WO2018190644A1 - Polymeric solid electrolyte and lithium secondary battery comprising same - Google Patents

Polymeric solid electrolyte and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2018190644A1
WO2018190644A1 PCT/KR2018/004278 KR2018004278W WO2018190644A1 WO 2018190644 A1 WO2018190644 A1 WO 2018190644A1 KR 2018004278 W KR2018004278 W KR 2018004278W WO 2018190644 A1 WO2018190644 A1 WO 2018190644A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
polymer solid
lithium
electrolyte composition
polymer
Prior art date
Application number
PCT/KR2018/004278
Other languages
French (fr)
Korean (ko)
Inventor
최영철
김승하
채종현
김경훈
이연주
김대일
김루시아
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180042157A external-priority patent/KR102081773B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880005239.4A priority Critical patent/CN110100346B/en
Priority to US16/335,780 priority patent/US11710851B2/en
Priority to JP2019515496A priority patent/JP2019530166A/en
Priority to PL18784357.8T priority patent/PL3509153T3/en
Priority to EP18784357.8A priority patent/EP3509153B1/en
Publication of WO2018190644A1 publication Critical patent/WO2018190644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer solid electrolyte and a lithium secondary battery comprising the same.
  • Lithium secondary batteries are used in various industries, such as automotive batteries, in small electronic devices such as smartphones and laptop tablet PCs. These developments are being made toward technology miniaturization, light weight, high performance, and high capacity.
  • the lithium secondary battery includes a negative electrode, a positive electrode and an electrolyte.
  • Lithium, carbon, etc. are used as a negative electrode active material of the lithium secondary battery, a transition metal oxide, a metal chalcogen compound, a conductive polymer, and the like are used as the positive electrode active material, and a liquid electrolyte, a solid electrolyte, and a polymer electrolyte are used as the electrolyte. have.
  • the polymer electrolyte is environmentally friendly because there is no problem such as leakage of liquid generated from the liquid electrolyte, and the thin film and the processing of the film form can be processed, and thus the structure of the device can be easily changed to any desired shape.
  • the polymer electrolyte is a material composed of a polymer, a lithium salt, a non-aqueous organic solvent (optional), and other additives, and exhibits an ionic conductivity of about 10 -3 to -10 -8 S / cm at room temperature.
  • Polyethylene oxide or polypropylene oxide was mainly used as the polymer, and recently, development of a polymer electrolyte using various polymers such as polymethyl methacrylate, polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride, have.
  • US Patent Publication No. 2015/015559 discloses a polyphenylene sulfide-based polymer solid electrolyte having excellent chemical resistance and heat resistance.
  • the polymer solid electrolyte has been reported to exhibit excellent ionic conductivity at room temperature.
  • Such polymer solid electrolytes are required to be electrochemically stable in the battery driving voltage range. This is because when the oxidative stability of the polymer solid electrolyte is deteriorated, oxidation of the polymer easily occurs at the interface with the anode, causing electrolyte degradation. This eventually leads to deterioration of battery performance, a problem that must be solved, but a polymer solid electrolyte having a satisfactory ionic conductivity and oxidative stability has not been developed.
  • Patent Document 1 United States Patent Application Publication No. 2015/015559, SOLID, IONICALLY CONDUCTING POLYMER MATERIAL, AND METHODS AND APPLICATIONS FOR SAME
  • the present inventors have conducted various studies to develop a polymer solid electrolyte having high ionic conductivity, heat resistance, dimensional stability, and oxidative stability.
  • the present invention is to provide a lithium secondary battery comprising a polymer film made of the polymer solid electrolyte composition.
  • a polymer solid electrolyte composition comprising a polyphenylene sulfide and an ion supply compound, wherein the polyphenylene sulfide provides a polymer solid electrolyte composition in which part or all of the phenyl group hydrogen is replaced with fluorine.
  • the polyphenylene sulfide comprises 0.1% to 45.0% by weight of fluorine.
  • the polyphenylene sulfide has a weight average molecular weight of 200 g / mol to 300,000 g / mol.
  • the ion supply compound is a metal oxide, metal hydrate or metal salt, and the metal is selected from the group consisting of Li, Na, K, Mg, Ca, Zn, Al and combinations thereof.
  • the metal salt is a lithium salt
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN , Li (FSO 2 ) 2 N LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, LiOH.H 2 O, LiB (C 2 O 4 ) 2 , lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenyl borate, lithium already And combinations thereof.
  • the polymer solid electrolyte composition comprises 5 to 40% by weight of the ion feed compound.
  • the polymer solid electrolyte composition further comprises a solvent, the solvent is methanol, ethanol, acetone, acetonitrile, tetrahydrofuran, N-methyl-2-pyrrolidone, N, N -Dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphamide, 1,3-dimethyl-2-imidazoldinone (1,3-dimethyl-2 -imidazolidinone, triethylphosphate, gamma-butyrolactone, 1,2-dimethoxyethane, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate ) And combinations thereof.
  • a solvent is methanol, ethanol, acetone, acetonitrile, tetrahydrofuran, N-methyl-2-pyrrolidone, N, N -Dimethylformamide, N, N-die
  • the polymer solid electrolyte composition has a viscosity at 200 ° C. of 200 to 1,000 cP.
  • a polymer solid electrolyte membrane obtained by processing the above-described polymer solid electrolyte composition into a film is provided.
  • It provides a lithium secondary battery comprising the above-described polymer solid electrolyte membrane laminated on the positive electrode.
  • the polymer solid electrolyte according to the present invention exhibits excellent heat resistance and dimensional stability with high ionic conductivity, and oxidative stability is improved to improve voltage stability of a lithium secondary battery.
  • 1 is a graph comparing HOMO energy levels of a polyphenylene oxide oligomer substituted or unsubstituted with a polyethylene oxide oligomer and a fluorine.
  • FIG. 2 shows an embodiment of a lithium secondary battery according to the present invention.
  • the present invention proposes a technique for applying to a lithium secondary battery.
  • the present invention is a polymer solid electrolyte composition comprising a polyphenylene sulfide and an ion supply compound,
  • the polyphenylene sulfide provides a polymer solid electrolyte composition in which part or all of a phenyl group hydrogen is substituted with fluorine.
  • Polyphenylene sulfide is one of thermoplastic resins (crystalline polymers) having excellent dimensional stability, and maintains its strength even in high temperature and corrosive environments, and has excellent chemical resistance and heat resistance.
  • thermoplastic resins crystalline polymers
  • Oxidative stability of the electrolyte affects the battery's life characteristics, i.e. capacity retention. If the oxidative stability of the electrolyte is deteriorated, electron transfer from the electrolyte to the anode occurs at the surface of the anode during charging, and oxidation of the electrolyte eventually leads to deterioration of battery life. Therefore, the polymer electrolyte should be free from degradation due to oxidation and reduction in the driving voltage range of the battery.
  • Oxidative stability of polymer solid electrolytes can be predicted from the highest Occupied Molecular Orbital (HOMO) energy level (Kita et al., J. Power Sources., 2000, 90, 27-32).
  • HOMO Occupied Molecular Orbital
  • the lower the HOMO energy level of the polymer the more difficult electrons move to the anode. Therefore, when the polymer having the low HOMO energy level is used as the electrolyte, oxidation of the electrolyte occurs at a higher voltage (voltage of the anode during charging). Therefore, when the polymer solid electrolyte is used, the battery can be stably operated even at a relatively high voltage without deterioration of the battery life.
  • the present inventors have studied a method of improving the oxidative stability by using polyphenylene sulfide as a basic polymer, and as a result, when the phenyl group hydrogen of the polyphenylene sulfide is partially or completely replaced with fluorine, the HOMO energy level of the polymer It was confirmed that the lowering, thereby improving the oxidative stability of the polymer solid electrolyte to improve the voltage stability of the lithium secondary battery.
  • Polyphenylene sulfide used as the lithium ion conductive polymer in the present invention is to include a repeating unit represented by the following formula (1).
  • R 1 to R 4 are the same as or different from each other, and each H or F, at least one is F, n is an integer of two or more.
  • the fluorine-substituted polysulfide used in the composition of the present invention may be composed of one or more repeating units having the following structural formula.
  • the polyphenylene sulfide may include 0.1 to 45 wt%, preferably 5 to 45 wt%, more preferably 10 to 45 wt% of fluorine.
  • the polyphenylene sulfide contains fluorine in the above-described range, the polyphenylene sulfide has an oxidative stability in a range suitable for use for a polymer solid electrolyte.
  • the HOMO energy level of the polymer solid electrolyte can be calculated using the Gaussian09 program package (Gaussian 09 Revision C.01, Gaussian Inc., Wallingford, CT, 2009.), from which the oxidation stability of the polymer solid electrolyte can be predicted. have.
  • DFT Density Functional Theory
  • the energy level is high, and oxidative stability is expected to be remarkably decreased as compared with polyethylene oxide (PEO) which is commonly used as a polymer solid electrolyte.
  • PEO polyethylene oxide
  • the energy level is gradually lowered, and when all hydrogens in the 5 phenyl groups in the repeating unit are replaced with fluorine, the energy level is lowered to a level similar to that of polyethylene oxide. . From these calculation results, it can be expected that the oxidative stability of the polyphenylene sulfide-based polymer solid electrolyte can be improved by substituting hydrogen of the phenyl group with fluorine.
  • the fluorine-substituted polyphenylene sulfide when used as a polymer solid electrolyte, has a weight average molecular weight in the range of 200 g / mol to 300,000 g / mol.
  • the weight average molecular weight is less than 200 g / mol, such as mechanical strength (physical properties of the yarn), chemical resistance, heat resistance, and the like is lowered, when it exceeds 300,000 g / mol is not easy to manufacture a film.
  • the polyphenylene sulfide is a crystalline polymer that is partially crystalline, and has a crystallinity value of 30% to 100% and preferably 50% to 100% for the base polymer and is a crystalline or semi-crystalline polymer.
  • glass transition temperature is 80 degreeC or more, Preferably it is 120 degreeC, More preferably, it is 150 degreeC or more, Most preferably, it is 200 degreeC or more.
  • the base polymer has a melting temperature of at least 250 ° C and preferably at least 280 ° C and more preferably at least 320 ° C.
  • the polyphenylene sulfide of the said structure contains all three types of linear, bridge
  • the method for preparing the fluorine-substituted polyphenylene sulfide is not particularly limited in the present invention and may vary.
  • pure polyphenylenesulfide polymers obtained by polymerization of fluorine-substituted aromatic monomers e.g., dihalobenzenes such as diiodobenzene, dichlorobenzene
  • elemental sulfur or sodium sulfide may be prepared using known halogenation methods.
  • Fluorine substituted polyphenylene sulfide can be prepared by fluorination.
  • a method of polymerizing an aromatic monomer having one or more fluorine substituents and elemental sulfur or sodium sulfide may be used.
  • the ion supply compound is for supplying ions in the polymer solid electrolyte composition, and includes a compound containing hydroxyl ions, or a substance that can be chemically converted into a compound containing hydroxyl ions, for example , But are not limited to hydroxides, oxides, salts or mixtures thereof.
  • the ion supply compound may be a metal oxide or a hydrate or salt. More specifically, Li 2 O, Na 2 O, MgO, CaO, ZnO, LiOH, KOH, NaOH, CaCl 2 , AlCl 3 , MgCl 2 and the like can be used, these can be used by mixing at least one or more.
  • the ion supply compound may be a lithium salt.
  • Lithium salt simultaneously has the effect of increasing the lithium ion conductivity in addition to the ion supply.
  • the lithium salt include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, Li (FSO 2 ) 2 N LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, LiOH.H 2 O, LiB (C 2 O 4 ) 2 , 1 selected from the group consisting of lithium chloroborane, lower aliphatic carbonate, lithium tetraphenyl borate, lithium imide and combinations thereof Lithium salts of species and the like can be
  • the ion supply compound is included in 5 to 40% by weight, preferably 10 to 30% by weight in the total polymer solid electrolyte. If the content of the ion supply compound is less than the above range, it is not easy to secure the lithium ion conductivity, and on the contrary, if it exceeds the above range, there is no significant increase in effect, so it is uneconomical, so it is appropriately selected within the above range.
  • the polymer solid electrolyte membrane proposed in the present invention has the effect of improving the physical properties of the film including the same, while increasing the high level of lithium ion conductivity equivalent to the liquid phase even in the form of a solid film at 10 -4 S / cm. .
  • the polymer solid electrolyte composition presented above is prepared in the form of a film through a wet process, and includes a solvent for this purpose.
  • the solvent may be a solvent capable of dissolving a lithium ion conductive polymer.
  • the organic solvent may be methanol, ethanol, acetone, acetonitrile, tetrahydrofuran, N-methyl-2-pyrrolidone, N, N -Dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphamide, 1,3-dimethyl-2-imidazoldinone (1,3-Dimethyl-2 -imidazolidinone, triethyl phosphate, gamma-butyrolactone, 1,2-dimethoxyethane, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate At least one selected from the group consisting of) is possible.
  • the content of the solvent is limited in consideration of the viscosity of the finally obtained polymer solid electrolyte composition.
  • the higher the content of the solvent the higher the viscosity of the final composition is obtained, the lower the workability, and the lower the viscosity, the lower the viscosity.
  • the solution viscosity at 30 ° C of the polymer solid electrolyte composition of the present invention is not particularly limited, but is preferably 200 to 1,000 cP, preferably 300 to 800 cP or less, and more preferably 500 to 700 cP. .
  • This viscosity control allows to secure the viscosity to increase the film processability in producing a polymer solid electrolyte film.
  • the polymer solid electrolyte composition may be formed as a polymer solid electrolyte membrane through a film manufacturing process as known in the art.
  • the polymer solid electrolyte membrane of the present invention may be used alone as a polymer solid electrolyte or may be applied only to the anode interface.
  • the polymer solid electrolyte membrane of the present invention is applied only to the positive electrode interface, the polymer solid electrolyte in contact with the negative electrode interface may be a pure polyphenylene sulfide polymer solid electrolyte without fluorine substitution.
  • Examples of the above-mentioned film forming method include any suitable film forming method, such as a solution casting method (solution casting method), a melt casting extrusion method, a calendering method, or a compression molding method. Of these film forming methods, a solution cast method (solution casting method) or a melt film extrusion method is preferable.
  • a solution cast method (solution casting method) may be used for film production.
  • the coating of the polymer solid electrolyte composition is performed on a support, in which the support is coated directly on either the positive electrode or the negative electrode, or coated on a separate substrate and then separated and laminated to the positive electrode and the negative electrode. can do.
  • the substrate may be a glass substrate or a plastic substrate.
  • the plastic substrate include polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, 3-acetic cellulose, 2-acetic cellulose, poly (meth) acrylic acid alkyl ester, poly (meth) acrylic acid ester copolymer, polyvinyl chloride, poly Various plastic films such as vinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, and polytrifluoroethylene Can be mentioned.
  • the composite material which consists of these 2 or more types can also be used,
  • the polyethylene terephthalate film excellent in the light transmittance is especially preferable.
  • the thickness of the support is preferably 5 to 150 ⁇ m, more preferably 10 to 50 ⁇ m.
  • spin coating doctor blade coating, dip coating, solvent casting, slot die coating, spray coating.
  • Roll coating extrusion coating, curtain coating, die coating, wire bar coating or knife coating may be used.
  • a device having a thickness gap of 10 to 200 ⁇ m may be used for spin coating and 500 to 4000 rpm for doctor blade coating.
  • when performing the spray coating can be carried out by spraying with a spraying number of 5 to 100 times through a spray pressure of 0.5 to 20 MPa. The design of these processes and the selection of parameters can be controlled by one of ordinary skill in the art.
  • Drying is performed after the coating to form a polymer solid electrolyte membrane.
  • drying depends on each component, the kind of organic solvent, and content ratio, it is preferable to carry out for 30 second-15 minutes at 60-100 degreeC.
  • the drying may be performed by one of hot air drying, electromagnetic wave drying, vacuum drying, spray drying, drum drying, and freeze drying, and preferably hot air drying.
  • the thickness of the polymer solid electrolyte membrane is finally formed to the thickness of the membrane to be prepared, and if necessary, the coating-drying or coating step is performed at least once.
  • melt extrusion may be used for film production.
  • melt-extrusion method examples include a T-die method and an inflation method. Molding temperature becomes like this. Preferably it is 150-350 degreeC, More preferably, it is 200-300 degreeC.
  • a T-die is attached to the tip of a known single screw extruder or a twin screw extruder, and the film extruded in a film shape can be rolled to obtain a roll-shaped film.
  • the hot melt may be subjected to a first hot melt, a filtration filter, and a second hot melt in sequence.
  • the melt-extruded heat-melted temperature may be 170 °C to 320 °C, preferably 200 °C to 300 °C.
  • a drum casting roll
  • the polymer solid electrolyte membrane as described above, has high lithium ion conductivity of 10 ⁇ 4 S / cm level equivalent to that of the liquid electrolyte, and is excellent in heat resistance and dimensional stability, and thus may be applied to a lithium secondary battery.
  • the polymer solid electrolyte membrane includes an ion supply compound and a polyphenylene sulfide partially or wholly substituted with fluorine, thereby exhibiting improved oxidation stability and excellent ion conductivity and physical properties compared to polyphenylene sulfide without fluorine substitution.
  • problems caused when driving the lithium secondary battery heat generation, explosion, film degradation, etc. can be solved to further increase the voltage stability of the lithium secondary battery.
  • the polymer solid electrolyte membrane according to the present invention is applied to a lithium secondary battery, and can be preferably used as a polymer solid electrolyte.
  • the polymer solid electrolyte membrane is preferably used to contact the surface of the positive electrode in order to secure the above-mentioned effect.
  • FIG. 1 illustrates an embodiment of a lithium secondary battery according to the present invention.
  • the polymer solid electrolyte membrane of the present invention may be applied only to the anode interface.
  • a pure polyphenylene sulfide polymer solid electrolyte that is not fluorinated may be used as the electrolyte contacting the cathode interface.
  • polymer solid electrolyte membrane of the present invention may be applied alone as an electrolyte, in which case the polymer solid electrolyte membrane is interposed between the positive electrode and the negative electrode.
  • the polymer solid electrolyte membrane of the present invention when used as the polymer solid electrolyte in contact with the positive electrode interface, the phenomenon of oxidizing the electrolyte on the surface of the positive electrode during battery operation is significantly reduced, and thus the battery life characteristics can be improved.
  • the electrolyte may further include a material used for this purpose in order to further increase the lithium ion conductivity.
  • the polymer solid electrolyte further includes an inorganic solid electrolyte or an organic solid electrolyte.
  • the inorganic solid electrolyte is a ceramic-based material, a crystalline or amorphous and crystalline materials can be used, Thio-LISICON (Li 3. 25 Ge 0 .25 P 0.
  • the inorganic solid electrolyte such as a
  • organic solid electrolyte examples include polymer-based materials such as polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohol, and polyvinylidene fluoride. What mixed lithium salt can be used. At this time, these may be used alone or in combination of at least one or more.
  • the specific application method to the polymer solid electrolyte is not particularly limited in the present invention, and may be selected or selected by a method known by those skilled in the art.
  • the lithium secondary battery to which the polymer solid electrolyte is applicable is not limited to the positive electrode or the negative electrode, and is particularly applicable to a lithium-air battery, a lithium oxide battery, a lithium-sulfur battery, a lithium metal battery, and an all-solid-state battery that operate at high temperature. .
  • Oxides, sulfides or halides may be used, and more specifically, TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , Mo 6 S 8 , V 2 O 5, etc. may be used, but is not limited thereto. no.
  • Such a positive electrode active material may be formed on a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • carbon on the surface of aluminum or stainless steel, The surface-treated with nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector may use various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on a surface thereof so as to increase the adhesion with the positive electrode active material.
  • the negative electrode has a negative electrode mixture layer having a negative electrode active material formed on the negative electrode current collector, or uses a negative electrode mixture layer (for example, lithium foil) alone.
  • the type of the negative electrode current collector or the negative electrode mixture layer is not particularly limited in the present invention, and a known material may be used.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on the surface, similar to the positive electrode current collector.
  • the negative electrode active material is one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super-P, graphene, fibrous carbon Carbon-based material, Si-based material, LixFe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Metal composite oxides; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 ,
  • the negative electrode active material is SnxMe 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, group 1, group 2, group 3 elements of the periodic table, Metal composite oxides such as halogen, 0 ⁇ x ⁇ 1, 1 ⁇ y ⁇ 3, 1 ⁇ z ⁇ 8); SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 2 , Bi 2 O 3 , Bi 2 O 4 and An oxide such as Bi 2 O 5 may be used, and a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination of two or more thereof.
  • a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination
  • the electrode mixture layer may further include a binder resin, a conductive material, a filler and other additives.
  • the binder resin is used for bonding the electrode active material and the conductive material and the current collector.
  • binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof, and the like.
  • the said conductive material is used in order to improve the electroconductivity of an electrode active material further.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
  • the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the shape of the lithium secondary battery as described above is not particularly limited, and may be, for example, jelly-roll type, stack type, stack-fold type (including stack-Z-fold type), or lamination-stack type. It may be stack-foldable.
  • the electrode assembly After preparing an electrode assembly in which the negative electrode, the polymer solid electrolyte, and the positive electrode are sequentially stacked, the electrode assembly is placed in a battery case, and then sealed by a cap plate and a gasket to fabricate a lithium secondary battery.
  • the lithium secondary battery can be classified into various batteries such as lithium-sulfur battery, lithium-air battery, lithium-oxide battery, lithium all-solid battery according to the cathode / cathode material used, and are cylindrical, square and coin type depending on the shape. It can be classified into pouch type, and can be divided into bulk type and thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • the lithium secondary battery according to the present invention can be used as a power source for devices requiring high capacity and high rate characteristics.
  • the device include a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters; Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • a solution was prepared by mixing a fluorine-substituted polyphenylene sulfide having a repeating unit and LiTFSI in a weight ratio of 7: 3 and dissolving it in an NMP solvent.
  • the resulting solution was coated on a Teflon film with a doctor blade coating to form a poly (phenylene sulfide-phenylene sulfoxide) coating film (coating thickness of 50 ⁇ m).
  • a polymer solid electrolyte membrane was prepared for 24 hours at room temperature and 24 hours in a 60 ° C. vacuum oven.
  • a solution was prepared by mixing a fluorine-substituted polyphenylene sulfide having a repeating unit and LiTFSI in a weight ratio of 7: 3 and dissolving it in an NMP solvent.
  • the resulting solution was coated on a Teflon film with a doctor blade coating to form a poly (phenylene sulfide-phenylene sulfoxide) coating film (coating thickness of 50 ⁇ m).
  • a polymer solid electrolyte membrane was prepared at room temperature for 24 hours and at 60 ° C. in a vacuum oven for 24 hours.
  • a solution was prepared by mixing pure polyphenylenesulfide unsubstituted with fluorine and LiTFSI in a weight ratio of 7: 3, dissolved in NMP solvent.
  • a polymer solid electrolyte membrane was prepared for 24 hours at room temperature and 24 hours in a 60 ° C. vacuum oven.
  • the polymer solid electrolyte membranes of Examples 1 and 2 can reduce the HOMO energy levels of 0.28 eV and 1.10 eV, respectively, compared to the polymer solid electrolyte membrane of Comparative Example 1, the oxidation stability is high, and accordingly, It was confirmed that the voltage stability of the lithium secondary batteries of Examples 1 and 2 was superior to the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a polymeric solid electrolyte having high ion conductivity, heat resistance, and dimensional stability and excellent oxidation stability and voltage stability, and to a lithium secondary battery comprising the same.

