WO2018191916A1 - Method to address logical channel timer conflicts and data stall - Google Patents

Method to address logical channel timer conflicts and data stall Download PDF

Info

Publication number
WO2018191916A1
WO2018191916A1 PCT/CN2017/081256 CN2017081256W WO2018191916A1 WO 2018191916 A1 WO2018191916 A1 WO 2018191916A1 CN 2017081256 W CN2017081256 W CN 2017081256W WO 2018191916 A1 WO2018191916 A1 WO 2018191916A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
scheduling request
logical channel
uplink
uplink information
Prior art date
Application number
PCT/CN2017/081256
Other languages
French (fr)
Inventor
Haiqin LIU
Peng Wu
Gang Xiao
Feilu Liu
Aziz Gholmieh
Shailesh Maheshwari
Saket BATHWAL
Rudhir Upretee
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2017/081256 priority Critical patent/WO2018191916A1/en
Publication of WO2018191916A1 publication Critical patent/WO2018191916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the following relates generally to wireless communication, and more specifically to methods to address logical channel timer conflicts and data stall.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., a Long Term Evolution (LTE) system, or a New Radio (NR) system) .
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • LTE Long Term Evolution
  • NR New Radio
  • a wireless multiple-access communications system may include a number of base stations or access network nodes, each simultaneously supporting communication for multiple communication devices, that may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Certain wireless communication systems may utilize timer (s) at the UE and/or base station for various functions.
  • the UE may initiate a scheduling request (SR) delay timer when the data is latency tolerant, e.g., non-high priority data.
  • the SR delay timer may be set to a configured value and allowed to expire before the UE sends a SR message to the base station requesting a grant of resources to transmit the data.
  • SR delay timer may conflict with the SR delay timer (and/or other timers) and may, in some aspects, cause data stall where the data is never transmitted from the UE.
  • a retransmission buffer status report timer may conflict with the SR delay timer.
  • a discard timer may also conflict with the SR delay timer or otherwise cause data stall where the UE data is lost.
  • the described techniques relate to improved methods, systems, devices, or apparatuses that support methods to address logical channel timer conflicts and data stall.
  • the described techniques provide for a user equipment (UE) to monitor, control, and/or manage aspects of various timer (s) configured on the UE, e.g., timers configured for logical channels, to avoid timer conflicts and data stall.
  • a user equipment UE
  • the UE may stop the retransmission BSR timer when a grant allocated to the UE allocates sufficient resources.
  • the resource grant may allocate sufficient resources to empty the buffer for the logical channel, for example, and therefore the UE may stop or otherwise disable the retransmission BSR timer.
  • the UE may disable one or more discard timers for a logical channel when the logical channel is configured for a SR delay timer.
  • the UE may have data for transmission and initiate the SR delay timer in response.
  • the UE may determine that, since there is a SR delay timer associated with the logical channel, a packet data convergence protocol (PDCP) timer also associated with the logical channel should be disabled (e.g., turned off, set to a maximum value, etc. ) . Accordingly, the UE may avoid data stall when the discard timer expires before the resource grant is received and the data transmitted.
  • PDCP packet data convergence protocol
  • a method of wireless communication may include receiving a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, initiating a buffer status report retransmission timer in response to receiving the resource grant, determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and stopping the buffer status report retransmission timer in response to the determining.
  • the apparatus may include means for receiving a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, means for initiating a buffer status report retransmission timer in response to receiving the resource grant, means for determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and means for stopping the buffer status report retransmission timer in response to the determining.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be operable to cause the processor to receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, initiate a buffer status report retransmission timer in response to receiving the resource grant, determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and stop the buffer status report retransmission timer in response to the determining.
  • a non-transitory computer readable medium for wireless communication may include instructions operable to cause a processor to receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, initiate a buffer status report retransmission timer in response to receiving the resource grant, determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and stop the buffer status report retransmission timer in response to the determining.
  • determining that the resource grant allocates resources that may be sufficient to transmit a portion of the uplink information that satisfies a threshold comprises: determining that the resource grant allocates resources that may be sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for determining that the uplink information may be available for the uplink transmission on the logical channel. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a buffer status report in response to the uplink information being available. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for initiating a scheduling request delay timer in response to transmitting the buffer status report.
  • the uplink information comprises one or more of latency-tolerant information or non-high-priority information.
  • the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  • a method of wireless communication may include determining that a set of uplink information is available for an uplink transmission on a logical channel, initiating the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and disabling a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  • the apparatus may include means for determining that a set of uplink information is available for an uplink transmission on a logical channel, means for initiating the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and means for disabling a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be operable to cause the processor to determine that a set of uplink information is available for an uplink transmission on a logical channel, initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and disable a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  • a non-transitory computer readable medium for wireless communication may include instructions operable to cause a processor to determine that a set of uplink information is available for an uplink transmission on a logical channel, initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and disable a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a scheduling request message in conjunction with initiating the scheduling request delay timer. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for receiving a resource grant in response to the scheduling request message. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting the first set of uplink information on the first logical channel using the resource grant.
  • the resource grant may be received prior to an expiration of the scheduling request delay timer.
  • the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  • FIG. 1 illustrates an example of a system for wireless communication that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a process that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a timing diagram that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a timing diagram that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • FIGs. 6 through 8 show block diagrams of a device that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • FIG. 9 illustrates a block diagram of a system including a UE that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • FIGs. 10 through 12 illustrate methods for method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • aspects (s) of the present disclosure generally provide for a user equipment (UE) to manage certain timers that may cause timer conflict, data stall, and other errors, to avoid timer conflicts, data stall, and other issues.
  • the UE and/or base station may be configured with various timers during conventional operations. Each timer may be configured for a logical channel, for a particular operation, and/or for certain conditions.
  • One example timer may include a scheduling request (SR) delay timer (e.g., a logical channel (LC) SR prohibit timer) that is configured when latency tolerant data is available for transmission from the UE.
  • the SR delay timer may be configured for a LC and/or a LC group (LCG) .
  • the purpose of the SR delay timer is to avoid immediately scheduling uplink resources for information that is not time-sensitive, e.g., low priority traffic.
  • conventional techniques provide for when the UE has data arrival (e.g., high data arrival (HDA) ) at a buffer for the logical channel to initiate the SR delay timer for a delay time period.
  • data arrival e.g., high data arrival (HDA)
  • the UE transmits a SR message to the base station requesting resources.
  • the base station responds with a resource grant and the UE uses the allocated resources to transmit the uplink information.
  • the UE conventionally initiates a retransmission timer associated with the buffer (e.g., buffer status report (BSR) retransmission (Retx) timer) .
  • BSR buffer status report
  • Retx retransmission
  • the UE again initiates the SR delay timer for the new data that may, in some scenarios, expire after the BSR retransmission timer.
  • the UE would automatically trigger a SR message to transmit the uplink information. This may result in the second set of uplink information being transmitted prior to the associated SR delay timer, thus negating the purpose of the SR delay timer.
  • the UE may have a discard timer configured for certain LCs, e.g., a packet data convergence protocol (PDCP) discard timer.
  • the UE may receive a first set of uplink information and initiate the SR delay timer. At the same time, the discard timer may be initiated for the channel. Additional uplink information may become available for the LC or a different LC and the UE may restart the SR delay timer based on the new data becoming available. However, the restarted SR delay timer may expire after the discard timer has expires. This may result in the data stored in the buffer being discarded upon the discard timer expiring. This data stall issue may prevent, in some scenarios, the UE from transmitting uplink data on the logical channel.
  • PDCP packet data convergence protocol
  • a UE may be configured to monitor whether a resource grant empties (or at least partially empties) a LC buffer and, based on the buffer status, start/stop the BSR retransmission timer accordingly. For example, the UE may transmit a SR message and receive a grant of resources in response.
  • the resource grant may generally allocate time-frequency resources for an uplink transmission of the UE’s information.
  • the UE may stop the BSR retransmission timer.
  • the UE may allow the BSR retransmission timer to expire naturally to initiate a retransmission of the remaining uplink information.
  • the UE may avoid a data stall issue by disabling a discard timer associated with a logical channel.
  • the UE may have uplink information available for transmission on a LC and initiate a SR delay timer in response.
  • the UE may determine whether or not a discard timer (e.g. ., a PDCP discard timer) is associated with the logical channel and, if so, disable the discard timer.
  • Disabling the discard timer may include setting the timer to a maximum value (e.g., a high or long duration value that, as a practical matter, effectively disables the timer) , reconfiguring the timer such that it is disabled, ignoring an output of the timer, etc. Accordingly, the UE may disable the discard timer when there is a SR delay timer configured for the logical channel.
  • FIG. 1 illustrates an example of a wireless communication system 100 in accordance with various aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communication system 100 may be a Long Term Evolution (LTE) , LTE-Advanced (LTE-A) network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • wireless communication system 100 may support enhanced broadband communications, ultra-reliable (i.e., mission critical) communications, low latency communications, latency-tolerant communications, and communications with low-cost and low-complexity devices.
  • ultra-reliable i.e., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Each base station 105 may provide communication coverage for a respective geographic coverage area 110.
  • Communication links 125 shown in wireless communication system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions, from a base station 105 to a UE 115.
  • Control information and data may be multiplexed on an uplink channel or downlink according to various techniques. Control information and data may be multiplexed on a downlink channel, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • TDM transmission time interval
  • FDM frequency division multiplexing
  • hybrid TDM-FDM techniques hybrid TDM-FDM techniques.
  • the control information transmitted during a transmission time interval (TTI) of a downlink channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region and
  • UEs 115 may be dispersed throughout the wireless communication system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE 115 may also be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communication
  • a UE 115 may also be able to communicate directly with other UEs (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the coverage area 110 of a cell. Other UEs 115 in such a group may be outside the coverage area 110 of a cell, or otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out independent of a base station 105.
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines, i.e., Machine-to-Machine (M2M) communication.
  • M2M or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station without human intervention.
  • M2M or MTC may refer to communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • an MTC device may operate using half-duplex (one-way) communications at a reduced peak rate. MTC devices may also be configured to enter a power saving “deep sleep” mode when not engaging in active communications. In some aspects, MTC or IoT devices may be designed to support mission critical functions and wireless communications system may be configured to provide ultra-reliable communications for these functions.
  • Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., S1, etc. ) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., X2, etc. ) either directly or indirectly (e.g., through core network 130) . Base stations 105 may perform radio configuration and scheduling for communication with UEs 115, or may operate under the control of a base station controller (not shown) . In some examples, base stations 105 may be macro cells, small cells, hot spots, or the like. Base stations 105 may also be referred to as evolved NodeBs (eNBs) or gNodeBs (gNBs) 105.
  • eNBs evolved NodeBs
  • gNodeBs gNodeBs
  • a base station 105 may be connected by an S1 interface to the core network 130.
  • the core network may be an evolved packet core (EPC) , that may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may be the control node that processes the signaling between the UE 115 and the EPC. All user Internet Protocol (IP) packets may be transferred through the S-GW, that itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include the Internet, the Intranet, an IP Multimedia Subsystem (IMS) , and a Packet-Switched (PS) Streaming Service.
  • IMS IP Multimedia Subsystem
  • PS Packet-Switched
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the network devices, such as base station 105 may include subcomponents such as an access network entity, that may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with a number of UEs 115 through a number of other access network transmission entities, each of that may be an example of a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communication system 100 may operate in an ultra-high frequency (UHF) frequency region using frequency bands from 700 MHz to 2600 MHz (2.6 GHz) , although some networks (e.g., a wireless local area network (WLAN) ) may use frequencies as high as 4 GHz. This region may also be known as the decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may propagate mainly by line of sight, and may be blocked by buildings and environmental features. However, the waves may penetrate walls sufficiently to provide service to UEs 115 located indoors.
  • wireless communication system 100 may also utilize extremely high frequency (EHF) portions of the spectrum (e.g., from 30 GHz to 300 GHz) . This region may also be known as the millimeter band, since the wavelengths range from approximately one millimeter to one centimeter in length.
  • EHF antennas may be even smaller and more closely spaced than UHF antennas. In some aspects, this may facilitate use of antenna arrays within a UE 115 (e.g., for directional beamforming) .
  • EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than UHF transmissions.
  • wireless communication system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105.
  • Devices operating in mmW or EHF bands may have multiple antennas to allow beamforming. That is, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115.
  • Beamforming (that may also be referred to as spatial filtering or directional transmission) is a signal processing technique that may be used at a transmitter (e.g., a base station 105) to shape and/or steer an overall antenna beam in the direction of a target receiver (e.g., a UE 115) . This may be achieved by combining elements in an antenna array in such a way that transmitted signals at particular angles experience constructive interference while others experience destructive interference.
  • MIMO wireless systems use a transmission scheme between a transmitter (e.g., a base station 105) and a receiver (e.g., a UE 115) , where both transmitter and receiver are equipped with multiple antennas.
