WO2018190476A1 - Cr system and method using spiral scan scheme - Google Patents

Cr system and method using spiral scan scheme Download PDF

Info

Publication number
WO2018190476A1
WO2018190476A1 PCT/KR2017/009787 KR2017009787W WO2018190476A1 WO 2018190476 A1 WO2018190476 A1 WO 2018190476A1 KR 2017009787 W KR2017009787 W KR 2017009787W WO 2018190476 A1 WO2018190476 A1 WO 2018190476A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan
psl
image
motor
plate
Prior art date
Application number
PCT/KR2017/009787
Other languages
French (fr)
Korean (ko)
Inventor
이성운
남호철
Original Assignee
(주)레보스케치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)레보스케치 filed Critical (주)레보스케치
Publication of WO2018190476A1 publication Critical patent/WO2018190476A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/485Diagnostic techniques involving fluorescence X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis

Definitions

  • the present invention relates to a CR system and method, and more particularly, to a CR system and method for reading an X-ray latent image of an image plate using a spiral scan method.
  • Radiological images such as X-ray images are widely used in the medical field for the diagnosis of medical conditions.
  • the Computed Radiography (CR) system has been widely used in the field of X-ray imaging by successfully replacing an analog system using a film screen.
  • the CR system uses an image plate coated with a fluorescent material that replaces an existing film, and acquires digital image information after reading an image plate in which X-ray information is accumulated with a reader. More specifically, when X-rays are irradiated onto the image plate, a latent image proportional to the amount of radiation transmitted through the subject remains on the image plate.
  • the applied fluorescent material is expressed as photostimulated luminescence (PSL) in response to the red light.
  • PSL photostimulated luminescence
  • An object of the present invention for solving the above problems is to provide a CR system and method using a spiral scan method that can reduce the scan time for reading the X-ray latent image of the image plate, and obtain a high-resolution image with high efficiency There is.
  • CR system using a spiral scanning method of the present invention for achieving the above object is a body; A rotating motor for rotating the image plate exposed to the X-ray for diagnosis on one side of the body; A scan motor for rotating the scan arm on the other side of the body; A PSL scan head attached to an end of the scan arm to receive a PSL; A control unit for controlling the rotating motor, the scan motor, and the PSL scan head; And a microprocessor for processing and transmitting an X-ray latent image of the image plate through the PSL scanhead.
  • the image plate is characterized in that mounted to the cartridge plate.
  • the cartridge plate is formed by inserting three circular magnets, characterized in that the triangular groove is formed in the center of the lower side of the cartridge plate is coupled to the triangular protrusion of the cartridge mount.
  • the rotating motor is characterized in that for rotating the cartridge mount coupled to the cartridge plate on which the image plate is mounted.
  • the cartridge plate is characterized in that it further comprises a rotation motor encoder for controlling the rotation speed so that the rotation speed difference occurs according to the position of the scan arm to scan a uniform micro-area.
  • the scan arm passes the PSL scanhead through the scan motor to the center at the outermost part of the image plate.
  • the first PSL of the image plate is received along the spiral orbit, and the second PSL is received while moving the PSL scan head from the center point to the outermost side of the image plate.
  • the scan arm is moved according to the resolution set by the scan motor encoder.
  • the PSL scan head includes a light emitting unit and a light receiving unit, and the light emitting unit forms a spot through a collimating lens and a focusing lens of a laser beam generated from a laser diode.
  • the light receiving unit converts the PSL received through the condenser lens into an electronic signal through a semiconductor sensor, and the converted electronic signal is amplified by an amplifier and then transferred to a delimiter to determine the number of photons at high speed.
  • the rotary motor and the scan motor are each characterized by having a uniform micro scan area suitable for the set resolution by variably controlling the set speed and position through the rotary motor encoder and the scan motor encoder.
  • the CR method using the spiral scanning method of the present invention comprises the steps of mounting the image plate to the cartridge plate; While rotating the image plate with the rotary motor, the PSL scan head mounted at the end of the scan arm simultaneously passes the center at the outermost portion of the image plate through the scan motor.
  • the spiral scanning method significantly reduces the scan time for reading the X-ray latent image of the image plate, and provides a high duty cycle and a wide dynamic range in two scanning processes. It is effective to obtain high resolution images with high efficiency such as range and high collection.
  • FIG. 1 is a cross-sectional view of a CR system using a spiral scan method according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a cartridge according to an embodiment of the present invention.
  • FIG 3 is a plan view of a CR system using a spiral scan method according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a PSL scanhead according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a CR system using a spiral scan method according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a CR system using a spiral scanning method according to an embodiment of the present invention
  • Figure 2 is a perspective view of a cartridge according to an embodiment of the present invention
  • Figure 3 is a spiral according to an embodiment of the present invention 4 is a plan view of a CR system using a scan method
  • FIG. 4 is a cross-sectional view of a PSL scan head according to an embodiment of the present invention
  • FIG. 5 is a block diagram of a CR system using a spiral scan method according to an embodiment of the present invention. .
  • the CR system using the spiral scanning method of the present invention rotates the body 10 and the image plate 100 exposed to the X-ray for diagnosis on one side of the body 10.
  • It can be configured to include a microprocessor 300 for processing and transmitting the image.
  • the image plate 100 may be mounted to the cartridge mount 70 after insertion into the cartridge 60. That is, the image plate 100 is inserted between the cartridge cover 60a coupled to the cartridge plate 60b to be mounted on the cartridge mount 70, and then the cartridge cover 60a is peeled off to release the X-ray of the image plate 100. The latent image is read.
