WO2018191909A1 - 一种信号上报方法及装置 - Google Patents

一种信号上报方法及装置 Download PDF

Info

Publication number
WO2018191909A1
WO2018191909A1 PCT/CN2017/081235 CN2017081235W WO2018191909A1 WO 2018191909 A1 WO2018191909 A1 WO 2018191909A1 CN 2017081235 W CN2017081235 W CN 2017081235W WO 2018191909 A1 WO2018191909 A1 WO 2018191909A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
capacitive
capacitor
devices
target
Prior art date
Application number
PCT/CN2017/081235
Other languages
English (en)
French (fr)
Inventor
陈晓晓
李航
杨自成
吴思举
周锦
周轩
汪亮
徐杰
陈浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780008011.6A priority Critical patent/CN108700977A/zh
Priority to PCT/CN2017/081235 priority patent/WO2018191909A1/zh
Publication of WO2018191909A1 publication Critical patent/WO2018191909A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a signal reporting method and apparatus.
  • the touch screen also known as a "touch screen” or “touch panel” is an inductive display device that can receive input signals such as contacts.
  • the working surface 100 of the touch screen is generally provided with an array of M*N (M ⁇ 1, N ⁇ 1) capacitive devices 101, which are in the human body when the user touches a certain position on the working surface. Under the action of the electric field, a coupling capacitor is formed between the user's finger and the working surface 100. At this time, the capacitance signal of the one or more capacitive devices 101 corresponding to the user's finger may change. Then, after the touch screen reports the current capacitive signals to the processor in the electronic device, the processor can be based on the capacitance at different positions. The signal determines information such as the user's specific gesture.
  • a touch screen including 32*18 capacitive devices is used.
  • the data transmission frequency is 120 Hz
  • the touch screen of the electronic device transmits the capacitive devices in the touch screen in real time.
  • I2C integrated circuit bus
  • SCI serial communication interface
  • the embodiment of the invention provides a signal reporting method and device, which can reduce the transmission bandwidth occupied by the capacitor signal reporting process, improve the response speed of the electronic device, and reduce the power consumption of the electronic device.
  • the embodiment of the present invention adopts the following technical solutions:
  • an embodiment of the present invention provides a signal reporting method, including: an electronic device acquiring a user triggering on a touch screen (the touch screen is provided with an array of M*N capacitive components, M>0, N>0) Touch event; in response to the touch event, the electronic device obtains K (0 ⁇ K ⁇ M*N) capacitive devices (the K capacitive devices are any K of the M*N capacitive devices) The generated capacitive signal; the electronic device reports the target data, and the target data includes a capacitance signal generated by each of the K capacitive devices.
  • the capacitor signal when the capacitor signal is reported on the electronic device, it is not necessary to report all the M*N capacitor signals to the processor as in the prior art, but selectively report the K capacitor signals to the electronic device. Processor. In this way, the amount of data when the electronic device reports the capacitive signal can be reduced, thereby reducing the transmission bandwidth occupied by the capacitor signal reporting process, improving the response speed of the electronic device and reducing the power consumption of the electronic device.
  • the target data further includes position information for indicating a positional relationship between the K capacitor devices and the M*N capacitor devices.
  • the electronic device obtains a capacitance signal generated by each of the K capacitive devices, including: the electronic device determines a target corresponding to a touch point position in the touch event. a capacitor device; the electronic device determines K capacitor devices including the target capacitor device according to the position of the target capacitor device; and the electronic device acquires a capacitance signal generated by each of the K capacitor devices.
  • the electronic device when it reports, it only needs to report the K capacitive signals and the position information corresponding to the touch position, thereby reducing the transmission amount of the capacitive signal, and further, the response speed of the electronic device to the touch event will be improved, and at the same time, Increase the standby time of electronic devices.
  • the strategies for selecting the above K capacitors can also be different, thereby implementing a targeted capacitance signal reporting process.
  • the method further includes: the electronic device setting a value of each element in the capacitance matrix to a preset initial value, the capacitance matrix including M*N elements; The electronic device adds a capacitance signal generated by each of the K capacitive devices to the capacitance matrix based on the position information.
  • the electronic device obtains a capacitance signal generated by each of the K capacitor devices, including: the electronic device performs downsampling on the M*N capacitor signals generated by the M*N capacitor devices, A capacitance signal generated by each of the K capacitive devices after downsampling is obtained, and the sampling rate of the downsampling is a positive number less than one. In this way, the amount of data transmission of the capacitance signal can be reduced.
  • the electronic device performs downsampling on the M*N capacitor signals generated by the M*N capacitor devices, including: when the electronic device runs the first application, the electronic device follows the first sampling rate.
  • the M*N capacitor signals generated by the M*N capacitor devices perform downsampling; when the electronic device runs the second application, the electronic device generates M*N capacitors for the M*N capacitor devices according to the second sampling rate.
  • the signal performs downsampling, and the second sampling rate is greater than the first sampling rate.
  • the electronic device when the electronic device runs the first application, the electronic device can automatically adjust the sampling rate of the down sampling to the first sampling rate. Since the value of the first sampling rate is low, the data amount of the capacitance signal reported by the electronic device will be Further, the power consumption of the electronic device will also decrease; and when the electronic device runs the second application, the electronic device can automatically adjust the sampling rate of the down sampling to the second sampling rate, because the value of the second sampling rate is higher. Therefore, the electronic device can ensure timely and accurate response. User triggered touch event.
  • the electronic device further comprises: compressing the electronic device according to a preset compression ratio (a positive ratio of a compression ratio less than 1)
  • the capacitance signals generated by each of the K capacitive devices obtain K compressed capacitive signals; wherein the target data includes a capacitive signal generated by each of the K capacitive devices after compression.
  • the K capacitor signals can be further compressed, thereby further reducing the amount of data when the electronic device reports the capacitance signal, and improving the response speed of the electronic device.
  • an embodiment of the present invention provides a signal reporting method, including: an electronic device acquiring a user triggering on a touch screen (the touch screen is provided with an array of M*N capacitive components, M>0, N>0) a touch event; in response to the touch event, the electronic device compresses a capacitance signal generated by each of the M*N capacitor devices according to a preset compression ratio to obtain M*N compressed capacitor signals, the preset The compression ratio is a positive number less than one; the electronic device reports the M*N compressed capacitance signals.
  • the method for reporting the capacitance signal can not only reduce the amount of data when the electronic device reports the capacitance signal, but also eliminate the need for the processor to perform the process of restoring the M*N capacitor signals generated by the M*N capacitor devices, thereby further improving the electrons.
  • the compression ratio is a ratio of the accuracy required to compress a capacitive signal to the accuracy required to compress a previous capacitive signal; wherein the electronic device compresses the M*N according to a preset compression ratio a capacitance signal generated by each of the capacitive devices, resulting in M*N compressed capacitive signals, including: for each of the M*N capacitive devices: a capacitance generated by the electronic device The product of the signal and the compression ratio is used as the capacitance signal after compression of the capacitor device.
  • the electronic device compresses the capacitance signal generated by each of the M*N capacitor devices according to a preset compression ratio, including: when the electronic device runs the first application, the electronic device follows the first a compression ratio compresses a capacitance signal generated by each of the M*N capacitor devices; and when the electronic device operates the second application, the electronic device compresses each of the M*N capacitor devices according to a second compression ratio The generated capacitive signal, the second compression ratio being greater than the first compression ratio.
  • the electronic device can automatically adjust the compression ratio to the first compression ratio. Since the value of the first compression ratio is low, the data amount of the capacitance signal reported by the electronic device is further reduced. The power consumption of the electronic device will also decrease; when the electronic device runs the second application, the electronic device can automatically adjust the compression ratio to the second sampling rate, and since the value of the second compression rate is higher, the electronic device can be secured. The device responds promptly and accurately to user-triggered touch events.
  • an embodiment of the present invention provides an electronic device, including: an acquiring unit, configured to: acquire a touch event triggered by a user on a touch screen, where the touch screen is provided with M*N capacitive components arranged in an array, M> 0, N>0; determining unit, configured to: in response to the touch event, obtain a capacitance signal generated by each of the K capacitive devices, wherein the K capacitive devices are any K of the M*N capacitive devices A capacitor device, 0 ⁇ K ⁇ M*N; a reporting unit, configured to: report target data, the target data including a capacitance signal generated by each of the K capacitive devices.
  • the target data further includes position information for indicating a positional relationship between the K capacitive components and the M*N capacitive components.
  • the determining unit is specifically configured to: determine a target capacitive device corresponding to a touch point position in the touch event; and the electronic device determines, according to a location of the target capacitive component, the component including the target capacitive device K capacitive devices; obtaining a capacitance signal generated by each of the K capacitive devices.
  • the electronic device further includes: a reducing unit, configured to: set a value of each element in the capacitance matrix to a preset initial value, the capacitance matrix includes M*N elements; Position information, a capacitance signal generated by each of the K capacitive devices is added to the capacitance matrix.
  • a reducing unit configured to: set a value of each element in the capacitance matrix to a preset initial value, the capacitance matrix includes M*N elements; Position information, a capacitance signal generated by each of the K capacitive devices is added to the capacitance matrix.
  • the determining unit is specifically configured to perform downsampling on the M*N capacitor signals generated by the M*N capacitor devices, and obtain each of the K capacitor devices after downsampling.
  • the resulting capacitive signal, the downsampled sample rate is a positive number less than one.
  • the determining unit is specifically configured to perform downsampling on the M*N capacitor signals generated by the M*N capacitor devices according to the first sampling rate when the electronic device runs the first application.
  • the M*N capacitor signals generated by the M*N capacitor devices are downsampled according to the second sampling rate, and the second sampling rate is greater than the first sampling rate.
  • the electronic device further includes: a compression unit, configured to: compress a capacitance signal generated by each of the K capacitive devices according to a preset compression ratio to obtain K compressed capacitive signals
  • the preset compression ratio is a positive number less than one; wherein the target data includes a capacitance signal generated by each of the K capacitive devices after compression.
  • an embodiment of the present invention provides an electronic device, including: an acquiring unit, configured to: acquire a touch event triggered by a user on a touch screen, where the touch screen is provided with M*N capacitive components arranged in an array, M> 0, N>0; a compression unit, configured to: compress a capacitance signal generated by each of the M*N capacitor devices according to a preset compression ratio in response to the touch event, to obtain M*N compressed The capacitor signal, the preset compression ratio is a positive number less than 1, and the reporting unit is configured to: report the M*N compressed capacitor signals.
  • the compression ratio is the precision required to compress a capacitive signal. a ratio of the accuracy required to compress a previous capacitive signal; for each of the M*N capacitive devices: the compression unit, specifically for: a product of the capacitance signal generated by the capacitive device and the compression ratio As the capacitive signal after compression of the capacitor device.
  • the compression unit is specifically configured to: when the electronic device runs the first application, compress a capacitance signal generated by each of the M*N capacitor devices according to a first compression ratio; When the electronic device runs the second application, the capacitance signal generated by each of the M*N capacitor devices is compressed according to the second compression ratio, and the second compression ratio is greater than the first compression ratio.
  • an embodiment of the present invention provides an electronic device, including: a touch screen, a processor, a memory, a bus, and a communication interface; wherein the communication interface is configured to acquire a touch event triggered by a user on a touch screen, where the touch screen is set M*N capacitor devices arranged in the array, M>0, N>0; the touch screen is used to obtain a capacitance signal generated by each of the K capacitor devices, and the K capacitor devices are the M*N Any one of the capacitor devices, 0 ⁇ K ⁇ M*N; the communication interface is further configured to report the target data to the processor, the target data including the generated by each of the K capacitive devices Capacitance signal.
  • the target data further includes position information for indicating a positional relationship between the K capacitive components and the M*N capacitive components.
  • the touch screen is specifically configured to: determine a target capacitive device corresponding to a touch point position in the touch event; and determine, according to a location of the target capacitive component, K capacitors including the target capacitive device And obtaining a capacitance signal generated by each of the K capacitive devices.
  • the processor is further configured to: set a value of each element in the capacitance matrix to a preset initial value, where the capacitance matrix includes M*N elements; according to the location information, A capacitance signal generated by each of the K capacitive devices is added to the capacitance matrix.
  • the touch screen is further configured to perform downsampling on the M*N capacitor signals generated by the M*N capacitor devices, and obtain each of the K capacitor devices after downsampling.
  • the capacitive signal, the sampling rate of the downsampling is a positive number less than one.
  • the touch screen is specifically configured to: when the electronic device runs the first application, perform downsampling on the M*N capacitor signals generated by the M*N capacitor devices according to the first sampling rate; When the electronic device runs the second application, the M*N capacitor signals generated by the M*N capacitor devices are downsampled according to the second sampling rate, and the second sampling rate is greater than the first sampling rate.
  • the touch screen is further configured to: compress a capacitance signal generated by each of the K capacitive devices according to a preset compression ratio to obtain K compressed capacitive signals, the preset The compression ratio is a positive number less than one; wherein the target data includes a capacitance signal generated by each of the K capacitive devices after compression.
  • an embodiment of the present invention provides an electronic device, including: a touch screen, a processor, a memory, a bus, and a communication interface; wherein the communication interface is configured to acquire a touch event triggered by a user on a touch screen, where the touch screen is set M*N capacitor devices arranged in the array, M>0, N>0; the touch screen is used for compressing the capacitance signal generated by each of the M*N capacitor devices according to a preset compression ratio, M*N compressed capacitor signals, the preset compression ratio is a positive number less than 1; the communication interface is further configured to report the M*N compressed capacitor signals to the processor.
  • the compression ratio is a ratio of the accuracy required to compress a capacitive signal to the accuracy required to compress a previous capacitive signal; for each of the M*N capacitive devices,
  • the touch screen is specifically configured to: use the product of the capacitance signal generated by the capacitor device and the compression ratio as a capacitance signal after the capacitor device is compressed.
  • the touch screen is specifically configured to: when the electronic device runs the first application, compress a capacitance signal generated by each of the M*N capacitor devices according to a first compression ratio; When the device runs the second application, the capacitance signal generated by each of the M*N capacitor devices is compressed according to the second compression ratio, and the second compression ratio is greater than the first compression ratio.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores an instruction, when the instruction is run on any one of the electronic devices, causing the electronic device to perform any of the foregoing Signal reporting method.
