WO2018192344A1 - 基于ihat-fbg的岩土体渗流速率与含水率监测系统及方法 - Google Patents

基于ihat-fbg的岩土体渗流速率与含水率监测系统及方法 Download PDF

Info

Publication number
WO2018192344A1
WO2018192344A1 PCT/CN2018/080577 CN2018080577W WO2018192344A1 WO 2018192344 A1 WO2018192344 A1 WO 2018192344A1 CN 2018080577 W CN2018080577 W CN 2018080577W WO 2018192344 A1 WO2018192344 A1 WO 2018192344A1
Authority
WO
WIPO (PCT)
Prior art keywords
fbg
ihat
rock
monitoring
soil
Prior art date
Application number
PCT/CN2018/080577
Other languages
English (en)
French (fr)
Inventor
施斌
魏广庆
段超喆
孙鑫
梅世嘉
苗鹏勇
张丹
朱鸿鹄
唐朝生
顾凯
刘春�
Original Assignee
苏州南智传感科技有限公司
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州南智传感科技有限公司, 南京大学 filed Critical 苏州南智传感科技有限公司
Publication of WO2018192344A1 publication Critical patent/WO2018192344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Definitions

  • the invention belongs to the field of geological disaster prevention and control, and proposes a system and a method for monitoring the seepage rate and water content of rock and soil based on an internally heated corundum tube FBG sensor (Insi deheated Alundum Tube hereinafter referred to as IHAT-FBG).
  • IHAT-FBG internally heated corundum tube FBG sensor
  • the water field in the rock mass is an important factor that triggers a series of geological disasters.
  • the geological disasters such as the dam and the landslide are related to the change of the water field in the rock and soil.
  • the water field in the rock and soil is Can be divided into dynamic seepage and static moisture content. Therefore, monitoring the water field in rock and soil is an important way to predict and mitigate geological disasters.
  • DTS technology has been applied to the monitoring of seepage rate and water content of rock and soil. It is different from traditional non-contact monitoring method. It is a distributed and contact monitoring method with monitoring accuracy of 0.1 °C, especially suitable for Distributed, continuous rock and soil seepage rate and moisture content monitoring needs.
  • the method of the distributed routing 17 is characterized in that the sensing component is a sensing fiber, and each part of the sensing fiber participates in the measurement; as shown in Figure 3-2, the quasi-distributed layout 18
  • the method is characterized in that: a plurality of sensing elements are connected in series by using one optical fiber, only the sensing component parts participate in the measurement, and the spatial resolution can be controlled by the number of the series sensing components, and the number of the sensing components is determined according to the monitoring requirements.
  • the object of the present invention is to provide a monitoring system and method for seepage rate and water content of rock and soil based on IHAT-FBG, and to eliminate the limitation of cost and precision of DTS technology applied to distributed monitoring in known precise point monitoring, and will monitor The method is integrated and systematic, and the efficiency of monitoring the seepage rate is improved.
  • IHAT-FBG-based rock and soil seepage rate and water content monitoring system including: power supply, power supply current control heating system, IHAT-FBG, FBG demodulation equipment and data analysis and processing system;
  • the power supply current control heating system is configured to control a current for heating the power source to operate the IHAT-FBG at a stable power
  • the IHAT-FBG is used for collecting geotechnical body wavelength data
  • the FBG demodulation device is configured to record wavelength data collected by the IHAT-FBG after the heating tends to be stable;
  • the data analysis processing system is configured to analyze and process the acquired wavelength data to obtain a temperature characteristic value, and calculate a rock soil seepage rate and a water content according to the rate relationship.
  • the IHAT-FBG comprises a corundum tube and an FBG and a heating resistor wire disposed in the corundum tube, the FBG is connected to the FBG demodulation device, and the heating resistor wire is connected to the power source current control heating system.
  • a method for monitoring seepage rate and water content of rock and soil based on IHAT-FBG including the following steps:
  • the IHAT-FBG sensing element is subjected to an indoor calibration experiment to determine the relationship between the temperature characteristic value and the percolation rate and the water content, and then buried in the rock soil;
  • the water content, a, b, and c are constants, and the constant is determined by an indoor calibration experiment.
  • quasi-distributed monitoring is performed according to actual conditions, and the FBGs in S1-S3 are connected in series to achieve accurate point and range monitoring of percolation rate and water content.
  • the S1-S3 indoor calibration experimental steps are:
  • IHAT-FBG is embedded in several sets of rock and soil patterns with different seepage rate gradients and different water content gradients
  • b use the current power supply heating control system to energize the resistance wire in the IHAT-FBG, perform internal heating, and use the FBG demodulation device to record the wavelength data collected by the IHAT-FBG after the heating tends to stabilize;
  • the FBG temperature characteristic value is that after the electric heating, the temperature measured by the IHAT-FBG tends to be stable, and a characteristic time interval [t 1 , t 2 ] is selected, and the interval IHAT-FBG is measured.
  • the plurality of temperature values are arithmetically averaged to obtain a temperature average value T t , which is obtained by performing a difference from the initial temperature T 0 .