  • three circular magnets 61 are inserted into the cartridge plate 60b, and a triangular groove 62 is formed at the center of the lower side of the cartridge plate 60b to form a triangular protrusion of the cartridge mount 70. Combined with (71). At this time, the three circular magnets 61 inserted into the cartridge plate 60b also serve to couple with the cartridge mount 70.
  • the rotary motor 20 rotates the cartridge mount 70 coupled with the cartridge plate 60b. As a result, the image plate 100 mounted on the cartridge plate 60b is rotated.
  • the cartridge plate 60b may generate a difference in rotational speed depending on the position of the scan arm, and may be controlled at a variable speed by using the rotary motor encoder 30 to match the target rotational speed.
  • the scan arm 80 mounts a PSL scan head 90 at an end to acquire an X-ray latent image of the image plate 100, and attaches the PSL scan head 90 to the image plate 100 through the scan motor 40. Passing through the center from the outermost of Move to circular orbit 64 to receive the primary PSL of image plate 100 along spiral orbit 63, and move the PSL scanhead 90 back from its center to the outermost side of the image plate opposite the secondary PSL. After two spiral scans, a wide dynamic range can be secured in two scans in the process of converting the latent image into a PSL by a laser.
  • the scan arm 80 can be precisely position controlled by the scan motor encoder 50.
  • the rotary motor 20 and the scan motor 40 may have a uniform micro scan area suitable for the set resolution by controlling the set speed and position through the rotary motor encoder 30 and the scan motor encoder 50, respectively.
  • the PSL scan head 90 includes a light emitter 91 and a light receiver 95.
  • the light emitting unit 91 may be designed as a point light source, and includes a collimator lens 93 and a focusing lens 94 as a light source using a laser diode 92 having a wavelength of 600 nm, and the light receiving unit 95.
  • PMT photo multiplier tube
  • the light emitting unit 91 and the light receiving unit 95 of the PSL scan head 90 may be disposed having a coaxial arrangement or an angle using a dichroic mirror.
  • the light receiving unit 95 is configured to be perpendicular to the image plate 100 in order to increase the light receiving efficiency of the PSL, the light emitting unit 91 for minimizing light reflected by the image plate 100. Can be placed with an angle.
  • the controller 200 is responsible for controlling all devices for image acquisition. That is, the controller 200 controls the light emitting unit 91 and the light receiving unit 95 constituting the rotary motor 20, the scan motor 40, and the PSL scan head 90.
  • the rotary motor 20 controls the target speed of the cartridge 60 through the motor driver based on the position value of the rotary motor encoder 30, the target speed is so that the distance sampled per unit time is constant (external angle) In the rotational speed is low and the rotational speed increases toward the center) to control the target speed based on the position information of the scan motor encoder (50).
  • the scan motor 40 controls the scan arm 80 through a motor driver based on the position value of the scan motor encoder 50 in order to move the position corresponding to a predetermined resolution.
  • the light emitting unit 91 forms a spot having a designed size by passing a laser beam generated from the laser diode 92 through a laser driver through a collimating lens 93 and a focusing lens 94, which are laser optical systems.
  • the light receiver 95 transmits only the PSL filtered by the blue filter 98 to the semiconductor sensor 96 through the condenser lens 97.
  • the transmitted PSL is converted into an electronic signal and then amplified through an amplifier and delivered to a discriminator.
  • the delimiter determines the number of photons at that time at a high speed.
  • the signal of the delimiter is transmitted to the FPGA 200, and the FPGA 200 performs a window sum process having a constant size at a high speed to generate the size of the PSL from which the thermal noise is removed.
  • the semiconductor sensor 96 has a high time resolution so that sampling in GHz is possible.
  • the PSL signal is obtained through an integrator (Window sum) having a certain number of samples of the number of photons for a specific time.
  • the advantage of this method is that the thermal noise of all semiconductor sensors is smaller than the signal generated by one photon, so that thermal noise can be fundamentally separated from the video signal. As a result, the amount of noise is significantly reduced, resulting in an increase in the signal-to-noise ratio (SNR), resulting in a very high quality image.
  • SNR signal-to-noise ratio
  • the present invention by applying a semiconductor sensor, it is possible to configure a small light-receiving unit which is not affected by the magnetic field as compared to the conventional PMT, and can realize a low noise level and high image performance.
  • the microprocessor 300 acquires an X-ray latent image of the image plate 100 through the FPGA 200.
  • the microprocessor 300 communicates with the PC through the Ethernet 401, WIFI 402, USB 403, and transmits the device control and the acquired image.
  • the image plate 100 is mounted on the cartridge plate 60b.
  • the PSL scan head 90 mounted at the end of the scan arm 80 may be inserted into the image plate 100 through the scan motor 40.
  • the received PSL is converted into an electronic signal through a semiconductor sensor, and the converted electronic signal is amplified by an amplifier and then transferred to a discriminator.
  • the delimiter determines the number of photons at that time at a high speed, the signal of the delimiter is transmitted to the FPGA 200, the FPGA 200 is a high-speed constant integrator (Window sum) processing To generate the size of the thermal noise canceled PSL.
  • an X-ray latent image of the image plate 100 according to the generated PSL size is obtained through the microprocessor 300.
  • the acquired latent image is transmitted to a PC through Ethernet 401, WIFI 402, and USB 403.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The present invention relates to a CR system using a spiral scan scheme, comprising: a body; a rotating motor for rotating an image plate to be exposed to X-rays, in order to perform diagnosis, on one side of the inside of the body; a scan motor for rotating a scan arm on the other side of the inside of the body; a PSL scan head attached to an end of the scan arm to receive PSL; a control unit for controlling the rotating motor, the scan motor, and the PSL scan head; and a microprocessor for processing and transmitting an X-ray latent image of the image plate through the PSL scan head.