  • an embodiment of the present invention provides a computer program product, including instructions, when the electronic device is executed on any of the above electronic devices, causing the electronic device to perform any of the foregoing signal reporting methods.
  • the names of the electronic devices are not limited to the devices themselves. In actual implementation, the devices may appear under other names. As long as the functions of the respective devices are similar to the embodiments of the present invention, they are within the scope of the claims and the equivalents thereof.
  • FIG. 1 is a schematic diagram of an application scenario of reporting a capacitor signal in the prior art
  • FIG. 2 is a schematic structural diagram 1 of an electronic device according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart 1 of a signal reporting method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram 1 of an application scenario of a signal reporting method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram 2 of an application scenario of a signal reporting method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram 3 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram 4 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram 5 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram 6 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart 2 of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram 7 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram 8 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram 9 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart 3 of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram 11 of an application scenario of a signal reporting method according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram 2 of an electronic device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram 3 of an electronic device according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless otherwise specified.
  • the embodiment of the invention provides a signal reporting method, which can be applied to any electronic device provided with a touch screen, such as a mobile phone, a wearable device, an AR (Augmented Reality) VR (Virtual Reality) device, a tablet computer, a notebook computer, a UMPC. (Super Mobile Personal Computer), Netbook, PDA (Personal Digital Assistant), etc., the embodiment of the present invention does not impose any limitation.
  • a touch screen such as a mobile phone, a wearable device, an AR (Augmented Reality) VR (Virtual Reality) device, a tablet computer, a notebook computer, a UMPC. (Super Mobile Personal Computer), Netbook, PDA (Personal Digital Assistant), etc.
  • the touch screen of the electronic device is generally provided with at least one working surface that can receive user input, and M*N capacitive components arranged in an array can be disposed on a side close to the working surface.
  • the capacitive device can be any sensor having a capacitive function.
  • the M*N capacitor members may be M*N electrode arrays arranged in a lateral direction and a longitudinal direction made of ITO (Indium Tin Oxide).
  • ITO Indium Tin Oxide
  • a capacitive signal generated by all capacitive devices ie, the above-mentioned M*N capacitive devices
  • the electronic device determines K (0 ⁇ K ⁇ M*N) capacitor signals from the M*N capacitor signals generated by the M*N capacitor devices, and reports the K capacitor signals to the electronic device.
  • the processor restores the M*N capacitor signals generated by the M*N capacitor devices according to the K capacitor signals.
  • the capacitor signal when the capacitor signal is reported on the electronic device, it is not necessary to report all the M*N capacitor signals to the processor as in the prior art, but selectively report the K capacitor signals to the electronic device.
  • the processor for example, includes K capacitive signals generated by K capacitive devices corresponding to the touch locations. In this way, the amount of data when the electronic device reports the capacitive signal can be reduced, thereby reducing the transmission bandwidth occupied by the capacitor signal reporting process, improving the response speed of the electronic device and reducing the power consumption of the electronic device.
  • the electronic device may further compress each of the M*N capacitor signals, for example, according to a preset compression ratio of the capacitor value in each capacitor signal (The compression ratio is less than 1 (positive number) compression, so that the electronic device can report the compressed M*N capacitor signals to the processor of the electronic device.
  • the processor can directly calculate the M*N capacitor signals after compression. Information such as the touch position, the size of the operator, or the shape of the knuckles corresponding to the touch event described above is determined.
  • the reporting method of the capacitor signal can not only reduce the amount of data when the electronic device reports the capacitor signal, but also eliminate the need for the processor to perform the process of restoring the M*N capacitor signals generated by the M*N capacitor devices. Further improve the response speed of the electronic device and reduce the power consumption of the electronic device.
  • the capacitor signal generated in real time in the touch event can be reported to the processor of the electronic device in the embodiment of the present invention instead of the position coordinate at the touch position in the single report touch event, the processor of the electronic device can be The reported real-time capacitive signal more accurately determines the user's touch trend in the touch event.
  • the electronic device is likely to determine the user's click operation as a sliding operation only by the position coordinates of the touched position.
  • the capacitance signal generated by the click operation can be obtained in real time.
  • the current large displacement change can be identified, is it because The contact area of the finger on the touch screen is changed, and if so, the touch event is a click operation, and then the operation instruction corresponding to the click operation is performed, thereby avoiding the judgment of the user's click operation error as a sliding operation. .
  • the foregoing capacitor signal can be reported in the form of a data packet. Then, using the signal reporting method provided by the embodiment of the present invention, the amount of data packets sent and/or the size of each data packet when reporting the capacitor signal is significantly reduced. .
  • the RF circuit 21 can be used for receiving and transmitting information during the transmission or reception of information or during a call.
  • the processor 27 processes the uplink information.
  • the uplink data is sent to the wireless access device.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 21 can also communicate with the network and other devices through wireless communication.
  • the memory 22 can be used to store software programs and modules, and the processor 27 executes various functional applications and data processing of the electronic device by running software programs and modules stored in the memory 22.
  • the input unit 23 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the electronic device.
  • the input unit 23 may include a touch screen 341 and other input devices 342.
  • the display unit 24 can be used to display information input by the user or information provided to the user as well as various menus of the electronic device.
  • the display unit 24 can include a display panel 351, optionally, a liquid can be used
  • the display panel 351 is configured in the form of a crystal display (LCD), an organic light emitting diode (OLED), or the like.
  • the camera 25 can also be used as an input device for converting the collected analog video or image signal into a digital signal and storing it in the memory 22.
  • the camera 25 may include a front camera, a rear camera, a built-in camera, an external camera, and the like, which are not limited in this embodiment of the present invention.
  • the electronic device may also include a gravity sensor and other sensors, such as a light sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, etc., and details are not described herein.
  • a gravity sensor such as a light sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, etc., and details are not described herein.
  • Audio circuitry 26, speaker 371, microphone 372 can provide an audio interface between the user and the electronic device.
  • the audio circuit 26 can transmit the converted electrical data of the received audio data to the speaker 371 for conversion to the sound signal output by the speaker 371; on the other hand, the microphone 372 converts the collected sound signal into an electrical signal by the audio circuit 26 After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 21 for transmission to, for example, another electronic device, or the audio data is output to the memory 22 for further processing.
  • the processor 27 is a control center for the electronic device that connects various portions of the entire electronic device using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 22, and recalling data stored in the memory 22. , performing various functions and processing data of the electronic device to perform overall monitoring of the electronic device.
  • processor 27 may include one or more processing units.
  • the above electronic device may further include a power source, a Wi-Fi (Wireless Fidelity) module, a Bluetooth module, and the like, and details are not described herein again.
  • a Wi-Fi Wireless Fidelity
  • Bluetooth Wireless Fidelity
  • the method includes:
  • the electronic device acquires a touch event triggered by a user on a touch screen, where the touch screen is provided with M*N capacitor devices arranged in an array, M>0, N>0.
  • the electronic device can scan the capacitive signal on the touch screen in real time at a certain frequency.
  • the electronic device can determine that the user triggers a touch event on the working surface of the touch screen, for example, a single Hit or slide, etc.
  • the current touch event may be determined as a valid touch event according to parameters such as the touch position, the touch time, and the capacitance signal at the touch position. For example, when it is detected that M*N capacitor devices, a capacitive component generates a capacitance signal greater than a threshold, or when a sum of capacitance signals generated by a plurality of adjacent (eg, four) capacitive devices is greater than a threshold The electronic device can determine that a valid touch event occurs on the touch screen.
  • the following steps 102-106 may be continued, so that the electronic device can prevent the non-meaningful capacitive signal from being reported, thereby reducing the amount of data transmission during the reporting of the capacitive signal.
  • the touch event may also be a floating touch event, wherein the hovering touch means that when the user's finger hovers over the screen, the capacitive component on the touch screen can generate a capacitance under the action of the human body electric field. signal.
  • the electronic device can detect one above the screen
  • the capacitance signal generated by the finger at a predetermined distance is further processed by a gesture pre-judgment according to the capacitance signal.
  • the electronic device determines a target capacitive device corresponding to a touch point position in the touch event, the target capacitive device being any one of the M*N capacitive devices.
  • the electronic device may use one or more capacitive devices having a larger capacitance signal change value in the M*N capacitor devices as the target capacitive device, for example, in the above effective touch event.
  • the capacitive device with the largest value of the detected capacitance signal is used as the target capacitive device.
  • the target capacitive device may also be determined according to a method for determining the position of the touched point in the touch event in the prior art.
  • the touch point position coordinate may be a pixel point in the display screen.
  • the coordinates for example, Q(x, y) in Fig. 4.
  • the display screen contains W*H pixels
  • the display screen contains M*N capacitive components
  • the electronic device can map the coordinate Q(x, y) of the Q point to the M*N capacitors.
  • the target capacitive device corresponding to the position of the touched point is the capacitive device at Q'(x', y').
  • the electronic device acquires a capacitance signal generated by each of the K capacitive devices including the target capacitive device, 0 ⁇ K ⁇ M*N.
  • the electronic device may preset a region composed of N1*N2 capacitor devices, so that after determining the target capacitor device, N1*N2 capacitor devices may be determined as the K capacitors centering on the target capacitor device.
  • Piece (N1*N2 K).
  • Each of the capacitive devices in the display screen generates a capacitance signal in response to the touch event, for example, the capacitance signal may specifically be a capacitance value or a change amount of the capacitance value. Then, the electronic device can further acquire the capacitance signal generated by each of the K capacitor devices, and the capacitance signal generated by the capacitor device at other positions is generally a value of approximately zero.
  • the electronic device when there is only one touch point position in the touch event, can use 3*3 capacitive devices centered on the target capacitive device as the K capacitive devices, and acquire the 3 * The capacitance signal generated by each of the three capacitive devices.
  • the electronic device when the touch point position in the touch event is plural (for example, two), the electronic device can set 3*3 capacitors centered on the target capacitive device corresponding to each touch point position. And as the above K capacitor devices, and obtain a capacitance signal generated by each of the K capacitor devices.
  • the area formed by the above-mentioned K capacitor members may be any shape such as a rectangle or a circle, which is not limited in the embodiment of the present invention.
  • the electronic device may divide the touch screen into a plurality of different regions in advance, so that for different regions, the electronic device may determine K capacitors including the target capacitive device by different methods according to the specific position of the target capacitive device. Pieces.
  • the electronic device divides the touch screen into a first area, a second area, a third area, and a fourth area in advance.
  • the first area refers to the area located at the center of the touch screen
  • the second area refers to an area located on the first side of the touch screen (the upper and lower sides in FIG. 7)
  • the third area refers to an area located on the second side of the touch screen (the left and right sides in FIG. 7).
  • the length of the second side is greater than the length of the first side
  • the fourth area refers to four areas located at the four vertices of the touch screen.
  • the electronic device may use X2*Y2 (X2 ⁇ Y2) capacitive devices including the target capacitive device as the above K
  • the capacitor that is, the K capacitor members selected at this time constitutes a rectangle having a long side in the x-axis direction.
  • the electronic device can collect the capacitance signal generated in the x-axis direction as much as possible to improve the accuracy of the subsequent recognition of the touch operation. rate.
  • the center of the above X2*Y2 capacitive devices is not necessarily the target capacitive device.
  • the electronic device may use X3*Y3 (X3>Y3) capacitive devices including the target capacitive device as The above K capacitors, that is, the K capacitor members selected at this time constitute a rectangle having a long side length in the y-axis direction.
  • the electronic device can collect the capacitance signal generated in the y-axis direction as much as possible to improve the accuracy of the subsequent recognition of the touch operation. rate.
  • the center of the above X3*Y3 capacitive devices is not necessarily the above-mentioned target capacitive device.
  • the electronic device determines that the target capacitive device is located in the fourth region, for example, as shown in (d) of FIG. 8, it is assumed that the target capacitive device is located in the lower left corner of the touch screen (ie, the target region, and the target region is in the fourth region and touched The area where the vertex corresponding to the point position is located. At this time, since the target area generally has a small area, the electronic device can use all the capacitive components in the target area as the K capacitors to improve the accuracy of the subsequent recognition of the touch operation. rate.
  • the electronic device can also determine the positional information of the K capacitive devices, that is, the relative positional relationship between the K capacitive components and the M*N capacitive components.
  • the above position information may specifically include coordinates of a certain one of the K capacitive devices (for example, the coordinate P(x, y) of the capacitive device in the upper right corner in FIG. 9), and the K capacitors are one. 3*3 matrix.
  • the electronic device reports target data, where the target data includes a capacitance signal and position information generated by each of the K capacitive devices, and the position information is used to indicate the K capacitive components and the M*N capacitive components. Positional relationship between.
  • the electronic device may report the capacitance signal and the position information generated by each of the K capacitive devices to the processor of the electronic device as target data, so that the processor restores the entire touch screen according to the target data.
  • Capacitance signal of N*M capacitor parts Capacitance signal of N*M capacitor parts.
  • the target data reported by the electronic device specifically includes the capacitance value and the position information generated by each of the 3*3 capacitive devices in FIG. 9 , and the position information includes the above K.
  • the capacitive components are 3*3 capacitive components, and the coordinates P(x, y) of the capacitive components in the upper right corner of the 3*3 capacitive components.
  • the electronic device sets each element in the capacitance matrix to be 0.
  • the capacitance matrix includes M*N elements.
  • the electronic device adds a capacitance signal generated by each of the K capacitive devices to the capacitance matrix according to the position information.