Description

고분자 고체 전해질 및 이를 포함하는 리튬 이차전지Polymer solid electrolyte and lithium secondary battery comprising same
본 출원은 2017년 4월 14일자 한국 특허 출원 제10-2017-0048306호 및 2018년 4월 11일자 한국 특허 출원 제10-2018-0042157호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0048306 filed on April 14, 2017 and Korean Patent Application No. 10-2018-0042157 filed on April 11, 2018. All content disclosed in the literature is included as part of this specification.
본 발명은 고분자 고체 전해질 및 이를 포함하는 리튬 이차전지에 관한 것이다. The present invention relates to a polymer solid electrolyte and a lithium secondary battery comprising the same.
리튬 이차전지는 스마트폰이나 노트북 타블렛 PC를 비롯한 소형 전자기기에서 자동차 배터리 등 다양한 산업에서 사용되고 있다. 이들은 소형화, 경량화, 고성능화, 및 고용량화의 기술 방향으로 발전이 이루어지고 있다. Lithium secondary batteries are used in various industries, such as automotive batteries, in small electronic devices such as smartphones and laptop tablet PCs. These developments are being made toward technology miniaturization, light weight, high performance, and high capacity.
리튬 이차전지는 음극, 양극 및 전해질을 포함한다. 상기 리튬 이차전지의 음극 활물질로는 리튬, 탄소 등이 사용되며, 양극 활물질로는 전이금속산화물, 금속칼코겐 화합물, 전도성 고분자 등이 사용되고, 전해질로는 액체 전해질, 고체 전해질 및 고분자 전해질 등이 사용되고 있다. The lithium secondary battery includes a negative electrode, a positive electrode and an electrolyte. Lithium, carbon, etc. are used as a negative electrode active material of the lithium secondary battery, a transition metal oxide, a metal chalcogen compound, a conductive polymer, and the like are used as the positive electrode active material, and a liquid electrolyte, a solid electrolyte, and a polymer electrolyte are used as the electrolyte. have.
그 중, 고분자 전해질은 액체 전해질에서 발생하는 액체의 누액과 같은 문제점이 없어 환경 친화적이고, 박막화 및 필름 형태의 가공이 가능하여 원하는 모든 형태로 소자의 구조 변경이 용이한 장점이 있다.Among them, the polymer electrolyte is environmentally friendly because there is no problem such as leakage of liquid generated from the liquid electrolyte, and the thin film and the processing of the film form can be processed, and thus the structure of the device can be easily changed to any desired shape.
고분자 전해질은 고분자와 리튬염, 비수계 유기용매(선택적) 및 기타 첨가제 등으로 구성되는 물질로서 상온에서 대략 10-3∼10-8S/cm의 이온 전도도를 나타낸다. The polymer electrolyte is a material composed of a polymer, a lithium salt, a non-aqueous organic solvent (optional), and other additives, and exhibits an ionic conductivity of about 10 -3 to -10 -8 S / cm at room temperature.
상기 고분자로는 폴리에틸렌옥사이드나 폴리프로필렌옥사이드가 주로 사용되었으며, 최근에는 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐클로라이드, 폴리비닐리덴 플루오라이드 등의 다양한 고분자를 이용한 고분자 전해질의 개발이 이루어지고 있다. Polyethylene oxide or polypropylene oxide was mainly used as the polymer, and recently, development of a polymer electrolyte using various polymers such as polymethyl methacrylate, polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride, have.
일례로, 미합중국 공개특허 제2015/015559호에서는 내화학성 및 내열성이 우수한 폴리페닐렌설파이드 기반의 고분자 고체 전해질을 제시한다. 상기 고분자 고체 전해질은 상온에서 우수한 이온 전도도를 나타내는 것으로 보고되었다.For example, US Patent Publication No. 2015/015559 discloses a polyphenylene sulfide-based polymer solid electrolyte having excellent chemical resistance and heat resistance. The polymer solid electrolyte has been reported to exhibit excellent ionic conductivity at room temperature.
이러한 고분자 고체 전해질은 전지 구동 전압 범위에서 전기화학적으로 안정할 것이 요구된다. 고분자 고체 전해질의 산화 안정성이 떨어질 경우 양극과의 계면에서 고분자의 산화가 쉽게 일어나게 되어 전해질 열화가 발생하기 때문이다. 이는 결국 전지 성능의 열화를 일으키는 바 반드시 해결하여야 할 문제이나, 아직까지 만족할 만한 수준의 이온 전도도 및 산화 안정성을 갖는 고분자 고체 전해질은 개발되지 못한 실정이다.Such polymer solid electrolytes are required to be electrochemically stable in the battery driving voltage range. This is because when the oxidative stability of the polymer solid electrolyte is deteriorated, oxidation of the polymer easily occurs at the interface with the anode, causing electrolyte degradation. This eventually leads to deterioration of battery performance, a problem that must be solved, but a polymer solid electrolyte having a satisfactory ionic conductivity and oxidative stability has not been developed.
따라서, 상온에서 우수한 이온 전도도를 나타내면서도 계면 안정성을 확보할 수 있는 새로운 고분자 고체 전해질의 개발이 필요한 실정이다.Accordingly, there is a need for the development of a new polymer solid electrolyte capable of securing interfacial stability while exhibiting excellent ionic conductivity at room temperature.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 미합중국 공개특허 제2015/015559호, SOLID, IONICALLY CONDUCTING POLYMER MATERIAL, AND METHODS AND APPLICATIONS FOR SAME(Patent Document 1) United States Patent Application Publication No. 2015/015559, SOLID, IONICALLY CONDUCTING POLYMER MATERIAL, AND METHODS AND APPLICATIONS FOR SAME
상기한 문제점을 해결하기 위해, 본 발명자들은 높은 이온 전도도, 내열성, 치수 안정성 및 산화안정성을 갖는 고분자 고체 전해질을 개발하기 위해 다양한 연구를 수행한 결과, 본 발명을 완성하였다.In order to solve the above problems, the present inventors have conducted various studies to develop a polymer solid electrolyte having high ionic conductivity, heat resistance, dimensional stability, and oxidative stability.
따라서, 본 발명의 목적은 상기 효과를 갖는 고분자 고체 전해질 조성물을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a polymer solid electrolyte composition having the above effects.
또한, 본 발명은 상기 고분자 고체 전해질 조성물로 제조된 고분자 필름을 포함하는 리튬 이차전지를 제공하는데 있다.In addition, the present invention is to provide a lithium secondary battery comprising a polymer film made of the polymer solid electrolyte composition.
본 발명의 제1 측면에 따르면,According to the first aspect of the invention,
폴리페닐렌설파이드 및 이온 공급 화합물을 포함하는 고분자 고체 전해질 조성물로서, 상기 폴리페닐렌설파이드는 페닐기 수소의 일부 또는 전부가 불소로 치환된 것인 고분자 고체 전해질 조성물을 제공한다.A polymer solid electrolyte composition comprising a polyphenylene sulfide and an ion supply compound, wherein the polyphenylene sulfide provides a polymer solid electrolyte composition in which part or all of the phenyl group hydrogen is replaced with fluorine.
본 발명의 일 구체예에 있어서, 상기 폴리페닐렌설파이드는 0.1 중량% 내지 45.0 중량%의 불소를 포함한다.In one embodiment of the invention, the polyphenylene sulfide comprises 0.1% to 45.0% by weight of fluorine.
본 발명의 일 구체예에 있어서, 상기 폴리페닐렌설파이드는 200 g/mol 내지 300,000 g/mol의 중량평균분자량을 갖는다.In one embodiment of the present invention, the polyphenylene sulfide has a weight average molecular weight of 200 g / mol to 300,000 g / mol.
본 발명의 일 구체예에 있어서, 상기 이온 공급 화합물은 금속 산화물, 금속 수화물 또는 금속염이며, 상기 금속은 Li, Na, K, Mg, Ca, Zn, Al 및 이들의 조합으로 이루어진 군으로부터 선택된다.In one embodiment of the invention, the ion supply compound is a metal oxide, metal hydrate or metal salt, and the metal is selected from the group consisting of Li, Na, K, Mg, Ca, Zn, Al and combinations thereof.
본 발명의 일 구체예에 있어서, 상기 금속염은 리튬염이며, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiAsF6, LiSbF6, LiAlCl4, LiSCN, Li(FSO2)2N LiCF3CO2, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC4F9SO3, LiC(CF3SO2)3, (CF3SO2)2NLi, LiOH.H2O, LiB(C2O4)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된다.In one embodiment of the present invention, the metal salt is a lithium salt, the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN , Li (FSO 2 ) 2 N LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, LiOH.H 2 O, LiB (C 2 O 4 ) 2 , lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenyl borate, lithium already And combinations thereof.
본 발명의 일 구체예에 있어서, 상기 고분자 고체 전해질 조성물은 5 내지 40 중량%의 이온 공급 화합물을 포함한다.In one embodiment of the invention, the polymer solid electrolyte composition comprises 5 to 40% by weight of the ion feed compound.
본 발명의 일 구체예에 있어서, 상기 고분자 고체 전해질 조성물은 용매를 더 포함하며, 상기 용매는 메탄올, 에탄올, 아세톤, 아세토니트릴, 테트라하이드로푸란, N-메틸-2-피롤리돈, N,N-디메틸포름아미드, N,N-디에틸포름아미드, N,N-디메틸아세트아미드, 디메틸설폭시드, 헥사메틸포스아미드, 1,3-디메틸-2-이미다졸디논(1,3-dimethyl-2-imidazolidinone), 트리에틸포스페이트, 감마-부티로락톤, 1,2-디메톡시에탄(1,2-dimethoxyethane), 디메틸카보네이트(dimethyl carbonate), 에틸메틸카보네이트(ethylmethyl carbonate), 디에틸카보네이트(diethyl carbonate) 및 이들의 조합으로 이루어진 군에서 선택된다.In one embodiment of the invention, the polymer solid electrolyte composition further comprises a solvent, the solvent is methanol, ethanol, acetone, acetonitrile, tetrahydrofuran, N-methyl-2-pyrrolidone, N, N -Dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphamide, 1,3-dimethyl-2-imidazoldinone (1,3-dimethyl-2 -imidazolidinone, triethylphosphate, gamma-butyrolactone, 1,2-dimethoxyethane, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate ) And combinations thereof.
본 발명의 일 구체예에 있어서, 상기 고분자 고체 전해질 조성물은 30 ℃에 있어서의 점도가 200 내지 1,000cP이다.In one embodiment of the present invention, the polymer solid electrolyte composition has a viscosity at 200 ° C. of 200 to 1,000 cP.
본 발명의 제2 측면에 따르면,According to a second aspect of the invention,
상술한 고분자 고체 전해질 조성물을 필름으로 가공한 고분자 고체 전해질 막을 제공한다.A polymer solid electrolyte membrane obtained by processing the above-described polymer solid electrolyte composition into a film is provided.
본 발명의 제3 측면에 따르면,According to a third aspect of the invention,
양극 상에 적층된 상술한 고분자 고체 전해질 막을 포함하는 리튬 이차전지를 제공한다.It provides a lithium secondary battery comprising the above-described polymer solid electrolyte membrane laminated on the positive electrode.
본 발명에 따른 고분자 고체 전해질은 높은 이온 전도도와 함께 우수한 내열성 및 치수 안정성을 나타내며, 산화 안정성이 향상되어 리튬 이차전지의 전압 안정성을 향상시킨다. The polymer solid electrolyte according to the present invention exhibits excellent heat resistance and dimensional stability with high ionic conductivity, and oxidative stability is improved to improve voltage stability of a lithium secondary battery.
도 1은 폴리에틸렌옥사이드 올리고머 및 불소로 치환 또는 비치환된 폴리페닐렌옥사이드 올리고머의 HOMO 에너지 준위를 비교한 그래프이다.1 is a graph comparing HOMO energy levels of a polyphenylene oxide oligomer substituted or unsubstituted with a polyethylene oxide oligomer and a fluorine.
도 2는 본 발명에 따른 리튬 이차전지의 구현예를 나타낸 것이다.2 shows an embodiment of a lithium secondary battery according to the present invention.
본 발명에서는 페닐기 수소의 일부 또는 전부가 불소로 치환된 폴리페닐렌설파이드를 포함하는 고분자 고체 전해질 조성물을 제조한 후, 이를 이용하여 리튬 이차전지에 적용하기 위한 기술을 제시한다.In the present invention, after preparing a polymer solid electrolyte composition comprising a polyphenylene sulfide in which part or all of the phenyl group hydrogen is substituted with fluorine, the present invention proposes a technique for applying to a lithium secondary battery.
고분자 고체 전해질 조성물Polymer Solid Electrolyte Composition
본 발명은 폴리페닐렌설파이드 및 이온 공급 화합물을 포함하는 고분자 고체 전해질 조성물로서,The present invention is a polymer solid electrolyte composition comprising a polyphenylene sulfide and an ion supply compound,
