WO2018190733A2 - Controlled rotary damper using smart fluids - Google Patents

Controlled rotary damper using smart fluids Download PDF

Info

Publication number
WO2018190733A2
WO2018190733A2 PCT/PA2018/000001 PA2018000001W WO2018190733A2 WO 2018190733 A2 WO2018190733 A2 WO 2018190733A2 PA 2018000001 W PA2018000001 W PA 2018000001W WO 2018190733 A2 WO2018190733 A2 WO 2018190733A2
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
intelligent
controlled
rotor
housing
Prior art date
Application number
PCT/PA2018/000001
Other languages
Spanish (es)
French (fr)
Other versions
WO2018190733A8 (en
WO2018190733A3 (en
Inventor
Gaudalupe GONZÁLEZ
Carlos Medina
Maytee ZAMBRANO
Ronald BARAZARTE
Original Assignee
Universidad Tecnológica De Panamá
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Tecnológica De Panamá filed Critical Universidad Tecnológica De Panamá
Publication of WO2018190733A2 publication Critical patent/WO2018190733A2/en
Publication of WO2018190733A8 publication Critical patent/WO2018190733A8/en
Publication of WO2018190733A3 publication Critical patent/WO2018190733A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means

Definitions

  • the present invention relates to the area of rotary devices that use intelligent fluids to provide controlled forces.
  • the invention relates to the use of intelligent fluids and the electrical or magnetic excitation of such fluid to provide controlled resistance to the movement of a set of perforated blades of a rotor housed inside a housing.
  • Special attention has been given to the geometric design of the rotor blades, resulting in a curved shape that increases the area of contact between the fluid and the blades and therefore increases the resistance range.
  • Rotating devices can be used as shock absorbers, brakes, clutches and the like, or to provide controllable dissipative forces.
  • Such smart fluid based devices are particularly attractive as they can offer an innovative way to achieve continuously controllable energy absorption, in combination with an automatic adaptation to the operating requirements.
  • Conventional rotary dampers consist, in general, of a stator and rotor that delimit between them a chamber filled with a fluid, in particular a viscous fluid.
  • Two or more vanes are basically arranged radially in the rotor and there are means to provide communication between the chambers, for example holes, to allow the transfer of fluid from one chamber to the other when a relative rotation movement occurs between the rotor and The stator
  • the flow of fluid through the holes or ducts induced by the relative rotation movement between the rotor and the stator provides the expected damping, as described in US7048098B1, US6899208B2 and US4768630A.
  • An intelligent fluid is that fluid whose properties can be changed by applying a magnetic field or an electric field.
  • Today, the most developed intelligent fluids are fluids whose viscosity changes in response to electric or magnetic fields. These are called magnetoreological fluids (MR) or electroreological fluids (ER), respectively. These fluids have been considered in low impact or vibration energy absorption systems, brake or clutch systems and valve and pump systems.
  • patent US5176368 of Shtarkaman et al. incorporates linear MR shock absorbers in the engine mounts of a vehicle
  • Patent US5284330A of Carson et al. refers to the design of a MR shock absorber with piston without seals
  • patent US20100035737A1 of Tae Kyu Kwon et al. It provides a physical exercise machine that can control resistance using a linear MR shock absorber.
  • Rotary dampers using smart fluids have also been incorporated into multiple devices and applications. One of these devices is documented in the US patent. No.
  • a viscous rotational damper is described to be applied mainly to the rotor of a helicopter.
  • This damper consists of a stator, a rotor with radial blades, a chamber between them, a mechanism to create fluid communication between the chambers, and at least one conical elastomer bearing between the stator and the rotor to serve as a dynamic seal and guide of the stator-shaft assembly in relation to the rotor-housing assembly.
  • the invention presented herein is a rotational damper controlled using intelligent fluids with a relatively simple design that includes curved blades with a long contact area to provide a greater damping effect. This leads to a compact unit with a wide range of controllable resistors.
  • the main objective of the presented invention is to provide a controlled rotational damping using intelligent fluids with a compact apparatus, easily adaptable to various applications.
  • the invention achieves this objective by using perforated curved blades attached to the rotating shaft that moves within a shell filled with intelligent fluid whose resistance to the movement of the blades is controlled by means of an external magnetic or electrical excitation.
  • the apparatus presented in this invention is constituted by a housing within which the rotor moves.
  • Said rotor has perforated curved blades attached to the rotary axis, solid or hollow, and moves against an intelligent fluid with which the apparatus has.
  • the housing contains either coils or excitation plates that are electrically connected to a power source and produce a magnetic or electric field that modifies the properties of the intelligent fluid. This change in the properties increases or decreases the resistance to the movement of the blades, effectively changing the torque mechanical axis which in turn affects the load or the cousin to which it is connected.
