented with 10%fetal bovine serum (FBS) . At 90%confluence, cell underwent 12-hour serum starvation, and was then stimulated with serial concentrations of murine FABP-4 (0, 4.8, 24, 120, and 600 ng/ml) for 24 hours. Catabolic markers including MMP-3, ADAMTS4, and inducible nitric oxide synthase (iNOS) were analyzed by quantitative real-time PCR (RT-PCR) and Western Blot tests. FABP4 (120ng/ml) was also co-cultured with chondrocyte for different time points (0h, 6h, 12h, 24h, 48h, and 72h) . RT-PCR and WB analysis were performed again to investigate the expression levels of above catabolic markers.
As shown by quantitative RT-PCR (Figures 7A-7C) , incubation of FABP4 with murine chondrocyte was able to induce the expression of catabolic markers including  MMP-3, ADAMTS4, and iNOS in chondrocyte (vs un-stimulated control) . These results were confirmed in terms of protein expression, as shown by western blot analysis (Figure 7D) . The protein expression levels of iNOS, MMP-3, and ADAMTS4 were also significantly increased with the incubation period (Figure 7E) .  These data elucidate the  mechanism of FABP4 in inducing the degeneration in chondrocyte, which is to directly  induce the expression of catabolic enzymes. BMS309403 could bind to FABP4, inhibit  its function, and thus alleviating FABP4-induced chondrocyte degeneration.
In summary, the above studies have shown inhibition of FABP4 has potential to treat OA in animal. BMS309403, a selective and potent inhibitor of FABP4, might be further modified, tested in clinical trials, and finally used to treat OA patients.
It is understood that the disclosed method and compositions are not limited to the particular methodology, protocols, and reagents described as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed method and compositions belong. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present method and compositions, the particularly useful methods, devices, and materials are as described. Publications cited herein and the material for which they are cited are hereby specifically incorporated by reference. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such disclosure by virtue of prior invention. No admission is made that any reference constitutes prior art. The discussion of references states what their authors assert, and applicants reserve the right to challenge the accuracy and pertinency of the cited documents. It will be clearly understood that, although a number of publications are referred to herein, such reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the method and compositions described herein. Such equivalents are intended to be encompassed by the following claims.

Claims (42)