  • Some portions of wireless communications system 100 may use beamforming.
  • base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use for beamforming in its communication with UE 115. Signals may be transmitted multiple times in different directions (e.g., each transmission may be beamformed differently) .
  • a mmW receiver e.g., a UE 115
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, that may support beamforming or MIMO operation.
  • One or more base station antennas or antenna arrays may be collocated at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may multiple use antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115.
  • wireless communication system 100 may be a packet-based network that operate according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may in some aspects perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use automatic repeat/request (ARQ) and/or Hybrid ARQ (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • ARQ automatic repeat/request
  • HARQ Hybrid ARQ
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network device, base station 105, or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • PHY Physical
  • Time intervals in LTE or NR may be expressed in multiples of a basic time unit.
  • Time resources may be organized according to radio frames, that may be identified by a system frame number (SFN) .
  • SFN system frame number
  • Each frame may include ten 1ms subframes numbered from 0 to 9.
  • a subframe may be further divided into two . 5ms slots, each of which contains 6 or 7 modulation symbol periods (depending on the length of the cyclic prefix prepended to each symbol) . Excluding the cyclic prefix, each symbol may contain a certain number of sample periods.
  • the subframe may be the smallest scheduling unit, also known as a TTI.
  • a TTI may be shorter than a subframe or may be dynamically selected (e.g., in short TTI bursts or in selected component carriers using short TTIs) .
  • a resource element may consist of one symbol period and one subcarrier (e.g., a 15 KHz frequency range) .
  • a resource block may contain 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain (1 slot) , or 84 resource elements.
  • the number of bits carried by each resource element may depend on the modulation scheme (the configuration of symbols that may be selected during each symbol period) . Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate may be.
  • Wireless communication system 100 may support operation on multiple cells or carriers, a feature that may be referred to as carrier aggregation (CA) or multi-carrier operation.
  • a carrier may also be referred to as a component carrier (CC) , a layer, a channel, etc.
  • CC component carrier
  • the terms “carrier, ” “component carrier, ” “cell, ” and “channel” may be used interchangeably herein.
  • a UE 115 may be configured with multiple downlink CCs and one or more uplink CCs for carrier aggregation.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communication system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including: wider bandwidth, shorter symbol duration, shorter TTIs, and modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole bandwidth or prefer to use a limited bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other CCs, that may include use of a reduced symbol duration as compared with symbol durations of the other CCs.
  • a shorter symbol duration is associated with increased subcarrier spacing.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbols. In some aspects, the TTI duration (that is, the number of symbols in a TTI) may be variable.
  • a shared radio frequency spectrum band may be utilized in an NR shared spectrum system.
  • an NR shared spectrum may utilize any combination of licensed, shared, and unlicensed spectrums, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across frequency) and horizontal (e.g., across time) sharing of resources.
  • wireless communication system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communication system 100 may employ LTE License Assisted Access (LTE-LAA) or LTE Unlicensed (LTE U) radio access technology or NR technology in an unlicensed band such as the 5Ghz Industrial, Scientific, and Medical (ISM) band.
  • LTE-LAA LTE License Assisted Access
  • LTE U LTE Unlicensed
  • NR New Radio
  • unlicensed band such as the 5Ghz Industrial, Scientific, and Medical (ISM) band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure the channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a CA configuration in conjunction with CCs operating in a licensed band.
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, or both.
  • Duplexing in unlicensed spectrum may be based on frequency division du
  • UEs 115 may include a timer manager 101, that may provide for the UE 115 to receive a resource grant for an uplink transmission of uplink information on a logical channel. For example, the UE 115 may receive and store the uplink information in an uplink buffer.
  • Timer manager 101 may initiate a BSR retransmission timer (e.g., Retx BSR timer) in response to the resource grant.
  • Timer manager 101 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold (e.g., enough resources to empty the uplink buffer) .
  • Timer manager 101 may stop the BSR retransmission timer based on the resource grant allocating sufficient resources.
  • timer manager 101 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Timer manager 101 may initiate the SR delay timer for the logical channel in response to determining that the set of uplink information is available. Timer manager 101 may disable a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  • FIG. 2 illustrates an example of a process 200 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure.
  • Process 200 may implement aspect (s) of wireless communication system 100, as described herein.
  • Process 200 may include a UE 205 and a base station 210, that may be examples of the corresponding devices described herein.
  • process 200 illustrates one non-limiting example of a process that allows the UE 205 to be configured to preserve the purpose of the SR delay timer (e.g., SR prohibit timer) for latency tolerant data.
  • the UE 205 may modify operations of a BSR retransmission timer for SR delay timer configured logical channels.
  • the modified BSR retransmission timer may be stopped, paused, etc., when the UE 205 determines that there is no (or little) data remaining in the logical channel uplink buffer after transmission using allocated resources.
  • initiation of the BSR retransmission timer may be based on when the UE 205 receives a resource grant, e.g., regardless of the uplink buffer status. Initiation of the SR delay timer, however, may be based on changes to the uplink buffer status.
  • conventional techniques provide for two different timers that are based on independent sources. In some scenarios, this may lead to timer conflicts between the timers.
  • aspects (s) of the present disclosure provide for, when the resource grant allocates sufficient resources to empty out the UE 205 uplink buffer (that is logical channel group (LCG) configured) , the BSR retransmission timer is stopped or otherwise disabled.
  • LCG logical channel group
  • the UE 205 may receive a resource grant from the base station 210.
  • the resource grant may be for an uplink transmission of uplink information on a LC, e.g., the uplink information may be stored in an uplink buffer of UE 205.
  • the uplink information may be low-priority traffic, latency tolerant traffic, and the like.
  • UE 205 may receive the resource grant in response to a SR message.
  • UE 205 may have uplink data arrive at the uplink buffer (e.g., from an upper layer of the UE 205) .
  • the UE 205 may transmit a BSR associated with the available uplink information, e.g., an indication that uplink data is available, an amount of uplink information, etc.
  • UE 205 may also initiate a SR delay timer (e.g., a LogicalChannelSR-ProhibitTimer) .
  • the SR delay timer expires, the UE 205 may transmit the SR message requesting resources for the uplink transmission.
  • UE 205 may initiate a BSR retransmission timer (e.g., Retx BSR timer) .
  • the BSR retransmission timer may be initiated in response to receiving the resource grant. As is discussed above, initiation of the BSR retransmission timer may be based on receipt of a grant rather than the current status of the uplink buffer.
  • UE 205 may determine whether the resource grant allocates sufficient resources. For example, UE 205 may determine whether the allocated resources (e.g., time-frequency resources) are sufficient to empty the uplink buffer, to transmit a portion of the uplink buffer satisfying a threshold (e.g., 50%, 75%, 90%, 100%of the uplink information stored in the uplink buffer) .
  • a threshold e.g. 50%, 75%, 90%, 100%of the uplink information stored in the uplink buffer
  • UE 205 may stop the BSR retransmission timer when the allocated resources are sufficient to transmit the portion of the uplink information that satisfies the threshold.
  • the BSR retransmission timer may not consider new uplink information becoming available at UE 205.
  • UE 205 may receive the resource grant and respond by transmitting its uplink information and initiating the BSR retransmission timer. Subsequently, but before the BSR retransmission timer expires, additional uplink information may become available at UE 205 and, in response, the SR delay timer may be initiated. Before the SR delay timer expires and the UE 205 can send the SR message, the BSR retransmission timer that was started with the first set of uplink information may expire. In response, UE 205 would conventionally transmit an SR message along with a new BSR message.
  • UE 205 may determine whether uplink information is stored in the uplink buffer (e.g., some or all of the information from the first set of uplink information and/or the uplink information from the second set of uplink information) and stop the BSR retransmission timer when a sufficient amount of uplink information is stored in the uplink buffer.
  • FIG. 3 illustrates an example of a timing diagram 300 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure.
  • Timing diagram 300 may implement aspect (s) of wireless communication system 100 and/or process 200.
  • a UE and/or base station may implement aspect (s) of timing diagram 300, that may be examples of the corresponding devices described herein.
  • timing diagram 300 may include a logical channel that is SR delay timer configured.
  • certain logical channels may be configured with a SR delay (or prohibit) timer.
  • the purpose of the SR delay timer is to delay the triggering of an SR message for a time period equal to the length of the SR delay timer (e.g., six seconds in some examples) .
  • The may reduce unnecessary load on the SR channel and unnecessary battery usage by the UE.
  • the UE may also be configured with a BSR retransmission timer (e.g., retx BSR timer or RETX_BSR_TIMER) that provides certain robustness when, for example, the network or base station does not give a resource grant to the UE.
  • a regular BSR may to be triggered.
  • the new arrival may trigger a regular BSR and initiate the SR delay timer (but not immediately initiate an SR message) .
  • the SR delay timer expires, the SR may be triggered. Due to BSR retransmission timer logic in current protocols, this SR delay timer logic may be broken (e.g., rendered unused) and SR/RACH messages will be triggered despite the fact that the SR delay timer was supposed to delay the SR message trigger.
  • data may arrive in the logical channel (e.g., the UE may experience high data arrival (HDA) ) .
  • the arrival of the uplink information may trigger transmission of a regular BSR from the UE and imitating the logical channel SR delay timer (LC-SR delay timer) .
  • the LC-SR delay timer may have a SR delay duration 305 that may be, in one example, six seconds. Although the present example is described with reference to particular time durations, these are provided by way of example only and the described techniques are not limited to the example time durations.
  • the SR delay timer may expire and, in response, this may trigger the SR message.
  • the UE may wait for a duration 310 for the resource grant in response to the SR message.
  • the UE may receive the resource grant and may start the BSR retransmission timer (e.g., Retx_BSR_timer) .
  • the BSR retransmission timer may be initiated solely in response to the arrival of the resource grant rather than the status of the uplink buffer.
  • the resource grant may provide sufficient time-frequency resources to empty the uplink buffer of the UE (e.g., may transmit all of the information received at time t0) .
  • the BSR retransmission timer may have a BSR delay duration of 315 and may be 14 seconds, in some examples. Thus, the uplink buffer may be empty and yet the BSR retransmission timer may continue to run.
  • the UE may receive a second set of uplink information available for uplink transmission.
  • the second set of uplink information may be stored in the uplink buffer of the logical channel.
  • the empty uplink buffer e.g., MAC buffer
  • this may trigger a regular BSR from the UE and the UE may again start or initiate the LC-SR prohibit timer, e.g., for the SR delay duration 335.
  • this may result in a timer conflict between the SR retransmission timer and the second SR delay timer.
  • the BSR retransmission timer may expire at time t4. Expiration of the BSR retransmission time may trigger a regular BSR message, according to current techniques (e.g., the BSR message was not triggered by data becoming available) .
  • the LC-SR delay timer will expire quickly after the second set of uplink information becomes available and the SR message will be triggered immediately. In this scenario, the intention of LC-SR delay timer starting at time t3 is broken or otherwise ineffective.
  • the UE may determine whether resource grant allocates sufficient resources to transmit a portion of the uplink information satisfying a threshold (e.g., 50%, 75%, 90%, 100%of the uplink information) . That is, at 320 the UE may determine whether there is information being stored in the uplink buffer and, if so, at 325 the UE may stop the BSR retransmission timer.
  • a threshold e.g. 50%, 75%, 90%, 100%of the uplink information
  • timing diagram 300 shows the UE determining whether the buffer is empty at time t3, it is to be understood that the UE may make this determination before time t3, and/or at time t3, or after time t3 (but before time t4) .
  • the UE may determine whether there is uplink information stored in the uplink buffer and, if so, stop the BSR retransmission timer (shown in dashed-line between time t3 and t4) . If there is no uplink information stored in the uplink buffer, the UE may continue the BSR retransmission timer.
  • FIG. 4 illustrates an example of a process 400 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure.
  • Process 400 may implement aspect (s) of wireless communication system 100, process 200, and/or timing diagram 300, as described herein.
  • Process 400 may include a UE 405 and a base station 410, that may be examples of the corresponding devices described herein.
  • process 400 illustrates one non-limiting example of a process that allows the UE 405 to be configured to avoid a data stall issue caused when a logical channel is configured for a SR delay timer.
  • the UE 405 may modify operations of a PDCP discard timer for SR delay timer configured logical channels.
  • the modified PDCP discard timer may be stopped, paused, or otherwise disabled, when the UE 405 determines that there is SR delay timer configured for the logical channel (or logical channels within a LCG) .
  • the UE 405 may determine that uplink information is available for transmission on a logical channel.
  • the uplink information may be available on a logical channel (e.g., LC0) that is associated with low priority or otherwise latency tolerant communications and is therefore configured with a SR delay timer.
  • a logical channel e.g., LC0
  • the UE may initiate a SR delay timer for the logical channel in response to the available uplink information.
  • the SR delay timer may have a delay duration of six seconds, in one non-limiting example.
  • the UE may transmit a regular BSR message in conjunction with initiating the SR delay timer.
  • the UE may disable a PDCP discard time for the logical channel since the logical channel is configured for the SR delay timer and/or that the SR delay timer has been initiated.
  • Disabling the PDCP discard timer may include modifying the configuration of the PDCP discard timer to prevent initiation for some or all SR delay timer configured logical channels, setting the PDCP discard timer to a high or infinite value to prevent it from expiring at any relevant time, pausing the PDCP discard timer, and the like.
  • the UE may optionally transmit the uplink information to base station 410 using time-frequency resources allocated in response to a SR message transmitted upon expiration of the SR delay timer.
  • FIG. 5 illustrates an example of a timing diagram 500 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure.
  • Timing diagram 500 may implement aspect (s) of wireless communication system 100, processes 200/400 and/or timing diagram 300.
  • a UE and/or base station may implement aspect (s) of timing diagram 500, that may be examples of the corresponding devices described herein.
  • timing diagram 500 may include a logical channel that is SR delay timer configured.
  • the UE may be configured with a LCG that includes two logical channels (e.g., LC0 and LC1) .
  • LC1 may have a higher priority than LC0.
  • the LCG may share a SR delay timer and one or both of LC0 and LC1 may be configured with a PDCP discard timer.
  • the PDCP transmitter Upon receipt of an service data unit (SDU) from the upper layer, the PDCP transmitter (e.g., UE) conventionally starts a PDCP discard timer for the SDU. Once started, the PCDP discard timer typically runs until it expires. When the PCDP discard timer expires, the PDCP transmitter discards the PDCP SDU and sends an indication to the RLC layer to discard the corresponding PDCP protocol data unit (PDU) if the PDU has already been delivered to the RLC layer.
  • SDU service data unit
  • the intent of the PDCP discard timer is to avoid data being accumulated at the access stratum (AS) layer and saturating the uplink buffer if the base station 510 and/or network either stops giving a resource grant to UE 505 or the resource grant size is small. Also, some application data may be delay sensitive and if it isn’t delivered timely, that data may need to be discarded.
  • AS access stratum
  • the UE may identify data for uplink transmission on LC0. For example, the UE may determine that uplink information is stored in the uplink buffer. Accordingly, the UE may initiate the SR delay timer at time t0.