  • a variable control of said resistance is provided by controlling the current or voltage produced by the power source.
  • Figure 1 It shows a pictorial drawing and two section views of a representation of our invention having a solid axis and using a magnetoreological fluid.
  • Figure 2 It shows a pictorial drawing and two section views of a representation of our invention having a hollow shaft and using a magnetoreological fluid.
  • Figure 3 It shows a pictorial drawing and two section views of a representation of our invention having a solid axis and using an electroreological fluid.
  • Figure 4. shows a pictorial drawing and two section views of a representation of our invention having a hollow shaft and using an electroreological fluid.
  • Figure 1 Includes a pictorial drawing of a possible representation of our invention with a solid axis and using a magnetoreological fluid, as well as two section views of said representation.
  • the invention consists of a housing 1 within which there is a solid shaft 2 that moves. Cables 3 conduct electrical energy from the current control unit 4 to the central body of our invention.
  • An excitation coil 5 is placed around the housing 1 and the current coming from the current control unit 4 flows through it to produce a magnetic field parallel to the axis 2.
  • the perforated curved blades 6 are connected to the axis solid 2, and move through the fluid MR 7 producing an opposite pair due to the curvature of the blades 6 and the fluid moving through the perforations in them.
  • the torque produced on axis 2 can be controlled by varying the current flow in the excitation coil 5 which in turn changes the resistance of the fluid to the movement of the perforated blades 6.
  • Figure 2. includes a pictorial drawing of a possible representation of our invention with a hollow shaft and using a magnetoreological fluid, as well as two section views of said representation.
  • the invention consists of a housing 8 within which there is a hollow shaft 9 that moves. Cables 10 conduct electrical energy from the current control unit 11 to the central body of our invention.
  • An excitation coil 12 is placed around the housing 8 and the current coming from the current control unit 11 flows through it to produce a magnetic field parallel to the axis 9.
  • the perforated curved blades 13 are connected to the axis hollow 9, and move through the fluid MR 14 producing an opposite pair due to the curvature of the blades 13 and the fluid moving through the perforations in them.
  • the torque produced on axis 9 can be controlled by varying the current flow in the excitation coil 12 which in turn changes the resistance of the fluid to the movement of the perforated blades 13.
  • Figure 3 includes a pictorial drawing of a possible representation of our invention with a solid axis and using an electroreological fluid, as well as two section views of said representation.
  • the invention consists of a housing 15 within which there is a solid shaft 16 that moves. Cables 17 conduct electrical energy from the voltage control unit 18 to the central body of our invention. Excitation plates 19 are placed on the sides of the housing 15 and connected to the voltage control unit 18 producing an electric field parallel to the axis 16.
  • the perforated curved blades 20 are connected to the solid axis 16, and move to through the fluid ER 21 producing an opposite torque due to the curvature of the blades 20 and the fluid moving through the perforations therein.
  • the torque produced on the shaft 16 can be controlled by varying the voltage of the plates 19 which in turn changes the resistance of the fluid to the movement of the perforated blades 20.
  • Figure 4. includes a pictorial drawing of a possible representation of our invention with a hollow shaft and using an electroreological fluid, as well as two section views of said representation.
  • the invention consists of a housing 22 within which there is a hollow shaft 23 that moves. Cables 24 conduct electrical energy from the voltage control unit 25 to the central body of our invention. Excitation plates 26 are placed on the sides of the housing 22 and connected to the voltage control unit 25 producing an electric field parallel to the axis 23.
  • the perforated curved blades 27 are connected to the hollow axis 23, and move to through the fluid ER 28 producing an opposite torque due to the curvature of the blades 27 and the fluid moving through the perforations therein.
  • the torque produced on the axis 23 can be controlled by varying the voltage of the plates 26 which in turn changes the resistance of the fluid to the movement of the perforated blades 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

The invention relates to a compact device which serves as a controlled rotary damper using smart fluids and which can be easily adapted to different applications. The device consists of a rotor having perforated curved blades joined to the solid or hollow rotary shaft which moves inside a casing filled with smart fluid. External magnetic or electric excitation is applied to the device in order to apply a magnetic or electric field to the smart fluid and, in this way, provide a controlled resistance for damping.