  • a device using the above capacitive signal such as a processor of an electronic device, may first initialize a capacitance matrix of size M*N, wherein each element of the capacitance matrix has a predetermined initial value, for example, Each element in the capacitance matrix is a value equal to or approximately zero.
  • the electronic device may replace the value of the element at the corresponding position in the capacitance matrix with the received corresponding capacitance signal according to the position information.
  • the 11*7 capacitive device is disposed on the touch screen, and then the electronic device can determine the corresponding capacitance matrix according to the target data shown in FIG. 9 as:
  • the electronic device can completely restore the capacitance signal generated by the M*N capacitor devices, and then complete the operation corresponding to the touch event in step 101 according to the restored M*N capacitor signals, such as gesture recognition.
  • the embodiment of the present invention does not impose any limitation on this.
  • the electronic device can directly add the initial value of the element at the corresponding position in the capacitance matrix to the corresponding corresponding capacitance signal when the capacitance matrix is restored.
  • the restored capacitance matrix can still indicate the relative magnitude relationship between the M*N capacitor signals, so that the electronic device can be based on the restored M*N capacitor signals.
  • the transmission bandwidth is reduced in the process of transmitting the capacitive signal, so that the real-time generated capacitive signal can be sent to the processor more quickly, so that the processor can More accurate gesture pre-judgment or mis-touch pre-identification, etc., to improve the accuracy of hovering touch.
  • the embodiment of the invention provides a signal reporting method. As shown in FIG. 10, the method includes:
  • the electronic device acquires a touch event triggered by the user on the touch screen, where the touch screen is provided with M*N capacitive components arranged in an array, M>0, N>0.
  • the electronic device performs downsampling on the M*N capacitor signals generated by the M*N capacitor devices to obtain a capacitance signal generated by each of the K capacitor devices.
  • the sampling rate of the down sampling may specifically be any value greater than 0 and less than 1.
  • each capacitive device in the display screen when the user triggers a touch event on the touch screen, each capacitive device in the display screen generates a capacitance signal in response to the touch event, and then M*N capacitor devices in the touch screen generate a total of M*N Capacitance signal.
  • the above-mentioned touch event may also be a hovering touch event, which is not limited in this embodiment of the present invention.
  • the electronic device may downsample the number of signals of the M*N capacitor signals.
  • the black position indicates the capacitance signal generated by the collected capacitive device
  • the white position indicates the capacitance signal generated by the non-acquired capacitive device. In this way, the data transmission amount of the capacitance signal can be compressed to 50% of the original.
  • the above M*N capacitor signals can also be downsampled at other sampling rates.
  • FIG. 12 when the downsampling sampling rate is 2/3, (a), (b), and (c) in FIG. 12 respectively provide three possible downsampling modes, which are not used in the embodiment of the present invention. Any restrictions.
  • the black position indicates the capacitance signal generated by the collected capacitive device
  • the white position indicates the capacitance signal generated by the non-acquired capacitive device.
  • the user may also set the sampling rate of the above-mentioned downsampling on the electronic device, or the electronic device may adjust the sampling rate of the down sampling according to the application of the current electronic device, and the embodiment of the present invention does not do any limit.
  • the electronic device when the electronic device is running a first application (eg, a video playing application) that does not require high touch accuracy, the electronic device may perform downsampling on the M*N capacitive signals according to a lower first sampling rate. And when the electronic device runs a second application (eg, a game application) that requires high touch accuracy, the electronic device may perform the above M* according to a higher second sampling rate (the second sampling rate is greater than the first sampling rate); N capacitor signals perform downsampling.
  • a first application eg, a video playing application
  • the electronic device may perform downsampling on the M*N capacitive signals according to a lower first sampling rate.
  • the electronic device when the electronic device runs a second application (eg, a game application) that requires high touch accuracy, the electronic device may perform the above M* according to a higher second sampling rate (the second sampling rate is greater than the first sampling rate); N capacitor signals perform downsampling.
  • the electronic device when the electronic device runs the first application, the electronic device can automatically adjust the sampling rate of the down sampling to the first sampling rate. Since the value of the first sampling rate is low, the data amount of the capacitance signal reported by the electronic device will be Further, the power consumption of the electronic device will also decrease; and when the electronic device runs the second application, the electronic device can automatically adjust the sampling rate of the down sampling to the second sampling rate, because the value of the second sampling rate is higher. Therefore, it is ensured that the electronic device responds promptly and accurately to the touch event triggered by the user.
  • the electronic device reports a capacitance signal generated by each of the K capacitive devices.
  • the electronic device restores the M*N capacitor signals according to the capacitance signal generated by each of the K capacitor devices.
  • the electronic device obtains a capacitance signal generated by each of the K capacitive devices, that is, after the K capacitive signals, the unacquired capacitive signal can pass through the periphery thereof.
  • the collected capacitance signal is estimated.
  • the electronic device can completely restore the capacitance signal generated by the M*N capacitor devices, and then complete the operation corresponding to the touch event in step 201 according to the restored M*N capacitor signals, such as gesture recognition.
  • the embodiment of the present invention does not impose any limitation on this.
  • the embodiment of the invention provides a signal reporting method. As shown in FIG. 14, the method includes:
  • the electronic device acquires a touch event triggered by a user on a touch screen, where the touch screen is provided with M*N capacitive components arranged in an array, M>0, N>0.
  • the electronic device compresses the capacitance signal generated by each of the M*N capacitor devices according to a preset compression ratio to obtain M*N compressed capacitor signals.
  • the compression ratio may be any value greater than 0 and less than 1.
  • each capacitive device in the display screen when the user triggers a touch event on the touch screen, each capacitive device in the display screen generates a capacitance signal in response to the touch event, and then M*N capacitor devices in the touch screen generate a total of M*N Capacitance signal.
  • the above-mentioned touch event may also be a hovering touch event, which is not limited in this embodiment of the present invention.
  • the electronic device can compress each of the M*N capacitive signals. For example, as shown in FIG. 15, the electronic device generates M*N capacitor signals (where the unmarked position can default to a capacitance signal of 0) in response to the touch event, and the electronic device can compress each of the capacitor signals by 0.1. Times, M*N compressed capacitor signals are obtained. In this way, the electronic device only needs to report the M*N compressed capacitor signals to the processor, and the compressed transmission amount is reduced to 10% of the pre-compression transmission amount. Moreover, the M*N compressed capacitor signals have already reflected the magnitude relationship between the M*N capacitor signals. Therefore, the electronic device does not need to restore the M*N compressed capacitor signals.
  • the operation corresponding to the touch event in step 301 is completed according to the above M*N compressed capacitance signals.
  • electronic devices typically use h (h > 1) bits to represent a capacitive signal.
  • the above h bits can be compressed into d (1 ⁇ d ⁇ h) bits to achieve the purpose of compressing the capacitance signal.
  • the accuracy of a capacitor signal after compression is 256.
  • the compression ratio may specifically be a ratio of the accuracy required for compressing one capacitive signal to the accuracy required for compressing the previous capacitive signal, that is, the compression ratio is 2 ⁇ d/2 ⁇ h.
  • the capacitance signal generated by a certain capacitive device before compression takes a value of 16384, which is represented by 16 bits.
  • the electronic device only needs to report the compressed capacitor signal 64 to the processor by using 8 bits, and does not need to use the 16-bit bit to report the capacitor signal 16384 before compression, thereby reducing the amount of data transmission when the capacitor signal is reported.
  • the user may also set the compression rate on the electronic device, or the electronic device may adjust the compression rate according to the application of the current electronic device, and the embodiment of the present invention does not make any limit.
  • the electronic device when the electronic device is running a first application (eg, a video playing application) that does not require high touch accuracy, the electronic device may perform downsampling on the M*N capacitive signals according to a lower first compression ratio.
  • a second application eg, a game application
  • the electronic device can perform the above-mentioned M*N according to a higher compression ratio (the second sampling rate is greater than the first sampling rate)
  • the capacitor signal performs a downsampling.
  • the electronic device can automatically adjust the compression ratio to the first compression ratio. Since the value of the first compression ratio is low, the data amount of the capacitance signal reported by the electronic device is further reduced. The power consumption of the electronic device will also decrease; when the electronic device runs the second application, the electronic device can automatically adjust the compression ratio to the second sampling rate, and since the value of the second compression rate is higher, the electronic device can be secured. The device responds promptly and accurately to user-triggered touch events.
  • the electronic device reports the M*N compressed capacitor signals.
  • the (optional) electronic device restores the M*N pre-compression capacitance signals according to the M*N compressed capacitor signals.
  • the capacitor signal 16384 is still compressed into 64 by the above.
  • the electronic device can perform operations corresponding to the touch events in step 201, such as gesture recognition, according to the restored M*N capacitive signals, which is not limited in this embodiment of the present invention.
  • the foregoing three signal reporting methods provided in the embodiments of the present invention that is, the signal reporting method provided in steps 101-106, the signal reporting method provided in steps 201-204, and the signal reporting method provided in steps 301-304
  • the electronic device may select the method of at least one of the above three signal reporting methods to complete the reporting process of the capacitor signal, that is, the above three signal reporting methods may be superimposed or used in combination, and those skilled in the art may use actual experience or actual application scenarios. It is set, and the embodiment of the present invention does not impose any limitation on this.
  • the above electronic device or the like includes a hardware structure and/or a software module corresponding to each function.
  • the embodiments of the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the embodiments of the invention.
  • the embodiment of the present invention may perform the division of the function modules on the electronic device or the like according to the above method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 17 is a schematic diagram of a possible structure of an electronic device involved in the foregoing embodiment, where the electronic device includes: an obtaining unit 1101, a determining unit 1102, and a reporting unit. 1103, a restoration unit 1104, and a compression unit 1105.
  • the obtaining unit 1101 is configured to support the electronic device to perform the processes 101 and 103 in FIG. 3, the processes 201-202 in FIG. 10 and the process 301 in FIG. 14; the determining unit 1102 is configured to support the electronic device to execute the process 102 in FIG. 3;
  • the reporting unit 1103 is configured to support the electronic device to perform the process 104 in FIG. 3, the process 203 in FIG. 10 and the process 303 in FIG. 14;
  • the restoration unit 1104 is configured to support the electronic device to perform the processes 105-106 in FIG. 3, FIG.
  • the compression unit 1105 is configured to support the electronic device to perform the process 302 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 18 shows a possible structural diagram of the electronic device involved in the above embodiment.
  • the electronic device includes a processing module 1302 and a communication module 1303.
  • the processing module 1302 is configured to control and manage the actions of the electronic device.
  • the communication module 1303 is configured to support communication between the UE and other network entities.
  • the electronic device may further include a storage module 1301 for storing program codes and data of the electronic device.
  • the processing module 1302 may be a processor or a controller, for example, may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1303 may be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1301 may be a memory.
  • the processing module 1302 is a processor
  • the communication module 1303 is an RF transceiver circuit
  • the storage module When the 1301 is a memory
  • the electronic device provided by the embodiment of the present invention may be the electronic device shown in FIG. 2 .
  • the electronic device includes: a touch screen, a processor, a memory, a bus, and a communication interface; wherein the communication interface is configured to acquire a touch event triggered by the user on the touch screen,
  • the touch screen is provided with an array of M*N capacitive components, M>0, N>0; the touch screen is used to obtain a capacitance signal generated by each of the K capacitive devices, the K capacitive components are Any one of the M*N capacitive devices, 0 ⁇ K ⁇ M*N;
  • the communication interface is further configured to report target data to the processor, the target data including each of the K capacitive devices The generated capacitive signal.
  • the target data further includes location information, which is used to indicate a positional relationship between the K capacitive devices and the M*N capacitive devices.
  • the touch screen is specifically configured to: determine a target capacitive device corresponding to the touch point position in the touch event; determine K capacitive devices including the target capacitive device according to the location of the target capacitive device; acquire the K A capacitive signal generated by each of the capacitive devices in the capacitive device.
  • the processor is further configured to: set a value of each element in the capacitance matrix to a preset initial value, the capacitance matrix includes M*N elements; according to the position information, the K capacitive components A capacitance signal generated by each of the capacitive devices is added to the capacitance matrix.
  • the touch screen is further configured to perform downsampling on the M*N capacitor signals generated by the M*N capacitor devices, and obtain a capacitance signal generated by each of the K capacitor devices after downsampling,
  • the sampling rate of the sample is a positive number less than one.
  • the touch screen is specifically configured to: when the electronic device runs the first application, perform downsampling on the M*N capacitor signals generated by the M*N capacitor devices according to the first sampling rate; when the electronic device runs the second In application, the M*N capacitor signals generated by the M*N capacitor devices are downsampled according to a second sampling rate, and the second sampling rate is greater than the first sampling rate.
  • the touch screen is further configured to: compress a capacitance signal generated by each of the K capacitive devices according to a preset compression ratio to obtain K compressed capacitive signals, where the preset compression ratio is less than 1. a positive number; wherein the target data includes a capacitance signal generated by each of the K capacitive devices after compression.
  • an electronic device provided by an embodiment of the present invention includes: a touch screen, a processor, a memory, a bus, and a communication interface; wherein the communication interface is configured to acquire a touch event triggered by the user on the touch screen, and the touch screen is provided with M*N capacitor devices arranged in an array, M>0, N> 0.
  • the touch screen is configured to compress a capacitance signal generated by each of the M*N capacitor devices according to a preset compression ratio to obtain M*N compressed capacitor signals, where the preset compression ratio is less than 1.
  • the positive interface; the communication interface is further configured to report the M*N compressed capacitor signals to the processor.
  • the compression ratio is a ratio of an accuracy required to compress a capacitive signal to a precision required to compress a previous capacitive signal; for each of the M*N capacitive devices, the touch screen is specifically used for The product of the capacitance signal generated by the capacitor device and the compression ratio is used as a capacitance signal after the capacitor device is compressed.
  • the touch screen is specifically configured to: when the electronic device runs the first application, compress a capacitance signal generated by each of the M*N capacitor devices according to a first compression ratio; when the electronic device runs the second application And compressing a capacitance signal generated by each of the M*N capacitor devices according to a second compression ratio, the second compression ratio being greater than the first compression ratio.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)).
  • SSD Solid State Disk

