WO2018192004A1 - 一种基于函数迭代积分的刚体姿态解算方法 - Google Patents

一种基于函数迭代积分的刚体姿态解算方法 Download PDF

Info

Publication number
WO2018192004A1
WO2018192004A1 PCT/CN2017/082317 CN2017082317W WO2018192004A1 WO 2018192004 A1 WO2018192004 A1 WO 2018192004A1 CN 2017082317 W CN2017082317 W CN 2017082317W WO 2018192004 A1 WO2018192004 A1 WO 2018192004A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
angular velocity
polynomial
rigid body
method based
Prior art date
Application number
PCT/CN2017/082317
Other languages
English (en)
French (fr)
Inventor
武元新
郁文贤
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US16/340,128 priority Critical patent/US20200033129A1/en
Publication of WO2018192004A1 publication Critical patent/WO2018192004A1/zh
Priority to US17/403,864 priority patent/US20210404811A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719

Definitions

  • the invention relates to the technical field of inertial navigation, robot and the like, and in particular to a rigid body attitude solving method based on function iterative integration.
  • the calculation or estimation of rigid body motion in three-dimensional space is the core problem in many fields such as physics, robotics, navigation guidance, machinery, and computer vision. Unlike the translational motions such as speed and position, the attitude cannot be directly measured and can only be obtained by indirect methods such as angular velocity integration or vector matching.
  • the attitude resolution of the angular velocity integration method is completely autonomous and does not require external information assistance, so it is favored in many applications (such as satellite navigation systems cannot function).
  • the angular velocity of the gyro output inevitably contains errors, resulting in an infinite increase in the attitude error after integration. In fact, it is generally believed that even if the angular velocity is accurate, we still cannot accurately calculate the pose due to the existence of non-commutative rotation. Rotational exchange means that different sequences of rotation will result in different postures. Therefore, an approximate method must be used in the calculation of the attitude.
  • the mainstream attitude solving method in the field of inertial navigation usually uses a quaternion to describe the current pose and a rotation vector to describe the pose increment. Under the general attitude motion, the relationship between the differential of the rotation vector and the angular velocity is more complicated, and it must be considerably simplified to apply the approximation method.
  • the mainstream attitude solving method usually uses a plurality of angular velocity or angular increment measurements (also called 'subsamples') that are continuously acquired to approximate the rotation vector, so the attitude solution can only be started when the last subsample arrives. If we only care about the solution of the pose, this is not a big problem; however, when the subsequent calculation steps need to take the pose as input, the situation is very different.
  • an object of the present invention is to provide a rigid body attitude solving method based on function iterative integration.
  • This method is based on the technique of function iterative integration, using Rodrigues vectors, Realize the reconstruction of the pose from the angular velocity analysis.
  • the differential equation form of the Rodrigue vector is simpler than the rotation vector and allows the iterative integration of polynomial functions to achieve accurate pose reconstruction.
  • the rigid body attitude solving method based on function iterative integration includes the following steps:
  • Step 1 Fit a polynomial function of the angular velocity according to the gyroscopic measurement value in the time interval;
  • Step 2 Iteratively calculates the Rodrigue vector by using the polynomial fitting function of the angular velocity and the Rodrigue vector integral equation;
  • Step 3 According to the iterative result of the Rodrigue vector, the attitude change in the time interval is given in the form of a quaternion.
  • the gyro measurement comprises an angular velocity or an angular velocity increment.
  • step 1 comprises:
  • N angular velocity measurements for time t k The angular velocity function is fitted using a polynomial that does not exceed the N-1 order; alternatively, the angular velocity function is fitted using a Chebyshev polynomial.
  • step 1 comprises:
  • N angular increment values for time t k The angular velocity function is fitted using a polynomial that does not exceed the N-1 order; alternatively, the angular velocity function is fitted using a Chebyshev polynomial.
  • step 2 comprises:
  • the angular velocity polynomial fitting function is substituted into the Rodrigue vector integral equation for iterative calculation until the convergence condition is met or the preset maximum number of iterations is reached.
  • the present invention has the following beneficial effects:
  • a new attitude solving method is proposed, which can be extended to general rigid body motion; 2) If the angular velocity is accurate, the new attitude solving method will strictly converge to the precise attitude; 3) Reconstruction from angular velocity The obtained Rodrigue vector has the form of analytic polynomial, so it can give all the attitude results in the corresponding time interval; 4) The design of the new attitude solving method does not depend on any special motion form assumptions.
  • FIG. 1 is a flowchart of a rigid body attitude solving method based on function iterative integration provided by the present invention.
  • the rigid body attitude solving method based on function iterative integration specifically includes:
  • Gyro measurements generally come in two forms: angular velocity or angular velocity increment. Discussed separately below:
  • N angular velocity measurements for time t k The angular velocity function can be fitted using a polynomial of order n (no more than N-1), ie
  • T is the uniform sampling time interval.
  • the angular velocity function can be fitted using a polynomial of order n (no more than N-1). The relationship between the angular increment value and the angular velocity is
  • the polynomial function (1) of the angular velocity can also be fitted based on the Chebyshev polynomial.
  • the attitude solving method based on function iterative integration proposed by the present invention is also applicable to other three-dimensional pose parameters, such as a rotation vector, and corresponding steps 2) and 3) are needed accordingly.
  • the adjustments are as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Gyroscopes (AREA)