Description

나선형 스캔방식을 이용한 CR 시스템 및 방법CR system and method using spiral scan method
본 발명은 CR 시스템 및 방법에 관한 것으로, 더욱 상세하게는 나선형 스캔방식을 이용하여 이미지플레이트의 엑스레이 잠상 이미지를 판독하는 CR 시스템 및 방법에 관한 것이다.The present invention relates to a CR system and method, and more particularly, to a CR system and method for reading an X-ray latent image of an image plate using a spiral scan method.
X선 영상과 같은 방사선 영상들은 의학적 상태 진단을 위해 의료분야에서 널리 사용되고 있다. 특히, CR(Computed Radiography) 시스템은 X선 영상분야에서 기존 필름 스크린을 이용하는 아날로그 시스템을 성공적으로 대체하여 널리 보급되고 있다. Radiological images such as X-ray images are widely used in the medical field for the diagnosis of medical conditions. In particular, the Computed Radiography (CR) system has been widely used in the field of X-ray imaging by successfully replacing an analog system using a film screen.
CR 시스템은 기존의 필름을 대체한 형광물질이 도포된 이미지플레이트를 사용하는 시스템으로써, X선 정보가 축적된 이미지플레이트를 리더기로 읽을 후 디지털 영상정보를 획득한다. 좀 더 구체적으로, X선을 이미지플레이트에 조사하면, 피사체를 투과한 조사량에 비례하는 잠상이 이미지 플레이트에 남는다. The CR system uses an image plate coated with a fluorescent material that replaces an existing film, and acquires digital image information after reading an image plate in which X-ray information is accumulated with a reader. More specifically, when X-rays are irradiated onto the image plate, a latent image proportional to the amount of radiation transmitted through the subject remains on the image plate.
이미지플레이트의 영상 획득을 위해 적색 레이저를 주사하면 도포된 형광물질이 적색광에 반응하여 청색광(PSL; photostimulated luminescence)으로 발현된다. 이 PSL은 광도파로를 따라 광증배관에 전달되어 증폭이 된 후 AD 변환기를 통해 디지털 신호로 변환되어 화상으로 나타난다. When the red laser is scanned to acquire an image of the image plate, the applied fluorescent material is expressed as photostimulated luminescence (PSL) in response to the red light. This PSL is transmitted to the optical multiplier along the optical waveguide, amplified, and then converted into a digital signal through an AD converter and displayed as an image.
그러나 종래의 CR 시스템은 스캔하려는 전체 면적에 레이저를 주사하기 위해 다면경, F-theta렌즈 및 실린더렌즈 등 복잡하고 민감한 주사광학계가 필요하고, 다면경의 특성상 스캔 시 미러간 비활성화 시간이 존재하기 때문에 스캔 시간이 길어지고, PSL의 수광을 위해 큰 면적의 광도파로 및 광증배관이 필요하며, 이는 수광량 감소에 따른 낮은 효율로 인해 환자의 엑스레이(X-ray) 노출량을 늘리는 결과를 초래하는 문제점이 있다. Conventional CR systems, however, require complex and sensitive scanning optics such as multifacets, F-theta lenses and cylinder lenses to scan the laser over the entire area to be scanned. It takes a long time and requires a large area of optical waveguides and photomultipliers for receiving PSL, which results in an increase in X-ray exposure of the patient due to low efficiency due to the reduction in the amount of received light.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 이미지플레이트의 엑스레이 잠상 이미지를 판독하기 위한 스캔 시간을 줄이고, 효율이 높은 고해상도의 이미지를 얻을 수 있는 나선형 스캔방식을 이용한 CR 시스템 및 방법을 제공하는 데 있다.An object of the present invention for solving the above problems is to provide a CR system and method using a spiral scan method that can reduce the scan time for reading the X-ray latent image of the image plate, and obtain a high-resolution image with high efficiency There is.
상기와 같은 목적을 달성하기 위한 본 발명의 나선형 스캔방식을 이용한 CR 시스템은 몸체; 상기 몸체 내부 일측에 진단을 위해 엑스레이에 노출되는 이미지플레이트를 회전시키는 회전모터; 상기 몸체 내부 타측에 스캔암을 회전시키는 스캔모터; 상기 스캔암의 끝단에 부착되어 PSL를 수광하는 PSL 스캔헤드; 상기 회전모터, 상기 스캔모터, 및 상기 PSL 스캔헤드를 제어하는 제어부; 및 상기 PSL 스캔헤드를 통해 이미지플레이트의 엑스레이 잠상 이미지를 처리하고 전송하는 마이크로프로세서;를 포함하는 것을 특징으로 한다.CR system using a spiral scanning method of the present invention for achieving the above object is a body; A rotating motor for rotating the image plate exposed to the X-ray for diagnosis on one side of the body; A scan motor for rotating the scan arm on the other side of the body; A PSL scan head attached to an end of the scan arm to receive a PSL; A control unit for controlling the rotating motor, the scan motor, and the PSL scan head; And a microprocessor for processing and transmitting an X-ray latent image of the image plate through the PSL scanhead.
상기 이미지플레이트는 카트리지 플레이트에 장착되는 것을 특징으로 한다. 상기 카트리지 플레이트는 3개의 원형 자석이 삽입되어 구성되고, 상기 카트리지 플레이트 하측면 중앙에 삼각형상의 홈이 형성되어 카트리지 마운트의 삼각돌기와 결합되는 것을 특징으로 한다.The image plate is characterized in that mounted to the cartridge plate. The cartridge plate is formed by inserting three circular magnets, characterized in that the triangular groove is formed in the center of the lower side of the cartridge plate is coupled to the triangular protrusion of the cartridge mount.
상기 회전모터는 이미지플레이트가 장착된 카트리지 플레이트와 결합되는 카트리지 마운트를 회전시키는 것을 특징으로 한다.The rotating motor is characterized in that for rotating the cartridge mount coupled to the cartridge plate on which the image plate is mounted.
상기 카트리지 플레이트는 스캔암의 위치에 따른 회전속도 차이가 발생하므로 균일한 미소면적을 스캔할 수 있도록 회전속도를 제어하기 위한 회전모터 엔코더를 더 포함하는 것을 특징으로 한다.The cartridge plate is characterized in that it further comprises a rotation motor encoder for controlling the rotation speed so that the rotation speed difference occurs according to the position of the scan arm to scan a uniform micro-area.
상기 스캔암은 PSL 스캔헤드를 스캔모터를 통해 이미지플레이트의 최외각에서 중심을 지나는 원궤도로 이동하며 나선형궤도를 따라 이미지플레이트의 1차 PSL를 수광하고, 상기 PSL 스캔헤드를 다시 중심점에서 이미지플레이트의 반대쪽 최외각으로 이동하면서 2차 PSL를 수광하는 것을 특징으로 한다.The scan arm passes the PSL scanhead through the scan motor to the center at the outermost part of the image plate. The first PSL of the image plate is received along the spiral orbit, and the second PSL is received while moving the PSL scan head from the center point to the outermost side of the image plate.
상기 스캔암은 스캔모터 엔코더에 의해 설정된 해상도에 맞게 이동하는 것을 특징으로 한다.The scan arm is moved according to the resolution set by the scan motor encoder.
상기 PSL 스캔헤드는 발광부와 수광부로 구성되고, 상기 발광부은 레이저 다이오드에서 발생하는 레이저빔을 콜리메이팅렌즈와 포커싱렌즈를 거쳐 스폿을 형성하는 것을 특징으로 한다.The PSL scan head includes a light emitting unit and a light receiving unit, and the light emitting unit forms a spot through a collimating lens and a focusing lens of a laser beam generated from a laser diode.