  • the SR delay timer may have a SR delay duration 505 that may be eight seconds, in some examples. Thus, the SR delay duration 505 may extend between time t0 and t2, when allowed to expire according to the SR delay duration 505.
  • the PDCP discard timer may also be started at time t0.
  • the PDCP discard timer may have a PDCP discard duration 510, that may be 10 seconds, in some examples.
  • the PDCP discard duration 510 may extend between time t0 and t3, when allowed to expire according to the PDCP discard duration 510.
  • the UE may restart the SR delay timer (e.g., the SR delay timer originally started at time t0) .
  • the second set of uplink information may arrive at six seconds into the first SR delay timer and the restarted SR delay timer may have a SR delay duration 515 of eight seconds. This means that the SR delay timer may not expire at time t2, as would have happened had the additional data not arrived at the uplink buffer.
  • the UE may determine where there is a LC-SR delay timer configured. For example, the UE may determine whether there is a SR delay timer configured for LC0 and, if so, at 525 the UE may disable the PDCP discard timer. This may avoid the PDCP discard timer expiring at time t3 and the uplink buffer for LC0 being discarded. If there is no SR delay timer configured, the UE may continue the PDCP discard timer.
  • timing diagram 500 shows the UE determining whether a SR delay timer is configured at time t1, it is to be understood that the UE may make this determination anytime during PDCP discard duration 510.
  • the SR delay timer may expire and the UE may trigger a SR message to the base station requesting resources to empty the uplink buffer, e.g., the LC0 and LC1 uplink information stored in the uplink buffer. Accordingly, the UE may avoid the data stall issue for logical channels configured with an SR delay timer and PDCP discard timer.
  • FIG. 6 shows a block diagram 600 of a wireless device 605 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • Wireless device 605 may be an example of aspects of a UE 115 as described herein.
  • Wireless device 605 may include receiver 610, timer manager 615, and transmitter 620.
  • Wireless device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to method to address logical channel timer conflicts and data stall, etc. ) . Information may be passed on to other components of the device.
  • the receiver 610 may be an example of aspects of the transceiver 935 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • Timer manager 615 may be an example of aspects of the timer manager 915 described with reference to FIG. 9.
  • Timer manager 615 and/or at least some of its various sub-components may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions of the timer manager 615 and/or at least some of its various sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , an field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • timer manager 615 and/or at least some of its various sub-components may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical devices.
  • timer manager 615 and/or at least some of its various sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • timer manager 615 and/or at least some of its various sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • timer manager 615 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. Timer manager 615 may initiate a buffer status report retransmission timer in response to receiving the resource grant. Timer manager 615 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. Timer manager 615 may stop the buffer status report retransmission timer in response to the determining.
  • the timer manager 615 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Timer manager 615 may initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available. Timer manager 615 may disable a PDCP discard timer for the logical channel, the disabling based on the scheduling request delay timer being initiated for the logical channel.
  • Transmitter 620 may transmit signals generated by other components of the device.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 935 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a wireless device 705 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • Wireless device 705 may be an example of aspects of a wireless device 605 or a UE 115 as described herein.
  • Wireless device 705 may include receiver 710, timer manager 715, and transmitter 720.
  • Wireless device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to methods to address logical channel timer conflicts and data stall, etc. ) . Information may be passed on to other components of the device.
  • the receiver 710 may be an example of aspects of the transceiver 935 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • Timer manager 715 may be an example of aspects of the timer manager 915 described with reference to FIG. 9. Timer manager 715 may also include grant manager 725, BSR retransmission manager 730, buffer manager 735, delay timer manager 740, and PDCP timer manager 745.
  • Grant manager 725 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. Grant manager 725 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. In some aspects, determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold includes: determining that the resource grant allocates resources that are sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
  • BSR retransmission manager 730 may initiate a BSR retransmission timer in response to receiving the resource grant. BSR retransmission manager 730 may stop the BSR retransmission timer in response to the determining.
  • Buffer manager 735 may determine that the uplink information is available for the uplink transmission on the logical channel. Buffer manager 735 may initiate a SR delay timer in response to transmitting the BSR. Buffer manager 735 may transmit a SR message in response to expiration of the SR delay timer. Buffer manager 735 may receive the resource grant in response to the scheduling request message. Buffer manager 735 may transmit a BSR in response to the uplink information being available. Buffer manager 735 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Buffer manager 735 may transmit a scheduling request message in conjunction with initiating the SR delay timer. Buffer manager 735 may receive a resource grant in response to the scheduling request message.
  • Buffer manager 735 may transmit the set of uplink information on the first logical channel using the resource grant.
  • the scheduling request delay timer includes a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  • the uplink information includes one or more of latency-tolerant information or non-high-priority information.
  • the resource grant is received prior to an expiration of the SR delay timer.
  • Delay timer manager 740 may initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available.
  • PDCP timer manager 745 may disable a PDCP discard timer for the logical channel, the disabling based on the SR delay timer being initiated for the logical channel.
  • Transmitter 720 may transmit signals generated by other components of the device.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 935 described with reference to FIG. 9.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a timer manager 815 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • the timer manager 815 may be an example of aspects of a timer manager 615, a timer manager 715, or a timer manager 915 described with reference to FIGs. 6, 7, and 9.
  • the timer manager 815 may include grant manager 820, BSR retransmission manager 825, buffer manager 830, delay timer manager 835, and PDCP timer manager 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • Grant manager 820 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. Grant manager 820 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. In some aspects, determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold includes: determining that the resource grant allocates resources that are sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
  • BSR retransmission manager 825 may initiate a BSR retransmission timer in response to receiving the resource grant. BSR retransmission manager 825 may stop the BSR retransmission timer in response to the determining.
  • Buffer manager 830 may determine that the uplink information is available for the uplink transmission on the logical channel. Buffer manager 830 may initiate a SR delay timer in response to transmitting the BSR. Buffer manager 830 may transmit a scheduling request message in response to expiration of the SR delay timer. Buffer manager 830 may receive the resource grant in response to the scheduling request message. Buffer manager 830 may transmit a BSR in response to the uplink information being available. Buffer manager 830 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Buffer manager 830 may transmit a scheduling request message in conjunction with initiating the SR delay timer. Buffer manager 830 may receive a resource grant in response to the scheduling request message.
  • Buffer manager 830 may transmit the set of uplink information on the logical channel using the resource grant.
  • the SR delay timer includes a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  • the uplink information includes one or more of latency-tolerant information or non-high-priority information.
  • the resource grant is received prior to an expiration of the SR delay timer.
  • Delay timer manager 835 may initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available.
  • PDCP timer manager 840 may disable a PDCP discard timer for the logical channel, the disabling based on the SR delay timer being initiated for the logical channel.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • Device 905 may be an example of or include the components of wireless device 605, wireless device 705, or a UE 115 as described herein.
  • Device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including timer manager 915, processor 920, memory 925, software 930, transceiver 935, antenna 940, and I/O controller 945. These components may be in electronic communication via one or more busses (e.g., bus 910) .
  • Device 905 may communicate wirelessly with one or more base stations 105.
  • Processor 920 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • processor 920 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 920.
  • Processor 920 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting method to address logical channel timer conflicts and data stall) .
  • Memory 925 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 925 may store computer-readable, computer-executable software 930 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 925 may contain, among other things, a basic input/output system (BIOS) that may control basic hardware and/or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • Software 930 may include code to implement aspects of the present disclosure, including code to support method to address logical channel timer conflicts and data stall.
  • Software 930 may be stored in a non-transitory computer-readable medium such as system memory or other memory.
  • the software 930 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • Transceiver 935 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 935 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 935 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 940. However, in some aspects the device may have more than one antenna 940, that may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • I/O controller 945 may manage input and output signals for device 905. I/O controller 945 may also manage peripherals not integrated into device 905. In some aspects, I/O controller 945 may represent a physical connection or port to an external peripheral. In some aspects, I/O controller 945 may utilize an operating system such as or another known operating system. In other aspects, I/O controller 945 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some aspects, I/O controller 945 may be implemented as part of a processor. In some aspects, a user may interact with device 905 via I/O controller 945 or via hardware components controlled by I/O controller 945.
  • FIG. 10 shows a flowchart illustrating a method 1000 to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a timer manager as described with reference to FIGs. 6 through 9.
  • a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
  • the UE 115 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer.
  • the operations of block 1005 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1005 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may initiate a BSR retransmission timer in response to receiving the resource grant.
  • the operations of block 1010 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1010 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold.
  • the operations of block 1015 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1015 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may stop the BSR retransmission timer in response to the determining.
  • the operations of block 1020 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1020 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
  • FIG. 11 shows a flowchart illustrating a method 1100 to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a timer manager as described with reference to FIGs. 6 through 9.
  • a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
  • the UE 115 may determine that the uplink information is available for the uplink transmission on the logical channel.
  • the operations of block 1105 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1105 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may transmit a BSR in response to the uplink information being available.
  • the operations of block 1110 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1110 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may initiate a scheduling request delay timer in response to transmitting the BSR.
  • the operations of block 1115 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1115 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer.
  • the operations of block 1120 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1120 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may initiate a BSR retransmission timer in response to receiving the resource grant.
  • the operations of block 1125 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1125 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold.
  • the operations of block 1130 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1130 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may stop the BSR retransmission timer in response to the determining.
  • the operations of block 1135 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1135 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
  • FIG. 12 shows a flowchart illustrating a method 1200 to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a timer manager as described with reference to FIGs. 6 through 9.
  • a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
  • the UE 115 may determine that a set of uplink information is available for an uplink transmission on a logical channel.
  • the operations of block 1205 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1205 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may initiate the SR delay timer for the logical channel in response to determining that the set of uplink information is available.
  • the operations of block 1210 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1210 may be performed by a delay timer manager as described with reference to FIGs. 6 through 9.
  • the UE 115 may disable a PDCP discard timer for the logical channel, the disabling based at least in part on the SR delay timer being initiated for the logical channel.
  • the operations of block 1215 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1215 may be performed by a PDCP timer manager as described with reference to FIGs. 6 through 9.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • WCDMA Wideband CDMA
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE and LTE-A are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) .
  • 3GPP 3rd Generation
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE or an NR system may be described for purposes of example, and LTE or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE or NR applications.
  • the term eNB may be generally used to describe the base stations.
  • the wireless communication system or systems described herein may include a heterogeneous LTE/LTE-A or NR network in which different types of eNBs provide coverage for various geographical regions.
  • each eNB, next generation NodeB (gNB) , or base station may provide communication coverage for a macro cell, a small cell, or other types of cell.
  • the term “cell” may be used to describe a base station, a carrier or component carrier associated with a base station, or a coverage area (e.g., sector, etc. ) of a carrier or base station, depending on context.
  • Base stations may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, eNB, gNB, Home NodeB, a Home eNodeB, or some other suitable terminology.
  • the geographic coverage area for a base station may be divided into sectors making up only a portion of the coverage area.
  • the wireless communications system or systems described herein may include base stations of different types (e.g., macro or small cell base stations) .
  • the UEs described herein may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like. There may be overlapping geographic coverage areas for different technologies.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell is a lower-powered base station, as compared with a macro cell, that may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells (e.g., component carriers) .
  • the wireless communications system or systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Each communication link described herein including, for example, wireless communications system 100 of FIG. 1—may include one or more carriers, where each carrier may be a signal made up of multiple sub-carriers (e.g., waveform signals of different frequencies) .
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive a resource grant for an uplink transmission of uplink information on a logical channel. The uplink information may be stored in an uplink buffer. The UE may initiate a buffer status report retransmission timer in response to receiving the resource grant. The UE may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. The UE may stop the buffer status report retransmission timer in response to the determining.