  • the invention has the beneficial effects of using FBG technology to realize quasi-distributed monitoring, eliminating the limitation of cost and precision of DTS technology applied to distributed monitoring in known precise point monitoring, and the characteristics of quasi-distributed monitoring:
  • the optical fiber connects a plurality of sensing elements in series, the spatial resolution is controlled by the number of series sensing elements, and the number of sensing elements is determined according to monitoring requirements;
  • the FBG is packaged by combining corundum material and internal heating technology, and plays an important role for FBG. Protection and increased temperature resolution; system integration technology is used to systematize monitoring methods and improve the efficiency of seepage rate monitoring.
  • Figure 1 is a schematic view showing the structure of the system of the present invention
  • FIG. 2 is a schematic view showing the structure of the IHAT-FBG of the present invention.
  • Figure 3-1 is a schematic diagram of the detection of distributed routing mode
  • Figure 3-2 is a schematic diagram of quasi-distributed layout detection
  • FIG. 4 is a schematic diagram of an IHAT-FBG percolation rate-temperature characteristic value linear relationship rate determining experimental device
  • Figure 5 is a graph showing the fitting relationship between the percolation rate and the temperature characteristic value
  • FIG. 6 is a schematic diagram of an IHAT-FBG water content-temperature characteristic value linear relationship rate determining experimental device
  • Figure 7 is a graph showing the fitting relationship between the moisture content and the temperature characteristic value
  • the figure is marked as: 1, current power heating control system, 2, IHAT-FBG, 3, FBG demodulation equipment, 4, data analysis and processing system, 5, FBG, 6, fiber lead, 7, lead sheath, 8, Heating resistance wire, 9, corundum tube, 10, fiber jumper, 11, wire, 12, organic polymer tube, 13, plug, 14, into the faucet, 15, water tap, 16, water pipe, 17, distributed layout , 171, part of the measurement, 18, quasi-distributed layout, 181, not involved in the measurement part, 19, sticky soil.
  • the IHAT-FBG based rock soil body seepage rate and water content monitoring method and system schematic diagram including the power supply, current power supply heating control system 1, IHAT-FBG2, FBG demodulation device 3 And data analysis processing system 4.
  • IHAT-FBG2 is a corundum tube FBG seepage and moisture sensing original with internal heating function, including sensing part, heating part and package part.
  • the sensing portion includes an FBG 5, an optical fiber lead 6, a lead sheath 7, and the optical fiber lead 6 is connected to the FBG demodulating device 3 through a wire 11;
  • the heating portion is a heating resistor wire 8 and the two ends are connected through a fiber jumper 10
  • the package part is a double-hole corundum tube 9 for protecting the FBG 5, the FBG 5 is connected with the fiber lead 6 , and the fiber lead 6 is sheathed with a lead sheath 7 for protection, and the FBG 5 will be protected.
  • the FBG5 is connected to the fiber lead 6 with the lead sheath 7 at one end, and the lead 6 is fixed to the hole with the glue, and the other end is free to eliminate the strain interference, and the fiber lead 6 passes.
  • the wire 11 is connected to the FBG demodulation device 3; the heating resistance wire 8 is placed in the corundum tube 9, and the other hole is connected to the power supply current heating control system 1 by the optical fiber jumper 10, and the terminal is waterproof and leakproof.
  • the FBG demodulation device 3 is based on fiber Bragg grating monitoring technology for quasi-distributed measurement, and the sensing element is IHAT-FBG2. At present, there are very mature related products at home and abroad.
  • the following example uses the A03 portable demodulation equipment produced by Suzhou Nanzhi Sensing Technology Co., Ltd. to conduct quasi-distributed measurement of the seepage rate in rock and soil.
  • the data analysis processing system 4 is composed of a data acquisition system and data processing software, and integrates data collection, data processing, and the results are presented as one.
  • the data acquisition system can set the data acquisition frequency and the acquisition time length of the monitoring object.
  • the data processing software processes the acquired wavelength data, converts the wavelength data into temperature data, and obtains a temperature characteristic value. Then, according to the relationship between the temperature characteristic value obtained by the experiment and the seepage rate and water content, the seepage rate and the water content are calculated.
  • the data analysis processing system 4 used in the following example is a supporting data analysis processing system 4 of the A03 demodulation device based on the FBG demodulation device 3 developed by Suzhou Nanzhi Technology Co., Ltd.
  • the monitoring method of seepage rate and water content of rock and soil body includes the following steps:
  • the IHAT-FBG sensing element is subjected to an indoor calibration experiment to determine the relationship between the temperature characteristic value and the percolation rate and the water content, and then buried in the rock soil;
  • the data analysis processing system 4 is used to analyze and process the wavelength data obtained by S2, and after converting the wavelength into temperature, the FBG temperature characteristic value is calculated.
  • the seepage rate and water content of the rock and soil are calculated.
  • ⁇ T t is the FBG temperature characteristic value
  • v is the seepage rate of the rock and soil body
  • w is the rock soil water content a, b, and c are constants, which are determined by indoor calibration experiments.
  • IHAT-FBG2 is determined by the following steps:
  • IHAT-FBG is embedded in several sets of rock and soil patterns with different seepage rate gradients and different water content gradients
  • b use the current power supply heating control system to energize the resistance wire in the IHAT-FBG, perform internal heating, and use the FBG demodulation device to record the wavelength data collected by the IHAT-FBG after the heating tends to stabilize;
  • IHAT-FBG2 is embedded in several groups of sandy soils with different seepage rate gradients:
  • the FBG 5 is placed in one of the holes of the double-hole corundum tube 9, one end of which has a fiber lead 6, one end is freely placed in the corundum tube 9, and the fiber lead 6 is protected.
  • Set 7 as protection the fiber lead 6 is fixed with glue to the hole of the corundum tube 9, and the other part is placed with the resistance wire 8.
  • the two ends of the resistance wire 8 are connected to the current power supply heating control system 1 by the optical fiber jumper 10 to make IHAT. -FBG2.
  • the organic polymer 12 is filled with fine sand containing clay particles and compacted, and the prepared IHAT-FBG2 is placed in the organic polymer 12 perpendicular to the axis at intervals of 25 cm in the sand filling process, and the FBG 5 is placed in the organic polymerization. Center location. Both ends of the organic polymer tube 12 are sealed by a plug 13 and installed into the faucet 14 and the outlet faucet 15, one end of which is drained, one end is connected to the water pipe 16, and the percolation rate is adjusted by controlling the faucet 14 and the outlet tap 15 at both ends.
  • the current supply heating control system 1 energizes the resistance wire 8 in the IHAT-FBG2 with a voltage of 12 V, and performs internal heating with a heating power of 9 W/m.
  • the recording heat tends to be stable after IHAT-FBG2 Collected wavelength data:
  • the faucet 14 Before heating, the faucet 14 is opened, the faucet 15 is closed, the sand in the organic polymer tube 12 is saturated, and the internal IHAT-FBG2 is electrically heated without water, and the wavelength change of the IHAT-FBG2 in the saturated sand is measured.
  • the outlet faucet 15 is opened to increase the percolation rate with a fixed value, and the wavelength variation of the sensor at different rates is collected.
  • the two faucets 14, 15 are controlled.
  • the sensor When the water flow is stable, the sensor is heated and measured.
  • the heating time is 20 minutes until the FBG5 sensing wavelength has no significant change, the heating is stopped, and the natural cooling time is 10 minutes. The measurement is stopped after the temperature has stabilized.
  • the data processing software processes the wavelength data obtained in step 2, converts the wavelength into temperature, calculates the temperature characteristic value, and then fits with the corresponding percolation rate to obtain a relationship between the percolation rate and the temperature characteristic value.
  • the relationship between the seepage rate and the temperature characteristic value obtained by S3 is the relationship between IHAT-FBG2 and the rate of seepage rate monitoring.
  • the rate relationship can be used to qualitatively monitor the seepage rate in saturated sandy soil.
  • the method is not limited to saturated sand and is applicable to various rock and soil bodies.
  • the following is an example of the viscosity soil moisture-temperature characteristic value experiment, and the specific implementation process of the method is illustrated.
  • the experimental device diagram is shown in Fig. 5.
  • the method is not limited to cohesive soil and is applicable to various rock and soil bodies.
  • IHAT-FBG2 is separately embedded in several sets of cohesive soils 19 with different water contents:
  • the FBG 5 is placed in one of the holes of the double-hole corundum tube 9, one end of which has a fiber lead 6, one end is freely placed in the corundum tube 9, and the fiber lead 6 is protected.
  • the sleeve 7 is protected, and the optical fiber lead 6 is fixed to the orifice of the corundum tube 9 by glue.
  • a resistance wire 8 is placed in the other hole, and both ends of the resistance wire 8 are connected to the current power supply heating control system 1 by the wire 11 to form IHAT-FBG2.
  • the cohesive soil 19 is filled in the organic polymer 12 and compacted, and IHAT-FBG2 is inserted into the cohesive soil 19, and all of the FBG5 is immersed in the cohesive soil 19.
  • the current source heating control system 1 energizes the resistance wire 8 in the IHAT-FBG2 with a voltage of 12 V, and performs internal heating at a heating power of 9 W/m.
  • the FBG demodulation device 3 is used to record the wavelength data acquired by the IHAT-FBG2 after the heating tends to stabilize.
  • the sensor Before each heating, water was added in a certain mass ratio, so that the moisture content of the clay soil 19 ranged from 6.85% to 30.85% and gradually increased by 2%, thereby controlling the change of moisture content of the clay soil 19.
  • the sensor is energized and heated for measurement. When the heating time is 20 minutes until the FBG5 sensing wavelength has no significant change, the heating is stopped, the natural cooling time is 10 minutes, and the measurement is stopped after the temperature is stabilized.
  • the data acquisition system is set so that the FBG demodulation device 3 reads and saves the IHAT-FBG2 wavelength data every 20 seconds.
  • the relationship between the moisture content obtained by S3 and the temperature characteristic value is the relationship between the IHAT-FBG2 used for water content monitoring.
  • the rate relationship can be used to qualitatively monitor the water content in the clay soil 19. However, this method is not limited to cohesive soil 19 and is applicable to various rock and soil bodies.