상기 수광부는 집광렌즈를 통해 수광된 PSL를 반도체센서를 통해 전자신호로 변환하고, 상기 변환된 전자신호는 증폭기로 증폭한 후 디스크리미네이터로 전달하여 광자수를 고속으로 판별하는 것을 특징으로 한다.The light receiving unit converts the PSL received through the condenser lens into an electronic signal through a semiconductor sensor, and the converted electronic signal is amplified by an amplifier and then transferred to a delimiter to determine the number of photons at high speed.
상기 회전모터와 스캔모터는 각각 회전모터 엔코더와 스캔모터 엔코더를 통해 설정된 속도 및 위치를 가변 제어하여 설정된 해상도에 맞는 균일한 미소 스캔면적을 가지는 것을 특징으로 한다.The rotary motor and the scan motor are each characterized by having a uniform micro scan area suitable for the set resolution by variably controlling the set speed and position through the rotary motor encoder and the scan motor encoder.
그리고, 본 발명의 나선형 스캔방식을 이용한 CR 방법은 이미지플레이트를 카트리지 플레이트에 장착하는 단계; 상기 이미지플레이트를 회전모터로 회전시키면서 동시에 스캔암의 끝단에 장착된 PSL 스캔헤드를 스캔모터를 통해 이미지플레이트의 최외각에서 중심을 지나는 원궤도로 움직이며 나선형궤도를 따라 이미지플레이트의 1차 PSL를 수광하고, 상기 PSL 스캔헤드를 다시 중심점에서 반대쪽 최외각으로 이동하면서 2차 PSL를 수광하는 단계; 상기 수광된 PSL를 반도체센서를 통해 전자신호로 변환하고, 변환된 전자신호는 증폭기로 증폭한 후 디스크리미네이터로 전달하는 단계; 상기 디스크리미네이터의 신호를 FPGA 전달하여 적분기 처리로 열잡음이 제거된 광신호 크기를 생성하는 단계; 및 상기 생성된 광신호에 따른 이미지플레이트의 엑스레이 잠상 이미지를 마이크로프로세서를 통해 획득하는 단계;를 포함하는 것을 특징으로 한다.In addition, the CR method using the spiral scanning method of the present invention comprises the steps of mounting the image plate to the cartridge plate; While rotating the image plate with the rotary motor, the PSL scan head mounted at the end of the scan arm simultaneously passes the center at the outermost portion of the image plate through the scan motor. Receiving a primary PSL of an image plate along a spiral orbit and receiving a secondary PSL while moving the PSL scanhead from the center point to the opposite outermost side again; Converting the received PSL into an electronic signal through a semiconductor sensor, and amplifying the converted electronic signal by an amplifier and transferring the converted electronic signal to a delimiter; Transferring the signal of the delimiter to the FPGA to generate an optical signal size from which thermal noise is eliminated through integrator processing; And acquiring an X-ray latent image image of the image plate according to the generated optical signal through a microprocessor.
상기 획득한 이미지플레이트의 엑스레이 잠상 이미지를 Ethernet, WIFI, USB를 통해 PC에 전송하는 단계를 더 포함하는 것을 특징으로 한다.And transmitting the latent X-ray image of the acquired image plate to a PC through Ethernet, WIFI, or USB.
이상과 같이 본 발명에 따르면, 나선형 스캔방식을 이용하므로 이미지플레이트의 엑스레이 잠상 이미지를 판독하기 위한 스캔 시간을 현저히 줄이고, 두 번의 스캔 과정으로 높은 듀티 싸이클(high duty cycle), 광역동적범위(wide dynamic range), 높은 집속(high collection) 등의 효율이 높은 고해상도의 이미지를 얻을 수 있는 효과가 있다. As described above, according to the present invention, the spiral scanning method significantly reduces the scan time for reading the X-ray latent image of the image plate, and provides a high duty cycle and a wide dynamic range in two scanning processes. It is effective to obtain high resolution images with high efficiency such as range and high collection.
도 1은 본 발명의 일실시예에 따른 나선형 스캔방식을 이용한 CR 시스템의 단면도이다.1 is a cross-sectional view of a CR system using a spiral scan method according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 카트리지의 사시도이다.2 is a perspective view of a cartridge according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 나선형 스캔방식을 이용한 CR 시스템의 평면도이다.3 is a plan view of a CR system using a spiral scan method according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 PSL 스캔헤드의 단면도이다.4 is a cross-sectional view of a PSL scanhead according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 나선형 스캔방식을 이용한 CR 시스템의 블럭도이다.5 is a block diagram of a CR system using a spiral scan method according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention.
그러면 본 발명의 일실시예에 따른 나선형 스캔방식을 이용한 CR 시스템 및 방법에 대하여 설명한다.Next, a CR system and a method using a spiral scan method according to an embodiment of the present invention will be described.
도 1은 본 발명의 일실시예에 따른 나선형 스캔방식을 이용한 CR 시스템의 단면도이고, 도 2는 본 발명의 일실시예에 따른 카트리지의 사시도이고, 도 3은 본 발명의 일실시예에 따른 나선형 스캔방식을 이용한 CR 시스템의 평면도이고, 도 4는 본 발명의 일실시예에 따른 PSL 스캔헤드의 단면도이며, 도 5는 본 발명의 일실시예에 따른 나선형 스캔방식을 이용한 CR 시스템의 블럭도이다.1 is a cross-sectional view of a CR system using a spiral scanning method according to an embodiment of the present invention, Figure 2 is a perspective view of a cartridge according to an embodiment of the present invention, Figure 3 is a spiral according to an embodiment of the present invention 4 is a plan view of a CR system using a scan method, FIG. 4 is a cross-sectional view of a PSL scan head according to an embodiment of the present invention, and FIG. 5 is a block diagram of a CR system using a spiral scan method according to an embodiment of the present invention. .
도 1 내지 도 5를 참조하면, 본 발명의 나선형 스캔방식을 이용한 CR 시스템은 몸체(10)와, 상기 몸체(10) 내부 일측에 진단을 위해 엑스레이에 노출되는 이미지플레이트(100)를 회전시키는 회전모터(20)와, 상기 몸체(10) 내부 타측에 스캔암(80)을 회전시키는 스캔모터(40)와, 상기 스캔암(80)의 끝단에 부착되어 PSL를 유도 및 수광하는 PSL 스캔헤드(90)와, 상기 회전모터(20), 스캔모터(40), 및 PSL 스캔헤드(90)를 제어하는 제어부(200)와, 상기 PSL 스캔헤드(90)를 통해 이미지플레이트(100)의 엑스레이 잠상 이미지를 처리하고 전송하는 마이크로프로세서(300)를 포함하여 구성할 수 있다. 1 to 5, the CR system using the spiral scanning method of the present invention rotates the body 10 and the image plate 100 exposed to the X-ray for diagnosis on one side of the body 10. A motor 20, a scan motor 40 for rotating the scan arm 80 inside the body 10, and a PSL scan head attached to an end of the scan arm 80 to guide and receive PSL ( 90, an X-ray latent image of the image plate 100 through the controller 200 for controlling the rotating motor 20, the scan motor 40, and the PSL scan head 90, and the PSL scan head 90. It can be configured to include a microprocessor 300 for processing and transmitting the image.