Description

METHOD TO ADDRESS LOGICAL CHANNEL TIMER CONFLICTS AND DATA STALL BACKGROUND
The following relates generally to wireless communication, and more specifically to methods to address logical channel timer conflicts and data stall.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., a Long Term Evolution (LTE) system, or a New Radio (NR) system) . A wireless multiple-access communications system may include a number of base stations or access network nodes, each simultaneously supporting communication for multiple communication devices, that may be otherwise known as user equipment (UE) .
Certain wireless communication systems may utilize timer (s) at the UE and/or base station for various functions. In one example, when a UE has data to transmit to a base station, the UE may initiate a scheduling request (SR) delay timer when the data is latency tolerant, e.g., non-high priority data. The SR delay timer may be set to a configured value and allowed to expire before the UE sends a SR message to the base station requesting a grant of resources to transmit the data. However, other timers configured for the UE may conflict with the SR delay timer (and/or other timers) and may, in some aspects, cause data stall where the data is never transmitted from the UE. In one non-limiting example, in some configurations a retransmission buffer status report timer may conflict with the SR delay timer. In another example, a discard timer may also conflict with the SR delay timer or otherwise cause data stall where the UE data is lost.
SUMMARY
The described techniques relate to improved methods, systems, devices, or apparatuses that support methods to address logical channel timer conflicts and data stall.  Generally, the described techniques provide for a user equipment (UE) to monitor, control, and/or manage aspects of various timer (s) configured on the UE, e.g., timers configured for logical channels, to avoid timer conflicts and data stall. In one example where the scheduling request (SR) delay timer conflicts with a retransmission buffer status report (Retx BSR) timer, the UE may stop the retransmission BSR timer when a grant allocated to the UE allocates sufficient resources. The resource grant may allocate sufficient resources to empty the buffer for the logical channel, for example, and therefore the UE may stop or otherwise disable the retransmission BSR timer. In another example, the UE may disable one or more discard timers for a logical channel when the logical channel is configured for a SR delay timer. For example, the UE may have data for transmission and initiate the SR delay timer in response. The UE may determine that, since there is a SR delay timer associated with the logical channel, a packet data convergence protocol (PDCP) timer also associated with the logical channel should be disabled (e.g., turned off, set to a maximum value, etc. ) . Accordingly, the UE may avoid data stall when the discard timer expires before the resource grant is received and the data transmitted.
A method of wireless communication is described. The method may include receiving a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, initiating a buffer status report retransmission timer in response to receiving the resource grant, determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and stopping the buffer status report retransmission timer in response to the determining.
An apparatus for wireless communication is described. The apparatus may include means for receiving a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, means for initiating a buffer status report retransmission timer in response to receiving the resource grant, means for determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and means for stopping the buffer status report retransmission timer in response to the determining.
Another apparatus for wireless communication is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be operable to cause the processor to  receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, initiate a buffer status report retransmission timer in response to receiving the resource grant, determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and stop the buffer status report retransmission timer in response to the determining.
A non-transitory computer readable medium for wireless communication is described. The non-transitory computer-readable medium may include instructions operable to cause a processor to receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer, initiate a buffer status report retransmission timer in response to receiving the resource grant, determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold, and stop the buffer status report retransmission timer in response to the determining.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, determining that the resource grant allocates resources that may be sufficient to transmit a portion of the uplink information that satisfies a threshold comprises: determining that the resource grant allocates resources that may be sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for determining that the uplink information may be available for the uplink transmission on the logical channel. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a buffer status report in response to the uplink information being available. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for initiating a scheduling request delay timer in response to transmitting the buffer status report.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a scheduling request message in response to expiration of the scheduling request delay timer. Some examples of the method, apparatus, and non-transitory computer-readable  medium described above may further include processes, features, means, or instructions for receiving the resource grant in response to the scheduling request message.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, the uplink information comprises one or more of latency-tolerant information or non-high-priority information.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
A method of wireless communication is described. The method may include determining that a set of uplink information is available for an uplink transmission on a logical channel, initiating the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and disabling a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
An apparatus for wireless communication is described. The apparatus may include means for determining that a set of uplink information is available for an uplink transmission on a logical channel, means for initiating the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and means for disabling a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
Another apparatus for wireless communication is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be operable to cause the processor to determine that a set of uplink information is available for an uplink transmission on a logical channel, initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and disable a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
A non-transitory computer readable medium for wireless communication is described. The non-transitory computer-readable medium may include instructions operable to cause a processor to determine that a set of uplink information is available for an uplink  transmission on a logical channel, initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available, and disable a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a scheduling request message in conjunction with initiating the scheduling request delay timer. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for receiving a resource grant in response to the scheduling request message. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting the first set of uplink information on the first logical channel using the resource grant.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, the resource grant may be received prior to an expiration of the scheduling request delay timer.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communication that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a process that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a timing diagram that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a timing diagram that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
FIGs. 6 through 8 show block diagrams of a device that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
FIG. 9 illustrates a block diagram of a system including a UE that supports method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
FIGs. 10 through 12 illustrate methods for method to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Aspect (s) of the present disclosure generally provide for a user equipment (UE) to manage certain timers that may cause timer conflict, data stall, and other errors, to avoid timer conflicts, data stall, and other issues. For example, the UE and/or base station may be configured with various timers during conventional operations. Each timer may be configured for a logical channel, for a particular operation, and/or for certain conditions. One example timer may include a scheduling request (SR) delay timer (e.g., a logical channel (LC) SR prohibit timer) that is configured when latency tolerant data is available for transmission from the UE. The SR delay timer may be configured for a LC and/or a LC group (LCG) . The purpose of the SR delay timer is to avoid immediately scheduling uplink resources for information that is not time-sensitive, e.g., low priority traffic.
Generally, conventional techniques provide for when the UE has data arrival (e.g., high data arrival (HDA) ) at a buffer for the logical channel to initiate the SR delay timer for a delay time period. When the SR delay timer expires, the UE transmits a SR message to the base station requesting resources. The base station responds with a resource grant and the UE uses the allocated resources to transmit the uplink information. However, when the grant arrives, the UE conventionally initiates a retransmission timer associated with the buffer (e.g., buffer status report (BSR) retransmission (Retx) timer) . In the situation where additional data  arrives in the buffer, the UE again initiates the SR delay timer for the new data that may, in some scenarios, expire after the BSR retransmission timer. However, once the retransmission BSR timer expires, the UE would automatically trigger a SR message to transmit the uplink information. This may result in the second set of uplink information being transmitted prior to the associated SR delay timer, thus negating the purpose of the SR delay timer.
In another scenario, the UE may have a discard timer configured for certain LCs, e.g., a packet data convergence protocol (PDCP) discard timer. The UE may receive a first set of uplink information and initiate the SR delay timer. At the same time, the discard timer may be initiated for the channel. Additional uplink information may become available for the LC or a different LC and the UE may restart the SR delay timer based on the new data becoming available. However, the restarted SR delay timer may expire after the discard timer has expires. This may result in the data stored in the buffer being discarded upon the discard timer expiring. This data stall issue may prevent, in some scenarios, the UE from transmitting uplink data on the logical channel.
Aspects of the disclosure are initially described in the context of a wireless communications system. A UE may be configured to monitor whether a resource grant empties (or at least partially empties) a LC buffer and, based on the buffer status, start/stop the BSR retransmission timer accordingly. For example, the UE may transmit a SR message and receive a grant of resources in response. The resource grant may generally allocate time-frequency resources for an uplink transmission of the UE’s information. When the resources allocated in a resource grant are sufficient to empty the buffer (e.g., empty the buffer below a threshold) , the UE may stop the BSR retransmission timer. When the resources are insufficient to empty the buffer (e.g., leave a certain amount of uplink information in the buffer after the uplink transmission) , the UE may allow the BSR retransmission timer to expire naturally to initiate a retransmission of the remaining uplink information.
Additionally or alternatively, the UE may avoid a data stall issue by disabling a discard timer associated with a logical channel. For example, the UE may have uplink information available for transmission on a LC and initiate a SR delay timer in response. The UE may determine whether or not a discard timer (e.g. ., a PDCP discard timer) is associated with the logical channel and, if so, disable the discard timer. Disabling the discard timer may include setting the timer to a maximum value (e.g., a high or long duration value that, as a practical matter, effectively disables the timer) , reconfiguring the timer such that it is  disabled, ignoring an output of the timer, etc. Accordingly, the UE may disable the discard timer when there is a SR delay timer configured for the logical channel.
Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to methods to address logical channel timer conflicts and data stall.
FIG. 1 illustrates an example of a wireless communication system 100 in accordance with various aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communication system 100 may be a Long Term Evolution (LTE) , LTE-Advanced (LTE-A) network, or a New Radio (NR) network. In some aspects, wireless communication system 100 may support enhanced broadband communications, ultra-reliable (i.e., mission critical) communications, low latency communications, latency-tolerant communications, and communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Each base station 105 may provide communication coverage for a respective geographic coverage area 110. Communication links 125 shown in wireless communication system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions, from a base station 105 to a UE 115. Control information and data may be multiplexed on an uplink channel or downlink according to various techniques. Control information and data may be multiplexed on a downlink channel, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, the control information transmitted during a transmission time interval (TTI) of a downlink channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region and one or more UE-specific control regions) .
UEs 115 may be dispersed throughout the wireless communication system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology. A UE 115 may also be a cellular phone, a personal digital assistant (PDA) , a wireless  modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, or the like.
In some aspects, a UE 115 may also be able to communicate directly with other UEs (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the coverage area 110 of a cell. Other UEs 115 in such a group may be outside the coverage area 110 of a cell, or otherwise unable to receive transmissions from a base station 105. In some aspects, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some aspects, a base station 105 facilitates the scheduling of resources for D2D communications. In other aspects, D2D communications are carried out independent of a base station 105.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines, i.e., Machine-to-Machine (M2M) communication. M2M or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station without human intervention. For example, M2M or MTC may refer to communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
In some aspects, an MTC device may operate using half-duplex (one-way) communications at a reduced peak rate. MTC devices may also be configured to enter a power saving “deep sleep” mode when not engaging in active communications. In some aspects, MTC or IoT devices may be designed to support mission critical functions and  wireless communications system may be configured to provide ultra-reliable communications for these functions.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., S1, etc. ) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., X2, etc. ) either directly or indirectly (e.g., through core network 130) . Base stations 105 may perform radio configuration and scheduling for communication with UEs 115, or may operate under the control of a base station controller (not shown) . In some examples, base stations 105 may be macro cells, small cells, hot spots, or the like. Base stations 105 may also be referred to as evolved NodeBs (eNBs) or gNodeBs (gNBs) 105.
base station 105 may be connected by an S1 interface to the core network 130. The core network may be an evolved packet core (EPC) , that may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may be the control node that processes the signaling between the UE 115 and the EPC. All user Internet Protocol (IP) packets may be transferred through the S-GW, that itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include the Internet, the Intranet, an IP Multimedia Subsystem (IMS) , and a Packet-Switched (PS) Streaming Service.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the network devices, such as base station 105 may include subcomponents such as an access network entity, that may be an example of an access node controller (ANC) . Each access network entity may communicate with a number of UEs 115 through a number of other access network transmission entities, each of that may be an example of a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communication system 100 may operate in an ultra-high frequency (UHF) frequency region using frequency bands from 700 MHz to 2600 MHz (2.6 GHz) ,  although some networks (e.g., a wireless local area network (WLAN) ) may use frequencies as high as 4 GHz. This region may also be known as the decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may propagate mainly by line of sight, and may be blocked by buildings and environmental features. However, the waves may penetrate walls sufficiently to provide service to UEs 115 located indoors. Transmission of UHF waves is characterized by smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies (and longer waves) of the high frequency (HF) or very high frequency (VHF) portion of the spectrum. In some aspects, wireless communication system 100 may also utilize extremely high frequency (EHF) portions of the spectrum (e.g., from 30 GHz to 300 GHz) . This region may also be known as the millimeter band, since the wavelengths range from approximately one millimeter to one centimeter in length. Thus, EHF antennas may be even smaller and more closely spaced than UHF antennas. In some aspects, this may facilitate use of antenna arrays within a UE 115 (e.g., for directional beamforming) . However, EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than UHF transmissions.
Thus, wireless communication system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105. Devices operating in mmW or EHF bands may have multiple antennas to allow beamforming. That is, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. Beamforming (that may also be referred to as spatial filtering or directional transmission) is a signal processing technique that may be used at a transmitter (e.g., a base station 105) to shape and/or steer an overall antenna beam in the direction of a target receiver (e.g., a UE 115) . This may be achieved by combining elements in an antenna array in such a way that transmitted signals at particular angles experience constructive interference while others experience destructive interference.
Multiple-input multiple-output (MIMO) wireless systems use a transmission scheme between a transmitter (e.g., a base station 105) and a receiver (e.g., a UE 115) , where both transmitter and receiver are equipped with multiple antennas. Some portions of wireless communications system 100 may use beamforming. For example, base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use for beamforming in its communication with UE 115. Signals may be transmitted multiple times in different directions (e.g., each transmission may be beamformed  differently) . A mmW receiver (e.g., a UE 115) may try multiple beams (e.g., antenna subarrays) while receiving the synchronization signals.