  1. A method of treating a subject having osteoarthritis, the method comprising administering to the subject a pharmaceutical composition comprising an effective amount of an adipokine inhibitor, wherein the adipokine inhibitor inhibits one or more functions of an adipokine.
  2. The method of claim 1, wherein the adipokine is fatty acid binding protein 4 (FABP4) and the adipokine inhibitor is a FABP4 inhibitor.
  3. The method of claim 1or 2, wherein the level of FABP4 in the subject is higher than the level of FABP4 in a subject that does not have osteoarthritis.
  4. The method of any one of claims 1-3, wherein the adipokine inhibitor is BMS309403.
  5. The method of any one of claims 1-4, wherein the pharmaceutical composition consists of an effective amount of BMS309403 and one or more pharmaceutically acceptable carriers or excipients.
  6. The method of any one of claims 1-5, wherein the pharmaceutical composition is administered orally.
  7. The method of any one of claims 1-6, wherein one or more symptoms of osteoarthritis is reduced or prevented in the subject following the administration of the adipokine inhibitor.
  8. The method of claim 7, wherein at least one of the symptoms is joint pain, swelling, tenderness, stiffness, locking, effusion, limited range of motion, or clicking or cracking sounds when a joint bends.
  9. The method of any one of claims 1-8, wherein the osteoarthritis is metabolic osteoarthritis.
  10. The method of any one of claims 1-9, wherein the subject is obese.
  11. The method of any one of claims 1-10, wherein progression of osteoarthritis is retarded in the subject following the administration of the adipokine inhibitor.
  12. The method of any one of claims 1-11, wherein one or more of the effects of osteoarthritis are reversed in the subject following the administration of the adipokine inhibitor.
  13. A method of reducing the risk of development of osteoarthritis in a subject, the method comprising administering to the subject a pharmaceutical composition comprising an effective amount of an adipokine inhibitor, wherein the adipokine inhibitor inhibits one or more functions of an adipokine.
  14. The method of claim 13, wherein the subject is at risk of developing osteoarthritis prior to the administration of the adipokine inhibitor.
  15. The method of claim 13 or 14, wherein the adipokine is fatty acid binding protein 4 (FABP4) and the adipokine inhibitor is a FABP4 inhibitor.
  16. The method of any one of claims 13-15, wherein the level of FABP4 in the subject is higher than the level of FABP4 in a healthy subject.
  17. The method of any one of claims 13-16, wherein the adipokine inhibitor is BMS309403.
  18. The method of any one of claims 13-17, wherein the pharmaceutical composition consists of an effective amount of BMS309403 and one or more pharmaceutically acceptable carriers or excipients.
  19. The method of any one of claims 13-18, wherein the pharmaceutical composition is administered orally.
  20. The method of any one of claims 13-19, wherein the subject is obese.
  21. The method of any one of claims 13-20, wherein osteoarthritis is prevented in the subject following the administration of the adipokine inhibitor.
  22. Use of an adipokine inhibitor in the manufacture of a pharmaceutical composition for treating a subject having osteoarthritis, wherein the adipokine inhibitor inhibits one or more functions of an adipokine.
  23. The use of claim 22, wherein the adipokine is fatty acid binding protein 4 (FABP4) and the adipokine inhibitor is a FABP4 inhibitor.
  24. The use of claim 22 or 23, wherein the level of FABP4 in the subject is higher than the level of FABP4 in a subject that does not have osteoarthritis.
  25. The use of any one of claims 22-24, wherein the adipokine inhibitor is BMS309403.
  26. The use of any one of claims 22-25, wherein the pharmaceutical composition consists of an effective amount of BMS309403 and one or more pharmaceutically acceptable carriers or excipients.
  27. The use of any one of claims 22-26, wherein the pharmaceutical composition is administered orally.
  28. The use of any one of claims 22-27, wherein one or more symptoms of osteoarthritis is reduced or prevented in the subject following the administration of the adipokine inhibitor.
  29. The use of claim 28, wherein at least one of the symptoms is joint pain, swelling, tenderness, stiffness, locking, effusion, limited range of motion, or clicking or cracking sounds when a joint bends.
  30. The use of any one of claims 22-29, wherein the osteoarthritis is metabolic osteoarthritis.
  31. The use of any one of claims 22-30, wherein the subject is obese.
  32. The use of any one of claims 22-31, wherein progression of osteoarthritis is retarded in the subject following the administration of the adipokine inhibitor.
  33. The use of any one of claims 22-32, wherein one or more of the effects of osteoarthritis are reversed in the subject following the administration of the adipokine inhibitor.
  34. Use of an adipokine inhibitor in the manufacture of a pharmaceutical composition for reducing the risk of development of osteoarthritis in a subject, wherein the adipokine inhibitor inhibits one or more functions of an adipokine.
  35. The use of claim 34, wherein the subject is at risk of developing osteoarthritis prior to the administration of the adipokine inhibitor.
  36. The use of claim 34 or 35, wherein the adipokine is fatty acid binding protein 4 (FABP4) and the adipokine inhibitor is a FABP4 inhibitor.
  37. The use of any one of claims 34-36, wherein the level of FABP4 in the subject is higher than the level of FABP4 in a healthy subject.
  38. The use of any one of claims 34-37, wherein the adipokine inhibitor is BMS309403.
  39. The use of any one of claims 34-38, wherein the pharmaceutical composition consists of an effective amount of BMS309403 and one or more pharmaceutically acceptable carriers or excipients.
  40. The use of any one of claims 34-39, wherein the pharmaceutical composition is administered orally.
  41. The use of any one of claims 34-40, wherein the subject is obese.
  42. The use of any one of claims 34-41, wherein osteoarthritis is prevented in the subject following the administration of the adipokine inhibitor.
PCT/CN2018/083306 2017-04-18 2018-04-17 Inhibitors of fabp4 and methods of treating arthritis WO2018192469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762486847P 2017-04-18 2017-04-18
US62/486,847 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018192469A1 true WO2018192469A1 (en) 2018-10-25

Family

ID=63855599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083306 WO2018192469A1 (en) 2017-04-18 2018-04-17 Inhibitors of fabp4 and methods of treating arthritis

Country Status (1)