상기 폴리페닐렌설파이드는 페닐기 수소의 일부 또는 전부가 불소로 치환된 것인, 고분자 고체 전해질 조성물을 제공한다.The polyphenylene sulfide provides a polymer solid electrolyte composition in which part or all of a phenyl group hydrogen is substituted with fluorine.
폴리페닐렌설파이드(Polyphenylene sulfide, PPS)는 치수 안정성이 뛰어난 열가소성 플라스틱(결정성 폴리머) 중 하나로서, 높은 온도와 침식적인 환경에서도 그 강도를 유지하고, 내화학성 및 내열성이 탁월한 장점을 갖는다. 이에, 고분자 고체 전해질의 기본 고분자로서 활용하려는 시도가 있었다.Polyphenylene sulfide (PPS) is one of thermoplastic resins (crystalline polymers) having excellent dimensional stability, and maintains its strength even in high temperature and corrosive environments, and has excellent chemical resistance and heat resistance. Thus, there has been an attempt to utilize the polymer as a basic polymer of a solid electrolyte.
그러나 다른 원소가 치환되지 않은 순수 폴리페닐렌설파이드는 산화 안정성이 다소 떨어지는 문제점이 있다. 전해질의 산화 안정성은 전지의 수명 특성, 즉 용량 유지율에 영향을 미친다. 만일 전해질의 산화 안정성이 떨어지게 되면 충전 시 양극 표면에서 전해질로부터 양극으로의 전자 이동이 발생하며, 이러한 전해질의 산화는 결국 전지 수명의 열화로 이어진다. 따라서, 고분자 전해질은 전지의 구동 전압 범위에서 산화 및 환원에 따른 열화반응이 없어야 한다.However, pure polyphenylene sulfide in which other elements are not substituted has a problem in that oxidative stability is slightly lowered. Oxidative stability of the electrolyte affects the battery's life characteristics, i.e. capacity retention. If the oxidative stability of the electrolyte is deteriorated, electron transfer from the electrolyte to the anode occurs at the surface of the anode during charging, and oxidation of the electrolyte eventually leads to deterioration of battery life. Therefore, the polymer electrolyte should be free from degradation due to oxidation and reduction in the driving voltage range of the battery.
고분자 고체 전해질의 산화 안정성은 HOMO(Highest Occupied Molecular Orbital) 에너지 준위로부터 예측될 수 있다(Kita et al., J. Power Sources., 2000, 90, 27-32). 즉, 고분자의 HOMO 에너지 준위가 낮을수록 양극으로의 전자 이동이 어려워지므로, HOMO 에너지 준위가 낮은 고분자를 전해질로 사용하게 되면 전해질의 산화가 더 높은 전압(충전 시 양극의 전압)에서 일어나게 된다. 따라서, 이러한 고분자 고체 전해질을 사용할 경우 상대적으로 고전압에서도 전지 수명의 열화 없이 안정적으로 전지를 작동시킬 수 있다.Oxidative stability of polymer solid electrolytes can be predicted from the highest Occupied Molecular Orbital (HOMO) energy level (Kita et al., J. Power Sources., 2000, 90, 27-32). In other words, the lower the HOMO energy level of the polymer, the more difficult electrons move to the anode. Therefore, when the polymer having the low HOMO energy level is used as the electrolyte, oxidation of the electrolyte occurs at a higher voltage (voltage of the anode during charging). Therefore, when the polymer solid electrolyte is used, the battery can be stably operated even at a relatively high voltage without deterioration of the battery life.
이에, 본 발명자들은 폴리페닐렌설파이드를 기본 고분자로 하되, 산화 안정성을 향상시킬 수 있는 방법에 관하여 연구하였고, 그 결과 폴리페닐렌설파이드의 페닐기 수소를 일부 또는 전부 불소로 치환시키면 고분자의 HOMO 에너지 준위가 낮아지며, 이에 따라 고분자 고체 전해질의 산화 안정성이 향상되어 리튬 이차전지의 전압 안정성이 향상되는 것을 확인하였다.Accordingly, the present inventors have studied a method of improving the oxidative stability by using polyphenylene sulfide as a basic polymer, and as a result, when the phenyl group hydrogen of the polyphenylene sulfide is partially or completely replaced with fluorine, the HOMO energy level of the polymer It was confirmed that the lowering, thereby improving the oxidative stability of the polymer solid electrolyte to improve the voltage stability of the lithium secondary battery.
본 발명에서 리튬 이온 전도성 고분자로 사용되는 폴리페닐렌설파이드는 하기 화학식 1로 표시되는 반복 단위를 포함하는 것이다. Polyphenylene sulfide used as the lithium ion conductive polymer in the present invention is to include a repeating unit represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2018004278-appb-I000001
Figure PCTKR2018004278-appb-I000001
상기 화학식 1에서, R1 내지 R4는 서로 같거나 다르며, 각각 H 또는 F이되, 적어도 1 이상은 F이고, n은 2 이상의 정수이다.In Formula 1, R 1 to R 4 are the same as or different from each other, and each H or F, at least one is F, n is an integer of two or more.
일례로, 본 발명의 조성물에 사용되는 불소 치환된 폴리설파이드는 하기 구조식을 가지는 반복 단위를 1 이상 포함하여 구성될 수 있다.In one example, the fluorine-substituted polysulfide used in the composition of the present invention may be composed of one or more repeating units having the following structural formula.
Figure PCTKR2018004278-appb-I000002
Figure PCTKR2018004278-appb-I000002
이와 같이 폴리페닐렌설파이드 페닐기 수소의 일부 또는 전부를 불소로 치환할 경우, 고분자 고체 전해질의 HOMO 에너지 준위가 낮아져 산화 안정성이 향상된다. 본 발명에서 폴리페닐렌설파이드는 0.1 내지 45 중량%, 바람직하게는 5 내지 45 중량%, 보다 바람직하게는 10 내지 45 중량%의 불소를 포함할 수 있다. 상기 폴리페닐렌설파이드가 상술한 범위 내의 불소를 포함하는 경우 고분자 고체 전해질용으로 활용하기에 적절한 범위의 산화 안정성을 갖는다.As described above, when a part or all of the polyphenylene sulfide phenyl group hydrogen is replaced with fluorine, the HOMO energy level of the polymer solid electrolyte is lowered and the oxidation stability is improved. In the present invention, the polyphenylene sulfide may include 0.1 to 45 wt%, preferably 5 to 45 wt%, more preferably 10 to 45 wt% of fluorine. When the polyphenylene sulfide contains fluorine in the above-described range, the polyphenylene sulfide has an oxidative stability in a range suitable for use for a polymer solid electrolyte.
고분자 고체 전해질의 HOMO 에너지 준위는 Gaussian09 program package를 이용하여 계산할 수 있으며(Gaussian 09 Revision C.01, Gaussian Inc., Wallingford, CT, 2009.), 이로부터 고분자 고체 전해질의 산화 안정성을 예측하여 볼 수 있다. The HOMO energy level of the polymer solid electrolyte can be calculated using the Gaussian09 program package (Gaussian 09 Revision C.01, Gaussian Inc., Wallingford, CT, 2009.), from which the oxidation stability of the polymer solid electrolyte can be predicted. have.
구체적으로, 상기 계산에는 DFT(Density Functional Theory)계산법을 적용하며, B3PW91 functional 및 6-31+G* basis set을 사용한다(Phys. Rev. B 2006, 74, 155108. 및 J. Phys.: Condens . Matter 1993, 98, 5648.). 에너지 준위를 계산하고자 하는 고분자의 단분자에 대하여, 기체상에서 단분자의 구조 최적화를 수행한 다음, 최적화된 분자 구조에서 전자구조 최적화를 통해 HOMO 에너지 준위를 계산한다.Specifically, Density Functional Theory (DFT) calculation is applied to the calculation, and B3PW91 functional and 6-31 + G * basis sets are used ( Phys. Rev. B 2006, 74, 155108. and J. Phys .: Condens Matter 1993, 98, 5648.). For the single molecule of the polymer for which the energy level is to be calculated, the structural optimization of the single molecule is performed in the gas phase, and then the HOMO energy level is calculated through the electronic structure optimization in the optimized molecular structure.
상기 계산방법에 의하여 하기 4종의 올리고머에 대하여 HOMO 에너지 준위를 계산한 결과를 도 1에 나타내었다.The results of calculating the HOMO energy levels for the following four oligomers by the above calculation method are shown in FIG. 1.
Figure PCTKR2018004278-appb-I000003
Figure PCTKR2018004278-appb-I000003
도 1을 참조하면, 페닐기의 수소가 전혀 치환되지 않은 폴리페닐렌설파이드의 경우 에너지 준위가 높게 나타나, 고분자 고체 전해질로 통상 사용되는 폴리에틸렌옥사이드(PEO)와 비교하여 산화 안정성이 현저히 떨어질 것으로 예상된다. 그러나 폴리페닐렌설파이드의 페닐기의 수소가 불소로 치환되는 경우 에너지 준위는 점차 낮아지며, 반복 단위 5개의 페닐기의 모든 수소가 불소로 치환될 경우 폴리에틸렌옥사이드와 유사한 수준으로 에너지 준위가 낮아지는 것을 볼 수 있다. 이러한 계산 결과로부터 페닐기의 수소를 불소로 치환시킴으로써 폴리페닐렌설파이드 기반의 고분자 고체 전해질의 산화 안정성을 높일 수 있을 것으로 예상할 수 있다.Referring to FIG. 1, in the case of polyphenylene sulfide in which hydrogen of the phenyl group is not substituted at all, the energy level is high, and oxidative stability is expected to be remarkably decreased as compared with polyethylene oxide (PEO) which is commonly used as a polymer solid electrolyte. However, when hydrogen in the phenyl group of the polyphenylene sulfide is replaced with fluorine, the energy level is gradually lowered, and when all hydrogens in the 5 phenyl groups in the repeating unit are replaced with fluorine, the energy level is lowered to a level similar to that of polyethylene oxide. . From these calculation results, it can be expected that the oxidative stability of the polyphenylene sulfide-based polymer solid electrolyte can be improved by substituting hydrogen of the phenyl group with fluorine.
본 발명에서 상기 불소 치환된 폴리페닐렌설파이드는 고분자 고체 전해질로서 사용할 경우 200 g/mol 내지 300,000 g/mol의 중량 평균분자량의 범위를 갖는다. 상기 중량 평균분자량이 200 g/mol 미만인 경우에는 기계적 강도(실의 물성), 내약품성, 내열성 등의 특성이 낮아지고, 300,000 g/mol을 초과할 경우 필름 제조에 용이하지 않다.In the present invention, when used as a polymer solid electrolyte, the fluorine-substituted polyphenylene sulfide has a weight average molecular weight in the range of 200 g / mol to 300,000 g / mol. When the weight average molecular weight is less than 200 g / mol, such as mechanical strength (physical properties of the yarn), chemical resistance, heat resistance, and the like is lowered, when it exceeds 300,000 g / mol is not easy to manufacture a film.
상기 폴리페닐렌설파이드는 부분적으로 결정형을 이루는 결정성 고분자로서, 기본 중합체의 경우 결정화도 값이 30% 내지 100% 및 바람직하게는 50% 내지 100%를 가져, 결정성 또는 반-결정성 중합체이다. 또한, 유리전이온도는 80℃ 이상이며, 바람직하게는 120℃이고, 보다 바람직하게는 150℃ 이상이며, 가장 바람직하게는 200℃ 이상이다. 기본 중합체는 용융 온도가 250℃ 이상 및 바람직하게는 280℃ 이상 및 보다 바람직하게는 320℃ 이상이다. 또한, 상기 구조의 폴리페닐렌설파이드는 S의 연결형태에 따라 직쇄형, 가교형 및 반가교형의 3종류 모두를 포함하며, 본 발명에서는 이들 모든 구조를 포함한다. The polyphenylene sulfide is a crystalline polymer that is partially crystalline, and has a crystallinity value of 30% to 100% and preferably 50% to 100% for the base polymer and is a crystalline or semi-crystalline polymer. Moreover, glass transition temperature is 80 degreeC or more, Preferably it is 120 degreeC, More preferably, it is 150 degreeC or more, Most preferably, it is 200 degreeC or more. The base polymer has a melting temperature of at least 250 ° C and preferably at least 280 ° C and more preferably at least 320 ° C. Moreover, the polyphenylene sulfide of the said structure contains all three types of linear, bridge | crosslinking type, and semi-crosslinking type according to the connection form of S, and all these structures are included in this invention.
상기 불소 치환된 폴리페닐렌설파이드의 제조방법은 본 발명에서 특별히 한정되지 않으며 다양할 수 있다. 일례로, 불소 치환되지 않은 방향족 단량체(예를 들어, 디요오도벤젠, 디클로로벤젠과 같은 디할로벤젠)와 원소 황 또는 황화나트륨의 중합반응으로 얻어진 순수한 폴리페닐렌설파이드 중합체를 공지의 할로겐화 방법을 이용하여 불화시킴으로써 불소 치환된 폴리페닐렌설파이드를 제조할 수 있다. 다른 일례로, 1 이상의 불소 치환기를 갖는 방향족 단량체와 원소 황 또는 황화나트륨을 중합시키는 방법이 이용될 수 있다. The method for preparing the fluorine-substituted polyphenylene sulfide is not particularly limited in the present invention and may vary. As an example, pure polyphenylenesulfide polymers obtained by polymerization of fluorine-substituted aromatic monomers (e.g., dihalobenzenes such as diiodobenzene, dichlorobenzene) and elemental sulfur or sodium sulfide may be prepared using known halogenation methods. Fluorine substituted polyphenylene sulfide can be prepared by fluorination. As another example, a method of polymerizing an aromatic monomer having one or more fluorine substituents and elemental sulfur or sodium sulfide may be used.