In some aspects, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, that may support beamforming or MIMO operation. One or more base station antennas or antenna arrays may be collocated at an antenna assembly, such as an antenna tower. In some aspects, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may multiple use antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115.
In some aspects, wireless communication system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may in some aspects perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use automatic repeat/request (ARQ) and/or Hybrid ARQ (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network device, base station 105, or core network 130 supporting radio bearers for user plane data. At the Physical (PHY) layer, transport channels may be mapped to physical channels.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit. Time resources may be organized according to radio frames, that may be identified by a system frame number (SFN) . Each frame may include ten 1ms subframes numbered from 0 to 9. A subframe may be further divided into two . 5ms slots, each of which contains 6 or 7 modulation symbol periods (depending on the length of the cyclic prefix prepended to each symbol) . Excluding the cyclic prefix, each symbol may contain a certain number of sample periods. In some aspects the subframe may be the smallest scheduling unit, also known as a TTI. In other aspects, a TTI may be shorter than a subframe or may be dynamically selected (e.g., in short TTI bursts or in selected component carriers using short TTIs) .
A resource element may consist of one symbol period and one subcarrier (e.g., a 15 KHz frequency range) . A resource block may contain 12 consecutive subcarriers in the  frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain (1 slot) , or 84 resource elements. The number of bits carried by each resource element may depend on the modulation scheme (the configuration of symbols that may be selected during each symbol period) . Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate may be.
Wireless communication system 100 may support operation on multiple cells or carriers, a feature that may be referred to as carrier aggregation (CA) or multi-carrier operation. A carrier may also be referred to as a component carrier (CC) , a layer, a channel, etc. The terms “carrier, ” “component carrier, ” “cell, ” and “channel” may be used interchangeably herein. A UE 115 may be configured with multiple downlink CCs and one or more uplink CCs for carrier aggregation. Carrier aggregation may be used with both FDD and TDD component carriers.
In some aspects, wireless communication system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including: wider bandwidth, shorter symbol duration, shorter TTIs, and modified control channel configuration. In some aspects, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (where more than one operator is allowed to use the spectrum) . An eCC characterized by wide bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole bandwidth or prefer to use a limited bandwidth (e.g., to conserve power) .
In some aspects, an eCC may utilize a different symbol duration than other CCs, that may include use of a reduced symbol duration as compared with symbol durations of the other CCs. A shorter symbol duration is associated with increased subcarrier spacing. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbols. In some aspects, the TTI duration (that is, the number of symbols in a TTI) may be variable.
A shared radio frequency spectrum band may be utilized in an NR shared spectrum system. For example, an NR shared spectrum may utilize any combination of licensed, shared, and unlicensed spectrums, among others. The flexibility of eCC symbol  duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across frequency) and horizontal (e.g., across time) sharing of resources.
In some aspects, wireless communication system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communication system 100 may employ LTE License Assisted Access (LTE-LAA) or LTE Unlicensed (LTE U) radio access technology or NR technology in an unlicensed band such as the 5Ghz Industrial, Scientific, and Medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure the channel is clear before transmitting data. In some aspects, operations in unlicensed bands may be based on a CA configuration in conjunction with CCs operating in a licensed band. Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, or both. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) or a combination of both.
UEs 115 may include a timer manager 101, that may provide for the UE 115 to receive a resource grant for an uplink transmission of uplink information on a logical channel. For example, the UE 115 may receive and store the uplink information in an uplink buffer. Timer manager 101 may initiate a BSR retransmission timer (e.g., Retx BSR timer) in response to the resource grant. Timer manager 101 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold (e.g., enough resources to empty the uplink buffer) . Timer manager 101 may stop the BSR retransmission timer based on the resource grant allocating sufficient resources.
Additionally or alternatively, timer manager 101 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Timer manager 101 may initiate the SR delay timer for the logical channel in response to determining that the set of uplink information is available. Timer manager 101 may disable a PDCP discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
FIG. 2 illustrates an example of a process 200 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure. Process 200 may implement aspect (s) of wireless communication system 100, as described herein. Process 200 may include a UE 205 and a base station 210, that may be examples of the corresponding devices described herein.
Generally, process 200 illustrates one non-limiting example of a process that allows the UE 205 to be configured to preserve the purpose of the SR delay timer (e.g., SR prohibit timer) for latency tolerant data. For example, the UE 205 may modify operations of a BSR retransmission timer for SR delay timer configured logical channels. The modified BSR retransmission timer may be stopped, paused, etc., when the UE 205 determines that there is no (or little) data remaining in the logical channel uplink buffer after transmission using allocated resources.
In some aspects, initiation of the BSR retransmission timer (e.g., retx_bsr_timer) may be based on when the UE 205 receives a resource grant, e.g., regardless of the uplink buffer status. Initiation of the SR delay timer, however, may be based on changes to the uplink buffer status. Thus, conventional techniques provide for two different timers that are based on independent sources. In some scenarios, this may lead to timer conflicts between the timers. Aspect (s) of the present disclosure provide for, when the resource grant allocates sufficient resources to empty out the UE 205 uplink buffer (that is logical channel group (LCG) configured) , the BSR retransmission timer is stopped or otherwise disabled.
At 215, the UE 205 may receive a resource grant from the base station 210. The resource grant may be for an uplink transmission of uplink information on a LC, e.g., the uplink information may be stored in an uplink buffer of UE 205. In some aspects, the uplink information may be low-priority traffic, latency tolerant traffic, and the like.
In some aspects, UE 205 may receive the resource grant in response to a SR message. For example, UE 205 may have uplink data arrive at the uplink buffer (e.g., from an upper layer of the UE 205) . The UE 205 may transmit a BSR associated with the available uplink information, e.g., an indication that uplink data is available, an amount of uplink information, etc. UE 205 may also initiate a SR delay timer (e.g., a LogicalChannelSR-ProhibitTimer) . When the SR delay timer expires, the UE 205 may transmit the SR message requesting resources for the uplink transmission.
At 220, UE 205 may initiate a BSR retransmission timer (e.g., Retx BSR timer) . The BSR retransmission timer may be initiated in response to receiving the resource grant. As is discussed above, initiation of the BSR retransmission timer may be based on receipt of a grant rather than the current status of the uplink buffer.
At 225, UE 205 may determine whether the resource grant allocates sufficient resources. For example, UE 205 may determine whether the allocated resources (e.g., time-frequency resources) are sufficient to empty the uplink buffer, to transmit a portion of the uplink buffer satisfying a threshold (e.g., 50%, 75%, 90%, 100%of the uplink information stored in the uplink buffer) .
At 230, UE 205 may stop the BSR retransmission timer when the allocated resources are sufficient to transmit the portion of the uplink information that satisfies the threshold.
In some aspects, the BSR retransmission timer may not consider new uplink information becoming available at UE 205. For example, UE 205 may receive the resource grant and respond by transmitting its uplink information and initiating the BSR retransmission timer. Subsequently, but before the BSR retransmission timer expires, additional uplink information may become available at UE 205 and, in response, the SR delay timer may be initiated. Before the SR delay timer expires and the UE 205 can send the SR message, the BSR retransmission timer that was started with the first set of uplink information may expire. In response, UE 205 would conventionally transmit an SR message along with a new BSR message. This would render the SR delay timer started upon receipt of the second set of uplink information unused and defeat the purpose of the SR delay timer. Thus, UE 205 may determine whether uplink information is stored in the uplink buffer (e.g., some or all of the information from the first set of uplink information and/or the uplink information from the second set of uplink information) and stop the BSR retransmission timer when a sufficient amount of uplink information is stored in the uplink buffer.
FIG. 3 illustrates an example of a timing diagram 300 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure. Timing diagram 300 may implement aspect (s) of wireless communication system 100 and/or process 200. A UE and/or base station may implement aspect (s) of timing diagram 300, that may be examples of the corresponding devices described herein. Generally, timing diagram 300 may include a logical channel that is SR delay timer configured.
Generally, certain logical channels may be configured with a SR delay (or prohibit) timer. The purpose of the SR delay timer is to delay the triggering of an SR message for a time period equal to the length of the SR delay timer (e.g., six seconds in some examples) . The may reduce unnecessary load on the SR channel and unnecessary battery usage by the UE. The UE may also be configured with a BSR retransmission timer (e.g., retx BSR timer or RETX_BSR_TIMER) that provides certain robustness when, for example, the network or base station does not give a resource grant to the UE. Upon BSR retransmission timer expiration and if the UE has uplink information available for transmission on any of the logical channels that belong to a LCG, a regular BSR may to be triggered. When new uplink information arrives from higher layers for a logical channel that is configured for SR delay, the new arrival may trigger a regular BSR and initiate the SR delay timer (but not immediately initiate an SR message) . After the SR delay timer expires, the SR may be triggered. Due to BSR retransmission timer logic in current protocols, this SR delay timer logic may be broken (e.g., rendered unused) and SR/RACH messages will be triggered despite the fact that the SR delay timer was supposed to delay the SR message trigger.
At time t0, data may arrive in the logical channel (e.g., the UE may experience high data arrival (HDA) ) . The arrival of the uplink information may trigger transmission of a regular BSR from the UE and imitating the logical channel SR delay timer (LC-SR delay timer) . The LC-SR delay timer may have a SR delay duration 305 that may be, in one example, six seconds. Although the present example is described with reference to particular time durations, these are provided by way of example only and the described techniques are not limited to the example time durations. At time t1 (e.g., at the end of the CL-SR delay duration 305) , the SR delay timer may expire and, in response, this may trigger the SR message. The UE may wait for a duration 310 for the resource grant in response to the SR message.
At time t2 and in response to the SR message, the UE may receive the resource grant and may start the BSR retransmission timer (e.g., Retx_BSR_timer) . The BSR retransmission timer may be initiated solely in response to the arrival of the resource grant rather than the status of the uplink buffer. In some examples, the resource grant may provide sufficient time-frequency resources to empty the uplink buffer of the UE (e.g., may transmit all of the information received at time t0) . The BSR retransmission timer may have a BSR delay duration of 315 and may be 14 seconds, in some examples. Thus, the uplink buffer may be empty and yet the BSR retransmission timer may continue to run.
While the BSR retransmission timer is running (e.g., during BSR delay duration 315) , at time t3 the UE may receive a second set of uplink information available for uplink transmission. The second set of uplink information may be stored in the uplink buffer of the logical channel. Thus, there is new data arrival into the empty uplink buffer (e.g., MAC buffer) . Again, this may trigger a regular BSR from the UE and the UE may again start or initiate the LC-SR prohibit timer, e.g., for the SR delay duration 335.
Under conventional protocols, this may result in a timer conflict between the SR retransmission timer and the second SR delay timer. For example, before the second LC-SR delay timer expires at time t5, the BSR retransmission timer may expire at time t4. Expiration of the BSR retransmission time may trigger a regular BSR message, according to current techniques (e.g., the BSR message was not triggered by data becoming available) . In this instance, the LC-SR delay timer will expire quickly after the second set of uplink information becomes available and the SR message will be triggered immediately. In this scenario, the intention of LC-SR delay timer starting at time t3 is broken or otherwise ineffective.
However, at 320 the UE may determine whether resource grant allocates sufficient resources to transmit a portion of the uplink information satisfying a threshold (e.g., 50%, 75%, 90%, 100%of the uplink information) . That is, at 320 the UE may determine whether there is information being stored in the uplink buffer and, if so, at 325 the UE may stop the BSR retransmission timer. Although timing diagram 300 shows the UE determining whether the buffer is empty at time t3, it is to be understood that the UE may make this determination before time t3, and/or at time t3, or after time t3 (but before time t4) . Thus, at time t3 and/or anytime between time t3 and t4, the UE may determine whether there is uplink information stored in the uplink buffer and, if so, stop the BSR retransmission timer (shown in dashed-line between time t3 and t4) . If there is no uplink information stored in the uplink buffer, the UE may continue the BSR retransmission timer.
FIG. 4 illustrates an example of a process 400 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure. Process 400 may implement aspect (s) of wireless communication system 100, process 200, and/or timing diagram 300, as described herein. Process 400 may include a UE 405 and a base station 410, that may be examples of the corresponding devices described herein.
Generally, process 400 illustrates one non-limiting example of a process that allows the UE 405 to be configured to avoid a data stall issue caused when a logical channel is configured for a SR delay timer. For example, the UE 405 may modify operations of a PDCP discard timer for SR delay timer configured logical channels. The modified PDCP discard timer may be stopped, paused, or otherwise disabled, when the UE 405 determines that there is SR delay timer configured for the logical channel (or logical channels within a LCG) .
At 415, the UE 405 may determine that uplink information is available for transmission on a logical channel. The uplink information may be available on a logical channel (e.g., LC0) that is associated with low priority or otherwise latency tolerant communications and is therefore configured with a SR delay timer.
At 420, the UE may initiate a SR delay timer for the logical channel in response to the available uplink information. The SR delay timer may have a delay duration of six seconds, in one non-limiting example. The UE may transmit a regular BSR message in conjunction with initiating the SR delay timer.
At 425, the UE may disable a PDCP discard time for the logical channel since the logical channel is configured for the SR delay timer and/or that the SR delay timer has been initiated. Disabling the PDCP discard timer may include modifying the configuration of the PDCP discard timer to prevent initiation for some or all SR delay timer configured logical channels, setting the PDCP discard timer to a high or infinite value to prevent it from expiring at any relevant time, pausing the PDCP discard timer, and the like.
At 430, the UE may optionally transmit the uplink information to base station 410 using time-frequency resources allocated in response to a SR message transmitted upon expiration of the SR delay timer.
FIG. 5 illustrates an example of a timing diagram 500 that supports method to address logical channel timer conflicts and data stall in accordance with various aspects of the present disclosure. Timing diagram 500 may implement aspect (s) of wireless communication system 100, processes 200/400 and/or timing diagram 300. A UE and/or base station may implement aspect (s) of timing diagram 500, that may be examples of the corresponding devices described herein. Generally, timing diagram 500 may include a logical channel that is SR delay timer configured.
In some aspects, the UE may be configured with a LCG that includes two logical channels (e.g., LC0 and LC1) . LC1 may have a higher priority than LC0. The LCG may share a SR delay timer and one or both of LC0 and LC1 may be configured with a PDCP discard timer.
Upon receipt of an service data unit (SDU) from the upper layer, the PDCP transmitter (e.g., UE) conventionally starts a PDCP discard timer for the SDU. Once started, the PCDP discard timer typically runs until it expires. When the PCDP discard timer expires, the PDCP transmitter discards the PDCP SDU and sends an indication to the RLC layer to discard the corresponding PDCP protocol data unit (PDU) if the PDU has already been delivered to the RLC layer. The intent of the PDCP discard timer is to avoid data being accumulated at the access stratum (AS) layer and saturating the uplink buffer if the base station 510 and/or network either stops giving a resource grant to UE 505 or the resource grant size is small. Also, some application data may be delay sensitive and if it isn’t delivered timely, that data may need to be discarded.
At time t0, the UE may identify data for uplink transmission on LC0. For example, the UE may determine that uplink information is stored in the uplink buffer. Accordingly, the UE may initiate the SR delay timer at time t0. The SR delay timer may have a SR delay duration 505 that may be eight seconds, in some examples. Thus, the SR delay duration 505 may extend between time t0 and t2, when allowed to expire according to the SR delay duration 505.
When configured, the PDCP discard timer may also be started at time t0. The PDCP discard timer may have a PDCP discard duration 510, that may be 10 seconds, in some examples. Thus, the PDCP discard duration 510 may extend between time t0 and t3, when allowed to expire according to the PDCP discard duration 510.
However, at time t1, additional (or a second set) of uplink information may become available at LC1. In response, the UE may restart the SR delay timer (e.g., the SR delay timer originally started at time t0) . In one example, the second set of uplink information may arrive at six seconds into the first SR delay timer and the restarted SR delay timer may have a SR delay duration 515 of eight seconds. This means that the SR delay timer may not expire at time t2, as would have happened had the additional data not arrived at the uplink buffer.