상기 이미지플레이트(100)는 카트리지(60)에 삽입 후 카트리지 마운트(70)에 장착될 수 있다. 즉, 상기 이미지플레이트(100)는 카트리지 플레이트(60b)에 결합된 카트리지 커버(60a) 사이에 삽입하여 카트리지 마운트(70)에 장착한 후, 카트리지 커버(60a)를 벗겨 이미지플레이트(100)의 엑스레이 잠상 이미지를 판독하게 된다. The image plate 100 may be mounted to the cartridge mount 70 after insertion into the cartridge 60. That is, the image plate 100 is inserted between the cartridge cover 60a coupled to the cartridge plate 60b to be mounted on the cartridge mount 70, and then the cartridge cover 60a is peeled off to release the X-ray of the image plate 100. The latent image is read.
여기서, 상기 카트리지 플레이트(60b) 내부에는 3개의 원형 자석(61)이 삽입되어 구성되고, 상기 카트리지 플레이트(60b) 하측면 중앙에 삼각형상의 홈(62)이 형성되어 카트리지 마운트(70)의 삼각 돌기(71)와 결합된다. 이때, 상기 카트리지 플레이트(60b)에 삽입된 3개의 원형 자석(61) 또한 카트리지 마운트(70)와 결합하는 역할을 한다. Here, three circular magnets 61 are inserted into the cartridge plate 60b, and a triangular groove 62 is formed at the center of the lower side of the cartridge plate 60b to form a triangular protrusion of the cartridge mount 70. Combined with (71). At this time, the three circular magnets 61 inserted into the cartridge plate 60b also serve to couple with the cartridge mount 70.
상기 회전모터(20)는 카트리지 플레이트(60b)와 결합된 카트리지 마운트(70)를 회전시킨다. 이로 인해, 카트리지 플레이트(60b)에 장착된 이미지플레이트(100)가 회전하게 된다. The rotary motor 20 rotates the cartridge mount 70 coupled with the cartridge plate 60b. As a result, the image plate 100 mounted on the cartridge plate 60b is rotated.
여기서, 상기 카트리지 플레이트(60b)는 스캔암의 위치에 따른 회전속도 차이가 발생하고, 이를 목표하는 회전 속도를 맞추기 위해 회전모터 엔코더(30)를 이용하여 가변속도로 제어할 수 있다. Here, the cartridge plate 60b may generate a difference in rotational speed depending on the position of the scan arm, and may be controlled at a variable speed by using the rotary motor encoder 30 to match the target rotational speed.
상기 스캔암(80)은 이미지플레이트(100)의 엑스레이 잠상 이미지를 획득하기 위해 PSL 스캔헤드(90)를 끝단에 장착하고, PSL 스캔헤드(90)를 스캔모터(40)를 통해 이미지플레이트(100)의 최외각에서 중심을 지나는 원궤도(64)로 움직여 나선형궤도(63)를 따라 이미지플레이트(100)의 1차 PSL를 수광하고, 상기 PSL 스캔헤드(90)를 다시 중심점에서 이미지플레이트의 반대쪽 최외각으로 이동하면서 2차 PSL를 수광하며, 2번의 나선형 스캔과정을 거친다, 이는 레이저에 의해 잠상이 PSL로 변환되는 과정에서 2번의 스캔 과정으로 넓은 동적범위(wide dynamic range)를 확보할 수 있다. 여기서, 상기 스캔암(80)은 스캔모터 엔코더(50)에 의해 정밀하게 위치제어가 가능하다.The scan arm 80 mounts a PSL scan head 90 at an end to acquire an X-ray latent image of the image plate 100, and attaches the PSL scan head 90 to the image plate 100 through the scan motor 40. Passing through the center from the outermost of Move to circular orbit 64 to receive the primary PSL of image plate 100 along spiral orbit 63, and move the PSL scanhead 90 back from its center to the outermost side of the image plate opposite the secondary PSL. After two spiral scans, a wide dynamic range can be secured in two scans in the process of converting the latent image into a PSL by a laser. Here, the scan arm 80 can be precisely position controlled by the scan motor encoder 50.
상기 회전모터(20)와 스캔모터(40)는 각각 회전모터 엔코더(30)와 스캔모터 엔코더(50)를 통해 설정된 속도 및 위치를 제어하여 설정된 해상도에 맞는 균일한 미소 스캔면적을 가질 수 있다. The rotary motor 20 and the scan motor 40 may have a uniform micro scan area suitable for the set resolution by controlling the set speed and position through the rotary motor encoder 30 and the scan motor encoder 50, respectively.
상기 PSL 스캔헤드(90)는 발광부(91)와 수광부(95)로 구성된다. The PSL scan head 90 includes a light emitter 91 and a light receiver 95.
상기 발광부(91)는 기존의 주사광학계와 달리 포인트 광원으로 설계가 가능하며 600nm 파장대의 레이저다이오드(92)를 광원으로 콜리메이터렌즈(93)와 포커싱렌즈(94)로 구성되고, 상기 수광부(95)는 기존의 크기가 크고 자장에 영향을 크게 받은 광증배관(PMT; Photo Multiplier Tube)를 대신하여 반도체센서(96), 집광렌즈(97) 및 블루필터(98)로 구성된다. 여기서, 상기 수광부(95)의 반도체센서(96), 집광렌즈(97) 및 블루필터(98)는 이 출원 이전에 이미 다양하게 공지되어 시행되는 통상의 기술이므로 이에 대한 자세한 설명은 생략하기로 한다.Unlike the conventional scanning optical system, the light emitting unit 91 may be designed as a point light source, and includes a collimator lens 93 and a focusing lens 94 as a light source using a laser diode 92 having a wavelength of 600 nm, and the light receiving unit 95. ) Is composed of a semiconductor sensor 96, a condenser lens 97, and a blue filter 98 in place of a conventional photo multiplier tube (PMT), which is largely affected by a large magnetic field. Here, since the semiconductor sensor 96, the condenser lens 97, and the blue filter 98 of the light receiving unit 95 are conventional techniques already known and implemented before the present application, a detailed description thereof will be omitted. .
여기서, PSL 스캔헤드(90)의 발광부(91)와 수광부(95)는 이색미러를 이용한 동축 배치 혹은 각도를 가지면서 배치될 수 있다. Here, the light emitting unit 91 and the light receiving unit 95 of the PSL scan head 90 may be disposed having a coaxial arrangement or an angle using a dichroic mirror.
일실시예로써, 상기 수광부(95)는 PSL의 수광효율을 높이기 위해 이미지플레이트(100)와 수직으로 구성되며, 상기 발광부(91)는 이미지플레이트(100)에 반사되어 들어가는 빛의 최소화를 위해 각도를 가지면서 배치할 수 있다. In one embodiment, the light receiving unit 95 is configured to be perpendicular to the image plate 100 in order to increase the light receiving efficiency of the PSL, the light emitting unit 91 for minimizing light reflected by the image plate 100. Can be placed with an angle.
상기 제어부(200)는 이미지 획득을 위한 모든 장치의 제어를 담당한다. 즉, 상기 제어부(200)는 회전모터(20), 스캔모터(40), PSL 스캔헤드(90)를 구성하는 발광부(91)와 수광부(95)를 제어한다. The controller 200 is responsible for controlling all devices for image acquisition. That is, the controller 200 controls the light emitting unit 91 and the light receiving unit 95 constituting the rotary motor 20, the scan motor 40, and the PSL scan head 90.