이온 공급 화합물은 고분자 고체 전해질 조성물 내 이온을 공급하기 위한 것으로서, 히드록실 이온(hydroxyl ion)을 포함하는 화합물을 포함하거나, 또는 이 히드록실 이온을 포함하는 화합물로 화학적으로 변환 가능한 물질, 예를 들어, 그 수산화물(hydroxide), 산화물, 염 또는 이들의 혼합물을 포함하지만 이들로 제한되지 않는다. The ion supply compound is for supplying ions in the polymer solid electrolyte composition, and includes a compound containing hydroxyl ions, or a substance that can be chemically converted into a compound containing hydroxyl ions, for example , But are not limited to hydroxides, oxides, salts or mixtures thereof.
본 발명의 일 구현예에 따르면, 상기 이온 공급 화합물은 금속 산화물 또는 수화물 또는 염일 수 있다. 보다 구체적으로 Li2O, Na2O, MgO, CaO, ZnO, LiOH, KOH, NaOH, CaCl2, AlCl3, MgCl2 등이 사용될 수 있으며, 이들은 적어도 1종 이상 혼합하여 사용 가능하다. According to one embodiment of the invention, the ion supply compound may be a metal oxide or a hydrate or salt. More specifically, Li 2 O, Na 2 O, MgO, CaO, ZnO, LiOH, KOH, NaOH, CaCl 2 , AlCl 3 , MgCl 2 and the like can be used, these can be used by mixing at least one or more.
본 발명의 일 구현예에 따르면, 상기 이온 공급 화합물은 리튬염일 수 있다. According to one embodiment of the invention, the ion supply compound may be a lithium salt.
리튬염은 이온 공급 이외에 리튬 이온 전도도를 높이는 효과를 동시에 갖는다. 상기 리튬염으로는 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiAsF6, LiSbF6, LiAlCl4, LiSCN, Li(FSO2)2N LiCF3CO2, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC4F9SO3, LiC(CF3SO2)3, (CF3SO2)2NLi, LiOH.H2O, LiB(C2O4)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종의 리튬염 등이 사용될 수 있다.Lithium salt simultaneously has the effect of increasing the lithium ion conductivity in addition to the ion supply. Examples of the lithium salt include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, Li (FSO 2 ) 2 N LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, LiOH.H 2 O, LiB (C 2 O 4 ) 2 , 1 selected from the group consisting of lithium chloroborane, lower aliphatic carbonate, lithium tetraphenyl borate, lithium imide and combinations thereof Lithium salts of species and the like can be used.
바람직하기로, 이온 공급 화합물은 전체 고분자 고체 전해질 내 5 내지 40 중량%, 바람직하기로 10 내지 30 중량%로 포함되는 것이 좋다. 만약 상기 이온 공급 화합물의 함량이 상기 범위 미만이면 리튬 이온 전도도의 확보가 용이하지 않고, 이와 반대로 상기 범위를 초과할 경우에는 효과 상의 큰 증가가 없어 비경제적이므로, 상기 범위 내에서 적절히 선택한다.Preferably, the ion supply compound is included in 5 to 40% by weight, preferably 10 to 30% by weight in the total polymer solid electrolyte. If the content of the ion supply compound is less than the above range, it is not easy to secure the lithium ion conductivity, and on the contrary, if it exceeds the above range, there is no significant increase in effect, so it is uneconomical, so it is appropriately selected within the above range.
그 결과, 본 발명에서 제시하는 고분자 고체 전해질막은 고체 필름 형태임에도 10-4 S/cm으로 액체 상에 준하는 높은 수준의 리튬 이온 전도도를 높임과 동시에 이를 포함하는 필름의 물성을 향상시키는 효과를 확보한다.As a result, the polymer solid electrolyte membrane proposed in the present invention has the effect of improving the physical properties of the film including the same, while increasing the high level of lithium ion conductivity equivalent to the liquid phase even in the form of a solid film at 10 -4 S / cm. .
상기 제시한 고분자 고체 전해질 조성물은 습식 공정을 통해 필름 형태로 제조되며, 이를 위해 용매를 포함한다. The polymer solid electrolyte composition presented above is prepared in the form of a film through a wet process, and includes a solvent for this purpose.
용매는 리튬 이온 전도성 고분자를 용해시킬 수 있는 용매가 사용될 수 있으며, 일례로 상기 유기 용매로는 메탄올, 에탄올, 아세톤, 아세토니트릴, 테트라하이드로푸란, N-메틸-2-피롤리돈, N,N-디메틸포름아미드, N,N-디에틸포름아미드, N,N-디메틸아세트아미드, 디메틸설폭시드, 헥사메틸포스아미드, 1,3-디메틸-2-이미다졸디논(1,3-Dimethyl-2-imidazolidinone), 트리에틸 포스페이트, 감마-부티로락톤, 1,2-디메톡시에탄(1,2-dimethoxyethane), 디메틸카보네이트(dimethyl carbonate), 에틸메틸카보네이트(ethylmethyl carbonate) 및 디에틸카보네이트(diethyl carbonate)으로 이루어진 군에서 선택된 1종 이상이 가능하다. The solvent may be a solvent capable of dissolving a lithium ion conductive polymer. For example, the organic solvent may be methanol, ethanol, acetone, acetonitrile, tetrahydrofuran, N-methyl-2-pyrrolidone, N, N -Dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphamide, 1,3-dimethyl-2-imidazoldinone (1,3-Dimethyl-2 -imidazolidinone, triethyl phosphate, gamma-butyrolactone, 1,2-dimethoxyethane, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate At least one selected from the group consisting of) is possible.
상기 용매의 함량은 최종 얻어지는 고분자 고체 전해질 조성물의 점도를 고려하여 그 함량을 한정한다. 즉, 용매의 함량이 많을수록 최종 얻어지는 조성의 점도가 높아 작업성이 저하되고, 이와 반대로 적을수록 점도가 낮아 이 또한 고분자 고체 전해질 막의 제조 공정이 용이하지 않다.The content of the solvent is limited in consideration of the viscosity of the finally obtained polymer solid electrolyte composition. In other words, the higher the content of the solvent, the higher the viscosity of the final composition is obtained, the lower the workability, and the lower the viscosity, the lower the viscosity.
또, 본 발명의 고분자 고체 전해질 조성물의 30 ℃에 있어서의 용액 점도는, 특별히 한정되지 않지만, 바람직하게는 200 내지 1,000cP, 바람직하게는 300 내지 800cP 이하, 보다 바람직하게는 500 내지 700cP 일 수 있다. 이러한 점도 조절은 고분자 고체 전해질을 필름으로 제작함에 있어 필름 공정성을 높이는 점도를 확보 할 수 있게 해준다. The solution viscosity at 30 ° C of the polymer solid electrolyte composition of the present invention is not particularly limited, but is preferably 200 to 1,000 cP, preferably 300 to 800 cP or less, and more preferably 500 to 700 cP. . This viscosity control allows to secure the viscosity to increase the film processability in producing a polymer solid electrolyte film.
만약, 점도가 상기 범위를 초과하면, 코팅액의 평탄성 저하로 인한 횡방향(TD, Transverse Direction) 두께가 불균일해지며 유동성이 없어져 균일한 도포가 곤란해지는 경우가 있고, 반대로 상기 범위보다 낮으면 코팅시 코팅액의 과도한 흐름으로 인한 얼룩 발생을 막을 수 있고 기계방향(MD, Mechanical Direction) 두께가 불균일해지는 문제를 일으킨다.If the viscosity exceeds the above range, the thickness of the transverse direction (TD, Transverse Direction) due to the flatness of the coating liquid becomes uneven and the fluidity is lost, so that uniform coating may be difficult. This can prevent staining due to excessive flow of the coating liquid and cause a problem of uneven thickness of the mechanical direction (MD).
고분자 고체 Polymer solids 전해질 막Electrolyte membrane
상기 고분자 고체 전해질 조성물은 공지된 바의 필름 제조 공정을 거쳐 고분자 고체 전해질 막으로 형성될 수 있다. 본 발명의 고분자 고체 전해질 막은 단독으로 고분자 고체 전해질로서 사용될 수 있고, 또는 양극 계면에만 적용될 수도 있다. 본 발명의 고분자 고체 전해질 막이 양극 계면에만 적용될 경우, 음극 계면과 접하는 고분자 고체 전해질은 불소 치환되지 않은 순수한 폴리페닐렌설파이드 고분자 고체 전해질일 수 있다.The polymer solid electrolyte composition may be formed as a polymer solid electrolyte membrane through a film manufacturing process as known in the art. The polymer solid electrolyte membrane of the present invention may be used alone as a polymer solid electrolyte or may be applied only to the anode interface. When the polymer solid electrolyte membrane of the present invention is applied only to the positive electrode interface, the polymer solid electrolyte in contact with the negative electrode interface may be a pure polyphenylene sulfide polymer solid electrolyte without fluorine substitution.
상기 필름 성형의 방법으로서는, 예를 들어 용액 캐스트법(용액 유연법), 용융 압출법, 캘린더법 또는 압축 성형법 등 임의의 적절한 필름 성형법을 들 수 있다. 이들 필름 성형법 중 용액 캐스트 법(용액 유연법) 또는 용융 압출법이 바람직하다.Examples of the above-mentioned film forming method include any suitable film forming method, such as a solution casting method (solution casting method), a melt casting extrusion method, a calendering method, or a compression molding method. Of these film forming methods, a solution cast method (solution casting method) or a melt film extrusion method is preferable.
일 예로, 필름 제조를 위해선 용액 캐스트법(용액 유연법)이 사용될 수 있다.For example, a solution cast method (solution casting method) may be used for film production.
용액 캐스팅법은 고분자 고체 전해질 조성물의 코팅은 지지체 상에 수행하며, 이때 지지체는 양극 또는 음극 중 어느 하나에 직접 코팅하거나, 별도의 기판 상에 코팅 후 이를 분리하여 양극 및 음극과 합지하는 공정을 수행할 수 있다.In the solution casting method, the coating of the polymer solid electrolyte composition is performed on a support, in which the support is coated directly on either the positive electrode or the negative electrode, or coated on a separate substrate and then separated and laminated to the positive electrode and the negative electrode. can do.
이때 기판은 유리 기판 또는 플라스틱 기판일 수 있다. 상기 플라스틱 기판으로는 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리프로필렌, 폴리에틸렌, 3-초산 셀룰로오스, 2-초산 셀룰로오스, 폴리(메타)아크릴산 알킬에스테르, 폴리(메타)아크릴산 에스테르공중합체, 폴리염화비닐, 폴리비닐알콜, 폴리카보네이트, 폴리스티렌, 셀로판, 폴리염화비닐리덴 공중합체, 폴리아미드, 폴리이미드, 염화비닐·초산비닐 공중합체, 폴리테트라플루오로에틸렌, 및 폴리트리플루오로에틸렌 등의 각종의 플라스틱 필름을 들 수 있다. 또한 이들의 2종 이상으로 이루어지는 복합재료도 사용할 수 있으며, 광투과성이 우수한 폴리에틸렌테레프탈레이트 필름이 특히 바람직하다. 상기 지지체의 두께는 5 내지 150 ㎛가 바람직하며, 10 내지 50 ㎛이 더욱 바람직하다.In this case, the substrate may be a glass substrate or a plastic substrate. Examples of the plastic substrate include polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, 3-acetic cellulose, 2-acetic cellulose, poly (meth) acrylic acid alkyl ester, poly (meth) acrylic acid ester copolymer, polyvinyl chloride, poly Various plastic films such as vinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, and polytrifluoroethylene Can be mentioned. Moreover, the composite material which consists of these 2 or more types can also be used, The polyethylene terephthalate film excellent in the light transmittance is especially preferable. The thickness of the support is preferably 5 to 150 µm, more preferably 10 to 50 µm.
예를 들어 스핀 코팅(Spin coating), 닥터 블레이트 코팅, 딥 코팅(Dip coating), 용매 캐스팅(Solvent casting), 슬롯다이 코팅(Slot die coating), 스프레이 코팅. 롤코팅, 압출코팅, 커튼코팅, 다이코팅, 와이어바코팅 또는 나이프코팅 등의 방법을 사용할 수 있다.For example, spin coating, doctor blade coating, dip coating, solvent casting, slot die coating, spray coating. Roll coating, extrusion coating, curtain coating, die coating, wire bar coating or knife coating may be used.
이때 균일한 고분자 고체 전해질 막의 제조를 위해 각 공정에서의 파라미터 조절이 필요하다. At this time, it is necessary to adjust the parameters in each process in order to produce a uniform polymer solid electrolyte membrane.
일례로, 스핀 코팅의 경우 500 내지 4000 rpm에서 수행하고, 닥터 블레이드 코팅의 경우 10 내지 200㎛의 두께 갭을 갖는 장치를 사용할 수 있다. 또한, 스프레이 코팅을 수행할 경우 0.5 내지 20 MPa의 분사압을 통해 5 내지 100회 사이의 분사 횟수로 분무하여 수행할 수 있다. 이러한 공정의 설계 및 파라미터의 선정은 이 분야의 통상의 지식을 가진 자에 의해 제어될 수 있다. For example, a device having a thickness gap of 10 to 200 μm may be used for spin coating and 500 to 4000 rpm for doctor blade coating. In addition, when performing the spray coating can be carried out by spraying with a spraying number of 5 to 100 times through a spray pressure of 0.5 to 20 MPa. The design of these processes and the selection of parameters can be controlled by one of ordinary skill in the art.