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明实施例提供一种信号上报方法及装置,可降低电容信号上报过程中占用的传输带宽,提高电子设备的响应速度并降低电子设备的功耗。该方法包括:电子设备获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;响应于该触摸事件,电子设备得到K个电容器件中每个电容器件生成的电容信号,该K个电容器件为该M*N个电容器件中的任意K个电容器件,0<K<M*N;电子设备上报目标数据,该目标数据包括该K个电容器件中每个电容器件生成的电容信号。

Description

一种信号上报方法及装置 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种信号上报方法及装置。
背景技术
触摸屏又称为“触控屏”或“触控面板”,是一种可接收触头等输入讯号的感应式显示装置。如图1所示,触摸屏的工作面100中一般设置有阵列排布的M*N(M≥1,N≥1)个电容器件101,当用户触摸工作面上的某个位置时,在人体电场的作用下,用户手指和工作面100之间会形成一个耦合电容。此时,与用户手指对应的一个或多个电容器件101的电容信号会发生改变,那么,触摸屏将当前各电容信号上报给电子设备内的处理器后,处理器便可以根据不同位置处的电容信号确定出用户的具体手势等信息。
目前,电子设备对触摸响应的灵敏度要求越来越高,以包含32*18个电容器件的触摸屏为例,当数据传输频率为120Hz时,如果电子设备的触摸屏要实时传输触摸屏内各个电容器件的电容信号,则每秒共需上报120*32*18=69120个电容信号。这对于数据传输时常用的集成电路总线(I2C)总线或串行通信接口(SCI)而言,电容信号的上报过程将占用很大的传输带宽,使电子设备的响应速度变慢,并且增加了电子设备的功耗。
发明内容
本发明实施例提供一种信号上报方法及装置,可降低电容信号上报过程中占用的传输带宽,提高电子设备的响应速度并降低电子设备的功耗。
为达到上述目的,本发明实施例采用如下技术方案:
第一方面,本发明实施例提供一种信号上报方法,包括:电子设备获取用户在触摸屏(该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0)上触发的触摸事件;响应于该触摸事件,电子设备得到K(0<K<M*N)个电容器件(该K个电容器件为该M*N个电容器件中的任意K个)中每个电容器件生成的电容信号;电子设备上报目标数据,该目标数据包括该K个电容器件中每个电容器件生成的电容信号。
可以看出,在电子设备上报电容信号时,无需向现有技术中那样将所有的M*N个电容信号上报给处理器,而是有选择性的将其中的K个电容信号上报给电子设备的处理器。这样,可以降低电子设备上报电容信号时的数据量,从而降低电容信号上报过程中占用的传输带宽,提高了电子设备的响应速度并降低电子设备的功耗。
在一种可能的设计方法中,该目标数据还包括位置信息,该位置信息用于指示上述K个电容器件与M*N个的电容器件之间的位置关系。
在一种可能的设计方法中,电子设备得到K个电容器件中每个电容器件生成的电容信号,包括:电子设备确定与该触摸事件中触摸点位置对应的目 标电容器件;电子设备根据该目标电容器件所在的位置,确定包含该目标电容器件的K个电容器件;电子设备获取这K个电容器件中每个电容器件生成的电容信号。
也就是说,电子设备上报时只需上报与触摸位置对应的K个电容信号以及位置信息,从而降低了电容信号的传输量,进而,电子设备对该触摸事件的响应速度将会提高,同时可以增加电子设备的待机时间。
在一种可能的设计方法中,电子设备根据目标电容器件所在的位置,确定包含目标电容器件的K个电容器件,包括:当该目标电容器件位于第一区域时,电子设备将以该目标电容器件为中心的X1*Y1个电容器件作为该K个电容器,X1=Y1,该第一区域为位于该触摸屏中心的区域;当该目标电容器件位于第二区域时,电子设备将包含该目标电容器件的X2*Y2个电容器件作为该K个电容器,X2<Y2,该第二区域为位于该触摸屏第一侧边的区域;当该目标电容器件位于第三区域时,电子设备将包含该目标电容器件的X3*Y3个电容器件作为该K个电容器,X3>Y3,该第三区域为位于该触摸屏第二侧边的区域,该第二侧边的长度大于该第一侧边的长度;当该目标电容器件位于第四区域时,电子设备将目标区域内的所有电容器件作为该K个电容器,该第四区域为位于该触摸屏四个顶点的区域,该目标区域为该第四区域中与该触摸事件中触摸点位置对应的顶点的区域。这样,针对触摸屏上的不同区域,可以选择上述K个电容器的策略也可以不同,从而实现有针对性的电容信号上报过程。
在一种可能的设计方法中,在电子设备上报目标数据之后,还包括:电子设备将电容矩阵中每一个元素的取值设置为预设的初始值,该电容矩阵包括M*N个元素;电子设备根据该位置信息,将上述K个电容器件中每个电容器件生成的电容信号添加至该电容矩阵中。
在一种可能的设计方法中,电子设备得到K个电容器件中每个电容器件生成的电容信号,包括:电子设备对上述M*N个电容器件产生的M*N个电容信号执行下采样,得到下采样后K个电容器件中每个电容器件产生的电容信号,该下采样的采样率为小于1的正数。这样,可以降低电容信号的数据传输量。
在一种可能的设计方法中,电子设备对该M*N个电容器件产生的M*N个电容信号执行下采样,包括:当电子设备运行第一应用时,电子设备按照第一采样率对该M*N个电容器件产生的M*N个电容信号执行下采样;当电子设备运行第二应用时,电子设备按照第二采样率对该M*N个电容器件产生的M*N个电容信号执行下采样,该第二采样率大于该第一采样率。
这样,当电子设备运行第一应用时,电子设备可以自动将下采样的采样率调整为上述第一采样率,由于第一采样率的值较低,因此,电子设备上报电容信号的数据量将进一步减少,电子设备的耗电量也将下降;而当电子设备运行第二应用时,电子设备可以自动将下采样的采样率调整为上述第二采样率,由于第二采样率的值较高,因此,可以保证电子设备及时准确的响应 用户触发的触摸事件。
在一种可能的设计方法中,在电子设备得到K个电容器件中每个电容器件生成的电容信号之后,还包括:电子设备按照预设的压缩率(压缩率为小于1的正数)压缩这K个电容器件中每个电容器件产生的电容信号,得到K个压缩后的电容信号;其中,上述目标数据包括压缩后这K个电容器件中每个电容器件生成的电容信号。这样,在上报电容信号时,可以将这K个电容信号进一步的压缩,从而进一步降低电子设备上报电容信号时的数据量,提高电子设备的响应速度。
第二方面,本发明实施例提供一种信号上报方法,包括:电子设备获取用户在触摸屏(该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0)上触发的触摸事件;响应于该触摸事件,电子设备按照预设的压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,该预设压缩率为小于1的正数;电子设备上报该M*N个压缩后的电容信号。那么,上述电容信号的上报方法不仅可以降低电子设备上报电容信号时的数据量,还无需处理器执行还原上述M*N个电容器件生成的M*N个电容信号的过程,从而可以进一步提高电子设备的响应速度并降低电子设备的功耗。
在一种可能的设计方法中,该压缩率为压缩后一个电容信号所需的精度与压缩前一个电容信号所需的精度的比值;其中,电子设备按照预设的压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,包括:对于该M*N个电容器件中的每个电容器件:电子设备将该电容器件产生的电容信号与该压缩率的乘积,作为该电容器件压缩后的电容信号。
在一种可能的设计方法中,电子设备按照预设的压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,包括:当电子设备运行第一应用时,电子设备按照第一压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号;当电子设备运行第二应用时,电子设备按照第二压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,该第二压缩率大于该第一压缩率。
这样,当电子设备运行第一应用时,电子设备可以自动将压缩率调整为上述第一压缩率,由于第一压缩率的值较低,因此,电子设备上报电容信号的数据量将进一步减少,电子设备的耗电量也将下降;而当电子设备运行第二应用时,电子设备可以自动将压缩率调整为上述第二采样率,由于第二压缩率的值较高,因此,可以保证电子设备及时准确的响应用户触发的触摸事件。
第三方面,本发明实施例提供一种电子设备,包括:获取单元,用于:获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;确定单元,用于:响应于该触摸事件,得到K个电容器件中每个电容器件生成的电容信号,该K个电容器件为该M*N个电容器件中的任意K个电容器件,0<K<M*N;上报单元,用于:上报目标数据,该目标数据包括该K个电容器件中每个电容器件生成的电容信号。
在一种可能的设计方法中,该目标数据还包括位置信息,该位置信息用于指示该K个电容器件与该M*N个的电容器件之间的位置关系。
在一种可能的设计方法中,该确定单元,具体用于:确定与该触摸事件中触摸点位置对应的目标电容器件;电子设备根据该目标电容器件所在的位置,确定包含该目标电容器件的K个电容器件;获取该K个电容器件中每个电容器件生成的电容信号。
在一种可能的设计方法中,该确定单元,具体用于:当该目标电容器件位于第一区域时,将以该目标电容器件为中心的X1*Y1个电容器件作为该K个电容器,X1=Y1,该第一区域为位于该触摸屏中心的区域;当该目标电容器件位于第二区域时,将包含该目标电容器件的X2*Y2个电容器件作为该K个电容器,X2<Y2,该第二区域为位于该触摸屏第一侧边的区域;当该目标电容器件位于第三区域时,将包含该目标电容器件的X3*Y3个电容器件作为该K个电容器,X3>Y3,该第三区域为位于该触摸屏第二侧边的区域,该第二侧边的长度大于该第一侧边的长度;当该目标电容器件位于第四区域时,将目标区域内的所有电容器件作为该K个电容器,该第四区域为位于该触摸屏四个顶点的区域,该目标区域为该第四区域中与该触摸事件中触摸点位置对应的顶点的区域。
在一种可能的设计方法中,电子设备还包括:还原单元,用于:将电容矩阵中每一个元素的取值设置为预设的初始值,该电容矩阵包括M*N个元素;根据该位置信息,将该K个电容器件中每个电容器件生成的电容信号添加至该电容矩阵中。
在一种可能的设计方法中,该确定单元,具体用于:对该M*N个电容器件产生的M*N个电容信号执行下采样,得到下采样后K个电容器件中每个电容器件产生的电容信号,该下采样的采样率为小于1的正数。
在一种可能的设计方法中,该确定单元,具体用于:当电子设备运行第一应用时,按照第一采样率对该M*N个电容器件产生的M*N个电容信号执行下采样;当电子设备运行第二应用时,按照第二采样率对该M*N个电容器件产生的M*N个电容信号执行下采样,该第二采样率大于该第一采样率。
在一种可能的设计方法中,电子设备还包括:压缩单元,用于:按照预设的压缩率压缩该K个电容器件中每个电容器件产生的电容信号,得到K个压缩后的电容信号,该预设压缩率为小于1的正数;其中,该目标数据包括压缩后该K个电容器件中每个电容器件生成的电容信号。
第四方面,本发明实施例提供一种电子设备,包括:获取单元,用于:获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;压缩单元,用于:响应于该触摸事件,按照预设的压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,该预设压缩率为小于1的正数;上报单元,用于:上报该M*N个压缩后的电容信号。
在一种可能的设计方法中,该压缩率为压缩后一个电容信号所需的精度 与压缩前一个电容信号所需的精度的比值;对于该M*N个电容器件中的每个电容器件:该压缩单元,具体用于:将该电容器件产生的电容信号与该压缩率的乘积,作为该电容器件压缩后的电容信号。
在一种可能的设计方法中,该压缩单元,具体用于:当电子设备运行第一应用时,按照第一压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号;当电子设备运行第二应用时,按照第二压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,该第二压缩率大于该第一压缩率。
第五方面,本发明实施例提供一种电子设备,包括:触摸屏、处理器、存储器、总线和通信接口;其中,该通信接口,用于获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;该触摸屏,用于得到K个电容器件中每个电容器件生成的电容信号,该K个电容器件为该M*N个电容器件中的任意K个电容器件,0<K<M*N;该通信接口,还用于上报目标数据至该处理器,该目标数据包括该K个电容器件中每个电容器件生成的电容信号。
在一种可能的设计方法中,该目标数据还包括位置信息,该位置信息用于指示该K个电容器件与该M*N个的电容器件之间的位置关系。
在一种可能的设计方法中,该触摸屏,具体用于:确定与该触摸事件中触摸点位置对应的目标电容器件;根据该目标电容器件所在的位置,确定包含该目标电容器件的K个电容器件;获取该K个电容器件中每个电容器件生成的电容信号。
在一种可能的设计方法中,该触摸屏,具体用于:当该目标电容器件位于第一区域时,将以该目标电容器件为中心的X1*Y1个电容器件作为该K个电容器,X1=Y1,该第一区域为位于该触摸屏中心的区域;当该目标电容器件位于第二区域时,将包含该目标电容器件的X2*Y2个电容器件作为该K个电容器,X2<Y2,该第二区域为位于该触摸屏第一侧边的区域;当该目标电容器件位于第三区域时,将包含该目标电容器件的X3*Y3个电容器件作为该K个电容器,X3>Y3,该第三区域为位于该触摸屏第二侧边的区域,该第二侧边的长度大于该第一侧边的长度;当该目标电容器件位于第四区域时,将目标区域内的所有电容器件作为该K个电容器,该第四区域为位于该触摸屏四个顶点的区域,该目标区域为该第四区域中与该触摸事件中触摸点位置对应的顶点的区域。
在一种可能的设计方法中,该处理器,还用于:将电容矩阵中每一个元素的取值设置为预设的初始值,该电容矩阵包括M*N个元素;根据该位置信息,将该K个电容器件中每个电容器件生成的电容信号添加至该电容矩阵中。
在一种可能的设计方法中,该触摸屏,还用于:对该M*N个电容器件产生的M*N个电容信号执行下采样,得到下采样后K个电容器件中每个电容器件产生的电容信号,该下采样的采样率为小于1的正数。
在一种可能的设计方法中,该触摸屏,具体用于:当电子设备运行第一应用时,按照第一采样率对该M*N个电容器件产生的M*N个电容信号执行下采样;当电子设备运行第二应用时,按照第二采样率对该M*N个电容器件产生的M*N个电容信号执行下采样,该第二采样率大于该第一采样率。