Description

AMORTIGUADOR ROTACIONAL CONTROLADO UTILIZANDO FLUIDOS  CONTROLLED ROTATIONAL SHOCK ABSORBER USING FLUIDS
INTELIGENTES SMART
CAMPO DE INVENCIÓN FIELD OF INVENTION
La presente invención se refiere al área de dispositivos rotativos que utilizan fluidos inteligentes para proveer esfuerzos controlados. La invención se refiere al uso de fluidos inteligentes y la excitación eléctrica o magnética de tal fluido para proporcionar resistencia controlada al movimiento de un conjunto de aspas perforadas de un rotor alojado en el interior de una carcasa. Se ha prestado especial atención al diseño geométrico de las aspas del rotor, resultando en una forma curva que aumenta el área de contacto entre el fluido y las aspas y por lo tanto se incrementa el rango de resistencia.  The present invention relates to the area of rotary devices that use intelligent fluids to provide controlled forces. The invention relates to the use of intelligent fluids and the electrical or magnetic excitation of such fluid to provide controlled resistance to the movement of a set of perforated blades of a rotor housed inside a housing. Special attention has been given to the geometric design of the rotor blades, resulting in a curved shape that increases the area of contact between the fluid and the blades and therefore increases the resistance range.
ANTECEDENTES DE LA INVENCIÓN  BACKGROUND OF THE INVENTION
Dispositivos rotativos se pueden utilizar como amortiguadores, frenos, embragues y similares, o para proveer fuerzas disipativas controlables. Dichos dispositivos basados en fluidos inteligentes son particularmente atractivos ya que pueden ofrecer una forma innovadora para lograr una absorción de energía de forma continua controlable, en combinación con una adaptación automática a los requisitos de operación.  Rotating devices can be used as shock absorbers, brakes, clutches and the like, or to provide controllable dissipative forces. Such smart fluid based devices are particularly attractive as they can offer an innovative way to achieve continuously controllable energy absorption, in combination with an automatic adaptation to the operating requirements.
Amortiguadores rotativos convencionales consisten, en general, de un estator y un rotor que delimitan entre ellos una cámara llena de un fluido, en particular un fluido viscoso. Dos o más paletas se disponen básicamente radialmente en el rotor y hay medios para proporcionar la comunicación entre las cámaras, por ejemplo orificios, para permitir la transferencia de fluido desde una cámara a la otra cuando se produce un movimiento de rotación relativo entre el rotor y el estator. El flujo del fluido a través de los orificios o conductos inducido por el movimiento de rotación relativo entre el rotor y el estator proporciona la amortiguación esperada, como se describe en las patentes US7048098B1 , US6899208B2 and US4768630A.  Conventional rotary dampers consist, in general, of a stator and rotor that delimit between them a chamber filled with a fluid, in particular a viscous fluid. Two or more vanes are basically arranged radially in the rotor and there are means to provide communication between the chambers, for example holes, to allow the transfer of fluid from one chamber to the other when a relative rotation movement occurs between the rotor and The stator The flow of fluid through the holes or ducts induced by the relative rotation movement between the rotor and the stator provides the expected damping, as described in US7048098B1, US6899208B2 and US4768630A.
Un fluido inteligente es aquel fluido cuyas propiedades pueden cambiarse aplicando un campo magnético o un campo eléctrico. Hoy en día, los fluidos inteligentes más desarrollados son fluidos cuya viscosidad cambia en respuesta a campos eléctricos o magnéticos. Estos son llamados fluidos magnetoreológicos (MR) o fluidos electroreológicos (ER), respectivamente. Estos fluidos han sido considerados en sistemas de absorción de energía bajo impacto o vibraciones, sistemas de frenos o embragues y sistemas de válvulas y bombas.  An intelligent fluid is that fluid whose properties can be changed by applying a magnetic field or an electric field. Today, the most developed intelligent fluids are fluids whose viscosity changes in response to electric or magnetic fields. These are called magnetoreological fluids (MR) or electroreological fluids (ER), respectively. These fluids have been considered in low impact or vibration energy absorption systems, brake or clutch systems and valve and pump systems.