상기 코팅 이후 건조를 수행하여 고분자 고체 전해질 막을 형성한다. Drying is performed after the coating to form a polymer solid electrolyte membrane.
건조는 각 구성 성분이나 유기 용매의 종류, 및 함량비에 따라 다르지만 60 내지 100℃에서 30초 내지 15분간 수행하는 것이 바람직하다.Although drying depends on each component, the kind of organic solvent, and content ratio, it is preferable to carry out for 30 second-15 minutes at 60-100 degreeC.
이때 건조는 열풍 건조, 전자파 건조, 진공건조, 분무건조, 드럼건조, 동결건조 중의 한 방법으로 수행할 수 있으며, 바람직하기로 열풍 건조를 수행한다.In this case, the drying may be performed by one of hot air drying, electromagnetic wave drying, vacuum drying, spray drying, drum drying, and freeze drying, and preferably hot air drying.
상기 코팅 및 건조를 수행한 후 고분자 고체 전해질 막의 두께는 최종적으로 제조하고자 하는 막의 두께로 형성하며, 필요한 경우 상기 코팅-건조 또는 코팅 단계를 1회 이상 수행한다.After the coating and drying are performed, the thickness of the polymer solid electrolyte membrane is finally formed to the thickness of the membrane to be prepared, and if necessary, the coating-drying or coating step is performed at least once.
또 다른 예로, 필름 제조를 위해선 용융 압출법이 사용될 수 있다. As another example, melt extrusion may be used for film production.
용융 압출법으로는 예를 들어 T 다이법, 인플레이션법 등을 들 수 있다. 성형 온도는 바람직하게는 150~350℃, 보다 바람직하게는 200~300℃이다. Examples of the melt-extrusion method include a T-die method and an inflation method. Molding temperature becomes like this. Preferably it is 150-350 degreeC, More preferably, it is 200-300 degreeC.
상기 T 다이법으로 필름을 성형하는 경우에는, 공지된 단축 압출기나 2축 압출기의 선단부에 T 다이를 장착하고, 필름 형상으로 압출된 필름을 권취하여 롤 형상의 필름을 얻을 수 있다. In the case of forming the film by the T-die method, a T-die is attached to the tip of a known single screw extruder or a twin screw extruder, and the film extruded in a film shape can be rolled to obtain a roll-shaped film.
필요에 따라, 상기 가열 용융은 1차 가열 용융, 여과 필터 통과 및 2차 가열 용융 과정을 순차적으로 거칠 수 있다. 상기 용융 압출 시 가열 용융된 온도는 170℃ 내지 320℃, 바람직하게는 200℃ 내지 300℃일 수 있다. T 다이로부터 용융압출된 후에는 70℃ 내지 140℃에서 유지한 적어도 1개 이상의 금속 드럼을 이용하여 냉각 및 고화시킬 수 있다. 이와 같이 드럼(캐스팅 롤)을 이용하는 경우에는 전술한 온도 조건 또는 그 이하의 온도에서 압출하여도 된다.If desired, the hot melt may be subjected to a first hot melt, a filtration filter, and a second hot melt in sequence. The melt-extruded heat-melted temperature may be 170 ℃ to 320 ℃, preferably 200 ℃ to 300 ℃. After melt extrusion from the T die, it can be cooled and solidified using at least one or more metal drums maintained at 70 ° C to 140 ° C. Thus, when using a drum (casting roll), you may extrude under the above-mentioned temperature conditions or the temperature below.
리튬 이차전지Lithium secondary battery
상기 제시하는 고분자 고체 전해질 막은 액체 전해질과 동등 수준의 10-4 S/cm 수준의 높은 리튬 이온 전도도를 비롯하여, 내열성 및 치수 안정성이 우수하여 리튬 이차전지에 적용이 가능하다. The polymer solid electrolyte membrane, as described above, has high lithium ion conductivity of 10 −4 S / cm level equivalent to that of the liquid electrolyte, and is excellent in heat resistance and dimensional stability, and thus may be applied to a lithium secondary battery.
특히, 상기 고분자 고체 전해질 막은 이온 공급 화합물 및 일부 또는 전체가 불소로 치환된 폴리페닐렌설파이드를 포함함으로써, 불소 치환되지 않은 폴리페닐렌설파이드에 비하여 향상된 산화 안정성을 나타내며, 우수한 이온전도도 및 물성을 나타낸다. 또한, 내열성, 내구성, 내화학성 및 난연성 등으로 인해 리튬 이차전지의 구동 시 발생하는 문제점(발열, 폭발, 필름 열화 등)을 해소하여 리튬 이차전지의 전압 안정성을 더욱 높일 수 있다.In particular, the polymer solid electrolyte membrane includes an ion supply compound and a polyphenylene sulfide partially or wholly substituted with fluorine, thereby exhibiting improved oxidation stability and excellent ion conductivity and physical properties compared to polyphenylene sulfide without fluorine substitution. . In addition, due to heat resistance, durability, chemical resistance and flame retardance, etc., problems caused when driving the lithium secondary battery (heat generation, explosion, film degradation, etc.) can be solved to further increase the voltage stability of the lithium secondary battery.
본 발명에서 제시하는 고분자 고체 전해질 막은 리튬 이차전지에 적용하되, 고분자 고체 전해질로서 바람직하게 사용 가능하다. 이때, 상기 고분자 고체 전해질 막은 상술한 효과를 확보하기 위하여 양극 표면에 접촉되도록 사용되는 것이 바람직하다.The polymer solid electrolyte membrane according to the present invention is applied to a lithium secondary battery, and can be preferably used as a polymer solid electrolyte. In this case, the polymer solid electrolyte membrane is preferably used to contact the surface of the positive electrode in order to secure the above-mentioned effect.
도 1은 본 발명에 따른 리튬 이차전지의 구현예를 나타낸 것이다. 1 illustrates an embodiment of a lithium secondary battery according to the present invention.
도 1을 참조하면, 본 발명의 고분자 고체 전해질 막은 양극 계면에만 적용될 수 있다. 이때, 음극 계면에 접하는 전해질로는 불화되지 않은 순수 폴리페닐렌설파이드 고분자 고체 전해질이 사용될 수 있다.Referring to FIG. 1, the polymer solid electrolyte membrane of the present invention may be applied only to the anode interface. In this case, a pure polyphenylene sulfide polymer solid electrolyte that is not fluorinated may be used as the electrolyte contacting the cathode interface.
또한, 본 발명의 고분자 고체 전해질 막은 전해질로서 단독으로 적용될 수도 있으며, 이 경우 상기 고분자 고체 전해질 막은 양극 및 음극 사이에 개재된다.In addition, the polymer solid electrolyte membrane of the present invention may be applied alone as an electrolyte, in which case the polymer solid electrolyte membrane is interposed between the positive electrode and the negative electrode.
이와 같이 양극 계면에 접촉하는 고분자 고체 전해질로서 본 발명의 고분자 고체 전해질 막을 사용할 경우, 전지 구동 중 양극 표면에서 전해질이 산화되는 현상이 현저히 감소하게 되는 바, 전지의 수명 특성을 향상시킬 수 있다.As such, when the polymer solid electrolyte membrane of the present invention is used as the polymer solid electrolyte in contact with the positive electrode interface, the phenomenon of oxidizing the electrolyte on the surface of the positive electrode during battery operation is significantly reduced, and thus the battery life characteristics can be improved.
더불어, 상기 전해질은 리튬 이온 전도도를 더욱 높이기 위해, 이러한 목적으로 사용되는 물질을 더욱 포함할 수 있다.In addition, the electrolyte may further include a material used for this purpose in order to further increase the lithium ion conductivity.
필요한 경우, 상기 고분자 고체 전해질은 무기 고체 전해질 또는 유기 고체 전해질을 더욱 포함한다. 상기 무기 고체 전해질은 세라믹 계열의 재료로, 결정성 또는 비결정성 재질이 사용될 수 있으며, Thio-LISICON(Li3 . 25Ge0 .25P0. 75S4), Li2S-SiS2, LiI-Li2S-SiS2, LiI-Li2S-P2S5, LiI-Li2S-P2O5, LiI-Li3PO4-P2S5, Li2S-P2S5, Li3PS4, Li7P3S11, Li2O-B2O3, Li2O-B2O3-P2O5, Li2O-V2O5-SiO2, Li2O-B2O3, Li3PO4, Li2O-Li2WO4-B2O3, LiPON, LiBON, Li2O-SiO2, LiI, Li3N, Li5La3Ta2O12, Li7La3Zr2O12, Li6BaLa2Ta2O12, Li3PO(4-3/2w)Nw (w는 w<1), Li3 . 6Si0 .6P0. 4O4 등의 무기 고체 전해질이 가능하다.If necessary, the polymer solid electrolyte further includes an inorganic solid electrolyte or an organic solid electrolyte. The inorganic solid electrolyte is a ceramic-based material, a crystalline or amorphous and crystalline materials can be used, Thio-LISICON (Li 3. 25 Ge 0 .25 P 0. 75 S 4), Li 2 S-SiS 2, LiI -Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 OB 2 O 3 , Li 2 OB 2 O 3 -P 2 O 5 , Li 2 OV 2 O 5 -SiO 2 , Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 O-Li 2 WO 4 -B 2 O 3 , LiPON, LiBON, Li 2 O-SiO 2 , LiI, Li 3 N, Li 5 La 3 Ta 2 O12, Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) Nw (w is w <1), Li 3 . The inorganic solid electrolyte such as a 6 Si 0 .6 P 0. 4 O 4 is possible.
유기 고체 전해질의 예로는 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리 에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴 등의 폴리머 계열의 재료에 리튬염을 혼합한 것을 사용할 수 있다. 이때, 이들은 단독으로 또는 적어도 하나 이상을 조합하여 사용할 수 있다.Examples of the organic solid electrolyte include polymer-based materials such as polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohol, and polyvinylidene fluoride. What mixed lithium salt can be used. At this time, these may be used alone or in combination of at least one or more.
고분자 고체 전해질로의 구체적인 적용 방법은 본 발명에서 특별히 한정하지 않으며, 이 분야의 통상의 지식을 가진 자에 의해 공지된 방법을 선정 또는 선택하여 적용할 수 있다.The specific application method to the polymer solid electrolyte is not particularly limited in the present invention, and may be selected or selected by a method known by those skilled in the art.
고분자 고체 전해질이 적용 가능한 리튬 이차전지는 양극 또는 음극의 제한이 없으며, 특히 고온에서 작동하는 리튬-공기 전지, 리튬 산화물 전지, 리튬-황 전지, 리튬 금속 전지, 및 전고체 전지 등에 적용이 가능하다.The lithium secondary battery to which the polymer solid electrolyte is applicable is not limited to the positive electrode or the negative electrode, and is particularly applicable to a lithium-air battery, a lithium oxide battery, a lithium-sulfur battery, a lithium metal battery, and an all-solid-state battery that operate at high temperature. .
리튬 이차전지의 양극은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (0≤x≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga; 0.01≤x≤0.3)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2(M = Co, Ni, Fe, Cr, Zn 또는 Ta; 0.01≤x≤0.1) 또는 Li2Mn3MO8 (M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2 - xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3, Cu2Mo6S8, FeS, CoS 및 MiS 등의 칼코겐화물, 스칸듐, 루테늄, 티타늄, 바나듐, 몰리브덴, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연 등의 산화물, 황화물 또는 할로겐화물이 사용될 수 있으며, 보다 구체적으로는, TiS2, ZrS2, RuO2, Co3O4, Mo6S8, V2O5 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.The positive electrode of a lithium secondary battery may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Formula Li 1 + x Mn 2 - x O 4 (0≤x≤0.33), LiMnO 3, the lithium manganese oxide such as LiMn 2 O 3, LiMnO 2; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site-type lithium nickel oxide represented by the formula LiNi 1 - x M x O 2 (M = Co, Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ≦ x ≦ 0.3); Formula LiMn 2 - x M x O 2 (M = Co, Ni, Fe, Cr, Zn or Ta; 0.01≤x≤0.1) or Li 2 Mn 3 MO 8 (M = Fe, Co, Ni, Cu or Zn Lithium manganese composite oxide represented by; Spinel-structure lithium manganese composite oxides represented by LiNi x Mn 2 - x O 4 ; LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Chalcogenides such as Fe 2 (MoO 4 ) 3 , Cu 2 Mo 6 S 8 , FeS, CoS and MiS, scandium, ruthenium, titanium, vanadium, molybdenum, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc. Oxides, sulfides or halides may be used, and more specifically, TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , Mo 6 S 8 , V 2 O 5, etc. may be used, but is not limited thereto. no.