상기 회전모터(20)는 회전모터 엔코더(30)의 위치 값을 기반으로 모터드라이버를 통해 카트리지(60)의 목표속도를 제어하게 되며, 이 목표속도는 단위시간당 샘플링되는 거리가 일정해 지도록(외각에서 회전속도가 낮고 중심으로 갈수록 회전 속도가 증가함) 스캔모터 엔코더(50)의 위치 정보를 기반으로 목표속도를 제어한다.The rotary motor 20 controls the target speed of the cartridge 60 through the motor driver based on the position value of the rotary motor encoder 30, the target speed is so that the distance sampled per unit time is constant (external angle) In the rotational speed is low and the rotational speed increases toward the center) to control the target speed based on the position information of the scan motor encoder (50).
상기 스캔모터(40)는 스캔암(80)이 정해진 해상도에 맞는 위치이동을 위해 스캔모터 엔코더(50)의 위치 값을 기반으로 모터 드라이버를 통해 제어한다.The scan motor 40 controls the scan arm 80 through a motor driver based on the position value of the scan motor encoder 50 in order to move the position corresponding to a predetermined resolution.
상기 발광부(91)는 레이저 드라이버를 통해 레이저 다이오드(92)에서 발생하는 레이저빔을 레이저 광학계인 콜리메이팅렌즈(93)와 포커싱렌즈(94)를 거치며 설계된 크기의 스폿(spot)을 형성한다.The light emitting unit 91 forms a spot having a designed size by passing a laser beam generated from the laser diode 92 through a laser driver through a collimating lens 93 and a focusing lens 94, which are laser optical systems.
상기 수광부(95)는 블루필터(98)로 필터링된 PSL만을 집광렌즈(97)를 통해 반도체센서(96)로 전달한다. 전달된 PSL은 전자신호로 전환 후 증폭기(Amplifier)를 거치면서 증폭되어 디스크리미네이터(Discriminator)로 전달된다. 이때, 상기 디스크리미네이터는 그 시점에서 광자수를 고속으로 판별하게 된다. The light receiver 95 transmits only the PSL filtered by the blue filter 98 to the semiconductor sensor 96 through the condenser lens 97. The transmitted PSL is converted into an electronic signal and then amplified through an amplifier and delivered to a discriminator. At this time, the delimiter determines the number of photons at that time at a high speed.
상기 디스크리미네이터의 신호는 FPGA(200)로 전달되고 FPGA(200)는 고속으로 일정한 크기를 가지는 적분기(Window sum) 처리를 수행하여 열잡음이 제거된 PSL의 크기를 생성해 낸다.The signal of the delimiter is transmitted to the FPGA 200, and the FPGA 200 performs a window sum process having a constant size at a high speed to generate the size of the PSL from which the thermal noise is removed.
여기서, 상기 반도체센서(96)는 높은 시간 분해능을 가지고 있어 GHz 단위의 샘플링이 가능하다. 이를 이용해 특정시간 동안의 광자수를 일정한 샘플 개수의 크기를 갖는 적분기(Window sum)를 통하여 PSL 신호를 획득한다. 이 방식의 장점은 모든 반도체 센서가 가지는 열잡음(Thermal Noise)가 광자 1개가 생성하는 신호보다 작기 때문에 열잡음을 영상신호로부터 원천적으로 분리가 가능하다. 결과적으로 잡음의 크기가 상당량 감소함으로써 신호대잡음비(SNR)가 커지는 효과를 가지게 되어 매우 높은 품질의 영상을 얻을 수 있다. Here, the semiconductor sensor 96 has a high time resolution so that sampling in GHz is possible. By using this, the PSL signal is obtained through an integrator (Window sum) having a certain number of samples of the number of photons for a specific time. The advantage of this method is that the thermal noise of all semiconductor sensors is smaller than the signal generated by one photon, so that thermal noise can be fundamentally separated from the video signal. As a result, the amount of noise is significantly reduced, resulting in an increase in the signal-to-noise ratio (SNR), resulting in a very high quality image.
본 발명에서는 반도체센서를 적용함으로써 기존 PMT에 비해 자장에 영향을 받지 않는 소형의 수광부 구성이 가능하며, 또한 낮은 잡음레밸(noise level)과 높은 이미지 성능을 구현할 수 있다.In the present invention, by applying a semiconductor sensor, it is possible to configure a small light-receiving unit which is not affected by the magnetic field as compared to the conventional PMT, and can realize a low noise level and high image performance.
상기 마이크로프로세서(300)는 FPGA(200)를 통해 이미지플레이트(100)의 엑스레이 잠상 이미지를 획득하게 된다.The microprocessor 300 acquires an X-ray latent image of the image plate 100 through the FPGA 200.
이때, 상기 마이크로프로세서(300)는 Ethernet(401), WIFI(402), USB(403)를 통해 PC와 통신을 하며 장치제어 및 획득한 이미지를 전송한다.At this time, the microprocessor 300 communicates with the PC through the Ethernet 401, WIFI 402, USB 403, and transmits the device control and the acquired image.
이하에서는 본 발명의 나선형 스캔방식을 이용한 CR 방법에 대하여 설명하기로 한다.Hereinafter, a CR method using the spiral scan method of the present invention will be described.
먼저, 이미지플레이트(100)를 카트리지 플레이트(60b)에 장착한다.First, the image plate 100 is mounted on the cartridge plate 60b.
이어서, 상기 이미지플레이트(100)를 회전모터(20)를 통해 회전시키면서 동시에 스캔암(80)의 끝단에 장착된 PSL 스캔헤드(90)를 스캔모터(40)를 통해 이미지플레이트(100)의 최외각에서 중심을 원궤도(64)로 이동하며 회전하는 이미지플레이트(100)을 나선형궤도(63)를 따라 1차 PSL를 수광하고, PSL 스캔헤드(90)를 다시 중심점에서 이미지플레이트(100)의 반대쪽 최외각으로 이동하면서 2차 PSL를 수광한다. Subsequently, while rotating the image plate 100 through the rotary motor 20, the PSL scan head 90 mounted at the end of the scan arm 80 may be inserted into the image plate 100 through the scan motor 40. Receiving the primary PSL along the spiral orbit 63 to rotate the image plate 100, which rotates the center to the circular orbit 64 at the outer shell, and the PSL scan head 90 is again the center of the image plate 100 Receive the second PSL while moving to the outermost side.
이때, 수광된 PSL은 반도체센서를 통해 전자신호로 변환되고, 변환된 전자신호는 증폭기로 증폭한 후 디스크리미네이터(Discriminator)로 전달한다. 이때, 상기 디스크리미네이터는 그 시점에서 광자수를 고속으로 판별하게 되고, 디스크리미네이터의 신호는 FPGA(200)로 전달되고, FPGA(200)는 고속으로 일정한 크기를 가지는 적분기(Window sum) 처리를 수행하여 열잡음이 제거된 PSL의 크기를 생성해 낸다.At this time, the received PSL is converted into an electronic signal through a semiconductor sensor, and the converted electronic signal is amplified by an amplifier and then transferred to a discriminator. At this time, the delimiter determines the number of photons at that time at a high speed, the signal of the delimiter is transmitted to the FPGA 200, the FPGA 200 is a high-speed constant integrator (Window sum) processing To generate the size of the thermal noise canceled PSL.
이어서, 생성된 PSL 크기에 따른 이미지플레이트(100)의 엑스레이 잠상 이미지를 마이크로프로세서(300)를 통해 획득한다.Subsequently, an X-ray latent image of the image plate 100 according to the generated PSL size is obtained through the microprocessor 300.
마지막으로, 상기 획득한 잠상 이미지를 Ethernet(401), WIFI(402), USB(403)를 통해 PC에 전송한다.Finally, the acquired latent image is transmitted to a PC through Ethernet 401, WIFI 402, and USB 403.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (12)