Existen múltiples patentes que incorporan amortiguadores MR, principalmente amortiguadores lineales. Por ejemplo, la patente US5176368 de Shtarkaman et al. incorpora amortiguadores MR lineales en los soportes del motor de un vehículo; la patente US5284330A de Carson et al., se refiere al diseño de un amortiguador MR con pistón sin sellos, y la patente US20100035737A1 de Tae Kyu Kwon et al. provee una máquina de ejercicios físicos que puede controlar la resistencia utilizando un amortiguador MR lineal. Amortiguadores rotativos utilizando fluidos inteligentes también han sido incorporados en múltiples aparatos y aplicaciones. Uno de esos aparatos es documentado en la patente US. No. 8142370B2 de Weinberg et al., el cual consiste en un freno o actuador con fluido ER para proveer resistencia controlable; es utilizado en aparatos ortopédicos para coyunturas, tales como rodillas y codos. En la patente US. Pat. No. 20100300819, Hiemenz et al. presentan un sistema de absorción energía MR de paletas rotativas para uso en aplicaciones donde capacidades de largo alcance, alto rango de fuerzas dinámicas, tamaño y peso del aparato son de importancia. El aparato consiste, básicamente, de una válvula de flujo y una carcasa hueca fija y paletas rotativas dentro de un flujo MR, con varios mecanismos de movimiento de traslación para traducir el movimiento lineal a rotacional. La intensión de dicho mecanismo de absorción de energía es para ser utilizado en sistemas de protección de impacto y vibraciones en aplicaciones vehiculares, incluyendo vehículos en tierra, aire o mar. En la patente US20090159382A1 , Chemouni et al. se describe un amortiguador rotacional viscoso para ser aplicado, principalmente, en el rotor de un helicóptero. Este amortiguador consiste de un estator, un rotor con aspas radiales, una cámara entre ellos, un mecanismo para crear la comunicación del fluido entre las cámaras, y por lo menos un cojinete elastómero cónico entre el estator y el rotor para servir como un sello dinámico y guía del conjunto estator- eje en relación al conjunto rotor-carcasa. There are multiple patents that incorporate MR dampers, mainly linear dampers. For example, patent US5176368 of Shtarkaman et al. incorporates linear MR shock absorbers in the engine mounts of a vehicle; Patent US5284330A of Carson et al., refers to the design of a MR shock absorber with piston without seals, and patent US20100035737A1 of Tae Kyu Kwon et al. It provides a physical exercise machine that can control resistance using a linear MR shock absorber. Rotary dampers using smart fluids have also been incorporated into multiple devices and applications. One of these devices is documented in the US patent. No. 8142370B2 of Weinberg et al., Which consists of a brake or actuator with ER fluid to provide controllable resistance; It is used in orthopedic appliances for joints, such as knees and elbows. In the US patent. Pat. No. 20100300819, Hiemenz et al. They feature an MR energy absorption system of rotary vanes for use in applications where long range capabilities, high range of dynamic forces, size and weight of the apparatus are of importance. The apparatus basically consists of a flow valve and a fixed hollow housing and rotary vanes within an MR flow, with various translational movement mechanisms to translate the linear to rotational movement. The intention of said energy absorption mechanism is to be used in impact and vibration protection systems in vehicular applications, including vehicles on land, air or sea. In US20090159382A1, Chemouni et al. a viscous rotational damper is described to be applied mainly to the rotor of a helicopter. This damper consists of a stator, a rotor with radial blades, a chamber between them, a mechanism to create fluid communication between the chambers, and at least one conical elastomer bearing between the stator and the rotor to serve as a dynamic seal and guide of the stator-shaft assembly in relation to the rotor-housing assembly.
La invención aquí presentada es un amortiguador rotacional controlado utilizando fluidos inteligentes con un diseño relativamente simple que incluye aspas curvas con un área de contacto larga para proveer un mayor efecto de amortiguamiento. Esto conlleva a una unidad compacta con un rango amplio de resistencias controlables.  The invention presented herein is a rotational damper controlled using intelligent fluids with a relatively simple design that includes curved blades with a long contact area to provide a greater damping effect. This leads to a compact unit with a wide range of controllable resistors.