According to conventional protocols, the PDCP discard timer for LC0 would typically occur at time t3 (e.g., when the PDCP discard timer expires at 10 seconds) . That is, since the SR delay timer was restarted at six seconds, the SR delay timer length is extended to 6s + 8s = 14s. This means that the data stored in LC0 uplink buffer may be lost or otherwise experience a data stall. There will be no chance for lower priority data in LC0 to be sent.
However, at 520 the UE may determine where there is a LC-SR delay timer configured. For example, the UE may determine whether there is a SR delay timer configured for LC0 and, if so, at 525 the UE may disable the PDCP discard timer. This may avoid the PDCP discard timer expiring at time t3 and the uplink buffer for LC0 being discarded. If there is no SR delay timer configured, the UE may continue the PDCP discard timer. Although timing diagram 500 shows the UE determining whether a SR delay timer is configured at time t1, it is to be understood that the UE may make this determination anytime during PDCP discard duration 510.
At time t4, the SR delay timer may expire and the UE may trigger a SR message to the base station requesting resources to empty the uplink buffer, e.g., the LC0 and LC1 uplink information stored in the uplink buffer. Accordingly, the UE may avoid the data stall issue for logical channels configured with an SR delay timer and PDCP discard timer.
FIG. 6 shows a block diagram 600 of a wireless device 605 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure. Wireless device 605 may be an example of aspects of a UE 115 as described herein. Wireless device 605 may include receiver 610, timer manager 615, and transmitter 620. Wireless device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to method to address logical channel timer conflicts and data stall, etc. ) . Information may be passed on to other components of the device. The receiver 610 may be an example of aspects of the transceiver 935 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
Timer manager 615 may be an example of aspects of the timer manager 915 described with reference to FIG. 9.
Timer manager 615 and/or at least some of its various sub-components may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions of the timer manager 615 and/or at least some of its various sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , an field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure. The timer manager 615 and/or at least some of its various sub-components may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical devices. In some examples, timer manager 615 and/or at least some of its various sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure. In other examples, timer manager 615 and/or at least some of its various sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
In some aspects, timer manager 615 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. Timer manager 615 may initiate a buffer status report retransmission timer in response to receiving the resource grant. Timer manager 615 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. Timer manager 615 may stop the buffer status report retransmission timer in response to the determining.
In some aspects, the timer manager 615 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Timer manager 615 may initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available. Timer manager 615 may disable a PDCP discard timer for the logical channel, the disabling based on the scheduling request delay timer being initiated for the logical channel.
Transmitter 620 may transmit signals generated by other components of the device. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 935 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a wireless device 705 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure. Wireless device 705 may be an example of aspects of a wireless device 605 or a UE 115 as described herein. Wireless device 705 may include receiver 710, timer manager 715, and transmitter 720. Wireless device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to methods to address logical channel timer conflicts and data stall, etc. ) . Information may be passed on to other components of the device. The receiver 710 may be an example of aspects of the transceiver 935 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
Timer manager 715 may be an example of aspects of the timer manager 915 described with reference to FIG. 9. Timer manager 715 may also include grant manager 725, BSR retransmission manager 730, buffer manager 735, delay timer manager 740, and PDCP timer manager 745.
Grant manager 725 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. Grant manager 725 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. In some aspects, determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold includes: determining that the resource grant allocates resources that are sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
BSR retransmission manager 730 may initiate a BSR retransmission timer in response to receiving the resource grant. BSR retransmission manager 730 may stop the BSR retransmission timer in response to the determining.
Buffer manager 735 may determine that the uplink information is available for the uplink transmission on the logical channel. Buffer manager 735 may initiate a SR delay timer in response to transmitting the BSR. Buffer manager 735 may transmit a SR message in response to expiration of the SR delay timer. Buffer manager 735 may receive the resource grant in response to the scheduling request message. Buffer manager 735 may transmit a BSR in response to the uplink information being available. Buffer manager 735 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Buffer manager 735 may transmit a scheduling request message in conjunction with initiating the SR delay timer. Buffer manager 735 may receive a resource grant in response to the scheduling request message. Buffer manager 735 may transmit the set of uplink information on the first logical channel using the resource grant. In some aspects, the scheduling request delay timer includes a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) . In some aspects, the uplink information includes one or more of latency-tolerant information or non-high-priority information. In some aspects, the resource grant is received prior to an expiration of the SR delay timer.
Delay timer manager 740 may initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available.
PDCP timer manager 745 may disable a PDCP discard timer for the logical channel, the disabling based on the SR delay timer being initiated for the logical channel.
Transmitter 720 may transmit signals generated by other components of the device. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the transceiver 935 described with reference to FIG. 9. The transmitter 720 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a timer manager 815 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure. The timer manager 815 may be an example of aspects of a timer manager 615, a timer manager 715, or a timer manager 915 described with reference to FIGs. 6, 7, and 9. The timer manager 815 may include grant manager 820, BSR retransmission manager 825, buffer manager 830, delay timer manager 835, and PDCP timer manager 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
Grant manager 820 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. Grant manager 820 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. In some aspects, determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold includes: determining that the resource grant allocates resources that are sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
BSR retransmission manager 825 may initiate a BSR retransmission timer in response to receiving the resource grant. BSR retransmission manager 825 may stop the BSR retransmission timer in response to the determining.
Buffer manager 830 may determine that the uplink information is available for the uplink transmission on the logical channel. Buffer manager 830 may initiate a SR delay timer in response to transmitting the BSR. Buffer manager 830 may transmit a scheduling request message in response to expiration of the SR delay timer. Buffer manager 830 may receive the resource grant in response to the scheduling request message. Buffer manager 830 may transmit a BSR in response to the uplink information being available. Buffer manager 830 may determine that a set of uplink information is available for an uplink transmission on a logical channel. Buffer manager 830 may transmit a scheduling request message in conjunction with initiating the SR delay timer. Buffer manager 830 may receive a resource grant in response to the scheduling request message. Buffer manager 830 may transmit the set of uplink information on the logical channel using the resource grant. In some aspects, the SR delay timer includes a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) . In some aspects, the uplink information includes one or more of latency-tolerant information or non-high-priority information. In some aspects, the resource grant is received prior to an expiration of the SR delay timer.
Delay timer manager 835 may initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available.
PDCP timer manager 840 may disable a PDCP discard timer for the logical channel, the disabling based on the SR delay timer being initiated for the logical channel.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports methods to address logical channel timer conflicts and data stall in accordance with aspects of  the present disclosure. Device 905 may be an example of or include the components of wireless device 605, wireless device 705, or a UE 115 as described herein. Device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including timer manager 915, processor 920, memory 925, software 930, transceiver 935, antenna 940, and I/O controller 945. These components may be in electronic communication via one or more busses (e.g., bus 910) . Device 905 may communicate wirelessly with one or more base stations 105.
Processor 920 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some aspects, processor 920 may be configured to operate a memory array using a memory controller. In other aspects, a memory controller may be integrated into processor 920. Processor 920 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting method to address logical channel timer conflicts and data stall) .
Memory 925 may include random access memory (RAM) and read only memory (ROM) . The memory 925 may store computer-readable, computer-executable software 930 including instructions that, when executed, cause the processor to perform various functions described herein. In some aspects, the memory 925 may contain, among other things, a basic input/output system (BIOS) that may control basic hardware and/or software operation such as the interaction with peripheral components or devices.
Software 930 may include code to implement aspects of the present disclosure, including code to support method to address logical channel timer conflicts and data stall. Software 930 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some aspects, the software 930 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
Transceiver 935 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 935 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 935 may also include a modem to modulate the packets and provide the  modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some aspects, the wireless device may include a single antenna 940. However, in some aspects the device may have more than one antenna 940, that may be capable of concurrently transmitting or receiving multiple wireless transmissions.
I/O controller 945 may manage input and output signals for device 905. I/O controller 945 may also manage peripherals not integrated into device 905. In some aspects, I/O controller 945 may represent a physical connection or port to an external peripheral. In some aspects, I/O controller 945 may utilize an operating system such as
Figure PCTCN2017081256-appb-000001
Figure PCTCN2017081256-appb-000002
or another known operating system. In other aspects, I/O controller 945 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some aspects, I/O controller 945 may be implemented as part of a processor. In some aspects, a user may interact with device 905 via I/O controller 945 or via hardware components controlled by I/O controller 945.
FIG. 10 shows a flowchart illustrating a method 1000 to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a timer manager as described with reference to FIGs. 6 through 9. In some examples, a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
At block 1005 the UE 115 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. The operations of block 1005 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1005 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
At block 1010 the UE 115 may initiate a BSR retransmission timer in response to receiving the resource grant. The operations of block 1010 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the  operations of block 1010 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
At block 1015 the UE 115 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. The operations of block 1015 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1015 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
At block 1020 the UE 115 may stop the BSR retransmission timer in response to the determining. The operations of block 1020 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1020 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
FIG. 11 shows a flowchart illustrating a method 1100 to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a timer manager as described with reference to FIGs. 6 through 9. In some examples, a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
At block 1105 the UE 115 may determine that the uplink information is available for the uplink transmission on the logical channel. The operations of block 1105 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1105 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
At block 1110 the UE 115 may transmit a BSR in response to the uplink information being available. The operations of block 1110 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1110 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
At block 1115 the UE 115 may initiate a scheduling request delay timer in response to transmitting the BSR. The operations of block 1115 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1115 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
At block 1120 the UE 115 may receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer. The operations of block 1120 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1120 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
At block 1125 the UE 115 may initiate a BSR retransmission timer in response to receiving the resource grant. The operations of block 1125 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1125 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
At block 1130 the UE 115 may determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold. The operations of block 1130 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1130 may be performed by a grant manager as described with reference to FIGs. 6 through 9.
At block 1135 the UE 115 may stop the BSR retransmission timer in response to the determining. The operations of block 1135 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1135 may be performed by a BSR Retransmission manager as described with reference to FIGs. 6 through 9.
FIG. 12 shows a flowchart illustrating a method 1200 to address logical channel timer conflicts and data stall in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1200 may be performed by a timer manager as described with reference to FIGs. 6 through 9. In some examples, a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described  below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
At block 1205 the UE 115 may determine that a set of uplink information is available for an uplink transmission on a logical channel. The operations of block 1205 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1205 may be performed by a buffer manager as described with reference to FIGs. 6 through 9.
At block 1210 the UE 115 may initiate the SR delay timer for the logical channel in response to determining that the set of uplink information is available. The operations of block 1210 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1210 may be performed by a delay timer manager as described with reference to FIGs. 6 through 9.
At block 1215 the UE 115 may disable a PDCP discard timer for the logical channel, the disabling based at least in part on the SR delay timer being initiated for the logical channel. The operations of block 1215 may be performed according to the methods described with reference to FIGs. 1 through 5. In certain examples, aspects of the operations of block 1215 may be performed by a PDCP timer manager as described with reference to FIGs. 6 through 9.
It should be noted that the methods described above describe possible implementations, and that the operations may be rearranged or otherwise modified and that other implementations are possible. Furthermore, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. The terms “system” and “network” are often used interchangeably. A code division multiple access (CDMA) system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants  of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE and LTE-A are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE or an NR system may be described for purposes of example, and LTE or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE or NR applications.
In LTE/LTE-A networks, including such networks described herein, the term eNB may be generally used to describe the base stations. The wireless communication system or systems described herein may include a heterogeneous LTE/LTE-A or NR network in which different types of eNBs provide coverage for various geographical regions. For example, each eNB, next generation NodeB (gNB) , or base station may provide communication coverage for a macro cell, a small cell, or other types of cell. The term “cell” may be used to describe a base station, a carrier or component carrier associated with a base station, or a coverage area (e.g., sector, etc. ) of a carrier or base station, depending on context.
Base stations may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, eNB, gNB, Home NodeB, a Home eNodeB, or some other suitable terminology. The geographic coverage area for a base station may be divided into sectors making up only a portion of the coverage area. The wireless communications system or systems described herein may include base stations of different types (e.g., macro or small cell base stations) . The UEs described herein may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like. There may be overlapping geographic coverage areas for different technologies.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell is a lower-powered base station, as compared with a macro cell, that may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells (e.g., component carriers) .
The wireless communications system or systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
The downlink transmissions described herein may also be called forward link transmissions while the uplink transmissions may also be called reverse link transmissions. Each communication link described herein—including, for example, wireless communications system 100 of FIG. 1—may include one or more carriers, where each carrier may be a signal made up of multiple sub-carriers (e.g., waveform signals of different frequencies) .
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques,  however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.  Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary operation that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the  examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (32)