Country Link
WO (1) WO2018192469A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838239A (en) * 2010-02-02 2010-09-22 中国科学院广州生物医药与健康研究院 Pyrazole compound as well as composition and application thereof
US20120289570A1 (en) * 2011-03-17 2012-11-15 Ernst Lengyel Compositions and methods for treating and/or preventing cancer by inhibiting fatty acid binding proteins
JP2016214085A (en) * 2015-05-14 2016-12-22 花王株式会社 Hair growth inhibitor evaluation or selection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838239A (en) * 2010-02-02 2010-09-22 中国科学院广州生物医药与健康研究院 Pyrazole compound as well as composition and application thereof
US20120289570A1 (en) * 2011-03-17 2012-11-15 Ernst Lengyel Compositions and methods for treating and/or preventing cancer by inhibiting fatty acid binding proteins
JP2016214085A (en) * 2015-05-14 2016-12-22 花王株式会社 Hair growth inhibitor evaluation or selection method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JANA, DRAGOJEVIC ET AL.: "Osteoblastogenesis and Adipogenesis Are Higher in Osteoarthritic than in Osteoporotic Bone Tissue", ARCHIVES OF MEDICAL RESEARCH, vol. 42, 31 December 2011 (2011-12-31), pages 392 - 397, XP028287701 *
LIN, WANHUA ET AL.: "BMS309403 Stimulates Glucose Uptake in Myotubes through Activation of AMP-Activated Protein Kinase", PLOS ONE., vol. 7, no. 8, 31 August 2013 (2013-08-31), XP055547605 *
MAIK, STIEHLER ET AL.: "In vitro characterization of bone marrow stromal cells from osteoarthritic donors", STEM CELL RESEARCH, vol. 16, 13 April 2016 (2016-04-13), pages 782 - 789, XP029582101 *
MASATO, FURUHASHI ET AL.: "Treatment of diabetes and atherosclerosis by inhibiting fatty- acid-binding protein aP2", NATURE, vol. 447, 21 June 2007 (2007-06-21), pages 959 - 965, XP002562807 *

Similar Documents

Publication Publication Date Title
EP2535044B1 (en) Enterically coated cysteamine bitartrate and cystamine
CA2727064C (en) Combination of pilocarpin and methimazol for treating charcot-marietooth disease and related disorders
KR20170003527A (en) Compositions of pentosan polysulfate salts for oral administration and methods of use
JP6837486B2 (en) How to Prevent and / or Treat Age-Related Cognitive Disorders and Neuroinflammation
KR20180051561A (en) How to treat neurodegenerative disorders in a specific patient population
KR20220123224A (en) Novel dosage forms of rofecoxib and related methods
JP2015537009A (en) Use of bucillamine in the treatment of gout
EP3091972B1 (en) Method of treating liver disorders
CA3077514C (en) Delayed release deferiprone tablets and methods of using the same
CA2311423C (en) Method for treating hyperlipidemia
US20190321364A1 (en) Use of neutrophil elastase inhibitors in liver disease
JP6959371B2 (en) New Use of Pure 5-HT6 Receptor Antagonists
TWI490209B (en) 4-methylpyrazole formulations
JP2022538898A (en) A system for improving therapeutic compliance of the anticancer compound E7766
EP2964207A1 (en) Composition for use in the treatment of polycystic ovary syndrome
WO2018192469A1 (en) Inhibitors of fabp4 and methods of treating arthritis
TW201618760A (en) Methods of treating huntington&#39;s disease using cysteamine compositions
EP4082549A1 (en) Drug for preventing dialysis shift or renal death
AU2022200277A1 (en) The use of a benzoate containing composition to treat glycine encephalopathy
JP2008255008A (en) Synoviocyte proliferation inhibitor
JP2010111581A (en) Medicine containing dopamine d2-like receptor agonist as active ingredient and screening method
KR20020016944A (en) Medicinal Compositions for Treating Lower Uropathy
US11351172B2 (en) Pharmaceutical composition and use for applying ribociclib in phosphodiesterase 4-mediated disease treatment of patient and inhibition of phosphodiesterase 4 activity
CN112843065B (en) Medicine for cognitive disorder and preparation method thereof
US20240082184A1 (en) Improved treatment for globoid cell leukodsytrophy or krabbe disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787677

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787677

Country of ref document: EP

Kind code of ref document: A1