在一种可能的设计方法中,该触摸屏,还用于:按照预设的压缩率压缩该K个电容器件中每个电容器件产生的电容信号,得到K个压缩后的电容信号,该预设压缩率为小于1的正数;其中,该目标数据包括压缩后该K个电容器件中每个电容器件生成的电容信号。
第六方面,本发明实施例提供一种电子设备,包括:触摸屏、处理器、存储器、总线和通信接口;其中,该通信接口,用于获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;该触摸屏,用于按照预设的压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,该预设压缩率为小于1的正数;该通信接口,还用于上报该M*N个压缩后的电容信号至上述处理器。
在一种可能的设计方法中,该压缩率为压缩后一个电容信号所需的精度与压缩前一个电容信号所需的精度的比值;对于该M*N个电容器件中的每个电容器件,该触摸屏,具体用于:将该电容器件产生的电容信号与该压缩率的乘积,作为该电容器件压缩后的电容信号。
在一种可能的设计方法中,该触摸屏,具体用于:当电子设备运行第一应用时,按照第一压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号;当电子设备运行第二应用时,按照第二压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,该第二压缩率大于该第一压缩率。
第七方面,本发明实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在上述任一项电子设备上运行时,使得电子设备执行上述任一项信号上报方法。
第八方面,本发明实施例提供一种包含指令的计算机程序产品,当其在上述任一项电子设备上运行时,使得电子设备执行上述任一项信号上报方法。
本发明实施例中,上述电子设备的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本发明实施例类似,即属于本发明权利要求及其等同技术的范围之内。
另外,第三方面至第八方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方法所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术中上报电容信号的应用场景示意图;
图2为本发明实施例提供的一种电子设备的结构示意图一;
图3为本发明实施例提供的一种信号上报方法的流程示意图一;
图4为本发明实施例提供的一种信号上报方法的应用场景示意图一;
图5为本发明实施例提供的一种信号上报方法的应用场景示意图二;
图6为本发明实施例提供的一种信号上报方法的应用场景示意图三;
图7为本发明实施例提供的一种信号上报方法的应用场景示意图四;
图8为本发明实施例提供的一种信号上报方法的应用场景示意图五;
图9为本发明实施例提供的一种信号上报方法的应用场景示意图六;
图10为本发明实施例提供的一种信号上报方法的流程示意图二;
图11为本发明实施例提供的一种信号上报方法的应用场景示意图七;
图12为本发明实施例提供的一种信号上报方法的应用场景示意图八;
图13为本发明实施例提供的一种信号上报方法的应用场景示意图九;
图14为本发明实施例提供的一种信号上报方法的流程示意图三;
图15为本发明实施例提供的一种信号上报方法的应用场景示意图十;
图16为本发明实施例提供的一种信号上报方法的应用场景示意图十一;
图17为本发明实施例提供的一种电子设备的结构示意图二;
图18为本发明实施例提供的一种电子设备的结构示意图三。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明实施例提供一种信号上报方法,可应用于任意设置有触摸屏的电子设备,例如,手机、可穿戴设备、AR(增强现实)\VR(虚拟现实)设备、平板电脑、笔记本电脑、UMPC(超级移动个人计算机)、上网本、PDA(个人数字助理)等,本发明实施例对此不作任何限制。
具体的,电子设备的触摸屏一般设置有至少一个可接收用户输入的工作面,在靠近工作面的一侧可设置阵列排布的M*N个的电容器件。该电容器件可以是任意具有电容功能的传感器。
例如,这M*N个的电容器件可以是由ITO(氧化铟锡)制作而成的横向与纵向排布的M*N个电极阵列。当手指触摸触摸屏的工作面时,手指与工作面之间形成一个耦合电容,由于工作面上通有高频信号,因此,手指触摸时在触摸位置吸走一个小电流,从而改变了触摸位置处至少一个电容器件的电容信号。那么,触摸屏可以将触摸屏内的电容信号上报给电子设备的处理器,处理器可以根据该电容信号确定出具体的触摸位置、操作手的大小以及指关节形状等信息。
在本发明实施例中,当电子设备获取到用户在触摸屏上触发的触摸事件后,可得到触摸屏上所有电容器件(即上述M*N个电容器件)的生成的电容信号,例如,每个电容器件响应于该触摸事件生成的电容值。此时,电子设备从上述M*N个电容器件生成的M*N个电容信号中确定K(0<K<M*N)个电容信号,并将这K个电容信号上报给电子设备的处理器,由处理器根据这K个电容信号还原出上述M*N个电容器件生成的M*N个电容信号。
可以看出,在电子设备上报电容信号时,无需向现有技术中那样将所有的M*N个电容信号上报给处理器,而是有选择性的将其中的K个电容信号上报给电子设备的处理器,例如,包含与触摸位置对应的K个电容器件生成的K个电容信号。这样,可以降低电子设备上报电容信号时的数据量,从而降低电容信号上报过程中占用的传输带宽,提高了电子设备的响应速度并可降低电子设备的功耗。
又或者,在电子设备上报电容信号时,电子设备还可以将上述M*N个电容信号中每个电容信号进行压缩,例如,对每个电容信号中的电容值按照一个预设的压缩率(压缩率为小于1的正数)压缩,这样,电子设备可以将压缩后的M*N个电容信号上报给电子设备的处理器,此时,处理器可以直接根据压缩后M*N个电容信号确定出与上述触摸事件对应的触摸位置、操作手的大小或者指关节形状等信息。
可以看出,这种电容信号的上报方法不仅可以降低电子设备上报电容信号时的数据量,还无需处理器执行还原上述M*N个电容器件生成的M*N个电容信号的过程,从而可以进一步提高电子设备的响应速度并降低电子设备的功耗。
另外,由于本发明实施例中可以将触摸事件中实时生成的电容信号上报给电子设备的处理器,而不是单一的上报触摸事件中触摸位置处的位置坐标,因此,电子设备的处理器可以根据上报的实时电容信号更加准确的判断该触摸事件中用户的触摸趋势。
例如,当触摸事件中用户用手指重击屏幕时,由于用户手指在触摸屏上接触面积的改变,可能会导致手指在触摸屏上的位移变大。那么,电子设备如果仅凭触摸位置的位置坐标很可能将用户的点击操作确定为滑动操作。而利用本发明实施例提供的信号上报方法,可以实时获取到单击操作产生的电容信号,那么,通过对电容信号形成的手指形状进行判断,可以识别出当前较大的位移变化,是否是因为手指在触摸屏上的接触面积发生变化而导致的,如果是,则说明该触摸事件为单击操作,进而执行与单击操作对应的操作指令,从而避免将用户的点击操作错误的判断为滑动操作。
示例性的,上述电容信号可以以数据包的形式进行上报,那么,使用本发明实施例提供的信号上报方法,将显著降低上报电容信号时数据包的发送量和/或每个数据包的大小。
下面将结合图2对电子设备的各个构成部件进行具体的介绍:
RF电路21可用于收发信息或通话过程中,信号的接收和发送,特别地,将无线接入设备的下行信息接收后,给处理器27处理;另外,将上行的数据发送给无线接入设备。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(LNA)、双工器等。此外,RF电路21还可以通过无线通信与网络和其他设备通信。
存储器22可用于存储软件程序以及模块,处理器27通过运行存储在存储器22的软件程序以及模块,从而执行电子设备的各种功能应用以及数据处理。
输入单元23可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,输入单元23可包括触摸屏341以及其他输入设备342。
显示单元24可用于显示由用户输入的信息或提供给用户的信息以及电子设备的各种菜单。显示单元24可包括显示面板351,可选的,可以采用液 晶显示器(LCD)、有机发光二极管(OLED)等形式来配置显示面板351。
摄像头25,也可以作为一种输入设备,具体用于将采集到的模拟视频或图像信号转换成数字信号,进而将其储存在存储器22中。具体的,摄像头25可以包括前置摄像头、后置摄像头、内置摄像头以及外置摄像头等,本发明实施例对此不作任何限制。
电子设备还可以包括重力传感器以及其它传感器,比如,光传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
音频电路26、扬声器371、麦克风372可提供用户与电子设备之间的音频接口。音频电路26可将接收到的音频数据转换后的电信号,传输到扬声器371,由扬声器371转换为声音信号输出;另一方面,麦克风372将收集的声音信号转换为电信号,由音频电路26接收后转换为音频数据,再将音频数据输出至RF电路21以发送给比如另一电子设备,或者将音频数据输出至存储器22以便进一步处理。
处理器27是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器22内的软件程序和/或模块,以及调用存储在存储器22内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。可选的,处理器27可包括一个或多个处理单元。
尽管未示出,上述电子设备还可以包括电源、Wi-Fi(无线保真)模块、蓝牙模块等,在此不再赘述。
以下,将结合具体实施例详细阐述本发明实施例提供的一种信号上报方法,如图3所示,该方法包括:
101、电子设备获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0。
具体的,电子设备可以以一定的频率实时扫描触摸屏上的电容信号,当检测到一个或多个电容信号发生改变时,电子设备可以确定用户在触摸屏的工作面上触发了触摸事件,例如,单击操作或滑动操作等。
可选的,当电子设备获取到在触摸屏上触发的触摸事件后,可以先根据触摸位置、触摸时间、触摸位置处的电容信号等参数判断当前的触摸事件是否为有效触摸事件。例如,当检测到M*N个的电容器件中,某个电容器件产生的电容信号大于一个阈值,或者,相邻的多个(例如4个)电容器件产生的电容信号之和大于一个阈值时,电子设备可确定在该触摸屏上出现一个有效触摸事件。
当确定上述触摸事件为有效触摸事件时,可继续执行下述步骤102-106,这样,可以避免电子设备上报没有意义的电容信号,从而降低上报电容信号过程中的数据传输量。
另外,上述触摸事件也可以为悬浮触控(Floating Touch)事件,其中,悬浮触控是指当用户的手指在屏幕上悬停时,触摸屏上的电容器件便可以在人体电场的作用下生成电容信号。这样,电子设备可以检测到在屏幕上方一 定距离处的手指产生的电容信号,进而根据该电容信号进行手势预判等处理。
102、响应于上述触摸事件,电子设备确定与该触摸事件中触摸点位置对应的目标电容器件,该目标电容器件为上述M*N个的电容器件中的任一个。
当用户在触摸屏上触发一个触摸事件时,电子设备可以将上述M*N个的电容器件中电容信号改变值较大的一个或多个电容器件作为目标电容器件,例如,将上述有效触摸事件中检测到的电容信号取值最大的电容器件作为目标电容器件。
又或者,如图4所示,还可以沿用现有技术中确定触摸事件中触摸点位置坐标的方法确定上述目标电容器件,此时,触摸点位置坐标可以是在显示屏中的一个像素点的坐标,例如,图4中的Q(x,y)。
那么,假设该显示屏包含W*H个像素点,该显示屏包含M*N个的电容器件,则电子设备可以将该Q点的坐标Q(x,y)映射至M*N个的电容器件中,得到Q点在M*N个的电容器件中的位置为Q’(x’,y’),其中,x’=M*X/W,y’=N*Y/H。
这样,与该触摸点位置对应的目标电容器件即为Q’(x’,y’)处的电容器件。
103、电子设备获取包含上述目标电容器件的K个电容器件中每个电容器件生成的电容信号,0<K<M*N。
在步骤103中,电子设备可以预先设置N1*N2个电容器件组成的区域,这样,当确定上述目标电容器件后,可以以上述目标电容器件为中心确定N1*N2个电容器件作为上述K个电容器件(N1*N2=K)。
其中,显示屏内的每个电容器件响应于上述触摸事件都会生成一个电容信号,例如,该电容信号具体可以为电容值或电容值的变化量。那么,电子设备可以进一步地获取到上述K个电容器件中每个电容器件生成的电容信号,而其他位置处电容器件生成的电容信号一般为近似0的数值。
示例性的,如图5所示,当触摸事件中的触摸点位置只有一个时,电子设备可以将以目标电容器件为中心的3*3个电容器件作为上述K个电容器件,并获取这3*3个电容器件中每个电容器件生成的电容信号。
又或者,如图6所示,当触摸事件中的触摸点位置为多个(例如两个)时,电子设备可以将以每个触摸点位置对应的目标电容器件为中心的3*3个电容器件,作为上述K个电容器件,并获取这K个电容器件中每个电容器件生成的电容信号。
当然,上述K个电容器件所构成的区域还可以为长方形、圆形等任意形状,本发明实施例对此不作任何限制。
进一步地,电子设备可以预先将触摸屏幕划分成多个不同的区域,这样,对于不同的区域,电子设备可以根据目标电容器件的具体位置,采用不同的方法确定包含上述目标电容器件的K个电容器件。
示例性的,如图7所示,电子设备预先将触摸屏幕划分成第一区域、第二区域、第三区域以及第四区域。其中,第一区域是指位于触摸屏中心的区 域,第二区域是指位于触摸屏第一侧边(图7中为上下两侧边)的区域,第三区域是指位于触摸屏第二侧边(图7中为左右两侧边)的区域,第二侧边的长度大于第一侧边的长度,第四区域是指位于触摸屏四个顶点的四个区域。
那么,当电子设备确定上述目标电容器件位于第一区域时,如图8中的(a)所示,可以将以该目标电容器件为中心的X1*Y1(X1=Y1)个电容器件作为上述K个电容器,即此时选择的K个电容器件组成一个正方形的区域。这样,在触摸屏的中心区域可以最大限度的获取到上述触摸事件触发的完整的电容信号。
当电子设备确定上述目标电容器件位于第二区域时,如图8中的(b)所示,电子设备可以将包含该目标电容器件的X2*Y2(X2<Y2)个电容器件作为上述K个电容器,即此时选择的K个电容器件组成一个在x轴方向边长较长的长方形。这样,用户在第二区域触发触摸操作时,手指可能会有一部分超出触摸屏的上下边界,那么,电子设备可以尽可能的采集x轴方向上生成的电容信号,以提高后续识别该触摸操作的准确率。此时,上述X2*Y2个电容器件的中心不一定是上述目标电容器件。
相应的,当电子设备确定上述目标电容器件位于第三区域时,如图8中的(c)所示,电子设备可以将包含上述目标电容器件的X3*Y3(X3>Y3)个电容器件作为上述K个电容器,即此时选择的K个电容器件组成一个在y轴方向边长较长的长方形。这样,用户在第三区域触发触摸操作时,手指可能会有一部分超出触摸屏的左右边界,那么,电子设备可以尽可能的采集y轴方向上生成的电容信号,以提高后续识别该触摸操作的准确率。此时,上述X3*Y3个电容器件的中心也不一定是上述目标电容器件。