  1. A method for wireless communication, comprising:
    receiving a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer;
    initiating a buffer status report retransmission timer in response to receiving the resource grant;
    determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold; and
    stopping the buffer status report retransmission timer in response to the determining.
  2. The method of claim 1, wherein:
    determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold comprises: determining that the resource grant allocates resources that are sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
  3. The method of claim 1, further comprising:
    determining that the uplink information is available for the uplink transmission on the logical channel;
    transmitting a buffer status report in response to the uplink information being available; and
    initiating a scheduling request delay timer in response to transmitting the buffer status report.
  4. The method of claim 3, further comprising:
    transmitting a scheduling request message in response to expiration of the scheduling request delay timer; and
    receiving the resource grant in response to the scheduling request message.
  5. The method of claim 3, wherein:
    the uplink information comprises one or more of latency-tolerant information or non-high-priority information.
  6. The method of claim 3, wherein:
    the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  7. A method for wireless communication, comprising:
    determining that a set of uplink information is available for an uplink transmission on a logical channel;
    initiating the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available; and
    disabling a packet data convergence protocol (PDCP) discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  8. The method of claim 7, further comprising:
    transmitting a scheduling request message in conjunction with initiating the scheduling request delay timer;
    receiving a resource grant in response to the scheduling request message; and
    transmitting the set of uplink information on the logical channel using the resource grant.
  9. The method of claim 8, wherein:
    the resource grant is received prior to an expiration of the scheduling request delay timer.
  10. The method of claim 7, wherein:
    the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  11. An apparatus for wireless communication, comprising:
    means for receiving a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer;
    means for initiating a buffer status report retransmission timer in response to receiving the resource grant;
    means for determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold; and
    means for stopping the buffer status report retransmission timer in response to the determining.
  12. The apparatus of claim 11, wherein:
    determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold comprises: determining that the resource grant allocates resources that are sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
  13. The apparatus of claim 11, further comprising:
    means for determining that the uplink information is available for the uplink transmission on the logical channel;
    means for transmitting a buffer status report in response to the uplink information being available; and
    means for initiating a scheduling request delay timer in response to transmitting the buffer status report.
  14. The apparatus of claim 13, further comprising:
    means for transmitting a scheduling request message in response to expiration of the scheduling request delay timer; and
    means for receiving the resource grant in response to the scheduling request message.
  15. The apparatus of claim 13, wherein:
    the uplink information comprises one or more of latency-tolerant information or non-high-priority information.
  16. The apparatus of claim 13, wherein:
    the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  17. An apparatus for wireless communication, comprising:
    means for determining that a set of uplink information is available for an uplink transmission on a logical channel;
    means for initiating the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available; and
    means for disabling a packet data convergence protocol (PDCP) discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  18. The apparatus of claim 17, further comprising:
    means for transmitting a scheduling request message in conjunction with initiating the scheduling request delay timer;
    means for receiving a resource grant in response to the scheduling request message; and
    means for transmitting the set of uplink information on the logical channel using the resource grant.
  19. The apparatus of claim 18, wherein:
    the resource grant is received prior to an expiration of the scheduling request delay timer.
  20. The apparatus of claim 17, wherein:
    the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  21. An apparatus for wireless communication, comprising:
    a processor;
    memory in electronic communication with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the apparatus to:
    receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer;
    initiate a buffer status report retransmission timer in response to receiving the resource grant;
    determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold; and
    stop the buffer status report retransmission timer in response to the determining.
  22. The apparatus of claim 21, wherein:
    determining that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold comprises: determining that the resource grant allocates resources that are sufficient to empty the uplink buffer by transmitting the uplink information stored in the uplink buffer.
  23. The apparatus of claim 21, wherein the instructions are further executable by the processor to:
    determine that the uplink information is available for the uplink transmission on the logical channel;
    transmit a buffer status report in response to the uplink information being available; and
    initiate a scheduling request delay timer in response to transmitting the buffer status report.
  24. The apparatus of claim 23, wherein the instructions are further executable by the processor to:
    transmit a scheduling request message in response to expiration of the scheduling request delay timer; and
    receive the resource grant in response to the scheduling request message.
  25. The apparatus of claim 23, wherein:
    the uplink information comprises one or more of latency-tolerant information or non-high-priority information.
  26. The apparatus of claim 23, wherein:
    the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  27. An apparatus for wireless communication, comprising:
    a processor;
    memory in electronic communication with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the apparatus to:
    determine that a set of uplink information is available for an uplink transmission on a logical channel;
    initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available; and
    disable a packet data convergence protocol (PDCP) discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
  28. The apparatus of claim 27, wherein the instructions are further executable by the processor to:
    transmit a scheduling request message in conjunction with initiating the scheduling request delay timer;
    receive a resource grant in response to the scheduling request message; and
    transmit the set of uplink information on the logical channel using the resource grant.
  29. The apparatus of claim 28, wherein:
    the resource grant is received prior to an expiration of the scheduling request delay timer.
  30. The apparatus of claim 27, wherein:
    the scheduling request delay timer comprises a logical channel scheduling request prohibit timer (LogicalChannelSR-ProhibitTimer) .
  31. A non-transitory computer readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    receive a resource grant for an uplink transmission of uplink information on a logical channel, the uplink information stored in an uplink buffer;
    initiate a buffer status report retransmission timer in response to receiving the resource grant;
    determine that the resource grant allocates resources that are sufficient to transmit a portion of the uplink information that satisfies a threshold; and
    stop the buffer status report retransmission timer in response to the determining.
  32. A non-transitory computer readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    determine that a set of uplink information is available for an uplink transmission on a logical channel;
    initiate the scheduling request delay timer for the logical channel in response to determining that the set of uplink information is available; and
    disable a packet data convergence protocol (PDCP) discard timer for the logical channel, the disabling based at least in part on the scheduling request delay timer being initiated for the logical channel.
PCT/CN2017/081256 2017-04-20 2017-04-20 Method to address logical channel timer conflicts and data stall WO2018191916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081256 WO2018191916A1 (en) 2017-04-20 2017-04-20 Method to address logical channel timer conflicts and data stall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081256 WO2018191916A1 (en) 2017-04-20 2017-04-20 Method to address logical channel timer conflicts and data stall