Abstract

本发明属于地质灾害防治领域,提出了一种基于IHAT‑FBG的岩土体渗流速率与含水率监测系统及方法。所述系统包括依次连接的电源、电源电流控制加热系统、IHAT‑FBG、FBG解调设备和数据分析处理系统;所述步骤:采用刚玉管封装制成IHAT‑FBG,经率定后埋入岩土体;通过内加热技术对FBG进行主动加热,运用FBG解调设备记录波长变化;运用数据处理分析软件求得FBG温度特征值,将温度特征值带入由率定实验确定的一次函数:ΔT t=a‑bv与w=kΔT t+c,计算出岩土体渗流速率与含水率。本发明通过对IHAT‑FBG按照实际需求进行串联,达到准分布式监测效果,可以进行精确点监测与范围监测,具有制作简单、使用便捷、成本经济、监测精度与稳定性高等优点。

Description

基于IHAT-FBG的岩土体渗流速率与含水率监测系统及方法 技术领域
本发明属于地质灾害防治领域,提出了一种基于内加热刚玉管FBG传感器(Insi deheated Alundum Tube以下简称IHAT-FBG)的岩土体渗流速率与含水率监测系统及方法。
背景技术
岩土体中的水分场是引发一系列地质灾害的重要因素,如渍堤塌坝、崩滑流等地质灾害均与岩土体中水分场的变化切相关,岩土体中的水分场又可分为动态的渗流与静态的含水率。因此,对于岩土体中水分场的监测,是预测和减轻地质灾害的重要途径。近年来DTS技术开始应用于岩土体的渗流速率与含水率的监测,它不同于传统非接触式监测方法,是一种分布式、接触式的监测手段,监测精度达到0.1℃,尤其适用于分布式、连续性的岩土体渗流速率与含水率监测需求。但对于待测点位置精确已知,水分场测量精度要求极高的监测要求,DTS的成本与精度便成为限制,因此需要一种准分布式、成本低、精度高的新型方法与其互补。如图3-1所示,分布式布设17方法的特征是:感测元件为一根感测光纤,感测光纤的各个部位均参与测量;如图3-2所示,准分布式布设18方法的特征是:使用一根光纤将多个感测元件串联起来,仅感测元件部位参与测量,空间分辨率可由串联感测元件个数控制,感测元件个数根据监测要求而定。
若使FBG直接与岩土体接触,岩土体的恶劣条件和环境会对FBG造成破坏,且渗流温度与周围岩土体温度差异较小,温度分辨率低,因此需要采取一种更先进的保护封装与增加温度分辨率的技术,以解决上述问题。
简单的使用FBG对已知待测电进行准分布式监测时,所需后续工作繁琐复杂,因此需要开发与之配套的监测系统使监测结果化繁为简,提高监测效率。
发明概述
技术问题
本发明的目的是提供一种基于IHAT-FBG的岩土体渗流速率与含水率监测系统及方法,消除应用于分布式监测的DTS技术在已知精确点监测上成本与精度的限制,将监测方法集成化、系统化,提高对渗流速率监测的效率。
问题的解决方案
技术解决方案
本发明提供了如下的技术方案:
基于IHAT-FBG的岩土体渗流速率与含水率监测系统,包括:依次连接的电源、电源电流控制加热系统、IHAT-FBG、FBG解调设备和数据分析处理系统;
所述电源电流控制加热系统,用于控制加热所述电源的电流,使所述IHAT-FBG处于稳定功率下工作;
所述IHAT-FBG,用于采集岩土体波长数据;
所述FBG解调设备,用于记录加热趋于稳定后所述IHAT-FBG采集的波长数据;
所述数据分析处理系统,用于将采集获得的波长数据分析处理后得到温度特征值,并根据率定关系计算岩土体渗流速率与含水率。
优选的,所述IHAT-FBG包括刚玉管以及设在所述刚玉管内的FBG和加热电阻丝,所述FBG连接所述FBG解调设备,所述加热电阻丝连接所述电源电流控制加热系统。
基于IHAT-FBG的岩土体渗流速率与含水率监测方法,包括以下步骤:
S1:将IHAT-FBG感测元件进行室内率定实验,确定温度特征值与渗流速率、含水率之间的关系,再将其埋设于岩土体之中;
S2:用电流电源加热控制系统对步骤一所述IHAT-FBG内的电阻丝通电,进行内加热,利用FBG解调设备,记录加热趋于稳定后IHAT-FBG采集的波长数据;
S3:运用数据分析处理系统对S2所得波长数据进行分析并处理,将波长转化为温度后,计算出FBG温度特征值,根据FBG温度特征值与岩土体渗流速率与含水率之间的线性关系:ΔT t=a-bv与w=kΔT t+c,计算出岩土体的渗流速率与含水率,其中ΔT t为FBG温度特征值,v为岩土体的渗流速率,w为岩土体含水率,a、b、c为常数,所述常数通过室内率定实验确定。
优选的,根据实际情况进行准分布式的监测,将S1-S3中的FBG进行串联,实现精确点与范围性的渗流速率与含水率的监测。
优选的,所述S1-S3中室内率定实验步骤:
a:将IHAT-FBG分别埋设于若干组不同渗流速率梯度与不同含水率梯度下的岩土体式样中;
b:用电流电源加热控制系统对IHAT-FBG内的电阻丝通电,进行内加热,利用FBG解调设备,记录加热趋于稳定后IHAT-FBG采集的波长数据;
c:运用数据分析处理系统对S2所得波长数据进行分析并处理,将波长转化为温度后,计算出FBG温度特征值,拟合出FBG温度特征值与渗流速率和含水量之间的关系:ΔT t=a-bv与w=kΔT t+c,其中ΔT t为FBG温度特征值,v为岩土体的渗流速率,w为岩土体含水率,a、b、c为常数。