Abstract

一种基于函数迭代积分的刚体姿态解算方法,包括如下步骤:步骤1、根据时间区间上的陀螺测量值,拟合出角速度的多项式函数;步骤2、利用角速度的多项式拟合函数以及罗德里格向量积分方程,迭代计算罗德里格向量;步骤3、根据罗德里格向量的迭代结果,以四元数的形式给出时间区间上的姿态变化。这种方法能够拓展应用于一般的刚体运动,并且严格收敛于精确姿态。

Description

一种基于函数迭代积分的刚体姿态解算方法 技术领域
本发明涉及惯性导航、机器人等技术领域,具体而言,涉及一种基于函数迭代积分的刚体姿态解算方法。
背景技术
三维空间刚体运动的计算或估计是物理、机器人、导航制导、机械、计算机视觉等众多领域中的核心问题。与速度、位置等平移运动不同,姿态不能被直接测量,只能通过角速度积分或向量匹配等间接方式获得。角速度积分方式的姿态解算是完全自主的,不需要外部信息辅助,因此在很多(如卫星导航系统不能发挥作用的)应用场合备受青睐。然而,陀螺输出的角速度难免包含误差,造成积分后的姿态误差会无限增大。事实上,大家普遍认为:即使角速度是精确的,由于转动不可交换性的存在,我们仍然不能精确计算姿态。转动交换性是指转动的不同顺序将导致不同的姿态。因此,在姿态计算时必须采用近似的方法。
惯性导航领域的主流姿态解算方法通常采用四元数描述当前姿态、旋转向量描述姿态增量。在一般性的姿态运动下,旋转向量的微分与角速度的关系比较复杂,必须进行相当地简化才能应用近似方法来处理。主流姿态解算方法通常使用连续采集的多个角速度或角增量测量(又称‘子样’)来近似计算旋转向量,因此只能在最后一个子样到来时才能开始姿态解算。如果我们只关心姿态的解算,这不是个大问题;但是,当后续计算步骤需要将姿态作为输入时,情况就大不一样了,比如在惯性导航系统中,速度和位置的计算需要用到姿态的解算结果。另外,所有的主流姿态解算方法几乎都是以某种特殊运动(如圆锥运动)为优化指标设计的,在其他运动情形下不具有最优性。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种基于函数迭代积分的刚体姿态解算方法。本方法基于函数迭代积分的技术,利用罗德里格(Rodrigues)向量, 实现从角速度解析重建姿态。罗德里格向量的微分方程形式比旋转向量简单,且允许采用多项式函数的迭代积分实现精确的姿态重构。
根据本发明提供的基于函数迭代积分的刚体姿态解算方法,包括如下步骤:
步骤1、根据时间区间上的陀螺测量值,拟合出角速度的多项式函数;
步骤2、利用角速度的多项式拟合函数以及罗德里格向量积分方程,迭代计算罗德里格向量;
步骤3、根据罗德里格向量的迭代结果,以四元数的形式给出时间区间上的姿态变化。
优选的,所述陀螺测量值包括角速度或者角速度增量。
优选的,步骤1包括:
对于tk时刻的N个角速度测量值
Figure PCTCN2017082317-appb-000001
角速度函数采用不超过N-1阶的多项式进行拟合;或者,角速度函数采用切比雪夫多项式为基进行拟合。
优选的,步骤1包括:
对于tk时刻的N个角增量值
Figure PCTCN2017082317-appb-000002
角速度函数采用不超过N-1阶的多项式进行拟合;或者,角速度函数采用切比雪夫多项式为基进行拟合。
优选的,步骤2包括:
将角速度的多项式拟合函数代入罗德里格向量积分方程进行迭代计算,直到满足收敛条件或达到事先设定的最大迭代次数。
与现有技术相比,本发明具有如下的有益效果:
1)提出了一种新的姿态解算方法,并能够拓展应用于一般的刚体运动;2)如果角速度是精确的,新的姿态解算方法将严格收敛于精确姿态;3)从角速度重构得到的罗德里格向量具有解析多项式形式,因此可以给出相应时间区间内的所有姿态结果;4)新姿态解算方法的设计不依赖于任何特殊的运动形式假设。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明提供的基于函数迭代积分的刚体姿态解算方法的流程图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
结合如图1所示,本发明提供的基于函数迭代积分的刚体姿态解算方法具体包括:
1)根据时间区间[0 t]上的陀螺测量值,拟合出角速度的多项式函数;
陀螺的测量值一般有两种形式:角速度或角速度增量。下面分别讨论:
对于tk时刻的N个角速度测量值
Figure PCTCN2017082317-appb-000003
角速度函数可以采用n阶(不超过N-1)的多项式进行拟合,即
Figure PCTCN2017082317-appb-000004
其中,系数ci通过求解如下方程来确定
Figure PCTCN2017082317-appb-000005
Figure PCTCN2017082317-appb-000006
当n<N-1时,
Figure PCTCN2017082317-appb-000007
表示最小二乘意义下的矩阵逆,
Figure PCTCN2017082317-appb-000008
下同。其中,T为均匀采样时间间隔。
类似地,对于tk时刻的N个角增量值
Figure PCTCN2017082317-appb-000009
角速度函数可以采用n阶(不超过N-1)的多项式进行拟合。角增量值与角速度的关系为
Figure PCTCN2017082317-appb-000010
Figure PCTCN2017082317-appb-000011
Figure PCTCN2017082317-appb-000012
当拟合多项式的阶数较大时,
Figure PCTCN2017082317-appb-000013
Figure PCTCN2017082317-appb-000014
可能会面临数值计算的稳定性问题。为了提高计算的鲁棒性,角速度的多项式函数(1)也可以使用切比雪夫(Chebyshev)多项式为基进行拟合。
2)利用角速度的多项式拟合函数以及罗德里格向量积分方程,迭代计算罗德里格向量;
罗德里格向量g的迭代积分方程如下
Figure PCTCN2017082317-appb-000015
初始值g0=0。将角速度的多项式拟合函数(1)代入上式,迭代计算,直到满足收敛条件或达到事先设定的最大迭代次数。
3)根据罗德里格向量的迭代结果,给出以时间区间开始时刻为参考的姿态四元数。
Figure PCTCN2017082317-appb-000016
上述时间区间长度t与子样个数N和均匀采样时间间隔T的关系为t=N×T。对于更大时间区间上的姿态解算,可将其划分为若干个小时间区间,依次计算实现。
原则上,如果能接受一定程度的精度损失,本发明提出的基于函数迭代积分的姿态解算方法也适用于其他三维姿态参数,如旋转向量,此时需要对步骤2)和步骤3)做相应的调整如下:
2)利用角速度的多项式拟合函数以及旋转向量积分方程,迭代计算旋转向量;
旋转向量g的迭代积分方程如下
Figure PCTCN2017082317-appb-000017
初始值g0=0。将角速度的多项式拟合函数(1)代入上式,迭代计算,直到满足收敛条件或达到事先设定的最大迭代次数。
3)根据旋转向量的迭代结果,给出以时间区间开始时刻为参考的姿态四元数。
Figure PCTCN2017082317-appb-000018
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (5)