DESCRPCIÓN DE LA INVENCIÓN  DESCRPTION OF THE INVENTION
El objetivo principal de la invención presentada es proveer un amortiguamiento rotativo controlado utilizando fluidos inteligentes con un aparato compacto, fácilmente adaptable a varias aplicaciones. La invención alcanza este objetivo utilizando aspas curvas perforadas unidas al eje rotatorio que se mueve dentro de una carcasa llena de fluido inteligente cuya resistencia al movimiento de las aspas es controlada por medio de una excitación magnética o eléctrica externa.  The main objective of the presented invention is to provide a controlled rotational damping using intelligent fluids with a compact apparatus, easily adaptable to various applications. The invention achieves this objective by using perforated curved blades attached to the rotating shaft that moves within a shell filled with intelligent fluid whose resistance to the movement of the blades is controlled by means of an external magnetic or electrical excitation.
[El aparato presentado en esta invención está constituido por una carcasa dentro de la cual se mueve el rotor. Dicho rotor tiene aspas curvas perforadas unidas al eje rotatorio, solido o hueco, y se mueve en contra de un fluido inteligente con el que cuenta el aparato. La carcasa contiene ya sea bobinas o placas de excitación que están eléctricamente conectadas a una fuente de poder y producen un campo magnético o eléctrico que modifica las propiedades del fluido inteligente. Este cambio en las propiedades aumenta o decrece la resistencia al movimiento de las aspas, cambiando efectivamente el par mecánico del eje al que a su vez afecta la carga o el primo-motor al que esté conectado. Un control variable de dicha resistencia se provee controlando la corriente o voltaje producida por la fuente de poder. [The apparatus presented in this invention is constituted by a housing within which the rotor moves. Said rotor has perforated curved blades attached to the rotary axis, solid or hollow, and moves against an intelligent fluid with which the apparatus has. The housing contains either coils or excitation plates that are electrically connected to a power source and produce a magnetic or electric field that modifies the properties of the intelligent fluid. This change in the properties increases or decreases the resistance to the movement of the blades, effectively changing the torque mechanical axis which in turn affects the load or the cousin to which it is connected. A variable control of said resistance is provided by controlling the current or voltage produced by the power source.
DESCRIPCIÓN DE LAS FIGURAS  DESCRIPTION OF THE FIGURES
Figura 1. Muestra un dibujo pictórico y dos vistas de sección de una representación de nuestra invención teniendo un eje sólido y utilizando un fluido magnetoreológico.  Figure 1. It shows a pictorial drawing and two section views of a representation of our invention having a solid axis and using a magnetoreological fluid.
Figura 2. Muestra un dibujo pictórico y dos vistas de sección de una representación de nuestra invención teniendo un eje hueco y utilizando un fluido magnetoreológico.  Figure 2. It shows a pictorial drawing and two section views of a representation of our invention having a hollow shaft and using a magnetoreological fluid.
Figura 3. Muestra un dibujo pictórico y dos vistas de sección de una representación de nuestra invención teniendo un eje sólido y utilizando un fluido electroreológico.  Figure 3. It shows a pictorial drawing and two section views of a representation of our invention having a solid axis and using an electroreological fluid.
Figura 4. muestra un dibujo pictórico y dos vistas de sección de una representación de nuestra invención teniendo un eje hueco y utilizando un fluido electroreológico.  Figure 4. shows a pictorial drawing and two section views of a representation of our invention having a hollow shaft and using an electroreological fluid.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN  DETAILED DESCRIPTION OF THE INVENTION