  1. 몸체; Body;
    상기 몸체 내부 일측에 진단을 위해 엑스레이에 노출되는 이미지플레이트를 회전시키는 회전모터;A rotating motor for rotating the image plate exposed to the X-ray for diagnosis on one side of the body;
    상기 몸체 내부 타측에 스캔암을 회전시키는 스캔모터;A scan motor for rotating the scan arm on the other side of the body;
    상기 스캔암의 끝단에 부착되어 PSL를 수광하는 PSL 스캔헤드;A PSL scan head attached to an end of the scan arm to receive a PSL;
    상기 회전모터, 상기 스캔모터, 및 상기 PSL 스캔헤드를 제어하는 제어부; 및A control unit for controlling the rotating motor, the scan motor, and the PSL scan head; And
    상기 PSL 스캔헤드를 통해 이미지플레이트의 엑스레이 잠상 이미지를 처리하고 전송하는 마이크로프로세서;를 포함하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템.And a microprocessor for processing and transmitting an X-ray latent image image of the image plate through the PSL scan head.
  2. 제1항에 있어서,The method of claim 1,
    상기 이미지플레이트는 카트리지 플레이트에 장착되는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템. The image plate is CR system using a spiral scan method, characterized in that mounted to the cartridge plate.
  3. 제2항에 있어서,The method of claim 2,
    상기 카트리지 플레이트는 3개의 원형 자석이 삽입되어 구성되고, 상기 카트리지 플레이트 하측면 중앙에 삼각형상의 홈이 형성되어 카트리지 마운트의 삼각돌기와 결합되는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템. The cartridge plate is composed of three circular magnets are inserted, the CR system using a spiral scan method, characterized in that a triangular groove is formed in the center of the lower side of the cartridge plate is coupled to the triangular protrusion of the cartridge mount.
  4. 제1항에 있어서,The method of claim 1,
    상기 회전모터는 이미지플레이트가 장착된 카트리지 플레이트와 결합되는 카트리지 마운트를 회전시키는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템.The rotating motor is a CR system using a spiral scan method, characterized in that for rotating the cartridge mount coupled to the cartridge plate on which the image plate is mounted.
  5. 제2항에 있어서,The method of claim 2,
    상기 카트리지 플레이트는 스캔암의 위치에 따른 회전속도 차이가 발생하므로 균일한 미소면적을 스캔할 수 있도록 회전속도를 제어하기 위한 회전모터 엔코더를 더 포함하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템.The cartridge plate CR system using a helical scan method further comprises a rotation motor encoder for controlling the rotation speed so that the rotation speed difference occurs according to the position of the scan arm to scan a uniform micro-area.
  6. 제1항에 있어서,The method of claim 1,
    상기 스캔암은 PSL 스캔헤드를 스캔모터를 통해 이미지플레이트의 최외각에서 중심을 지나는 원궤도로 이동하며 나선형궤도를 따라 이미지플레이트의 1차 PSL를 수광하고, 상기 PSL 스캔헤드를 다시 중심점에서 이미지플레이트의 반대쪽 최외각으로 이동하면서 2차 PSL를 수광하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템. The scan arm passes the PSL scanhead through the scan motor to the center at the outermost part of the image plate. Spiral scanning method characterized in that the first PSL of the image plate is received along the spiral orbit and the second PSL is received while moving the PSL scan head from the center point to the outermost side of the image plate. CR system used.
  7. 제1항에 있어서,The method of claim 1,
    상기 스캔암은 스캔모터 엔코더에 의해 설정된 해상도에 맞게 이동하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템. The scan arm is a CR system using a spiral scan method, characterized in that for moving according to the resolution set by the scan motor encoder.
  8. 제1항에 있어서,The method of claim 1,
    상기 PSL 스캔헤드는 발광부와 수광부로 구성되고,The PSL scan head includes a light emitting part and a light receiving part.
    상기 발광부은 레이저 다이오드에서 발생하는 레이저빔을 콜리메이팅렌즈와 포커싱렌즈를 거쳐 스폿을 형성하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템. The light emitting unit CR system using a helical scan method, characterized in that for forming a spot through the laser beam generated from the laser diode through the collimating lens and the focusing lens.
  9. 제8항에 있어서,The method of claim 8,
    상기 수광부는 집광렌즈를 통해 수광된 PSL를 반도체센서를 통해 전자신호로 변환하고, 상기 변환된 전자신호는 증폭기로 증폭한 후 디스크리미네이터로 전달하여 광자수를 고속으로 판별하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템. The light-receiving unit converts the PSL received through the condenser lens into an electronic signal through a semiconductor sensor, and the converted electronic signal is amplified by an amplifier and transferred to a delimiter to determine the number of photons at high speed. CR system using scan method.
  10. 제1항에 있어서,The method of claim 1,
    상기 회전모터와 스캔모터는 각각 회전모터 엔코더와 스캔모터 엔코더를 통해 설정된 속도 및 위치를 가변 제어하여 설정된 해상도에 맞는 균일한 미소 스캔면적을 가지는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 시스템.The rotating motor and the scan motor are CR systems using a helical scan method, characterized in that each of the rotation motor encoder and the scan motor encoder by varying control the speed and position set to have a uniform micro scan area suitable for the set resolution.
  11. 이미지플레이트를 카트리지 플레이트에 장착하는 단계;Mounting the image plate to the cartridge plate;
    상기 이미지플레이트를 회전모터로 회전시키면서 동시에 스캔암의 끝단에 장착된 PSL 스캔헤드를 스캔모터를 통해 이미지플레이트의 최외각에서 중심을 지나는 원궤도로 움직이며 나선형궤도를 따라 이미지플레이트의 1차 PSL를 수광하고, 상기 PSL 스캔헤드를 다시 중심점에서 반대쪽 최외각으로 이동하면서 2차 PSL를 수광하는 단계; While rotating the image plate with the rotary motor, the PSL scan head mounted at the end of the scan arm simultaneously passes the center at the outermost portion of the image plate through the scan motor. Receiving a primary PSL of an image plate along a spiral orbit and receiving a secondary PSL while moving the PSL scanhead from the center point to the opposite outermost side again;
    상기 수광된 PSL를 반도체센서를 통해 전자신호로 변환하고, 변환된 전자신호는 증폭기로 증폭한 후 디스크리미네이터로 전달하는 단계;Converting the received PSL into an electronic signal through a semiconductor sensor, and amplifying the converted electronic signal by an amplifier and transferring the converted electronic signal to a delimiter;
    상기 디스크리미네이터의 신호를 FPGA 전달하여 적분기 처리로 열잡음이 제거된 광신호 크기를 생성하는 단계; 및Transferring the signal of the delimiter to the FPGA to generate an optical signal size from which thermal noise is eliminated through integrator processing; And
    상기 생성된 광신호에 따른 이미지플레이트의 엑스레이 잠상 이미지를 마이크로프로세서를 통해 획득하는 단계;를 포함하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 방법. And acquiring an X-ray latent image image of the image plate according to the generated optical signal through a microprocessor.
  12. 제11항에 있어서,The method of claim 11,
    상기 획득한 이미지플레이트의 엑스레이 잠상 이미지를 Ethernet, WIFI, USB를 통해 PC에 전송하는 단계를 더 포함하는 것을 특징으로 하는 나선형 스캔방식을 이용한 CR 방법. And transmitting the latent X-ray image of the acquired image plate to a PC through Ethernet, WIFI, or USB.
PCT/KR2017/009787 2017-04-10 2017-09-07 Cr system and method using spiral scan scheme WO2018190476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0045793 2017-04-10
KR1020170045793A KR101883102B1 (en) 2017-04-10 2017-04-10 CR system using spiral scan type and method thereof