而当电子设备确定上述目标电容器件位于第四区域时,例如图8中的(d)所示,假设目标电容器件位于触摸屏左下角的区域(即目标区域,目标区域为第四区域中与触摸点位置对应的顶点所在的区域),此时,由于该目标区域通常面积较小,因此,电子设备可以将目标区域内的所有电容器件作为上述K个电容器,以提高后续识别该触摸操作的准确率。
另外,电子设备还可以确定出上述K个电容器件的位置信息,即这K个电容器件与上述M*N个的电容器件之间的相对位置关系。如图9所示,上述位置信息具体可以包括这K个电容器件中某个顶点的坐标(例如图9中右上角的电容器件的坐标P(x,y)),以及这K个电容器为一个3*3的矩阵。
104、电子设备上报目标数据,该目标数据包括上述K个电容器件中每个电容器件生成的电容信号和位置信息,该位置信息用于指示该K个电容器件与M*N个的电容器件之间的位置关系。
在步骤104中,电子设备可以将上述K个电容器件中每个电容器件生成的电容信号和位置信息作为目标数据上报给电子设备的处理器,以便于处理器根据该目标数据还原出整个触摸屏上N*M个电容器件的电容信号。
示例性的,如图9所示,电子设备上报的目标数据中具体包括图9中3*3个电容器件中每个电容器件生成的电容值和位置信息,该位置信息包括上述K 个电容器件为3*3个电容器件,以及这3*3个电容器件中右上角的电容器件的坐标P(x,y)。
这样,电子设备上报时只需上报K个电容信号以及位置信息,从而降低了电容信号的传输量,进而,电子设备对该触摸事件的响应速度将会提高,同时可以增加电子设备的待机时间。
105、电子设备设置电容矩阵中每一个元素为0,该电容矩阵包括M*N个元素。
106、电子设备根据上述位置信息,在电容矩阵中添加上述K个电容器件中每个电容器件生成的电容信号。
使用上述电容信号的设备,例如电子设备的处理器,可以先初始化一个大小为M*N的电容矩阵,其中,该电容矩阵中每一个元素的取值均为一个预设的初始值,例如,电容矩阵中每一个元素为等于或近似0的数值。
进而,在接收到上述目标数据后,电子设备根据上述位置信息,可以将电容矩阵中相应位置的元素的取值替换为接收到的相应电容信号。仍如图9所示,触摸屏上设置有11*7的电容器件,那么,电子设备根据图9中所示的目标数据可以确定相应的电容矩阵为:
Figure PCTCN2017081235-appb-000001
这样,电子设备便可以将M*N个电容器件分别生成的电容信号完整的还原出来,进而可根根据还原出的M*N个电容信号完成与步骤101中触摸事件对应的操作,例如手势识别等,本发明实施例对此不作任何限制。
当然,如果电容矩阵中每一个元素的初始值不是0时,电子设备可在还原上述电容矩阵时,直接将电容矩阵中相应位置处元素的初始值与接收到的相应电容信号相加,得到还原后该位置处的电容信号,此时,还原出的电容矩阵仍可表示出这M*N个电容信号之间的相对大小关系,从而使得电子设备可根根据还原出的M*N个电容信号完成与步骤101中触摸事件对应的操作。进一步地,如果上述触摸事件为悬浮触控事件,那么,在传输电容信号的过程中由于传输带宽的占用率降低,从而可以更加快速的将实时生成的电容信号发送给处理器,使得处理器能够更准确的进行手势预判或误触预识别等操作,从而提高悬浮触控的准确度。
本发明实施例提供一种信号上报方法,如图10所示,该方法包括:
201、电子设备获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0。
202、响应于该触摸事件,电子设备对上述M*N个电容器件产生的M*N个电容信号执行下采样,得到K个电容器件中每个电容器件产生的电容信号。
其中,下采样的采样率具体可以为大于0且小于1的任意值。
具体的,当用户在触摸屏上触发一个触摸事件后,显示屏内的每个电容器件响应于上述触摸事件都会生成一个电容信号,那么,触摸屏内的M*N个电容器件共产生M*N个电容信号。其中,上述触摸事件也可以为悬浮触控事件,本发明实施例对此不作任何限制。
在步骤202中,电子设备可以对这M*N个电容信号的信号个数进行下采样,例如,如图11所示,以1/2的下采样采样率对上述M*N个电容信号下采样,得到K(K=M*N/2)个电容信号。也就是说,下采样采样率为K/(M*N)。其中,黑色位置指示采集到的电容器件生成的电容信号,白色位置指示没有采集到的电容器件生成的电容信号。这样,可以将电容信号的数据传输量压缩为原来的50%。
当然,还可以以其他的采样率对上述M*N个电容信号进行下采样。如图12所示,当下采样采样率为2/3时,图12中的(a)、(b)、(c)分别提供了三种可能的下采样的方式,本发明实施例对此不作任何限制。其中,黑色位置指示采集到的电容器件生成的电容信号,白色位置指示没有采集到的电容器件生成的电容信号。
进一步地,用户也可以在电子设备上对上述下采样的采样率进行设置,又或者,电子设备也可以根据当前电子设备运行的应用调整上述下采样的采样率,本发明实施例对此不作任何限制。
示例性的,当电子设备正在运行对触摸精度要求不高的第一应用(例如,视频播放应用)时,电子设备可以按照较低的第一采样率对上述M*N个电容信号执行下采样;而当电子设备运行对触摸精度要求较高的第二应用(例如,游戏应用)时,电子设备可以按照较高的第二采样率(第二采样率大于第一采样率)对上述M*N个电容信号执行下采样。
这样,当电子设备运行第一应用时,电子设备可以自动将下采样的采样率调整为上述第一采样率,由于第一采样率的值较低,因此,电子设备上报电容信号的数据量将进一步减少,电子设备的耗电量也将下降;而当电子设备运行第二应用时,电子设备可以自动将下采样的采样率调整为上述第二采样率,由于第二采样率的值较高,因此,可以保证电子设备及时准确的响应用户触发的触摸事件。
203、电子设备上报上述K个电容器件中每个电容器件生成的电容信号。
204、电子设备根据上述K个电容器件中每个电容器件生成的电容信号,还原出上述M*N个电容信号。
具体的,在步骤204中,电子设备得到K个电容器件中每个电容器件生成的电容信号,即K个电容信号后,未被采集到的电容信号可以通过其周围 采集到的电容信号估算出来。
示例性的,如图13所示,以估算A处的电容信号为例,电容器件A周围采集到了A2、A4、A5以及A7四个电容器件的电容信号。那么,电子设备可以将A2、A4、A5以及A7这四个电容器件的电容信号的平均值(或加权平均值)作为电容器件A的电容信号,例如,A=(A2+A4+A5+A7)/4。
又或者,如图13所示,仍以估算A处的电容信号为例,在估算A处的电容信号时,A1、A3、A6以及A8中的一个多个电容信号可能已经被估算出来,那么,电子设备可以将A2、A4、A5、A7以及已经估算出的A1、A3、A6、A8处的电容信号的平均值(或加权平均值)作为电容器件A的电容信号,例如,A=(A2+A4+A5+A7+A1+A3+A6+A8)/8。
这样,电子设备便可以将M*N个电容器件分别生成的电容信号完整的还原出来,进而可根根据还原出的M*N个电容信号完成与步骤201中触摸事件对应的操作,例如手势识别等,本发明实施例对此不作任何限制。
本发明实施例提供一种信号上报方法,如图14所示,该方法包括:
301、电子设备获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0。
302、响应于该触摸事件,电子设备按照预设的压缩率压缩上述M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号。
其中,上述压缩率具体可以为大于0且小于1的任意值。
具体的,当用户在触摸屏上触发一个触摸事件后,显示屏内的每个电容器件响应于上述触摸事件都会生成一个电容信号,那么,触摸屏内的M*N个电容器件共产生M*N个电容信号。其中,上述触摸事件也可以为悬浮触控事件,本发明实施例对此不作任何限制。
在步骤302中,电子设备可以对这M*N个电容信号中的每个电容信号进行压缩。例如,如图15所示,电子设备响应于上述触摸事件,生成了M*N个电容信号(其中未标数字的位置可默认电容信号为0),电子设备可将上述每一个电容信号压缩0.1倍,得到M*N个压缩后的电容信号。这样,电子设备只需将这M*N个压缩后的电容信号上报给处理器即可,压缩后的传输量降低为压缩前传输量的10%。并且,这M*N个压缩后的电容信号已经反映了上述M*N个电容信号之间的大小关系,因此,电子设备无需对这M*N个压缩后的电容信号进行还原,即可根根据上述M*N个压缩后的电容信号完成与步骤301中触摸事件对应的操作。
进一步地,电子设备一般使用h(h>1)个比特位表示一个电容信号。例如,电子设备可以使用16比特位表示0-65536(2^16=65536)中的任一个电容信号。即压缩前一个电容信号的精度为65536。
在本发明实施例中,可以将上述h个比特位压缩为d(1<d<h)个比特位,以达到压缩电容信号的目的。例如,将16比特位压缩为8比特位,即压缩后的电容信号使用8比特位表示,即压缩后的电容信号为0-256(2^8=256)中的任一个值。其中,压缩后一个电容信号的精度为256。
此时,上述压缩率具体可以为压缩后一个电容信号所需的精度与压缩前一个电容信号所需的精度的比值,即压缩率为2^d/2^h。
示例性的,如图16所示,压缩前某个电容器件生成的电容信号取值为16384,该电容信号使用16个比特位来表示。那么,在步骤302中,如果压缩后表示一个电容信号的比特位个数为8,那么,假设压缩后该电容信号取值为e,e应满足关系:e/256=16384/65536,则e=(16384/65536)*256=64。也就是说,压缩后该电容信号使用8比特位表示为64。那么,电子设备只需使用8比特位将该压缩后的电容信号64上报给处理器,无需使用16比特位上报压缩前的电容信号16384,从而降低了上报电容信号时的数据传输量。
进一步地,与步骤202类似的,用户也可以在电子设备上对上述压缩率进行设置,又或者,电子设备也可以根据当前电子设备运行的应用调整上述压缩率,本发明实施例对此不作任何限制。
示例性的,当电子设备正在运行对触摸精度要求不高的第一应用(例如,视频播放应用)时,电子设备可以按照较低的第一压缩率对上述M*N个电容信号执行下采样;而当电子设备运行对触摸精度要求较高的第二应用(例如,游戏应用)时,电子设备可以按照较高的压缩率(第二采样率大于第一采样率)对上述M*N个电容信号执行下采样。
这样,当电子设备运行第一应用时,电子设备可以自动将压缩率调整为上述第一压缩率,由于第一压缩率的值较低,因此,电子设备上报电容信号的数据量将进一步减少,电子设备的耗电量也将下降;而当电子设备运行第二应用时,电子设备可以自动将压缩率调整为上述第二采样率,由于第二压缩率的值较高,因此,可以保证电子设备及时准确的响应用户触发的触摸事件。
303、电子设备上报上述M*N个压缩后的电容信号。
304、(可选的)电子设备根据上述M*N个压缩后的电容信号,还原出M*N个压缩前的电容信号。
可选的,仍以上述将电容信号16384压缩为64举例,压缩前该电容信号取值e’满足关系:64/256=e’/65536,那么,电子设备收到该压缩后的电容信号为64后,可根据上述关系计算出e’=(64/256)*65536=16384。
那么,对于每一个压缩后的电容信号,均可以按照上述关系还原出压缩前该电容信号的取值,最终得到M*N个压缩前的电容信号。
这样,电子设备便可以根根据还原出的M*N个电容信号完成与步骤201中触摸事件对应的操作,例如手势识别等,本发明实施例对此不作任何限制。
需要说明的是,对于本发明实施例提供的上述三种信号上报方法,即步骤101-106提供的信号上报方法、步骤201-204提供的信号上报方法以及步骤301-304提供的信号上报方法,电子设备可以选择上述三种信号上报方法中的至少一中方法完成电容信号的上报过程,即上述上述三种信号上报方法可以叠加或组合使用,本领域技术人员可以根据实际经验或实际应用场景对其进行设置,本发明实施例对此不作任何限制。
可以理解的是,上述电子设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
本发明实施例可以根据上述方法示例对上述电子设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图17示出了上述实施例中所涉及的电子设备的一种可能的结构示意图,该电子设备包括:获取单元1101、确定单元1102、上报单元1103、还原单元1104以及压缩单元1105。
获取单元1101用于支持电子设备执行图3中的过程101、103,图10中的过程201-202以及图14中的过程301;确定单元1102用于支持电子设备执行图3中的过程102;上报单元1103用于支持电子设备执行图3中的过程104,图10中的过程203以及图14中的过程303;还原单元1104用于支持电子设备执行图3中的过程105-106,图10中的过程204以及图14中的过程304;压缩单元1105用于支持电子设备执行图14中的过程302。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图18示出了上述实施例中所涉及的电子设备的一种可能的结构示意图。该电子设备包括:处理模块1302和通信模块1303。处理模块1302用于对电子设备的动作进行控制管理。通信模块1303用于支持UE与其他网络实体的通信。该电子设备还可以包括存储模块1301,用于存电子设备的程序代码和数据。
其中,处理模块1302可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1303可以是收发器、收发电路或通信接口等。存储模块1301可以是存储器。
当处理模块1302为处理器,通信模块1303为RF收发电路,存储模块 1301为存储器时,本发明实施例所提供的电子设备可以为图2所示的电子设备。
在一种可能的设计方法中,本发明实施例提供的电子设备包括:触摸屏、处理器、存储器、总线和通信接口;其中,该通信接口,用于获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;该触摸屏,用于得到K个电容器件中每个电容器件生成的电容信号,该K个电容器件为该M*N个电容器件中的任意K个电容器件,0<K<M*N;该通信接口,还用于上报目标数据至该处理器,该目标数据包括该K个电容器件中每个电容器件生成的电容信号。
进一步地,该目标数据还包括位置信息,该位置信息用于指示该K个电容器件与该M*N个的电容器件之间的位置关系。
进一步地,该触摸屏,具体用于:确定与该触摸事件中触摸点位置对应的目标电容器件;根据该目标电容器件所在的位置,确定包含该目标电容器件的K个电容器件;获取该K个电容器件中每个电容器件生成的电容信号。
进一步地,该触摸屏,具体用于:当该目标电容器件位于第一区域时,将以该目标电容器件为中心的X1*Y1个电容器件作为该K个电容器,X1=Y1,该第一区域为位于该触摸屏中心的区域;当该目标电容器件位于第二区域时,将包含该目标电容器件的X2*Y2个电容器件作为该K个电容器,X2<Y2,该第二区域为位于该触摸屏第一侧边的区域;当该目标电容器件位于第三区域时,将包含该目标电容器件的X3*Y3个电容器件作为该K个电容器,X3>Y3,该第三区域为位于该触摸屏第二侧边的区域,该第二侧边的长度大于该第一侧边的长度;当该目标电容器件位于第四区域时,将目标区域内的所有电容器件作为该K个电容器,该第四区域为位于该触摸屏四个顶点的区域,该目标区域为该第四区域中与该触摸事件中触摸点位置对应的顶点的区域。