优选的,所述FBG温度特征值为通电加热后,所述IHAT-FBG测得的温度趋于稳定,选取某一特征时间区间[t 1,t 2],将该区间IHAT-FBG所测得的多个温度值进行算术平均得到温度平均值T t,再与初始温度T 0作差获得。
发明的有益效果
有益效果
本发明的有益效果是:采用FBG技术,实现了准分布式监测,消除了应用于分布式监测的DTS技术在已知精确点监测上成本与精度的限制,准分布式监测的特点:一根光纤将多个感测元件串联,空间分辨率由串联感测元件的个数控制,感测元件个数根据监测要求而定;结合刚玉材料与内加热技术对FBG进行封装,起到了对FBG的保护与增加温度分辨率的效果;采用了系统集成技术,将监测方法系统化,提高了对渗流速率监测的效率。
对附图的简要说明
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明系统结构示意图;
图2是本发明的IHAT-FBG结构示意图;
图3-1是分布式布设方式检测示意图;
图3-2是准分布式布设方式检测示意图;
图4是IHAT-FBG渗流速率-温度特征值线性关系率定实验装置示意图;
图5是渗流速率与温度特征值间的拟合关系图;
图6是IHAT-FBG含水率-温度特征值线性关系率定实验装置示意图;
图7是含水率与温度特征值间的拟合关系图;
图中标记为:1、电流电源加热控制系统,2、IHAT-FBG,3、FBG解调设备,4、数据分析处理系统,5、FBG,6、光纤引线,7、引线护套,8、加热电阻丝,9、刚玉管,10、光纤跳线,11、导线,12、有机聚合物管,13、堵头,14、入水龙头,15、出水龙头,16、水管,17、分布式布设,171、参与测量部分,18、准分布式布设,181、未参与测量部分,19、粘性土。
实施该发明的最佳实施例
本发明的最佳实施方式
如图1和图2所示,基于IHAT-FBG的岩土体渗流速率与含水率监测方法及系统示意图,包括依次连接的电源、电流电源加热控制系统1、IHAT-FBG2、FBG解调设备3和数据分析处理系统4。
IHAT-FBG2为具有内加热功能的刚玉管FBG渗流与含水率感测原件,包括感测部分,加热部分和封装部分。所述感测部分包括FBG5,光纤引线6,引线护套7,光纤引线6通过导线11接入FBG解调设备3;所述加热部分为加热电阻丝8,两端通过光纤跳线10接入电流电源加热控制系统1;所述封装部分为双孔刚玉管9,用于保护FBG 5,FBG 5与光纤引线6相接,光纤引线6外套有引线护套7进行保护,将保护好的FBG5放置于双孔刚玉管9其中一孔中,将FBG5一端接带有引线护套7的光纤引线6,并用胶将引线6固定于孔口,另一端自由,以剔除应变干扰,光纤引线6通过导线11接入FBG解调设备3;加热电阻丝8放置于刚玉管9,另一孔中,用光纤跳线10接入电源电流加热控制系统1,接线端做好防水防漏电措施。
FBG解调设备3是基于光纤布拉格光栅监测技术进行准分布式测量,感测元件为IHAT-FBG2。目前国内外均有十分成熟的相关产品,以下实例采用的是苏州 南智传感科技有限公司生产的A03便携式解调设备对岩土体中的渗流速率进行准分布式测量。
数据分析处理系统4由数据采集系统和数据处理软件构成,集数据采集,数据处理,结果呈现为一体。数据采集系统可以设置对监测对象的数据采集频率与采集时间长度。数据处理软件对采集得到的波长数据进行处理,将波长数据转换成温度数据,取得温度特征值。再根据室内率定实验所得温度特征值与渗流速率、含水率之间的关系计算渗流速率与含水率。以下实例采用的数据分析处理系统4为苏州南智科技传感有限公司研发的基于FBG解调设备3的A03解调设备的配套数据分析处理系统4。
基于IHAT-FBG的岩土体渗流速率与含水率监测方法,包括如下步骤:
S1:将IHAT-FBG感测元件进行室内率定实验,确定温度特征值与渗流速率、含水率之间的关系,再将其埋设于岩土体之中;
S2:用电流电源加热控制系统1对S1的IHAT-FBG2通电加热,利用FBG解调设备3记录加热趋于稳定后IHAT-FBG2采集的波长数据;
S3:运用数据分析处理系统4对S2所得波长数据进行分析并处理,将波长转化为温度后,计算出FBG温度特征值。根据FBG温度特征值与岩土体渗流速率与含水率之间的线性关系:ΔT t=a-bv与w=kΔT t+c,计算出岩土体的渗流速率与含水率。其中ΔT t为FBG温度特征值,v为岩土体的渗流速率,w为岩土体含水率a、b、c为常数,通过室内率定实验确定。
进一步地,对IHAT-FBG2进行率定,步骤如下:
a:将IHAT-FBG分别埋设于若干组不同渗流速率梯度与不同含水率梯度下的岩土体式样中;
b:用电流电源加热控制系统对IHAT-FBG内的电阻丝通电,进行内加热,利用FBG解调设备,记录加热趋于稳定后IHAT-FBG采集的波长数据;
c:运用数据分析处理系统对S2所得波长数据进行分析并处理,将波长转化为温度后,计算出FBG温度特征值,拟合出FBG温度特征值与渗流速率和含水量之间的关系:ΔT t=a-bv与w=kΔT t+c,其中ΔT t为FBG温度特征值,v为岩土体的渗流速率,w为岩土体含水率,a、b、c为常数。