Como se describe a continuación, las siguientes figuras muestran varias representaciones posibles del amortiguador rotacional controlado utilizando fluidos inteligentes. Las figuras intentan demostrar la funcionabilidad de dicho sistema y sus componentes. Sin embargo, estas imágenes no están a escala. Varias formas y tamaños del dispositivo pueden ser determinadas, basadas en los requisitos específicos de potencia, materiales disponibles y tecnologías de fluidos inteligentes. De todas formas, las figuras son lo suficientemente claras para establecer el concepto de operación y metodología.  As described below, the following figures show several possible representations of the rotational damper controlled using intelligent fluids. The figures try to demonstrate the functionality of said system and its components. However, these images are not to scale. Various shapes and sizes of the device can be determined, based on specific power requirements, available materials and smart fluid technologies. However, the figures are clear enough to establish the concept of operation and methodology.
Figura 1. incluye un dibujo pictórico de una posible representación de nuestra invención con un eje sólido y utilizando un fluido magnetoreológico, así como dos vistas de sección de dicha representación. La invención consiste en una carcasa 1 dentro del que se encuentra un eje sólido 2 que se mueve. Cables 3 conducen energía eléctrica desde la unidad de control de corriente 4 al cuerpo central de nuestra invención. Una bobina de excitación 5 se coloca alrededor de la carcasa 1 y la corriente que proviene de la unidad de control de corriente 4 fluye a través de ella para producir un campo magnético en paralelo al eje 2. Las aspas curvas perforadas 6 están conectadas al eje solido 2, y se mueven a través del fluido MR 7 produciendo un par opuesto debido a la curvatura de las aspas 6 y el fluido moviéndose a través de las perforaciones en ellas. El par producido en el eje 2 puede ser controlado variando el flujo de corriente en la bobina de excitación 5 que a su vez cambia la resistencia del fluido al movimiento de las aspas perforadas 6.  Figure 1. Includes a pictorial drawing of a possible representation of our invention with a solid axis and using a magnetoreological fluid, as well as two section views of said representation. The invention consists of a housing 1 within which there is a solid shaft 2 that moves. Cables 3 conduct electrical energy from the current control unit 4 to the central body of our invention. An excitation coil 5 is placed around the housing 1 and the current coming from the current control unit 4 flows through it to produce a magnetic field parallel to the axis 2. The perforated curved blades 6 are connected to the axis solid 2, and move through the fluid MR 7 producing an opposite pair due to the curvature of the blades 6 and the fluid moving through the perforations in them. The torque produced on axis 2 can be controlled by varying the current flow in the excitation coil 5 which in turn changes the resistance of the fluid to the movement of the perforated blades 6.
Figura 2. incluye un dibujo pictórico de una posible representación de nuestra invención con un eje hueco y utilizando un fluido magnetoreológico, así como dos vistas de sección de dicha representación. La invención consiste en una carcasa 8 dentro del que se encuentra un eje hueco 9 que se mueve. Cables 10 conducen energía eléctrica desde la unidad de control de corriente 11 al cuerpo central de nuestra invención. Una bobina de excitación 12 se coloca alrededor de la carcasa 8 y la corriente que proviene de la unidad de control de corriente 11 fluye a través de ella para producir un campo magnético en paralelo al eje 9. Las aspas curvas perforadas 13 están conectadas al eje hueco 9, y se mueven a través del fluido MR 14 produciendo un par opuesto debido a la curvatura de las aspas 13 y el fluido moviéndose a través de las perforaciones en ellas. El par producido en el eje 9 puede ser controlado variando el flujo de corriente en la bobina de excitación 12 que a su vez cambia la resistencia del fluido al movimiento de las aspas perforadas 13. Figure 2. includes a pictorial drawing of a possible representation of our invention with a hollow shaft and using a magnetoreological fluid, as well as two section views of said representation. The invention consists of a housing 8 within which there is a hollow shaft 9 that moves. Cables 10 conduct electrical energy from the current control unit 11 to the central body of our invention. An excitation coil 12 is placed around the housing 8 and the current coming from the current control unit 11 flows through it to produce a magnetic field parallel to the axis 9. The perforated curved blades 13 are connected to the axis hollow 9, and move through the fluid MR 14 producing an opposite pair due to the curvature of the blades 13 and the fluid moving through the perforations in them. The torque produced on axis 9 can be controlled by varying the current flow in the excitation coil 12 which in turn changes the resistance of the fluid to the movement of the perforated blades 13.