이러한 양극 활물질은 양극 집전체 상에 형성될 수 있다. 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.Such a positive electrode active material may be formed on a positive electrode current collector. The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, carbon, on the surface of aluminum or stainless steel, The surface-treated with nickel, titanium, silver, etc. can be used. In this case, the positive electrode current collector may use various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on a surface thereof so as to increase the adhesion with the positive electrode active material.
또한, 음극은 음극 집전체 상에 음극 활물질을 갖는 음극 합제층이 형성되거나, 음극 합제층(일례로, 리튬 호일)을 단독으로 사용한다. In addition, the negative electrode has a negative electrode mixture layer having a negative electrode active material formed on the negative electrode current collector, or uses a negative electrode mixture layer (for example, lithium foil) alone.
이때 음극 집전체나 음극 합제층의 종류는 본 발명에서 특별히 한정하지 않으며, 공지의 재질이 사용 가능하다.In this case, the type of the negative electrode current collector or the negative electrode mixture layer is not particularly limited in the present invention, and a known material may be used.
또한, 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다In addition, the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used. In addition, the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on the surface, similar to the positive electrode current collector.
또한, 음극 활물질은 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼-P, 그래핀(graphene), 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상의 탄소계 물질, Si계 물질, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.In addition, the negative electrode active material is one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super-P, graphene, fibrous carbon Carbon-based material, Si-based material, LixFe 2 O 3 (0≤x≤1), Li x WO 2 (0≤x≤1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 <x≤1;1≤y≤3; 1≤z≤8) Metal composite oxides; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide and the like may be included, but are not limited thereto.
여기에 더하여, 음극 활물질은 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO22, Bi2O3, Bi2O4 및 Bi2O5 등의 산화물 등을 사용할 수 있고, 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.In addition, the negative electrode active material is SnxMe 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, group 1, group 2, group 3 elements of the periodic table, Metal composite oxides such as halogen, 0 <x ≦ 1, 1 ≦ y ≦ 3, 1 ≦ z ≦ 8); SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 2 , Bi 2 O 3 , Bi 2 O 4 and An oxide such as Bi 2 O 5 may be used, and a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination of two or more thereof.
이때, 상기 전극 합제층은 바인더 수지, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있다.In this case, the electrode mixture layer may further include a binder resin, a conductive material, a filler and other additives.
상기 바인더 수지는 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위해 사용한다. 이러한 바인더 수지의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 하이드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder resin is used for bonding the electrode active material and the conductive material and the current collector. Examples of such binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.The said conductive material is used in order to improve the electroconductivity of an electrode active material further. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples of the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
전술한 바의 리튬 이차전지의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(스택-Z-폴딩형 포함), 또는 라미네이션-스택 형일 수 있으며, 바람직하기로 스택-폴딩형일 수 있다.The shape of the lithium secondary battery as described above is not particularly limited, and may be, for example, jelly-roll type, stack type, stack-fold type (including stack-Z-fold type), or lamination-stack type. It may be stack-foldable.
이러한 상기 음극, 고분자 고체전해질, 및 양극이 순차적으로 적층된 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 캡 플레이트 및 가스켓으로 밀봉하여 조립하여 리튬 이차전지를 제조한다.After preparing an electrode assembly in which the negative electrode, the polymer solid electrolyte, and the positive electrode are sequentially stacked, the electrode assembly is placed in a battery case, and then sealed by a cap plate and a gasket to fabricate a lithium secondary battery.
이때 리튬 이차전지는 사용하는 양극/음극 재질에 따라 리튬-황 전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지로 분류가 가능하고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.At this time, the lithium secondary battery can be classified into various batteries such as lithium-sulfur battery, lithium-air battery, lithium-oxide battery, lithium all-solid battery according to the cathode / cathode material used, and are cylindrical, square and coin type depending on the shape. It can be classified into pouch type, and can be divided into bulk type and thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
본 발명에 따른 리튬 이차전지는 고용량 및 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있다. 상기 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차 (Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기 자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기스쿠터(Escooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.The lithium secondary battery according to the present invention can be used as a power source for devices requiring high capacity and high rate characteristics. Specific examples of the device include a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters; Electric golf carts; Power storage systems and the like, but is not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
[실시예]EXAMPLE
실시예Example 1 One
하기 반복단위를 가지는 불소 치환된 폴리페닐렌설파이드와 LiTFSI를 7:3의 중량비로 혼합하여 NMP 용매에 용해시켜 용액을 제조하였다.A solution was prepared by mixing a fluorine-substituted polyphenylene sulfide having a repeating unit and LiTFSI in a weight ratio of 7: 3 and dissolving it in an NMP solvent.
Figure PCTKR2018004278-appb-I000004
Figure PCTKR2018004278-appb-I000004
얻어진 용액을 테프론 필름 상에 닥터블레이드 코팅으로 코팅하여 폴리(페닐렌설파이드-페닐렌설폭사이드) 도막(코팅 두께 50 ㎛)을 형성하였다.The resulting solution was coated on a Teflon film with a doctor blade coating to form a poly (phenylene sulfide-phenylene sulfoxide) coating film (coating thickness of 50 μm).
이어, 상온에서 24시간, 60℃ 진공 오븐에서 24시간 고분자 고체 전해질 막을 제조하였다. Subsequently, a polymer solid electrolyte membrane was prepared for 24 hours at room temperature and 24 hours in a 60 ° C. vacuum oven.
실시예Example 2 2
하기 반복단위를 가지는 불소 치환된 폴리페닐렌설파이드와 LiTFSI를 7:3의 중량비로 혼합하여 NMP 용매에 용해시켜 용액을 제조하였다.A solution was prepared by mixing a fluorine-substituted polyphenylene sulfide having a repeating unit and LiTFSI in a weight ratio of 7: 3 and dissolving it in an NMP solvent.
Figure PCTKR2018004278-appb-I000005
Figure PCTKR2018004278-appb-I000005
얻어진 용액을 테프론 필름 상에 닥터블레이드 코팅으로 코팅하여 폴리(페닐렌설파이드-페닐렌설폭사이드) 도막(코팅 두께 50 ㎛)을 형성하였다.The resulting solution was coated on a Teflon film with a doctor blade coating to form a poly (phenylene sulfide-phenylene sulfoxide) coating film (coating thickness of 50 μm).
이어, 상온에서 24시간, 60℃ 진공 오븐에서 24시간 고분자 고체 전해질 막을 제조하였다.Subsequently, a polymer solid electrolyte membrane was prepared at room temperature for 24 hours and at 60 ° C. in a vacuum oven for 24 hours.
비교예Comparative example 1 One
불소로 치환되지 않은 순수한 폴리페닐렌설파이드와 LiTFSI를 7:3의 중량비로 혼합하여 NMP 용매에 용해시켜 용액을 제조하였다.A solution was prepared by mixing pure polyphenylenesulfide unsubstituted with fluorine and LiTFSI in a weight ratio of 7: 3, dissolved in NMP solvent.
얻어진 용액을 테프론 필름 상에 닥터블레이드 코팅으로 코팅하였다(코팅 두께 50 ㎛). 상온에서 24시간, 60℃ 진공 오븐에서 24시간 고분자 고체 전해질 막을 제조하였다. The resulting solution was coated on a Teflon film with a doctorblade coating (coating thickness 50 μm). A polymer solid electrolyte membrane was prepared for 24 hours at room temperature and 24 hours in a 60 ° C. vacuum oven.
실험예 1: 물성 측정 Experimental Example 1 Measurement of Physical Properties
(1) 두께 측정(1) thickness measurement
상기 실시예 및 비교예에서 제조된 고분자 고체 전해질 막의 두께를 측정한 결과, 모두 약 45㎛으로 측정되었다.As a result of measuring the thicknesses of the polymer solid electrolyte membranes prepared in Examples and Comparative Examples, all were measured to be about 45 μm.
(2) (2) 리튬 이온 전도도Lithium ion conductivity 측정 Measure
Maker: Bio-Logic SAS의 VSP모델의 임피던스 측정기를 이용하여 상기 실시예 및 비교예에서 제조된 고분자 고체 전해질 막의 리튬 이온 전도도를 측정한 결과, 비교예 1의 경우 리튬 이온 전도도가 거의 없었으며, 실시예 1 및 2의 경우 리튬 이온 전도도가 높은 수치로 나타내었다.Maker: As a result of measuring the lithium ion conductivity of the polymer solid electrolyte membranes prepared in Examples and Comparative Examples using the impedance measuring device of the VSP model of Bio-Logic SAS, there was almost no lithium ion conductivity in Comparative Example 1. In the case of Examples 1 and 2, the lithium ion conductivity is shown as a high value.
실험예Experimental Example 2: 전압 안정성 측정 2: voltage stability measurement
상기 실시예 및 비교예에서 제조된 고분자 고체 전해질 막의 전압안정성을 측정하기 위해 Li 시메트리 전지를 제작하였고, 여기에 상기 필름을 삽입하여 리튬 이차전지를 제작하였다.In order to measure the voltage stability of the polymer solid electrolyte membranes prepared in Examples and Comparative Examples, a Li symmetry battery was manufactured, and the film was inserted therein to prepare a lithium secondary battery.
- 고온 평가: 제조한 전지를 4.2V까지 1C로 충전한 후, 5℃/분의 상승 속도로 150℃까지 온도를 상승시킨 후 150℃에서 10분간 방치하였다. -High temperature evaluation: After charging the manufactured @ battery at 1 C to 4.2V, the temperature was raised to 150 degreeC by the rising rate of 5 degree-C / min, and it left at 150 degreeC for 10 minutes.
- 과충전: 제조한 전지를 12V까지 0.2C로 충전하였다.Overcharge: The prepared battery was charged to 0.2C up to 12V.
상기 평가 결과, 실시예 1 및 2의 고분자 고체 전해질 막은 비교예 1의 고분자 고체 전해질 막 대비 각각 0.28eV 및 1.10eV의 HOMO 에너지 준위를 감소시킬 수 있기 때문에 산화 안정성이 높고, 이에 따라 비교예 1의 전지 대비 실시예 1 및 2의 리튬 이차전지의 전압 안정성이 우수함을 확인하였다.As a result of the evaluation, since the polymer solid electrolyte membranes of Examples 1 and 2 can reduce the HOMO energy levels of 0.28 eV and 1.10 eV, respectively, compared to the polymer solid electrolyte membrane of Comparative Example 1, the oxidation stability is high, and accordingly, It was confirmed that the voltage stability of the lithium secondary batteries of Examples 1 and 2 was superior to the battery.
이상에서는 본 명세서의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.Although the above has been illustrated and described with respect to the preferred embodiments of the present specification, the present specification is not limited to the above-described specific embodiments, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (10)