进一步地,该处理器,还用于:将电容矩阵中每一个元素的取值设置为预设的初始值,该电容矩阵包括M*N个元素;根据该位置信息,将该K个电容器件中每个电容器件生成的电容信号添加至该电容矩阵中。
进一步地,该触摸屏,还用于:对该M*N个电容器件产生的M*N个电容信号执行下采样,得到下采样后K个电容器件中每个电容器件产生的电容信号,该下采样的采样率为小于1的正数。
进一步地,该触摸屏,具体用于:当电子设备运行第一应用时,按照第一采样率对该M*N个电容器件产生的M*N个电容信号执行下采样;当电子设备运行第二应用时,按照第二采样率对该M*N个电容器件产生的M*N个电容信号执行下采样,该第二采样率大于该第一采样率。
进一步地,该触摸屏,还用于:按照预设的压缩率压缩该K个电容器件中每个电容器件产生的电容信号,得到K个压缩后的电容信号,该预设压缩率为小于1的正数;其中,该目标数据包括压缩后该K个电容器件中每个电容器件生成的电容信号。
在一种可能的设计方法中,本发明实施例提供的电子设备包括:触摸屏、 处理器、存储器、总线和通信接口;其中,该通信接口,用于获取用户在触摸屏上触发的触摸事件,该触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;该触摸屏,用于按照预设的压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,该预设压缩率为小于1的正数;该通信接口,还用于上报该M*N个压缩后的电容信号至上述处理器。
进一步地,该压缩率为压缩后一个电容信号所需的精度与压缩前一个电容信号所需的精度的比值;对于该M*N个电容器件中的每个电容器件,该触摸屏,具体用于:将该电容器件产生的电容信号与该压缩率的乘积,作为该电容器件压缩后的电容信号。
进一步地,该触摸屏,具体用于:当电子设备运行第一应用时,按照第一压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号;当电子设备运行第二应用时,按照第二压缩率压缩该M*N个电容器件中每个电容器件产生的电容信号,该第二压缩率大于该第一压缩率。
在上述实施例中,可以全部或部分的通过软件,硬件,固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式出现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘,硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种信号上报方法,其特征在于,包括:
    电子设备获取用户在触摸屏上触发的触摸事件,所述触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;
    响应于所述触摸事件,所述电子设备得到K个电容器件中每个电容器件生成的电容信号,所述K个电容器件为所述M*N个电容器件中的任意K个电容器件,0<K<M*N;
    所述电子设备上报目标数据,所述目标数据包括所述K个电容器件中每个电容器件生成的电容信号。
  2. 根据权利要求1所述的方法,其特征在于,所述目标数据还包括位置信息,所述位置信息用于指示所述K个电容器件与所述M*N个的电容器件之间的位置关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述电子设备得到K个电容器件中每个电容器件生成的电容信号,包括:
    所述电子设备确定与所述触摸事件中触摸点位置对应的目标电容器件;
    所述电子设备根据所述目标电容器件所在的位置,确定包含所述目标电容器件的K个电容器件;
    所述电子设备获取所述K个电容器件中每个电容器件生成的电容信号。
  4. 根据权利要求3所述的方法,其特征在于,所述电子设备根据所述目标电容器件所在的位置,确定包含所述目标电容器件的K个电容器件,包括:
    当所述目标电容器件位于第一区域时,所述电子设备将以所述目标电容器件为中心的X1*Y1个电容器件作为所述K个电容器,X1=Y1,所述第一区域为位于所述触摸屏中心的区域;
    当所述目标电容器件位于第二区域时,所述电子设备将包含所述目标电容器件的X2*Y2个电容器件作为所述K个电容器,X2<Y2,所述第二区域为位于所述触摸屏第一侧边的区域;
    当所述目标电容器件位于第三区域时,所述电子设备将包含所述目标电容器件的X3*Y3个电容器件作为所述K个电容器,X3>Y3,所述第三区域为位于所述触摸屏第二侧边的区域,所述第二侧边的长度大于所述第一侧边的长度;
    当所述目标电容器件位于第四区域时,所述电子设备将目标区域内的所有电容器件作为所述K个电容器,所述第四区域为位于所述触摸屏四个顶点的区域,所述目标区域为所述第四区域中与所述触摸事件中触摸点位置对应的顶点的区域。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,在所述电子设备上报目标数据之后,还包括:
    所述电子设备将电容矩阵中每一个元素的取值设置为预设的初始值,所述电容矩阵包括M*N个元素;
    所述电子设备根据所述位置信息,将所述K个电容器件中每个电容器件生成的电容信号添加至所述电容矩阵中。
  6. 根据权利要求1所述的方法,其特征在于,所述电子设备得到K个电容器件中每个电容器件生成的电容信号,包括:
    所述电子设备对所述M*N个电容器件产生的M*N个电容信号执行下采样,得到下 采样后K个电容器件中每个电容器件产生的电容信号,所述下采样的采样率为小于1的正数。
  7. 根据权利要求6所述的方法,其特征在于,所述电子设备对所述M*N个电容器件产生的M*N个电容信号执行下采样,包括:
    当所述电子设备运行第一应用时,所述电子设备按照第一采样率对所述M*N个电容器件产生的M*N个电容信号执行下采样;
    当所述电子设备运行第二应用时,所述电子设备按照第二采样率对所述M*N个电容器件产生的M*N个电容信号执行下采样,所述第二采样率大于所述第一采样率。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,在所述电子设备得到K个电容器件中每个电容器件生成的电容信号之后,还包括:
    所述电子设备按照预设的压缩率压缩所述K个电容器件中每个电容器件产生的电容信号,得到K个压缩后的电容信号,所述预设压缩率为小于1的正数;
    其中,所述目标数据包括压缩后所述K个电容器件中每个电容器件生成的电容信号。
  9. 一种信号上报方法,其特征在于,包括:
    电子设备获取用户在触摸屏上触发的触摸事件,所述触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;
    响应于所述触摸事件,所述电子设备按照预设的压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,所述预设压缩率为小于1的正数;
    所述电子设备上报所述M*N个压缩后的电容信号。
  10. 根据权利要求9所述的方法,其特征在于,所述压缩率为压缩后一个电容信号所需的精度与压缩前一个电容信号所需的精度的比值;
    其中,所述电子设备按照预设的压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,包括:
    对于所述M*N个电容器件中的每个电容器件:所述电子设备将该电容器件产生的电容信号与所述压缩率的乘积,作为该电容器件压缩后的电容信号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述电子设备按照预设的压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号,包括:
    当所述电子设备运行第一应用时,所述电子设备按照第一压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号;
    当所述电子设备运行第二应用时,所述电子设备按照第二压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号,所述第二压缩率大于所述第一压缩率。
  12. 一种电子设备,其特征在于,包括:
    获取单元,用于:获取用户在触摸屏上触发的触摸事件,所述触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;
    确定单元,用于:响应于所述触摸事件,得到K个电容器件中每个电容器件生成的电容信号,所述K个电容器件为所述M*N个电容器件中的任意K个电容器件,0<K<M*N;
    上报单元,用于:上报目标数据,所述目标数据包括所述K个电容器件中每个电容器件生成的电容信号。
  13. 根据权利要求12所述的电子设备,其特征在于,所述目标数据还包括位置信息,所述位置信息用于指示所述K个电容器件与所述M*N个的电容器件之间的位置关系。
  14. 根据权利要求12或13所述的电子设备,其特征在于,
    所述确定单元,具体用于:确定与所述触摸事件中触摸点位置对应的目标电容器件;所述电子设备根据所述目标电容器件所在的位置,确定包含所述目标电容器件的K个电容器件;获取所述K个电容器件中每个电容器件生成的电容信号。
  15. 根据权利要求14所述的电子设备,其特征在于,
    所述确定单元,具体用于:当所述目标电容器件位于第一区域时,将以所述目标电容器件为中心的X1*Y1个电容器件作为所述K个电容器,X1=Y1,所述第一区域为位于所述触摸屏中心的区域;当所述目标电容器件位于第二区域时,将包含所述目标电容器件的X2*Y2个电容器件作为所述K个电容器,X2<Y2,所述第二区域为位于所述触摸屏第一侧边的区域;当所述目标电容器件位于第三区域时,将包含所述目标电容器件的X3*Y3个电容器件作为所述K个电容器,X3>Y3,所述第三区域为位于所述触摸屏第二侧边的区域,所述第二侧边的长度大于所述第一侧边的长度;当所述目标电容器件位于第四区域时,将目标区域内的所有电容器件作为所述K个电容器,所述第四区域为位于所述触摸屏四个顶点的区域,所述目标区域为所述第四区域中与所述触摸事件中触摸点位置对应的顶点的区域。
  16. 根据权利要求13-15中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    还原单元,用于:将电容矩阵中每一个元素的取值设置为预设的初始值,所述电容矩阵包括M*N个元素;根据所述位置信息,将所述K个电容器件中每个电容器件生成的电容信号添加至所述电容矩阵中。
  17. 根据权利要求12所述的电子设备,其特征在于,
    所述确定单元,具体用于:对所述M*N个电容器件产生的M*N个电容信号执行下采样,得到下采样后K个电容器件中每个电容器件产生的电容信号,所述下采样的采样率为小于1的正数。
  18. 根据权利要求17所述的电子设备,其特征在于,
    所述确定单元,具体用于:当所述电子设备运行第一应用时,按照第一采样率对所述M*N个电容器件产生的M*N个电容信号执行下采样;当所述电子设备运行第二应用时,按照第二采样率对所述M*N个电容器件产生的M*N个电容信号执行下采样,所述第二采样率大于所述第一采样率。
  19. 根据权利要求12-18中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    压缩单元,用于:按照预设的压缩率压缩所述K个电容器件中每个电容器件产生的电容信号,得到K个压缩后的电容信号,所述预设压缩率为小于1的正数;其中,所述目标数据包括压缩后所述K个电容器件中每个电容器件生成的电容信号。
  20. 一种电子设备,其特征在于,包括:
    获取单元,用于:获取用户在触摸屏上触发的触摸事件,所述触摸屏设置有阵列排布的M*N个的电容器件,M>0,N>0;
    压缩单元,用于:响应于所述触摸事件,按照预设的压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号,得到M*N个压缩后的电容信号,所述预设压缩率为小于1的正数;
    上报单元,用于:上报所述M*N个压缩后的电容信号。
  21. 根据权利要求20所述的电子设备,其特征在于,所述压缩率为压缩后一个电容信号所需的精度与压缩前一个电容信号所需的精度的比值;对于所述M*N个电容器件中的每个电容器件:
    所述压缩单元,具体用于:将该电容器件产生的电容信号与所述压缩率的乘积,作为该电容器件压缩后的电容信号。
  22. 根据权利要求20或21所述的电子设备,其特征在于,
    所述压缩单元,具体用于:当所述电子设备运行第一应用时,按照第一压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号;当所述电子设备运行第二应用时,按照第二压缩率压缩所述M*N个电容器件中每个电容器件产生的电容信号,所述第二压缩率大于所述第一压缩率。
  23. 一种电子设备,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述电子设备运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述电子设备执行如权利要求1-11中任一项所述的信号上报方法。
  24. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,其特征在于,当所述指令在如权利要求12-22中任一项所述的电子设备上运行时,使得所述电子设备执行如权利要求1-11中任一项所述的信号上报方法。
  25. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在如权利要求12-22中任一项所述的电子设备上运行时,使得所述电子设备执行如权利要求1-11中任一项所述的信号上报方法。
PCT/CN2017/081235 2017-04-20 2017-04-20 一种信号上报方法及装置 WO2018191909A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780008011.6A CN108700977A (zh) 2017-04-20 2017-04-20 一种信号上报方法及装置
PCT/CN2017/081235 WO2018191909A1 (zh) 2017-04-20 2017-04-20 一种信号上报方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081235 WO2018191909A1 (zh) 2017-04-20 2017-04-20 一种信号上报方法及装置