  1. 一种基于函数迭代积分的刚体姿态解算方法,其特征在于,包括如下步骤:
    步骤1、根据时间区间上的陀螺测量值,拟合出角速度的多项式函数;
    步骤2、利用角速度的多项式拟合函数以及罗德里格向量积分方程,迭代计算罗德里格向量;
    步骤3、根据罗德里格向量的迭代结果,以四元数的形式给出时间区间上的姿态变化。
  2. 根据权利要求1所述的基于函数迭代积分的刚体姿态解算方法,其特征在于,所述陀螺测量值包括角速度或者角速度增量。
  3. 根据权利要求1所述的基于函数迭代积分的刚体姿态解算方法,其特征在于,步骤1包括:
    对于tk时刻的N个角速度测量值
    Figure PCTCN2017082317-appb-100001
    k=1,2,...N,角速度函数采用不超过N-1阶的多项式进行拟合;或者,角速度函数采用切比雪夫多项式为基进行拟合。
  4. 根据权利要求1所述的基于函数迭代积分的刚体姿态解算方法,其特征在于,步骤1包括:
    对于tk时刻的N个角增量值
    Figure PCTCN2017082317-appb-100002
    k=1,2,...N,角速度函数采用不超过N-1阶的多项式进行拟合;或者,角速度函数采用切比雪夫多项式为基进行拟合。
  5. 根据权利要求1所述的基于函数迭代积分的刚体姿态解算方法,其特征在于,步骤2包括:
    将角速度的多项式拟合函数代入罗德里格向量积分方程进行迭代计算,直到满足收敛条件或达到事先设定的最大迭代次数。
PCT/CN2017/082317 2017-04-21 2017-04-28 一种基于函数迭代积分的刚体姿态解算方法 WO2018192004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/340,128 US20200033129A1 (en) 2017-04-21 2017-04-28 Method for solving attitude of rigid body based on function iterative integration
US17/403,864 US20210404811A1 (en) 2017-04-21 2021-08-16 Method for solving attitude of rigid body based on function iterative integration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710273489.3A CN107339987B (zh) 2017-04-21 2017-04-21 一种基于函数迭代积分的刚体姿态解算方法
CN201710273489.3 2017-04-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/340,128 A-371-Of-International US20200033129A1 (en) 2017-04-21 2017-04-28 Method for solving attitude of rigid body based on function iterative integration
US17/403,864 Continuation-In-Part US20210404811A1 (en) 2017-04-21 2021-08-16 Method for solving attitude of rigid body based on function iterative integration

Publications (1)

Publication Number Publication Date
WO2018192004A1 true WO2018192004A1 (zh) 2018-10-25

Family

ID=60222752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082317 WO2018192004A1 (zh) 2017-04-21 2017-04-28 一种基于函数迭代积分的刚体姿态解算方法

Country Status (3)

Country Link
US (1) US20200033129A1 (zh)
CN (1) CN107339987B (zh)
WO (1) WO2018192004A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107933967A (zh) * 2017-11-23 2018-04-20 北京控制工程研究所 一种卫星转动惯量的在轨辨识方法
CN108534774B (zh) * 2018-03-21 2020-02-21 上海交通大学 基于函数迭代积分的刚体姿态解算方法及系统
CN109724597B (zh) * 2018-12-19 2021-04-02 上海交通大学 一种基于函数迭代积分的惯性导航解算方法及系统
CN110457768B (zh) * 2019-07-18 2022-12-13 东南大学 考虑工艺误差下基于可靠性的mems器件参数的配置方法
CN114396942B (zh) * 2022-01-12 2023-10-31 上海交通大学 基于多项式优化的高精度快速惯导解算方法和系统
CN114396936B (zh) * 2022-01-12 2024-03-12 上海交通大学 基于多项式优化的惯性与磁传感器姿态估计方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138061A (en) * 1997-04-18 2000-10-24 Hughes Electronics Corporation Onboard orbit propagation using quaternions
CN102944241A (zh) * 2012-11-15 2013-02-27 北京理工大学 基于多胞型线性微分包含的航天器相对姿态确定方法
CN102980580A (zh) * 2012-11-16 2013-03-20 北京理工大学 基于张量积多胞鲁棒h2滤波的无陀螺卫星姿态确定方法
US20130345973A1 (en) * 2012-06-20 2013-12-26 Raytheon Company Non-causal attitude estimation for real-time motion compensation of sensed images on a moving platform
CN104121907A (zh) * 2014-07-30 2014-10-29 杭州电子科技大学 一种基于平方根容积卡尔曼滤波器的飞行器姿态估计方法
CN104833358A (zh) * 2015-05-13 2015-08-12 上海交通大学 基于罗德里格斯参数的星敏感器几何线性姿态确定方法
CN105937911A (zh) * 2016-07-01 2016-09-14 南京理工大学 一种磁传感器姿态解算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825468B (zh) * 2010-04-23 2012-02-01 东南大学 基于频域分析方法的对偶四元数捷联惯导方法
CN102323992B (zh) * 2011-09-20 2014-11-19 西安费斯达自动化工程有限公司 一种刚体空间运动状态多项式类输出模型的建模方法
CN103712623B (zh) * 2014-01-20 2016-09-07 东南大学 基于角速率输入的光纤陀螺惯导系统姿态优化方法
WO2016077703A1 (en) * 2014-11-13 2016-05-19 Worcester Polytechnic Institute Gyroscope assisted scalable visual simultaneous localization and mapping
CN104656447A (zh) * 2015-01-16 2015-05-27 西北工业大学 一种航天器抗干扰姿态跟踪的微分几何非线性控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138061A (en) * 1997-04-18 2000-10-24 Hughes Electronics Corporation Onboard orbit propagation using quaternions
US20130345973A1 (en) * 2012-06-20 2013-12-26 Raytheon Company Non-causal attitude estimation for real-time motion compensation of sensed images on a moving platform
CN102944241A (zh) * 2012-11-15 2013-02-27 北京理工大学 基于多胞型线性微分包含的航天器相对姿态确定方法
CN102980580A (zh) * 2012-11-16 2013-03-20 北京理工大学 基于张量积多胞鲁棒h2滤波的无陀螺卫星姿态确定方法
CN104121907A (zh) * 2014-07-30 2014-10-29 杭州电子科技大学 一种基于平方根容积卡尔曼滤波器的飞行器姿态估计方法
CN104833358A (zh) * 2015-05-13 2015-08-12 上海交通大学 基于罗德里格斯参数的星敏感器几何线性姿态确定方法
CN105937911A (zh) * 2016-07-01 2016-09-14 南京理工大学 一种磁传感器姿态解算方法