实例1:
下面以饱和砂性土渗流速率率定实验为例,说明本方法的具体实施过程,实验装置图见图4。但本方法不限于饱和性沙土,适用于各种岩土体。
IHAT-FBG2砂土渗流速率-温度特征值率定实验,
S1:将IHAT-FBG2分别埋设于若干组不同渗流速率梯度下的砂性土中:
如图1、图2和图4所示,将FBG 5放置于双孔刚玉管9其中一孔之中,一端留有光纤引线6,一端自由放置于刚玉管9中,光纤引线6外套有护套7作为保护,将光纤引线6用胶固定于刚玉管9孔口,另一孔内放置电阻丝8,电阻丝8两端用光纤跳线10接入电流电源加热控制系统1,制成IHAT-FBG2。在有机聚合物12内填入含有粘粒的细砂并夯实,在填砂过程中以25cm为间隔将制成的IHAT-FBG2垂直于轴线安置在有机聚合物12中,并使FBG5位于有机聚合物中心位置。有机聚合物管12两端用堵头13密封,并安装入水龙头14和出水龙头15,一端出水,一端接入水管16,通过控制两端入水龙头14和出水龙头15来调节渗流速率。
S2:用电流电源加热控制系统1以12V电压对IHAT-FBG2内的电阻丝8通电,进行内加热,加热功率为9W/m,利用FBG解调设备3,记录加热趋于稳定后IHAT-FBG2采集的波长数据:
加热前,打开入水龙头14,关闭出水龙头15,使有机聚合物管12内砂土饱和,在不通水的情况下对内IHAT-FBG2通电加热,测定IHAT-FBG2在饱和砂土内的波长变化情况。打开出水龙头15,以固定数值增加渗流速率,采集不同速率下传感器的波长变化。实验中调节渗流速率时,控制两个龙头14、15,当水流稳定时,对传感器通电加热进行测量,加热时间20分钟至FBG5感测波长无明显变化时,停止加热,自然冷却时间10分钟,温度降至稳定后停止测量。
S3:运用数据分析处理系统4,对所得数据分析处理:
设置数据采集系统使FBG解调设备3每20秒读取并保存一次IHAT-FBG 2波长数据。数据处理软件对步骤二得到的波长数据进行处理,将波长转化为温度,并计算温度特征值,再与相应渗流速率进行拟合,得到渗流速率与温度特征值之间的关系。根据实验数据,拟合得到的温度特征值与渗流速率之间的关系近似呈线性关系ΔT t=-15658.903v+3.39897,R 2=0.98685,如图5所示。
S3所得渗流速率与温度特征值之间的关系即为此IHAT-FBG2用于渗流速率监测的率定关系,运用此率定关系可以对饱和砂性土中的渗流速率进行定性监测。但本方法不限于饱和性沙土,适用于各种岩土体。
实例2:
下面以粘性土含水率-温度特征值率定实验为例,说明本方法的具体实施过程,实验装置图见图5。但本方法不限于粘性土,适用于各种岩土体。
IHAT-FBG2粘性土率定实验:
S1:将IHAT-FBG2分别埋设于若干组不同含水率下的粘性土19中:
如图1、图2和图6所示,将FBG 5放置于双孔刚玉管9其中一孔之中,一端留有光纤引线6,一端自由放置于刚玉管9中,光纤引线6外套有护套7作为保护,将光纤引线6用胶固定于刚玉管9孔口。另一孔内放置电阻丝8,电阻丝8两端用导线11接入电流电源加热控制系统1,制成IHAT-FBG2。在有机聚合物12内填入粘性土19并夯实,将IHAT-FBG2插入粘性土19中,并使FBG5全都没入粘性土19之中。
S2:用电流电源加热控制系统1以12V电压对IHAT-FBG2内的电阻丝8通电,进行内加热,加热功率为9W/m。利用FBG解调设备3,记录加热趋于稳定后IHAT-FBG2采集的波长数据。
每次加热前,以一定质量比例添加水,使粘性土19含水率范围从6.85%至30.85%并以2%的差异逐级递增,以此控制粘性土19含水率变化。对传感器通电加热进行测量,加热时间20分钟至FBG5感测波长无明显变化时,停止加热,自然冷却时间10分钟,温度降至稳定后停止测量。
S3:运用数据分析处理系统4,对所得数据分析处理:
设置数据采集系统使FBG解调设备3每20秒读取并保存一次IHAT-FBG2波长数据。数据处理软件对S2得到的波长数据进行处理,将波长转化为温度,并计算温度特征值,再与相应粘性土19含水率进行拟合,得到含水率与温度特征值之间的关系W=275.03ΔT t-1.1189,如图7所示。
S3所得含水率与温度特征值之间的关系即为此IHAT-FBG2用于含水率监测的的率定关系,运用此率定关系可以对粘性土19中的含水率进行定性监测。但本方 法不限于粘性土19,适用于各种岩土体。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
PCT/CN2018/080577 2017-04-20 2018-03-26 基于ihat-fbg的岩土体渗流速率与含水率监测系统及方法 WO2018192344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710262733.6 2017-04-20
CN201710262733.6A CN107132172A (zh) 2017-04-20 2017-04-20 基于ihat‑fbg的岩土体渗流速率与含水率监测系统及方法