Publications (1)

Publication Number Publication Date
WO2018191909A1 true WO2018191909A1 (zh) 2018-10-25

Family

ID=63844083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081235 WO2018191909A1 (zh) 2017-04-20 2017-04-20 一种信号上报方法及装置

Country Status (2)

Country Link
CN (1) CN108700977A (zh)
WO (1) WO2018191909A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031812A (zh) * 2021-03-18 2021-06-25 Oppo广东移动通信有限公司 触控事件上报方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598090A (zh) * 2015-02-11 2015-05-06 深圳市乐特尔科技有限公司 一种触摸屏的多点触摸定位方法及触摸屏装置
CN104699339A (zh) * 2015-03-18 2015-06-10 深圳市华星光电技术有限公司 触控信号扫描方法
CN104915079A (zh) * 2014-03-14 2015-09-16 矽统科技股份有限公司 电容式触控装置及其感测方法
CN105468213A (zh) * 2014-09-04 2016-04-06 中兴通讯股份有限公司 触摸屏感应方法和装置
CN106354354A (zh) * 2016-10-12 2017-01-25 青岛海信电器股份有限公司 电容式触摸屏的控制方法、装置及终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620536B (zh) * 2012-07-30 2016-11-02 华为终端有限公司 触摸事件上报方法、装置及移动终端
CN105589613B (zh) * 2016-01-28 2019-04-19 华为技术有限公司 一种触摸点定位方法、装置及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915079A (zh) * 2014-03-14 2015-09-16 矽统科技股份有限公司 电容式触控装置及其感测方法
CN105468213A (zh) * 2014-09-04 2016-04-06 中兴通讯股份有限公司 触摸屏感应方法和装置
CN104598090A (zh) * 2015-02-11 2015-05-06 深圳市乐特尔科技有限公司 一种触摸屏的多点触摸定位方法及触摸屏装置
CN104699339A (zh) * 2015-03-18 2015-06-10 深圳市华星光电技术有限公司 触控信号扫描方法
CN106354354A (zh) * 2016-10-12 2017-01-25 青岛海信电器股份有限公司 电容式触摸屏的控制方法、装置及终端设备

Also Published As

Publication number Publication date
CN108700977A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
EP2905679B1 (en) Electronic device and method of controlling electronic device
EP3454255B1 (en) Facial recognition method and related product
WO2020034710A1 (zh) 指纹识别方法及相关产品
EP3089021A2 (en) Electronic device
WO2022100048A1 (zh) 图像处理方法、装置、电子设备以及可读存储介质
EP2899614A1 (en) Method for obtaining touch input in electronic device combining self and mutual capacitance measurements
CN112596648B (zh) 页面处理方法、装置、电子设备及可读存储介质
CN109828705B (zh) 一种显示图标的方法及终端设备
WO2021109931A1 (zh) 触摸控制方法及穿戴设备
US20140320537A1 (en) Method, device and storage medium for controlling electronic map
KR20220092937A (ko) 화면 표시의 제어 방법 및 전자기기
CN109976611B (zh) 终端设备的控制方法及终端设备
US10409404B2 (en) Method of processing touch events and electronic device adapted thereto
US11689655B2 (en) Method for adjusting parameter of audio service and terminal
WO2018137304A1 (zh) 一种2d应用在vr设备中的显示方法及终端
US20150128095A1 (en) Method, device and computer system for performing operations on objects in an object list
CN109408072B (zh) 一种应用程序删除方法及终端设备
CN111078108A (zh) 一种屏幕显示方法、装置、存储介质及移动终端
CN110114748A (zh) 一种显示处理方法及电子设备
WO2017031647A1 (zh) 一种检测触摸方式的方法及装置
CN109104573B (zh) 一种确定对焦点的方法及终端设备
WO2020097836A1 (zh) 图像处理方法、装置、计算机设备和存储介质
WO2019072179A1 (zh) 应用程序运行控制方法及装置
WO2018191909A1 (zh) 一种信号上报方法及装置
US10719926B2 (en) Image stitching method and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906208

Country of ref document: EP

Kind code of ref document: A1