  1. 폴리페닐렌설파이드 및 이온 공급 화합물을 포함하는 고분자 고체 전해질 조성물로서,A polymer solid electrolyte composition comprising a polyphenylene sulfide and an ion supply compound,
    상기 폴리페닐렌설파이드는 페닐기 수소의 일부 또는 전부가 불소로 치환된 것인, 고분자 고체 전해질 조성물.The polyphenylene sulfide is a part or all of the phenyl group hydrogen is substituted with fluorine, polymer solid electrolyte composition.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 폴리페닐렌설파이드는 0.1 중량% 내지 45.0 중량%의 불소를 포함하는 것을 특징으로 하는 고분자 고체 전해질 조성물.The polyphenylene sulfide is a polymer solid electrolyte composition, characterized in that it comprises 0.1 to 45.0% by weight of fluorine.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 폴리페닐렌설파이드는 200 g/mol 내지 300,000 g/mol의 중량평균분자량을 갖는 것을 특징으로 하는 고분자 고체 전해질 조성물.The polyphenylene sulfide has a weight average molecular weight of 200 g / mol to 300,000 g / mol, characterized in that the polymer solid electrolyte composition.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 이온 공급 화합물은 금속 산화물, 금속 수화물 또는 금속염이며,The ion supply compound is a metal oxide, metal hydrate or metal salt,
    상기 금속은 Li, Na, K, Mg, Ca, Zn, Al 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 고분자 고체 전해질 조성물.The metal is a solid polymer electrolyte composition, characterized in that selected from the group consisting of Li, Na, K, Mg, Ca, Zn, Al and combinations thereof.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 금속염은 리튬염이며,The metal salt is a lithium salt,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiAsF6, LiSbF6, LiAlCl4, LiSCN, Li(FSO2)2N LiCF3CO2, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC4F9SO3, LiC(CF3SO2)3, (CF3SO2)2NLi, LiOH.H2O, LiB(C2O4)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택되는 것을 특징으로 하는 고분자 고체 전해질 조성물.The lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, Li (FSO 2 ) 2 N LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, LiOH.H 2 O, LiB (C 2 O 4 ) 2 , chloroborane lithium, lower aliphatic lithium carbonate, lithium tetraphenyl borate, lithium imide and combinations thereof Solid electrolyte compositions.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 고분자 고체 전해질 조성물은 5 내지 40 중량%의 이온 공급 화합물을 포함하는 것을 특징으로 하는 고분자 고체 전해질 조성물.The polymer solid electrolyte composition is a polymer solid electrolyte composition, characterized in that it comprises 5 to 40% by weight of the ion supply compound.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 고분자 고체 전해질 조성물은 용매를 더 포함하며,The polymer solid electrolyte composition further comprises a solvent,
    상기 용매는 메탄올, 에탄올, 아세톤, 아세토니트릴, 테트라하이드로푸란, N-메틸-2-피롤리돈, N,N-디메틸포름아미드, N,N-디에틸포름아미드, N,N-디메틸아세트아미드, 디메틸설폭시드, 헥사메틸포스아미드, 1,3-디메틸-2-이미다졸디논(1,3-Dimethyl-2-imidazolidinone), 트리에틸 포스페이트, 감마-부티로락톤, 1,2-디메톡시에탄(1,2-dimethoxyethane), 디메틸카보네이트(dimethyl carbonate), 에틸메틸카보네이트(ethylmethyl carbonate), 디에틸카보네이트(diethyl carbonate) 및 이들의 조합으로 이루어진 군에서 선택되는 것을 특징으로 하는 고분자 고체 전해질 조성물.The solvent is methanol, ethanol, acetone, acetonitrile, tetrahydrofuran, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide , Dimethyl sulfoxide, hexamethylphosphamide, 1,3-dimethyl-2-imidazolidinone, triethyl phosphate, gamma-butyrolactone, 1,2-dimethoxyethane (1,2-dimethoxyethane), dimethyl carbonate (dimethyl carbonate), ethylmethyl carbonate (ethylmethyl carbonate), diethyl carbonate (diethyl carbonate), and a polymer solid electrolyte composition, characterized in that selected from the group consisting of these.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 고분자 고체 전해질 조성물은 30 ℃에 있어서의 점도가 200 내지 1,000cP인 것을 특징으로 하는 고분자 고체 전해질 조성물.The polymer solid electrolyte composition is a polymer solid electrolyte composition, characterized in that the viscosity at 30 ℃ 200 to 1,000 cP.
  9. 청구항 1에 따른 고분자 고체 전해질 조성물을 필름으로 가공한 고분자 고체 전해질 막.A polymer solid electrolyte membrane obtained by processing the polymer solid electrolyte composition according to claim 1 into a film.
  10. 양극 상에 적층된 청구항 9에 따른 고분자 고체 전해질 막을 포함하는 리튬 이차전지.Lithium secondary battery comprising a polymer solid electrolyte membrane according to claim 9 stacked on a positive electrode.
PCT/KR2018/004278 2017-04-14 2018-04-12 Polymeric solid electrolyte and lithium secondary battery comprising same WO2018190644A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880005239.4A CN110100346B (en) 2017-04-14 2018-04-12 Polymer solid electrolyte and lithium secondary battery comprising the same
US16/335,780 US11710851B2 (en) 2017-04-14 2018-04-12 Polymeric solid electrolyte and lithium secondary battery comprising same
JP2019515496A JP2019530166A (en) 2017-04-14 2018-04-12 Polymer solid electrolyte and lithium secondary battery including the same
PL18784357.8T PL3509153T3 (en) 2017-04-14 2018-04-12 Polymeric solid electrolyte and lithium secondary battery comprising same
EP18784357.8A EP3509153B1 (en) 2017-04-14 2018-04-12 Polymeric solid electrolyte and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170048306 2017-04-14
KR10-2017-0048306 2017-04-14
KR1020180042157A KR102081773B1 (en) 2017-04-14 2018-04-11 Polymer solid electrolyte and lithium secondary battery comprising the same
KR10-2018-0042157 2018-04-11