Publications (1)

Publication Number Publication Date
WO2018190476A1 true WO2018190476A1 (en) 2018-10-18

Family

ID=63251834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009787 WO2018190476A1 (en) 2017-04-10 2017-09-07 Cr system and method using spiral scan scheme

Country Status (2)

Country Link
KR (1) KR101883102B1 (en)
WO (1) WO2018190476A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274128A (en) * 1988-04-27 1989-11-01 Mc Sci:Kk Radiation image readout device
KR20010089279A (en) * 1998-09-25 2001-09-29 추후제출 Multiple-head phosphor screen scanner
US6700131B2 (en) * 2000-05-02 2004-03-02 Alara, Inc. Systems for detecting and compensating for image artifacts while scanning an imagine plate
US7157728B2 (en) * 2004-04-06 2007-01-02 Agfa-Gevaert Healthcare Gmbh Equipment and system for reading out X-ray information stored in a stimulatable phosphor layer
JP2011053459A (en) * 2009-09-02 2011-03-17 Morita Mfg Co Ltd Radiological image reader

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274128A (en) * 1988-04-27 1989-11-01 Mc Sci:Kk Radiation image readout device
KR20010089279A (en) * 1998-09-25 2001-09-29 추후제출 Multiple-head phosphor screen scanner
US6700131B2 (en) * 2000-05-02 2004-03-02 Alara, Inc. Systems for detecting and compensating for image artifacts while scanning an imagine plate
US7157728B2 (en) * 2004-04-06 2007-01-02 Agfa-Gevaert Healthcare Gmbh Equipment and system for reading out X-ray information stored in a stimulatable phosphor layer
JP2011053459A (en) * 2009-09-02 2011-03-17 Morita Mfg Co Ltd Radiological image reader

Also Published As

Publication number Publication date
KR101883102B1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US4160997A (en) Intraoral fluoroscope
US5138642A (en) Detector imaging arrangement for an industrial CT device
JP5394640B2 (en) Apparatus and method for multimode imaging
US20010012330A1 (en) Radiographic apparatus
US5790629A (en) Apparatus for making x-ray images
JPH10201750A (en) Radiographic device
EP1467226A1 (en) Method for creating a contiguous image using multiple x-ray imagers
WO2018190476A1 (en) Cr system and method using spiral scan scheme
WO2013002087A1 (en) Radiation image capturing device, method, and system
KR101110735B1 (en) X-ray Detector and X-ray Imaging Apparatus having the same
JP2001255607A (en) Electronic image pickup screen device having optical interference film
CN109031174B (en) Multi-cascade distributed micro CT imaging system
US6546076B1 (en) Digital high resolution x-ray imaging utilizing an imaging sensor
EP0862066B1 (en) Method for readout af a stimulable phosphor screen
KR20100021840A (en) Scanning apparatus
JP2004340583A (en) X-ray measuring instrument
US20100316189A1 (en) Object scanning system
JPH10300858A (en) Two-dimensional radiation detector
JP4016580B2 (en) Radiography equipment
EP2247963A1 (en) Object scanning system
JP2816835B2 (en) Pixel density detector
JPH04149427A (en) Radiograph information reader
JP2001305232A (en) X-ray image detection device
KR20230024529A (en) Image output apparatus capable of outputting a plurality of images with a plurality of sensors and endoscope apparatus using the same
JPS6324694B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905134

Country of ref document: EP

Kind code of ref document: A1