Publications (1)

Publication Number Publication Date
WO2018191916A1 true WO2018191916A1 (en) 2018-10-25

Family

ID=63855475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081256 WO2018191916A1 (en) 2017-04-20 2017-04-20 Method to address logical channel timer conflicts and data stall

Country Status (1)

Country Link
WO (1) WO2018191916A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167879A1 (en) * 2019-02-12 2020-08-20 Google Llc System and method for reducing delays of timer-based transmissions on a shared carrier
WO2022025391A1 (en) * 2020-07-29 2022-02-03 삼성전자 주식회사 Electronic device for transmitting or receiving packet, and operation method thereof
WO2022036341A1 (en) * 2020-08-11 2022-02-17 Qualcomm Incorporated Techniques for timer adjustment for packet loss
WO2022089516A1 (en) * 2020-10-29 2022-05-05 展讯通信(上海)有限公司 Uplink data transmission method and system, terminal, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707802A (en) * 2009-10-16 2010-05-12 普天信息技术研究院有限公司 Method for UE to transmit uplink business data in HSPA+system
US20100197313A1 (en) * 2009-02-04 2010-08-05 Nokia Corporation Optimization of uplink resource grant procedure
WO2014015470A1 (en) * 2012-07-23 2014-01-30 Renesas Mobile Corporation Vehicle gateway access in cellular network for vehicle communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100197313A1 (en) * 2009-02-04 2010-08-05 Nokia Corporation Optimization of uplink resource grant procedure
CN101707802A (en) * 2009-10-16 2010-05-12 普天信息技术研究院有限公司 Method for UE to transmit uplink business data in HSPA+system
WO2014015470A1 (en) * 2012-07-23 2014-01-30 Renesas Mobile Corporation Vehicle gateway access in cellular network for vehicle communications

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167879A1 (en) * 2019-02-12 2020-08-20 Google Llc System and method for reducing delays of timer-based transmissions on a shared carrier
CN113632579A (en) * 2019-02-12 2021-11-09 谷歌有限责任公司 System and method for reducing delay of timer-based transmissions on a shared carrier
CN113632579B (en) * 2019-02-12 2024-04-09 谷歌有限责任公司 System and method for reducing delay of timer-based transmissions on shared carriers
WO2022025391A1 (en) * 2020-07-29 2022-02-03 삼성전자 주식회사 Electronic device for transmitting or receiving packet, and operation method thereof
WO2022036341A1 (en) * 2020-08-11 2022-02-17 Qualcomm Incorporated Techniques for timer adjustment for packet loss
US11785501B2 (en) 2020-08-11 2023-10-10 Qualcomm Incorporated Techniques for timer adjustment for packet loss
WO2022089516A1 (en) * 2020-10-29 2022-05-05 展讯通信(上海)有限公司 Uplink data transmission method and system, terminal, and storage medium

Similar Documents

Publication Publication Date Title
US10568092B2 (en) Scheduling and/or scheduling configuration
US10687359B2 (en) System acquisition in a shared radio frequency spectrum band
US10244522B2 (en) Signaling for multiplexing of low latency communication and sidelink communications
US10484992B2 (en) Channel reservation for multi-user scheduling
US10536966B2 (en) Physical downlink control channel and hybrid automatic repeat request feedback for multefire coverage enhancement
EP3632027B1 (en) Grantless uplink transmission for emtc-u
US20220053564A1 (en) Cellular vehicle-to-everything design principles
KR102570141B1 (en) Semi-persistent scheduling for low-latency communication
CA3049127A1 (en) Transmission and reception of tracking reference signals in nr-lte devices
US10841069B2 (en) Partial subframe transmission techniques in shared radio frequency spectrum
US11196520B2 (en) Joint encoding waveform and slot information
EP4247093A2 (en) Periodic grants for multiple transmission time interval configurations
US20200077442A1 (en) Techniques to handle collisions between uplink transmissions and downlink transmissions over a wireless spectrum
EP3620017A1 (en) Grant-free admission control to a shared channel
WO2018191916A1 (en) Method to address logical channel timer conflicts and data stall
US10958407B2 (en) Frequency division duplexing hybrid automatic repeat request with mini-slots
US20190021107A1 (en) Transmission scheme for multiple component carriers in adjacent subframes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906317

Country of ref document: EP

Kind code of ref document: A1