Figura 3. incluye un dibujo pictórico de una posible representación de nuestra invención con un eje sólido y utilizando un fluido electroreológico, así como dos vistas de sección de dicha representación. La invención consiste en una carcasa 15 dentro del que se encuentra un eje sólido 16 que se mueve. Cables 17 conducen energía eléctrica desde la unidad de control de voltaje 18 al cuerpo central de nuestra invención. Placas de excitación 19 se colocan a los lados de la carcasa 15 y se conectan a la unidad de control de voltaje 18 produciendo un campo eléctrico en paralelo al eje 16. Las aspas curvas perforadas 20 están conectadas al eje solido 16, y se mueven a través del fluido ER 21 produciendo un par opuesto debido a la curvatura de las aspas 20 y el fluido moviéndose a través de las perforaciones en ellas. El par producido en el eje 16 puede ser controlado variando el voltaje de las placas 19 que a su vez cambia la resistencia del fluido al movimiento de las aspas perforadas 20. Figure 3. includes a pictorial drawing of a possible representation of our invention with a solid axis and using an electroreological fluid, as well as two section views of said representation. The invention consists of a housing 15 within which there is a solid shaft 16 that moves. Cables 17 conduct electrical energy from the voltage control unit 18 to the central body of our invention. Excitation plates 19 are placed on the sides of the housing 15 and connected to the voltage control unit 18 producing an electric field parallel to the axis 16. The perforated curved blades 20 are connected to the solid axis 16, and move to through the fluid ER 21 producing an opposite torque due to the curvature of the blades 20 and the fluid moving through the perforations therein. The torque produced on the shaft 16 can be controlled by varying the voltage of the plates 19 which in turn changes the resistance of the fluid to the movement of the perforated blades 20.
Figura 4. incluye un dibujo pictórico de una posible representación de nuestra invención con un eje hueco y utilizando un fluido electroreológico, así como dos vistas de sección de dicha representación. La invención consiste en una carcasa 22 dentro del que se encuentra un eje hueco 23 que se mueve. Cables 24 conducen energía eléctrica desde la unidad de control de voltaje 25 al cuerpo central de nuestra invención. Placas de excitación 26 se colocan a los lados de la carcasa 22 y se conectan a la unidad de control de voltaje 25 produciendo un campo eléctrico en paralelo al eje 23. Las aspas curvas perforadas 27 están conectadas al eje hueco 23, y se mueven a través del fluido ER 28 produciendo un par opuesto debido a la curvatura de las aspas 27 y el fluido moviéndose a través de las perforaciones en ellas. El par producido en el eje 23 puede ser controlado variando el voltaje de las placas 26 que a su vez cambia la resistencia del fluido al movimiento de las aspas perforadas 27. Figure 4. includes a pictorial drawing of a possible representation of our invention with a hollow shaft and using an electroreological fluid, as well as two section views of said representation. The invention consists of a housing 22 within which there is a hollow shaft 23 that moves. Cables 24 conduct electrical energy from the voltage control unit 25 to the central body of our invention. Excitation plates 26 are placed on the sides of the housing 22 and connected to the voltage control unit 25 producing an electric field parallel to the axis 23. The perforated curved blades 27 are connected to the hollow axis 23, and move to through the fluid ER 28 producing an opposite torque due to the curvature of the blades 27 and the fluid moving through the perforations therein. The torque produced on the axis 23 can be controlled by varying the voltage of the plates 26 which in turn changes the resistance of the fluid to the movement of the perforated blades 27.