Publications (1)

Publication Number Publication Date
WO2018192344A1 true WO2018192344A1 (zh) 2018-10-25

Family

ID=59715773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080577 WO2018192344A1 (zh) 2017-04-20 2018-03-26 基于ihat-fbg的岩土体渗流速率与含水率监测系统及方法

Country Status (2)

Country Link
CN (1) CN107132172A (zh)
WO (1) WO2018192344A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111255439A (zh) * 2020-01-21 2020-06-09 同济大学 判断降压井侧壁粘土球封闭质量的自加温光纤装置与方法
CN112697301A (zh) * 2021-01-27 2021-04-23 南京嘉兆仪器设备有限公司 一种基于光纤传感的全分布式管道侵蚀监测系统及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132172A (zh) * 2017-04-20 2017-09-05 苏州南智传感科技有限公司 基于ihat‑fbg的岩土体渗流速率与含水率监测系统及方法
CN107860408A (zh) * 2017-10-25 2018-03-30 南京大学 一种基于fbg技术的可拆卸式湿度计
CN108680409B (zh) * 2018-05-15 2020-09-22 青岛理工大学 一种应用于细粒土控制压实度的制样装置
CN109596496A (zh) * 2018-12-14 2019-04-09 西安理工大学 一种基于Si-DTS的砂性土渗流量监测平台
CN109682853B (zh) * 2019-01-09 2024-02-13 南京大学 一种基于fbg的冻土含冰量分布式原位测量方法及装置
CN109828097B (zh) * 2019-01-09 2020-04-07 湖南大学 一种基于光纤布拉格光栅的土壤含水量测量装置及方法
CN109856032B (zh) * 2019-02-21 2020-04-28 四川大学 点热源移动分布式渗流监测系统及其监测方法
CN110987829B (zh) * 2019-12-23 2022-01-18 南京大学 一种基于光纤传感的探头固定式黏土界限含水率测定方法
CN112129679B (zh) * 2020-08-03 2021-08-13 河海大学 一种水工岩土结构降雨实时入渗状态监测设备及方法
CN113406007B (zh) * 2021-06-16 2022-07-12 南京大学 一种基于热脉冲全同弱光纤光栅阵列的土壤含水率智能监测系统及原位标定方法
CN113607336A (zh) * 2021-07-28 2021-11-05 安徽理工大学 一种垂直铺塑防渗帷幕渗漏分布式检测系统及检测方法
CN114673180B (zh) * 2022-04-24 2023-10-03 江西师范高等专科学校 一种高稳定性的岩土工程边坡支护