Also Published As

Publication number Publication date
CN107339987B (zh) 2021-06-29
CN107339987A (zh) 2017-11-10
US20200033129A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2018192004A1 (zh) 一种基于函数迭代积分的刚体姿态解算方法
Wu et al. Generalized linear quaternion complementary filter for attitude estimation from multisensor observations: An optimization approach
CN108827299B (zh) 一种基于改进四元数二阶互补滤波的飞行器姿态解算方法
Shen et al. Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs
Huang et al. Online initialization and automatic camera-IMU extrinsic calibration for monocular visual-inertial SLAM
Madgwick An efficient orientation filter for inertial and inertial/magnetic sensor arrays
US5051751A (en) Method of Kalman filtering for estimating the position and velocity of a tracked object
CN106767767A (zh) 一种微纳多模星敏感器系统及其数据融合方法
WO2022160391A1 (zh) 磁力计信息辅助的mems陀螺仪标定方法及标定系统
WO2020124678A1 (zh) 一种基于函数迭代积分的惯性导航解算方法及系统
CN107765244B (zh) 基于机载双天线InSAR基线测量方法和装置
CN110044385B (zh) 一种大失准角情况下的快速传递对准方法
CN110567461A (zh) 一种考虑无陀螺仪的非合作航天器姿态和参数估计方法
Sommer et al. Continuous-time estimation of attitude using b-splines on lie groups
CN109470266A (zh) 一种处理乘性噪声的星敏感器陀螺组合定姿方法
WO2018076211A1 (zh) 基于几何误差优化的图像中二次曲线拟合方法
WO2019178887A1 (zh) 基于函数迭代积分的刚体姿态解算方法及系统
US20170074689A1 (en) Sensor Fusion Method for Determining Orientation of an Object
Lupton et al. Efficient integration of inertial observations into visual SLAM without initialization
CN108871319B (zh) 一种基于地球重力场与地磁场序贯修正的姿态解算方法
Kao et al. Design and analysis of an orientation estimation system using coplanar gyro-free inertial measurement unit and magnetic sensors
Cen et al. A low-cost visual inertial odometry for mobile vehicle based on double stage Kalman filter
Molodenkov et al. Analytical solution of an approximate equation for the vector of a rigid body finite rotation and its application to construct the algorithm for determining the strapdown INS orientation
CN115311353B (zh) 一种多传感器多手柄控制器图优化紧耦合追踪方法及系统
Kamali et al. Multiplicative error state Kalman filter vs nonlinear complimentary filter for a high performance aircraft attitude estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17906507

Country of ref document: EP

Kind code of ref document: A1