Claims

REIVINDICACIONES
1. Amortiguador rotacional controlado mediante fluidos inteligentes que comprende: una carcasa hueca, un rotor con unas aspas de geometría, esencialmente curva y con una pluralidad de perforaciones pasantes definidas en su superficie, que desplaza giratoriamente en el interior de la carcasa, un eje vinculado al centro geométrico del rotor en torno al cual gira dicho rotor, un fluido inteligente dispuesto en el interior de la carcasa rodeando al conjunto formado por el eje y el rotor, y un elemento de excitación vinculado a una fuente de energía y a la carcasa, para transmitir un estímulo al fluido inteligente y modificar sus propiedades. 1. Rotational shock absorber controlled by intelligent fluids comprising: a hollow housing, a rotor with geometry blades, essentially curved and with a plurality of through holes defined on its surface, which rotatably rotates inside the housing, a linked shaft to the geometric center of the rotor around which said rotor rotates, an intelligent fluid disposed inside the housing surrounding the assembly formed by the shaft and the rotor, and an excitation element linked to a source of energy and to the housing, for transmit a stimulus to the intelligent fluid and modify its properties.
2. Amortiguador rotacional controlado mediante fluidos inteligentes de acuerdo con la reivindicación 1 caracterizado porque el fluido inteligente es un fluido electrorreológico.  2. Rotational damper controlled by intelligent fluids according to claim 1 characterized in that the intelligent fluid is an electro-rheological fluid.
3. Amortiguador rotacional controlado mediante fluidos inteligentes de acuerdo con la reivindicación 1 caracterizado porque el fluido inteligente es un fluido magnetorreológico.  3. Rotational shock absorber controlled by intelligent fluids according to claim 1 characterized in that the intelligent fluid is a magnetoreological fluid.
4. Amortiguador rotacional controlado mediante fluidos inteligentes de acuerdo con la reivindicación 1 caracterizado porque el eje es un eje sólido.  4. Rotational damper controlled by intelligent fluids according to claim 1 characterized in that the axis is a solid axis.
5. Amortiguador rotacional controlado mediante fluidos inteligentes de acuerdo con la reivindicación 1 caracterizado porque el eje es un eje hueco.  5. Intelligent fluid controlled rotational shock absorber according to claim 1 characterized in that the shaft is a hollow shaft.
PCT/PA2018/000001 2017-02-06 2018-01-30 Controlled rotary damper using smart fluids WO2018190733A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PA91504-01 2017-02-06
PA9150401 2017-02-06

Publications (3)

Publication Number Publication Date
WO2018190733A2 true WO2018190733A2 (en) 2018-10-18
WO2018190733A8 WO2018190733A8 (en) 2019-01-31
WO2018190733A3 WO2018190733A3 (en) 2019-03-21

Family

ID=63792754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PA2018/000001 WO2018190733A2 (en) 2017-02-06 2018-01-30 Controlled rotary damper using smart fluids

Country Status (1)

Country Link
WO (1) WO2018190733A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353923B2 (en) * 2003-11-07 2008-04-08 Nifco Inc. Damper device
US8356977B2 (en) * 2006-05-26 2013-01-22 Lord Corporation Rotary wing aircraft rotary lead lag damper
US20090159382A1 (en) * 2007-12-21 2009-06-25 Louis Chemouni Rotary damper
CN202579797U (en) * 2012-02-20 2012-12-05 东南大学 Rotary and shaft-driving electrorheological fluid damper
US9841077B2 (en) * 2014-06-18 2017-12-12 Bell Helicopter Textron Inc. Rotating shaft damping with electro-rheological fluid

Also Published As

Publication number Publication date
WO2018190733A8 (en) 2019-01-31
WO2018190733A3 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
ES2745096T3 (en) Outer cup rotary axial eddy current damper
CN106460989B (en) Device for kinetic damping
CN108843720A (en) Revolving type magnetic rheologic damper
CN100350171C (en) High performance, multiple plates, revolving type magnetic rheologic damper
JPH10288238A (en) Damper for disposition mechanism of spacecraft
BR0109085B1 (en) Vibration damping system and method to control the same.
US11092201B2 (en) Multiple MR fluid clutch apparatuses sharing MR fluid
WO2018190733A2 (en) Controlled rotary damper using smart fluids
KR101437362B1 (en) Appratus for dissipating vibration energy
CN107477131B (en) Screw pump type magnetorheological damper and spinning bicycle thereof
US20130213756A1 (en) Fluid brake device and valve timing control apparatus having the same
US6955249B2 (en) Controlled oscillating damper
CN110645304B (en) Self-cooling rotary magnetorheological damper
CN101718324A (en) Wobble wheel rotary magneto-rheological damper
US6439356B1 (en) Controlled oscillating damper
US7243768B2 (en) Clutch having a variable viscosity fluid
JP2008121759A (en) Damper of variable damping force
US9527361B2 (en) Chamber cluster for a co-axial damper unit in a suspension module
CN110259872B (en) Magneto-rheological inertia variable damping torsional vibration damper
US20120279345A1 (en) Translatably and rotatably semi-active device
WO2018194467A2 (en) Rotating damper using a pseudoplastic fluid
KR930701701A (en) Hydraulic shock absorbers for controlled vehicle operation
CN108916294B (en) Rotary hydraulic damper
TWM578754U (en) The rotary damper
JP5086011B2 (en) Magnetorheological fluid shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784552

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784552

Country of ref document: EP

Kind code of ref document: A2