Publications (1)

Publication Number Publication Date
WO2018190644A1 true WO2018190644A1 (en) 2018-10-18

Family

ID=63793510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004278 WO2018190644A1 (en) 2017-04-14 2018-04-12 Polymeric solid electrolyte and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2018190644A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086416A (en) * 1998-05-28 1999-12-15 권호택 Method for forming electrolyte layer of solid electrolytic capacitor
US20030091904A1 (en) * 1999-06-28 2003-05-15 Lithium Power Technologies, Inc. Ionically conductive polymer electrolytes
JP2004083864A (en) * 2002-06-25 2004-03-18 Kanegafuchi Chem Ind Co Ltd Fluorinated proton-conductive polymer membrane and method for producing the same
KR20050013162A (en) * 2002-06-28 2005-02-02 스미또모 가가꾸 가부시끼가이샤 Polymeric laminates, processes for producing the same, and use thereof
KR20070017191A (en) * 2004-05-03 2007-02-08 엔테그리스, 아이엔씨. Fluorinated aromatic polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086416A (en) * 1998-05-28 1999-12-15 권호택 Method for forming electrolyte layer of solid electrolytic capacitor
US20030091904A1 (en) * 1999-06-28 2003-05-15 Lithium Power Technologies, Inc. Ionically conductive polymer electrolytes
JP2004083864A (en) * 2002-06-25 2004-03-18 Kanegafuchi Chem Ind Co Ltd Fluorinated proton-conductive polymer membrane and method for producing the same
KR20050013162A (en) * 2002-06-28 2005-02-02 스미또모 가가꾸 가부시끼가이샤 Polymeric laminates, processes for producing the same, and use thereof
KR20070017191A (en) * 2004-05-03 2007-02-08 엔테그리스, 아이엔씨. Fluorinated aromatic polymers

Similar Documents

Publication Publication Date Title
KR102081773B1 (en) Polymer solid electrolyte and lithium secondary battery comprising the same
CN106887552B (en) Electrode-composite separator assembly for lithium battery and lithium battery including the same
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2018012694A1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
WO2017171436A1 (en) Solid polymer electrolyte and method for producing same
WO2018093032A1 (en) Lithium-sulfur battery
EP3512023B1 (en) Polymer solid electrolyte and lithium secondary battery comprising same
WO2020214010A1 (en) Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same
WO2019212314A1 (en) Method for manufacturing all-solid-state battery comprising polymer-based solid electrolyte and all-solid-state battery manufactured by same method
WO2018016737A1 (en) Lithium secondary battery comprising cathode active material for synthesizing lithium cobalt oxide, and manufacturing method therefor
WO2020185014A1 (en) Negative electrode and secondary battery comprising same
WO2017213441A1 (en) Lithium battery
WO2019221410A1 (en) Negative electrode including electrode protective layer, and lithium secondary battery employing same
WO2020071814A1 (en) Multilayer-structured anode comprising silicon-based compound, and lithium secondary battery comprising same
KR102160705B1 (en) Polymer solid electrolyte composition and polymer membrane comprising the same
WO2021045580A1 (en) Method for pre-sodiation of negative electrode, pre-sodiated negative electrode, and lithium secondary battery comprising same
WO2018190665A1 (en) Polymer solid electrolyte and lithium secondary battery comprising same
WO2019212313A1 (en) Method for manufacturing electrode comprising polymeric solid electrolyte, and electrode manufactured using same
KR102160706B1 (en) Polymer solid electrolyte composition and polymer membrane comprising the same
WO2019059637A2 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2020214016A1 (en) Electrolyte membrane for all-solid-state battery, and all-solid-state battery including same
WO2022124716A1 (en) Negative electrode, and lithium battery including same
US20240213486A1 (en) Polymer films for protecting metal electrode and rechargeable batteries using the same
WO2018190644A1 (en) Polymeric solid electrolyte and lithium secondary battery comprising same
WO2021045583A1 (en) Anode pre-lithiation-pre-sodiation method, pre-lithiated and pre-sodiated anode, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515496

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018784357

Country of ref document: EP

Effective date: 20190402

NENP Non-entry into the national phase

Ref country code: DE