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294662A (ja) * 2002-04-02 2003-10-15 Hitachi Cable Ltd 土壌湿潤度測定方法及び光ファイバブラッググレーティング湿潤センサ
WO2010072293A2 (en) * 2008-12-23 2010-07-01 Waterford Institute Of Technology Fiber bragg grating temperature and strain sensor
CN102721722A (zh) * 2012-06-20 2012-10-10 扬州大学 一种地下岩土分层热物性现场热响应测试方法
CN103364320A (zh) * 2013-07-19 2013-10-23 河海大学 多孔介质结构体渗流的分布式光纤测试方法
CN103439239A (zh) * 2013-09-04 2013-12-11 南京大学 一种岩土体渗流速率分布式监测方法及系统
CN103454309A (zh) * 2013-09-04 2013-12-18 南京大学 一种土壤含水率分布式测量方法及系统
CN203479673U (zh) * 2013-07-19 2014-03-12 河海大学 一种监测土石堤坝渗流状况的分布式光纤测试平台
CN103727980A (zh) * 2013-12-26 2014-04-16 无锡波汇光电科技有限公司 一种用于边坡滑坡状况实时监测的光纤传感系统
CN104677422A (zh) * 2015-03-03 2015-06-03 哈尔滨理工大学 利用光纤光栅对寒区砂类土路堤进行多场测试方法及设备
CN205991862U (zh) * 2016-07-12 2017-03-01 中国水利水电科学研究院 特殊地层环境条件下的渗漏连续监测实验装置
CN106525280A (zh) * 2016-11-25 2017-03-22 中交第公路勘察设计研究院有限公司 一种高海拔多年冻土区分布式高精度温度监测系统及方法
CN107132172A (zh) * 2017-04-20 2017-09-05 苏州南智传感科技有限公司 基于ihat‑fbg的岩土体渗流速率与含水率监测系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865735B (zh) * 2010-05-28 2012-07-04 北京康华盛鸿能源科技发展有限公司 一种准分布式光纤光栅温度传感器的封装方法
CN202158846U (zh) * 2011-05-10 2012-03-07 大连理工大学 一种基于主动温控分布式温度监测的冲刷深度测量装置
CN102650606A (zh) * 2012-05-03 2012-08-29 大连理工大学 一种流体介质界面的光纤传感检测装置及方法
CN202648832U (zh) * 2012-07-02 2013-01-02 昆明理工大学 一种测量电解槽温度的光纤Bragg光栅温度传感器
CN203561459U (zh) * 2013-11-27 2014-04-23 长城信息产业股份有限公司 Fbg温度传感器
CN105136909B (zh) * 2015-08-16 2018-11-16 北京航空航天大学 一种基于阵列波导光栅的多通道声发射传感解调系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294662A (ja) * 2002-04-02 2003-10-15 Hitachi Cable Ltd 土壌湿潤度測定方法及び光ファイバブラッググレーティング湿潤センサ
WO2010072293A2 (en) * 2008-12-23 2010-07-01 Waterford Institute Of Technology Fiber bragg grating temperature and strain sensor
CN102721722A (zh) * 2012-06-20 2012-10-10 扬州大学 一种地下岩土分层热物性现场热响应测试方法
CN103364320A (zh) * 2013-07-19 2013-10-23 河海大学 多孔介质结构体渗流的分布式光纤测试方法
CN203479673U (zh) * 2013-07-19 2014-03-12 河海大学 一种监测土石堤坝渗流状况的分布式光纤测试平台
CN103439239A (zh) * 2013-09-04 2013-12-11 南京大学 一种岩土体渗流速率分布式监测方法及系统
CN103454309A (zh) * 2013-09-04 2013-12-18 南京大学 一种土壤含水率分布式测量方法及系统
CN103727980A (zh) * 2013-12-26 2014-04-16 无锡波汇光电科技有限公司 一种用于边坡滑坡状况实时监测的光纤传感系统
CN104677422A (zh) * 2015-03-03 2015-06-03 哈尔滨理工大学 利用光纤光栅对寒区砂类土路堤进行多场测试方法及设备
CN205991862U (zh) * 2016-07-12 2017-03-01 中国水利水电科学研究院 特殊地层环境条件下的渗漏连续监测实验装置
CN106525280A (zh) * 2016-11-25 2017-03-22 中交第公路勘察设计研究院有限公司 一种高海拔多年冻土区分布式高精度温度监测系统及方法
CN107132172A (zh) * 2017-04-20 2017-09-05 苏州南智传感科技有限公司 基于ihat‑fbg的岩土体渗流速率与含水率监测系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111255439A (zh) * 2020-01-21 2020-06-09 同济大学 判断降压井侧壁粘土球封闭质量的自加温光纤装置与方法
CN111255439B (zh) * 2020-01-21 2022-12-16 同济大学 判断降压井侧壁粘土球封闭质量的自加温光纤装置与方法
CN112697301A (zh) * 2021-01-27 2021-04-23 南京嘉兆仪器设备有限公司 一种基于光纤传感的全分布式管道侵蚀监测系统及方法

Also Published As

Publication number Publication date
CN107132172A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2018192344A1 (zh) 基于ihat-fbg的岩土体渗流速率与含水率监测系统及方法
US5430384A (en) Temperature compensated soil moisture sensor
Gil-Rodríguez et al. Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters
Cao et al. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers
CN103454309B (zh) 一种土壤含水率分布式测量方法及系统
Yan et al. A quantitative monitoring technology for seepage in slopes using DTS
US5042294A (en) Moisture detection probe
Su et al. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering
CN110658123A (zh) 一种基于光纤主动变温的非饱和土渗透系数的原位测试方法
Radetić et al. The analog linearization of Pt100 working characteristic
CN109682853B (zh) 一种基于fbg的冻土含冰量分布式原位测量方法及装置
US5121993A (en) Triaxial thermopile array geo-heat-flow sensor
CN102680803A (zh) 基于参考负载温度实时监测的微波狄克辐射计
Simon et al. An ADTS toolbox for automatically interpreting active distributed temperature sensing measurements
Su et al. Experimental study on distributed optical fiber heated-based seepage behavior identification in hydraulic engineering
Liu et al. In-situ soil dry density estimation using actively heated fiber-optic FBG method
Liu et al. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?
Fredlund Background, theory, and research related to the use of thermal conductivity sensors for matric suction measurement
Liou et al. Estimation of the thermal conductivity of granite using a combination of experiments and numerical simulation
CN107064548B (zh) 一种传感器装置及测量方法
Lachenbruch A probe for measurement of thermal conductivity of frozen soils in place
CN105372288A (zh) 一种热流率测量仪和测量方法
Minardo et al. Measurement of moisture content in masonry materials by active distributed optical fiber sensors
CN214585039U (zh) 一种微型土壤水分含量测量装置及系统
Dias et al. Proposal of a novel heat dissipation soil moisture sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787124

Country of ref document: EP

Kind code of ref document: A1